TW201140819A - Diode memory - Google Patents

Diode memory Download PDF

Info

Publication number
TW201140819A
TW201140819A TW99134973A TW99134973A TW201140819A TW 201140819 A TW201140819 A TW 201140819A TW 99134973 A TW99134973 A TW 99134973A TW 99134973 A TW99134973 A TW 99134973A TW 201140819 A TW201140819 A TW 201140819A
Authority
TW
Taiwan
Prior art keywords
memory
diode
state
memory device
integrated circuit
Prior art date
Application number
TW99134973A
Other languages
Chinese (zh)
Other versions
TWI443820B (en
Inventor
Kuo-Pin Chang
Hang-Ting Lue
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Publication of TW201140819A publication Critical patent/TW201140819A/en
Application granted granted Critical
Publication of TWI443820B publication Critical patent/TWI443820B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

A diode memory device has an intermediate structure between the two terminals, such as a p terminal and the n terminal.

Description

201140819 1 yyyjuji η 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種二極體記憶體裴置。 【先前技術】 二氧化矽抗熔絲記憶體常常被設計為—次編程 (one-time program, OTP )。在一記憶體陣列中,需要一外 加的二極體或選取電晶體以存取一特定的記恢胞。相似 地’在記憶體陣列中’電阻式隨機存取記憶體(resistive random-access memory)通常需要一外加的二極體戍選取 電晶體以存取一特定的記憶胞,以及擋下對未選取^情胞 之存取。 雖然此類的外加存取裝置依然是必需的, J从從一記,丨 胞陣列中選取一特定記憶胞,然而此類的外加存取梦 制了記憶體裝置的可微縮性,並且增加了製造上 度0 ' 【發明内容】 本發明之一實施例係一二極體記憶體敎置,有 物結構位於P端點和n端點之間。此中間物^士 :中指 節點,並且,此同步(in_situ)形成的二極體係為絕^ 置。此絕緣裝置阻檔對未被縣之二極體記憶 、’、 取。此中間物結構的一個例子是二氧化矽(⑽、罝之名 擊穿(punch through)閘極氧化層(例如201140819 1 yyyjuji η VI. Description of the Invention: TECHNICAL FIELD The present invention relates to a diode memory device. [Prior Art] Ceria antifuse memory is often designed as a one-time program (OTP). In a memory array, an additional diode or transistor is required to access a particular recovery cell. Similarly, 'resistive random-access memory' in an array of memory usually requires an additional diode to select a transistor to access a particular memory cell, and the pair is not selected. ^ Emotional access. Although such an external access device is still necessary, J selects a specific memory cell from a cell array, but such an external access dreams the scalability of the memory device and increases Manufacturing Advantages 0 ' [Invention] One embodiment of the present invention is a diode memory device having an object structure between a P end point and an n end point. This intermediate is the middle finger node, and the two-pole system formed by this synchronization (in_situ) is absolute. This insulation device is blocked by the memory of the county's diodes, ', and taken. An example of this intermediate structure is ruthenium dioxide ((10), the name of the ruthenium punch through the gate oxide layer (for example)

Si02顯示出卓越的記憶體切換特性 電各) 、电日日體,此舉 201140819 ( * 1 WOiJjr/\· 置在基板中係為單極性。其他的中間物結構包括金屬氧化 材料、高介電常數(high-k)材料、氮化矽、以及氮氧化 矽,所有改變化學計量以及電阻型之材料,皆可用以形成 電阻型裝置。 不同於抗熔絲記憶體,二極體記憶體裝置不需要外加 絕緣物以及存取裝置,例如一外加二極體或外加電晶體。 因此,此二極體係為一 0T-1R裝置(無電晶體,單一電阻)。 本發明另一實施例係為二極體記憶體裝置之陣列,例 • 如是在一積體電路上。 本發明另一實施例係為操作此二極體記憶體裝置之 方法,例如是讀取、設置(set )、或重置(reset)操作。 本發明另一實施例係為操作二極體記憶體裝置之陣 列之方法,例如對一被選取的二極體記憶體裝置或複數個 被選取的二極體記憶體裝置寫入位址,接著執行讀取、設 置、或重置操作。 本發明另一實施例係製造一二極體記憶體裝置或二 φ 極體記憶體裝置之陣列,例如是在正常的記憶體操作(像 是重置和設置操作)之前執行起始崩潰(initial breakdown) 操作。 本發明技術之一方面係為具有一交叉點(cross-point) 陣列以及控制電路之一積體電路裝置。 此交叉點陣列包括複數個位元線和複數個字元線。此 些位元線和字元線的複數個交叉處包括二極體記憶替裝 置。此二極體記憶體裝置包括一二極體以及一記憶體元 件0 3 201140819 此二極體包括一第一端點和一第二端點,第一端點係 和此些位元線中之一位元線電性耦合,第二端點係和此些 字元線中之一字元線電性耦合。此記憶體元件係位於此二 極體之第一端點和第二端點之間。此記憶體元件係可雙向 地切換於一第一記憶態和一第二記憶態之間。 此二極體記憶體裝置之複數個二極體可減少電流通 過此些位元線和字元線交叉處中未被選取之交又處。 控制電路係和交又點陣列耦合。控制電路施以偏壓排 列(bias arrangement)至此些位元線和字元線交叉處中之 一被選取的父又處,以雙向地切換位於此被選取的交叉處 的二極體記憶體裝置之記憶體元件。 本發明之一實施例,第一端點係為於一摻雜井區中 並且第二端點係為字元線之部分。在一實施例中,摻雜并 區具有一第一摻雜態和一第一濃度,並且二極 置更包括-掺雜區,此摻雜區係位於井區中,且^第: 捧雜態。此摻雜區係位於記憶體元件之下,並且i有小於 第濃度^-第二濃度。在一實施例中,此輕通道接雜係 用以表現二極體之高開關比(〇膽FF m ^雜深 度(implanted depth)可 座且其摻雜冰 operation)。通道掺财操作(RESET 水卢)。W *度係祕於♦表面(例如讀埃之 /木度)具有巧阻值(未摻雜或是非常輕 面之石夕係初熔融之區域(在本發明=雜)的接近表 於開關切換);接著氧原子报快地形成環層中並 散至溶财t,並於冷卻後形成二氧^相且輕易地擴 在一實施例_,記㈣元件包括氣化石夕。 201140819Si02 shows excellent memory switching characteristics), electric Japanese and Japanese, this action 201140819 ( * 1 WOiJjr / \ · placed in the substrate is unipolar. Other intermediate structures include metal oxide materials, high dielectric Constant-high-k materials, tantalum nitride, and niobium oxynitride, all materials that change stoichiometry and resistive types, can be used to form resistive devices. Unlike anti-fuse memory, diode memory devices do not. An external insulator and an access device are required, such as an external diode or an external transistor. Therefore, the two-pole system is a 0T-1R device (no transistor, single resistor). Another embodiment of the present invention is a diode. An array of bulk memory devices, such as on an integrated circuit. Another embodiment of the invention is a method of operating the diode memory device, such as reading, setting, or resetting ( Another embodiment of the present invention is a method of operating an array of diode memory devices, such as writing a selected binary memory device or a plurality of selected binary memory devices. The address is followed by a read, set, or reset operation. Another embodiment of the invention is to fabricate an array of diode memory devices or two φ pole memory devices, such as in normal memory operation ( An initial breakdown operation is performed before resetting and setting operations. One aspect of the present technology is an integrated circuit device having a cross-point array and a control circuit. The array includes a plurality of bit lines and a plurality of word lines. The plurality of intersections of the bit lines and the word lines include a diode memory replacement device. The diode memory device includes a diode and a Memory element 0 3 201140819 The diode includes a first end point and a second end point, the first end point is electrically coupled to one of the bit lines, and the second end point is One of the word lines is electrically coupled. The memory element is located between the first end and the second end of the diode. The memory element is bidirectionally switchable to a first Between a memory state and a second memory state. The plurality of diodes of the diode memory device can reduce the current passing through the unselected intersections between the bit lines and the word lines. The control circuit is coupled with the intersection and the point array. Bias arrangement to the selected parent of one of the intersections of the bit lines and the word lines to bidirectionally switch the memory of the diode memory device at the selected intersection In one embodiment of the invention, the first end point is in a doped well region and the second end point is part of a word line. In one embodiment, the doped region has a first doping The impurity and a first concentration, and the two poles further comprise a -doped region, the doped region is located in the well region, and the first: holding the impurity state. The doped region is below the memory element and i has a concentration less than the first concentration. In one embodiment, the light channel junction is used to represent the high switching ratio of the diode (the implanted depth of the FF m ^ implanted depth and its doped ice operation). Channel blending operation (RESET water). W * degree is secreted on the surface of the ♦ surface (such as reading ang / wood) with a handful of resistance (undoped or very light-faced stone kiln initial melting area (in the present invention = miscellaneous) close to the switch Switching); then the oxygen atom is quickly formed in the ring layer and dispersed to the solvency t, and after cooling, forms a dioxin phase and is easily expanded in an embodiment _, and the component (4) includes gasification. 201140819

( » 1 WOUjr/\T 在一實施例中,記憶體元件包括一第一氧化矽層、位 於第一氧化矽層上之一氮化矽層、以及位於氮化矽層上之 一第二氧化石夕層。例如是一 S〇n〇s裝置。 在一實施例中,一極體元件包括一金屬氧化物、氮化 矽、氮氧化矽、可編程電阻材料、以及介電常數大於氧化 矽介電常數之一材料中的任意一者。 在一實施例中,二極體記憶體裝置更包括至少一者: (i)位於第一端點和記憶體元件之間的一上緩衝層;以及 φ ( i〇位於第二端點和記憶體元件之間的一下緩衝層。 在一實施例中’控制電路施以具有一第一組電性 (electrical characteristic)之一第一順向偏壓排列至被選 取的交叉處,以將被選取的交叉處的二極體記憶體裝置的 記憶體元件從第一記憶態切換至第二記憶態。並且,控制 電路施以具有一第二組電性之一第二順向偏壓排列至被 選取的交叉處,以將被選取的交叉處的二極體記憶體裝置 的記憶體元件從第二記憶態切換至第一記憶態。 φ 在一實施例中,控制電路藉由誘發介電崩潰誘發磊晶 (dielectric breakdown induced epitaxy )以將被選取的交叉 處的二極體記憶體裝置的記憶體元件從第一記憶態切換 至第二記憶態。以及’控制電路藉由誘發焦耳熱效應(Joule heating)以將被選取的父叉處的二極體記憶體裝置的s己憶 體元件從第二記憶態切換至第一記憶態。 在一實施例中’第一記憶態係對應於具有一第一二極 體電流電壓特性之二極體記憶體裝置’以及第二記憶態係 對應於具有一第二二極體電流電壓特性之二極體記憶體 201140819 1 wuujrrv 1 11 裝置。此第一二極體電流電壓特性和第二二極體電流電壓 特性具有不同的順向特性。舉例來說,理想因子(ideality factor ) η係變動的。串聯電阻Rs也是可變動的。 在一實施例中,此記憶體元件係可切換於至少四個記 憶態之間,此四個記憶態包括第一記憶態以及第二記憶 態。 本發明技術之一方面係為操作一積體電路之方法,包 括步驟: 施以偏壓排列至位元線和字元線之交叉處中的被選 取的交叉處,以雙向地切換位於被選取的交叉處之一二極 體記憶體裝置之一記憶體元件,其中二極體記憶體裝置包 括一二極體,二極體包括一第一端點、一第二端點、以及 一記憶體元件。第一端點係和複數個位元線中之一位元線 電性耦合,第二端點係和複數個字元線中之一字元線電性 耦合,記憶體元間係位於二極體之第一端點和第二端點之 間。藉由位於未被選取的交叉處的二極體記憶體裝置之二 極體,通過此些位元線和字元線之交叉處之位被選取的交 叉處的電流係減少的。 一實施例更包括: 在二極體記憶體裝置的正常操作之前,施以一起始偏 壓排列至二極體記憶體裝置,使記憶體元件從一未使用態 改變至記憶態中之一記憶態。 一實施例更包括: 在二極體記憶體裝置的正常操作之前,施以一起始偏 壓排列至二極體記憶體裝置,使記憶體元件從具有一非二 201140819 , ,1 極體電流電壓特性之一未使用態改變至具有一二極體電 流電壓特性之記憶態中之一記憶態。 在一實施例中,所述之施以偏壓排列包括: 施以具有一第一組電性之一第一順向偏壓排列至被 選取的交叉處’以將位於被選取的交叉處的二極體記憶體 裝置之記憶體元件從一第一記憶態切換至一第二記憶 態;以及 施以具有一第二組電性之一第二順向偏壓排列至被 φ 選取的交叉處,已將位於被選取的交叉處的二極體記憶體 裝置之記憶體元件從第二記憶態切換至第一記憶態。 在一實施例中,所述的施以偏壓排列包括: 藉由誘發記憶體元件之介電崩潰誘發磊晶,以將位於 被選取的交叉處的二極體記憶體裝置之記憶體元件從一 第一記憶態切換至一第二記憶態,以及 藉由誘發記憶體元件之焦耳熱效應,以將位於被選取 的交又處的二極體記憶體裝置之記憶體元件從第二記憶 • 態切換至第一記憶態。 在一實施例中,第一記憶態係對應於具有一第一二極 體電流電壓特性之二極體記憶體裝置,以及第二記憶態係 對應於具有一第二二極體電流電壓特性之二極體記憶體 裝置,其中第一二極體電流電壓特性以及第二二極體電流 電壓特性具有不同的順向特性。 在一實施例中’所述的施以偏壓排列係將記憶體元件 切換於具有不同二極體電流電壓特性的記憶態之間。 在一實施例中,所述的施以偏壓排列係將記憶體元件 7 201140819 1 vvuij^r/\ 切換於至少四個記憶態之間^ , 本發明技術之-方㈣具有—二極體記憶 控制電路之一積體電路裝置。 、 二極體記憶體裝置包括一-先 件。二極體包括-第-端點和―第心及一記憶體元 .^ ^ ^ 為點和一第二端點。記憶體源間係 位於二極體之第一端點和第 把触-1 禾碣點之間。二極體元件係雙 向地切換於-第-記億態和—第二記憶態之間。 在一些實施例中,第一端點係位於具有-第-濃度之 :第-摻雜態之-井區中,在此井區$之_摻雜區具有該 第-摻雜態,並且具有小㈣第—濃度之—第二濃度。 在其他實施例中,二極體記憶體裝置之二極體回應跨 在對應一未被選取的二極體記憶體裝置之二極體記憶體 裝置上之一偏壓排列,減少電流通過二極體記憶體裝置。 控制電路係和二極體記憶體裝置耦合。控制電路施以 偏壓排列至二極體記憶體裝置,以雙向地切換二極體記憶 體裝置之記憶體元件。 其他實施例皆在此被揭露。 此處的設置、重置、以及崩潰等術語指的是執行於二 極體§己憶體上之操作,以及因相同稱謂之操作所產生的二 極體記憶體狀態;於内文中的這些特定使用係明確的。 【實施方式】 第1圖係具有一中間氧化物結構之一二極體記憶體 裝置圖。 此結構類似於一般的金氧半場效電晶體 8 201140819 (MOSFET),然而此處之結構沒有源極/汲極接面。厚度 為1.2 nm的超薄熱閘極氧化層係設置於N+多晶矽閘極以 及P-基板之間。於閘極施加脈衝,並量測閘極電流。在形 成之脈衝(第1次設置操作(1st SET operation))破壞閘極 氧化層後,係形成N+/P_接面。一負閘極電壓(_VG)係對應 於順向讀取並且允許一用來讀取和編程之大電流。 N+閘極之摻雜大約為8xl〇2〇 cm-3。厚度為1200A的 P通道摻雜大約為7X1017 cnT3。接近表面的輕摻雜有助於 φ 重置/設置操作。 將記憶體元件設置於二極體内部(在本發明案例中, 二氧化矽係為一儲存節點)之記憶體具有一或多個優點: FEOL製程不需要新的材料和製程步驟;自形成的選擇裝 置(self-formed selecting device);在切斷閘極氧化層後 Ν+/Ρ·二極體係自動形成的;4F2 0T1R的ReRAM裝置之 成本非常低;和CMOS製程相同之微縮能力。 相反的’將記憶體元件和二極體作串聯設置而非設置 • 於二極體内部之其他記憶體具有一或多個缺點,此種結構 類似於目前的rrAM'PCM裝置。這是因為在切換材料的 限制(其材料無法在FEOL或MEOL時被製造),故額外的 二極體或電晶體無法和開關材料同步地製造;製程成本係 大幅地增加;以及製程上係更加地複雜。 第2圖繪示於第1圖之二極體記憶體裝置上操作軟性 崩潰、硬性崩潰、重置、以及設置操作圖。 對於初始(fresh) MOS二極體,1〇〇 ns脈衝之負Vg 係逐漸地增加,直至-6V時出現軟性崩潰(SBD),接著在 9 201140819 1 ννυυ^ΓΛ -9v時出現硬性崩潰(HBD)。在硬㈣潰後係形成 N+/p 接面、。有趣的是’當Vg超過撕至_別時,閑極電流減 少’並且閘極電阻增加(“重置(REset)”狀態)。在起始 形成步驟之後,藉由交替施以_7V (SET操作)脈衝以及 _13V (RESET操作)脈衝,電阻磁滞現象係為可重複。因 此’ MOS二極體執行了一記憶體切換之特性。記憶體係藉 由改變閘極電流以及閘極電阻切換,而不是藉由電荷儲存 切換。 第3A-3D圖係為第!圖的二極體記憶體裝置之不同 狀態之I-V特性曲線圖。理想二極體因子n亦被萃取出來。 因為是N型閘極,一負閘極電壓(_VG)係對應於順向 讀取,以及允許一大電流用以讀取和編程。 一初始MOS二極體(第3B圖)具有可忽略的閘極 電流’並且證明了此時的狀態類似於一電阻。在lst HBD 或SET操作(形成)後(第3D圖),當逆向電流保持在 低值時’順向電流是增加的,因而提供了--般PN二極 體的大開關比(ON/OFF ratio ) ( >8個等級)。此大的比例 可支援在一交叉點記憶體陣列中不需具有外加選取裝置 (例如是一二極體或電晶體)的“自我選取” (self-selected)二極體操作。因為此二極體係同步形成 的,故不需去製造一分離的絕緣裝置,此對一低成本交叉 點記憶體陣列來說很理想。 RESET操作(第3C圖)大幅地降低了順向電流,因 此此方式可允許接近3個等級大小的偵測極限。一不具中 間閘極氧化層的純PN二極體(第3A圖)係被製造和量 201140819( » 1 WOUjr/\T In one embodiment, the memory element includes a first hafnium oxide layer, a tantalum nitride layer on the first hafnium oxide layer, and a second oxidation on the tantalum nitride layer The stone layer is, for example, an S〇n〇s device. In one embodiment, a polar body component includes a metal oxide, tantalum nitride, hafnium oxynitride, a programmable resistance material, and a dielectric constant greater than that of yttrium oxide. Any one of the dielectric constant materials. In one embodiment, the diode memory device further comprises at least one of: (i) an upper buffer layer between the first end point and the memory element; And φ (i 一下 a lower buffer layer between the second terminal and the memory element. In an embodiment the 'control circuit applies a first forward bias having a first set of electrical characteristics Arranging to the selected intersection to switch the memory element of the diode memory device at the selected intersection from the first memory state to the second memory state. And, the control circuit is configured to have a second group of electricity One of the second forward biases is arranged to the selected intersection At the fork, the memory element of the diode memory device at the selected intersection is switched from the second memory state to the first memory state. φ In one embodiment, the control circuit induces a dielectric collapse by induced dielectric collapse. Dielectric breakdown induced epitaxy switches the memory element of the diode memory device at the selected intersection from the first memory state to the second memory state. And the 'control circuit induces Joule heating. Switching the s-resonance element of the diode memory device at the selected parent fork from the second memory state to the first memory state. In an embodiment, the first memory state corresponds to having a first The diode current-voltage characteristic diode memory device' and the second memory state correspond to a diode memory 201140819 1 wuujrrv 1 11 device having a second diode current-voltage characteristic. The body current voltage characteristic and the second diode current voltage characteristic have different forward characteristics. For example, the ideality factor η varies, and the series resistance Rs is also variable. In one embodiment, the memory component is switchable between at least four memory states, the first memory state and the second memory state. One aspect of the present technology is to operate an integrated body. The method of the circuit includes the steps of: biasing the selected intersections at the intersections of the bit lines and the word lines to bidirectionally switch one of the diode memory devices at the selected intersection A memory device, wherein the diode memory device comprises a diode, the diode comprising a first end point, a second end point, and a memory element. The first end point system and the plurality of bit elements One bit line in the line is electrically coupled, and the second end point is electrically coupled to one of the plurality of word lines, and the memory element is located at the first end and the second end of the diode Between the points. By the diode of the diode memory device at the unselected intersection, the current at the intersection where the intersection of the bit line and the word line is selected is reduced. An embodiment further includes: prior to normal operation of the diode memory device, applying an initial bias to the diode memory device to change the memory component from an unused state to a memory state state. An embodiment further includes: before the normal operation of the diode memory device, applying an initial bias to the diode memory device, so that the memory component has a non-second 201140819, 1 pole current voltage One of the characteristics of the unused state changes to one of the memory states having a diode current-voltage characteristic. In one embodiment, the biasing arrangement comprises: applying a first forward bias having a first set of electrical properties to the selected intersection to be located at the selected intersection a memory element of the diode memory device is switched from a first memory state to a second memory state; and a second forward bias having a second set of electrical properties is applied to the intersection selected by φ The memory element of the diode memory device at the selected intersection has been switched from the second memory state to the first memory state. In one embodiment, the biasing arrangement comprises: inducing epitaxy by inducing a dielectric breakdown of the memory component to place a memory component of the diode memory device at the selected intersection Switching a first memory state to a second memory state, and by inducing a Joule heating effect of the memory component, to cause a memory component of the selected diode device to be removed from the second memory state Switch to the first memory state. In one embodiment, the first memory state corresponds to a diode memory device having a first diode current-voltage characteristic, and the second memory state corresponds to having a second diode current-voltage characteristic. A diode memory device in which the first diode current voltage characteristic and the second diode current voltage characteristic have different forward characteristics. In one embodiment, the biasing arrangement described herein switches the memory elements between memory states having different diode current and voltage characteristics. In one embodiment, the biasing arrangement switches the memory component 7 201140819 1 vvuij^r/\ between at least four memory states, and the technique of the present invention has a diode. One of the memory control circuits is an integrated circuit device. The diode memory device includes a first component. The diode includes a --end point and a "heart" and a memory element. ^ ^ ^ is a point and a second end point. The memory source is located between the first end of the diode and the first touch - 1 and the point. The diode element is switched bidirectionally between the -th-think state and the second memory state. In some embodiments, the first end point is located in a well region having a -th-concentration: first-doped state, wherein the doped region of the well region has the first doped state and has Small (four) - concentration - the second concentration. In other embodiments, the diode of the diode memory device is biased in response to a bias across a diode memory device corresponding to an unselected diode memory device, reducing current through the pole Body memory device. The control circuit is coupled to the diode memory device. The control circuit is biased to the diode memory device to bidirectionally switch the memory elements of the diode memory device. Other embodiments are disclosed herein. The terms set, reset, and crash here refer to the operations performed on the diopter of the diode and the state of the diode memory generated by the operation of the same title; these specifics in the text The use of the system is clear. [Embodiment] Fig. 1 is a diagram of a diode memory device having an intermediate oxide structure. This structure is similar to the general metal oxide half field effect transistor 8 201140819 (MOSFET), however the structure here has no source/drain junction. An ultra-thin thermal gate oxide layer with a thickness of 1.2 nm is placed between the N+ polysilicon gate and the P-substrate. A pulse is applied to the gate and the gate current is measured. After the formation of the pulse (1st SET operation) destroys the gate oxide layer, an N+/P_ junction is formed. A negative gate voltage (_VG) corresponds to a forward read and allows a large current for reading and programming. The doping of the N+ gate is approximately 8xl 〇 2 〇 cm-3. The P channel doping with a thickness of 1200A is approximately 7X1017 cnT3. Light doping close to the surface contributes to the φ reset/set operation. The memory of the memory component disposed inside the diode (in the case of the present invention, the cerium oxide is a storage node) has one or more advantages: the FEOL process does not require new materials and process steps; self-formed Self-formed selecting device; Ν+/Ρ·2-pole system is automatically formed after the gate oxide layer is cut off; the cost of the 4F2 0T1R ReRAM device is very low; and the same miniaturization capability as the CMOS process. Conversely, the memory element and the diode are arranged in series rather than being disposed. • Other memory inside the diode has one or more disadvantages that are similar to current rrAM' PCM devices. This is because in the limitation of switching materials (the material cannot be manufactured in FEOL or MEOL), the additional diode or transistor cannot be manufactured synchronously with the switching material; the process cost is greatly increased; and the process is more Complex. Figure 2 is a diagram showing the operation of a soft crash, a hard crash, a reset, and a setup operation on the diode memory device of Figure 1. For the fresh MOS diode, the negative Vg of the 1 ns pulse is gradually increased until a soft collapse (SBD) occurs at -6 V, followed by a hard collapse at 9 201140819 1 ννυυ^ΓΛ -9v (HBD) ). After the hard (four) collapse, the N+/p junction is formed. Interestingly, 'when Vg exceeds tearing, the idle current decreases' and the gate resistance increases ("REset" state). After the initial formation step, the resistance hysteresis is repeatable by alternately applying a _7V (SET operation) pulse and a _13V (RESET operation) pulse. Therefore, the MOS diode performs a memory switching feature. The memory system switches by changing the gate current and gate resistance, rather than by charge storage. The 3A-3D picture is the first! The I-V characteristic plot of the different states of the diode memory device of the figure. The ideal diode factor n is also extracted. Because it is an N-type gate, a negative gate voltage (_VG) corresponds to a forward read and allows a large current to be read and programmed. An initial MOS diode (Fig. 3B) has a negligible gate current ' and proves that the state at this time is similar to a resistor. After lst HBD or SET operation (formation) (3D), the forward current is increased when the reverse current is kept low, thus providing a large switching ratio of the PN diode (ON/OFF) Ratio ) ( > 8 levels). This large ratio can support "self-selected" diode operation without the need for additional means (e.g., a diode or transistor) in a cross-point memory array. Because the two-pole system is formed synchronously, there is no need to fabricate a separate isolation device, which is ideal for a low cost cross-point memory array. The RESET operation (Fig. 3C) greatly reduces the forward current, so this approach allows detection limits close to three levels. A pure PN diode (Fig. 3A) without an intermediate gate oxide layer is manufactured and massed 201140819

. · I 測以用來作比較。第3D圖指出SET狀態讀取電流接近PN 二極體,並且萃取出的理想因子(η)也是互相接近(〜1.3 到1.4)。RESET和SET二狀態都顯示了二極體矯正特性, 使得在二極體記憶體裝置的交叉點陣列中,是不需要分離 的存取/絕緣裝置的。 一交叉點陣列的範例是一類NAND ( NAND-like )陣 列。交叉點陣列的另一範例是具有X-Y定址記憶體 (addressed memory)之二維陣列。高密度記憶體包括具 φ 有一 4F2面積之二極體記憶體裝置,其中F係為最小特徵 尺寸。另一實施例包括交叉點記憶體之多堆疊陣列。 第4圖係為第1圖之二極體記憶體裝置之週期圖。 此二極體記憶體裝置係可切換幾乎一百個單極週 期。此記憶胞係微縮至L=0.13 um以及W=0.02um。 第5圖係為第1圖之二極體記憶體裝置之讀取擾動耐 受力(read disturb immunity )圖。 第6圖係為第1圖之二極體記憶體裝置之高溫保存 籲 (high temperature retention)圖0 在超過1000小時150度烘烤後,二態都是穩定的。 第7圖係為使用脈衝IV技術的第1圖之二極體記憶 體裝置之不同態之暫態電流圖。 使用100 ns之一編程寬度。RESET操作電流係遠大 於SET操作電流。裝置尺寸係為L/W = 0.2 um/0.2 um。 第8圖係為PN二極體裝置(無中間氧化層)之IV 曲線圖。 不同尺寸之PN二極體(無中間氧化層)在施加 201140819 (stress)高電壓施加後具有永久傷害(線路開路(stUck open)),失去開關特性。 第9A圖係為由負閘極偏壓的一硬性崩潰後的二極體 記憶體裝置照片圖。 本實施例係有一 n+多晶矽閘極,此HBD顯示出強電 塵極性相依性,並且係發生於施加-Vg。來自N+閘極的多 晶矽在HBD操作後,穿破薄穿隧氧化層。此現象即所謂 的“介電崩潰誘發磊晶,’ (DBIE)。 在另一具有一 p+多晶矽閘極以及η本體之實施例 中,HBD發生於施加+Vg。而在另一具有一蕭特基 (Schottky)閘極之實施例中,極性是取決於蕭特基勢障 係傾向相似於多晶梦閘極或是n+多晶矽閘極。其中, 蕭特基勢障係由具有内建電壓以及蕭特基勢障之蕭特基 金屬的功函數和費米能階(其可比作半導體之功函數、費米 能階、電子親和力、導電帶、以及價帶)決定。 第9B圖係為在閘極施加一正電壓後之二極體記憶體 裝置照片圖。無HBD發生。 第10A圖係為在重置操作後二極體記憶體裝置之昭 片圖。 〜 RESET操作之編程電流引起一些局部性的加熱,此 加熱導致一厚Si02層以及底下一多晶矽層的分隔。 第10B圖係為在重置操作後二極體記憶體裝置之接 觸區之照片圖。 在RESET操作後的TEM圖顯示出高編程電流在 面引發嚴重的破壞。接近表面的部分結晶矽係轉換為 201140819 » 1 ννυι * 以及多晶矽。然而接觸區係為正常的。 第10C圖係為在設置操作後二極體記憶體裝置之接 觸區之照片圖。· SET操作在氧化層中引發矽絲。 第10D圖係為在設置態1〇〇次週期後二極體記憶體 裝置的接觸區之照片圖。 第11A-11F圖繪示了在不同態下之二極體記憶體裝 置圖。 # SBD操作於多晶矽閘極以及基板之間產生滲透路 控。一滲透路徑觸發硬性崩潰,並且接著電流誘發出 DBIE。在HBD之後’(RESET操作)更增加的偏壓在接 近石夕絲處誘發焦耳熱效應(jouleheating)。焦荨熱效應主 導RESET操作。最終,區域溫度接近矽熔點(Tcd, 1685K)。來自於附近層的氧離子可輕易地漂移至熔融矽, 並且在電流關閉且溫度冷卻後形成Si02。因此,在reset 操作後’可在基板處觀察到Si〇2和部分多晶矽。氧化層 •很可能是一漏電的富矽氧化層’使得RESET態之順向電 流極高於初始態。 SET操作係類似於第一(形成)hbd,並且相較於 RESET操作,SET操作有著更低的焦耳熱效應以及更低的 溫度’故需要較少的電流。在SET操作中,矽原子被高動 量電子流所推動,接著原子被堆積起來形成矽絲,這情況 類似於電致遷移效應(electr〇niigration)e DBIE主導SET 操作。 以此方式’ SET/RESET操作可被重複地執行,分別 13 201140819 形成梦絲和 性。 S·02而引出§己憶體—極體的記憶體開關特 12Α圖繪tf第1 0之二極體記憶體裝置之操作電 對尺寸之關係圖 、 之二極體記憶體裝置之暫態電流 第12Β圖繪示第1圖 對尺寸之關係圖。 ,12Α圖和第12Β圖比較了操作電壓以及對應的操 =電机。震置係微縮至L = 〇 13um,w = 〇〇2um,表現出 南密度儲存能力。HBD以及SET操作電㈣乎是不相依 於裝置尺寸。當裝置尺寸微縮時,reset操作電壓和 RE S E T操作電流是減少的。然而,電流並非和|置面積呈 線性微縮。在20 nm的節點下,預測RESET操作電流仍 然在mA範圍。因為發炼融過程的高功率消耗限制了功率 微縮鯭力,所以可減少功率的更有效熱絕緣將可支援更進 一步的微縮。 第13圖繪示在連續施加電壓後,第丨圖之一二極體 記憶體裝置之不同IV特性圖。第13圖顯示了在一單一二 極體記憶體裝置中儲存多個位元的多種時間可編程應用 的適合性。 閘極氧化層漏電流相關的閘極電流係可藉由不同脈 衝寬度/脈衝電壓作調整的。開始的裝置係為初始裝置,其 表現像是一電阻。接著元件係逐漸地被施加電壓至不同的 電流態。閘極氧化層被觀察到的逐步崩潰證明了在多次程 式(multi-time program,MTP)或多層式(Multi-Level-Cell, MLC)應用上的適合性’以在一單一二極體記憶體裝置上 201140819 t · 1 ττ r\ * 儲存多位元。 當-般薄氧化層m〇SFET微縮小於1〇 nm時,二極 體記憶體裝置係微縮至10 nm以下的。因為是依靠以改變 間極電流以及閘極電阻來代替電荷儲存來儲存資料 排除掉儲存少數電子的L存問題,可微縮性係可被改 善0 第14圖係為具有一中間的緩衝層_氧化層'緩衝層結 構之一二極體記憶體裝置圖。 • +同的氧化層結構包括金屬氧化物材料'高介電常數 材料、氮化碎、以及氮氧化石夕,所有改變化學計量以及電 阻型之材料’皆可用以形成電阻型裝置。 不同的緩衝結構係為一類半導體 (semiconductoMike)層,介於氧化層結構和閘極之間, 或介於閘極和基板之間,或者都介於氧化層結構和閑極之 間以及閘極和基板之間。 高溶點石夕和強鍵結二氧化發主導了卿/set/r膽τ •操作’因此暫態和脈衝電壓是高的。石夕/二氧切以外之材 力率上的'肖耗’然而自選擇(Self_Sdeeted)特性係被 保留的。 緩衝層例如是氧化物、相變、以及半導體材料。 此緩衝層可用作執行PN二極體之矯正特性。 緩衝層也是金屬,在此裝置係執行蕭特二 正特性。 r肢心埽 叙一第具有—中間的氧化層遠化層-氧化層結 構之一極體5己憶體裝置圖。 15 201140819 L TV SJ LJJA. Γ\ ,在一 n+井區中,一較輕摻雜的n_區係接近於表面的。 形成於η區域上的第一氧化層係為u埃之厚度,並且萨 由同步蒸氣產生法(in situ steam generation meth〇d )所^ 成。形成於第一氧化層上的氮化矽層係為2〇埃之厚度。y 形成於氮化矽層上的第二氧化層係為28埃之厚度並2藉 由高溫氧化法所形成。不同的實施例係改變不同的溫度: 厚度'以及材料。 每一 Vg脈衝之脈衝寬度係為i〇〇ns。 態之 第19圖係為第15圖之二極體記憶體裝置之 IV特性圖。 第20圖係為第15圖之二極體記憶體裝置之週期圖。 每個態係被萃取於Vg = 2V。 第21圖係為二極體記憶體裝置之操作流程圖。 ,步驟26G2卜在-初始二極體記憶體裝置上執行 在步驟屬中,在二極體記憶體裝置上執行 =性朋潰。在步驟·中,在二極體記憶體裝置上執行 =重置操作’使二極體記憶體裝置位於重置態中。前述 、步驟係和新製造的二極體記憶體裝置被—終端用戶作 一般使用之前的準備相關。 接下來的步驟係和一二極體記憶體裝置的一般操 作’例如是被—終端用戶作使用相關。在步驟2606中, 二極=憶體裝置係於-重置態中。在步驟腿中,在 一二極體記憶體裝置上執行—設錢作 201140819 t * i woujrA' 一交叉點陣列中之一特定二極體記憶體裝置之χ_γ輸入 位址。在步驟2610中,二極體記憶體震置係於二設置態 中。多個二極體記憶體裝置可一次地輸入位址。在步ς 2614中,在一二極體記憶體裝置上執行—重置操作,舉例 來說是由在-交叉點陣列中之-特定二極體記憶體裝置 之χ-γ輸入位址。多個二極體記憶體裴置可一次地輸入位 址。重覆步驟2606,二極體記憶體裝置係於一重置熊。 在正常操作期間,在二極體記憶體裴f •作》在步驟26〇8中,在於一重置態中(步驟2執:= 取的一二極體記憶體裝置上執行一讀取操作。舉例來說, 二極體記憶體裝置係藉由在一交叉點陣列中之一特定二 極體6己憶體裝置之Χ·γ輸入位址被選出。在步驟2612中, 在於一設置態中(步驟2610)被選取的一二極體記憶體装 置上執行一讀取操作。舉例來說’二極體記憶體裝置係藉 由在1 一父叉點陣列中之·一特定二極體記憶體裝置之χ_γ 輸入位址被選出。 φ 第22圖係為一具有二極體記憶體裝置之陣列的積體 電路方塊圖,以及控制邏輯係應用於被選取的二極體記憶 體裝置之操作上,例如是讀取、設置、以及重置操作。 第22圖繪示一積體電路2750,包括一二極體記憶體 陣列2700。方塊選取之一字元線解碼器2701係和複數個 字元線2702耦合並且電性通訊’並且係在二極體記憶體 陣列2700中沿著列作安排設置。一位元線解碼器2703係 和複數個位元線2704耦合並且電性通訊’此位元線2704 係在二極體記憶體陣列2700中沿著行作安排設置,以讀 17 201140819 取資料以及寫入資料至二極體記憶體陣列2700中的二極 體記憶胞中。匯流排2705供應位址至字元線解碼器27〇1 以及位元線解碼器2703。在方塊2706中的感測放大器以 及資料輸入結構包括給讀取、編程、以及抹除模式所用的 電流源,在方塊2706中的感測放大器以及資料輸入結構 係通過匯流排2707耦合至位元線解碼器2703。資料係由 積體電路2750上的輸入/輸出崞(input/outputport)通過 資料輸入線2711供應至方塊2706中的資料輸入結構。資 料係由方塊2706中的感測放大器通過資料輸出線2715供 應至積體電路2750上的輸入/輸出埠’或是供應至積體電 路2750内部或外部上的其他資料目的地。一設置、重置、 以及讀取偏壓排列狀態機器係位於電路2709中,控制偏 壓排列供應電壓2708。偏壓排列雙向地切換二極體記憶體 裝置的記憶體元件之狀態,例如是在SET和RESET之間 作切換。 第23圖繪示使用於此所說明的二極體記憶胞之一交 又點記憶體陣列的部分示意圖。 如第23圖之示意圖所示,陣列1〇〇的每一記憶胞係 為一二極體記憶體裝置,其表現為一二極體存取裝置沿著 介於一相對應的字元線11〇和一相對應的位元線120之間 的一電流路徑的一電阻型記憶體元件(表現為第23圖中 的一可調變電阻)串聯。如底下更詳細之說明,二極體記 憶體裝置係可被編程為多個態。 此陣列包括複數個字元線110 (以及複數個位元線 120 ’字元線11〇包括字元線110a、110b、以及u〇c,平 201140819 行地延伸於一第一方向,位元線120包括位元線12〇a、 120b、以及i2〇c,平形地延伸於垂直於第一方向之一第一 方向。陣列1〇〇被稱為一交叉點陣列,因為字元線ιι〇和 位兀線120為彼此交叉,但非實際上相交,並且二極體呓 憶胞係位於字元線11〇和位元線12〇的這些交又點位置 上。 一極體§己憶胞115是代表陣列1 〇〇的此些記憶胞,並 且设置於字元線11〇b以及位元線120b的交叉點位置上, •二極體記憶胞115代表串聯設置的一二極體130以及一可 變電阻140。二極體記憶體胞115係電性搞合字元線 以及電性耦合位元線120b。 讀取或寫入(設置/重置)陣列1〇〇之二極體記憶胞 115可藉由施以適當的電壓脈衝於相應的字元線丨1卟和位 元線12〇b上,以誘發一電流通過此被選取的記憶胞115 執行。被施加電壓的準位和持續時間係相依於操作執行, 例如疋一讀取操作或一編程操作(設置/重置)。 _ 在對儲存於記憶胞115中的資料數值作一讀取(或感 測)操作中’偏壓電路耦合於相對應的字元線u〇b以及 位元線120b’以施加偏壓排列跨於合適振幅與持續時間之 «己It胞115上’以誘發電流流過,而不使得記憶胞115經 歷狀態上的改變。通過記憶胞115的電流係相依於電阻 ‘值以及二極體記憶體裝置115的資料數值。舉例來說,資 料數值可利用感測放大器(例如是,感測放大器/資料輸入 結構)來比較位元線l2〇b上的電流與一合適參考電流計 算得°流過未被選取的二極體記憶體裝置之電流係藉由在 201140819 位被選取的一極體記憶體裝置中的二極體減少或是實質 上被消除。 在被儲存於二極體記·》體裝置115巾的-資料數值 的編程操作中’偏壓電路(例如是偏壓排列供應電壓)编 合於相對應的字元線11Gb和位元線腸,⑽加偏壓排 列跨於合適振幅與持續時間之記_ 115上,以誘發—可 編程之改變(”又置/重置)以*記憶胞115中儲存資料數值。 偏壓排列包括一第一偏壓排列其足以順向偏壓二極 體130並且改變二極體記憶體裝置之狀態,從—第一可編 程態變成-第二可編程態。偏壓排列也包括—第二偏壓排 列其足以順向偏壓二極體記憶體裝置並且將第二可編程 態改變成第-可編程態。在實施例中,用於記憶體元件⑽ 之單極性操作的每-偏壓排列可包括—或多個電壓脈 衝’並且電壓準位和脈衝時間係可由各實施例以經驗作判 定0 於此所說明的二極體記憶胞 例包括相變基記憶體材料(phase change based memo material) ’包括硫族(chalcogenide )基材料以及其他材料 硫族元素(chalcogen)包括氧(Ο)、硫(s)、碼(^) 以及碲(Te)四元素之任一者,係為形成週期表中的v】 族之部分元素。硫族包括具有一多正電性元素戋正電根 一硫族元素的化合物。硫族合金包括具有其他材料之碎2 的合成物’其他材料例如是過渡金屬。一硫族人金# 含一或多個週期表元素中來自IVA族的元素,例 (Ge)和錫(Sn)。通常硫族合金包括合成物,人成物g 201140819 , · 1 wou^r/\f 括一或多個錄(Sb)、鎵(Ga )、姻(In)、以及銀(Ag )。 許多相變基記憶體材料已於技術文獻中作說明,包括· I is used for comparison. Figure 3D indicates that the SET state read current is close to the PN diode and the extracted ideal factor (η) is also close to each other (~1.3 to 1.4). Both the RESET and SET states show the diode correction characteristics such that no separate access/insulation devices are required in the cross-point array of the diode memory device. An example of a crosspoint array is a type of NAND (NAND-like) array. Another example of a cross-point array is a two-dimensional array with X-Y addressed memory. The high-density memory includes a diode memory device having a 4F2 area of φ, wherein the F system is the smallest feature size. Another embodiment includes a multi-stack array of cross-point memories. Figure 4 is a periodic diagram of the diode memory device of Figure 1. This diode memory device can switch almost one hundred unipolar cycles. This memory cell is miniaturized to L = 0.13 um and W = 0.02 um. Figure 5 is a diagram of the read disturb immunity of the diode memory device of Figure 1. Figure 6 is a high temperature retention of the diode memory device of Figure 1. Figure 2 is stable after more than 1000 hours of 150 degree baking. Fig. 7 is a diagram showing transient states of different states of the diode memory device of Fig. 1 using pulse IV technique. Program the width using one of 100 ns. The RESET operating current is much larger than the SET operating current. The device size is L/W = 0.2 um/0.2 um. Figure 8 is an IV plot of a PN diode device (without an intermediate oxide layer). Different sizes of PN diodes (without intermediate oxide layer) have permanent damage (stUck open) after application of the 201140819 (stress) high voltage application, losing switching characteristics. Figure 9A is a photograph of a rigid collapsed diode memory device biased by a negative gate. This embodiment has an n+ polysilicon gate which exhibits a strong dust polarity dependence and which occurs at -Vg. The polysilicon from the N+ gate penetrates the thin tunnel oxide layer after the HBD operation. This phenomenon is known as "dielectric collapse induced epitaxy," (DBIE). In another embodiment having a p+ polysilicon gate and a η body, the HBD occurs with the application of +Vg. In the Schottky gate embodiment, the polarity depends on the Schottky barrier system tending to be similar to the polycrystalline dream gate or the n+ polysilicon gate. Among them, the Schottky barrier has a built-in voltage and The work function of the Schottky metal of the Schottky barrier and the Fermi level (which can be compared to the work function of the semiconductor, the Fermi level, the electron affinity, the conduction band, and the valence band) are determined. A photo of a diode memory device with a positive voltage applied to the gate. No HBD occurs. Figure 10A is a schematic diagram of the diode memory device after the reset operation. ~ The programming current of the RESET operation causes some Localized heating, which results in the separation of a thick SiO 2 layer and a bottom polysilicon layer. Figure 10B is a photo of the contact area of the diode memory device after the reset operation. TEM image after RESET operation Shows high programming current on the surface Severe damage. Part of the crystalline lanthanum near the surface is converted to 201140819 » 1 ννυι * and polycrystalline germanium. However, the contact zone is normal. Figure 10C is a photo of the contact area of the diode memory device after the setup operation. The SET operation initiates the ruthenium in the oxide layer. The 10D image is a photographic view of the contact area of the diode memory device after the set state 1 〇〇 period. The 11A-11F diagram shows the different states. The lower diode memory device diagram. # SBD operation creates a percolation path between the polysilicon gate and the substrate. A permeation path triggers a hard collapse, and then the current induces a DBIE. After the HBD, the (RESET operation) increases. The bias voltage induces Joule heating near the stone. The argon heat effect dominates the RESET operation. Finally, the region temperature is close to the enthalpy melting point (Tcd, 1685K). The oxygen ions from the nearby layer can easily drift to the melting enthalpy. And after the current is turned off and the temperature is cooled, SiO 2 is formed. Therefore, after the reset operation, Si 〇 2 and a part of polysilicon can be observed at the substrate. The oxide layer is very It is a leakage-rich oxide layer that makes the forward current of the RESET state extremely higher than the initial state. The SET operation is similar to the first (formation) hbd, and the SET operation has a lower Joule heating effect than the RESET operation. Lower temperatures require less current. In SET operation, helium atoms are pushed by high momentum electron flow, and then atoms are stacked to form a filament, similar to the electromigration effect (electr〇niigration) The DBIE dominates the SET operation. In this way the 'SET/RESET operation can be performed repeatedly, respectively, 13 201140819 to form a dream and sex. S·02 leads to § 己 体 — — — — — 记忆 记忆 记忆 记忆 记忆 t t t f f f f f f 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第The current figure 12 is a diagram showing the relationship between the dimensions of Figure 1. The 12Α and 12th drawings compare the operating voltage and the corresponding operation = motor. The shaking system is reduced to L = 〇 13um, w = 〇〇 2um, showing the south density storage capacity. The HBD and SET operating power (4) are not dependent on the device size. When the device size is reduced, the reset operating voltage and the RE S E T operating current are reduced. However, the current is not linearly reduced with the | area. Under the 20 nm node, the predicted RESET operating current is still in the mA range. Since the high power consumption of the smelting process limits the power micro-shock, a more efficient thermal insulation that reduces power will support further miniaturization. Figure 13 is a diagram showing different IV characteristics of a diode device of a second figure after continuous application of a voltage. Figure 13 shows the suitability of multiple time programmable applications that store multiple bits in a single diode memory device. The gate current associated with the gate oxide leakage current can be adjusted by different pulse widths/pulse voltages. The starting device is the initial device, which behaves like a resistor. The component is then gradually applied with voltage to a different current state. The observed gradual collapse of the gate oxide demonstrates the suitability of a multi-time program (MTP) or multi-level-cell (MLC) application to a single diode On the memory device 201140819 t · 1 ττ r\ * Store multiple bits. When the thin oxide layer m〇SFET is slightly reduced to 1 〇 nm, the diode memory device is shrunk to less than 10 nm. Because it is based on changing the interpole current and gate resistance instead of charge storage to store data to eliminate the L memory problem of storing a small number of electrons, the microscopic system can be improved. Figure 14 is an intermediate buffer layer _ oxidation Layer's buffer structure is one of the diode memory devices. • The same oxide structure consists of a metal oxide material 'high dielectric constant material, nitrided, and nitrous oxide, all of which change the stoichiometric and resistive type' can be used to form a resistive device. The different buffer structures are a type of semiconductor (semiconductorMike) layer between the oxide structure and the gate, or between the gate and the substrate, or between the oxide structure and the idle electrode and the gate and Between the substrates. The high melting point and the strong bond of the oxidized hair dominate the qing/set/r ur τ • operation' so the transient and pulse voltages are high. The 'xiao consumption' of the material rate other than Shi Xi/dioxotomy is retained by the self-selection (Self_Sdeeted) property. The buffer layer is, for example, an oxide, a phase change, and a semiconductor material. This buffer layer can be used as a correction characteristic for performing PN diodes. The buffer layer is also a metal, and the device performs a Schottky characteristic. r Limbs 叙 第 第 具有 中间 中间 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 中间 中间15 201140819 L TV SJ LJJA. Γ\ , a lightly doped n_region is close to the surface in a n+ well region. The first oxide layer formed on the η region is a thickness of u Å, and is formed by in situ steam generation meth〇d. The tantalum nitride layer formed on the first oxide layer has a thickness of 2 Å. y The second oxide layer formed on the tantalum nitride layer is 28 angstroms thick and 2 is formed by a high temperature oxidation method. Different embodiments change different temperatures: thickness 'and material. The pulse width of each Vg pulse is i〇〇ns. Figure 19 is an IV characteristic diagram of the diode memory device of Figure 15. Figure 20 is a periodic diagram of the diode memory device of Figure 15. Each state is extracted at Vg = 2V. Figure 21 is a flow chart showing the operation of the diode memory device. Step 26G2 is performed on the -initial diode memory device. In the step genus, the sexual intercourse is performed on the diode memory device. In step ·, the = reset operation is performed on the diode memory device to place the diode memory device in the reset state. The foregoing, step-by-step and newly manufactured diode memory devices are associated with the preparation of the end user for general use. The next steps are related to the general operation of a diode memory device, e.g., by the end user. In step 2606, the two pole = memory device is in the - reset state. In the step leg, the χ_γ input address of a particular diode memory device in a cross-point array is performed on a diode memory device. In step 2610, the diode memory is placed in the second set state. Multiple diode memory devices can input the address at one time. In step 2614, a reset operation is performed on a diode memory device, for example, a χ-γ input address of a particular diode memory device in the array of intersections. Multiple diode memory devices can be input to the address at one time. Repeating step 2606, the diode memory device is attached to a reset bear. During normal operation, in the diode memory, in step 26〇8, in a reset state (step 2: = take a read operation on a diode memory device) For example, the diode memory device is selected by a Χ·γ input address of a particular diode 6 memory device in an array of cross-points. In step 2612, a set state is provided. In the middle (step 2610), a read operation is performed on the selected one of the diode memory devices. For example, the 'diopolar memory device is a specific diode in the array of one parent cross point. The χγ input address of the memory device is selected. φ Figure 22 is a block diagram of an integrated circuit with an array of diode memory devices, and the control logic is applied to the selected diode memory device. Operationally, for example, reading, setting, and resetting operations. Figure 22 illustrates an integrated circuit 2750 including a diode memory array 2700. The block selects one of the word line decoders 2701 and a plurality of The word line 2702 is coupled and electrically communicated 'and tied in two The bulk memory array 2700 is arranged along a column. A one-bit line decoder 2703 is coupled to a plurality of bit lines 2704 and electrically communicates. This bit line 2704 is in the middle of the diode memory array 2700. The arrangement is set to read 17 201140819 to fetch data and write data into the diode memory cells in the diode memory array 2700. The bus 2705 supplies the address to the word line decoder 27〇1 and the bit. A line decoder 2703. The sense amplifier and data input structures in block 2706 include current sources for reading, programming, and erasing modes, and the sense amplifiers and data input structures in block 2706 pass through the bus 2707 is coupled to bit line decoder 2703. The data is supplied by input/output port on integrated circuit 2750 through data input line 2711 to the data input structure in block 2706. The data is determined by block 2706. The sense amplifier is supplied to the input/output port ' on the integrated circuit 2750 through the data output line 2715 or to other data destinations on the inside or outside of the integrated circuit 2750. The reset, and read bias arrangement state machines are located in circuit 2709, which controls the bias arrangement supply voltage 2708. The bias arrangement bidirectionally switches the state of the memory elements of the diode memory device, such as at SET and RESET. Switching between the two. Figure 23 is a partial schematic diagram of an array of alternating and in-situ memory using the diode memory cells described herein. As shown in the schematic diagram of Figure 23, each memory of the array 1〇〇 The cell system is a diode memory device, which is represented by a diode path access device along a current path between a corresponding word line 11 〇 and a corresponding bit line 120 A resistive memory element (shown as a variable resistor in Figure 23) is connected in series. As described in more detail below, the diode memory device can be programmed into multiple states. The array includes a plurality of word lines 110 (and a plurality of bit lines 120 'word lines 11 〇 including word lines 110a, 110b, and u〇c, and the flat 201140819 extends in a first direction, the bit lines 120 includes bit lines 12〇a, 120b, and i2〇c that extend flatly in a first direction that is perpendicular to the first direction. The array 1〇〇 is referred to as an array of intersections because of the word lines and The bit lines 120 are crossed to each other, but do not actually intersect, and the diode cell lines are located at the intersections of the word line 11 〇 and the bit line 12 。. These memory cells representing the array 1 , are disposed at the intersections of the word line 11 〇 b and the bit line 120 b, and the diode memory cells 115 represent a diode 130 and a series disposed in series. The variable resistor 140. The diode memory cell 115 is electrically connected to the word line and the electrically coupled bit line 120b. Read or write (set/reset) the array 1 〇〇 diode memory cell 115 can be induced by applying an appropriate voltage pulse to the corresponding word line 丨1卟 and bit line 12〇b. Current is applied through the selected memory cell 115. The level and duration of the applied voltage are dependent on the operation, such as a read operation or a program operation (set/reset). The data values in 115 are used in a read (or sense) operation. The bias circuit is coupled to the corresponding word line u〇b and the bit line 120b' to apply a bias arrangement across the appropriate amplitude and duration. The "It is on the cell 115" to induce current flow without causing the memory cell 115 to undergo a state change. The current through the memory cell 115 depends on the resistance' value and the data value of the diode memory device 115. For example, the data value can be calculated using a sense amplifier (eg, a sense amplifier/data input structure) to compare the current on the bit line l2〇b with a suitable reference current and flow through the unselected two poles. The current of the body memory device is reduced or substantially eliminated by the diode in the one-pole memory device selected in 201140819. In the case of the diode device Data value In the programming operation, the 'bias circuit (for example, the bias supply voltage) is coupled to the corresponding word line 11Gb and the bit line, and (10) the bias is arranged across the appropriate amplitude and duration. The data is stored in the memory cell 115 by an induced-programmable change ("reset/reset". The bias arrangement includes a first bias arrangement that is sufficient to forward bias the diode 130 and change two The state of the polar memory device changes from a first programmable state to a second programmable state. The bias arrangement also includes a second bias arrangement that is sufficient to forward bias the diode memory device and will be second The programmable state changes to a first-programmable state. In an embodiment, the per-bias arrangement for unipolar operation of the memory element (10) may include - or a plurality of voltage pulses ' and the voltage level and pulse time may be determined empirically from the various embodiments. Illustrated examples of diode memory cells include phase change based memo material 'including chalcogenide-based materials and other materials chalcogen including oxygen (Ο), sulfur (s) Any one of the four elements of the code (^) and 碲(Te) is a part of the v] family in the periodic table. The chalcogen includes a compound having a polyelectropositive element, a ruthenium root, a chalcogen element. The chalcogenide alloy includes a composition having a crush 2 of other materials. The other material is, for example, a transition metal. A chalcogenant gold # contains one or more elements of the period IVA from the group IVA, such as (Ge) and tin (Sn). Usually, the chalcogenide alloy includes a composition, and the human product g 201140819 , · 1 wou ^ r / \f includes one or more records (Sb), gallium (Ga), marriage (In), and silver (Ag). Many phase change memory materials have been described in the technical literature, including

Ga/Sb、In/Sb、In/Se、Sb/Te、Ge/Te、Ge/Sb/Te、In/Sb/Te、 Ga/Se/Te、Sn/Sb/Te、In/Sb/Ge、Ag/In/Sb/Te、Ge/Sn/Sb/Te、Ga/Sb, In/Sb, In/Se, Sb/Te, Ge/Te, Ge/Sb/Te, In/Sb/Te, Ga/Se/Te, Sn/Sb/Te, In/Sb/Ge, Ag/In/Sb/Te, Ge/Sn/Sb/Te,

Ge/Sb/Se/Te、以及 Te/Ge/Sb/S 合金。在 Ge/Sb/Te 合金系 列中’合金組成物的一寬鬆範圍或許是可行的。組成物可 具有如TeaGebSbioo-u+y之特徵。一研究者已經說明了最 有用的合金在沉積材料中所具有之一 Te平均濃度較佳是 φ 低於70% ’ 一般是大約低於60%並且通常是低於約23%以 上至約58%的Te,而最佳大約是在48%到58%的Te之間。 Ge的濃度大約超過5%,並且在材料中的範圍平均從低約 8%到約30%,一般是維持低於50%以下❶最佳是Ge的濃 度範圍從約8%到約40%。在此組成物中剩下的主要組成 元素是Sb。這些百分比是組成物元素的總ι00%原子的原 子的百分比。(Ovshinsky 5,687,112 專利,c〇ls. 10-11.)由 其他研究者所g平估出的特定合金包括Ge2sb2Te5、 # GeSb2Te4、以及 GeSb4Te7。( Noboru Yamada,“Potential of Ge-Sb-Te Phase-Change Optical Disks for High-Data-RateGe/Sb/Se/Te, and Te/Ge/Sb/S alloys. A loose range of 'alloy compositions' in the Ge/Sb/Te alloy series may be feasible. The composition may have characteristics such as TeaGebSbioo-u+y. One investigator has shown that the most useful alloy has one of the average concentrations of Te in the deposited material preferably φ less than 70% 'typically less than about 60% and usually less than about 23% to about 58%. Te, and the best is between 48% and 58% Te. The concentration of Ge is more than about 5%, and the range in the material ranges from about 8% to about 30% on average, and is generally maintained below 50%. Preferably, the concentration of Ge ranges from about 8% to about 40%. The main constituent element remaining in this composition is Sb. These percentages are the percentage of the atoms of the total ι00% atom of the constituent elements. (Ovshinsky 5,687,112 patent, c〇ls. 10-11.) Specific alloys evaluated by other researchers include Ge2sb2Te5, #GeSb2Te4, and GeSb4Te7. (Noboru Yamada, "Potential of Ge-Sb-Te Phase-Change Optical Disks for High-Data-Rate

Recording’,,SPIEV.3109,pp· 28-37 ( 1997).)更普遍地, 一過渡金屬’例如是鉻(Cr)、鐵(Fe)、鎳(Ni)、鈮(Nb)、 把(Pd)、鉑(pt)、以及混合物或其合金,可和Ge/Sb/Te 結合以形成具有可編程電阻型特性的一相變合金。可用的 記憶體材料的特殊範例可由〇vshinsky ‘112於第11-13欄 所述,此範例於此併入作為參考文獻。 在一些實施例中,硫族以及其他相變材料係摻雜了雜 21 201140819 質以修改使用摻雜的硫族的記憶體元件的導電性、相變溫 度、熔點溫度、以及其他特性。用來摻雜硫族的代表性雜 質包括氮、矽、氧、二氧化矽、氮化矽、銅、銀、金、鋁、 氧化鋁、钽、氧化鈕、氮化钽、鈦、以及氧化鈦。請見美 國專利第6,800,504號,以及美國專利申請案第U.S. 2005/0029502 號。 相變合金係可切換於一第一結構態以及一第二結構 態之間,第一結構態材料是--般的#晶(amorphous) 固態相,第二結構態材料是一在記憶胞主動通道區的局部 序列上一般的結晶(crystalline)固態態相。這些合金係至 少為雙穩態的。非晶相用來指較無序的結構,相較於一單 晶(single crystal)係更雜亂的,非晶相具有可知特性, 例如是相較於結晶相具有較高電阻率〇結晶相用來指較有 序的結構,相較於非晶結構更有序,結晶相具有可知特 性,例如是相較於非晶相具有較低電阻率。代表性地,相 變材料係可電性地切換介於橫跨完全非晶態和完全結晶 態範圍之間的局部序列的不同態之間。被界於非晶相和結 晶相之間的改變所影響的其他材料特性包括原子的序 列、自由電子费度、以及活化能。材料可切換於不同的固 態或二個混合或多個混合固態之間,如此提供了介於完全 非晶態和完全結晶態之間的一個灰色尺度。因此,此材料 中的電性係可變化的。 藉由應用電子脈衝,相變合金可由一相態轉變至另一 相態。已經觀察到-較短的、較高的振幅脈衝傾向於將相 變材料改變成一一般非晶態。一較長的、較低的振幅脈衝 22 201140819 [vvoujr/\ ’ 傾向於將相變材料改轡忐一一 一 雙成一叙的結晶態。在一較短、較 尚的振幅脈衝中的能量传古 ^ ^ 里係足夠巧的,以允許將結晶結構的 月匕1 、且貤夏是足夠短的,以防止原子不再組合成 結晶t給脈衝所用的合適的量變輯係可Μ過度實= 即可、、、疋的’具體地適祕—特定相變合金。在接下來所 揭露的文段中,相變;# Μ 燹材枓係被稱為GST,並且可瞭解的是 其他型態的相變材g 4 丁叶J破使用。在此所說明的可用於 PCRAM 的一材料係為 Ge2Sb2Te5。 其他可編程電阻型記憶體材料可用於二極體記憶胞 之中間物、(構的其他實施例中,包括使用不同晶相改變 以決定電阻值的其他材料、或使用—電子脈衝以改變電阻 態的其他記龍材料。範例包括用於電阻式隨機存取記憶 體(PRAM)的材料,例如是金屬氧化物,包括氧化鎢 (\)、氧化錄(卿)、氧化銳(灿2〇5)、氧化銅((^〇2)、 氧化组(Ta205)、氧化銘(Al2〇3)、氧化钻(c〇〇)、氧化 鐵(Fe203 )、氧化铪(Hf〇2)、氧化鈦(Ti〇2)、鈦酸锶 (SrTi03)、錯酸锶(srZr03)、鈦酸鳃鋇((BaSr) Ti〇3)。 附加的fe例包括用於磁性電阻隨機存取記憶體(MRAM) 上的材料例如疋自旋磁矩傳輸(spin-torque-transfer, STT) MRAM ’ 舉例來說,像是 c〇FeB、Fe、c〇、Ni、Gd、Recording',, SPIEV. 3109, pp. 28-37 (1997).) More generally, a transition metal' is, for example, chromium (Cr), iron (Fe), nickel (Ni), niobium (Nb), Pd), platinum (pt), and mixtures or alloys thereof, can be combined with Ge/Sb/Te to form a phase change alloy having programmable resistance type characteristics. A particular example of a useful memory material can be found in 〇vshinsky '112 in columns 11-13, which is incorporated herein by reference. In some embodiments, the chalcogenide and other phase change materials are doped with the impurity 21 201140819 to modify the conductivity, phase transition temperature, melting point temperature, and other characteristics of the memory element using the doped chalcogenide. Representative impurities used to dope the chalcogen include nitrogen, helium, oxygen, cerium oxide, cerium nitride, copper, silver, gold, aluminum, aluminum oxide, lanthanum, oxidized knobs, tantalum nitride, titanium, and titanium oxide. . See U.S. Patent No. 6,800,504, and U.S. Patent Application Serial No. U.S. The phase change alloy system is switchable between a first structural state and a second structural state, wherein the first structural state material is an ordinary crystalline phase, and the second structural state material is active in a memory cell. A generally crystalline crystalline phase of the local sequence of the channel region. These alloys are at least bistable. The amorphous phase is used to refer to a disordered structure, which is more disorderly than a single crystal system. The amorphous phase has a known property, for example, a higher resistivity than a crystalline phase. Refers to a more ordered structure, which is more ordered than an amorphous structure, and the crystalline phase has a known property, for example, a lower resistivity than an amorphous phase. Typically, the phase change material is electrically switchable between different states spanning a local sequence spanning between a completely amorphous state and a fully crystalline state range. Other material properties that are affected by changes between the amorphous phase and the crystalline phase include atomic sequence, free electron cost, and activation energy. The material can be switched between different solid states or between two or more mixed solids, thus providing a gray scale between the fully amorphous and fully crystalline states. Therefore, the electrical properties in this material can vary. By applying an electronic pulse, the phase change alloy can be transformed from one phase to another. It has been observed that a shorter, higher amplitude pulse tends to change the phase change material to a generally amorphous state. A longer, lower amplitude pulse 22 201140819 [vvoujr/\ ' tends to change the phase change material into a one-by-one crystal form. The energy transfer in a shorter, more frequent amplitude pulse is sufficiently clastic to allow the crystal structure of the Moonch 1 and the summer to be short enough to prevent the atoms from being combined into crystals. The appropriate amount of variation for the pulse can be over-realized, ie, specifically, the specific phase-change alloy. In the paragraphs disclosed below, the phase change; # Μ 燹 枓 is called GST, and it can be understood that other types of phase change material g 4 叶 leaf J is used. One material that can be used for PCRAM described herein is Ge2Sb2Te5. Other programmable resistive memory materials can be used in the middle of the diode memory cell, (other embodiments of the structure include other materials that use different crystal phase changes to determine the resistance value, or use - an electronic pulse to change the resistive state Other materials include examples of materials used in resistive random access memory (PRAM), such as metal oxides, including tungsten oxide (\), oxidized recording (Qing), and oxidized sharp (Can 2) , copper oxide ((^〇2), oxidation group (Ta205), oxidation (Al2〇3), oxidation drill (c〇〇), iron oxide (Fe203), antimony oxide (Hf〇2), titanium oxide (Ti 〇2), barium titanate (SrTi03), barium strontium (srZr03), barium titanate ((BaSr) Ti〇3). Additional examples include magnetic memory random access memory (MRAM) Materials such as spin-torque-transfer (STT) MRAM 'for example, like c〇FeB, Fe, c〇, Ni, Gd,

Dy、CoFe、NiFe、MnAs、MnBi、MnSb、Cr02、Mn0Fe203、 Fe0Fe205、Ni0Fe203、MgOFe2、EuO 以及 Y3Fe5012 中的 至少一者。例如請參照美國專利申請案第2〇〇7/〇176251 號’標遞為 Magnetic Memory Device and Method of Fabricating the Same”,此申請案在此合併至參考文獻中。 23 201140819 x TV vr λ r-i » < 附加的範例包括用於可編程金屬化胞 (programmable-metallization-cell,PMC)記憶體的固態電 解材料或奈米離子記憶體,例如是銀摻雜鍺硫化物電解 質、以及銅掺雜鍺硫化物電解質。例如請參照N.E. Gilbert et al.的 “A macro model of programmable metallization cell devices,” Solid-State Electronics 49 (2005) 1813-1819 » 在此併入作為參考文獻。 形成硫族材料之一示範性方法是使用在1〜100 mTorr 的壓力下使用氬氣、氮氣、以及/或氦氣等氣體源的PVD 濺鍵或磁性濺鐘方法。此種沉積通常是在室溫下完成。具 有一 1~5之長寬比之一投影照準儀(collimater)可被用來改 善填充性能。要改善填充性能,一數十伏特到數百伏特的 DC偏壓亦可被使用。另一方面,DC偏壓以及投影照準儀 的組合可同時地使用。使用化學氣相沉積(chemical vapor deposition, CVD)形成硫族材料之一示範性方法係被揭露 於美國專利申請案第2006/0172067號,標題為“Chemical Vapor Deposition of Chalcogenide Materials”,在此併入作 為參考文獻。使用CVD形成硫族材料之另一示範性方法 被揭露於 Lee,et al.的 “Highly Scalable Phase Change Memory with CVD GeSbTe for Sub 50nm Generation”,2007 Symposium on VLSI Technology Digest of Technical Papers, pp· 102-103 o 在一真空或一氮氣環境中執行一沉積後退火處理,以 改善硫族材料的結晶態。此退火溫度一般範圍是從100度 至400度,退火時間小於30分鐘。 201140819 » 1 woi^^r/\, 綜上所述,雖然本發明已以較佳實施例和範例詳細地 揭露如上,然其並非用以限定本發明。本發明所屬技術領 域中具有通常知識者,在不脫離本發明之精神和範圍内, 當可作各種之更動與潤飾。因此,本發明之保護範圍當視 後附之申請專利範圍所界定者為準。 【圖式簡單說明】 第1圖繪示具有一中間氧化物結構之一二極體記憶At least one of Dy, CoFe, NiFe, MnAs, MnBi, MnSb, Cr02, Mn0Fe203, Fe0Fe205, Ni0Fe203, MgOFe2, EuO, and Y3Fe5012. For example, please refer to U.S. Patent Application Serial No. 2/7/176,251, entitled "Magnetic Memory Device and Method of Fabricating the Same", which is incorporated herein by reference. 23 201140819 x TV vr λ ri » <Additional examples include solid electrolytic materials or nano-ion memory for programmable-metallization-cell (PMC) memory, such as silver-doped yttrium sulfide electrolytes, and copper-doped yttrium Sulfide electrolytes. For example, see "A macro model of programmable metallization cell devices," by NE Gilbert et al., Solid-State Electronics 49 (2005) 1813-1819, which is incorporated herein by reference. An exemplary method is to use a PVD splash or magnetic splash method using a gas source such as argon, nitrogen, and/or helium at a pressure of 1 to 100 mTorr. This deposition is usually done at room temperature. A projection collimator of 1 to 5 aspect ratio can be used to improve the filling performance. To improve the filling performance, a DC bias of tens of volts to hundreds of volts Alternatively, a combination of DC bias and projection illuminator can be used simultaneously. An exemplary method of forming a chalcogenide material using chemical vapor deposition (CVD) is disclosed in US Patent Application No. 2006/0172067, entitled "Chemical Vapor Deposition of Chalcogenide Materials", incorporated herein by reference. Another exemplary method of forming a chalcogenide material using CVD is disclosed in "Highly Scalable" by Lee, et al. Phase Change Memory with CVD GeSbTe for Sub 50nm Generation", 2007 Symposium on VLSI Technology Digest of Technical Papers, pp· 102-103 o Perform a post-deposition annealing treatment in a vacuum or a nitrogen atmosphere to improve the crystallization of chalcogenide materials The annealing temperature is generally in the range of from 100 to 400 degrees, and the annealing time is less than 30 minutes. 201140819 » 1 woi^^r/\, in summary, although the invention has been disclosed in detail by preferred embodiments and examples As above, it is not intended to limit the invention. It will be apparent to those skilled in the art that the present invention can be modified and modified without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims. [Simple diagram of the diagram] Figure 1 shows a diode memory with an intermediate oxide structure.

體裝置圖。 2圖繪示第1圖之二極體記憶體裝置上的軟性崩 潰、硬性崩潰、重置、以及設置操作圖。 第3A-3D圖繪示第J圖之二極體記憶體裝置的不同 態之IV特性圖。 第4圖繪示第丨圖之二極體記憶體裝置之週期圖。 第5圖繪示第1圖之二極體記憶體裝置之讀取 受力圖。 第6圖繪示第丨圖之二極體記憶體裝置之高溫保存 圖。 第7圖繪示第1圖之二極體記憶體裝置之不同態之暫 態電流圖。 第8圖繪示無記憶體二極體裝置之iv曲線圖。 第9A圖繪示由負閘極偏壓的一硬性崩潰後的二極體 δ己憶體裝置照片圖。 第9Β圖繪示於一正閘極偏壓後的二極體記憶體裝置 照片圖。 25 201140819 i. v\KJUji r\ t * 第10A圖繪示在重置操作後二極體記憶體裝置之照 片圖。 第10B圖繪示在重置操作後二極體記憶體裝置的接 觸區之照片圖》 第10C圖繪示在設置操作後二極體記憶體裝置的接 觸區照片圖。 第10D圖繪示於設置態下,1〇〇週期後二極體記憶體 裝置的接觸區照片圖。 第11A-11F圖繪示於不同態下的二極體記憶體裝置 圖。 第12A圖緣示第1圖之一二極體記憶體裝置的操作 電壓對尺寸之關係圖。 第12B圖繞不第1圖之一二極體記憶體裝置的操作電 硫對尺寸之關係圖。 第13圖繪示在連續施加電壓後,第丨圖之一二極體 記憶體裝置之不同W雜,顯示了在—單—二極體記憶 體裝置中儲存多個位元的多種時間可編程應用的適合性。 第14圖繪示具有一中間緩衝層·氧化層'緩衝層結構 之一二極體記憶體裝置圖。 第15圖繪不具有-中間氧化層·氮化層·氧化層結構 之一二極體記憶體裝置圖。 第⑹8圖㈣第15圖之二極體記憶體裝置上的硬 性朋潰、重置 '以及設置操作圖。Body device diagram. Figure 2 is a diagram showing the soft collapse, hard collapse, reset, and setup operation diagrams on the diode memory device of Figure 1. Fig. 3A-3D is a diagram showing the IV characteristics of the different states of the diode memory device of Fig. J. Figure 4 is a timing diagram of the diode memory device of the second diagram. Fig. 5 is a view showing the reading force diagram of the diode memory device of Fig. 1. Figure 6 is a diagram showing the high temperature preservation of the diode memory device of Fig. Fig. 7 is a diagram showing transient current diagrams of different states of the diode memory device of Fig. 1. Figure 8 is a graph showing the iv curve of the memoryless diode device. Fig. 9A is a photograph showing a photo of a diode collapsed δ reciprocal device after a hard breakdown by a negative gate. Figure 9 is a photograph of a diode memory device after a positive gate bias. 25 201140819 i. v\KJUji r\ t * Figure 10A shows a photo of the diode memory device after the reset operation. Fig. 10B is a photograph showing the contact area of the diode memory device after the reset operation. Fig. 10C is a photograph showing the contact area of the diode memory device after the setting operation. Fig. 10D is a photograph showing the contact area of the diode memory device after one cycle in the set state. Figure 11A-11F shows a diagram of a diode memory device in different states. Fig. 12A shows the relationship between the operating voltage versus the size of the diode memory device of Fig. 1. Fig. 12B is a diagram showing the relationship between the operating sulfur and the size of the operating diode device of the first diode. Figure 13 is a diagram showing the different timings of a diode memory device in a second figure after continuous voltage application, showing multiple time programmable for storing multiple bits in a single-diode memory device. Suitability of the application. Fig. 14 is a view showing a diode memory device having an intermediate buffer layer and an oxide layer buffer layer structure. Fig. 15 is a diagram showing a diode device having no - intermediate oxide layer, nitride layer, and oxide layer structure. Figure 6 (6) and (4) Figure 15 shows the hard-headed, reset' and setup operation diagrams on the diode memory device.

第19圖繪示第15圖之二極體記憶體裝置 的IV特性圖。 H 26 201140819 4 i · 第20圖繪示第15圖之二極體記憶體裝置的週期圖。 第21圖繪示二極體記憶體裝置之操作流程圖。 第22圖繪示一具有二極體記憶體裝置之一陣列的積 體電路方塊圖,以及控制邏輯係應用於被選取的二極體記 憶體裝置之操作上,例如是讀取、設置、以及重置操作。 第23圖繪示使用於此所說明的二極體記憶胞之一交 叉點記憶體陣列的部分示意圖。 【主要元件符號說明】 ® 100 :陣列 110、110a、110b、110c :字元線 115 :二極體記憶體胞 120、120a、120b、120c :位元線 130 :二極體 140 :可變電阻 27Fig. 19 is a view showing the IV characteristic of the diode memory device of Fig. 15. H 26 201140819 4 i · Fig. 20 is a timing chart of the diode memory device of Fig. 15. Figure 21 is a flow chart showing the operation of the diode memory device. Figure 22 is a block diagram of an integrated circuit having an array of diode memory devices, and control logic applied to the operation of the selected diode memory device, such as reading, setting, and Reset operation. Figure 23 is a partial schematic illustration of one of the cross-point memory arrays of the diode memory cells described herein. [Main component symbol description] ® 100 : array 110, 110a, 110b, 110c: word line 115: diode memory cell 120, 120a, 120b, 120c: bit line 130: diode 140: variable resistor 27

Claims (1)

201140819 1 woujr/\ · 七、申請專利範圍: 1. 一種積體電路裝置,包括: 一交叉點陣列(cross-point array),包括複數個位元 線和複數個字元線,該些位元線和該些字元線的複數個交 叉處(intersection)包括複數個二極體記憶體裝置,該些 二極體記憶體裝置包括: 一二極體,包括一第一端點以及一第二端點, 該第一端點係和該些位元線中之一位元線電性耦合,該第 二端點係和該些字元線中之一字元線電性耦合;以及 一記憶體元件,位於該二極體之該第一端點以 及該第二端點之間,該記憶體元件係可雙向地切換於一第 一記憶態和一第二記憶態之間, 其中該些二極體記憶體裝置之該些二極體減少通過 該些位元線和該些字元線之該些交叉處中未被選取的交 叉處的電流;以及 一控制電路,係和該交叉點陣列耦合,該控制電路施 以偏壓排列(bias arrangement)至該些位元線和該些字元 線之該些交叉處中之一被選取的交叉處,雙向地切換位於 該被選取的交叉處之該二極體記憶體裝置之該記憶體元 件。 2. 如申請專利範圍第1項所述之積體電路裝置,其 中該第一端點係位於一掺雜井區中,並且該第二端點係為 該字元線之部分。 3. 如申請專利範圍第1項所述之積體電路裝置,其 中該第一端點係位於一井區中,該井區具有一第一濃度之 28 201140819 . · i wou^rA4 一第一摻雜態,並且該第二端點係為該字元線之部分,以 及該二極體記憶體裝置更包括: 一摻雜區,於該井區中具有該第一摻雜態,該摻雜區 位於該記憶體元件下方,並且具有小於該第一濃度之一第 二濃度。 4. 如申請專利範圍第1項所述之積體電路裝置,其 中該記憶體元件包括氧化矽。 5. 如申請專利範圍第1項所述之積體電路裝置,其 φ 中該記憶體元件包括一第一氧化矽層、位於該第一氧化矽 層上之一氮化矽層、以及位於該氮化矽層上之一第二氧化 梦層。 6. 如申請專利範圍第1項所述之積體電路裝置,其 中該記憶體元件包括一金屬氧化物、一氮化矽、一氮氧化 矽、一可編程電阻型材料、以及介電常數大於一氧化矽介 電常數之一材料之任意一者。 7. 如申請專利範圍第1項所述之積體電路裝置,其 • 中該二極體記憶體裝置更包括以下至少一者: 一上緩衝層,位於該第一端點以及該記憶體元件之 間;以及 一下緩衝層,位於該第二端點以及該記憶體元件之 間。 8. 如申請專利範圍第1項所述之積體電路裝置,其 中該控制電路施以具有一第一組電性(electrical characteristic )之一第一順向偏壓排列至該被選取的交叉 處,以將位於該被選取的交叉處之該二極體記憶體裝置之 29 201140819 i wuujm 磚 該記憶體元件從該第一記憶態切換至該第二記憶態;以及 其中該控制電路施以具有一第二組電性的一第二順 向偏壓排列至該被選取的交叉處,以將該被選取的交叉處 之該二極體記憶體裝置之該記憶體元件從該第二記憶態 切換至該第一記憶態。 9. 如申請專利範圍第1項所述之積體電路裝置,其 中該控制電路藉由誘發該記憶體元件之介電崩潰誘發蟲 晶(dielectric breakdown induced epitaxy ),將位於該被選 取的交叉處之該二極體記憶體裝置之該記憶體元件從該 第一記憶態切換至該第二記憶態;以及 其中該控制電路藉由誘發該記憶體元件之焦耳熱效 應(Joule heating)’將位於該被選取的交叉處之該二極體 記憶體裝置之該記憶體元件從該第二記憶態切換至該第 一記憶態。 10. 如申請專利範圍第1項所述之積體電路裝置,其 中該第一記憶態係對應於具有一第一二極體電流電壓特 性之該二極體記憶體装置,以及該第二記憶態係對應於具 有一第二二極體電流電壓特性之該二極體記憶體裝置’其 中該第一二極體電流電壓特性以及該第二二極體電流電 壓特性具有不同的順向特性。 11. 如申請專利範圍第1項所述之積體電路裝置’其 中該記憶體元件係可切換於至少四個記憶態之間’該四個 記憶態包括該第一記憶態以及該第二記憶態。 12. —種操作積體電路之方法’包括: 施以偏壓排列至複數個位元線和複數個字元線之複 201140819 . i woi^jr/\* 數個交叉處中的一被選取的交叉處,雙向地切換該被選取 的交叉處之一二極體記憶體裝置之一記憶體元件的複數 個記憶態,其中該二極體記憶體裝置包括一二極體,該二 極體包括一第一端點和一第二端點,以及一記憶體元件, 該第一端點係和該些位元線中之一位元線電性耦合,該第 二端點係和該些字元線中之一字元線電性耦合,該記憶體 .元件係位於該二極體之該第一端點以及該第二端點之 間,並且通過該些未被選取的交叉處的電流係藉由位於該 φ 些位元線以及該些字元線之該些交叉處中未被選取的交 叉處的該二極體記憶體裝置之該二極體減少。 13. 如申請專利範圍第12項所述之操作積體電路之 方法,包括: 在該二極體記憶體裝置的正常操作之前,施以一起始 偏壓排列至該二極體記憶體裝置,使該記憶體元件從一未 使用態改變成該些記憶態中之一記憶態。 14. 如申請專利範圍第12項所述之操作積體電路之 φ 方法,包括: 在該二極體記憶體裝置的正常操作之前,施以一起始 偏壓排列至該二極體記憶體裝置,使該記憶體元件從具有 一非二極體電流電壓特性之一未使用態改變成具有一二 極體電流電壓特性之該些記憶態中之一記憶態。 15. 如申請專利範圍第12項所述之操作積體電路之 方法,其中所述的施以偏壓排列包括: 施以具有一第一組電性之一第一順向偏壓排列至該 被選取的交叉處,將位於該被選取的交叉處之該二極體記 31 201140819 l Λ · * * 1 憶體裝置之該記憶體元件從一第一記憶態切換至一第二 記憶態;以及 施以具有一第二組電性之一第二順向偏壓排列至該 被選取的交又處’將位於該被選取的交又處之該二極體記 憶體裝置之該記憶體元件從該第二記憶態切換至該第一 記憶態。 16.如申請專利範圍第12項所述之操作積體電路之 方法,其中所述的施以偏壓排列包括: 藉由將位於該被選取的交又處之該二極體記憶體裝籲 置之該記憶體元件誘發介電崩潰誘發磊晶,以將該記憶體 元件從一第一記憶態切換至一第二記憶態;以及 藉由將位於該被選取的交叉處之該二極體記憶體裝 置之該記憶體元件誘發焦耳熱效應,以將該記憶體元件從 該第二記憶態切換至該第一記憶態。 17·如申請專利範圍第12項所述之操作積體電路之 方法,其中一第一記憶態對應具有一第一二極體電流電壓 特性之該二極體記憶體裝置,以及一第二記憶態對應具有籲 一第二二極體電流電壓特性之該二極體記憶體裝置,其中 該第一二極體電流電壓特性以及該第二二極體電流電壓 特性具有不同的順向特性。 18.如申請專利範圍第12項所述之操作積體電路之 方法’其中所述施以偏壓排列係將該記憶體元件於複數個 記憶態之間作切換’該些記憶態係具有不同之二極體電节 電壓特性。 19·如申睛專利圍第12項所述之操作積體電路之201140819 1 woujr/\ · VII. Patent application scope: 1. An integrated circuit device comprising: a cross-point array comprising a plurality of bit lines and a plurality of word lines, the bits The plurality of intersections of the line and the word lines include a plurality of diode memory devices, the diode memory device comprising: a diode comprising a first end point and a second An end point, the first end point is electrically coupled to one of the bit lines, the second end point is electrically coupled to one of the word lines; and a memory a body element between the first end point and the second end point of the diode, the memory element being bidirectionally switchable between a first memory state and a second memory state, wherein the The diodes of the diode memory device reduce current through the unselected intersections of the bit lines and the intersections of the word lines; and a control circuit, the intersection Array coupling, the control circuit is biased (bias arrangement) Switching to the intersection of one of the bit lines and one of the intersections of the word lines, bidirectionally switching the memory element of the diode memory device at the selected intersection . 2. The integrated circuit device of claim 1, wherein the first end point is in a doped well region and the second end point is part of the word line. 3. The integrated circuit device according to claim 1, wherein the first end point is located in a well area, and the well area has a first concentration of 28 201140819. · i wou^rA4 first a doped state, and the second end point is a portion of the word line, and the diode memory device further includes: a doped region having the first doped state in the well region, the doping The miscellaneous region is located below the memory element and has a second concentration that is less than one of the first concentrations. 4. The integrated circuit device of claim 1, wherein the memory component comprises yttrium oxide. 5. The integrated circuit device of claim 1, wherein the memory element comprises a first ruthenium oxide layer, a tantalum nitride layer on the first ruthenium oxide layer, and One of the second oxidized dream layers on the tantalum nitride layer. 6. The integrated circuit device of claim 1, wherein the memory device comprises a metal oxide, a tantalum nitride, a bismuth oxynitride, a programmable resistive material, and a dielectric constant greater than Any one of the materials of the niobium oxide dielectric constant. 7. The integrated circuit device of claim 1, wherein the diode memory device further comprises at least one of: an upper buffer layer at the first end point and the memory component And a buffer layer located between the second end point and the memory element. 8. The integrated circuit device of claim 1, wherein the control circuit is configured to have a first forward bias of a first set of electrical characteristics to the selected intersection. And switching the memory element from the first memory state to the second memory state of the diode memory device at the selected intersection; and wherein the control circuit is configured to have a second set of electrical second bias biases is arranged to the selected intersection to select the memory component of the diode memory device at the selected intersection from the second memory state Switch to the first memory state. 9. The integrated circuit device of claim 1, wherein the control circuit is located at the selected intersection by inducing a dielectric breakdown induced epitaxy of the memory element. The memory element of the diode memory device is switched from the first memory state to the second memory state; and wherein the control circuit is located by inducing a Joule heating of the memory component The memory element of the diode memory device at the selected intersection switches from the second memory state to the first memory state. 10. The integrated circuit device of claim 1, wherein the first memory state corresponds to the diode memory device having a first diode current and voltage characteristic, and the second memory The state corresponds to the diode memory device having a second diode current-voltage characteristic, wherein the first diode current-voltage characteristic and the second diode current-voltage characteristic have different forward characteristics. 11. The integrated circuit device of claim 1, wherein the memory component is switchable between at least four memory states, the four memory states including the first memory state and the second memory state. 12. A method of operating an integrated circuit 'includes: applying a bias to a plurality of bit lines and a plurality of word lines. 201140819. i woi^jr/\* One of a plurality of intersections is selected Intersection, bidirectionally switching a plurality of memory states of a memory component of one of the diode memory devices at the selected intersection, wherein the diode memory device includes a diode, the diode a first end point and a second end point, and a memory element, the first end point is electrically coupled to one of the bit lines, the second end point and the One of the word lines is electrically coupled, the memory element being located between the first end of the diode and the second end point, and passing through the unselected intersections The current is reduced by the diode of the diode memory device at the intersection of the φ bit lines and the unselected intersections of the word lines. 13. The method of operating an integrated circuit of claim 12, comprising: applying an initial bias to the diode memory device prior to normal operation of the diode memory device, The memory component is changed from an unused state to one of the memory states. 14. The φ method of operating an integrated circuit as described in claim 12, comprising: arranging an initial bias to the diode memory device prior to normal operation of the diode memory device The memory element is changed from an unused state having a non-diode current-voltage characteristic to a memory state of the memory states having a diode current-voltage characteristic. 15. The method of operating an integrated circuit of claim 12, wherein the applying the biasing arrangement comprises: applying a first forward bias having a first set of electrical properties to the The selected intersection, the diode element at the selected intersection 31 201140819 l * · * * 1 The memory element of the memory device is switched from a first memory state to a second memory state; And arranging, by the second forward bias having a second set of electrical properties, the memory component of the selected two-pole memory device to be located at the selected intersection Switching from the second memory state to the first memory state. 16. The method of operating an integrated circuit of claim 12, wherein the biasing arrangement comprises: locating the diode memory at the selected intersection Setting the memory element to induce dielectric collapse induced epitaxy to switch the memory element from a first memory state to a second memory state; and by placing the diode at the selected intersection The memory element of the memory device induces a Joule heating effect to switch the memory element from the second memory state to the first memory state. The method of operating an integrated circuit according to claim 12, wherein a first memory state corresponds to the diode memory device having a first diode current and voltage characteristic, and a second memory The state corresponds to the diode memory device having a second diode current and voltage characteristic, wherein the first diode current voltage characteristic and the second diode current voltage characteristic have different forward characteristics. 18. The method of operating an integrated circuit according to claim 12, wherein the biasing arrangement switches the memory element between a plurality of memory states, wherein the memory states are different. The diode voltage characteristics of the diode. 19. The operating integrated circuit as described in item 12 of the application of the patent 32 201140819 . · l w〇i〇jr/\ 1 方法,其中所述施以偏壓排列係將該記憶體元件於至少四 個記憶態中作切換。 20. —積體電路裝置,包括: 一二極體記憶體裝置,包括: 一二極體’包括一第一端點和一第二端點;以 及 一記憶體元件,位於該二極體之該第一端點以 及該第二端點之間’該記憶體元件係可雙向地切換於一第 • 一記憶態以及一第二記憶態之間; 其中該第一端點係位於具有一第一濃度之第一 掺雜態之一井區中’在該井區中之一摻雜區具有該第一摻 雜態,並且具有小於該第一濃度之一第二濃度;以及 一控制電路’耦接該二極體記憶體裝置’該控制電路 施以偏壓排列於該二極體記憶體裝置,以雙向地切換該二 極體記憶體裝置之該記憶體元件。32 201140819 . l w〇i〇jr/\ 1 method wherein the biasing arrangement switches the memory component in at least four memory states. 20. An integrated circuit device comprising: a diode memory device comprising: a diode comprising a first terminal and a second terminal; and a memory component located in the diode Between the first endpoint and the second endpoint, the memory component is bidirectionally switchable between a first memory state and a second memory state; wherein the first endpoint is located with a first One of the first doped states in a concentration has a first doped region in the well region and has a second concentration less than the first concentration; and a control circuit The control circuit is coupled to the diode memory device to bias the memory element of the diode memory device bidirectionally. 3333
TW99134973A 2010-05-06 2010-10-13 Diode memory TWI443820B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US33213410P 2010-05-06 2010-05-06

Publications (2)

Publication Number Publication Date
TW201140819A true TW201140819A (en) 2011-11-16
TWI443820B TWI443820B (en) 2014-07-01

Family

ID=46760397

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99134973A TWI443820B (en) 2010-05-06 2010-10-13 Diode memory

Country Status (1)

Country Link
TW (1) TWI443820B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110911387A (en) * 2018-09-14 2020-03-24 瑞鼎科技股份有限公司 Semiconductor device with a plurality of semiconductor chips

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110911387A (en) * 2018-09-14 2020-03-24 瑞鼎科技股份有限公司 Semiconductor device with a plurality of semiconductor chips

Also Published As

Publication number Publication date
TWI443820B (en) 2014-07-01

Similar Documents

Publication Publication Date Title
US9818939B2 (en) Resistive switching devices having a switching layer and an intermediate electrode layer and methods of formation thereof
US7932506B2 (en) Fully self-aligned pore-type memory cell having diode access device
US7903457B2 (en) Multiple phase change materials in an integrated circuit for system on a chip application
US7933139B2 (en) One-transistor, one-resistor, one-capacitor phase change memory
US7935953B2 (en) Nonvolatile memory device, array of nonvolatile memory devices, and methods of making the same
JP6750507B2 (en) Select element, memory cell, and storage device
US9236568B2 (en) Sidewall thin film electrode with self-aligned top electrode and programmable resistance memory
US8293600B2 (en) Thermally stabilized electrode structure
US20060109704A1 (en) Nonvolatile memory device using resistor having multiple resistance states and method of operating the same
US20060113614A1 (en) Nonvolatile memory device and method including resistor and transistor
CN1783336A (en) Antiferromagnetic/paramagnetic resistive device,non-volatile memory and method for fabricating the same
US20100019215A1 (en) Mushroom type memory cell having self-aligned bottom electrode and diode access device
JP2008022007A (en) Non-volatile memory element containing variable resistance substance, and its manufacturing method
Chen et al. Resistance switching for RRAM applications
US8284597B2 (en) Diode memory
Nardi et al. Sub-10 µA reset in NiO-based resistive switching memory (RRAM) cells
US10553792B2 (en) Textured memory cell structures
US7897954B2 (en) Dielectric-sandwiched pillar memory device
KR20070092503A (en) Resistance random access memory using a metal doped zno film
TW201140819A (en) Diode memory
US20170062522A1 (en) Combining Materials in Different Components of Selector Elements of Integrated Circuits
Zhang et al. Complementary metal oxide semiconductor compatible Hf-based resistive random access memory with ultralow switching current/power
Lee et al. Effect of TiO x-based tunnel barrier on non-linearity and switching reliability of resistive random access memory