TW201139289A - Method and device for treating water - Google Patents

Method and device for treating water Download PDF

Info

Publication number
TW201139289A
TW201139289A TW100104857A TW100104857A TW201139289A TW 201139289 A TW201139289 A TW 201139289A TW 100104857 A TW100104857 A TW 100104857A TW 100104857 A TW100104857 A TW 100104857A TW 201139289 A TW201139289 A TW 201139289A
Authority
TW
Taiwan
Prior art keywords
ion
water
epa
resin
ion exchange
Prior art date
Application number
TW100104857A
Other languages
Chinese (zh)
Inventor
Serena Cagnoni
Original Assignee
Struttura S R L
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Struttura S R L filed Critical Struttura S R L
Publication of TW201139289A publication Critical patent/TW201139289A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/006Cartridges
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/24Separation of coarse particles, e.g. by using sieves or screens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2307/00Location of water treatment or water treatment device
    • C02F2307/04Location of water treatment or water treatment device as part of a pitcher or jug

Landscapes

  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

The present invention relates to a method and a device for filtering water, comprising an ion exchanger containing a weakly acidic ion exchange material loaded with magnesium ions in a proportion ranging from 83% to 91% of its ion exchange capacity.

Description

201139289 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種藉由使用離子交換樹脂來處理飲用 水之方法且係關於一種具有包括彼樹脂之濾筒之類型的渗 濾系統’其包含在主要申請專利範圍之前文中所陳述之特 徵。 彼等方法及過濾系統廣泛地用來處理家庭用水/食物用 水以建構水壺、咖啡壺及電熱水壺。 【先前技術】 在相關技術領域中,已知使用過濾系統來處理家庭用 水,其中可更換濾筒型過濾器以使得迫使通過過濾系統之 管道的水通過過濾器及其中所含之濾材床的方式緊密地插 入該管道中。該系統用來建構提供用於家庭用水之過濾處 理的水壺及壺。 用於彼等系統中之濾筒型過濾器可根據所需之特定化 學/物理功能而具有不同組成之過遽床。舉例而言,可使用 如下過濾器,其濾材適於飲用水之普通處理或其含有用於 权正硬度、移除味道及氣味、選擇性地移除預定污染物(氣 及衍生物重金屬、農藥)或甚至能夠對經處理之水進:: 細菌學處理的特定藥劑。 仃 尤其是,為了校正水之硬度及溶解於其中之重金 量,常常使甩離子交換格日t 甘 ' 叩雕卞父換树月日,其一般由聚合物基質(— 顆粒直徑為數毫米)爐& B g 4 τ η 妖笔木)稱成且釋放正確化學結構之離子, 201139289 而使得與通過樹月曰之水進行離子交換。彼等樹脂可具有酸 /生基團(陽離子交換樹脂)或驗性基團(陰離子交換樹脂)。 第一類型之樹脂的酸性基團可為磺酸基,_s〇3H,其具有強 酸性特徵(且因此稱為強酸樹脂);或窥酸基,_c_,其 具有較弱I性特徵(且因此稱為弱酸樹脂)。若驗或鹽之溶 液流過濾筒内之陽離子交換樹脂層,則陽離子經由可逆過 程使樹脂之酸性基團成鹽,該等陽離子因此變成固定於該 樹脂上。該過程為可逆的。 關於弱酸性陽離子交換樹脂,已知其用於降低水之硬 度例如飲用水之硬化劑及重金屬與離子交換樹脂之 子交換。 然而水中過里氫離子為不利的,因為其會過度地降 低水自身之pH值,伟盆3缺以 便其呈駄性,而飲用水或自來水較佳具 有大於或等於6·8之pH值。 -另外已知使用至少就其離子交換能力之一部分而言富 含或負載錢料之弱㈣離子交換劑來軟化p °田 羊=»之在DE 3243147中,描述一種藉助於汽化器及 /或逆滲透來處理海水之方法,其中使用負載有鎮離子之離 子交換劑。 WO 2008/062099 搞千一括杜 ι —人 揭不種使水畐含鎂離子以替代鈣離 子及/或重金屬離子之方法 使* f m其㈣至少就其離子交換能力 之一部分而言負載有鎂離子之離子交換劑。 【發明内容】 4 201139289 在用來處理飲用水之水 合意的是水壺在更換含有離 大量的水,約數百公升。 亞或一般過濾系統的領域中, 子交換樹脂之濾筒前處理相當 因此’在本發明中,所谐雜& ^ 7 斤4離子父換劑之類型為弱酸性 子交換物質,因為其「壽命」&強酸性物質長且允許進 ㈣換’從”成所f之對相對大量水之處理。 彼等離子交換物質為(例如 樹脂。 為(例如)树脂’諸如合成聚合物 所提及之弱酸性類型之谢 a树知不可再生,不以完全方 式’且因此,過濾系統中所包括 0愿清在其使用壽命結束 時’亦即當其不再能夠進行交拖士 味 疋仃乂換打被丟棄,從而允許水壺 簡單使用而不提供用於再生循環。 本發明所解決之技術問題在於獲得水(任何類型之初 ° Μ中重金屬之良好移除,及同時獲得實質上呈中性或 僅與中性條件略有不同之阳值,例如在6 5至7 5之範圍 内的阳值。介於6.8肖7.5之間的範圍為最佳。較高ρΗ 值可能與主觀上不討喜之水味道有關。另外重要的是,經 過濾之水並不具有如下文所述之過高或過低的硬度。 申叫者已陳述負載有100 %鎂離子之弱酸性離子交換樹 脂是如何無法解決該問題,因為以該方式過濾之水的ρΗ值 過度地呈鹼性且其硬度亦過度地不平衡,事實上,僅鎂離 釋放過度地增加水之硬度,此為尤其當水之硬度最初 已較南時所遇到之問題。 另外’關於WO 2008/062099中所述之樹脂中所用的鎮 201139289BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of treating drinking water by using an ion exchange resin and to a percolation system of the type having a filter cartridge including a resin. Features stated herein before the scope of the main patent application. These methods and filtration systems are widely used to treat domestic water/food water to construct kettles, coffee makers and electric kettles. [Prior Art] It is known in the related art to use a filtration system to treat domestic water, wherein the cartridge type filter can be replaced such that the water passing through the conduit of the filtration system is forced through the filter and the filter bed contained therein Insert it tightly into the pipe. The system is used to construct kettles and pots that provide filtration for domestic water use. Cartridge filters for use in their systems can have a different composition of the trampoline depending on the specific chemical/physical function required. For example, a filter may be used, the filter material being suitable for ordinary treatment of drinking water or containing it for correcting hardness, removing taste and odor, selectively removing predetermined contaminants (gas and derivative heavy metals, pesticides) ) or even the treatment of treated water:: Specific agents for bacteriological treatment. In particular, in order to correct the hardness of water and the amount of heavy gold dissolved in it, it is often the case that the cesium ion exchange ge t 甘 甘 ' 换 换 换 换 换 换 , , , , , , , , , , , , , , , , , , , , , , , & B g 4 τ η demon wood) Weigh and release the ions of the correct chemical structure, 201139289 to make ion exchange with the water through the tree. These resins may have an acid/bio group (cation exchange resin) or an anionic group (anion exchange resin). The acidic group of the first type of resin may be a sulfonic acid group, _s〇3H, which has a strong acidic character (and thus is referred to as a strong acid resin); or a spectroscopy group, _c_, which has a weaker I characteristic (and thus Known as weak acid resin). If the solution of the salt or salt flows through the cation exchange resin layer in the filter cartridge, the cations cause the acidic groups of the resin to form a salt via a reversible process, and the cations thus become fixed to the resin. This process is reversible. With regard to weakly acidic cation exchange resins, it is known to reduce the hardness of water such as hardeners for drinking water and sub-exchange of heavy metals with ion exchange resins. However, the passage of hydrogen ions in the water is unfavorable because it excessively lowers the pH of the water itself, and the basin 3 is lacking to be sturdy, and the drinking water or tap water preferably has a pH greater than or equal to 6.8. - It is further known to use a weak (iv) ion exchanger which is at least partially rich in its ion exchange capacity or to load a soft material to soften p ° field sheep =» in DE 3243147, describing a means by means of a vaporizer and/or a counter A method of infiltrating to treat seawater using an ion exchanger loaded with a town ion. WO 2008/062099 千 括 括 ι 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人Ion ion exchanger. SUMMARY OF THE INVENTION 4 201139289 In the water used to treat drinking water, it is desirable to replace the kettle with a large amount of water, about several hundred liters. In the field of sub- or general filtration systems, the filter cartridge pretreatment of the sub-exchange resin is quite equivalent. Therefore, in the present invention, the type of the heterozygous & ^ 7 kg 4 ion parent exchanger is a weakly acidic sub-exchange material because of its "life. & Strong acidity is long and allows for (four) exchange of 'from' to a relatively large amount of water. The ion exchange materials are (for example, resins. For example, the resin is weak as mentioned in synthetic polymers) The type of acid type is known to be non-renewable and not in a complete manner 'and therefore, the inclusion of 0 in the filtration system is at the end of its useful life', ie when it is no longer able to trade the miscellaneous miso It is discarded, thereby allowing the kettle to be used simply without providing a recycling cycle. The technical problem solved by the present invention is to obtain water (good removal of heavy metals in any type of primary enthalpy, and at the same time obtain substantially neutral or only A slightly different positive value from neutral conditions, such as a positive value in the range of 65 to 75. The range between 6.8 and 7.5 is optimal. Higher values of ρΗ may be subjectively unpleasant. taste It is also important that the filtered water does not have a hardness that is too high or too low as described below. The applicant has stated how a weakly acidic ion exchange resin loaded with 100% magnesium ions cannot solve the problem. Because the pH value of the water filtered in this way is excessively alkaline and its hardness is excessively unbalanced, in fact, only the release of magnesium excessively increases the hardness of water, especially when the hardness of water is initially souther. The problem encountered at the time. In addition, the town used in the resin described in WO 2008/062099 201139289

範圍,亦即备I 申 大值70%,申請人已觀察到在該最大值内水 子在之無機鹽如何沒有正確的平衡,如下文更詳細地 陳述。 因此’根據本發明’使用負載有百分比介於83%與91% 之間的鎮離早> 子之弱k性離子交換樹脂來處理水。 術語「备都女 戰有......之树脂(resin loaded with...)」意欲 理解如下。 交換樹脂經由離子交換機制自水移除重金屬,其中離 (’亏,物)經由基團取代而被樹脂固定於適當位置。 ::樹脂-般經合成以具有負載正電荷(陰離子性)或 、電荷(陽離子性)之表面,且此外,在使用之前,其經 賦予其特定數量之可用於交換的基團之活性溶液飽和。因 此’金屬離子與樹脂反應,變成固定於其上,且在所含之 樹脂交換期間經活性基 凹取代舉例而$,若彼樹脂負載 有氫’則與污染物鈣之交換如下:The scope, which is also the maximum value of 70%, has been observed by the applicant to determine how the inorganic salts in the water are not properly balanced within this maximum, as explained in more detail below. Thus, according to the present invention, water is treated with a weakly k-type ion exchange resin loaded with a percentage of between 83% and 91%. The term "resin loaded with..." is intended to be understood as follows. The exchange resin removes heavy metals from water via an ion exchange mechanism in which the ('deficient) is replaced by a group and fixed in place by the resin. :: Resin-likely synthesized to have a positively charged (anionic) or charged (cationic) surface, and further, prior to use, it is saturated with an active solution imparting a specific amount of the group available for exchange. . Therefore, the metal ion reacts with the resin to become fixed thereto, and is replaced by a reactive base in the exchange of the resin contained therein. If the resin is loaded with hydrogen, the exchange with the contaminant calcium is as follows:

CaS〇4 + 2 H+ —> H2S〇4 + Ca++ 。 9 ^因此,負載有83%至91%鎂之樹脂為對於其離子交換 月匕力之83%至91 %而言存在鎂之樹月旨,鎮釋放至水中,用 以取代船、銅、弼離子等,胃等離子在水中且變成附接於 樹脂以替代所釋放之鎂。 自然地,因為水中亦存在特定百分比之鎂離子,所以 鎖離子亦可變成附接於樹脂以替代所釋放之鎮或樹脂中存 在之與其進行離子交換之另一基團。 201139289 較佳地,本發明之樹脂之剩餘離子交換能力或州至 17%之樹脂負载有氫離子。 該樹_彼等離子以使水之PH值變為中性值。 較2地,本發明之離子交換樹脂為陽離m &換胃卜 =知該交換劑為陽離子性交換劑,因為陽離子在交換後殘 留於水中。弱酸性陽離子性交換劑實質上以弱酸方式工作。 根據本發明之另一額卜能 飞卜〜、樣,本發明係關於一種用來 過濾水之裝置,盆句赵人亡 /、 a有負載有範圍為其離子交換能力 之83%至91%的鎂離子之弱酸性離子交換物質之渡筒。 過::广據本發明之各別或額外態樣,藉由滲濾通 過該〉慮靖來處理水。 有利的是,除所述離子交換樹脂外,遽筒還含有浸有 銀之木炭。 ,筒内之碳的作用涉及吸附過渡水中存在之氯及衍生 :::::氣農藥、其他含氣化合物)。銀之功能為抑菌作 °兔-般呈顆粒形狀且在遽筒内其較佳以近乎 式與離子交換樹脂混合。盆 + /、作用疋全不會影響樹脂之作 ,因為減少氯及衍生物之方法不同於樹脂關於硬度及重 ^屬所進行之方法··前者藉助於吸附而後者藉助 另外或其他’滤筒進一步含有機械過據構 於濾筒上方或在水過濾循環開始處之襯套及/或在濾筒末端 或在滲濾後之水流出處的濾網。 .一 201139289 【實施方式】 〜本發明之特徵及優點將自以下對較佳但非限制性具體 實例之詳細描述而較好地瞭解,該等具體實例經由非限弟: 性實施例參看隨附圖式來說明。 在圖!中’可更換類型之據筒一般稱為i且意欲用於 參濾型過濾裝置,諸如過濾水壺、浸出器、咖啡壺及其類 似物。典型地’彼等裝置(例如之水壺c)包括隔板 或漏斗H,其將水壺C分成用來容納待過濾水之上箱仙及 用來收集經過遽水之下箱LB。在漏斗H之底座s中,容蜗 濾筒1以使得整個待過濾之水流通過該濾筒i。 將待處理水引入上箱UB内且由於重力,其流過㈣ 1,從而到達下箱。 遽筒1含有根據本發明建構之離子交換物質IEM,亦 即負載有百分比為83%至91%之鎖離子的弱酸性陽離子交 換樹脂’其以使得當水流過遽筒i時,鎮離子取代其中所 含之重金屬離子及飼離子的方式建構。該樹 顆粒形狀。 咬傅风 料’或者以氫離子取代㈣離子,料氫離子亦存 在於树脂令之未被鎂離子佔據之剩餘部分中。 較佳地’遽筒i進一步含有浸有銀之木炭cv,例如來 源於椰子殼且浸有銀之碳。 根據本發明之較佳方法,藉由將先前部分轉化為納形 =形式之樹脂轉化為鎂形式來獲得離子交換樹脂 。藉使氫m脂與精確量之氫氧化減應來實現呈 8 201139289 納形式之部分轉化,該量經計算以獲得所需之部分轉化。 、 心又侍之樹月曰接著藉由與氯化物或硫酸鎂溶液接觸 而轉化為鎂形式。從而使得樹脂中之鈉離子經鎮離子取 代’而不影響關於氫形式之交換基團的比w,此在最終產 品中不會改變。 本發明之此方法為較佳,但並非可使用之唯一方法, 因為其提高產生具有部分均質轉丨(亦即,顆粒物質(例 如’微粒)均具有相同部分轉化)之樹脂的可靠性,以使 得該樹脂具有與所檢查樣品無關而可隨時間再現之效能水 準。 舉例而έ,在鎮形式之樹脂與氣形式之樹脂混合的情 況下,將有可能僅獲得平均轉化為所需形式之樹脂,其強 制地由凡全呈鎂形式或完全呈氫形式之顆粒物質構成,在 兩種組分混合不勻之情況下將提供可變操作結果。 在以下所討論之實驗室測試中,使根據上述方法獲得 之本發明之樹脂ΙΕΜ經受與含有不同濃度之鈣離子及鎂離 子以及重金屬離子的自來水樣品接觸。在自來水流過離子 父換劑ΙΕΜ之前及之後,就鈣離子及鎂離子及/或重金屬離 子量測樣品含量以評估樹脂ΙΕΜ之作用。 經以包括在上述範圍之外之鎂的樹脂過濾之水無法用 於本發明之目的。以下測s式提供—實施例,其中將圖1之 水壺用來使自來水濾過包括負載有約35%鎂之樹脂的離子 交換劑。 初始水具有以下特徵: 201139289 U.M. 方法 鎂 Mg/L EPA 6010 2007 硬度 〇F APAT CNR-IRSA 2040B Man 29 2003CaS〇4 + 2 H+ —> H2S〇4 + Ca++. 9 ^ Therefore, the resin with 83% to 91% magnesium loading has a magnesium tree for 83% to 91% of its ion exchange monthly force, and the town is released into the water to replace the ship, copper, and crucible. Ions, etc., the stomach plasma is in water and becomes attached to the resin in place of the released magnesium. Naturally, because a certain percentage of magnesium ions are also present in the water, the lock ion can also become attached to the resin in place of the other group in which it is ion exchanged in the released town or resin. 201139289 Preferably, the residual ion exchange capacity of the resin of the present invention or the resin to the state of 17% is loaded with hydrogen ions. The tree _ the plasma to make the pH of the water a neutral value. More than two, the ion exchange resin of the present invention is a cationic m & a change in the body = the exchanger is known to be a cationic exchanger because the cations remain in the water after exchange. The weakly acidic cationic exchanger operates substantially in a weak acid manner. According to another aspect of the present invention, the present invention relates to a device for filtering water, which has a load ranging from 83% to 91% of its ion exchange capacity. The ferrite of the weakly acidic ion exchange material of magnesium ions. Over:: According to the various or additional aspects of the invention, the water is treated by diafiltration through the " Advantageously, in addition to the ion exchange resin, the cartridge also contains charcoal impregnated with silver. The role of carbon in the cylinder involves the adsorption of chlorine present in the transition water and the derivatization of ::::: gas pesticides, other gas-containing compounds). The function of silver is bacteriostatic. The rabbit is generally in the form of particles and it is preferably mixed with the ion exchange resin in a cylinder. The pot + /, action 疋 does not affect the resin, because the method of reducing chlorine and derivatives is different from the resin's method of hardness and weight. · The former by means of adsorption and the latter by means of another or other 'filter cartridge Further comprising a screen that is mechanically superstructured above the filter cartridge or at the beginning of the water filtration cycle and/or at the end of the filter cartridge or at the outflow of water after percolation. The features and advantages of the present invention will be better understood from the following detailed description of the preferred embodiments, which Schematic to illustrate. In the picture! The medium-replaceable type of cartridge is generally referred to as i and is intended for use in filter-type filtration devices such as filter kettles, extractors, coffee makers, and the like. Typically, such devices (e.g., kettle c) include a baffle or funnel H that divides the kettle C into compartments for holding the water to be filtered and for collecting the tank LB through the submerged water. In the base s of the funnel H, the filter cartridge 1 is accommodated such that the entire water to be filtered flows through the filter cartridge i. The water to be treated is introduced into the upper tank UB and flows through (4) 1 due to gravity to reach the lower tank. The cartridge 1 contains an ion exchange material IEM constructed in accordance with the present invention, i.e., a weakly acidic cation exchange resin loaded with a percentage of 83% to 91% of locked ions, such that when water flows through the cartridge i, the town ions replace The heavy metal ions and feed ions are constructed in such a way. The tree particle shape. The biting material is either replaced by a hydrogen ion, and the hydrogen ion is also present in the remainder of the resin that is not occupied by the magnesium ion. Preferably, the cartridge i further contains a charcoal cv impregnated with silver, such as carbon derived from a coconut shell and impregnated with silver. According to a preferred method of the present invention, an ion exchange resin is obtained by converting a previously partially converted resin into a nanoform form into a magnesium form. Partial conversion in the form of 8 201139289 is achieved by hydrogen hydroxide and a precise amount of hydroxide reduction, which is calculated to obtain the desired partial conversion. The heart and the tree are then converted to magnesium form by contact with a chloride or magnesium sulfate solution. Thereby the sodium ions in the resin are replaced by the town ions' without affecting the ratio w of the exchange groups with respect to the hydrogen form, which does not change in the final product. This method of the present invention is preferred, but is not the only method that can be used because it enhances the reliability of a resin having a partially homogeneous transition (i.e., particulate matter (e.g., 'microparticles) having the same partial conversion). This resin is made to have a performance level that can be reproduced over time irrespective of the sample being inspected. By way of example, in the case of a mixture of a resin in the form of a town and a resin in the form of a gas, it will be possible to obtain only a resin which is converted to the desired form on average, which is forcibly obtained from a particulate material which is wholly in the form of magnesium or completely in the form of hydrogen. The composition will provide a variable operational result if the two components are not mixed well. In the laboratory tests discussed below, the resin crucible of the present invention obtained according to the above method was subjected to contact with a tap water sample containing different concentrations of calcium ions and magnesium ions and heavy metal ions. The content of the sample is measured for calcium ions and magnesium ions and/or heavy metal ions before and after the tap water flows through the ion parent exchanger to evaluate the effect of the resin oxime. Water filtered by a resin containing magnesium outside the above range cannot be used for the purpose of the present invention. The following test s provides an embodiment in which the kettle of Figure 1 is used to filter tap water through an ion exchanger comprising a resin loaded with about 35% magnesium. The initial water has the following characteristics: 201139289 U.M. Method Magnesium Mg/L EPA 6010 2007 Hardness 〇F APAT CNR-IRSA 2040B Man 29 2003

表1 使用負載有百分比小於本發明之範圍之最小限度@ Mg 之上述樹脂,經過濾之水具有表2之以下特徵(說明複數 個分析,每一者為在指定公升數後之分析): U.M. 方法 結果 ~~*〜---- 鎂 Mg/L EPA 6010 2007 32 硬度 T APAT CNR-IRSA 2040B Man 29 2003 16' ~^ ---- ——— 第8公井 鎂 Mg/L EPA 6010 2007 32 硬度 〇F APAT CNR-IRSA 2040B Man 29 2003 13 —- —------ 鎂 Mg/L EPA 6010 2007 32 硬度 °F APAT CNR-IRSA 2040B Man 29 2003 16 鎂 Mg/L EPA 6010 2007 32 分析第32公并 硬度 °F APAT CNR-IRSA 2040B Man 29 2003 17 鎂 Mg/L EPA 6010 2007 26 分析第62公升 硬度 T APAT CNR-IRSA 2040B Man 29 2003 18 鎂 Mg/L EPA 6010 2007 22.6 分析第102公 升 硬度 °F APAT CNR-IRSA 2040B Man 29 2003 18 表2 10 201139289 • 此表格顯示經過濾之水的硬度如何過低,此為影響水 自身通常所存在之無機鹽之平衡且需要維持的特徵。詳言 之,首先在易患一些病理之情況下,重要的是為預防目的 提供無機鹽離子,尤其需要獲得高於15 °F之硬度。 本發明之樹脂適於引入商業濾筒中,其用於事前未知 硬度之任何類型之水,但其必須能夠在任何給定的初始硬 度。下維持「可接受」或大於15〇F之硬度值,或用於具有約 l〇°F之極低硬度的水。 因此,本申請人發現該可接受之硬度僅在樹脂中之Mg 濃度高於83%的情況下形成。 進步發現,對於負載有高於91 %之鎮的樹脂而言, 存在Mg之過量釋放,相反地使水過硬’尤其對於初始硬度 大於25°F之水而言。詳言之,未維持初始硬度。此外,過 里鎂貫邊上阻礙氫離子之釋放,從而阻礙水達到實質上中 性之pH值。 以下表格顯示使用兩種不同樹脂分析具有一定含量重 金屬之初始水(表3及表5)及經過濾之水(表4及6), β亥等樹脂皆根據本發明產生,前者含有84%鎂之負載(樹 脂1)且後者含有90% (樹脂樹脂之其餘部分負載有 氫:貝料以根據連續用同濾筒1逐漸處理之水的體積顯 示。 連續用樹脂1處理之初始水的資料: 11 201139289 硬度 自由活性氣 鋼 鉛 鋅 汞 pH值 硬度Table 1 uses the above resins loaded with a minimum percentage @ Mg of less than the scope of the present invention. The filtered water has the following characteristics of Table 2 (illustrating a plurality of analyses, each of which is analyzed after a specified number of liters): UM Method Results ~~*~---- Magnesium Mg/L EPA 6010 2007 32 Hardness T APAT CNR-IRSA 2040B Man 29 2003 16' ~^ ---- ——— 8th Well Magnesium Mg/L EPA 6010 2007 32 Hardness 〇F APAT CNR-IRSA 2040B Man 29 2003 13 —- —------ Magnesium Mg/L EPA 6010 2007 32 Hardness °F APAT CNR-IRSA 2040B Man 29 2003 16 Magnesium Mg/L EPA 6010 2007 32 Analysis of 32nd hardness and hardness °F APAT CNR-IRSA 2040B Man 29 2003 17 Magnesium Mg/L EPA 6010 2007 26 Analysis of 62 liters of hardness T APAT CNR-IRSA 2040B Man 29 2003 18 Magnesium Mg/L EPA 6010 2007 22.6 Analysis 102 liters hardness °F APAT CNR-IRSA 2040B Man 29 2003 18 Table 2 10 201139289 • This table shows how the hardness of the filtered water is too low, which is a characteristic that affects the balance of the inorganic salts normally present in the water itself and needs to be maintained. . In particular, first of all, in the case of susceptible pathology, it is important to provide inorganic salt ions for preventive purposes, especially for hardness higher than 15 °F. The resin of the present invention is suitable for introduction into commercial filter cartridges for any type of water of previously unknown hardness, but which must be capable of being at any given initial hardness. Maintain a "acceptable" or hardness value greater than 15 〇 F, or for water having a very low hardness of about 10 °F. Therefore, the Applicant has found that the acceptable hardness is formed only in the case where the Mg concentration in the resin is higher than 83%. It has been found that for resins loaded with more than 91% of the town, there is an excessive release of Mg, which in turn makes the water too hard' especially for water having an initial hardness greater than 25 °F. In detail, the initial hardness is not maintained. In addition, the over-magnesium cross-blocks the release of hydrogen ions, thereby preventing the water from reaching a substantially neutral pH. The following table shows the initial water (Tables 3 and 5) with a certain amount of heavy metals and the filtered water (Tables 4 and 6) using two different resins. The resin is produced according to the present invention. The former contains 84% magnesium. The load (resin 1) and the latter contains 90% (the rest of the resin resin is loaded with hydrogen: the shell material is displayed according to the volume of water which is continuously treated with the same filter cartridge 1. The initial water treated with the resin 1 continuously: 11 201139289 Hardness free active gas steel lead, zinc and mercury pH hardness

U.M. °F 方法 APAT CNR-IRSA 2040B Man 29 2003U.M. °F Method APAT CNR-IRSA 2040B Man 29 2003

Mg/L Cl2Mg/L Cl2

Mg/LMg/L

Mg/LMg/L

Mg/LMg/L

Mg/LMg/L

Mg/L APAT CNR-IRSA4020 Man 29 2003 EPA 6010C 2007 EPA 60IOC 2007 EPA 60IOC 2007 EPA 60 IOC 2007 EPA 60 IOC 2007 表3Mg/L APAT CNR-IRSA4020 Man 29 2003 EPA 6010C 2007 EPA 60IOC 2007 EPA 60IOC 2007 EPA 60 IOC 2007 EPA 60 IOC 2007 Table 3

用樹脂1過濾之表3之水的資料如下 U.M. 方法The data of the water of Table 3 filtered by the resin 1 is as follows. U.M. Method

°F APAT CNR-IRSA 2040B Man 29 2003 自由活性氮 銅°F APAT CNR-IRSA 2040B Man 29 2003 Free Reactive Nitrogen Copper

Mg/LCl2Mg/LCl2

Mg/L APAT CNR-IRSA 4020 Man 29 2003 EPA 60IOC 2007 鉛Mg/L APAT CNR-IRSA 4020 Man 29 2003 EPA 60IOC 2007 Lead

Mg/L EPA 60IOC 2007 鋅 汞 pH值 硬度 自由活性氢 鋼 鉛 鋅 PH值 硬度 氣 銅 鉛Mg/L EPA 60IOC 2007 zinc mercury pH hardness free active hydrogen steel lead zinc pH value hardness gas copper lead

Mg/LMg/L

Mg/LMg/L

Mg/LMg/L

°F°F

Mg/LCl;Mg/LCl;

Mg/LMg/L

Mg/LMg/L

Mg/LMg/L

Mg/LMg/L

Mg/LMg/L

Mg/LCbMg/LCb

Mg/LMg/L

Mg/L EPA 60 IOC 2007 EPA 60IOC 2007 EPA 60IOC 2007 結果 0.25 0.22 <0.001Mg/L EPA 60 IOC 2007 EPA 60IOC 2007 EPA 60IOC 2007 Results 0.25 0.22 <0.001

APAT CNR-IRSA 2040B Man 29 2003 APAT CNR-IRSA 4020 Man 29 2003 EPA 60IOC 2007 EPA 60IOC 2007 EPA 60IOC 2007 EPA 60IOC 2007 EPA 60IOC 2007 APAT CNR-IRSA 2040B Man 29 2003 APAT CNR-IRSA 4020 Man 29 2003 EPA 60IOC 2007 EPA 60IOC 2007 0.23 <0.001APAT CNR-IRSA 2040B Man 29 2003 APAT CNR-IRSA 4020 Man 29 2003 EPA 60IOC 2007 EPA 60IOC 2007 EPA 60IOC 2007 EPA 60IOC 2007 EPA 60IOC 2007 APAT CNR-IRSA 2040B Man 29 2003 APAT CNR-IRSA 4020 Man 29 2003 EPA 60IOC 2007 EPA 60IOC 2007 0.23 <0.001

0.23 6.7 21.6 金升 0.33 0.22 0.9 12 201139289 鋅 Mg/L EPA 6010C 2007 0.25 汞 Mg/L EPA 60IOC 2007 <0.001 pH值 Mg/L EPA 6010C 2007 6.6 — -- 硬度 T APAT CNR-IRSA 2040B Man 29 2003 21.6 分析第30公 自由活性氣 Mg/L Cl2 APAT CNR-IRSA 4020 Man 29 2003 0.28 ---- * 銅 Mg/L EPA 6010C 2007 0.19 鉛 Mg/L EPA 6010C 2007 0.61 鋅 Mg/L EPA 6010C 2007 0.31 — 汞 Mg/L EPA 6010C 2007 <0.001 pH值 Mg/L EPA 6010C 2007 6.9 ------ 硬度 °F APAT CNR-IRSA 2040B Man 29 2003 18.4 分析第 自由活性氯 Mg/LCl2 APAT CNR-IRSA 4020 Man 29 2003 0.34 銅 Mg/L EPA6010C 2007 0.19 ------— 鉛 Mg/L EPA 6010C 2007 0.30 ----- 鋅 Mg/L EPA 60IOC 2007 0.33 --- 汞 Mg/L EPA 60IOC 2007 <0.001 ~~—. pH值 Mg/L EPA 601OC 2007 6.7 --—--_ 硬度 〇F APAT CNR-IRSA 2040B Man 29 2003 20 分析第^ 自由活性氣 Mg/L Cl2 APAT CNR-IRSA 4020 Man 29 2003 0.34 銅 Mg/L EPA 60IOC 2007 0.32 — 鉛 Mg/L EPA 60 IOC 2007 0.34 ---- 鋅 Mg/L EPA 60 IOC 2007 0.54 ------ 汞 Mg/L EPA 60IOC 2007 <0.001 — pH值 Mg/L EPA 60IOC 2007 7.1 -------- — 硬度 °F APAT CNR-IRSA 2040B Man 29 2003 20.4 分析第 自由活性氣 Mg/LCl2 APAT CNR-IRSA 4020 Man 29 2003 0.31 --- 銅 Mg/L EPA 60 IOC 2007 0.46 ------— 鉛 Mg/L EPA 60 IOC 2007 0.30 鋅 Mg/L EPA6010C 2007 0.77 — 汞 Mg/L EPA6010C 2007 <0.001 ------- pH值 Mg/L EPA 60IOC 2007 8.2 ------- -—— 表4 13 201139289 連續用樹脂2處理之初始水的資料: U.M. 方法 結果 硬度 〇F APAT CNR-IRSA 2040B Man 29 2003 23.6 自由活性氣 Mg/L Cl2 APAT CNR-IRSA 4020 Man 29 2003 0.72 銅 Mg/L EPA 6010C 2007 1.8 鉛 Mg/L EPA 6010C 2007 1.6 辞 Mg/L EPA 6010C 2007 1.8 汞 Mg/L EPA 6010C 2007 0.002 pH值 Mg/L EPA 6010C 2007 6.7 表5 用樹脂2過濾之表5之水的資料如下: U.M. 方法 結果 硬度 °F APAT CNR-IRSA 2040B Man 29 2003 13.2 分析第1公升 自由活性氣 Mg/L Cl2 APAT CNR-IRSA 4020 Man 29 2003 0.044 銅 Mg/L EPA6010C 2007 0.12 鉛 Mg/L EPA 6010C 2007 0.26 鋅 Mg/L EPA 6010C 2007 0.23 汞 Mg/L EPA 6010C 2007 <0.001 pH值 Mg/L EPA 6010C 2007 6.7 硬度 °F APAT CNR-IRSA 2040B Man 29 2003 21.2 分析第5公升 自由活性氣 Mg/LCl2 APAT CNR-IRSA 4020 Man 29 2003 0.032 銅 Mg/L EPA 6010C 2007 0.32 鉛 Mg/L EPA 60IOC 2007 0.29 — — 鋅 Mg/L EPA 60IOC 2007 0.49 ----— 汞 Mg/L EPA 60IOC 2007 <0.001 -—--- pH值 Mg/L EPA 60IOC 2007 7.2 -— 硬度 〇F APAT CNR-IRSA 2040B Man 29 2003 23.2 〜斤第8八# 自由活性氯 Mg/L Cl2 APAT CNR-IRSA 4020 Man 29 2003 0.032 銅 Mg/L EPA 60IOC 2007 0.32 鉛 Mg/L EPA 6010C 2007 0.28 ^_ ----- __ 14 201139289 鋅 汞 pH值 硬度 自由活性氣 銅 鋅 汞 pH值 硬度 自由活性氣 銅0.23 6.7 21.6 Gold liter 0.33 0.22 0.9 12 201139289 Zinc Mg/L EPA 6010C 2007 0.25 Mercury Mg/L EPA 60IOC 2007 <0.001 pH Mg/L EPA 6010C 2007 6.6 — -- Hardness T APAT CNR-IRSA 2040B Man 29 2003 21.6 Analysis of the 30th free active gas Mg/L Cl2 APAT CNR-IRSA 4020 Man 29 2003 0.28 ---- * Copper Mg/L EPA 6010C 2007 0.19 Lead Mg/L EPA 6010C 2007 0.61 Zinc Mg/L EPA 6010C 2007 0.31 — Mercury Mg/L EPA 6010C 2007 < 0.001 pH Mg/L EPA 6010C 2007 6.9 ------ Hardness °F APAT CNR-IRSA 2040B Man 29 2003 18.4 Analysis of free active chlorine Mg/LCl2 APAT CNR-IRSA 4020 Man 29 2003 0.34 Copper Mg/L EPA6010C 2007 0.19 ------—Lead Mg/L EPA 6010C 2007 0.30 ----- Zinc Mg/L EPA 60IOC 2007 0.33 --- Mercury Mg/L EPA 60IOC 2007 <0.001 ~~-. pH value Mg/L EPA 601OC 2007 6.7 -----_ Hardness 〇F APAT CNR-IRSA 2040B Man 29 2003 20 Analysis of the first free active gas Mg/L Cl2 APAT CNR-IRSA 4020 Man 29 2003 0.34 Copper Mg/L EPA 60IOC 2007 0.32 — Lead Mg/L EPA 60 IOC 2007 0.34 ---- Zinc Mg/L EPA 60 IOC 2007 0.54 ------ Mercury Mg/L EPA 60IOC 2007 < 0.001 - pH Mg/L EPA 60IOC 2007 7.1 -------- — Hardness °F APAT CNR-IRSA 2040B Man 29 2003 20.4 Analysis Free active gas Mg/LCl2 APAT CNR-IRSA 4020 Man 29 2003 0.31 --- Copper Mg/L EPA 60 IOC 2007 0.46 ------—Lead Mg/L EPA 60 IOC 2007 0.30 Zinc Mg/L EPA6010C 2007 0.77 — Mercury Mg/L EPA6010C 2007 <0.001 ------- pH Mg/L EPA 60IOC 2007 8.2 ------- -—— Table 4 13 201139289 Information on the initial water treated with Resin 2 : UM Method Results Hardness 〇F APAT CNR-IRSA 2040B Man 29 2003 23.6 Free Active Gas Mg/L Cl2 APAT CNR-IRSA 4020 Man 29 2003 0.72 Copper Mg/L EPA 6010C 2007 1.8 Lead Mg/L EPA 6010C 2007 1.6 Word Mg /L EPA 6010C 2007 1.8 Mercury Mg/L EPA 6010C 2007 0.002 pH Mg/L EPA 6010C 2007 6.7 Table 5 The water of Table 5 filtered with Resin 2 is as follows: UM Method Results Hardness °F APAT CNR-IRSA 2040B Man 29 2003 13.2 Analysis of the first liter of free active gas Mg/L Cl2 APAT CNR-IRSA 4020 Man 29 2003 0.044 Copper Mg/L EPA6010C 2007 0.12 Mg/L EPA 6010C 2007 0.26 Zinc Mg/L EPA 6010C 2007 0.23 Mercury Mg/L EPA 6010C 2007 <0.001 pH Mg/L EPA 6010C 2007 6.7 Hardness °F APAT CNR-IRSA 2040B Man 29 2003 21.2 Analysis 5 liters Free active gas Mg/LCl2 APAT CNR-IRSA 4020 Man 29 2003 0.032 Copper Mg/L EPA 6010C 2007 0.32 Lead Mg/L EPA 60IOC 2007 0.29 — — Zinc Mg/L EPA 60IOC 2007 0.49 ----—Hg Mg/L EPA 60IOC 2007 <0.001 ----- pH value Mg/L EPA 60IOC 2007 7.2 -- Hardness 〇F APAT CNR-IRSA 2040B Man 29 2003 23.2 斤斤第8八# Free active chlorine Mg/L Cl2 APAT CNR- IRSA 4020 Man 29 2003 0.032 Copper Mg/L EPA 60IOC 2007 0.32 Lead Mg/L EPA 6010C 2007 0.28 ^_ ----- __ 14 201139289 Zinc Mercury pH Hardness Free Reactive Gas Copper Zinc Mercury pH Hardness Free Active Gas Copper

Mg/LMg/L

Mg/LMg/L

Mg/LMg/L

°F°F

Mg/L Cl2Mg/L Cl2

Mg/LMg/L

Mg/LMg/L

Mg/LMg/L

Mg/LMg/L

Mg/LMg/L

Mg/L Cl2 EPA 6010C 2007 EPA 6010C 2007 EPA 6010C 2007 APAT CNR-IRSA 2040B Man 29 2003 APAT CNR-IRSA 4020 Man 29 2003 EPA 6010C 2007 EPA 6010C 2007 EPA 6010C 2007 EPA 60IOC 2007 EPA 60IOC 2007 APAT CNR-IRSA 2040B Man 29 2003 APAT CNR-IRSA 4020 Man 29 2003 EPA 60IOC 2007 0.49 <0.001 0.058 0.31Mg/L Cl2 EPA 6010C 2007 EPA 6010C 2007 EPA 6010C 2007 APAT CNR-IRSA 2040B Man 29 2003 APAT CNR-IRSA 4020 Man 29 2003 EPA 6010C 2007 EPA 6010C 2007 EPA 6010C 2007 EPA 60IOC 2007 EPA 60IOC 2007 APAT CNR-IRSA 2040B Man 29 2003 APAT CNR-IRSA 4020 Man 29 2003 EPA 60IOC 2007 0.49 <0.001 0.058 0.31

Mg/L Mg/L EPA 60IOC 2007Mg/L Mg/L EPA 60IOC 2007

Mg/L EPA 60IOC 2007Mg/L EPA 60IOC 2007

舌性氣 銅 Mg/L Cl2 Mg/L APAT CNR-IRSA 4020 Man 29 2003 EPA 60IOC 2007 0.076 0.32 鉛Tongue gas Copper Mg/L Cl2 Mg/L APAT CNR-IRSA 4020 Man 29 2003 EPA 60IOC 2007 0.076 0.32 Lead

Mg/LMg/L

Mg/L EPA 60IOC 2007 EPA 60IOC 2007 0.51 0.69 汞Mg/L EPA 60IOC 2007 EPA 60IOC 2007 0.51 0.69 Mercury

Mg/L EPA 60 IOC 2007 <0.001Mg/L EPA 60 IOC 2007 <0.001

Mg/L EPA 60IOC 2007 7.6Mg/L EPA 60IOC 2007 7.6

由活性氯 Mg/L Cl2 銅 鉛 Mg/L EPA 60IOC 2007 0.34 鋅Active chlorine Mg/L Cl2 copper lead Mg/L EPA 60IOC 2007 0.34 zinc

Mg/LMg/L

Mg/LMg/L

Mg/L EPA 60IOC 2007 EPA 60IOC 2007 EPA 60IOC 2007Mg/L EPA 60IOC 2007 EPA 60IOC 2007 EPA 60IOC 2007

Mg/L EPA 60IOC 2007 表6 0.5 0.71 <0.001 7.1 15 201139289 如表4及6中可見,本發明之樹脂在保持阳值接近中 性值及硬度在有利值之範圍内的同時,顯著減少水令之重 金屬量。 水中之鎂量相對於初始水中之鎂量實質上保持不變, 在以上用樹脂1及樹脂2進行之分析中,初始水中之μ g的 平均量為15.3 mg/卜平均硬度為23.3°F,且150公升後經 過濾之水中的平均量為2〇 75 mg/1。 【圖式簡單說明】 圖1為過濾水壺之部分剖面示意圖’其包括根據本發 明建構之包含離子交換物質的濾筒。 【主要元件符號說明】Mg/L EPA 60IOC 2007 Table 6 0.5 0.71 < 0.001 7.1 15 201139289 As can be seen in Tables 4 and 6, the resin of the present invention significantly reduces water while maintaining a positive value close to the neutral value and a hardness within a favorable range. Make it heavy metal. The amount of magnesium in the water is substantially constant with respect to the amount of magnesium in the initial water. In the above analysis using Resin 1 and Resin 2, the average amount of μ g in the initial water is 15.3 mg/b and the average hardness is 23.3 °F. The average amount of filtered water after 150 liters was 2〇75 mg/1. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a partial cross-sectional view of a filter kettle. The filter cartridge including the ion exchange material constructed in accordance with the present invention is included. [Main component symbol description]

Claims (1)

201139289 七、申請專利範圍: 二:藉由使用離子交換劑來處理水、尤其飲用水之方 !右二:使水流過該離子交換劑之步驟,該離子交換劑 二 離子之弱酸性離子交換物質(IEM ),該等鎮 離子之比例範圍為其離子交換能力之83%m 離二Γ請專利範圍第1項之水處理方法,以該弱酸性 離子交換物質(IEM)為弱酸性陽離子交換樹脂。 二·:申請專利範圍第1項或第2項之水處理方法,其中 子交換物質(腕)之未負載有鎂離子的部分負載 有風離子。 4.如前述中請專利範圍中任—項或多項之處理方法,其 :流過該離子交換劑(IEM)之步驟包括 之步驟。 負載有鎮離子之弱酸 s亥等鎂離子之比例範 5· 一種濾水裝置(C),其包括含有 性離子交換物質(IEM)的濾筒(!), 圍為其離子交換能力之83%至91%。 6.如申請專利範圍第5項之裝詈(甘+ 工^ & 項&裒罝(C ),其中該弱酸性離 子父換物質(IEM)為弱酸性陽離子交換樹脂。 5項或第6項之裝置(c),其中弱 之未負載有鎂離子的部分負載有 7.如申請專利範圍第 酸性離子交換物質(IEM ) 氫離子。 1 )’其含有負載有 该4鎂離子之比例 8.—種用於滲濾裝置(c)之濾筒( 鎂離子之弱酸性離子交換物質(IEM ), 範圍為其離子交換能力之8 3 %至91 %。 17 201139289 9. 如申請專利範圍第8項之用於滲濾裝置(C )之濾筒 (1 ),其含有浸有銀之木炭(CV )。 10. 如申請專利範圍第8項或第9項之用於滲濾裝置(C) 之濾筒(1 ),其含有置於水自該濾筒流出處之篩網過濾器。 八、圖式: (如次頁) 18201139289 VII. Patent application scope: 2: Treating water, especially drinking water by using ion exchanger! Right second: the step of flowing water through the ion exchanger, the weak acidic ion exchange material of the ion exchanger (IEM), the proportion of the town ions is 83% of the ion exchange capacity. The water treatment method of the first application of the patent range, the weakly acidic ion exchange material (IEM) is a weakly acidic cation exchange resin. . 2. The water treatment method of claim 1 or 2, wherein the sub-exchange material (wrist) is partially loaded with wind ions without magnesium ions. 4. A process according to any one or more of the preceding claims, wherein the step of flowing through the ion exchanger (IEM) comprises the step of. The ratio of the weak acid shai and other magnesium ions loaded with the town ion is 5. The water filter device (C) includes a filter cartridge (!) containing an ion exchange material (IEM), which is surrounded by 83% of its ion exchange capacity. To 91%. 6. The device of claim 5 (Gan + Gong ^ && 裒罝 (C), wherein the weakly acidic ion parent exchange material (IEM) is a weakly acidic cation exchange resin. The device of item 6 (c), in which the weak partial load of magnesium ion is not supported. 7. The acid ion exchange material (IEM) hydrogen ion in the patent application range. 1) 'The ratio of the magnesium ion ion loaded therein 8. A filter cartridge for the percolation device (c) (a weakly acidic ion exchange material (IEM) of magnesium ions, ranging from 83% to 91% of its ion exchange capacity. 17 201139289 9. Scope of application Item 8 of the filter cartridge (1) for a percolation device (C), which comprises a charcoal (CV) impregnated with silver. 10. For use in a percolation device according to claim 8 or 9 ( C) A filter cartridge (1) containing a mesh filter placed in the water from the outlet of the filter cartridge. 8. Pattern: (eg page) 18
TW100104857A 2010-02-22 2011-02-15 Method and device for treating water TW201139289A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ITPD2010A000049A IT1398342B1 (en) 2010-02-22 2010-02-22 METHOD AND DEVICE FOR WATER TREATMENT.

Publications (1)

Publication Number Publication Date
TW201139289A true TW201139289A (en) 2011-11-16

Family

ID=42983493

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100104857A TW201139289A (en) 2010-02-22 2011-02-15 Method and device for treating water

Country Status (4)

Country Link
EP (1) EP2539282B1 (en)
IT (1) IT1398342B1 (en)
TW (1) TW201139289A (en)
WO (1) WO2011101483A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012007150A1 (en) * 2012-04-12 2013-10-17 Bwt Water+More Gmbh Cartridge for drinking water treatment and process for the treatment of drinking water
DE102012007149A1 (en) 2012-04-12 2013-10-17 Bwt Water+More Gmbh Cartridge for drinking water treatment and process for the treatment of drinking water
CN106044993A (en) * 2016-07-15 2016-10-26 中国人民解放军第三军医大学 Preparation method of weakly-alkaline hydrogen-enriched water

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3243147C2 (en) 1982-11-22 1989-11-02 Kraftwerk Union AG, 4330 Mülheim Process for seawater treatment
FI20065735A0 (en) 2006-11-20 2006-11-20 Salla Koski Measurement, monitoring and management system and its constituent equipment
DE102006058223A1 (en) * 2006-12-01 2008-06-05 Wp Engineering Ltd. Method and device for enriching water with magnesium ions

Also Published As

Publication number Publication date
EP2539282A1 (en) 2013-01-02
EP2539282B1 (en) 2014-01-08
IT1398342B1 (en) 2013-02-22
ITPD20100049A1 (en) 2011-08-23
WO2011101483A1 (en) 2011-08-25

Similar Documents

Publication Publication Date Title
JP5550067B2 (en) Method and apparatus for enrichment of magnesium ions in water
Alpatova et al. Ultrafiltration of water containing natural organic matter: heavy metal removing in the hybrid complexation–ultrafiltration process
Konieczny et al. A coagulation–MF system for water treatment using ceramic membranes
Tiwari et al. Hybrid materials in the removal of diclofenac sodium from aqueous solutions: Batch and column studies
Song et al. Phosphate adsorption by a Cu (II)-loaded polyethersulfone-type metal affinity membrane with the presence of coexistent ions
Ma et al. Enhanced antimony (V) removal using synergistic effects of Fe hydrolytic flocs and ultrafiltration membrane with sludge discharge evaluation
Zeng et al. Iron-loaded magnetic alginate-chitosan double-gel interpenetrated porous beads for phosphate removal from water: Preparation, adsorption behavior and pH stability
CN104039711B (en) Water purification composition containing magnesia and its application
Huang et al. Removal of fluoride from aqueous solution onto Zr-loaded garlic peel (Zr-GP) particles
Hu et al. Kinetic and isotherm studies of nitrate adsorption on granular Fe–Zr–chitosan complex and electrochemical reduction of nitrate from the spent regenerant solution
JP2009516579A (en) Removal of fluoride ions from aqueous solutions
El-Said et al. Adsorption of heavy metal ions from aqueous solutions onto rice husk ash low cost adsorbent
Naseem et al. A systematic study for removal of heavy metals from aqueous media using Sorghum bicolor: an efficient biosorbent
Kumar et al. Remediation techniques applied for aqueous system contaminated by toxic Chromium and Nickel ion
TW201139289A (en) Method and device for treating water
Shan et al. Efficient removal of free and nitrilotriacetic acid complexed Cd (II) from water by poly (1-vinylimidazole)-grafted Fe3O4@ SiO2 magnetic nanoparticles
Dwivedi et al. STUDIES ON ADSORPTIVE REMOVAL OF HEAVY METAL (CU, CD) FROM AQUEOUS SOLUTION BY TEA WASTE ADSORBENT.
Kumar et al. Removal of chloride from ground water by bio adsorption
Al-Ahmed et al. Facile synthesis of new metal-organic framework/chitosan composite sponge for Hg (II) removal: Characterization, adsorption efficiency, and optimization using Box-Behnken design
Chiramba et al. Production of activated carbon from poultry feathers for waste water treatment
Kipigroch The use of algae to remove zinc and lead from industrial wastewater
Assaoui et al. Synthesis and characterization of aluminum-based adsorbent and application in fluoride removal from aqueous solution
WO2022182754A9 (en) Water purification by ip6-citrate
Hu et al. Adsorption of divalent manganese ion on manganese-coated sand
Truong et al. Removing ammonium from contaminated water using Purolite C100E: batch, column, and household filter studies