TW201139137A - Solar cell sealing material and solar cell module produced using the same - Google Patents

Solar cell sealing material and solar cell module produced using the same Download PDF

Info

Publication number
TW201139137A
TW201139137A TW100106861A TW100106861A TW201139137A TW 201139137 A TW201139137 A TW 201139137A TW 100106861 A TW100106861 A TW 100106861A TW 100106861 A TW100106861 A TW 100106861A TW 201139137 A TW201139137 A TW 201139137A
Authority
TW
Taiwan
Prior art keywords
solar cell
layer
sealing material
resin composition
elastic modulus
Prior art date
Application number
TW100106861A
Other languages
Chinese (zh)
Inventor
Michiko Otsuka
Jun Nishioka
Kouichirou Taniguchi
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Publication of TW201139137A publication Critical patent/TW201139137A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

The problem of the present invention is to provide a solar cell sealing material which is easier to form a solar cell module and excellent in water vapor barrier property, flexibility, flowability and the like, and a solar cell module produced using the same. The solution of the present invention is the production of a solar cell sealing material constituted by laminating a (I) layer composed of a resin composition having a cyclic olefinic polymer as the main component, and a (II) layer composed of a resin composition having a polyolefinic polymer that has lower storage elastic modulus (E') and shear elastic modulus (G') in a specific temperature range than the resin composition which constitutes the (I) layer.

Description

201139137 六、發明說明: 【發明所屬之技術領域】 本發明係關於太陽電池模組中之太陽電池元件的密封材 及使用其製作之太陽電池,更詳言之,係關於較容易製 作太陽電A模組’且水蒸氣卩羯性、雜性、流動性優異之 太陽電池密封材及使用其製作之太陽電池模組。 【先前技術】 太陽電池係直接電性轉換太陽之光能量的發電裝置。由於 具有發電時不必燃燒石油物料,且不會產生減所造成之 /服至效果氣體(例如c〇2等)和有害廢棄物(例如原油灰和重 油灰)的特點,故太陽光發電近年來係作為綠色能源之一而 丈到注目。為了由太陽電池取得電力,其構造係多數個太陽 電池7L件(單元)直並列佈線。更且,由於太陽電池被設置於 屋外,故將太陽電池元件封入樹脂中,且呈其外部以玻璃和 薄片予以保護之構造,以避免水分和塵埃的影響,並且可耐 受冰雹和小礫石等衝撞、或風壓。此種構造稱為太陽電池模 、、且’般係呈現以下構成.將接觸太陽光的面以透明基材(玻 璃/透光性太陽電池片;正面片)覆蓋作為上方保護材,並以 熱可塑性塑膠(例如,乙烯-醋酸乙烯酯共聚合體)所構成的密 封材(密封樹脂層)埋入間隙,且將背面以背面密封用片材(背 面片’例如聚氟乙烯樹脂薄膜)保護作為下方保護材 如上述’由於太陽電池模組主要於屋外長期使 ’故其揭 100106861 201139137 ==等必須有各種特性。上述之各保護構件中若著 保護太陽電池元件的錄性、為了太2 隔性、為了 業適性的流動特性、太陽電池根域組製造中之作 陽光有效钱到達太陽ulU0㈣賴性、為使太 等)與破壤和背面片及單元的接黏性、耐久性、尺3 性、絕緣性等。 尺寸女疋 =用作為太陽電池模組中之太陽電池元件的密封材,係 如,夂^4丨, 體(以下,省略為EVA)(例 專利文獻丨)。又,崎EVA賦予耐熱性為主要目 的’進j仃使用有機過氧化物作為交聯劑的交聯。因此,採用 預先製作已添加交義(有機過氧化物)和交聯助劑的隱 片材’並且使用所得之片材將太陽電池元件密封的步驟。 β但^ ’使用EVA >;材製造太陽電池模組時,根據其加熱 壓黏等各條件,具有以下問題:因EVA熱分解產生醋酸氣 體,而對作業環境及製造裝置造成$良影響,並且發生太陽 電池的電路腐蝕,或在與太陽電池元件、正面片、背面片等 各構件間的界面發生剝離等。 更且,EVA具有以下問題:水蒸氣阻隔性不夠充分(例如, 於厚度0.45mm、溫度40°C、濕度90% RH中的水蒸氣穿透 率.25〜35g/(m2 ·天)左右),於高濕度等環境下使用時,水 分到達太陽電池元件,造成不良影響,從而變成太陽電池劣 100106861 5 201139137 化和發電效率降低之要因。 於是,為了解決上述問題_, 機能的密封材。例如 係追求比EVA更高性能、高 已知分子鏈中導入環狀烯烴的環狀烯 煙系聚合體一般具有耐熱性,透明性高,且環狀_系聚合 體的片材每單位面積的水錢料率低,並且水蒸氣阻隔性 優異。作減航___聚合㈣域電池密封材, 於專利文獻2中,揭示有將含有^鶴、或由請箱稀 及含有取代基之單體所構成的單魏合物予以開 環聚合所彳^環衫體之⑽如上㈣.碳賴進行氮化 所得之降_系開環聚合體氫化物的樹脂組成物所構成的 太陽電池密封材。 [先前技術文獻] [專利文獻] [專利文獻1]日本專利特開昭58_6〇579號公報 [專利文獻2]曰本專利特開2〇〇9_791〇1號公報 【發明内容】 (發明所欲解決之問題) 但是,針對專利文獻2中記載之密封材所用的樹脂組成 物,於該文獻t並未有關於常溫中之柔軟性的記載和提示, 並且完全未考慮對於太陽電池元件之衝擊等的保護性。於一 般的屋外環境溫度(例如25。〇中’若密封材所使用之樹脂組 成物的貯藏祕難⑺過高,騎抗來自外部之衝擊等, 100106861 201139137 太陽電池元件有破損之虞。 更且’於上述專利文獻2中並未有關於將太陽電池元件密 封時之密封性的喊和提*,㈣是,完全未考慮將太陽電 池元件密封時之一般溫度區域8(rc〜15(rc中之樹脂組成物 的流動性。上述溫度區域中的剪切彈性模數(G,)若過高,則 樹脂無法埋入太陽電池元件的間隙,有無法充分密封之虞。 若使用更高溫度及壓力職動性提高,但另—方面,有新產 生南溫造成之太陽電池元件和佈線變質、過度壓力造成之太 陽電池元件破壞等問題的可能性。 又例如於批次式的製造設備中,一般密封步驟所用之真 工層σ機,因使用利用真空系之真空度的壓差,故加至太陽 電池模組的壓力,大約為大氣壓(約lG1325Pa)。相對於此, 以欲使用上述專利文獻2記載般之密封材而言,為了更加提 :將太陽電池兀件密封時之壓力,必須將壓黏方式改造成油 壓式等各易發生製造成本變高等問題。 即’於先前的技術巾,並未提供較容㈣成太陽電池模 、、且且水条氣阻隔性、柔軟性、流動性優異的太陽電池密封 材及使用其製作之太陽電池模組β 於疋’本發明之目的在於提供較容易形成太陽電池模纪, 且水蒸氣阻隔性、柔軟性、流動性優異的太陽電池密封材 使用其製作之太陽電池模組。 (解決問題之手段) 100106861 201139137 本發明者等人重複致力研究之結果,發現經由將以環狀稀 、系聚&體作為主成分之樹脂組成物所構成的⑴層、和以特 疋'舰度區域中的貯藏彈性模數(E,)及剪切彈性模數(G,)係低 於構成(I)層之樹脂組成物之聚烯烴系聚合體作為主成分之 Μ月曰組成物所構成層之⑻層予以積層則可同時滿足水蒸 氣阻隔11、柔軟性、流動性等,並完成本發明。 即,本發明係一種太陽電池密封材,其特徵為,至少具有 、()e和下述(II)層,且同時滿足下述條件(1)及下述條 件(2)。 ” (I)層:以環狀烯煙“合體作為主成分之樹脂組成物所構成 之層 ()a以聚烯k系聚合體作為主成分之樹脂組成物所構成 之層 條件(1) ·於25。(:之貯藏彈性模數(£,)為Ε,ι>Ε,2。 條件(2):於8(TC〜15(rc之溫度範圍,剪切彈性模數⑺連 續成為GAG、之溫度區域存在於机以上之範圍。 (其中,K、匕分別為構成(1)層、(_之樹脂組成物的貯 =性模數,%、G,2分別為構成_ 物的剪切彈性模數。) (發明效果) 若根據本發明,則可提供容易形成太陽電池模組,且水蒸 减隔性、妹性、流動性、耐驗優㈣太陽電池密封材 100106861 201139137 及使用其製作之太陽電池模組。特別是提供常溫中之柔軟 性、和上述溫度區域中之流動性兩者兼顧之單元保護性優異 的太陽電池密封材及太陽電池模組。 若使用本發明之太陽電池密封材,則可減少錯酸造成之佈 線腐齡水I錄歧紅太陽電池科劣化之疑虞,並可 防止對於作業環境及製造裝置的不良影響、和太陽電池模組 的劣化和發電效率的降低。又,關於太陽電池模組的製造設 備’除了批次式的製歧備,亦可應用於親务輥式的製造 設備。 更且,本發明之太陽電池密封材,因水蒸氣阻隔性非常優 異,故亦可適當使用作為發電效率和耐久性等易受水分影響 的太陽電池元件,例如,使用CIGS系和有機系等發電元件 之次世代型太陽電池的密封材。 【實施方式】 以下’說明關於作為本發明實施形態之一例的太陽電池密 封材、及使用其製作之太陽電池模組。但,本發明之範圍不 被限定於以下說明之實施形態。 另外,於本說明書中,所謂「作為主成分」,係意指在不 妨礙構成本發明太陽電池密封材各層之樹脂的作用·效果的 範圍中,容許含有其他成分。更且,此用語並未限制具體的 含有率,係為樹脂組成物之構成成分整體的50質量%以上、 較佳為65質量%以上、更佳為80質量%以上且佔有1〇〇質 1〇〇106861 9 201139137 量%以下範圍的成分。 以下,詳細說明本發明。 主 本發明之太陽電池密封材,係將以環狀烯烴系聚合體作為 成分之樹脂組成物所構成且水蒸氣阻隔性優異之⑴層寿 以聚烯煙系聚合體作為主成分之樹脂組成物所構成且&封 性能和柔軟性、流動性、耐熱性優異之(H)層予以積芦而成 之構成’並同時滿足下述條件(1)及下述條件(2)者。 條件(1):於25°C之貯藏彈性模數(E’)為e,i>e,2。 條件(2):於之溫度範圍,剪切彈1模數(g,)連 續成為GVG’2之溫度區域存在於3〇ΐ以上之範圍。 (其中’EW、分別為構成(1)層、(11)層之樹脂組成物的貯 藏彈性模數,A、G,2分別為構成(1)層、剛之樹脂组成 物的剪切彈性模數。) <(1)層 > 構成本發明之太陽電池密封材的層中,_係由以環狀稀 煙系聚合體作為主成分之樹脂組成物所構成的^作為上述 環狀烯烴系聚合體之種類,並無特別限定,具體而言可列舉 將1種以上環㈣”間縣合所得之環狀烯烴聚合 體、和其氫化物、以及直鏈狀與環狀解的喪段共 聚合體、及直魏,烴與觀_的纽共聚合體等, 由工業上易取得度;t其以透明性和柔軟性平衡良好的觀點 而言,以直鏈狀_烴與環狀烯烴的無規共聚合體為佳。 100106861 10 201139137 構成上述環輯烴系聚合體之環㈣烴的_,並無特別 P艮t ’可列舉雙環庚_2_烯(2_降花嫌、乃苴括斗仏_201139137 VI. Description of the Invention: [Technical Field] The present invention relates to a sealing material for a solar cell element in a solar cell module and a solar cell using the same, and more particularly, relates to making solar power A easier A solar cell sealing material that is excellent in water vapority, impurities, and fluidity, and a solar cell module produced using the same. [Prior Art] A solar cell is a power generating device that directly converts solar light energy directly. Solar power generation in recent years due to the fact that it does not have to burn petroleum materials when generating electricity, and does not produce the characteristics of the gas (such as c〇2, etc.) and hazardous waste (such as crude oil ash and heavy putty) caused by the reduction. It is one of the green energy sources and has attracted attention. In order to obtain electric power from a solar cell, the structure is a straight line arrangement of 7L pieces (cells) of a plurality of solar cells. Moreover, since the solar cell is placed outside the house, the solar cell element is sealed in the resin, and the outside is protected by glass and sheet to avoid the influence of moisture and dust, and can withstand hail and small gravel, etc. Crash, or wind pressure. Such a structure is called a solar cell mold, and the structure is as follows. The surface that is in contact with sunlight is covered with a transparent substrate (glass/translucent solar cell sheet; front sheet) as an upper protective material, and is heated. A sealing material (sealing resin layer) made of a plastic plastic (for example, an ethylene-vinyl acetate copolymer) is buried in a gap, and the back surface is protected by a back sealing sheet (a back sheet such as a polyvinyl fluoride resin film). The protective material is as described above. Since the solar cell module is mainly used for a long time outside the house, it must have various characteristics such as 100106861 201139137 ==. In each of the above-mentioned protective members, the visibility of the solar cell element is protected, the flowability of the solar cell element is required, the flow characteristics of the solar cell, and the solar energy of the solar cell group are made to reach the sun ulU0 (four). Etc.) Adhesion, durability, ruler, insulation, etc. with the soil and the back sheet and the unit. Size 疋 = Sealing material used as a solar cell element in a solar cell module, for example, 夂^4丨, body (hereinafter, omitted as EVA) (Example Patent Document 丨). Further, Saki EVA imparts heat resistance as a main purpose, and crosslinks using an organic peroxide as a crosslinking agent. Therefore, a step of preliminarily making a hidden sheet which has been added with a cross-linking (organic peroxide) and a crosslinking assistant and using the obtained sheet to seal the solar cell element is employed. When using the EVA >; material to manufacture a solar cell module, according to the conditions such as heating and pressure bonding, there are the following problems: acetic acid gas is generated by thermal decomposition of EVA, which has a good influence on the working environment and the manufacturing device. Further, circuit corrosion of the solar cell occurs, or peeling occurs at an interface with each member such as a solar cell element, a front sheet, and a back sheet. Furthermore, EVA has the following problems: water vapor barrier properties are insufficient (for example, water vapor permeability in a thickness of 0.45 mm, a temperature of 40 ° C, and a humidity of 90% RH. 25 to 35 g / (m 2 · day)) When used in high humidity and other environments, moisture reaches the solar cell components, causing adverse effects, which becomes the cause of the deterioration of solar cell efficiency and power generation efficiency. Therefore, in order to solve the above problem _, the functional sealing material. For example, a cyclic olefin-based polymer which exhibits higher performance than EVA and which introduces a cyclic olefin into a known molecular chain generally has heat resistance and high transparency, and the sheet of the cyclic polymer is per unit area. The water money rate is low and the water vapor barrier property is excellent. For the aeronautical ___polymerization (four) domain battery sealing material, Patent Document 2 discloses a ring-opening polymerization of a mono-complex composed of a monomer or a monomer containing a substituent and a substituent-containing monomer. (10) The solar cell sealing material composed of the resin composition of the ring-opening polymer hydride obtained by nitriding the carbon ray as described above (4). [PRIOR ART DOCUMENT] [Patent Document 1] Japanese Patent Laid-Open Publication No. SHO-58-61-579 [Patent Document 2] Japanese Patent Laid-Open Publication No. Hei No. Hei. In the resin composition used for the sealing material described in Patent Document 2, there is no description and suggestion regarding the flexibility at room temperature in this document t, and the impact on the solar cell element is not considered at all. Protective. In the general outdoor temperature (for example, 25 〇 ' 'If the storage of the resin composition used in the sealing material is too high (7) is too high, riding against external impact, etc., 100106861 201139137 solar cell components are damaged. In the above Patent Document 2, there is no mention of the sealing property of the sealing of the solar cell element, and (4), the general temperature region 8 when the solar cell element is sealed is not considered at all (rc~15 (rc When the shear modulus (G,) in the above temperature region is too high, the resin cannot be buried in the gap of the solar cell element, and the resin cannot be sufficiently sealed. The pressure is increased, but on the other hand, there are new possibilities for solar cell components and wiring deterioration caused by South Temperature, and damage to solar cell components caused by excessive pressure. For example, in batch manufacturing equipment, In the normal layer σ machine used in the sealing step, the pressure applied to the solar cell module is about atmospheric pressure (about lG1325Pa) because of the pressure difference using the vacuum degree of the vacuum system. In order to increase the pressure at the time of sealing the solar cell element, it is necessary to change the pressure-bonding method into a hydraulic type, and the production cost is high, etc., in order to increase the pressure of the sealing material as described in the above-mentioned Patent Document 2. The problem is that the previous technical towel does not provide a solar cell sealing material that is more compatible with the solar cell module, and has excellent gas barrier properties, flexibility, and fluidity, and a solar cell module using the same. The purpose of the present invention is to provide a solar cell module produced by using a solar cell sealing material which is easy to form a solar cell module and which is excellent in water vapor barrier properties, flexibility, and fluidity. 100106861 201139137 The inventors of the present invention repeated the results of the research and found that the (1) layer consisting of a resin composition having a ring-shaped thin, a condensed & a body as a main component, and a storage in a special 'soil area' The elastic modulus (E,) and the shear modulus (G,) are lower than the composition of the composition of the composition of the composition of the polyolefin-based polymer constituting the resin composition of the (I) layer as a main component. (8) The layer is laminated to satisfy the water vapor barrier 11, softness, fluidity, etc., and the present invention is completed. That is, the present invention is a solar cell sealing material characterized by having at least ()e and the following ( II) layer, and satisfying the following condition (1) and the following condition (2): "(I) layer: a layer composed of a resin composition containing a cyclic olefin as a main component (a) The layer condition (1) of the resin composition containing the ethylenic polymer as a main component is (1) at 25. (The storage elastic modulus (£,) is Ε, ι > Ε, 2. Condition (2): 8 (TC~15 (the temperature range of rc, the shear elastic modulus (7) continuously becomes the GAG, and the temperature region exists in the range above the machine. (When K and 匕 are respectively composed of the (1) layer, (_ resin composition) The storage modulus of the object, %, G, and 2 are the shear elastic modulus of the constituents, respectively. (Effect of the Invention) According to the present invention, it is possible to provide a solar cell module which is easy to form, and has water vapor depletion property, sisterness, fluidity, and durability (4) solar cell sealing material 100106861 201139137 and a solar cell using the same. Module. In particular, a solar cell sealing material and a solar cell module which are excellent in unit protection both in flexibility at room temperature and fluidity in the above temperature range are provided. If the solar cell sealing material of the present invention is used, the problem of deterioration of the wiring solar aging water caused by the wrong acid can be reduced, and the adverse effects on the working environment and the manufacturing device, and the solar cell mode can be prevented. Degradation of the group and reduction in power generation efficiency. Further, the manufacturing apparatus for the solar cell module can be applied to a manufacturing apparatus of a passenger roll type in addition to the batch type preparation. Further, since the solar cell sealing material of the present invention is excellent in water vapor barrier property, it is possible to suitably use a solar cell element which is susceptible to moisture such as power generation efficiency and durability, and for example, power generation using a CIGS system or an organic system. Sealing material for the next generation solar cell of components. [Embodiment] Hereinafter, a solar cell sealing material which is an example of an embodiment of the present invention and a solar cell module produced using the same will be described. However, the scope of the present invention is not limited to the embodiments described below. In the present specification, the term "main component" means that other components are allowed to be contained in a range that does not interfere with the action and effect of the resin constituting each layer of the solar cell sealing material of the present invention. In addition, this term does not limit the specific content rate, and is 50% by mass or more, preferably 65% by mass or more, more preferably 80% by mass or more, and more preferably 1% by mass of the constituent component of the resin composition. 〇〇106861 9 201139137 Quantities below the range of ingredients. Hereinafter, the present invention will be described in detail. The solar cell sealing material of the present invention is composed of a resin composition containing a cyclic olefin polymer as a component and has excellent water vapor barrier properties. (1) A resin composition containing a polyene-based polymer as a main component. The (H) layer which is excellent in the sealing performance and the flexibility, the fluidity, and the heat resistance is formed by the combination of the following conditions (1) and the following condition (2). Condition (1): The storage elastic modulus (E') at 25 ° C is e, i > e, 2. Condition (2): In the temperature range, the temperature range in which the shear modulus 1 (g,) continuously becomes GVG'2 exists in the range of 3 〇ΐ or more. (where 'EW, respectively, is the storage elastic modulus of the resin composition constituting the (1) layer and the (11) layer, and A, G, and 2 are the shear elastic modulus of the resin composition constituting the (1) layer, respectively. In the layer of the solar cell sealing material of the present invention, _ is composed of a resin composition containing a ring-shaped flue-cured polymer as a main component, as the above-mentioned cyclic olefin system. The type of the polymer is not particularly limited, and specific examples thereof include a cyclic olefin polymer obtained by combining one or more kinds of rings (four) and a hydride product thereof, and a linear phase and a cyclic solution. a combination of a mixture of hydrocarbons and a mixture of hydrocarbons and a mixture of hydrocarbons, and the like, which is industrially easy to obtain; t, which has a linear balance of a hydrocarbon and a cyclic olefin from the viewpoint of a good balance of transparency and flexibility. It is preferred that the aggregate polymer is 100106861 10 201139137 _ which constitutes the ring (tetra) hydrocarbon of the above-mentioned cyclic hydrocarbon-based polymer, and there is no particular P艮t ', which may be exemplified by bicycloheptan-2-ene (2_仏_

得度和各特性、經濟性等觀點而言,以降㈣和四環十 等為適合使用。 > ),ιυ-二曱基四環_3_十二烯等。 伯烯,和以四環-3·十二烯及 環-3-十二烯、8_乙基四環_3~ 、10-二曱基四環-3-十二烯、 於本發明中,由工業上易取 作為與上述環狀烯烴共聚合之直鏈狀―煙的種類並無 特別限定’通常,以碳數2〜2〇之直鍵狀α•稀煙為適合使用: 此處作為與環狀烯烴共聚合之直鏈狀α-烯烴,可列舉乙烯、 丙Γ、1· 丁稀、1-戊稀、1_己烯、1_庚埽、辛稀、1-壬烯、 ,1·癸稀等。於本發财,由工#上易取得度和各特性、經濟 性等觀點而言,作為與環狀烯烴共聚合的直鏈狀婦烴, 、乙婦為適合使用。與環狀稀烴共聚合之直鏈狀OJ-烯烴可 僅為單獨1種’或組合使用2種以上亦無妨。 又’作為與直鏈狀α·烯烴共聚合之環狀烯烴的含量,並 無特別限定’通常,相對於直鏈狀α•烯烴與環狀烯烴的合 &十置’為5莫耳%以上、較佳為1〇莫耳%以上、更佳為20 莫耳%以上,且,通常為70莫耳%以下、較佳為60莫耳% 100106861 11 201139137 以下、更佳為5〇莫耳%以下。環狀烯烴的含量若變多,則 可提高耐熱性、水蒸氣阻隔性及透明性,又,含量若變少, 則可提高柔軟性,故為合適。環狀烯烴的含量若為該範圍 内’則經由共聚合成分使結晶性減低而表現透明性,又,亦 難引起原料粒之結塊等不適’故為佳。另外,與直鏈狀〇!-烯烴共聚合之環狀烯烴的種類和含量,以習知方法,例如, 核磁共振(NMR)測定裝置、其他之機器分析裝置便可進行定 性定量分析。 上述環狀烯烴系聚合體,例如,可根據日本專利特開昭 60- 168708號公報、特開昭61-120816號公報、特開昭 61- 115912號公報、特開昭61-115916公報、特開昭61_271308 號公報、特開昭61-272216號公報、特開昭62_2524〇6號公 報、特開昭62-252407號公報等記载之公知方法製造。 作為上述環狀烯烴系聚合體之具體例,可例示三井化學From the viewpoints of availability and various characteristics and economics, it is suitable to use (4) and 4th ring. > ), ιυ-dimercaptotetrayl_3_dodecene, and the like. a primary olefin, and tetracyclo-3·dodecene and cyclo-3-dodecene, 8-ethyltetracyclo-3~, 10-didecyltetracyclo-3-dodecene, in the present invention The type of the linear-smoke which is industrially easy to be copolymerized with the above-mentioned cyclic olefin is not particularly limited. Usually, a straight-chain α·smoke having a carbon number of 2 to 2 Å is suitable for use: Examples of the linear α-olefin copolymerized with the cyclic olefin include ethylene, propylene, 1, butyl, 1-pentane, 1-hexene, 1-g-heptene, octene, 1-decene, , 1 · 癸 thin and so on. In the case of the company, it is suitable for use as a linear hydrocarbon compound copolymerized with a cyclic olefin from the viewpoint of easy availability, various characteristics, economy, and the like. The linear OJ-olefin copolymerized with the cyclic dilute hydrocarbon may be used singly or in combination of two or more. Further, the content of the cyclic olefin copolymerized with the linear α·olefin is not particularly limited to “normally, the ratio of the linear α-olefin to the cyclic olefin is < The above is preferably 1% by mole or more, more preferably 20% by mole or more, and is usually 70% by mole or less, preferably 60% by mole. 100106861 11 201139137 or less, more preferably 5 〇 mole %the following. When the content of the cyclic olefin is increased, the heat resistance, the water vapor barrier property, and the transparency can be improved, and if the content is small, the flexibility can be improved, which is suitable. When the content of the cyclic olefin is within this range, the crystallinity is lowered by the copolymerization component to exhibit transparency, and it is also difficult to cause discomfort such as agglomeration of the raw material particles. Further, the type and content of the cyclic olefin copolymerized with the linear oxime-olefin can be qualitatively and quantitatively analyzed by a known method, for example, a nuclear magnetic resonance (NMR) measuring apparatus or another apparatus for analyzing the apparatus. The above-mentioned cyclic olefin-based polymer, for example, is disclosed in JP-A-60-168708, JP-A-61-120816, JP-A-61-115912, JP-A-61-115916, and JP-A-61-115916. It is produced by a known method described in, for example, JP-A-61-271308, JP-A-61-272216, and JP-A-62-252. As a specific example of the above cyclic olefin-based polymer, Mitsui Chemicals can be exemplified

(鼓)製之商品名「APEL」、TOPAS ADVANCED POLYMERS (股)製之商品名「TOPAS」等。 以上述環㈣烴系聚合體作為主成分之购旨組成物的水 蒸氣阻隔性,只要考颜應用之太陽電池元件_類和太陽 電池模組的形狀和厚度、設置場所#適#難即可,例如, 關於以厚度為〇.3mm或〇.45mm般製作的片材,於溫度仞 ΐ、濕度㈣RH中之水蒸氣穿透率(測定方法:^κ7ΐ27) 較佳為未滿lg/(m2 ·天)、更佳為未滿G 8咖2 •天)、再佳 100106861 12 201139137 為未滿0.6g/(m2 ·天)。水蒸氣穿透率若為上述範圍,則可 抑制佈線之腐蝕和太陽電池元件之劣化 ’故為合適。例如 經由將本發日⑽用之環狀_鋒合㈣組成在本說明書 中記載之_内適當調整’則可將水蒸氣穿料作成上述範 25C中構成(I)層之樹脂組成物於振動頻率:ihz、升溫迷 度:3°C/分鐘、應變〇.1%之條件下測定的貯藏彈性模數(以 下,稱為E’1),只要考慮應用之太陽電池形狀和厚度、設置 場所等適當調整即可,通常,為1〇MPa (lxl〇7Pa)以上、 5000MPa (5xl〇9Pa)以下。此處,若考慮對於太陽電池模組 之衝擊等之緩衝性和柔軟性、以及作為太陽電池模組支持體 的剛性和太陽電池模組製造時的操作性,則構成⑺層之樹脂 組成·物的貯藏彈性模數(E’!)為5〇MPa (5xl〇7pa)以上 3000MPa (3xl09Pa)以下為佳,且以 i〇〇Mpa (ixl〇8pa)以上 2000MPa(2xl09Pa)以下為更佳。 <(11)層 構成本發明之太陽電池密封材的層中,(11)層係由以聚婦 烴系聚合體作為主成分之樹脂纟且成物所構成的層,其特徵 為,該樹脂組成物於25 C之貯藏彈性模數(以下,稱為& ) 係低於上述E、(條件(1)),且,於8〇〇c〜15(rc之溫度範圍 中,該樹脂組成物的剪切彈性模數(以下,稱為G,2)連續低 於構成⑴層之樹脂組成物的剪切彈性模數(以下 ^ ' 、、卜,稱為G’i) 100106861 13 201139137 的溫度區域·上的範圍存在(條件(2))。以下例示 關於較佳之聚烯烴系聚合體的具體例,料樹脂可單獨使 用,且亦可混合使用2種以上。又,⑼層只要是分別由以 聚烯系聚合體作為主成分的樹脂組成物所構成之層,則亦 可為單層,且積層2層以上亦無妨。 本發明之(II)層所用之聚烯烴系聚合體的種類,只要⑼ 層係滿足上述關於貯藏彈性模數(E,)及剪切彈性模數(G,)之 上述條件(1)及(2),則無特別限定,由聚乙烯系聚合體、聚 丙稀系聚合體、改質聚烯烴系聚合體所組成群中選出之至少 1種樹脂為佳。 作為上述聚乙烯系聚合體之種類,並無特別限定,具體而 言可列舉超低密度聚乙烯、低密度聚乙烯、線狀低密度聚乙 烯(乙烯-α-烯烴共聚合體)、中密度聚乙烯、高密度聚乙烯、 或超高密度聚乙烯等。其中,線狀低密度聚乙烯(乙烯-α-烯 烴共聚合體)因結晶性低,且透明性和柔軟性優異’故難發 生阻礙太陽電池元件之發電特性並且對太陽電池元件施加 過度應力而變成損傷原因等不適,因而較佳。 上述乙烯-α-烯烴共聚合體,可為無規共聚合體’且亦可 為嵌段共聚合體。作為與乙烯共聚合之仏烯烴的種類,並 無特別限定,通常,以碳數3〜20之α-烯烴為適合使用。此 處作為與乙烯共聚合之烯烴,可列舉丙烯、1-丁烯、1-戊稀、1-己稀、1-庚稀、1-辛稀、1-壬稀、1-癸稀、3-曱基- 100106861 14 201139137 丁稀卜4_甲基.戊烯·i等。於本發明中,由工業上易取得 度和各特性、經濟性等觀點而言,作為與乙婦共 烯烴:以丙稀、i、丁烯、b己稀、卜辛埽為適合使二與: 烯共聚合之0可僅為單獨1種,或組合制2種以上 亦無妨。 作為與乙烯共聚合之α•烯烴的含量,並無特別限定, 通吊,相對於乙埽與〇!-烯烴的合計量,為2莫耳。/〇以上,浐 佳為3莫耳%以上、更佳為5莫耳%以上,且,通常為二 莫耳%以下、較佳為30莫耳%以下、再佳為25莫耳%以下。 若為該範圍内,則經由共聚合成分使結晶性減低而提高透明 性,又,亦難引起原料粒之結塊等不適,故為佳。另外,與 乙烯共聚合之α-婦烴的種類和含量,以習知方法,例如, 核磁共振(N M R)測定裝置、其他機器分析裳置便可定性定量 分析。 上述聚乙烯系聚合體之製造方法並無特別限定,可採用利 用公知的烯烴聚合用觸媒之公知的聚合方法。可列舉例如, 使用齊格勒•那塔(Ziegler-Natta)型觸媒所代表之多部位觸 媒、和茂金屬系觸媒和後茂金屬系觸媒所代表之單一部位觸 媒的毁液聚合法、聚合法、塊狀聚合法、氣相聚合法等, 又,使用㈣基起始劑的塊絲合料。作為太陽電°池密封 材使用之⑽·_烴料合體似較軟__為佳,且 由聚合後之絲(粒化)容易度和防止原料粒純等觀點而 100106861 1<: 201139137 言’以使用低分子量成分少且分子量分佈狹窄之原料可聚合 之單一部位觸媒的聚合方法為適當。 作為上述聚乙烯之具體例,可例示Prime Polymer (股)製 之商品名「Hizex」、「Neozex」、「Ultzex」、日本 Polyethylene / (股)製之商品名「Novatec HD」、「N〇vatec LD」、「Novatec LL」、「Karnel」、Dow Chemical (股)製之商品名「Engage」、 「Affinity」、「Infuse」、三井化學(股)製之商品名「TAFMER A」、「TAFMER P」、宇部丸善P〇iyethylene (股)製之商品名 「Umedt」、旭化成Chemicals (股)製之商品名rcliolex」等。 作為上述聚丙烯系聚合體之種類,並無特別限定,具體而 言可列舉丙:^之同元聚合體、㈣之共聚合體、反應器型聚 丙烯系熱可塑性彈性體、及其混合物等。 作為丙烯之共聚合體,可列舉丙稀與乙稀或與其他之仏 稀烴的無規共聚合體(無規聚丙烯)、或嵌段共聚合體(歲段聚 丙烯)、含有橡膠成分之嵌段共聚合體或接枝共聚合體等。 作為可與上述丙烯共聚合之其他的α•稀煙,以碳原子數為 4〜12者為佳’可列舉例如,^丁烯、ι•戊烯、卜己烯、卜庚 烯1辛烯4-曱基戊稀、u癸稀等,可使用其】種或2 種以上之混合物。 又,作為與上述丙稀共聚合之%稀煙的含量,並無特別 限定,通常,相對於丙烯與,坡之合計量,為2莫耳%以 上、較佳為3莫耳%以上、更佳 尺佳4 5莫耳%以上,且,通常 100106861 201139137 為40莫耳%以下、較佳為30莫耳%以下、更佳為25莫耳 以下。若為錄_,雜由共聚合齡使結錄減低= 高透明性,又,亦難引起原料粒之結塊等不適,故為佳。 外,與丙烯共聚合之Of-烯烴的種類和含量,以習知方去 .例如’核磁共振(NMR)測定裝置、其他之機器分析^置=可 進行定性定量分析。 上述聚丙稀系聚合體之製造方法並無特別限定,可採用利 用公知的烯烴聚合用觸媒之公知㈣合方法。可列舉例如, 使用齊格勒•那塔型觸媒所代表之多部位觸媒、和茂金屬系 觸媒和後茂金屬系觸媒所代表之單一部位觸媒的漿液聚合 法、溶液聚合法、塊狀聚合法、氣相聚合法等,又,使用自 由基起始劑的塊狀聚合法等。作為太陽電池密封材使用之丙 烯-α-烯煙共聚合體係以較軟質的樹脂為佳,且由聚合後之 造粒(粒化)容易度和防止原料粒結塊等觀點而言,以使用低 分子量成分少且分子量分佈狹窄之原料可聚合之單一部位 觸媒的聚合方法為適當。 '作為上述聚丙烯系聚合體之具體例,可例示曰本pl〇lypr0 (股)製之商品名「Novatec PP」、「Wintec」、Prime Polymer (股) 製之商品名「Prime Polypro」、「Prime ΤΡΟ」、住友化學(股) 製之商品名「No brene」等。 上述改質聚烯烴系聚合體的種類並無特別限定,由EV0H (乙烯-乙烯醇共聚合體)、E-MMA (乙烯-曱基丙烯酸曱酯共 100106861 17 201139137 聚合體)、E-EAA (乙烯-丙烯酸乙酯共聚合體)、 烯-曱基丙烯酸環氧丙酯共聚合體)、離子聚合物樹脂(乙 聯性乙烯-曱基丙烯酸共聚合體、離子交聯性乙烯- 分交 聚合體)、矽烷交聯性聚烯烴、及順丁烯二酸酐接枝此 體所組成群中選出之至少1種之樹脂為佳。 "、聚。 上述改質聚烯烴系聚合體之製造方法並無特別限定, 下述所示之離子聚合物樹脂、矽烷交聯性聚烯 * 了 "貝丁歸—一— 酸酐接枝共聚合體以外,經由使用公知的烯烴聚合用觸 公知的聚合方法,例如使用齊格勒•那塔型觸媒所代表、夕 部位觸媒、和茂金屬觸媒所代表之單一部位觸媒的激液= 法、溶液聚合法、塊狀聚合法、氣相聚合法等,χ,使用口 由基起始劑的塊狀聚合法等便可取得。 離子聚合物樹脂,係可經由將乙稀、不飽和緩酸、和作為 任意成分之其他不鮮化合物所構成之絲合體之不飽和 叛3夂成77之至少—部分,以金屬離子或有機胺中之至少任— 者予乂中和而取得。又,離子聚合物樹脂,亦可經由將乙稀、 ! = 酯、和作為任意成分之其他不飽和化合物所構成 之,、聚。體之殘和驗s旨成分之至少一部分予以驗化而 取得。 夕烧乂聯性聚埽煙,係可經由將聚稀煙系樹脂、後述之石夕 烧偶口 h丨及後述之自由基產生劑於高溫熔融混合,並且進 行接枝聚合而取得。 100106861 18 201139137 順丁烯二酸酐接枝共聚合體,係可經由將聚烯烴系樹脂、 順丁烯二酸酐、及後述之自由基產生劑於高溫熔融混合,並 且進行接枝聚合而取得。 作為本發明所用之改質聚烯烴系樹脂的具體例,可例示曰 本Uniker(股)製之「NUC」系列、作為EVOH(乙烯-乙烯醇 共聚合體)可例示曰本合成化學(股)製之商品名「Soanol」、 (股)CURALE製之商品名「Eval」、作為E-MMA(乙烯-甲基 丙烯酸曱酯共聚合體)可例示住友化學(股)製之商品名 「Acrift」、作為E-EAA (乙烯-丙烯酸乙酯共聚合體)可例示 曰本Polyethylene (股)製之商品名「REXPEARL EEA」、作 為E-GMA (乙烯-甲基丙烯酸環氧丙酯共聚合體)可例示住 友化學(股)製之商品名「BONDFAST」、作為離子聚合物樹 脂可例示三井Dupont Polychemical (股)製之商品名 「Himilan」、作為矽烷交聯性聚烯烴可例示三菱化學(股)製 之商品名「Linchrone」、作為順丁烯二酸酐接枝共聚合體可 例示三井化學(股)製「Adomer」等。 上述聚烯烴系聚合體之較佳熔融流動速率(MFR),例如’ 於聚乙稀之情況’ MFR (JIS K721 〇、溫度:19〇°C、荷重: 21.18N)較佳為〇.5g/10min以上、更佳為2g/1〇min以上、再 佳為3g/10min以上,且,較佳為3〇g/1〇min以下、更佳為 25g/10min以下、再佳為2〇g/1〇min以下。 更且,MFR係只要考慮製作密封材時之成形加工性和將 100106861 19 201139137 太陽電池元件密封時的接祕、擴展填滿程度等而選擇即 可。例如’以碌光機成形製作片材時,由從成开增拉剝片材 時之操作性而言,MFR以較低者,具體而言為〇5yi〇min 以上、5g/10min以下為佳,又,使用τ型模具予以擠壓成 形時’由減低擠壓負荷並且提升擠壓量的觀點而言,則mfr 較佳為2g/10min、更佳為3g/1〇min以上,且較佳為 30g/10min以下、更佳為2〇g/1〇min以下。更且,由太陽電 池元件(單元)密封時的接黏性和擴展填滿容易度的觀點而 言,MFR較佳為2g/l〇min、更佳為3g/min以上且,較佳 為30g/10min以下、更佳為2〇g/1〇min以下。 <(1)層及(II)層中所用之其他樹脂> 於構成本發明之太陽電池密封材之各個⑴層、及(11)層的 樹脂組成物中,在不超脫本發明主旨的範圍中,於進一步提 高各物性(柔軟性、耐熱性、透明性、接黏性等)和成形加工 性或經濟性等之目的下’可含有上述之環狀烯烴系聚合體和 聚烯烴系聚合體以外的樹脂。該樹脂可僅混合於⑴層、或僅 混合於(II)層中,且亦可混合於(1)層與(11)層兩者中。 作為該樹脂,可列舉例如,其他之聚烯烴系樹脂和各種彈 性體(烯烴系、苯乙稀系等)、以敌基、胺基、酿亞胺基、經 基、環氧基、哼唑啉基、硫醇基等之極性基改質的樹脂及黏 著賦予樹脂等。 作為該黏著賦予樹脂,可列舉石油樹脂、㈣樹脂、香豆 100106861 201139137 酮、節树脂、松脂系樹脂、或其氫化衍生物等。具體而言, =為石油樹脂,係來自環戊二烯或其二聚體之脂環式石油樹 月曰和來自C9成分的芳香族石油樹脂,作為萜烯樹脂係來自 A蒎烯之萜烯樹脂和萜烯_苯酚樹脂,又,作為松脂系樹脂, 可例不松脂膠、木松脂等之松脂樹脂、以甘油和新戊四醇等 所改質的酯化松脂樹脂等。又,該黏著賦予樹脂主要係根據 分子量而取得具有各種軟化溫度者,由與所述之聚烯烴系聚 合體成分混合時的相溶性、歷時的滲出性、色調和熱安定性 等方面而言,特佳係軟化溫度較佳為1〇〇以上、更佳為12〇〇c 以上,且,較佳為15(rc以下、更佳為140〇c以下之脂環式 石油樹脂的氫化衍生物。混合上述聚烯烴系聚合體以外之樹 脂時,通常,所混合之對象層,即各層之樹脂組成物為1〇〇 貝1份時,以20質量份以下為佳,且以1〇質量份以下為更 佳。 <其他之添加劑> 又,於構成本發明之太陽電池密封材之各個⑴、及(H)層 的樹脂組成物中’視需要可添加各種添加劑。作為該添加 劑,可列舉例如,自由基產生劑(交聯劑/交聯助劑)、矽烷偶 合劑、抗氧化劑、紫外線吸收劑、财候安定劑、光擴散劑、 造核劑、顏料(例如白色顏料)、難燃劑、防變色劑等。於本 發明中’由後述理由等而言’以添加自由基產生劑、石夕烧偶 合劑、紫外線吸收劑、耐候安定劑中選出之至少1種添加劑 100106861 21 201139137 為佳。該等添加劑可僅添加於上述⑴層、或餘加於上述⑻ 層中,且亦可添加於上述(I)層與上述(II)層兩者中。 [自由基產生劑] 自由基產生劑(交聯劑/交聯助劑)’係在將上述聚埽烴系聚 合體使用於太陽電池密封材時,有用於具有用以達到=升耐 熱性和提高機械強度等目的之交聯構造,為自由基產生劑 並無特別限制,可列舉有機過氧化物;偶氮雙異丁腈 (鳩N)、高分子偶氮化合物等之偶氮化合物、埽丙基錫、 三乙基观等之有機金屬化合物等。其中,就反應速度和調 配時之安全性的觀點而言’有機過氧化物,_是於100。〇 產生自由基’且半衰期10小時之分解溫度為7〇(以上者係 適合使用。 作為此種自由基產生劑,較佳可使用例如2,5-二曱基己 烷,_2’5-一氫過氧化物、2,5_二曱基_2,5_二(第三丁基過氧基) 己烧;3-二-第三丁基過氧化物;第三_二異丙苯基過氧化物; 2’5-二曱基-2,5-二(第三丁基過氧基)己块;三異丙苯基過氧 化物,α,α -雙(第二丁基過氧基異丙基)苯;正丁基_4,4_雙(第 二丁基過氧基)丁烷;2,2-雙(第三丁基過氧基)丁烷;^―雙 (第三丁基過氧基)環己烧;U•雙(第三丁基過氧基)3,3,5三 曱基環己烷;第三丁基過氧基笨曱酸酯;苯曱醯過氧化物 等。該等自由基產生劑的添加量,在成形加工上,為了抑制 樹脂壓的增加和產生凝膠、白點等異物,又,為了抑制由成. 100106861 22 201139137 形品渗出等残’係於所添加之對㈣,即構成各層之樹脂 組成物設為⑽質量份時,以5f量份以下為佳且以3 〇質2ΓΓ二:為更佳。又,為了有效率地進行交聯反應,以 哲^心以上為佳’以G·5質量份以上為更佳,且以0.75 質1份以上為再佳。 [矽烷偶合劑] 石^偶合劑,有用於提高對於太陽電池密封材之保護材 (玻璃、樹脂製之正面片、背面片等)和太陽電池树等之接 =,作输卜可购朴叫、秦氧基、甲基 乳基之不飽和基、胺基、環氧基等,以及如院氧基之 =細匕合物。作為赠偶合劑之具體例,可例卿_ 丙基三曱氧基魏、NI胺乙基)今胺丙基甲 二甲减魏、γ·胺丙基三乙氧基傾、γ•環氧丙氧基丙 土二甲氧基魏、Τ·甲基丙烯醯氧丙基三甲氧基魏等。於 本發明中,較錢使用7•環氧丙氧基料三?氧基魏和^ 甲基丙.烯醯氧丙基三甲氧基械,因接雜良好,且黃 變色少等。該魏偶合劑的添加量,相對於所添加之對象 層’即構成各層讀餘綱f量份,為了抑制樹脂壓 的增加和產生凝膠、白點等異物,又,為了抑 出等不適wx下為佳,以3f量份以下成為开更: =,為了表現接黏性,以(Π質量份以上為佳,且以質 量份以上為更佳。又,與魏偶合_樣地,有機鈇酸醋化 100106861 23 201139137 合物等之偶合劑亦可有效活用。 [紫外線吸收劑] 作,紫外線吸收劑,可應用各種市售品,可列舉二苯_ 系:苯开三唾系、三讲系、水揚酸§旨系等各種類型者。作為 二苯酮系紫外線吸收劑,可列舉例如,2·減·4·甲氧基二苯 酮2 H4-甲氧基_2,_幾基二苯酮、2_經基-4•辛氧基二苯 酮2經基-4-正十二烧氧基二笨嗣、2•經基冬正十八烧氧 基苯i同2-經基_4_节氧基二苯酮、2_經基_4·甲氧基_5_續 酸基二苯酮、2·經基_5_氯基二苯酮、2,4-二經基二苯酮、2,2,'_ 二經基·4·甲氧基二苯綱、2,2,_二錄餐:甲氧基二苯 酮、2,2,4,4,-四經基二苯酮等。 ,作為苯并二唾系紫外線吸收劑,可列舉贿苯基取代之苯 并三峻化合物,例如,2_(2-經基-5-曱基苯基)苯并三唾、2_(2_ 羟基5第一丁基苯基)苯并三唾、2·(2_經基_3,5_二曱基苯基) 苯并三°坐、2你甲基冰經苯基)苯并三唾、2普經基冬甲基 第丁基笨基)苯并二嗤、2 (2_經基-3,5二第三戍基苯基) 苯并一坐2 (2-經基_3,5-二-第三丁基笨基)苯并三嗤等。 又’作為三喷系紫外線吸收劑,可列舉2_[4,6_雙(2,4_二曱基 苯基)_1,3,5_三讲-2-基]-5_(辛氧基)苯齡、2_(4,6二苯基 -1,3,5-三4-2-基)-5-(己氧基)苯酚等。作為水揚酸醋系,可 列舉水揚酸苯目旨、水揚酸對辛絲g旨等。該紫外線吸收劑的 添加量,相對於所添加之對象層,即構成各層之樹脂組成物 100106861 24 201139137 10〇質量份,通常為0.01質量份以上,較佳為〇〇5質量份 以上’且’以20質量份以下,較佳為〇 5質量份以下之範 圍進行添加為佳。 [耐候安定劑] 作為上述紫外線吸收劑以外賦予耐候性的耐候安定劑,以 父阻fee系光安定劑為適合使用。受阻胺系光安定劑,雖然不 會如篡外線吸收劑般吸收紫外線,但經由與紫外線吸收劑併 用,係顯示出顯著的相乘效果。於受阻胺系以外亦有作用為 光安定劑而發揮功能者,但著色情況多且對本發明之太陽電 池密封材不佳。 作為受阻胺系光安定劑,可列舉琥珀酸二曱酯_1-(2羥乙 基M-經基-2,2,6,6-四甲基哌啶聚縮合物、聚 甲基丁基)胺基_1,3,5_三4_2,4_二基}{(2,2,6,6_四?基-4_旅 啶基)亞胺基}六亞甲基{ {2,2,6,6四甲基_4·哌啶基丨亞胺 基小邸’-雙⑺胺丙基化二胺-认雙队丁基叫^认 五甲基-4-哌啶基)胺基]·6_氯基· 三啡縮合物、雙 0.01質量份… 量份以下、 (2,2,6,6-四甲基-4-痕啶基)癸二酸酯、2_(3,5_二第三_4_經节 基)-2-正丁基丙二酸雙(1,2,2,6,6_五甲基·4·娘咬基掩等。該 文阻胺系絲定劑的添加量,相對於所添加之對象層,即構 成上述(I)層或上述(11)層之樹脂組成物1〇〇質量份,通常為The product name "TOPEL" made by the brand name "APEL" and the TOPAS ADVANCED POLYMERS (stock) system. The water vapor barrier property of the composition of the above-mentioned ring (tetra) hydrocarbon-based polymer as a main component can be determined as long as the shape and thickness of the solar cell element and the solar cell module of the test application and the installation place are difficult. For example, regarding a sheet made of a thickness of 〇.3 mm or 〇.45 mm, the water vapor transmission rate in the temperature 仞ΐ, humidity (d) RH (measuring method: ^κ7ΐ27) is preferably less than lg/(m2). ·天), preferably less than G 8 coffee 2 • day), then good 100106861 12 201139137 is less than 0.6g / (m2 · day). When the water vapor transmission rate is in the above range, corrosion of the wiring and deterioration of the solar cell element can be suppressed, which is suitable. For example, by adjusting the ring-shaped _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Frequency: ihz, temperature increase: 3 ° C / min, strain 〇. 1% of the measured storage elastic modulus (hereinafter, referred to as E '1), as long as the application of the solar cell shape and thickness, installation location The adjustment may be appropriately performed, and is usually 1 MPa (lxl 〇 7 Pa) or more and 5000 MPa (5 x 10 〇 9 Pa) or less. Here, considering the cushioning property and flexibility of the impact on the solar cell module, and the rigidity of the solar cell module support and the operability at the time of manufacturing the solar cell module, the resin composition of the layer (7) is formed. The storage elastic modulus (E'!) is preferably 5 〇 MPa (5×10 〇 7 Pa) or more and 3000 MPa (3×10 9 Pa) or less, and more preferably i 〇〇 Mpa (ixl 〇 8 Pa) or more and 2000 MPa (2×10 9 Pa) or less. (11) The layer of the solar cell sealing material of the present invention, wherein the layer (11) is a layer composed of a resin-based polymer having a polystyrene-based polymer as a main component, and is characterized in that The storage elastic modulus of the resin composition at 25 C (hereinafter referred to as &) is lower than the above E, (condition (1)), and in the temperature range of 8 〇〇 c 15 (rc), the resin The shear modulus of the composition (hereinafter referred to as G, 2) is continuously lower than the shear modulus of the resin composition constituting the layer (1) (hereinafter, '', 卜, called G'i) 100106861 13 201139137 In the range of the above-mentioned temperature range, the condition (2) is given. Specific examples of the preferred polyolefin-based polymer are exemplified below, and the resin may be used singly or in combination of two or more. The layer composed of the resin composition containing the polyolefin-based polymer as a main component may be a single layer, and two or more layers may be laminated. The polyolefin-based polymer used in the layer (II) of the present invention may be used. Kind, as long as the (9) layer satisfies the above-mentioned storage elastic modulus (E,) and shear elastic modulus (G,) The above conditions (1) and (2) are not particularly limited, and at least one selected from the group consisting of a polyethylene polymer, a polypropylene polymer, and a modified polyolefin polymer is preferred. The type of the polyethylene-based polymer is not particularly limited, and specific examples thereof include ultra low density polyethylene, low density polyethylene, linear low density polyethylene (ethylene-α-olefin copolymer), and medium density polyethylene. High-density polyethylene, ultra-high-density polyethylene, etc. Among them, linear low-density polyethylene (ethylene-α-olefin copolymer) has low crystallinity and excellent transparency and flexibility, so it is difficult to hinder solar cell elements. It is preferable that the power generation characteristics are excessive stress on the solar cell element and cause discomfort such as damage. The ethylene-α-olefin copolymer may be a random copolymer and may be a block copolymer. The type of the terpene olefin to be copolymerized is not particularly limited. Usually, an α-olefin having 3 to 20 carbon atoms is suitably used. Here, examples of the olefin copolymerized with ethylene include propylene and 1-butene. , 1-pentene, 1-hexaped, 1-heptacene, 1-octyl, 1-indene, 1-indene, 3-mercapto-100106861 14 201139137 Dingsib 4_methyl.pentene· i. In the present invention, it is suitable for the co-olefins with Ethylene: i.e., propylene, i, butene, b, and bismuth, from the viewpoints of industrial availability, various characteristics, economy, and the like. It is also possible to use a mixture of two or more of the olefins, and it is also possible to combine two or more kinds of the olefins. The content of the α-olefin to be copolymerized with ethylene is not particularly limited.合! - The total amount of olefins is 2 moles / 〇 or more, preferably 3 mole % or more, more preferably 5 mole % or more, and usually 2 mole % or less, preferably 30 moles. Less than or equal to the ear, and preferably less than 25 mol%. When it is in this range, the crystallinity is lowered by the copolymerization component to improve the transparency, and it is also difficult to cause discomfort such as agglomeration of the raw material particles. Further, the type and content of α-cationic hydrocarbon copolymerized with ethylene can be qualitatively and quantitatively analyzed by a known method, for example, a nuclear magnetic resonance (N M R) measuring apparatus or other machine analysis. The method for producing the polyethylene-based polymer is not particularly limited, and a known polymerization method using a known catalyst for olefin polymerization can be employed. For example, a multi-site catalyst represented by a Ziegler-Natta type catalyst, and a single site catalyst represented by a metallocene catalyst and a post-metallocene catalyst may be used. A polymerization method, a polymerization method, a bulk polymerization method, a gas phase polymerization method, or the like, and a block yarn mixture of a (four) based initiator is used. As a solar cell, the (10)·_hydrocarbon mixture is preferably softer than __, and is easy to use after the polymerization (filtration) and prevent the purity of the raw material. 100106861 1<: 201139137 A polymerization method using a single site catalyst which is polymerizable with a raw material having a small molecular weight component and a narrow molecular weight distribution is suitable. Specific examples of the polyethylene include the trade names "Hizex", "Neozex", "Ultzex" manufactured by Prime Polymer, and the trade name "Novatec HD" manufactured by Japan Polyethylene / Co., Ltd., and "N〇vatec". TL", "Novatec LL", "Karnel", Dow Chemical ("Engage", "Affinity", "Infuse", Mitsui Chemicals Co., Ltd. under the trade names "TAFMER A", "TAFMER P" "Umedt" manufactured by Ube Maruyama P〇iyethylene Co., Ltd., and the trade name "rcliolex" manufactured by Asahi Kasei Chemicals Co., Ltd.". The type of the polypropylene-based polymer is not particularly limited, and specific examples thereof include a homopolymer of propylene, a copolymer of (4), a reactor-type polypropylene-based thermoplastic elastomer, and a mixture thereof. Examples of the propylene copolymer include a random copolymer of propylene and ethylene or other aliphatic hydrocarbons (random polypropylene), or a block copolymer (year-old polypropylene), and a block containing a rubber component. a copolymer or a graft copolymer or the like. As another α·smoke which can be copolymerized with the above propylene, it is preferred that the number of carbon atoms is 4 to 12, for example, ?butene, ι pentene, hexene, and heptene 1 octene 4-mercapto pentacene, ruthenium or the like may be used, or a mixture of two or more thereof may be used. In addition, the content of the rare smoke which is copolymerized with the propylene is not particularly limited, and is usually 2 mol% or more, preferably 3 mol% or more, and more preferably the total amount of the propylene and the slope. It is preferably more than 45% by mole, and usually 100,106,861, 201139137 is 40 mol% or less, preferably 30 mol% or less, more preferably 25 mol or less. If it is recorded _, the age of the copolymer is reduced to a high degree of transparency, and it is also difficult to cause discomfort such as agglomeration of the raw material particles. Further, the type and content of the Of-olefin copolymerized with propylene can be qualitatively and quantitatively analyzed by a conventional method such as a nuclear magnetic resonance (NMR) measuring apparatus or another machine analysis. The method for producing the above-mentioned polypropylene-based polymer is not particularly limited, and a known method for using a known catalyst for olefin polymerization can be employed. For example, a multi-site catalyst represented by a Ziegler Natta type catalyst, and a single-site catalyst represented by a metallocene catalyst and a post-metallocene catalyst may be used for slurry polymerization or solution polymerization. A bulk polymerization method, a gas phase polymerization method, or the like, and a bulk polymerization method using a radical initiator. The propylene-α-olefin copolymerization system used as a solar cell sealing material is preferably a softer resin, and is used from the viewpoints of easiness of granulation (granulation) after polymerization and prevention of agglomeration of raw material particles. A polymerization method of a single site catalyst in which a raw material having a low molecular weight component and a narrow molecular weight distribution is polymerizable is suitable. 'As a specific example of the above-mentioned polypropylene-based polymer, the product name "Novatec PP", "Wintec", and Prime Polymer (product) manufactured by 曰本 pl〇lypr0 (share) can be exemplified as "Prime Polypro", " Prime ΤΡΟ", Sumitomo Chemical Co., Ltd.'s trade name "No brene", etc. The type of the modified polyolefin-based polymer is not particularly limited, and is composed of EVOH (ethylene-vinyl alcohol copolymer), E-MMA (ethylene-mercapto acrylate, 100106861 17 201139137 polymer), E-EAA (ethylene). - ethyl acrylate copolymer), propylene-glycidyl acrylate copolymer, ionic polymer resin (ethylene-mercapto-acrylic acid copolymer, ion-crosslinkable ethylene-dividing polymer), decane It is preferred that the crosslinkable polyolefin and the maleic anhydride are grafted with at least one selected from the group consisting of the above. ", poly. The method for producing the modified polyolefin-based polymer is not particularly limited, and the ionic polymer resin and the decane cross-linking polyolefin described below are in addition to the "Bertin-I-anhydride graft copolymerization". A well-known polymerization method using a known olefin polymerization, for example, a solution of a single site catalyst represented by a Ziegler nata type catalyst, a catalyst of a ceramsite, and a metallocene catalyst is used. A polymerization method, a bulk polymerization method, a gas phase polymerization method, or the like can be obtained by a bulk polymerization method using a mouth-based initiator. The ionic polymer resin is a metal ion or an organic amine which is at least a part of the unsaturation of a silky body composed of ethylene, an unsaturated acid, and other non-fresh compounds as an optional component. At least one of them - obtained from Zhonghe. Further, the ionic polymer resin may be formed by condensing ethylene, ? = ester, and other unsaturated compounds as optional components. At least part of the body's disability and test ingredients are obtained and verified. In the case of the smouldering of the smoky smog, it is obtained by melt-mixing a poly-smoke-based resin, a squid, and a radical generating agent, which will be described later, at a high temperature, and graft polymerization. 100106861 18 201139137 The maleic anhydride graft copolymer can be obtained by melt-mixing a polyolefin resin, maleic anhydride, and a radical generating agent described later at a high temperature and graft polymerization. Specific examples of the modified polyolefin-based resin used in the present invention include a "NUC" series manufactured by Uni本 Uniker Co., Ltd., and an EVOH (ethylene-vinyl alcohol copolymer) exemplified by 曰本合成化学(股) The product name "Aval" manufactured by Sumitomo Chemical Co., Ltd., as the product name "Eval" manufactured by CURALE, and the product name "Acrift" manufactured by Sumitomo Chemical Co., Ltd., as the E-MMA (ethylene-methacrylate acrylate copolymer) The E-EAA (ethylene-ethyl acrylate copolymer) can be exemplified by the product name "REXPEARL EEA" manufactured by Sakamoto Polyethylene Co., Ltd., and the E-GMA (ethylene-glycidyl methacrylate copolymer) can be exemplified by Sumitomo Chemical Co., Ltd. The product name "BONDFAST" manufactured by the company (M) is exemplified as the product name "Himilan" manufactured by Mitsui Dupont Polychemical Co., Ltd., and the trade name of Mitsubishi Chemical Co., Ltd. as a decane crosslinkable polyolefin. "Linchrone" and the maleic anhydride graft copolymer are exemplified by "Adomer" manufactured by Mitsui Chemicals Co., Ltd., and the like. The preferred melt flow rate (MFR) of the above polyolefin-based polymer, for example, 'in the case of polyethylene,' MFR (JIS K721 〇, temperature: 19 〇 ° C, load: 21.18 N) is preferably 〇. 5 g / 10 min or more, more preferably 2 g/1 〇 min or more, still more preferably 3 g/10 min or more, and more preferably 3 〇 g / 1 〇 min or less, more preferably 25 g/10 min or less, and still more preferably 2 〇 g / 1〇min or less. Further, the MFR is selected in consideration of the moldability at the time of producing a sealing material and the degree of attachment, expansion, and the like when sealing the solar cell element of 100106861 19 201139137. For example, when the sheet is formed by a pulverizing machine, the MFR is preferably lower than the operability when the sheet is stretched and pulled, specifically, 〇5 yi 〇 min or more, and 5 g/10 min or less. Further, when extrusion molding is performed using a τ-type mold, mfr is preferably 2 g/10 min, more preferably 3 g/1 〇 min or more, and is preferably from the viewpoint of reducing the crushing load and increasing the amount of extrusion. It is 30 g/10 min or less, more preferably 2 〇 g / 1 〇 min or less. Further, from the viewpoint of the adhesion at the time of sealing the solar cell element (unit) and the ease of expansion filling, the MFR is preferably 2 g/l 〇 min, more preferably 3 g/min or more, and preferably 30 g. /10 min or less, more preferably 2 〇 g / 1 〇 min or less. <Other resins used in the (1) layer and the (II) layer> The resin composition constituting each of the (1) layer and the (11) layer of the solar cell sealing material of the present invention does not deviate from the gist of the present invention. In the range, the above-mentioned cyclic olefin-based polymer and polyolefin-based polymerization may be contained for the purpose of further improving physical properties (softness, heat resistance, transparency, adhesion, etc.) and moldability, economy, and the like. Resin other than body. The resin may be mixed only in the (1) layer or only in the (II) layer, and may also be mixed in both the (1) layer and the (11) layer. Examples of the resin include other polyolefin-based resins and various elastomers (olefin-based, styrene-based, etc.), an ester group, an amine group, an acrylamido group, a thiol group, an epoxy group, and a carbazole. A polar group-modified resin such as a phenyl group or a thiol group, or an adhesion-providing resin. Examples of the adhesion-imparting resin include petroleum resin, (iv) resin, coumarin 100106861 201139137 ketone, a section resin, a rosin-based resin, or a hydrogenated derivative thereof. Specifically, = petroleum resin, an alicyclic petroleum tree cerium derived from cyclopentadiene or a dimer thereof, and an aromatic petroleum resin derived from a C9 component, and a terpene derived from a terpene resin. The resin and the terpene-phenol resin, and the rosin-based resin may, for example, be a rosin resin such as rosin gum or turpentine, or an esterified rosin resin modified with glycerin or pentaerythritol. Further, the adhesion-imparting resin mainly has various softening temperatures depending on the molecular weight, and is compatible with the polyolefin-based polymer component, the compatibility, the bleed property, the color tone, the thermal stability, and the like. The particularly preferred softening temperature is preferably 1 Torr or more, more preferably 12 〇〇 c or more, and is preferably a hydrogenated derivative of an alicyclic petroleum resin having 15 or less, more preferably 140 〇 c or less. When the resin other than the above-mentioned polyolefin-based polymer is mixed, usually, when the target layer to be mixed, that is, the resin composition of each layer is 1 part per mu, it is preferably 20 parts by mass or less, and more preferably 1 part by mass or less. In addition, in the resin composition constituting each of the (1) and (H) layers of the solar cell sealing material of the present invention, various additives may be added as needed. For example, a free radical generator (crosslinking agent/crosslinking aid), a decane coupling agent, an antioxidant, a UV absorber, a fuel stabilizer, a light diffusing agent, a nucleating agent, a pigment (for example, a white pigment), and a flame retardant. Agent, anti-discoloration In the present invention, it is preferable to use at least one additive selected from the group consisting of a radical generating agent, a sulphur coupling agent, an ultraviolet absorber, and a weathering stabilizer, such as the reason described later, etc. 100106861 21 201139137. It may be added only to the above (1) layer or to the above (8) layer, and may be added to both the above (I) layer and the above (II) layer. [Free radical generating agent] Free radical generating agent (crosslinking) When the above-mentioned polyfluorene-based polymer is used for a solar cell sealing material, it has a cross-linking structure for the purpose of achieving heat resistance and mechanical strength, and is a free radical. The generating agent is not particularly limited, and examples thereof include an organic peroxide; an azo compound such as azobisisobutyronitrile (鸠N) or a polymer azo compound, an organometallic compound such as propylpropyltin or triethylguanidin Among them, in terms of the reaction rate and the safety at the time of blending, 'organic peroxide, _ is at 100. 〇 generates radicals' and the decomposition temperature at a half-life of 10 hours is 7 〇 (the above is suitable for use). As such a free radical As the green agent, for example, 2,5-dimercaptohexane, _2'5-monohydroperoxide, 2,5-dimercapto-2,5-di(t-butylperoxy) can be preferably used. Benzene; 3-di-tert-butyl peroxide; third-diisopropylphenyl peroxide; 2'5-dimercapto-2,5-di(t-butylperoxy) Block; triisopropylphenyl peroxide, α,α-bis(t-butylperoxyisopropyl)benzene; n-butyl-4,4-bis(t-butylperoxy)butane 2,2-bis(t-butylperoxy)butane;^-bis(t-butylperoxy)cyclohexane; U•bis(t-butylperoxy)3,3, 5 tridecylcyclohexane; tert-butylperoxy succinate; benzoquinone peroxide, etc. The amount of the radical generator added, in order to suppress the increase in resin pressure, and When a foreign matter such as a gel or a white spot is generated, and in order to suppress the residue (such as oozing out of the product), it is set to (10) parts by mass, and the resin composition constituting each layer is (10) parts by mass, and 5f is used. The following parts are preferred and are preferably 3 〇 2: 2: more preferably. In addition, in order to carry out the crosslinking reaction efficiently, it is preferable to use G·5 parts by mass or more, and more preferably 0.75 parts or more. [Centane coupling agent] A stone coupling agent is used to improve the protection of solar cell sealing materials (glass, resin, front, back, etc.) and solar cell trees. , alkoxy group, an unsaturated group of a methyl group, an amine group, an epoxy group, etc., and a compound such as a oxy group. As a specific example of the mixture of the gift, it can be exemplified by propyl propyl methoxy, NI amine ethyl, methacryl dimethyl dimethyl phthalate, γ propyl propyl ethoxylate, γ epoxide Propoxypropionate dimethoxy Wei, Τ·methacryl oxiranyl trimethoxy Wei and the like. In the present invention, it is more expensive to use 7•epoxypropoxylate three? Oxygen and ^ methyl propyl methacrylate methoxy mechanical, due to good mixing, and yellow discoloration. The amount of the addition agent to be added is equal to the target layer to be added, that is, the amount of the reading layer f of each layer is formed, and in order to suppress an increase in the resin pressure and generate foreign matter such as gel or white spots, it is also unsuitable for suppression or the like. The lower part is better, and the amount is 3f or less to become the opening: =, in order to express the adhesion, it is better to use more than 5% by mass, and more preferably in parts by mass. Acidic acid 100106861 23 201139137 Compounds and other coupling agents can also be effectively used. [Ultraviolet absorber] As a UV absorber, various commercial products can be used, including diphenyl _ series: Benzene, three saliva, three lectures Various types, such as a benzophenone-based ultraviolet absorber, for example, 2·min·4·methoxybenzophenone 2 H4-methoxy 2,_yl group Benzophenone, 2_transyl-4 octyloxybenzophenone 2, keto-4-n-dodecyloxy, adipic, 2, keto-n-butyl oxo-oxybenzene Base _4_ oxy benzophenone, 2 _ _ _ _ _ _ _ _ _ _ _ benzoic benzophenone, 2 · thiol _ 5 chloro benzophenone, 2, 4- Dibenzophenone, 2, 2, '_ dipyridyl 4. methoxybiphenyl, 2, 2, _ two meals: methoxy benzophenone, 2,2,4,4,-tetracarboxylic benzophenone, etc., as benzodiazepine ultraviolet The absorbent may, for example, be a benzotriphenyl compound substituted with a phenyl group, for example, 2-(2-carbyl-5-fluorenylphenyl)benzotrisole, 2-(2-hydroxy-5-butylphenyl)benzene And three saliva, 2 · (2_ mercapto_3,5-didecylphenyl) benzotriene, 2 methyl ketone by phenyl) benzotrisodium, 2 pucosyl winter methyl Butyl phenyl) benzodiazepine, 2 (2-carbyl-3,5-di-tert-decylphenyl) benzo-spin 2 (2-carbyl- 3,5-di-t-butyl phenyl Base) benzotriazine and the like. Further, as a three-spray ultraviolet absorber, 2_[4,6-bis(2,4-didecylphenyl)_1,3,5-tris-2-yl]-5-(octyloxy) can be cited. Benzene, 2_(4,6 diphenyl-1,3,5-tris 4-2-yl)-5-(hexyloxy)phenol, and the like. Examples of the salicylic acid vinegar system include salicylic acid benzene and salicylic acid. The amount of the ultraviolet absorber to be added is usually 0.01 parts by mass or more, preferably 〇〇 5 parts by mass or more with respect to the target layer to be added, that is, the resin composition constituting each layer 100106861 24 201139137 10 parts by mass. It is preferably added in an amount of 20 parts by mass or less, preferably 5% by mass or less. [Weather-Resistant Stabilizer] A weather-resistant stabilizer that imparts weather resistance to the ultraviolet absorber other than the above-mentioned ultraviolet absorber is suitably used as a parent-resistant fee-based light stabilizer. The hindered amine light stabilizer does not absorb ultraviolet rays like an external absorbent, but exhibits a remarkable synergistic effect by being used in combination with an ultraviolet absorber. In addition to the hindered amine system, it also functions as a photosensitizer, but it has many coloring conditions and is inferior to the solar cell sealing material of the present invention. As the hindered amine-based light stabilizer, didecyl succinate-1 - (2-hydroxyethyl M-carbyl-2,2,6,6-tetramethylpiperidine polycondensate, polymethylbutyl group) Amino-1,3,5_3 4_2,4_diyl}{(2,2,6,6-tetra-yl-4-bryridinyl)imido}hexamethylene { {2, 2,6,6 tetramethyl-4(piperidinyl sulfoximine iodide'-bis(7)aminopropylated diamine-recognized butyl-butyl-pentamethyl-4-piperidinylamine ]]·6_Chloro·trientene condensate, double 0.01 parts by mass... parts by weight, (2,2,6,6-tetramethyl-4-exidyl) sebacate, 2_(3, 5_2rd third_4_ succinctyl)-2-n-butylmalonic acid bis (1,2,2,6,6-pentamethyl·4·Nylon bite mask. etc. The amount of the silking agent added is usually 1 part by mass based on the target layer to be added, that is, the resin composition constituting the above (I) layer or the above (11) layer.

100106861 25 201139137 上述之紫外線吸收劑及咖安定劑,—⑽ 則愈易引起黃變,故止縣加㈣之最少量心董愈多 構成上述⑻層之以上述輯_聚合體 脂組成物的柔祕,可㈣設料態轉_ 刀之樹 率此、升溫速度3t/分鐘、應變〇1%之條 振動頻 的貯藏彈㈣數(E,如加崎估,重要的衫輕於^中 述⑴層之樹脂組成物於饥中之貯藏彈_數(£於構成上 饥中之貯藏彈性模數(E,),經由滿足以〜則即使^ 冰電和小衫等來自外料轉料會使封入㈣樹= 内的太陽電池元件破損,故耐衝擊性優異。 由上述之觀點’貯藏彈性模數(E,)以MPa單位標記時,上 述E,2滿足EV20㈣,2為佳,且以滿足e,广崎η為更 佳’且以E’r800^E,2為特佳。 25。(:中構成⑼層之樹脂組成物的貯藏彈性模數(Ey,只 要考慮應狀太陽電池雜和厚度、設置場所等而適當調整 即可’通常,為 0.1MPa(lxl〇5pa)以上、5〇〇Mpa(5xl〇8pa) 以下。此處,若考慮對於太陽電池模組之衝擊等之緩衝性和 柔軟性、和太陽電池模組製造時的操作性,則構成(ιι)層之 樹脂組成物的貯藏彈性模數(E,2)為〇5MPa (5xl〇5Pa)以 上 ’ 300MPa (3x 108Pa)以下為佳,且以 1MPa (1 χ 1〇6pa)以上、 200MPa(2xl08Pa)以下為更佳。 構成上述(II)層之樹脂組成物的流動性,可根據流變計之 100106861 26 201139137 流動性測定中設成振盪頻率:1Hz、升溫速度:3〇c/分鐘、 應變0.5%條件時,8(TC〜150°c溫度範圍中的剪切彈性模數 (G’2)而進行評估,重要的是其連續低於構成上述(1)層之樹 脂組成物的剪切彈性模數(G,!)之溫度區域係以30°C以上之 範圍存在。於80。(:〜15(TC之溫度範圍中,藉由剪切彈性模 數(G’)連續成為g’ag,2之溫度區域係以30°C以上之範圍存 在,而難以受到在密封步驟中溫度振盪等影響,呈現安定且 對於太陽電池元件和佈線細部中之凹凸的密封特性良好。由 於該等情事,剪切彈性模數(G,)連續成為G,i>G,2的溫度區 域係以50°C以上之範圍為更佳。另外,為使剪切彈性模數 (G’)連續成為G’pG’2之溫度區域的最大值成為80°c~15〇!5(: 之溫度範圍’故主要定為7〇〇c。 在80°C〜150。(:之溫度範圍的構成(11)層之樹脂組成物的剪 切彈性模數(G’2),只要考慮應用之太陽電池形狀和厚度、 设置場所等適當調整即可,較佳為〇〇〇1Mpa (lxl〇3pa)以 上、更佳為0.005MPa (5xl〇3pa)以上、再佳為〇〇1Μρ& (1x10 Pa)以上,且,較佳為1MPa (lxl〇6pa)以下更佳為 -0.5MPa (5xl〇5Pa)以下、再佳為 〇.2MPa (2xl〇5pa)以下。剪 切彈性模數(G,2)的上限值若為上述範圍,則對於太陽電池 元件和佈線細部中之凹凸的密封特性為合適,剪切彈性模數 (G’2)的下限值若為上述範圍,則難以發生太陽電池元件被 施以過度應力而破損、或對太陽電池模組施加衝擊時太陽電 100106861 27 201139137 池元件破損等不適,故為佳。 為將構成上述(π)層之樹脂組成物的貯藏彈性模數(e,2)及 剪切彈性模數(G’2)作成本發明所規定之範圍,例如,只要 以該樹脂組成物之主成分聚烯烴系聚合體的結晶性和mfr (熔融流動速率)作為大致標準而選擇適當材料即可。更具體 而言,例如關於上述(II)層所用之聚烯烴系聚合體,經由選 擇α-烯烴含量和MFR為上述範圍者,便可使本發明所規定 之條件(2)「於8(TC~15(TC之溫度範圍中,剪切彈性模數(σ ) 連續成為G’PG、之溫度區域係以3〇。(:以上之範圍存在充 分達成,但並非限定於此種手段。 <太陽電池密封材> 本發明之太陽電池密封材,係將上述(1)層、與上述贝)層 積層而成。上述⑴層與上述(11)層只要分別為至少i層則 其層構成並無特別限制,但是由使用本發明之太陽電池密封 材以提高製作太陽電池模組時之密封性能之目的而言,特別 以上述(II)層係為密封材之至少一者的表層為佳。具體而 言,當然可採用(I)層/(II)層之2種2層構成(圖2),且可採 用(II)層/(I)層/(II)層之2種3層構成(圖3)、和(11)層/(1)層/(11) 層/(I)層之2種4層構成(未圖示)等態樣。以此種構成之情 況,因為可將上述(II)層以位於本發明之太陽電池模組中的 太%電池元件側之方式應用本發明之太陽電池密封材,故 佳。 ' 100106861 28 201139137 本發明之太陽電池密封材的製膜方法並無特別限制,可採 用公知之方法,例如,具有單螺桿擠壓機、多螺桿擠壓機、 班伯利混合機、捏和機等之熔融混合設備,並使用τ型模 具之擠壓㈣法㈣光法等。例如,分別根據上述方法將上 述(I)層與上述⑼層進行製膜,並將該等以熱層合法等公知 方法予以貼合積層,亦可將本發明之太陽電池密封材進行製 膜’尤其於本發明巾,由操作性和生產性等方面而言,以使 用複數多層模具的共同擠壓法為適合使用。 預先與樹脂共同乾摻混後再供給至漏斗, 料熔融混合並製作丸㈣再供給 使用積層模具之共同擠壓法的成形溫度,係根據所用之樹 脂組成物的流動特性和製臈性等而適當調整,大約為8〇ΐ 以上、較佳為HKTC以上、更佳為12(rc以上、再佳為14代 以上’且A 300°C以下、較佳為2筑以下、更佳為 以下、再佳為18GX:以下,添加自由基產生劑和魏偶合劑 等之情況’為了抑·隨交聯反應之樹脂壓增加和白點增 加,故使成形溫度降低為佳。自由基產生劑、錢偶合/ 抗氧化劑、紫外線吸㈣、耐候安定劑等各種添加劑,係可100106861 25 201139137 The above-mentioned ultraviolet absorber and coffee stabilizer, (10) is more likely to cause yellowing, so the minimum amount of heart in the county (4) is more than the above (8) layer to form the above-mentioned series _ polymer body fat composition of the soft Secret, can (4) set the material state _ knife tree rate, heating rate 3t / min, strain 〇 1% of the vibration frequency of the storage bomb (four) number (E, such as Kazaki estimates, important shirt lighter than ^ said (1) The resin composition of the layer in the hunger storage _ number (the storage elastic modulus (E,) in the formation of hunger, through the satisfaction of ~ even if ^ ice and small shirts and other materials from the external material will When the solar cell element enclosed in the (four) tree = is damaged, the impact resistance is excellent. From the above viewpoint, when the storage elastic modulus (E) is marked in MPa units, the above E, 2 satisfies EV20 (four), and 2 is preferable, and Satisfy e, Okazaki η is better' and E'r800^E, 2 is particularly good. 25. (: The storage elastic modulus of the resin composition of the (9) layer (Ey, as long as the solar cell is considered Appropriate adjustment with thickness, installation location, etc. 'Normally, 0.1 MPa (lxl 〇 5pa) or more, 5 〇〇 Mpa (5xl 〇 8p) a) In the following, the storage elastic modulus of the resin composition constituting the (1) layer is considered in consideration of the cushioning property and flexibility of the impact on the solar cell module, and the operability in the manufacture of the solar cell module. (E, 2) is preferably 5 MPa (5xl 〇 5 Pa) or more and 300 MPa (3 x 108 Pa) or less, and more preferably 1 MPa (1 χ 1 〇 6 Pa) or more and 200 MPa (2 x 10 08 Pa) or less. The fluidity of the resin composition of the layer can be set according to the rheometer 100106861 26 201139137. The flow rate is set to the oscillation frequency: 1 Hz, the temperature increase rate is 3 〇 c / minute, and the strain is 0.5%. 8 (TC ~ 150 °) The shear elastic modulus (G'2) in the temperature range of c is evaluated, and it is important that it is continuously lower than the temperature region of the shear elastic modulus (G, !) of the resin composition constituting the above (1) layer. It is present in the range of 30 ° C or more. In the range of 80 ° (: 15 °C, the shear elastic modulus (G') continuously becomes g'ag, and the temperature range of 2 is 30 ° C. The above range exists, and it is difficult to be affected by temperature oscillations and the like in the sealing step, presenting stability and for solar cell elements and The sealing property of the concavities and convexities in the wire detail is good. In these cases, the shear elastic modulus (G,) is continuously set to G, i > G, and the temperature range of 50 is more preferably 50 ° C or more. In order to make the shear elastic modulus (G') continuously become the temperature range of G'pG'2, the maximum value is 80 ° c ~ 15 〇! 5 (: the temperature range ' is mainly set to 7 〇〇 c. °C to 150. (: The shear modulus of the resin composition of the (11) layer in the temperature range (G'2) can be appropriately adjusted by considering the shape, thickness, and installation location of the solar cell to be applied. It is preferably M1 Mpa (lxl 〇 3 Pa) or more, more preferably 0.005 MPa (5×10 3 Pa) or more, further preferably 〇〇 1 Μ ρ & (1×10 Pa) or more, and preferably 1 MPa (lxl 〇 6 Pa). The following is more preferably -0.5 MPa (5xl 〇 5 Pa) or less, and further preferably 〇 2 MPa (2 x l 〇 5 Pa) or less. When the upper limit of the shear modulus (G, 2) is in the above range, the sealing property of the unevenness in the solar cell element and the wiring detail is appropriate, and the lower limit of the shear modulus (G'2) is appropriate. If it is in the above range, it is difficult to cause damage to the solar cell element due to excessive stress or damage to the solar cell module, and it is preferable that the solar cell element 100100861 27 201139137 is damaged. The storage elastic modulus (e, 2) and the shear elastic modulus (G'2) of the resin composition constituting the above (π) layer are within the range specified by the invention, for example, as long as the resin composition is used. The crystallinity of the main component polyolefin-based polymer and the mfr (melt flow rate) may be selected as appropriate standards. More specifically, for example, the polyolefin-based polymer used in the above (II) layer can be subjected to the condition (2) specified in the present invention by selecting the α-olefin content and the MFR to the above range. ~15 (In the temperature range of TC, the shear modulus (σ) is continuously G'PG, and the temperature range is 3〇. (The above range is fully achieved, but it is not limited to such a means.) Solar cell sealing material The solar cell sealing material of the present invention is obtained by laminating the above (1) layer and the above-mentioned shell). The layer (1) and the layer (11) are layered as long as at least i layers. Although it is not particularly limited, it is preferable that the surface layer of at least one of the above-mentioned (II) layer is used as the sealing material for the purpose of improving the sealing performance when manufacturing the solar cell module using the solar cell sealing material of the present invention. Specifically, it is of course possible to adopt two kinds of two layers of the (I) layer/(II) layer (Fig. 2), and two kinds of three layers of the (II) layer/(I) layer/(II) layer can be used. Two types of four-layer structures (not shown) of the (Fig. 3) and (11) layers/(1) layers/(11) layers/(I) layers are formed. In the case of such a configuration, It is preferable to apply the solar cell sealing material of the present invention in such a manner that the above (II) layer is on the side of the solar cell module of the present invention. [100106861 28 201139137 The solar cell sealing material of the present invention The film forming method is not particularly limited, and a known method can be employed, for example, a melt mixing device having a single screw extruder, a multi-screw extruder, a Banbury mixer, a kneader, etc., and using a τ-type mold Extrusion (four) method (4) photo method, etc. For example, the above (I) layer and the above (9) layer are respectively formed into a film according to the above method, and the layers are laminated by a known method such as thermal lamination, and the present invention may be applied. The solar cell sealing material is formed into a film. In particular, in the aspect of workability and productivity, a co-extrusion method using a plurality of multi-layer molds is suitably used. To the funnel, the material is melt-mixed and pelletized (4) and then supplied to the co-extrusion method using the laminated mold. The forming temperature is appropriately adjusted depending on the flow characteristics and the crucible properties of the resin composition to be used. , about 8 〇ΐ or more, preferably HKTC or more, more preferably 12 (rc or more, more preferably 14 or more generations) and A 300 ° C or less, preferably 2 or less, more preferably the following, and more preferably 18GX: The following is the case where a radical generator and a Wei coupler are added. In order to suppress the increase in the resin pressure and the white point with the crosslinking reaction, the molding temperature is preferably lowered. The radical generator, the money coupling/ Various additives such as antioxidants, ultraviolet absorbers (4), weathering stabilizers, etc.

100106861 要亦可為了在㈣成捲物㈣^材彼此 I電池元件於密封步财之操作性和空氣 29 201139137 抽出之容易度等目的,進行浮雕加工和各種凹凸(圓錐和角 錐形狀和半球雜等)加工。更且,在將片材崎製膜時, 為了提高片材製膜時之操作性等目的,亦可與其他基材賴 (延伸聚㈣膜(OPET)和延伸聚丙烯薄膜(⑽)等〜齊壓層 合或夾層層合等方法予以積層。 又’本發明之太陽電池密封材的總厚度並無特別限定,通. 常,只要為0.05mm以上、較佳為〇 linm以上、更佳為^^ . 以上’且’lmm左右以下、較佳為〇 8麵以下、更佳為〇’二 以下即可。將總厚度設成上述範圍,除了水蒸氣随隔性以 外,加工性和操作性亦優異,故為合適。 本發明之太陽電池密封材的水蒸氣阻隔性,只要考慮應用 之太陽電池元件的種類和太陽電池模組的形狀和厚度、設置 場所等而適當調整即可,例如’太陽電池密封材:厚:為 〇.3mm、溫度贼、濕度9〇%RH中之水蒸氣穿透率(測:方 法:JIS K 7127)較佳為未滿4g/(m2 ·天),更佳為未滿2g/(m2 · 天)’再佳為未滿lg/(m2·天)。更且,厚度為〇 45麵、溫 度鐵、濕度90% RH中之水蒸氣穿透率(測定方法:jisk · 7127)較佳為未滿4g/(m2.天),更佳為未滿城,天),再. 佳為未滿l/(m2 •天)。 水蒸氣阻隔性若為上述範圍,則可抑制佈線腐敍和太陽電 池元件劣化,故為合適。 本發明之太陽電池密封材中之(1)層及(11)層之厚度,在太 100106861 30 201139137 陽電池密封材的厚度,即各層合計厚度設為1GG%時,⑴層 所佔之厚度下限值較佳為1G%、更佳為戰、再佳為4〇%, 又’上限值較佳為90%、更佳為8〇%、再佳為6〇%。若⑴ 層所佔之厚度下限值為上述範圍,則水聽阻隔性為合適, • 若__之厚度上限值為域翻,麟於太陽電池元件 和佈線細部之凹凸的密封性能為合適。 朗關於本發明之太陽電池密封材的耐熱性。—般而言, 太陽電池板組經由發電時的發熱和太陽光的轄射熱等而升 J達85 90 C左右。又’由於焊接不良和落葉附著而產生 長期性陰影’使得太陽電池元件的電阻上升,且亦有發熱至 i〇〇°c附近的情形(熱點現象此時為了抑制密封材流動等 不適,可列舉以上述之自由基產生劑和魏偶合劑等形成交 聯構造的方法;使用、混合結純解峰值溫度高之結晶性樹 脂的方法;使用、混合玻璃轉移溫度高之樹脂之方法等。於 本發明中’並無特別加·制,但㈣溫巾之柔軟性與耐熱 性的平衡和經濟性等觀點而言,以形成交聯構造的方法和將 •結晶熔解峰值溫度高的結晶性樹脂混合的方法為適合使 -用。此處’❹結晶性樹脂時之較麵結晶祕峰值溫度為 10(TC以上’更佳為丄机以上,再佳為U(rc以上。又以 160°C以下為佳,更佳為15G以下,再佳為145(以下再 更佳為uot以下。上限溫度若為上述_,财太陽電池 元件之密封步驟能不以太高溫進行密封,故為佳,而下限溫 100106861 31 201139137 度若為上述範圍’則 適,故為佳。 長期使用中密封材流動等不 本發明中之太陽電池密封材的全 陽電池之軸,例如應料非 ^穿料,於應用之太 到達太陽電池元件的切光^㈣等和不遮蔽 面片之間等)之情 σ (例如太陽電池元件與背 有時亦不太辱裔 :換效率和各種構件重合時的操Α等:慮太陽電池 為佳’且以9〇%以上為更佳 下性專’通常以85%以上 <太陽電池模組> 使用本發明之太陽電池_ 保護材之麵仏元件藉由上下 =模組。作為此種太㈣池模 ^製作太陽電 舉例如,以上方保續奸了例不各種類型者。可列 密封軸咖旨斷域電池元件/ Si::—她,:在== ^件者的上方形成下方保簡作為密封材般構成者等。另 ,於使用本發明之太陽電池密封材的太陽電池模組中,於 I民々、王。Ρ σΡ仅便用本發明 陽電池密封材亦無妨1亦可僅於〗處部位使用本發明 2處以上之部位使用密封材時,即使於全部部位使用本發明 H陽電池密封材亦無妫,日允 100106861 32 201139137 構成封材。又,於2處以上之部位使用密封材時, =個部位使狀本發明域電㈣料雜脂組成 可為相冋,且亦可為不同。 :電池元件係配置佈線於密封樹腊層間。可列舉例如, 多結•非晶質㈣、鎵-坤―、 有機薄膜型等。 牛導體型、色素增感型、 、關於構成使用本發明之太陽電池密封材所製作之太陽電 池模組的錢件,絲制岐 例如,玻璃護含材氟= 層或多層保護材。作為下方保護材,係金 2各種熱可舰樹脂薄膜等之單層❹層的騎,可列舉 :如:錫、銘、不錄鋼等金屬、玻璃等無機材料、聚酯、無 機物蒸鍍聚S旨、含氟樹脂、聚稀烴# Λ a,,、 在兮豐μ + η Μ“層的保護材《 ,下方保護材的表面,為了提高本發明之太陽 池密封材和其他構件的接黏性,可 理等公知之表面處理。 塗底處理和電軍處 使用本發明之太陽電池密封材所製作之太陽電池模组,以 上述之上方保護材/密封材/太陽電池元件/密封材/下方保護 材之方式由太陽電池元件兩侧以密封材夾住之構成物為制 說明。如圖1所錢,由太陽光受光侧開始依序積層透从 板10、使用本發明之太陽電池密封材的密封樹脂層12α: 100106861 33 201139137 太陽電池元件14A、14B、使用本發明之太陽電池 密封樹脂層】2B、背面片16,更且,在背面片16的下之 黏連接盒18 (連接用於將來自太陽電池元件所發出之^接 出至外部之佈線的端子盒)。太陽電池元件W及⑽取 藉由用於使發電電流導電至外部之佈線2〇而連結,係 係通過設置於背面4 16的貫通孔(未圖示)而取出至外Λ 2〇 並連接至連接盒18。 ^ ’ 作為太陽電池模組之製造方法,可應用之公知方法, 特別限定,一般而言,具有依序積層上方保護材、密封樹^ 層、太陽電池元件、密封樹脂層、下方保護材之步驟、和^ 該等進行真空吸引並且加熱壓黏的步驟。又,亦可應用抵·欠 式之製造設備和棍_對_輕式之製造設備等。 使用本發明之太陽電池密封材所製造之太陽電池模組,根 據應用之太陽電池類型和模組之形狀,可應用於攜帶式機器 所代表之小型太陽電池、屋頂和屋上所設置之大塑太陽電池 等之不論屋内•屋外的各種用途。 [實施例] 藉由以下實施例進一步詳細說明,但並非根據該等使本發 明受到任何限制。另外,關於本説明書中所顯示之片材的各 種測定值及評估係如下進行。此處,將片材由擠壓機的流動 方向稱為縱方向,其垂直方向稱為橫方向。 (1)水蒸氣阻隔性(水蒸氣穿透率) 100106861 34 201139137 使用水蒸氣穿透試驗機(MOCON公司製、型式: PERMATRAN W3/33) ’ 以厚度 〇.3mm、或 〇 45nim 之片狀密 封材作為樣品,測定溫度4(rc、濕度9〇% RH中的水蒸氣 穿透率。以下述基準評估其結果。 (Ο)水蒸氣穿透率為未滿4g/(m2 ·天) (X)水蒸氣穿透率為4g/(m2 ·天)以上 (2) 柔軟性(貯藏彈性模數(E,)) 使用動態黏彈性測定機(IT計測控制(股)製、商品名:黏 彈性圖譜計DVA-200),以振動頻率:1Hz、升溫速度:3。〇 /刀鉍、應變0.1%之條件,由_1〇〇。〇開始測定貯藏彈性模數 供’),並由所得之數據,評估於25t:中的貯藏彈性模數(Ε,)。 (3) 流動性(剪切彈性模數(G,)) 使用流變計(Rheology公司製、型式:Rhe〇meter MR-300T),以振動頻率:1Hz、升溫速度:3ΐ/分鐘、應變 〇·5%之條件,由_1()(rC至2〇叱為止測$㈣麵平行板上 放置之試料(實施例或比較例申製作之試料)之剪切彈性模 .數(G’)的溫度分散,並測定於_〜150。(:溫度範圍中的剪切 - 彈性模數(G,),以下述基準評估其結果。 (〇)構成(II)層之樹脂組成物的剪切彈性模數(G,〇與構成 (I)層之樹脂組成物的剪切彈性模數(G,i)連續成為 之溫度區域係以30°C以上之範圍存在。 2 (X)構成(Π)層之樹脂組成物的剪切彈性模數(ο。與構成 100106861 201139137 (I)之樹脂組成物的剪切彈性模數(G,!)連續成為G’pG、之 溫度區域係在未滿30°C之範圍。 (4)密封性 針對使用真空層合機((股)NPC製、商品名:LM30X30), 以熱板溫度:150°C、加工時間:20分鐘(詳情,抽真空:5 分鐘、加壓:5分鐘、保持壓力:10分鐘)、壓黏速度:急 速之條件’由熱板側開始依序將3mm厚白板玻璃(旭硝子公 司製、商品名:Solight)、實施例或比較例中製作之密封材、 0.4mm厚太陽電池元件(France Photo watt公司製、商品名: ΙΟΙχΙΟΙΜΜ)、實施例或比較例中製作之密封材、〇.125inm 厚耐候性PET薄膜(東麗(股)製、商品名:Lumilar X10S)之 5個層進行真空加壓而製作之太陽電池模組(尺寸: 150mmx 150mm)的外觀,進行目視,並以下述基準評估其結 果。 (〇)密封材於太陽電池元件周圍無間隙且充分地擴展填 滿。 (X)密封材對於太陽電池元件周圍無法充分地擴展填 滿,並產生氣泡和浮起。 (5)耐熱性 在3mm厚白板玻璃(尺寸.縱75mm、橫25rnm)與5mm 厚之鋁板(尺寸:縱120mm、橫60mm)之間,將實施例或比 較例所製作之片狀密封材重疊,使用真空加壓機,以熱板溫 100106861 36 201139137 度:150C、壓黏時間· 2〇分鐘、壓力:〇 iMPa之條件製 作積層加壓之試料,並將該試料於l〇〇°C之恆溫槽内以60 度傾斜設置,觀察經過小時後的狀態,並以下述基準 評估。 (〇)玻璃未由初期的基準位置移動者 (X)玻璃由初期的基準位置移動,片材熔融者 (實施例1) 使用環狀烯烴系聚合體之乙烯·降稍烯無規共聚合體 (Polyplastics (股)製、商品名:TOPAS 9501x1、降福稀含量: 22莫耳%、以下簡稱COC1) 1〇〇質量份作為(1)層,以τ型 模具法於設定溫度260°C中進行單層擠壓成形後,以25°C之 >堯铸輥>急冷製膜。其次’使用於乙稀-丙稀-己烯3元無規共 聚合體(日本Polyethylene (股)製、商品名:canel KJ640T、 丙烯含量:7.4莫耳% (10質量%)、己烯含量:4.4莫耳% (10 質量%)、MFR : 30g/10min、Tm : 53〇C、以下簡稱 P01) 1〇〇 質量份中添加作為交聯劑之第三丁基過氧基2_乙基己基碳 • 酸酯(Arkema吉富(股)製、商品名:Luperox TBEC) 1.0質量 ‘ 份之樹脂組成物作為(II)層,以T型模具法於設定溫度1〇〇 C中進行單層擠壓成形後,以25°C之澆鑄親急冷製膜。更 且’以所採取之(I)層與(II)層重合之狀態,於加熱加壓下予 以積層’取得總厚度為〇.3mm ((1)/(11)=0.15111111/〇丨加的的 片狀密封材。使用所得之樣品進行評估的結果示於表1。 100106861 37 201139137 (實施例2) 除了將實施例i巾,⑴層及⑻層之厚度予以變更 ((D/dlhOJmm/CUnnn)以外,同實施例!進行處理取得總 厚度為0.3mm之片狀密封材。使用所得之樣品進行評估的 結果示於表1。 (實施例3) 使用COCH乍為(I)層,且使用於以乙婦力·稀煙共聚合體 之乙烯-辛烯無規共聚合體(D〇w Chemical (股)製、商品^ . Engene 8200、辛烯含量:1〇1 莫耳% (31 質量%)、: 5g/10min (Dow Chemical (股)製、商品名:Infuse 91〇〇、辛稀含量. 12.8 莫耳% (37 質置%)、MFR : lg/min、Tm : 119。〇 5 質量 份之比例混合的樹脂組成物(以下簡稱為p〇2) 1〇〇質量份 中,添加作為矽烷偶合劑之3-曱基丙烯醯氧丙基三甲氧基 矽烷(信越Silicone (股)製、商品名:KBM_5〇3) i 〇質量份 之樹脂組成物作為(II)層’並將(I)層及(Π)層之樹脂組成物分 別由2台擠壓機供給至進料機構’並以τ型模具法於樹脂 溫度180~220 C中進行擠壓成形後’以2〇。〇之洗禱輕急冷製 膜,除此以外,同實施例1進行處理,取得總厚度為〇 3mm ((1)/(11)=0.15mm/0.15mm)之片狀密封材。使用所得之樣品進 行評估的結果示於表1。 (實施例4) 100106861 38 201139137 除了將實施例3中’(II)層變更成改質聚烯烴系樹脂之矽 烷交聯性聚烯烴(乙烯-己烯無規共聚合體之矽烷接枝改質 樹脂)(三菱化學(股)製、商品名:Lincrone XLE815N、MFR : 〇.5g/l〇min、Tm: 124°C、以下簡稱為 P03),且將(I)層及(II) 層之厚度予以變更((I)/(n)=0.28mm/0.02mm)以外,同實施例 3進行處理,取得總厚度為〇.3mm之片狀密封材。使用所得 之樣品進行評估的結果示於表1。 (比較例1) 於實施例1中,未使用(II)層,取得COC1所構成之厚度 為〇.3mm之⑴層的單層片狀密封材。使用所得之樣品進行 w乎估的結果示於表1。 (比較例2) 於貫施例3中,未使用⑴層,取得P〇2所構成之厚度為 〇,3mm之(II)層的單層片狀密封材。使用所得之樣品進行評 估的結果示於表1。 100106861 39 201139137 [表i] 比較例2 | P〇2 I CO o ¢3¾ Ύ-· T* l〇 CD o 0.3 (80°C) 0.03 (130°〇 X 5 \ 〇 〇 實施例3 實跑例4 比較例1 COC1 CO 2 (80°C) 0.2 (150°C) 〇 S \ X 〇 COC1 CO CM 〇 1371 2 (80°C) 0.2 (150°C) P03 I s o Si T~ s 3.7 (80°C) 0.04 (150°〇 〇 S 〇 co in T* 〇 〇 COC1 LO 5 1371 2 (80°C) 0.2 (150°C) P02 m T— o 65. 119 o 0.3 (80°C) 0.03 (130°〇 〇 5 〇 80°C 〜150oC 〇 〇 實施例2 COC1 CM ο 2 (80°C) 0.2 (150°C) i poi 5 § s 0.2 (150°C) 0.01 (125°G) 〇 5 〇 I 80°C~148°C ' i 〇 〇 實施例1 COC1 in 5 £ 2 (80°C) 0.2 (150°C) POI in Τ Ο g 8 0.2 (150°C) 0.01 (125°〇 〇 2 〇 l 80°C 〜148°C 〇 〇 材料 厚度(mm) — 25°C中之貯藏彈性模數(E’ (MPa) I_ 〇〇S O r- P 〇 00 跌喊 铁a P Ο 00 材料 厚度(mm) 結晶熔解峰值溫度(Tm) (°C) 25°C中之貯藏彈性模數(E'2)(MPa) -β-Σ 〇ϋΧ 〇 Ν ο° Ο 00 8 0°C〜1 5 0°C中之剪切彈性模數 (G’2)(MPa)之最小值 ε ε CO ^ d 帘\ 执二 硙. \ 流動性 £㈣ 〇υ5〇 §既5 密封性 耐熱性 (I)層 ►—t 評估 100106861 40 201139137 (實施例5) 除了於貫施例1中,使用環狀烯烴系聚合體之乙烯_降稻烯無 規共聚合體(Polyplastics (股)製、商品名:T〇PAS99〇3D-10、降 箱稀含量:22莫耳%、以下簡稱c〇C2)丨⑼質量份作為⑴層, .且將⑴層及(Π)層的厚度予以變更((I)/(II)=0.225mm/0.225mm) .以外,同實施例1進行處理,取得總厚度為0 45111111的片狀密 封材。使用所得之樣品進行評估的結果示於表2。 (實施例6) 除了將實施例5中’⑴層及(π)層的厚度予以變更 ((I)/(II)=0.3mm/0.15mm)以外,同實施例5進行處理,取得總厚 度為0.45mm的片狀密封材。使用所得之樣品進行評估的結果 不於表2。 (實施例7) 除了於實施例3中,使用C〇C2作為⑴層,且將⑴層及(π) 層的厚度予以變更((I)/(II)=〇.225mm/0.225mm)以外,同實施例3 進行處理,取得總厚度為〇.45mm的片狀密封材。使用所得之 ’ 樣品進行評估的結果示於表2。 * (實施例8) 除了於實施例7中,使用P03作為(II)層,且將⑴層及(11)層 的厚度予以變更((I)/(II)=〇.36mm/0.09mm)以外,同實施例7進 行處理’取得總厚度為〇.45mm的片狀密封材。使用所得之樣 品進行評估的結果示於表2。 100106861 41 201139137 (比較例3) 於實施例5中,未使用(II)層,取得C0C2所構成之厚度為 0.45mm之⑴層的單層片狀密封材。使用所得之樣品進行評=的 結果示於表2。 (比較例4) 於實施例5中,未使用(I)層,取得p〇2所構成之厚产為 0.45mm之(II)層的單層片狀密封材。使用所得之樣品進行$估 的結果示於表2。 (比較例5) 除了將實施例5中,(II)層變更成聚乙烯系樹脂之高密度聚乙 烯((股)Prime Polymer製、商品名:Hizex 3600F、乙缔含量. 100 莫耳% (100 質量%)、MFR : lg/l〇min、Tm : 134°C、以下 簡稱為P〇4)以外,同實施例5進行處理,取得總厚 麵 的片狀密封材。使用所 77件之樣品進行評估的結果示於表2。 100106861 42 201139137 [表2] 比較例5 CGC2 0.225 1371 2 (80°〇 0.2 (150°C) P04 to CM CNI 寸 CO 1500 150 (80°C) 0.015 (150°C) o S X o^>〇0 LO l〇 CO Ί— t— X 〇 比較例4. \ I P02 I lO 寸 o 65, 119 o •V* 0.3 (80°C) 0.03 (130°C) x S \ 〇 〇 比較例3 1 COC2 I 1〇 〇 2 (80°〇 0.2 (150°C) 〇S \ X 〇 實施例8 | C.OC2 | CO CO 2 (80°G) 0.2 (150°C) | P03 g o § 3.7 (80°C) 0.04 (150°C) o 2 〇 co m 〇 〇 實施例7 | COC2 | 0.225 2 (80°C) 0.2 (150°C) P02 0.225 〇> r— t〇_ <〇 o 0.3 (80°C) 0.03 (130°C) o S 〇 80°C 〜150°C 〇 〇 實施例6 | COC2 | CO 2 (80°C) 0.2 (150°C) P01 ir? T—· o s s 0.2 (150°C) 0.01 (125°C) 〇S 〇 80°C 〜148¾ 〇 〇 I實施例5 | COC2 | 0.225 2 (80°C) 0.2 (150°C) P01 | 0.225 | o CO s 0.2 (150°C) 0.01 (125°C) o § 〇 80¾ 〜1480C 〇 〇 材料 ! 厚度(mm) 25°C中之聍藏彈性模數(EVOVIPa) 80°C〜1 50°C中之剪切彈性模數 (G、) (MPa)之最大值 80°C〜150°C中之剪切彈性模數 (G、)(MPa)之最小值 材料 E 时 結晶熔解峰值溫度(Tm) (°C) 25°c中之貯藏彈性模數(E’2)(MPa) 80°C~ 150°C中之剪切彈性模數 (G’2) (MPa)之最大值 80°C〜150°C中之剪切彈性模數 (G’2)(MPa)之最小值 E E in 寸 气ό. ^ \ 1~~l 涟$ \ »_52 流動性 οϋ ϋ w 7遽t oiib 〇 ettL ^ 密封性 耐熱性 ⑴層 1—1 *—* 評估i ' 1 43 100106861 201139137 由表1及表2 ’可確認具有本發明規定之樹脂組成物 成之層的太陽電池密崎,於水狀關性、錄性、流動 性、耐熱性方面均優異(實施例1〜8)。相對地,不具有 明規定之樹脂組成物所構成之層之情況,任-特性皆變得^ 夠充分。 比較例1及比較例3中,可綠認雖然水蒸氣阻隔性優異, 但因不具有本發明規定之(晴,故常溫中的貯藏彈性模數 (E’)過局’對抗來自外部之衝擊等,太陽電池元件有破損之 虞又由於I般的密封溫度區域之剪切彈性模數(G,) 過高,故太陽電池元件的密封性劣化。 其次’比較例2及比較例4中,可確認雖然針對密封性和 财熱性係為良好者,但因不具有本發明規定之(ι)層故 氣阻隔性差。 银 又^匕較例5製作之片材,可確認因為未同時滿足本發明 中規定之條件⑴「25ΐ中之貯藏彈性模數(e,)為Ε,ι〉ρ、 及條件⑺「於啊〜⑽之溫度範圍中,剪切彈性模數(=,) 連續成為G>G’2之溫度區域係以抑以上之範圍 故流動性和密封性差。 【圖式簡單說明】 圖 發明之太陽電池模組之—例的概略剖面圖。 種==之太陽電池密封材之層構成之-例的2 種2層構成的概略剖面圖。 100106861 201139137 圖3係顯示本發明之太陽電池密封材之層構成之一例的2 種3層構成的概略剖面圖。 【主要元件符號說明】 10 透明基板 12A > 12B 密封樹脂層 14A、14B 太陽電池元件 16 背面片 18 連接盒 20 佈線 100106861 45100106861 It is also possible to perform embossing processing and various concavities (cone and pyramid shapes and hemispheres, etc.) for the purpose of (4) roll-to-roll (four) materials, battery elements in the sealing operation, and the ease of extraction of air 29 201139137. )machining. In addition, when the film is formed into a film, in order to improve the workability in film formation, etc., it is also possible to use other substrates (elongated poly(tetra) film (OPET) and extended polypropylene film ((10)). Further, the total thickness of the solar cell sealing material of the present invention is not particularly limited, and it is usually 0.05 mm or more, preferably 〇 linm or more, more preferably ^^ . The above 'and 'lmm or less, preferably 〇8 or less, more preferably 〇'2 or less. The total thickness is set to the above range, in addition to water vapor barrier properties, workability and operability The water vapor barrier property of the solar cell sealing material of the present invention may be appropriately adjusted in consideration of the type of the solar cell element to be applied, the shape and thickness of the solar cell module, the installation place, and the like, for example, ' Solar cell sealing material: thickness: water vapor permeability in 〇.3mm, temperature thief, humidity 9〇% RH (measured: method: JIS K 7127) is preferably less than 4g / (m2 · day), more Jia is less than 2g/(m2 · day)' and then better than less than lg/(m2·day). The water vapor transmission rate (measuring method: jisk · 7127) in the thickness of 〇45 surface, temperature iron, humidity 90% RH is preferably less than 4g/(m2.day), more preferably less than city, day ), again. Jia is less than l / (m2 • day). When the water vapor barrier property is in the above range, it is possible to suppress wiring clogging and deterioration of the solar cell element. The thickness of the (1) layer and the (11) layer in the solar cell sealing material of the present invention is in the thickness of the solar cell sealing material of too 100106861 30 201139137, that is, when the total thickness of each layer is set to 1 GG%, the thickness of the (1) layer is The limit value is preferably 1 G%, more preferably war, and more preferably 4% by weight, and the 'upper limit value is preferably 90%, more preferably 8 % by weight, and still more preferably 6 % by weight. If the lower limit of the thickness of the layer (1) is the above range, the hydro-blocking property is appropriate. • If the upper limit of the thickness of __ is the domain flip, the sealing performance of the solar cell component and the wiring detail is suitable. . The heat resistance of the solar cell sealing material of the present invention. In general, the solar panel group rises by about 85 90 C by the heat generated during power generation and the heat of the sun. In addition, the long-term shadow caused by poor soldering and falling leaves causes the resistance of the solar cell element to rise, and there is also a fever to the vicinity of i〇〇°c (hot spot phenomenon, in order to suppress the flow of the sealing material, etc., a method of forming a crosslinked structure by using the above-mentioned radical generating agent, a Wei coupling agent, or the like; a method of using a mixed crystal to dissolve a crystalline resin having a high peak temperature; and a method of using or mixing a resin having a high glass transition temperature. In the invention, there is no special addition, but (4) the method of forming a crosslinked structure and mixing a crystalline resin having a high peak temperature of crystal melting, from the viewpoints of balance between flexibility and heat resistance of the warm towel and economy. The method is suitable for use. Here, the temperature of the surface crystal cleavage peak of the ❹ crystalline resin is 10 (TC or more 'more preferably, it is more than the above machine, and more preferably U (rc or more. Further, 160 ° C or less). Preferably, it is preferably 15G or less, and preferably 145 (the following is more preferably below uet. If the upper limit temperature is above _, the sealing step of the solar cell component can be sealed at a high temperature, so it is preferable, and The lower limit temperature 100106861 31 201139137 degrees is appropriate if it is in the above range. The shaft of the solar cell which is not the solar cell sealing material of the present invention, such as the flow of the sealing material in long-term use, for example, is not required to be worn. The application is too close to the solar cell element's cut light (4) and the like, and does not obscure the surface of the patch, etc. (for example, the solar cell element and the back are sometimes not too shameful: the operation efficiency when changing the efficiency and the various components overlap Etc.: Considering that the solar cell is better and more than 9〇% is a better inferior 'usually 85% or more> solar cell module> using the solar cell of the present invention _ the surface element of the protective material by means of upper and lower =Module. As such a (four) pool module ^ to make a solar power lift, for example, to protect the case from the above, not to all types. Can be listed as a sealed shaft coffee break cell battery component / Si::- her,: at == ^ In the solar cell module using the solar cell sealing material of the present invention, the solar cell module using the solar cell sealing material of the present invention is sealed only by the positive battery of the present invention. Material can also be used 1 or only in the area When the sealing material is used in two or more parts of the invention, the H-cell battery sealing material of the present invention is used in all the parts, and the Japanese-made 100106861 32 201139137 constitutes a sealing material. When the sealing material is used in two or more places, The composition of the present invention may be phased or different. The battery component is disposed between the sealing layers of the tree, for example, multi-junction amorphous (tetra), gallium- Kun-, organic film type, etc. Cattle-conductor type, dye-sensitized type, and money parts constituting a solar cell module produced by using the solar cell sealing material of the present invention, for example, glass protective material fluorine = Layer or multi-layer protective material. As a lower protective material, it is a single layer of enamel layer such as gold 2 various heat-resistant ship resin films, such as: tin, inscription, non-recorded steel, etc., inorganic materials such as glass, and poly Ester, inorganic vapor deposition, S, fluororesin, polydisperse # Λ a,, in 兮 μ μ + η Μ "layer of protective material", the surface of the lower protective material, in order to improve the solar cell seal of the present invention Adhesion of materials and other components, Of Li and other known surface treatment. The solar cell module produced by using the solar cell sealing material of the present invention at the bottom of the coating process and the solar cell component by the above-mentioned protective material/sealing material/solar cell component/sealing material/underlying protective material The structure in which the side is sandwiched by the sealing material is described. As shown in Fig. 1, the sealing resin layer 12α of the solar cell sealing material of the present invention is sequentially laminated from the light receiving side of the sunlight. 100106861 33 201139137 Solar cell elements 14A, 14B, solar cells using the present invention The sealing resin layer 2B, the back sheet 16, and the lower bonding box 18 of the back sheet 16 (connecting a terminal box for connecting the wiring from the solar cell element to the outside). The solar cell elements W and (10) are connected by a wiring 2B for conducting a current to the outside of the power generation current, and are taken out to the outer casing 2 through a through hole (not shown) provided on the back surface 46, and are connected to Connect the box 18. ^ ' As a manufacturing method of a solar cell module, a known method applicable, particularly limited, generally, a step of sequentially laminating a protective material, a sealing layer, a solar cell element, a sealing resin layer, and a lower protective material And ^ are the steps of vacuum suction and heat pressing. Further, it is also possible to apply a manufacturing apparatus and a stick-type to a light-type manufacturing apparatus. The solar cell module manufactured by using the solar cell sealing material of the present invention can be applied to a small solar cell represented by a portable machine, a roof and a large plastic sun set on a house according to the type of solar cell applied and the shape of the module. Various uses such as batteries and indoors. [Examples] The following examples are further described in detail, but are not intended to limit the invention in any way. Further, various measured values and evaluations of the sheets shown in the present specification were carried out as follows. Here, the flow direction of the sheet from the extruder is referred to as the longitudinal direction, and the vertical direction thereof is referred to as the transverse direction. (1) Water vapor barrier property (water vapor transmission rate) 100106861 34 201139137 Using a water vapor penetration tester (manufactured by MOCON Corporation, type: PERMATRAN W3/33) 'The sheet is sealed with a thickness of 33mm or n45nim. As a sample, the water vapor transmission rate in temperature 4 (rc, humidity 9〇% RH) was measured. The results were evaluated on the basis of the following criteria. (Ο) The water vapor transmission rate was less than 4 g/(m2 · day) (X ) Water vapor transmission rate is 4 g / (m 2 · day) or more (2) Flexibility (storage elastic modulus (E,)) Dynamic viscoelasticity measuring machine (IT measurement and control system), trade name: viscoelasticity Spectrometer DVA-200), with vibration frequency: 1 Hz, heating rate: 3. 〇/knife, strain 0.1%, starting from _1 〇〇. 贮 began to measure the storage elastic modulus for '), and obtained Data, estimated for storage elastic modulus (Ε,) in 25t:. (3) Fluidity (shear modulus (G,)) Using a rheometer (manufactured by Rheology Co., Ltd., type: Rhe〇meter MR-300T), vibration frequency: 1 Hz, temperature increase rate: 3 ΐ/min, strain 〇 5% of the condition, the shear elastic modulus (G') of the sample placed on the parallel plate of the (four) plane measured by _1 () (rC to 2 ( (the sample prepared by the example or the comparative example) The temperature was dispersed and measured at _150 to 150. (: Shear-elastic modulus (G,) in the temperature range, and the results were evaluated on the basis of the following criteria. (〇) Shearing of the resin composition constituting the layer (II) The elastic modulus (G, 剪切 and the shear elastic modulus (G, i) of the resin composition constituting the (I) layer are continuously formed in a temperature range of 30 ° C or more. 2 (X) Composition (Π The shear elastic modulus of the resin composition of the layer (o. The shear elastic modulus (G, !) of the resin composition constituting 100106861 201139137 (I) continuously becomes G'pG, and the temperature region is not full The range of 30 ° C. (4) The sealing property is based on the use of a vacuum laminator (manufactured by NPC, trade name: LM30X30), with a hot plate temperature: 150 ° C, processing time: 20 minutes (details, Vacuum: 5 minutes, pressurization: 5 minutes, holding pressure: 10 minutes), pressure-adhesive speed: conditions of rapids. 3mm thick whiteboard glass (made by Asahi Glass Co., Ltd., trade name: Solight) was implemented in order from the hot plate side. A sealing material produced in an example or a comparative example, a 0.4 mm thick solar cell element (manufactured by France Photo watt Co., Ltd., trade name: ΙΟΙχΙΟΙΜΜ), a sealing material produced in the examples or the comparative examples, and a ruthenium-resistant 125 Å thick weather resistant PET film (East) The appearance of a solar cell module (dimensions: 150 mm x 150 mm) produced by vacuum-pressing five layers of Lililar X10S) was visually observed and evaluated according to the following criteria. The sealing material is filled with no gap around the solar cell element and fully expanded. (X) The sealing material is not fully expanded and filled around the solar cell element, and bubbles and floats are generated. (5) Heat resistance in 3 mm thick whiteboard glass (a size of 75 mm in length and 25 rnm in width) and a 5 mm thick aluminum plate (dimensions: 120 mm in length and 60 mm in width), the sheet-like sealing materials produced in the examples or the comparative examples were superposed, and a vacuum presser was used. Plate temperature 100106861 36 201139137 degrees: 150C, pressure bonding time · 2 〇 minutes, pressure: 〇 iMPa conditions to make a laminated pressurized sample, and the sample is tilted at 60 degrees in a constant temperature bath of l ° ° C, The state after the lapse of the hour was observed and evaluated based on the following criteria: (〇) The glass was not moved from the initial reference position (X) The glass was moved from the initial reference position, and the sheet was melted (Example 1) The cyclic olefin system was used. A mixture of ethylene and decylene in a polymer (Polyplastics, trade name: TOPAS 9501x1, reduced fat content: 22% by mole, hereinafter referred to as COC1) 1 part by mass as (1) layer, After performing single-layer extrusion molding at a set temperature of 260 ° C by a τ-type mold method, the film was formed by rapid cooling at 25 ° C > 尧 casting rolls. Secondly, 'Used in ethylene-propylene-hexene 3-membered random copolymer (manufactured by Japan Polyethylene Co., Ltd., trade name: canel KJ640T, propylene content: 7.4 mol% (10 mass%), hexene content: 4.4 Molar% (10% by mass), MFR: 30g/10min, Tm: 53〇C, hereinafter abbreviated as P01) Addition of a third butylperoxy 2-ethylhexyl carbon as a crosslinking agent in 1 part by mass • Acid ester (Arkema Co., Ltd., trade name: Luperox TBEC) 1.0 part by mass of the resin composition as the (II) layer, and a single layer extrusion molding at a set temperature of 1 〇〇C by the T-die method. Thereafter, the film was formed by casting at 25 ° C. Further, 'the state in which the (I) layer and the (II) layer are overlapped, and laminated under heat and pressure to obtain a total thickness of 〇.3 mm ((1)/(11)=0.15111111/〇丨The sheet-like sealing material. The results of evaluation using the obtained sample are shown in Table 1. 100106861 37 201139137 (Example 2) The thickness of the (1) layer and the (8) layer was changed except for the Example i towel ((D/dlhOJmm/CUnnn) In the same manner as in the examples, a sheet-like sealing material having a total thickness of 0.3 mm was obtained. The results of evaluation using the obtained samples are shown in Table 1. (Example 3) Using COCH乍 as the (I) layer, and using Ethylene-octene random copolymer of E. coli and dilute tobacco copolymer (manufactured by D〇w Chemical Co., Ltd., Enzyme 8200, octene content: 1〇1 mol% (31% by mass) ,: 5g/10min (manufactured by Dow Chemical Co., Ltd., trade name: Infuse 91〇〇, octat content. 12.8 mol% (37%), MFR: lg/min, Tm: 119. 〇5 parts by mass a resin composition (hereinafter abbreviated as p〇2) in a ratio of 1 part by mass, and a 3-mercaptopropenyloxypropyltrimethoxy group as a decane coupling agent is added. Base decane (manufactured by Shin-Etsu Silicone Co., Ltd., trade name: KBM_5〇3) i 〇 mass part of the resin composition as the (II) layer 'and the resin composition of the (I) layer and the (Π) layer are respectively The extruder is supplied to the feeding mechanism' and is extruded by a τ-type mold method at a resin temperature of 180 to 220 C, and then the film is formed by 2 〇. The sheet was subjected to treatment to obtain a sheet-like sealing material having a total thickness of 〇3 mm ((1)/(11) = 0.15 mm/0.15 mm). The results of evaluation using the obtained sample are shown in Table 1. (Example 4) 100106861 38 201139137 In addition to changing the '(II) layer in Example 3 to a modified polyolefin resin, a decane crosslinkable polyolefin (a decane graft modified resin of ethylene-hexene random copolymer) (Mitsubishi Chemical Co., Ltd.) System name: Lincrone XLE815N, MFR: 〇.5g/l〇min, Tm: 124°C, hereinafter referred to as P03), and the thickness of (I) layer and (II) layer is changed ((I)/ (n) = 0.28 mm / 0.02 mm), the same procedure as in Example 3 was carried out to obtain a sheet-like sealing material having a total thickness of 〇3 mm. The results of evaluation using the obtained sample are shown in 1. (Comparative Example 1) In Example 1, the unused layer (II), to obtain a thickness formed of COC1 as the 〇.3mm ⑴ single layer sheet-like sealing material layer. The results obtained using the obtained samples are shown in Table 1. (Comparative Example 2) In the third embodiment, the layer (1) was not used, and a single-layer sheet-like sealing material having a thickness of 〇 and 3 mm (II) composed of P 〇 2 was obtained. The results of evaluation using the obtained samples are shown in Table 1. 100106861 39 201139137 [Table i] Comparative Example 2 | P〇2 I CO o ¢33⁄4 Ύ-· T* l〇CD o 0.3 (80°C) 0.03 (130°〇X 5 \ 〇〇Example 3 4 Comparative Example 1 COC1 CO 2 (80°C) 0.2 (150°C) 〇S \ X 〇COC1 CO CM 〇1371 2 (80°C) 0.2 (150°C) P03 I so Si T~ s 3.7 (80 °C) 0.04 (150°〇〇S 〇co in T* 〇〇COC1 LO 5 1371 2 (80°C) 0.2 (150°C) P02 m T— o 65. 119 o 0.3 (80°C) 0.03 ( 130°〇〇5 〇80°C ~150oC 〇〇Example 2 COC1 CM ο 2 (80°C) 0.2 (150°C) i poi 5 § s 0.2 (150°C) 0.01 (125°G) 〇5 〇I 80°C~148°C ' i 〇〇Example 1 COC1 in 5 £ 2 (80°C) 0.2 (150°C) POI in Τ Ο g 8 0.2 (150°C) 0.01 (125°〇〇 2 〇l 80°C ~148°C 〇〇 material thickness (mm) — storage elastic modulus at 25°C (E' (MPa) I_ 〇〇SO r- P 〇00 跌铁 a P Ο 00 material Thickness (mm) Crystal melting peak temperature (Tm) (°C) Storage modulus at 25°C (E'2) (MPa) -β-Σ 〇ϋΧ ο ο° Ο 00 8 0°C~1 Shear modulus of elasticity (G'2) (MPa) at 50 °C Small value ε ε CO ^ d curtain \ 硙 二硙. \ Fluidity £ (4) 〇υ 5 〇 § 5 Sealing heat resistance (I) layer ► - t evaluation 100106861 40 201139137 (Example 5) In addition to the example 1 In the case of using a cyclic olefin-based polymer, an ethylene-nanoolefin random copolymer (manufactured by Polyplastics Co., Ltd., trade name: T〇PAS99〇3D-10, reduced box content: 22 mol%, hereinafter abbreviated as c 〇C2) 丨 (9) parts by mass, as the layer (1), and the thickness of the (1) layer and the (Π) layer are changed ((I) / (II) = 0.225 mm / 0.225 mm), and the same as in the first embodiment, A sheet-like sealing material having a total thickness of 0 45111111 was obtained. The results of evaluation using the obtained samples are shown in Table 2. (Example 6) The same as Example 5 except that the thickness of the '(1) layer and the (π) layer in Example 5 was changed ((I) / (II) = 0.3 mm / 0.15 mm), the total thickness was obtained. It is a sheet seal of 0.45 mm. The results of the evaluation using the obtained samples are not shown in Table 2. (Example 7) Except that in Example 3, C〇C2 was used as the layer (1), and the thicknesses of the (1) layer and the (π) layer were changed ((I)/(II)=〇.225 mm/0.225 mm). The same procedure as in Example 3 was carried out to obtain a sheet-like sealing material having a total thickness of 〇45 mm. The results of the evaluation using the obtained samples are shown in Table 2. * (Example 8) Except that in Example 7, P03 was used as the (II) layer, and the thicknesses of the (1) layer and the (11) layer were changed ((I) / (II) = 〇.36 mm / 0.09 mm) The same procedure as in Example 7 was carried out to obtain a sheet-like sealing material having a total thickness of 〇45 mm. The results of the evaluation using the obtained samples are shown in Table 2. 100106861 41 201139137 (Comparative Example 3) In Example 5, a single-layer sheet-like sealing material having a layer (1) having a thickness of 0.45 mm composed of COC2 was obtained without using the layer (II). The results of evaluation using the obtained sample are shown in Table 2. (Comparative Example 4) In Example 5, the (I) layer was not used, and a single-layer sheet-like sealing material having a thickness of 0.45 mm (II) composed of p〇2 was obtained. The results of the evaluation using the obtained sample are shown in Table 2. (Comparative Example 5) In the fifth embodiment, the layer (II) was changed to a high-density polyethylene of a polyethylene resin (manufactured by Prime Polymer, trade name: Hizex 3600F, acetylated content, 100% by mole ( 100% by mass), MFR: lg/l〇min, Tm: 134 ° C, hereinafter abbreviated as P〇4), and treated in the same manner as in Example 5 to obtain a sheet-like sealing material having a total thickness. The results of evaluation using the samples of 77 samples are shown in Table 2. 100106861 42 201139137 [Table 2] Comparative Example 5 CGC2 0.225 1371 2 (80°〇0.2 (150°C) P04 to CM CNI Inch CO 1500 150 (80°C) 0.015 (150°C) o SX o^>〇 0 LO l〇CO Ί— t— X 〇Comparative Example 4. \ I P02 I lO inch o 65, 119 o •V* 0.3 (80°C) 0.03 (130°C) x S \ 〇〇Comparative Example 3 1 COC2 I 1〇〇2 (80°〇0.2 (150°C) 〇S \ X 〇Example 8 | C.OC2 | CO CO 2 (80°G) 0.2 (150°C) | P03 go § 3.7 (80 °C) 0.04 (150°C) o 2 〇co m 〇〇 Example 7 | COC2 | 0.225 2 (80°C) 0.2 (150°C) P02 0.225 〇> r— t〇_ <〇o 0.3 (80 ° C) 0.03 (130 ° C) o S 〇 80 ° C ~ 150 ° C 〇〇 Example 6 | COC2 | CO 2 (80 ° C) 0.2 (150 ° C) P01 ir? T-· oss 0.2 (150 ° C) 0.01 (125 ° C) 〇S 〇 80 ° C ~ 1483⁄4 〇〇 I Example 5 | COC2 | 0.225 2 (80 ° C) 0.2 (150 ° C) P01 | 0.225 | o CO s 0.2 ( 150 ° C) 0.01 (125 ° C) o § 〇 803⁄4 ~ 1480C 〇〇 material! Thickness (mm) 弹性 弹性 elastic modulus in 25 ° C (EVOVIPa) 80 ° C ~ 1 50 ° C shear elasticity The maximum modulus (G,) (MPa) is 80 ° C ~ 150 ° C Shear modulus of elasticity (G,) (MPa) minimum material E crystal melting peak temperature (Tm) (°C) Storage modulus in 25°c (E'2) (MPa) 80°C The maximum value of the shear modulus (G'2) (MPa) in ~150 °C is the minimum value of the shear modulus (G'2) (MPa) in 80 °C ~ 150 °C. ό ^. ^ \ 1~~l 涟$ \ »_52 Mobility οϋ ϋ w 7遽t oiib 〇ettL ^ Sealing heat resistance (1) Layer 1-1 *—* Evaluation i ' 1 43 100106861 201139137 From Table 1 and Table 2' It is confirmed that the solar cell, which has a layer of the resin composition defined by the present invention, is excellent in water-based properties, visibility, fluidity, and heat resistance (Examples 1 to 8). On the other hand, in the case of a layer composed of a resin composition which is not specified, the characteristics are sufficiently sufficient. In Comparative Example 1 and Comparative Example 3, although it is green, it is excellent in water vapor barrier property, but it does not have the requirements of the present invention (clear, so the storage elastic modulus (E') at normal temperature is passed against the impact from the outside. When the solar cell element is damaged, and the shear modulus (G,) of the sealing temperature region is too high, the sealing property of the solar cell element is deteriorated. Next, in Comparative Example 2 and Comparative Example 4, It was confirmed that the sealability and the heat retention were good, but the (1) layer which is not provided in the present invention was inferior in gas barrier property. The silver was produced in comparison with the sheet produced in Example 5, and it was confirmed that the sheet was not simultaneously satisfied. The conditions specified in the invention (1) "the storage elastic modulus (e,) in 25 Ε is Ε, ι > ρ, and the condition (7) "in the temperature range of ah ~ (10), the shear elastic modulus (=,) continuously becomes G> The temperature range of G'2 is inferior to the above range, so the fluidity and the sealing property are inferior. [Simplified Schematic] A schematic cross-sectional view of an example of a solar cell module of the invention. A schematic cross-sectional view of two types of two layers of the layer configuration - examples. Fig. 3 is a schematic cross-sectional view showing two types of three-layer structures of an example of a layer configuration of a solar cell sealing material of the present invention. [Description of Main Element Symbols] 10 Transparent Substrate 12A > 12B Sealing Resin Layer 14A, 14B Solar Cell Component 16 Back Sheet 18 Connection Box 20 Wiring 100106861 45

Claims (1)

201139137 七、申請專利範圍: 1.一種太陽電池密封材,其特徵為,至少具有下述⑴層、 和下述(II)層而成’且同時滿足下述條件(1)及下述條件(2): ⑴層.以環狀烯烴系聚合體作為主成分之樹脂組成物所構 成之層 (II)層:以聚烯烴系聚合體作為主成分之樹脂組成物所構 成之層 條件(1).於25eC之貯藏彈性模數(E,)為E’pE、; 條件(2) ·於8(rc〜15〇〇c之溫度範圍,剪切彈性模數(g,) 連、·只成為〇 1>G 2之溫度區域存在於30°C以上之範圍 (八中E 1 E 2分別為構成(I)層、(π)層之樹脂組成物的貯 藏彈性模數,G,1、G,2分別為構成(I)層、(II)層之樹脂組成 物的剪切彈性模數)。 2·如申請專利範圍第1項之太陽電池密封材,其中,於上 述太陽電池社、封材中,厚度〇3軸溫度斗叱、濕度9⑽紐 之水蒸亂穿透率為未滿4g/(m2 ·天)。 3. 如申明專利圍帛i項之太陽電池密封材,其中,於上 述太陽電池松封材中’厚度〇 45_、溫度贼、濕度慨仙 之水蒸氣穿透率為未滿•天)。 4. 種太陽電池模組,其係使用申請專利範圍第!至S項 中任一項之太陽電池密封材所製作。 100106861 46201139137 VII. Patent application scope: 1. A solar cell sealing material characterized by having at least the following (1) layer and the following (II) layer and satisfying the following condition (1) and the following conditions ( 2): (1) layer, layer (II) layer composed of a resin composition containing a cyclic olefin polymer as a main component: layer conditions composed of a resin composition containing a polyolefin-based polymer as a main component (1) The storage elastic modulus (E,) at 25eC is E'pE, and the condition (2) is at 8 (rc~15〇〇c), the shear elastic modulus (g,) is connected, and only becomes The temperature region of 〇1>G 2 exists in the range of 30 ° C or more (E1 E 2 is the storage elastic modulus of the resin composition constituting the (I) layer and the (π) layer, respectively, G, 1, G And 2 are the shear elastic modulus of the resin composition constituting the (I) layer and the (II) layer, respectively. 2. The solar cell sealing material according to the first aspect of the patent application, wherein the solar cell company and the sealing device are In the material, the water 蒸 〇 轴 轴 叱 叱 叱 叱 叱 叱 叱 叱 湿度 湿度 湿度 湿度 湿度 湿度 湿度 湿度 湿度 湿度 湿度 湿度 湿度 湿度 湿度 湿度 湿度 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. Cell seal member, wherein said upper seal material in the loose solar cell 'square 45_Degree thickness, thief temperature, humidity, water vapor transmission rate of generous cents under • day). 4. A solar cell module, which uses the patent application scope! Made of solar cell sealing material to any of S items. 100106861 46
TW100106861A 2010-03-02 2011-03-02 Solar cell sealing material and solar cell module produced using the same TW201139137A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010045977 2010-03-02

Publications (1)

Publication Number Publication Date
TW201139137A true TW201139137A (en) 2011-11-16

Family

ID=44542247

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100106861A TW201139137A (en) 2010-03-02 2011-03-02 Solar cell sealing material and solar cell module produced using the same

Country Status (3)

Country Link
JP (1) JP5639930B2 (en)
TW (1) TW201139137A (en)
WO (1) WO2011108600A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104105748A (en) * 2011-12-06 2014-10-15 株式会社大赛璐 Sheet-shaped coupling agent, coupling method, and manufacturing method for electronic device
TWI594885B (en) * 2012-12-27 2017-08-11 Lintec Corp Film packaging materials, packaging films and electronic equipment
CN111801567A (en) * 2018-03-06 2020-10-20 日立化成株式会社 Method for evaluating fluidity of resin composition, method for sorting resin composition, and method for manufacturing semiconductor device
CN114340265A (en) * 2021-12-30 2022-04-12 Oppo广东移动通信有限公司 Shell assembly, preparation method thereof and electronic equipment

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5781282B2 (en) * 2010-08-05 2015-09-16 三井化学東セロ株式会社 Solar cell sealing film, solar cell module, and manufacturing method thereof
WO2012073971A1 (en) * 2010-11-30 2012-06-07 三菱樹脂株式会社 Laminate for solar cell and solar cell module produced using same
JP2013212600A (en) * 2012-03-30 2013-10-17 Mitsubishi Plastics Inc Laminated moisture-proof film
JP2013214559A (en) * 2012-03-30 2013-10-17 Mitsubishi Plastics Inc Solar cell surface protection sheet and sealing material laminate
JP2013211451A (en) * 2012-03-30 2013-10-10 Mitsubishi Plastics Inc Solar battery sealant-surface protection sheet laminate
JP5997043B2 (en) * 2012-12-27 2016-09-21 リンテック株式会社 Film-like sealing material, sealing sheet, and electronic device
JP2014148077A (en) * 2013-01-31 2014-08-21 Lintec Corp Film-like sealing material, sealing sheet and electronic device
JP2016066403A (en) * 2013-01-31 2016-04-28 リンテック株式会社 Film-like sealing material, sealing sheet, and electronic device
JP6061706B2 (en) * 2013-01-31 2017-01-18 リンテック株式会社 Film-shaped sealing material for electronic device, sealing sheet for electronic device, and electronic device
JP2016064499A (en) * 2013-01-31 2016-04-28 リンテック株式会社 Film-like encapsulating material, encapsulating sheet, and electronic device
JP5699383B2 (en) * 2013-09-02 2015-04-08 大日本印刷株式会社 Solar cell module
JP6286986B2 (en) * 2013-09-26 2018-03-07 大日本印刷株式会社 Encapsulant masterbatch for solar cell module and manufacturing method thereof
JP6310869B2 (en) * 2014-02-25 2018-04-11 日清紡メカトロニクス株式会社 PID countermeasure / power generation degradation countermeasure solar cell encapsulating sheet and PID countermeasure / power generation degradation countermeasure solar cell module
JP2015162514A (en) * 2014-02-26 2015-09-07 株式会社 シリコンプラス solar cell module
JP6389782B2 (en) * 2014-03-13 2018-09-12 積水化学工業株式会社 Multilayer insulating film, method for manufacturing multilayer substrate, and multilayer substrate
JP6471602B2 (en) * 2015-04-28 2019-02-20 三菱ケミカル株式会社 Transparent encapsulant

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3250292B2 (en) * 1993-01-29 2002-01-28 三井化学株式会社 Polyolefin-based multilayer sheet or film and applications
JP2003049004A (en) * 2001-08-06 2003-02-21 Mitsubishi Plastics Ind Ltd Flexible resin sheet, filler for solar cell and solar cell using the same
US8053086B2 (en) * 2005-03-08 2011-11-08 Du Pont-Mitsui Polychemicals Co., Ltd. Encapsulating material for solar cell
WO2007061030A1 (en) * 2005-11-25 2007-05-31 Mitsui Chemicals, Inc. Sealing material for solar cell, sheet for solar-cell sealing, and solar cell module employing these
JP2009079101A (en) * 2007-09-26 2009-04-16 Nippon Zeon Co Ltd Sealant

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104105748A (en) * 2011-12-06 2014-10-15 株式会社大赛璐 Sheet-shaped coupling agent, coupling method, and manufacturing method for electronic device
CN104105748B (en) * 2011-12-06 2017-09-01 株式会社大赛璐 The manufacture method of sheet coverture, covering method or electronic device
TWI594885B (en) * 2012-12-27 2017-08-11 Lintec Corp Film packaging materials, packaging films and electronic equipment
CN111801567A (en) * 2018-03-06 2020-10-20 日立化成株式会社 Method for evaluating fluidity of resin composition, method for sorting resin composition, and method for manufacturing semiconductor device
CN111801567B (en) * 2018-03-06 2023-08-11 株式会社力森诺科 Method for evaluating fluidity of resin composition, method for sorting resin composition, and method for manufacturing semiconductor device
CN114340265A (en) * 2021-12-30 2022-04-12 Oppo广东移动通信有限公司 Shell assembly, preparation method thereof and electronic equipment
CN114340265B (en) * 2021-12-30 2024-04-16 Oppo广东移动通信有限公司 Shell assembly, manufacturing method thereof and electronic equipment

Also Published As

Publication number Publication date
JP2011205087A (en) 2011-10-13
WO2011108600A1 (en) 2011-09-09
JP5639930B2 (en) 2014-12-10

Similar Documents

Publication Publication Date Title
TW201139137A (en) Solar cell sealing material and solar cell module produced using the same
US8865835B2 (en) Solar cell sealing material and solar cell module produced using the same
TWI538922B (en) Solar cell sealing material
KR102011615B1 (en) Solar cell sealing material, and solar cell module prepared by using same
TW201221572A (en) Solar cell sealing material, and solar cell module
TWI606088B (en) Encapsulating material for solar cell and solar cell module
WO2006070793A1 (en) Solar cell sealing material
TW201221571A (en) Covering film for solar cell and solar cell module made using same
TW201335262A (en) Solar cell module having excellent appearance and method for manufacturing same
JP5654804B2 (en) SOLAR CELL SEALING MATERIAL AND SOLAR CELL MODULE PRODUCED BY USING THE SAME
JP6248700B2 (en) Solar cell encapsulant, solar cell module produced using the same, and method for separating the module
JP2013229410A (en) Solar cell sealing material and solar cell module
JP5759875B2 (en) SOLAR CELL SEALING MATERIAL AND SOLAR CELL MODULE PRODUCED BY USING THE SAME
JP2014204090A (en) Solar cell sealing material and solar cell module manufactured using the same
JP6179243B2 (en) Solar cell module and solar cell sealing material used therefor
TWI586739B (en) Solar cell module
JP6277839B2 (en) Solar cell sealing material and solar cell module using the same
JP2014157887A (en) Method for manufacturing solar cell module and solar cell module manufactured thereby
JP2014204091A (en) Sealing material for solar cell and solar cell module manufactured using the same
JP6314535B2 (en) Solar cell module
JP2016051772A (en) Solar cell module and manufacturing method thereof