TW201138970A - Catalyst for blocking-agent dissociation comprising polynuclear metal complex and method for using the same - Google Patents
Catalyst for blocking-agent dissociation comprising polynuclear metal complex and method for using the same Download PDFInfo
- Publication number
- TW201138970A TW201138970A TW100103306A TW100103306A TW201138970A TW 201138970 A TW201138970 A TW 201138970A TW 100103306 A TW100103306 A TW 100103306A TW 100103306 A TW100103306 A TW 100103306A TW 201138970 A TW201138970 A TW 201138970A
- Authority
- TW
- Taiwan
- Prior art keywords
- complex
- metal
- acid group
- group
- catalyst
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/12—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
- B01J31/14—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
- B01J31/143—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron of aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0201—Oxygen-containing compounds
- B01J31/0211—Oxygen-containing compounds with a metal-oxygen link
- B01J31/0212—Alkoxylates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/22—Organic complexes
- B01J31/2204—Organic complexes the ligands containing oxygen or sulfur as complexing atoms
- B01J31/2208—Oxygen, e.g. acetylacetonates
- B01J31/2226—Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
- B01J31/223—At least two oxygen atoms present in one at least bidentate or bridging ligand
- B01J31/2234—Beta-dicarbonyl ligands, e.g. acetylacetonates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/22—Organic complexes
- B01J31/2204—Organic complexes the ligands containing oxygen or sulfur as complexing atoms
- B01J31/2208—Oxygen, e.g. acetylacetonates
- B01J31/2226—Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
- B01J31/223—At least two oxygen atoms present in one at least bidentate or bridging ligand
- B01J31/2239—Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/10—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/16—Catalysts
- C08G18/22—Catalysts containing metal compounds
- C08G18/222—Catalysts containing metal compounds metal compounds not provided for in groups C08G18/225 - C08G18/26
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/2805—Compounds having only one group containing active hydrogen
- C08G18/2815—Monohydroxy compounds
- C08G18/283—Compounds containing ether groups, e.g. oxyalkylated monohydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/2805—Compounds having only one group containing active hydrogen
- C08G18/285—Nitrogen containing compounds
- C08G18/286—Oximes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4854—Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/65—Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
- C08G18/66—Compounds of groups C08G18/42, C08G18/48, or C08G18/52
- C08G18/6666—Compounds of group C08G18/48 or C08G18/52
- C08G18/667—Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
- C08G18/6674—Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/703—Isocyanates or isothiocyanates transformed in a latent form by physical means
- C08G18/705—Dispersions of isocyanates or isothiocyanates in a liquid medium
- C08G18/706—Dispersions of isocyanates or isothiocyanates in a liquid medium the liquid medium being water
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/73—Polyisocyanates or polyisothiocyanates acyclic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/77—Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
- C08G18/78—Nitrogen
- C08G18/79—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
- C08G18/791—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
- C08G18/792—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/80—Masked polyisocyanates
- C08G18/8061—Masked polyisocyanates masked with compounds having only one group containing active hydrogen
- C08G18/807—Masked polyisocyanates masked with compounds having only one group containing active hydrogen with nitrogen containing compounds
- C08G18/8077—Oximes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/02—Compositional aspects of complexes used, e.g. polynuclearity
- B01J2531/0213—Complexes without C-metal linkages
- B01J2531/0219—Bimetallic complexes, i.e. comprising one or more units of two metals, with metal-metal bonds but no all-metal (M)n rings, e.g. Cr2(OAc)4
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/20—Complexes comprising metals of Group II (IIA or IIB) as the central metal
- B01J2531/26—Zinc
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/70—Complexes comprising metals of Group VII (VIIB) as the central metal
- B01J2531/72—Manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/80—Complexes comprising metals of Group VIII as the central metal
- B01J2531/84—Metals of the iron group
- B01J2531/847—Nickel
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Polyurethanes Or Polyureas (AREA)
- Paints Or Removers (AREA)
- Catalysts (AREA)
Abstract
Description
4 201138970 四、 指定代表圖: (一) 本案指定代表圖為:無。 (二) 本代表圖之元件符號簡單說明:無。 五、 本案若有化學式時,請揭示最能顯示發明特徵的化學式 六、 發明說明: 【發明所屬之技術領域】 本發明係關於一種用於解離聚異氰酸酯的封端劑的由 金屬複核錯合物構成的觸媒(以下有時稱為「封端劑解離觸 媒」,及使用此觸媒的一液型熱固性組成物。 【先前技術】 聚胺基甲酸酯樹脂塗料具有非常優異的耐磨損性、耐 藥品性、心染性等。-般而言’聚胺基曱酸酯樹脂塗料 為由多元醇成分與聚異氰酸酯成分構成的二液型,其係分 別保存並於塗佈時混合使用。但是,塗料—旦混合會在短 時間内硬化’ S)此可施工時間短,在塗佈的作業性方面有 問題。又’由於聚異氰酸酯容易與水反應,故不能使用在 如電 >儿積塗料的水性塗料。如此,習知的二液型的聚胺基 甲酸酯樹脂塗料,在其使用時有諸多限制。 為了改善上述問題’已知有使用使聚異氰酸酯與含活 性氮基的化合物(封端劑)反應而鈍化的封端異氰酸酯的方 2 201138970 法。該封端異氰酸醋,於常 … 加熱,封端劑會解離而 & 。夕70醇反應’但藉由 生異氰酸酯基,並盥多元 父聯反應。因此,可施工 :二… 配合在塗…為-液或者應:=:料:預先將兩者 有·Γ=氰酸酯的封端劑使用的化合物:例如已知 ^ ^'苯_等°但是使用此笼π人 物的封端異氰酸酉旨 使用此專化合 °c的溫度烘烤,因此於#曰ρ *要以阿達140 熱性的塑膠基材的問題。 .“、應用在低耐 ^因此’自以往Μ試使用觸媒(封端劑解離觸媒)參以 降低烘烤溫度。如舲沾雄册 嘴緙)糟以 …, 觸媒’二月桂酸二丁基錫等有機錫 例如參照非專利文獻…但是由於毒 , 其使用性無法稱得上是較佳。又,其他也有人報告二(例 據伯… 參照專利文獻2)等當做觸 媒、’但疋解離溫度的降低未稱得上足夠,尚未有人報告於 低溫的解離效果高的封端劑解離觸媒。 又’已有人報告各種金屬複核錯合物及其製造方法 如’參照非專利文獻2至非專利文獻4),但是尚未有人報 告應用該等金屬複核錯合物當做封端劑的解離觸媒的應用 例〇 先前技術文獻 專利文獻 專利文獻1 :日本專利第3293633號說明書 專利文獻2 :曰本專利第3375736號說明書 201138970 非專利文獻 非專利文獻 1 : Progress in Organic Coatings 36 卷,148-172 頁( 1 999 年) 非專利文獻 2 : Journal of Materials Chemistry 14 卷,31 50-31 57 頁(2004 年) 非專利文獻 3: Dalton Transactions 544-550 頁(2003 年) 非專利文獻 4: Chemical Communications 1 213-1222 頁 (2003 年) 【發明内容】 (發明欲解決的課題) 本發明係有鑑於上述先前技術而生,其目的在於提供 一種於低溫的解離效果高的封端劑的解離觸媒及其用途。 (解決課題的手段) 本案發明人等為了解決上述課題努力研究,結果發 現.含有2種以上金屬的特定金屬複核錯合物,成為於低 溫的解離效果高的封端劑的解離觸媒,乃完成本發明。 亦即,本發明為由如下所示之金屬複核錯合物構成的 封端劑解離觸媒,及使用該觸媒的一液型熱固性組成物。 [1] 一種封端劑解離觸媒,其特徵在於:含有包含2種以 上金屬的金屬複核錯合物。 [2] 如[1]之封端劑解離觸媒,其中金屬複核錯合物所含的 金屬係選自由鋁、鋅、鈷、鎳、錳及銅構成的群組當中 2種以上的金屬。 201138970 [3]如[1]之 ^ 封端劑解離觸媒,其中+屬 金屬,係鋁,及 、中金屬複核錯合物所含的 .,_ 避自由辞、鈷、鎳、錳及銅構忐认 中1種或2種以上的㈣。 及銅構成的群組當 二如⑴之封端劑解離觸媒,其中 金屬,係鋁及鋅。 闻I 〇蹄Ό物所含的 [5]如[11$ γ>μ 複核錯合物含任一項之封端劑解離觸媒,其中金屬 ㈤如[η至[L:二酮及院氧基當做配位子。 複核錯合物所含紹的,一Γ封端劑解離觸媒’其中金屬 外的金屬的4=二::金屬複核錯合物所含-以 τ 以原子比計為1〜3的範圍。 包含如2 項中任一項之封端劑解離觸媒,其中含有 物。 的金屬的金屬複核錯合物以外的金屬化合 [1]至[7]項中任一項之封端劑解離觸媒, 有機溶劑。 八甲3有 [9] 如[3]至⑻項中任—項之封端劑解離觸媒, 溶劑係選自由綱類、㈣、酷類、脂肪族煙類、;香= 類及月曰%式烴類構成的群組當中i種或2種以上的化合 物’且相對於封端劑解離觸媒全體,有5,重量%的金屬 複核錯合物溶解。 [10] —種—液型熱固性組成物,其特徵在於:含有如上述 [][9]項中任一項之封端劑解離觸媒、封端異氰酸酯及 具有異氰酸酯反應性基的化合物。 [Π]如上述[10]之一液型熱固性組成物,其中具有異氰酸 201138970 酉曰反應性基的化合物為多元醇。 [1 2 ]如上述[丨〇 ]或[丨川之一液型熱固性組成物,其中如上 述[1 〇 ]或[11 ]之封端劑解離觸媒的使用量,就金屬複核錯 合物相對於封端異氰酸醋的使用量而言,A 0.H5重量% 的範圍。 [13]種封端劑的解離方法,其特徵在於:於上述[丨]至 []項中任項的封端㈣離觸媒的存在下,加熱封端異氛 (發明效果) 觸媒, 觸媒活 本發明之由金屬複核錯合物構成的封端劑解離 由於顯示較有機錫等公知觸媒更高的封端劑解離 性,因此在產業上極為有用。 由於使用在低溫 此於能量方面有 又,本發明的一液型熱固性組成物, 具有高解離效果的封端劑解離觸媒,因 利,也可應用在低耐熱性的基材。 【實施方式】 (實施發明的形態) 以下更詳細說明本發明。 本發明中’封端劑解離觸媒 種以上金相金屬複核錯合^本發明t,、^有包含2 合物」,係指在1分子中人 金屬複核錯 於金屬複核錯合物之製備金屬的錯合物。關 非專利文獻2〜非專利文獻4 ^ 可依照上述 獻“載的方法製備。具體而言, 201138970 可藉由添加金屬醇鹽與金屬醇鹽以外的金屬螯合化人物 視情形,更添加成為配位子的有機化合物,並於、六 、✓合剛tp使 反應而製備。 在此所使用的金屬醇鹽中的金屬,例如較佳者有. 辞、钻、錄、猛、銅等。又,金屬醇鹽中的 九悉,例如 較佳者有:異丙氧基、正丙氧基、乙氧基、甲氧基等。 屬醇鹽中的金屬,若以銘為例,金屬醇鹽具體而言:如為金 三異丙醇鋁、三正丙醇鋁' i乙醇鋁、三甲醇鋁等。’、” · 在此使用的金屬螯合化合物中的金屬,例如:鋁、 鈷、鎳、錳、銅等。 、鋅、 又’金屬螯合化合物中的螯合 兩細<3 C^ •乙醯基 丙酮、3, 5-庚二酮、i 丞 ^ —氟A4-戊一酮 六鼠-2,4-戊二綱等^9-—_#5· ,,, 点一酮類:乙醯乙酸曱酯、 乙酯、乙醯乙酸正丙酯、 醯乙酸 丙二酸二甲醋、丙二酸二乙… 酸類; —乙8曰專丙二酸二酯類. 苯胺等冷-酮醯胺類納 乙酿 庚酸、辛酸、2-乙基己酸等叛酸類。 戍I己酸、 金屬螯合化合物中的金屬若以辞為例, 物具體而言’例如:雙乙酿丙酮鋅、雙 屬聲合化合 1,1 A ,, 又’匕一鲷鋅、雙 , ’[戊二酮鋅、雙 1,1,1,5,5,5一 二酮鋅、雙乙醯乙酸甲酯 /、軋—2,4-戊 乙酸正丙醋鋅、雙乙醯 肖、雙乙醯 ^ EJ欠兵内酯辞、等一 雙丙二酸二乙酯辞、 一 t二曱酯鋅、 叉〇酿乙酿本胺鋅、 酸鋅、雙頂鋅、雙戊 &鋅、雙丙 辛又己酸鋅、雙庚醆鋅、雙辛 7 201138970 酸鋅、雙2 -乙基己酸鋅等。 在此所使用之成為配位子的有機化合物’例如乙醯丙 酮、3,5_庚二酮、1,1,卜三氟-2,4-戊二酮、1,1,1,5,5,5-八氟-2, 4-戊一酮等召_二酮類;乙酸、丙酸、丁酸、戊酸、 己酸 '庚酸、辛酸、2_乙基己酸等羧酸類;甲醇、乙醇、 正丙醇、異丙醇、正丁醇、二級丁醇、三級丁醇等醇類; 乙酿乙酸甲醋、乙酿乙酸乙醋、乙酿乙酸正丙醋、乙酿乙 k異丙S曰等冷-酮酯類;丙二酸二甲酯、丙二酸二乙酯等 丙酸一西曰類,乙酿乙酿笨胺# 醯胺類等。 在此使用的溶劑,例如:f苯、笨、乙酸甲酉旨、乙酸 乙酉日、乙酸正丙醋、7缺进 乙酉文異丙酯、乙酸正丁酯、甲乙酮、 丙二醇單甲醚乙酸酯、二 —醇一乙醚、二乙二醇二甲醚 專。金屬複核錯合物製備時,有時會因為水分混入造成發 八^溶物’因此’就此時此等的分離法而言,可進行離心 刀離、過濾、傾析等操作。 金屬複核錯合物所合的& s 鋁、拉u 物所3的金屬不特別限定,較佳者有: “ 銅#。該等之中,含有鋁使封端劑 的低溫解離活性高,因此 便封知則 金屬葙仿扭入 复核錯d物含有鋁較佳。又, 屬複核錯合物含有鋁及鋅更好。 金屬複核錯合物所含的鋁 物所含的鈕AL以 相對於金屬複核錯合 尸作3的鋁以外的金屬的合計 較佳,尤其丨2〜2 就原子比而言,以1〜3 、i. z5較佳。亦即,「 1呂的量]/[金屬複核錯合物所 ^複核錯合物所含的 量]=卜3(原子比)較佳。該原子呂以外的金屬的合計 小於1或超過3時,有時 8 201138970 不會形成金屬複核錯合物。 金屬複核錯合物,含有二酮及烷氧基當做配位子 較佳。 点~二酮,例如:乙醯丙酮、2, 4-己二酮、3, 5_庚二酮、 2,4_辛二酮、2, 4-癸二酮、2, 4-十三烷二酮、1,1, 1-三氟 -2’4-戊二酮、1,1,1,5,5,5_六氟_24_戊二酮、5—曱基 -2,4-己二酮'55_二甲基_2,4_己二酮、2,2_二甲基_35_ 壬一酮、2, 2, 6, 6-四曱基-3, 5-庚二酮、1,3-環戊二酮、1,3-環己一酿1、卜環己基—1,3 -丁二酮、1-苯基_1,3 -丁二酮(卜 苯甲醯基丙酮)、卜苯基-1,3-戊二酮、1,3-二苯基-1,3-丙一綱' 1-笨基-5,5-二曱基-2, 4-己二酮、卜(4-聯 本)一1,3-丁二_、卜苯基-3(2_甲氧基苯基)^3一丙二 酮、1-(4-硝笨基)4,3-丁二酮、卜(2_呋喃基卜丨,^ 丁二 酮、1-(四氫-2-呋喃基卜丨,、丁二酮等。 該等点-二酮當中’通常使用者有:乙醯丙酮、3, 5_ 庚一酮、1,1,1-三氟 _2, 4-戊二酮、1, 1, 1,5, 5, 5_六氟 _2, 4-戊一酮’尤其乙醯丙酮尤佳。 烷氧基,例如,異丙氧基、正丙氧基、乙氧基、甲氧 基、正丁氧基 '正戊氧基、正己氧基、卜甲氧基_2_丙氧基 等較佳。 又’本發明中,可將一部分烷氧基取代為羧基。羧基 不特別限定’例如:曱酸基、乙酸基、丙酸基、丁酸基、 戊酸基、己酸基、庚酸基、辛酸基、2-乙基己酸、壬酸基、 癸酸基、十二烷酸基、十四烷酸基、十六烷酸基、十七烷 201138970 酸基、十八烷酸基等飽和脂肪酸類的羧基;油酸基、亞油 酸基、亞油烯酸基、花生油酸基、甲基丙烯醆基、丙烯酸 等不飽和脂肪酸類的羧基;苯甲酸基、鄰苯二甲酸基、間 苯二甲酸基、對苯二甲酸基、水揚酸基等芳香族㈣酸類 的幾基,·乳酸基、蘋果酸基、擦檬酸基等經基緩酸類的缓 基等。 古本發明的金屬複核錯合物,具有對於有機溶劑的溶解 度问的特徵。藉由溶解在有機溶劑,能使對於封端異氛酸 酉旨的混合變得玄_屆 fM. , 易。惟,也可以粉末形式混合。金屬複核 =。物相對於含有有機溶劑的封端劑解離觸媒全體的含 量,不特別限定,但以5〜7〇重量%較佳,Μ,重量%更佳。 金屬複核錯合物對於有機溶劑的溶解度,以 g 1〇〇g浴劑]較佳,10〜100[g/1〇〇g_溶劑]更佳。 有機浴劑’例如:酮類、醚類、酯類、脂肪族烴類、 二族煙類、脂環式烴類等。具體而 甲醚乙酸酯、-π 一丙二醇單曱醚乙酸酯、乙二醇單丁醚乙酸 ^日、二乙二 it °口 二醢早乙醚乙酸酯、二乙二醇單丁醚乙酸酿、乙 酸8: _乙酉""酯等二醇單烷基醚乙酸酯類;丙二醇二乙 駿酯、1 3 _ 丁 一 一 一醇二乙酸酯、丨,6-己二醇二乙酸酯等二醇 —乙酸酯類;二 丙一知一甲醚、二乙二醇二乙醚、二乙二 醇一甲蓉-齡 一醇二烷基醚類;二丙二醇單正丁醚、二丙二 坪早甲越、二 时工 一丙二醇單甲醚 '丙二醇單正丙醚、二丙二醇 早正丙鍵、而_ 〇α « _ 一醇單正丁醚、三丙二醇單正丁醚、丙二醇 皁甲醚、二乙 〜醇單乙醚等二醇單烷基醚類;曱乙酮、甲 10 201138970 苯乙k乙酉曰乙^異两酉旨、乙酸正丙醋、乙酸異丁酉旨、 乙酸二級丁酯、乙酸正丁酯、乙酸甲酯、丙酮 '乙醇、曰己 烷、二乙醚等,但不限於此等。 另-方面’金屬複核錯合物的金屬醇鹽、與金屬醇越 以外的金屬螯合化合物對於有機溶劑的溶解度,—二 言,小於Ug/mg-溶劑]。可說金屬複核錯合物非以^ 的金屬化合物而是組合此等而形成金屬複核的錯合 此獲得高溶解度。 a 本發明中,金屬複核錯合物具體而言,例如.4 201138970 IV. Designated representative map: (1) The representative representative of the case is: None. (2) A brief description of the symbol of the representative figure: None. 5. In the case of a chemical formula, please disclose the chemical formula which best shows the characteristics of the invention. Description of the Invention: [Technical Field] The present invention relates to a metal complex complex for dissociating a polyisocyanate blocking agent. The catalyst (hereinafter sometimes referred to as "blocking agent dissociation catalyst" and a one-component thermosetting composition using the catalyst. [Prior Art] Polyurethane resin coating has excellent wear resistance In general, the 'polyamine phthalate resin coating material is a two-liquid type composed of a polyol component and a polyisocyanate component, which are separately stored and mixed at the time of coating. Use. However, the coating will harden in a short time 'S). This can be used for a short period of time and has problems in coating workability. Further, since polyisocyanate easily reacts with water, it cannot be used in water-based paints such as electric paints. Thus, the conventional two-liquid type polyurethane resin coating has many limitations in its use. In order to improve the above problem, a method of using a blocked isocyanate which is passivated by reacting a polyisocyanate with an active nitrogen group-containing compound (blocking agent) is known. The blocked isocyanic acid vinegar, usually heated, the blocking agent will dissociate & 70 alcohol reaction 'but by the isocyanate group, and the 盥 multi-parent reaction. Therefore, it can be applied: two... compounded in the coating... is liquid or should: =: material: the compound used in advance for both the terminal blocking agent of cyanate ester: for example, known as ^^'benzene_etc. However, the use of this cage π character's blocked isocyanic acid is intended to use this special temperature °c temperature baking, so the problem of #曰ρ* is to use Ada 140 thermal plastic substrate. ", applied at low resistance ^ so 'have tried to use the catalyst (capping agent dissociation catalyst) to reduce the baking temperature. For example, 舲 雄 册 册 缂 缂 缂 糟 糟 , , , , , , , , , , , , Organic tin such as dibutyltin is referred to, for example, in the non-patent literature. However, its use cannot be said to be preferable because of toxicity. In addition, others have reported that it is used as a catalyst, 'but The reduction of the enthalpy dissociation temperature is not sufficient, and the end-capping agent dissociation catalyst having a high dissociation effect at low temperature has not been reported. Further, various metal complexing complexes and methods for producing the same have been reported, for example, 'Refer to Non-Patent Document 2 Non-patent document 4), but an application example of the dissociation catalyst using the metal complexing complex as a blocking agent has not been reported. PRIOR ART DOCUMENT Patent Document Patent Document 1: Japanese Patent No. 3293633 Patent Document 2:曰 Patent No. 3375736, specification 201138970 Non-Patent Document Non-Patent Document 1: Progress in Organic Coatings 36, pp. 148-172 (1 999) Non-Patent Document 2: Journal of Mater Ials Chemistry Volume 14, 31 50-31 57 (2004) Non-Patent Document 3: Dalton Transactions 544-550 (2003) Non-Patent Document 4: Chemical Communications 1 213-1222 (2003) [Summary of the Invention] (Problem to be Solved by the Invention) The present invention has been made in view of the above-described prior art, and an object thereof is to provide a dissociation catalyst for a blocking agent having a high dissociation effect at a low temperature and use thereof. (Means for Solving the Problem) The inventor of the present invention In order to solve the above problems, it has been found that the specific metal complex complex containing two or more kinds of metals is a dissociation catalyst for a blocking agent having a high dissociation effect at a low temperature, and the present invention has been completed. A blocking agent which is composed of a metal complexing complex as shown below, and a one-component thermosetting composition using the catalyst. [1] A blocking agent dissociating catalyst, characterized in that it contains A metal complexing complex of two or more metals. [2] The blocking agent dissociating catalyst according to [1], wherein the metal complexing complex comprises a metal selected from the group consisting of aluminum, zinc, cobalt, nickel, manganese, and Two or more metals in the group formed. 201138970 [3] such as [1] ^ capping agent dissociation catalyst, wherein + metal, aluminum, and medium metal complex complexes. One or more of the four types or more of the cobalt, nickel, manganese, and copper structures are identified. The group consisting of copper and the copper is a blocking agent for the dissociation agent, and the metal is aluminum and zinc. [I] [5] such as [11$ γ> μ complex complexes containing any of the blocking agents dissociating catalysts, of which metal (5) such as [η to [L: diketone and laboratory oxygen Base as a match. In the complex complex, the blocking agent dissociates from the catalyst, wherein the metal outside the metal is 4 = two: the metal complex complex is contained in a range of 1 to 3 in terms of atomic ratio. A capping agent dissociating catalyst according to any one of the above 2, which contains the substance. A metal compound other than the metal complexing complex of the metal. The blocking agent of any one of [1] to [7] is a dissociating catalyst, an organic solvent. Bajia 3 has [9] such as [3] to (8) of the terminating agent dissociation catalyst, the solvent is selected from the class, (four), cool, aliphatic cigarettes; incense = class and moon Among the groups of the % hydrocarbons, i or two or more compounds 'and 5 parts by weight of the metal complex complex are dissolved with respect to the entire blocking agent dissociating catalyst. [10] A liquid-type thermosetting composition comprising a blocking agent dissociating catalyst, a blocked isocyanate, and a compound having an isocyanate-reactive group according to any one of the above [9]. [Π] A liquid type thermosetting composition according to the above [10], wherein the compound having an isocyanic acid 201138970 oxime reactive group is a polyhydric alcohol. [1 2 ] As described above for [丨〇] or [丨川一液型热固组成物, such as the above-mentioned [1 〇] or [11] blocking agent dissociation catalyst usage amount, the metal complexing complex A 0.H5 wt% range with respect to the amount of blocked isocyanuric acid used. [13] A method for dissociating a terminal blocking agent, characterized in that: in the presence of the capping (4) of any of the above [丨] to [], the capping agent (the effect of the invention) is heated in the presence of a catalyst. Catalyst Activity The dissociation of the terminal blocking agent composed of the metal complexing complex of the present invention is extremely useful industrially because it exhibits a higher dissociation property of the blocking agent than a known catalyst such as an organic tin. The one-component thermosetting composition of the present invention has a high dissociation effect of the blocking agent dissociating catalyst because it is used at a low temperature. Therefore, it can be applied to a substrate having low heat resistance. [Embodiment] (Mode for Carrying Out the Invention) Hereinafter, the present invention will be described in more detail. In the present invention, the terminating agent dissociates the catalytic species from the metallographic metal complexing complex. The present invention t, and has the inclusion of the compound, which means the preparation of the human metal complex nucleus in one molecule. A complex of metal. Non-patent document 2 to non-patent document 4 ^ can be prepared according to the method described above. Specifically, 201138970 can be added by adding a metal alkoxide to a metal other than a metal alkoxide. The organic compound of the ligand is prepared by reacting with hexa- or hexa-tp. The metal in the metal alkoxide used herein is preferably, for example, rheme, drill, record, fierce, copper, or the like. Further, in the metal alkoxide, for example, an isopropoxy group, a n-propoxy group, an ethoxy group, a methoxy group or the like is preferred. The metal in the alkoxide is, for example, a metal alcohol. Specifically, the salt is, for example, aluminum triisopropoxide, aluminum tri-n-propanolate, aluminum ethoxide, trimethyl aluminum oxide, etc. ', ' · Metals in the metal chelate compound used herein, for example, aluminum, cobalt , nickel, manganese, copper, etc. , zinc, and chelate in the metal chelate compound, two fine <3 C^ • acetylacetone, 3, 5-heptanedione, i 丞^-fluoro A4-pentanone, six rats-2,4 - 戊二纲等^9--_#5· ,,, dot one ketone: acetoacetate oxime ester, ethyl ester, acetamethylene acetate n-propyl acetate, phthalic acid malonate dimethyl vinegar, malonic acid II B... Acids; - B 8 曰 polymalonic acid diesters. Anhydrous ketone amides such as aniline, such as heptanoic acid, caprylic acid, 2-ethylhexanoic acid, etc. The metal in the hexanoic acid or the metal chelate compound is exemplified by a word, for example, 'double acetylacetonate zinc, two genus synthesizing compound 1,1 A, and '匕一鲷 zinc, double , '[pentanedione zinc, double 1,1,1,5,5,5-dione zinc, bis-acetic acid methyl ester /, rolling - 2,4-pentaacetic acid n-propyl sulphate, double acetonitrile , double 醯 醯 ^ EJ owe the endo-esterophage, a pair of diethyl malonate, a t-dioxalate zinc, fork 〇 brewed amide zinc, zinc silicate, double-top zinc, dipentane & Zinc, dipropene and zinc hexanoate, bisphosphonium zinc, double xin 7 201138970 zinc acid, zinc 2-ethylhexanoate and the like. The organic compound used herein as a ligand, such as acetamidine, 3,5-heptanedione, 1,1, trifluoro-2,4-pentanedione, 1,1,1,5, 5,5-octafluoro-2, 4-pentanone, etc.; carboxylic acid such as acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, heptanoic acid, caprylic acid, 2-ethylhexanoic acid; Alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, second-butanol, and tertiary butanol; ethyl acetate vinegar, ethyl acetate, vinegar, and propylene glycol Ethyl ketone and other cold-ketoesters; dimethyl malonate, diethyl malonate and other propionic acid monoterpenes, B brewing stupid amine # 醯 amines. The solvent used herein is, for example, f benzene, stupid, acetic acid, acetaminophen, acetic propylene vinegar, 7 isopropyl isopropyl ester, n-butyl acetate, methyl ethyl ketone, propylene glycol monomethyl ether acetate , di-alcohol monoethyl ether, diethylene glycol dimethyl ether. In the preparation of the metal complex complex, the solution may be caused by the incorporation of moisture. Therefore, in the case of the separation method at this time, centrifugation, filtration, decantation, and the like can be performed. The metal of the & s aluminum and the alloy 3 is not particularly limited, and is preferably: "copper #. Among these, aluminum contains a high-temperature dissociation activity of the terminal blocking agent. Therefore, it is better to know that the metal ruthenium twisted into the complex nucleus contains aluminum. Further, it is better that the complex complex contains aluminum and zinc. The aluminum complex contained in the metal complex complex is similar to the button AL. It is preferable that the total of metals other than aluminum in the metal-recombined corpse 3 is preferable, and in particular, 丨2 to 2 is preferably 1 to 3 and i.z5 in terms of atomic ratio, that is, "a quantity of 1 dynag" / [ The amount of the complex complex complex of the metal complex complex is preferably = 3 (atomic ratio). When the total of the metals other than the atom is less than 1 or more than 3, sometimes 8 201138970 does not form a metal review. Complex complexes. Metal complex complexes containing diketones and alkoxy groups as preferred ligands. Dop-diones, for example: acetamidine, 2,4-hexanedione, 3,5-heptanedione , 2,4-octanedione, 2,4-nonanedione, 2,4-tridecanedione, 1,1,1-trifluoro-2'4-pentanedione, 1,1,1, 5,5,5_hexafluoro_24_pentanedione, 5-mercapto-2 ,4-hexanedione '55-dimethyl-2,4-hexanedione, 2,2-dimethyl-35_nonanone, 2, 2, 6, 6-tetradecyl-3, 5- Heptanedione, 1,3-cyclopentanedione, 1,3-cyclohexanone 1, Cyclohexyl-1,3-butanedione, 1-phenyl-1,3-butanedione (Phenylbenzene) Mercaptoacetone), phenyl-1,3-pentanedione, 1,3-diphenyl-1,3-propanyl' 1-phenyl-5,5-dimercapto-2, 4 -Hexanedione, Bu (4-Biben)-1,3-1,3-di-, P-phenyl-3(2-methoxyphenyl)^3-propanedione, 1-(4-nitrophenyl) 4,3-butanedione, Bu (2_furanyldipyridinium, ^butanedione, 1-(tetrahydro-2-furanylpurine, butanedione, etc. among these -diones' Usually users are: acetamidine, 3, 5_heptanone, 1,1,1-trifluoro 2, 4-pentanedione, 1, 1, 1, 5, 5, 5_ hexafluoro-2, 4-pentanone, especially acetamidine, is preferred. Alkoxy, for example, isopropoxy, n-propoxy, ethoxy, methoxy, n-butoxy 'n-pentyloxy, n-hexyloxy Further, it is preferably a methoxy group, a 2-propoxy group, etc. Further, in the present invention, a part of the alkoxy group may be substituted with a carboxyl group. The carboxyl group is not particularly limited 'for example: citric acid , acetic acid group, propionic acid group, butyric acid group, valeric acid group, hexanoic acid group, heptanoic acid group, octanoic acid group, 2-ethylhexanoic acid, decanoic acid group, decanoic acid group, dodecanoic acid group, fourteen a carboxyl group of a saturated fatty acid such as an alkanoic acid group, a palmitic acid group, a heptadecane 201138970 acid group or an octadecanoic acid group; an oleic acid group, a linoleic acid group, a linoleic acid group, a peanut oleic acid group, a methyl group a carboxyl group of an unsaturated fatty acid such as an acrylonitrile group or an acrylic acid; a group of an aromatic (tetra) acid such as a benzoic acid group, a phthalic acid group, an isophthalic acid group, a terephthalic acid group or a salicylic acid group; a base such as a malic acid group or a citric acid group or the like. The metal complex complex of the present invention has a characteristic of solubility in an organic solvent. By dissolving in an organic solvent, it is possible to make the mixing of the blocked isocyanate awkward. However, it can also be mixed in powder form. Metal review =. The content of the dissociation catalyst is not particularly limited with respect to the total amount of the blocking agent containing the organic solvent, but is preferably 5 to 7 % by weight, more preferably Μ, and % by weight. The solubility of the metal complex complex for the organic solvent is preferably from g 1 〇〇g of the bath, and more preferably from 10 to 100 [g/1 〇〇 g_solvent]. The organic bath is, for example, a ketone, an ether, an ester, an aliphatic hydrocarbon, a divalent cigarette, an alicyclic hydrocarbon or the like. Specifically, methyl ether acetate, -π-propylene glycol monoterpene ether acetate, ethylene glycol monobutyl ether acetate, diethylene glycol, diethyl ether, diethylene glycol monobutyl ether Acetic acid, acetic acid 8: _ acetonitrile "" ester and other glycol monoalkyl ether acetate; propylene glycol diethyl ester, 13 3 - butyl alcohol diacetate, hydrazine, 6-hexanediol Di-acetate and other glycol-acetate; dipropyl-monomethyl ether, diethylene glycol diethyl ether, diethylene glycol monomethyl-anthracene alcohol dialkyl ether; dipropylene glycol mono-n-butyl ether , 二丙二坪早甲越,二时工一丙丙醇单单酯' propylene glycol mono-n-propyl ether, dipropylene glycol early positive-propyl bond, and _ 〇α « _ monool mono-n-butyl ether, tripropylene glycol mono-n-butyl ether Glycol monoalkyl ethers such as propylene glycol soap methyl ether and diethyl ether monoethyl ether; acetophenone, A 10 201138970 phenylethyl ketone oxime oxime, acetic acid n-propyl vinegar, isobutyl acetate N-butyl acetate, n-butyl acetate, methyl acetate, acetone 'ethanol, hexane, diethyl ether, and the like, but are not limited thereto. Further, the metal alkoxide of the metal complex complex and the metal chelate compound other than the metal alcohol have a solubility in an organic solvent, in other words, less than Ug/mg-solvent. It can be said that the metal complex complex is not a metal compound of ^ but a combination of these to form a metal complex nucleus which results in high solubility. a In the present invention, the metal complex complex is specifically, for example.
ZnAl2(C5H7〇2)3(C3H7〇)4(CH3CO〇) . ZnaA 12(C5H7〇2)4(c3H7〇)6 !ZnAl2(C5H7〇2)3(C3H7〇)4(CH3CO〇) . ZnaA 12(C5H7〇2)4(c3H7〇)6 !
Zn2Al2(C5iM)2)4(C2H5〇)5(C3H7〇)、ZmAl4(c5Hj)" (CIO)、Zn2Al3(C5H7C)2)4(C2H5〇)8(C3H7())、&仏: ⑽5〇)n(C3_、Zn2Al6(⑽&(⑽we灿、 (C5H7〇〇,(C2H5〇)19(C3H7〇)2 . ZnAl2(C7H1I〇2)3(C3H;〇); (CHaCOO) ^ Zn2Al3(C5H7〇2)4(CH3〇C3HeO)7 . CoA 12(C5H7〇2)4 (C3H.0), ^ C〇2AMC5H7〇2)4(C3H7〇)6 . C〇A12(C5H7〇2)3(C3H,0)4 (CH3C〇〇)、NlAl2(C5H7〇2)4(C3H7〇)4、MnAh(c也⑹3(^心 (CH爛、CuAl2(C_2(c桃等分子式表示的化合物。 在此,C5H7〇2、C3H7〇、CH3COO、c2h5〇、CH3〇C3H6〇 代表去 做配位子的乙醯丙嗣、異丙氧基、乙酸、乙氧基、: -2_丙氧的基。 本發明的封端劑解離觸媒,僅是因為含有上述金屬複 ㈣合物便能充分達成本發明的目的’但是,為了更加提 南於低溫的觸媒活性,也可含有上述金屬複核錯合物以外 11 201138970 的金屬化合物。如此的金屬化合物,具體而言,例如:三 乙醯丙酮鋁、雙乙醯丙酮異丙醇鋁、雙乙醯丙酮正丙醇鋁、 雙乙醯丙酮甲醇鋁、雙乙醯丙酮乙醇鋁、雙乙醯丙酮正丁 醇銘、雙乙醯丙酮二級丁醇鋁、雙乙醯丙酮三級丁醇鋁、 三(3, 5-庚二酮)鋁等較佳。該等之中,尤佳為三乙醯丙酮 鋁。 其次說明本發明的一液型熱固性組成物。 本發明的一液型熱固性組成物,含有上述本發明的泰 端劑解離觸媒、封端^酸醋及具有Μ酸醋反應性基纪 化合物。 ^本發明的一液型熱固性組成物中,就封端異氰酸酯雨 言’例如:非水性封端異氰酸酯、水性封端異氰酸酿等。 非水性封端異氰酸酯’例如可使用:以公知 (例如甲醢、r # ^ ^ %乙醇、正丙醇、異丙醇、正丁醇、二級丁醇 三級丁醇等醇類;笨齡、甲盼、硝基苯盼、氣笨紛”" -齡等笨盼類;苯硫醇等硫醇類…己内醯胺 歩昏· Ηώ W λα* ^ 酿· ,胺曱馱乙醋等胺甲酸醋類;乙醯丙酮 乙㈣等㈣類;二異丙胺、三嗤、3,5_二甲義:類:’ 類;重亞硫酸鈉等),將八 土唑等堪 聚物予以封端的化合物。 此專的男 ^ A知的異氰酸酯化合物,例如:脂肪族嗲 族聚異二:等芳香族聚異氰酸醋、— 脂肪族聚編醋,例如:…亞甲基二異氛酸醋 12 201138970 1,6-六亞甲基二異氰酸酯、2, 2, 4-三曱基六亞甲基二異氰 酸酯、2, 4, 4-三甲基六亞曱基二異氰酸酯、離胺酸二異氰 酸酯、二聚酸二異氰酸酯等。 脂環族聚異氰酸酯,例如:1, 3-雙(異氰酸甲基)環己 烷、1,4-雙(異氰酸曱基)環己烷、3-異氰酸曱基-3, 3, 5-三曱基環己烧(IPDI,異佛爾酮二異氰酸酯)、雙-(4-異氰 酸環己基)曱烷(氫化MDI )、降莰烷二異氰酸酯等。 芳香族聚異氰酸酯,例如:2, 4’ -二笨基曱烷二異氰 酸酯、4, 4’ -二苯基甲烷二異氰酸酯、粗製MDI、1,4-笨 二異氰酸酯、2, 4-曱苯二異氰酸酯、2,6 -甲苯二異氰酸酯、 3, 3’ -二曱基-4, 4’ -二異氰酸基聯笨、3, 3’ -二曱基 4 -二異氰酸基二苯基甲院、1,5 -萘二氰酸酯等。 ^•香脂肪族聚異氰酸醋’例如:1,3 -二曱苯二異氰酸 酯、1,4 -二曱笨二異氰酸酯、α,α,α, ,α,—四曱基二 曱苯二異氰酸酯等。 又,上述以外的異氰酸酯化合物,例如:異氰酸酯化 合物與含有活性氫基的化合物反應而得的異氰酸酯基末端 化合物、該等化合物的反應產物(例如加成型聚異氰酸酯, 或脲基甲酸酯(all〇phanate)化反應、羰二醯亞胺化反應' 脲二酮化反應、異氰脲酸酯化反應、脲酮亞胺化反應、雙 脲化反應等所得的異氰酸酯變性體等),&此等的混合物 等。 ° 酸酯 另一方面,水性封端異氰酸酯 、與具有1個以上能與異氰酸 ’例如可利用使聚異氰 醋基反應的活性氫基的 13 201138970Zn2Al2(C5iM)2)4(C2H5〇)5(C3H7〇), ZmAl4(c5Hj)" (CIO), Zn2Al3(C5H7C)2)4(C2H5〇)8(C3H7()), &仏: (10)5 〇)n(C3_, Zn2Al6((10)&((10) wecan, (C5H7〇〇,(C2H5〇)19(C3H7〇)2. ZnAl2(C7H1I〇2)3(C3H;〇); (CHaCOO) ^ Zn2Al3(C5H7 〇2)4(CH3〇C3HeO)7 . CoA 12(C5H7〇2)4 (C3H.0), ^ C〇2AMC5H7〇2)4(C3H7〇)6 . C〇A12(C5H7〇2)3(C3H , 0) 4 (CH3C〇〇), NlAl2(C5H7〇2)4(C3H7〇)4, MnAh (c is also (6) 3 (^ heart (CH rotten, CuAl2 (C 2 (c 2 (c peach (such as c peach). C5H7〇2, C3H7〇, CH3COO, c2h5〇, CH3〇C3H6〇 represent the group of the ethyl acetophenone, isopropoxy group, acetic acid, ethoxy group,: -2_propoxy group to be used as a ligand. The blocking agent dissociates the catalyst, and the object of the present invention can be sufficiently achieved only by containing the above-mentioned metal complex (tetra) compound. However, in order to further increase the catalytic activity at a low temperature, it may contain the above metal complex complex. 11 201138970 Metal compound. Such a metal compound, specifically, for example, aluminum triacetate, aluminum acetoacetate, aluminum acetonate Acetone n-propanol aluminum, diacetamidine acetone methanol aluminum, acetoacetone ethanol aluminum, acetoacetone n-butanol, diacetamidine acetone secondary butanol aluminum, diacetamidine acetone tertiary aluminum butoxide, three (3, 5-heptanedione) aluminum or the like is preferred. Among them, triethyl acetonate aluminum is preferred. Next, the one-component thermosetting composition of the present invention will be described. The one-component thermosetting composition of the present invention, The compound containing the above-mentioned Thai terminal dissociation catalyst, capped acid vinegar and citrate-reactive genomic compound. ^In the one-component thermosetting composition of the invention, the blocked isocyanate rains 'for example: non Aqueous blocked isocyanate, aqueous blocked isocyanate, etc. Non-aqueous blocked isocyanate 'for example, can be used: known (for example, formazan, r # ^ ^ % ethanol, n-propanol, isopropanol, n-butanol, Alcohols such as second-grade butanol, tertiary butanol; idyllic, hop, nitrobenzene, sullen, and sturdy; thiol such as benzene thiol... · Ηώ W λα* ^ brewing · Amine vinegar such as amine acetoacetate; acetamidine acetone (4), etc. (4); diisopropylamine,嗤, 3,5_ dimethyl ale: class: 'class; sodium bisulfite, etc.), a compound that blocks the urethane and other homopolymers. This is a known male isocyanate compound, for example: aliphatic steroids Polyisocyanate: an aromatic polyisocyanuric acid, - an aliphatic polyacetal, for example: ... methylene diiso-acid vinegar 12 201138970 1,6-hexamethylene diisocyanate, 2, 2, 4- Trimethyl hexamethylene diisocyanate, 2, 4, 4-trimethylhexamethylene diisocyanate, diazonic acid diisocyanate, dimer acid diisocyanate, and the like. An alicyclic polyisocyanate such as 1, 3-bis(isocyanatomethyl)cyclohexane, 1,4-bis(isocyanatomethyl)cyclohexane, 3-isocyanatoin-3, 3, 5-trimethylcyclohexene (IPDI, isophorone diisocyanate), bis-(4-isocyanatocyclohexyl)decane (hydrogenated MDI), norbornane diisocyanate, and the like. Aromatic polyisocyanates, for example: 2,4'-diphenyldecane diisocyanate, 4,4'-diphenylmethane diisocyanate, crude MDI, 1,4-p-diisocyanate, 2,4-nonylbenzene Isocyanate, 2,6-toluene diisocyanate, 3,3'-dimercapto-4,4'-diisocyanatobiphenyl, 3,3'-dimercapto 4-diisocyanatodiphenyl A hospital, 1,5-naphthalene dicyanate, etc. ^• Aromatic aliphatic polyisocyanate vines such as: 1,3-diphenylene diisocyanate, 1,4 - dimercapto diisocyanate, α,α,α, ,α,-tetradecyldiphenylene Isocyanate, etc. Further, the isocyanate compound other than the above, for example, an isocyanate group-terminated compound obtained by reacting an isocyanate compound with a compound containing an active hydrogen group, or a reaction product of the compounds (for example, addition polyisocyanate, or allophanate (all〇) Phantaate reaction, carbonyl dioxime imidization reaction 'urea diketoneization reaction, isocyanuration reaction, ureton imidization reaction, diureaization reaction, etc., isocyanate denatured body, etc.), & Mixtures, etc. ° Acid ester On the other hand, an aqueous blocked isocyanate and an active hydrogen group having one or more capable of reacting with isocyanate, for example, a polyisocyanate group can be used.
親水性基反應,並將装A .、A知的封端劑封端而得到。親水 性基’例如’陽離子、陰離子等離子性基、非離子性基等。 用於對於聚異氮酸醋導入非離子性基的非離子性化合物, 例如:聚烯烴基醚醇、聚氧烯烴基脂肪酸醋等。 本發明的一液型熱固性紅成物中,具有異氰酸醋反應 性基的化合物,例如多元醇。本發明+,多元醇係指具有 2個以上對於里說酿西t装g , /、鼠馱1曰基具有反應性的羥基的化合物,具 體而言’例如非水性多元醇、水性多元醇等。 '、 非水性多元醇,例如:丙烯酸基多元醇、聚酯多元醇、 聚醚多元醇、環氧多元醇等。 #丙稀酸基多元醇,例如:一分子中具有i個以上活性 氣的聚°性單體,與能與其共聚合的單體的共聚物。 一分子中具有1個以上活性氫的聚合性單體,例如: 丙烯酸-2-羥基乙酯、丙烯酸_2_羥基丙酯、丙烯酸—2_羥基 丁醋等丙烯酸Μ基S旨類;f基丙稀酸_2_減乙、甲基丙 烯酸—2-M基丙@旨、甲基丙稀酸_2_經基丁自旨等甲基丙稀酸 經基醋類;甘油之丙烯酸單S旨或甲基丙稀酸單酯、三經甲 基丙院之丙缚酸單s|或甲基丙稀酸單醋,或使ε-己内a旨 對於此等的活性氫進行開環聚合而獲得的單體等。 上述能與聚合性單體共聚合的單體,例如:丙烯酸甲 酉曰、丙稀酸乙醋、丙稀酸異丙醋、丙稀酸正丁醋、丙稀酸 -2-乙基己醋等丙稀酸g|類;甲基丙烯酸甲自旨、甲基丙稀酸 甲基丙烯酸異丙酯、甲基丙烯酸正丁酯、甲基丙烯 酸異丁 S曰、甲基丙稀酸正己醋、甲基丙稀酸環己醋、甲基 14 201138970 丙烯酸月桂酯、甲基丙烯酸環氧丙酯等曱基丙烯酸酯類; 丙烯酸、曱基丙烯酸、馬來酸、衣康酸等不飽和羧酸類; 丙稀酿胺、N-經甲基丙烯醯胺、二丙酮丙烯醯胺等不飽和 醯胺類,苯乙烯、乙烯基曱笨、乙酸乙烯酯、丙烯腈等。 聚酯多元醇,例如:縮合聚酯多元醇、聚碳酸酯多元 醇、聚内自旨多元醇等。 縮合聚酯多兀醇,例如以下二元醇類與以下二羧酸的 反應產物:乙二醇、丙二醇、丨’3—丙二醇、丨,4_丁二醇、 1,5-戊二醇、3-曱基-1,5-戊二醇、己二醇、新戊二醇、 丁基乙基丙二醇、二乙二醇、三乙二醇、四乙二醇、聚乙 二醇、二丙二醇、三丙二醇等二元醇類;琥珀酸、己二酸、 壬二酸、癸二酸、十二烷二酸、馬來酸酐、富馬酸、 環戊烷二羧酸、1,4-環己烷二鲮酸、對笨二甲酸、間笨二 甲酸、鄰苯二甲酸、萘二綾酸等二緩酸。 具體而言,聚乙烯己二酸酯二醇、聚丁烯己二酸酯二 醇、聚六亞甲基己二酸酯二醇、聚新戊烯己二酸酯二醇、 聚乙烯丙烯己二酸酯二醇、聚乙稀丁烯己二酸酯二醇、聚 丁烯六亞甲基己二酸酯二醇、聚(聚四亞甲基醚)己二酸酯 二醇等己二酸酯系縮合聚酯二醇;聚乙烯壬二酸酯二醇、 聚丁烯壬二酸酯二醇等壬二酸酯系縮合聚酯二醇等。 聚碳酸酯多元醇,例如:乙二醇、丙二醇、丄3_丙_ 醇、1,4-丁二醇、1,5-戊二醇、3_甲基―込^戊二醇、 己二醇、新戊二醇、丁基乙基丙二醇、二乙二醇 醇、四乙二醇、聚乙二醇、二丙二醇、三丙二醇 15 201138970 類與碳酸二甲醋等碳酸二烷醋的反應產物等。具體而言, 例如聚四亞曱基碳酸酯二醇、聚3_甲基五亞甲基碳酸酯二 醇、聚六亞甲基碳酸酿二醇等。 聚内醋多元醇,例如:卜己内醋、r -丁酷、厂戊内 :及此等的2種以上的混合物的開環聚合物等。具體而 言,例如聚内酯二醇等。 聚驗多元醇’例如以乙二醇、丙二醇、U—丁二醇、 ~ 丁醇1,6己—醇、二乙二醇、新戍二醇、兒茶紛、 虱醌雙酚A等含有2個以上活性氫原子的化合物作為起 始劑’並使氧乙烯、氧丙烯、氧丁烯、氧笨乙烯、表氣醇、 四Μ喃、環己稀等單體加成聚合而成的反應產物。2種 以上早體加成聚合成的 u 口或的反應產物的情形,可為嵌段加成、 ;:規加成或兩者的混合系。具體而言,例如:聚乙二醇、 丙一醇、I四亞甲基喊二醇等。 狀環環氧多元醇,例如:祕樹脂型1-甲基表氯型、環 #1乙Μ、環氧㈣型、二㈣型、脂肪族不飽和化 =之環氧型'環氧化脂肪酸_、多元 -丙基型:,化型、間苯二盼型等環氧多元醇。 由使:等的非水性多元醇’同樣也可使用例如藉 預=…與—應而生成…端 化2 ts ’水性多元醇例如使上述非水性多元醇乳 次沾、 、欠成的化合物。乳化、分散或溶解於 方法’例如:導入叛基、石風基並使中和的方法等。在 16 201138970 此,中和劑,例如氨、或為水溶性胺基化 。 乙胺、二甲胺、二乙胺、:乙胺、丙⑯物的早乙醇胺、 胺-乙胺、丙胺、二内胺、異丙胺、 一異丙私、二乙醇胺、丁胺、二丁胺、2—乙基己胺'甲基 乙醇胺、二甲基乙醇胺、二乙基乙醇胺、。末啉等。該等之 中’使用為三級胺的三乙胺、二甲基乙醇胺等較佳。 本發明的-液型熱固性組成物中,就多元醇的經基價 而言不特別限定,但以固體成分的經基價為i〇 3〇〇mg_/g 的範圍較佳’更佳為20〜250mgK〇H/g的範圍。藉由羥基價 為l〇mg_/g以上,得到的樹脂的強度提高,藉由在 300mgKOH/g以下,得到的樹脂的可塑性提高。 本發明的-液型熱固性組成物中,多元醇成分通常以 含有多元醇(含有2個以上對於異氰酸g旨基具有反應性的 經基的化合物)、中和劑、抗氧化劑及水的組成物的形式使 用’但是該等的固體成分’意指多元醇、中和劑及抗氧化 劑。 多元醇的羥基價,可依照JIS_K〇〇7〇規定的方法測 疋。亦即,可於試樣中加入乙酸酐及吡啶使溶解、放冷後, 加入水及甲笨,將製備的滴定試液以氫氧化鉀的乙醇溶液 進行中和滴定而測定。羥基價,係以為了將lg試樣中所含 羥基進行乙醯基化所消耗的乙酸中和所需要的氫氧化斜的 mg數表示。 本發明的一液型熱固性組成物中,多元醇的羥基與異 氰酸酯基的當量比([羥基]/(;異氰酸酯基]),由必要的塗膜 物性決定,不特別限定,通常為〇. 2〜2的範圍。 201138970 本發明的一液型熱固性组成⑯中,Μ明的封端劑解 離觸媒的使用量,就上述金屬複核錯合物的使用量相對於 封端異氰酸酯的使用量([金屬複核錯合物的使用量]/[封 端異氰酸酯的使用量])而言,通常為0.卜15重量%,較佳 為0. 5〜10重量%,更佳為1〜5重量%的範圍。藉由使金屬複 核錯合物的使用里相對於封端異氰酸酯的使用量為〇. 1重 里%以上,此獲得足夠的低溫硬化性。另一方面,即使金屬 複核錯合物的使用量相對於封端異氰酸醋的使用量超過Η 重量%,低溫硬化性也不能再高,於經濟上不利。 又’本發明的-液型熱固性組成物中,本發明的封端 劑解離觸媒的使用量,就上述金屬複核錯合物的使用量相 對於固體成分([金屬複核錯合物的使用量]/[固體成分]) 而言,通常為0. 05〜10重量%,較佳為〇· 25〜5重量%,更佳 為0· 5〜3重量%的範圍。本發明中,「固體成分」,係表示 -液型熱固性組成物中的溶劑以外的成分,例如為非水性 一液型熱固性組成物的情形,表示非水性多元醇中的曱乙 酮、丙酮等溶劑以外的成分與非水性封端異氰酸酯中的曱 乙鯛等溶劑以外的成分的合計。為水性一液型熱固性組成 物時,表示ΟΗ末端預聚物溶液中的甲乙嗣、丙酮等溶液以 外的成分、IRGAN〇X1010及三乙胺,與水性封端異氰酸酷 中的水等溶劑以外的成分的合計。藉由使金屬複核錯合物 的使用量相對於固體成分為〇.〇5重量%以上,可獲得足夠 的低溫硬化性。另-方® ’即使金屬複核錯合物的使用量 相對於固體成分超過10重量%,低溫硬化性也不能再高, 18 201138970 於經濟上不利。 發月的液型熱固性組成物中,視需要可使用該技 術領域中常使用的添加劑、顏料、溶劑等。 —添加劑不特別限定’例如:μ滞胺系、.苯并三唑系、 二苯基綱系等紫外線吸收劑;阻滞苯酴系、磷系、硫系、 酿耕糸專抗氧化密丨丨·溫备 冰么 、 _ 礼化幻,錫糸、辞系、胺系等胺基甲酸酯化觸 媒此外塗平劑、流變控制劑、顏料分散劑等。 …顏料不特別限定,例如:切咬嗣系、偶氛系、欧青 系等有機顏料;氧化鈦、硫酸鋇、碳酸鈣、二氧化矽等無 機顏料’其他例如:碳系顏料、金屬箔狀顏料、防銹顏料 /合知1不特別限定,例如苯、ψ苯、二曱苯、環己烧 礦質油漆溶劑(mineral spirit)、石油腦等烴類;丙酉同、 甲乙_ ?基異丁酮等酮類;乙酸乙醋、乙酸正丁酿、乙 酸赛路蘇等I旨類’㉟等溶劑可單獨使用,也可併用2種以 上0 推心會在〶溫在保存時,可將本發明的__液型熱固性 組成物分成封端異氰酸酯與具有異氰酸酯反應性基的化合 物而X 一液型熱固性組成物的形式使用。 本發明的-液型熱固性組成物,可當做汽車的表面内 面塗料、耐制落塗料、電沉積塗料、汽車零件用塗料一 車修補用塗料、家電事務設備等的金屬製品的預塗飞 防銹鋼板、建筚^ 屬、 哽築貝材用塗料、塑膠用塗料、黏接劑 '黏 性賦予劑、密封劑等使用。 19 201138970 實施例 利用以下實施例更具體說明本發明,但是本發明不成 限於該等實施例。 又 又,以下實施例中,一液型熱固性組成物的烘烤、耐 溶劑性的測定及金屬複核錯合物的鑑定,係以如下方法 施。 ' 〈一液型熱固性組成物的烘烤〉 將一液型熱固性組成物塗佈在聚丙烯板,於5(rc的烤 相中進行30分鐘預備乾燥後’放入既定溫度的烤箱中,供 烤30分鐘。 〈耐溶劑性的測定〉 從聚丙烯板剝離上述已進行烘烤的塗膜,浸潰於甲乙 _中12小時。由曱乙酮浸潰後的塗膜的重量殘留率求出凝 膠分率,評價耐溶劑性。 凝膠分率浸潰後塗膜的重量/浸潰前塗膜的重 量)χ100 〈金屬複核錯合物的鑑定〉 利用1H NMR確認。測定使用Varian Techno 1 ogies Japan limited 公司製 gemini200(200MHz),於重氣仿 (CDC13)溶劑中進行。峰部的記號使用以下簡稱。 s = s i ng1et ' d = doublet 、 t = triplet 、 st = septet 、 m=multiplet 。 各製造例中記載的數字(化學偏移),以5 (ppm)表示。 製造例1 20 201138970 (金屬複核錯合物之製備) 依照非專利文獻 2[J〇urnal 〇f Materials Chemistry 14卷,3150-3157頁(2004年)]的記載,製備金屬複核錯 合物。亦即,在安裝有氮氣吹入管的四口燒瓶内安裝回流 冷卻管’並使容器内成為氮氣氛圍。其次,在容器内放入 三異丙醇鋁2.77g、雙乙醯丙酮鋅一水合物ng及經脫 水的甲苯50· OmL ’於130。(:回流30分鐘使反應。之後冷卻 至室溫’ 一面劇烈攪拌一面加入乙酸〇. 435g及乙醯丙酮 0. 680g。之後’使容器内為50°C並減壓除去溶劑,得到 4.50g的Al-Zn複核錯合物1(分子式:ZnAl2(C5H7〇2)3 (C3H7〇)4(CH3COO)' Ή NMR: 5. 48(s, 3H, C5H7O2)' 4. 02(st, 4H, CsHtO) > 1. 99(s, 3H, CHsCOO) ' 1. 98~ 1. 84(m, 18H, C5H7O2) ' 1· 30〜〇. 92(m. 24H, C3H7〇))。 製造例2 (金屬複核錯合物之製備) 依照非專利文獻 3[Dalton Transactions 544-550 頁 (2003年)]的記載,製備金屬複核錯合物。亦即,·在安裝 有氮氟吹入管的四口燒瓶内安裝回流冷卻管,並使容器内 成為氮氣氛圍。其次,在容器内放入三異丙醇鋁148g、 雙乙醯丙酮鋅一水合物2.01g及經脫水的曱苯30. OmL,於 130°C回流30分鐘使反應。之後,使容器内為5(rc並減壓 除去溶劑’得到2.80g的A卜Zn複核錯合物2(分子式:The hydrophilic group is reacted, and a blocking agent containing A and A is blocked and obtained. The hydrophilic group 'e.g.' is a cation, an anionic plasma group, a nonionic group or the like. A nonionic compound used for introducing a nonionic group to polyisocyanate, for example, a polyolefin-based ether alcohol, a polyoxyalkylene-based fatty acid vinegar, or the like. The one-component thermosetting red product of the present invention has a compound having a isocyanate-reactive group such as a polyhydric alcohol. The present invention +, a polyhydric alcohol refers to a compound having two or more hydroxyl groups reactive with the g, /, and fluorenyl groups, specifically, for example, "non-aqueous polyols, aqueous polyols, etc." . ', non-aqueous polyols, such as: acrylic based polyols, polyester polyols, polyether polyols, epoxy polyols and the like. The #acrylic acid-based polyol is, for example, a copolymer of a polyvalent monomer having one or more active gases in one molecule and a monomer copolymerizable therewith. a polymerizable monomer having one or more active hydrogens in one molecule, for example, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxybutyl acrylate, etc. Acrylic acid _2 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Or a methyl methacrylate monoester, a trimethyl methacrylate, a succinic acid mono s | or a methyl methic acid mono vinegar, or an ε-hexan a for the ring-opening polymerization of such active hydrogen And the monomers obtained are equal. The above monomer capable of copolymerizing with a polymerizable monomer, for example, methacrylic acid, ethyl acetoacetate, isopropyl isopropyl acrylate, n-butyl acrylate, and ethyl 2-ethyl hexanoic acid Acrylic acid g|class; methacrylic acid methyl methacrylate, methacrylic acid isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, methyl propylene hexanoic acid, Methyl acrylate cyclohexan vinegar, methyl 14 201138970 decyl acrylate such as lauryl acrylate or propylene methacrylate; unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid and itaconic acid; Unsaturated guanamines such as acrylamide, N-methacrylamide, diacetone acrylamide, styrene, vinyl oxime, vinyl acetate, acrylonitrile, and the like. The polyester polyol is, for example, a condensed polyester polyol, a polycarbonate polyol, a poly-molecular polyol or the like. Condensed polyester polyterpene alcohol, for example, the reaction product of the following diols with the following dicarboxylic acids: ethylene glycol, propylene glycol, 丨'3-propanediol, hydrazine, 4-butanediol, 1,5-pentanediol, 3-mercapto-1,5-pentanediol, hexanediol, neopentyl glycol, butyl ethyl propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, dipropylene glycol , diols such as tripropylene glycol; succinic acid, adipic acid, sebacic acid, sebacic acid, dodecanedioic acid, maleic anhydride, fumaric acid, cyclopentane dicarboxylic acid, 1,4-ring A bis-acid such as hexanedicarboxylic acid, p-dicarboxylic acid, m-dicarboxylic acid, phthalic acid or naphthalene dicarboxylic acid. Specifically, polyethylene adipate diol, polybutylene adipate diol, polyhexamethylene adipate diol, polypentene adipate diol, polyethylene propylene Diester diol, polyethylene terephthalate diol, polybutylene hexamethylene adipate diol, poly(polytetramethylene ether) adipate diol, etc. An acid ester-based condensed polyester diol; a sebacate-containing condensed polyester diol such as a polyethylene sebacate diol or a polybutylene terephthalate diol. Polycarbonate polyols, for example: ethylene glycol, propylene glycol, 丄3_propanol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-oxime pentanediol, hexane Reaction product of alcohol, neopentyl glycol, butyl ethyl propylene glycol, diethylene glycol alcohol, tetraethylene glycol, polyethylene glycol, dipropylene glycol, tripropylene glycol 15 201138970 and dialkyl carbonate Wait. Specifically, for example, polytetradecyl carbonate diol, poly-3-methylpentamethylene carbonate diol, polyhexamethylene carbonate diol, and the like. A poly-lactide polyol, for example, a vinegar, a ruthenium, a ruthenium, and a ring-opening polymer of a mixture of two or more of these. Specifically, for example, polylactone diol or the like. The polyhydric alcohol is contained, for example, with ethylene glycol, propylene glycol, U-butylene glycol, ~butanol 1,6-hexanol, diethylene glycol, neodecyl glycol, catechin, bismuth bisphenol A, etc. A reaction in which a compound of two or more active hydrogen atoms is used as a starter and a monomer such as oxyethylene, oxypropylene, oxybutylene, oxygen stupid ethylene, epigas alcohol, tetradecyl or cyclohexene is added and polymerized product. In the case of a reaction product of two or more types of early addition polymerization, it may be a block addition, a regular addition or a mixture of the two. Specifically, for example, polyethylene glycol, propanol, I tetramethylene diol, and the like. Ring-shaped epoxy polyols, for example, secret resin type 1-methyl-epi type, ring #1 acetamidine, epoxy (four) type, two (four) type, aliphatic unsaturation = epoxy type epoxidized fatty acid _ , Poly-propyl type: epoxy polyol such as chemical type and meta-phenylene type. The non-aqueous polyol ' such as: a non-aqueous polyol can also be used, for example, to form a 2 ts 'aqueous polyol, for example, a compound in which the non-aqueous polyol is diluted and dehydrated. Emulsifying, dispersing or dissolving in a method such as a method of introducing a rebel, a stone base, and neutralizing. At 16 201138970, a neutralizing agent, such as ammonia, or a water-soluble aminated. Ethylamine, dimethylamine, diethylamine, ethylamine, propylamine 1, ethanolamine, amine-ethylamine, propylamine, dilactam, isopropylamine, monoisopropylamine, diethanolamine, butylamine, dibutylamine , 2-ethylhexylamine 'methylethanolamine, dimethylethanolamine, diethylethanolamine,. Terminal porphyrin and the like. Among these, it is preferred to use triethylamine, dimethylethanolamine or the like which is a tertiary amine. The liquid-based thermosetting composition of the present invention is not particularly limited in terms of the base price of the polyol, but the base price of the solid component is preferably in the range of i〇3〇〇mg_/g. More preferably 20 ~250mgK〇H/g range. When the valence of the hydroxyl group is 1 〇 mg_/g or more, the strength of the obtained resin is improved, and the plasticity of the obtained resin is improved by 300 mg KOH/g or less. In the liquid-type thermosetting composition of the present invention, the polyol component is usually a polyol (containing a compound having two or more reactive groups which are reactive toward isocyanate), a neutralizing agent, an antioxidant, and water. The form of the composition uses 'but such solid ingredients' means polyols, neutralizers and antioxidants. The hydroxyl value of the polyol can be measured in accordance with the method specified in JIS_K〇〇7〇. That is, acetic anhydride and pyridine may be added to the sample to dissolve and allow to cool, and then water and methyl bromide may be added, and the prepared titration test solution is subjected to neutralization titration with a potassium hydroxide ethanol solution. The hydroxyl value is expressed by the number of mg of the hydroxide which is required for the neutralization of acetic acid consumed for the acetylation of the hydroxyl group contained in the lg sample. In the one-component thermosetting composition of the present invention, the equivalent ratio of the hydroxyl group to the isocyanate group of the polyol ([hydroxyl group/(; isocyanate group)) is determined by the physical properties of the coating film, and is not particularly limited, and is usually 〇. 2 The range of ~2. 201138970 In the one-component thermosetting composition of the present invention, the amount of the blocking agent dissociating catalyst used in the first embodiment is the amount of the metal complexing complex used relative to the blocked isocyanate ([ 5〜10重量百分比的优选优选为1〜5重量百分比。 The amount of the metal complex nucleus complexes / / [the amount of blocked isocyanate used]), usually 0. 5 15% by weight, preferably 0. 5~10% by weight, more preferably 1 to 5% by weight By using a metal complexing complex, the amount of use of the blocked isocyanate is 〇. 1% by weight or more, thereby obtaining sufficient low-temperature hardening property. On the other hand, even the use of the metal complexing complex The amount of the blocked isocyanuric acid is more than Η% by weight, and the low-temperature hardenability cannot be further high, which is economically disadvantageous. Further, in the liquid-based thermosetting composition of the present invention, the blocking agent of the present invention is dissociated. The amount of catalyst used, the above gold 05〜10重量百分比,优选为〇· 25〜5重量。 The amount of the complex compound is usually 0. 05~10% by weight, preferably 〇· 25~5 by weight, based on the solid content ([amount of metal complex complex]/[solid content]) In the present invention, the "solid content" is a component other than the solvent in the liquid-based thermosetting composition, and is, for example, a non-aqueous one-liquid thermosetting composition. In the case of a non-aqueous polyol, a component other than a solvent such as acetophenone or acetone and a component other than a solvent such as hydrazine in a non-aqueous blocked isocyanate is used. When it is an aqueous one-liquid thermosetting composition, it means ΟΗ. a component other than a solution such as methyl acetamidine or acetone in the terminal prepolymer solution, IRGAN® X1010 and triethylamine, and a component other than a solvent such as water in an aqueous blocked isocyanate solution. The amount of the compound to be used is not less than 5% by weight based on the solid content, and sufficient low-temperature curability can be obtained. Further-- even if the amount of the metal complex complex is more than 10% by weight relative to the solid content, the low temperature Sclerosing 18 201138970 It is economically disadvantageous. In the liquid type thermosetting composition of the moon, additives, pigments, solvents, etc. which are commonly used in the technical field can be used as needed. - The additive is not particularly limited ' For example: μ-salt amine system , benzotriazole series, diphenyl lineage and other UV absorbers; block phenyl hydrazine, phosphorus, sulfur, cultivating 糸 糸 糸 丨丨 丨丨 丨丨 温 温 温 温 温 温 温 温 温 温 温 温 温 温 温 温 温 温 糸 糸Amino acid esterification catalyst such as a rheology system or an amine system, and a leveling agent, a rheology control agent, a pigment dispersing agent, etc. ... the pigment is not particularly limited, for example, a bite-cutting system, an odor system, and an eucalyptus system. Organic pigments; inorganic pigments such as titanium oxide, barium sulfate, calcium carbonate, and cerium oxide. Others, for example, carbon pigments, metal foil pigments, and rust preventive pigments are not particularly limited, and are, for example, benzene, toluene, and bis. Hydrocarbons such as toluene, cyclohexane, mineral spirits, petroleum brains, etc.; ketones such as acetamidine, methyl ketone and isobutyl ketone; acetic acid, vinegar, acetic acid, cisplatin, etc. Solvents such as '35 can be used alone or in combination 0 pushing heart will 〶 temperature during the storage can be __ liquid type thermosetting composition of the present invention into a blocked isocyanate with a compound having an isocyanate-reactive group and X in the form of one liquid type thermosetting composition is used. The liquid-type thermosetting composition of the present invention can be used as a pre-painted anti-rust for metal products such as surface coatings for interiors, anti-fall coatings, electrodeposition coatings, automotive parts coatings, vehicle repairing coatings, and home appliance business equipment. Steel plate, building 筚 genus, 哽 贝 贝 贝 贝 、 、 、 、 、 、 、 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 19 201138970 EXAMPLES The present invention will be more specifically illustrated by the following examples, but the invention is not limited to the examples. Further, in the following examples, the baking of the one-component thermosetting composition, the measurement of the solvent resistance, and the identification of the metal complex complex were carried out as follows. ' Baking of a one-component thermosetting composition> A one-component thermosetting composition is applied to a polypropylene plate and placed in an oven at a predetermined temperature for 5 minutes in a roasting phase of rc (30 minutes). Baking for 30 minutes. <Measurement of Solvent Resistance> The above-mentioned baked coating film was peeled off from a polypropylene plate, and immersed in methyl ketone for 12 hours. The weight residual ratio of the coating film after immersion in acetophenone was determined. The gel fraction was evaluated for solvent resistance. The weight of the coating film after the gel fraction was impregnated/the weight of the coating film before impregnation) χ 100 <Identification of metal complex complex complex> It was confirmed by 1H NMR. The measurement was carried out using a gemini 200 (200 MHz) manufactured by Varian Techno 1 ogies Japan limited company in a solvent of a heavy air imitation (CDC13). The symbols of the peaks are as follows. s = s i ng1et ' d = doublet , t = triplet , st = septet , m=multiplet . The number (chemical shift) described in each production example is represented by 5 (ppm). Production Example 1 20 201138970 (Preparation of metal complex complex) A metal complexing complex was prepared in accordance with the description of Non-Patent Document 2 [J〇urnal 〇f Materials Chemistry, Vol. 14, 3150-3157 (2004)]. That is, a reflow cooling pipe was installed in a four-necked flask equipped with a nitrogen gas injection pipe, and the inside of the vessel was made to be a nitrogen atmosphere. Next, 2.77 g of aluminum triisopropoxide, ng of diethyl acetoacetate monohydrate ng and dehydrated toluene 50·OmL' were placed in the vessel at 130. (Reflowing for 30 minutes, then cooling to room temperature) While stirring vigorously, cesium acetate was added. 435 g and acetamidineacetone 0. 680 g. Then '50 ° C in the vessel and the solvent was removed under reduced pressure to give 4.50 g. Al-Zn complex complex 1 (Molecular formula: ZnAl2(C5H7〇2)3(C3H7〇)4(CH3COO)' Ή NMR: 5. 48(s, 3H, C5H7O2)' 4. 02(st, 4H, CsHtO > 1. 99(s, 3H, CHsCOO) ' 1. 98~ 1. 84(m, 18H, C5H7O2) ' 1· 30~〇. 92(m. 24H, C3H7〇)). Manufacturing Example 2 ( Preparation of Metal Complex Nucleation Complex] A metal complex complex is prepared according to the description of Non-Patent Document 3 [Dalton Transactions 544-550 (2003)], that is, a four-necked flask equipped with a nitrogen-fluorine blowing tube. The inside of the container was placed in a nitrogen atmosphere. Next, 148 g of aluminum triisopropoxide, 2.01 g of zinc acetoacetate monohydrate, and dehydrated toluene 30. OmL were placed in the vessel. The reaction was refluxed for 30 minutes at ° C. Thereafter, the inside of the vessel was 5 (rc and the solvent was removed under reduced pressure) to obtain 2.80 g of Ab Zn complex complex 2 (molecular formula:
Zn2Al2(C5H7〇2)4(c3H7〇)6 > Ή NMR : 5. 47(S) 4H, C5H7O2) > 4· 21(st, 2H, CsHtO) ^ 3. 92(st, 4H, CsHtO) ' 1. 99-1. 85(m, 24H, 21 201138970 dOO、1. 30〜1· 04(m,36H,do))。 製造例3 (金屬複核錯合物之製備) 溶劑從甲苯改變為乙酸乙酯,除此以外與製造例2以 同樣方法進行,製造金屬複核錯合物。亦即,在安裝有氣 氣吹入管的四口燒瓶内安裝回流冷卻管,並使容器内成為 氮氣氛圍。其次,在容器内放入三異丙醇鋁148g、雙乙 酿丙嗣鋅一水合物2. Olg及經脫水的乙酸乙酯30. 〇mL,於 100C回流12〇分鐘使反應。之後’使容器内為5〇〇c並減 壓除去溶劑,得到2. 8Og的A1 -Zn複核錯合物3 (分子式: Zn2Al2(C5H7〇〇4(C2H5〇)5(C3HT〇) ^ Ή NMR : 5. 38(s, 4Η, C5H?〇2)、4.〇2(st,lH,C3H7〇)、3.80〜3.22(m,l〇H,C2H5〇)、 1· 99~1. 82(m, 24H, C5H7O2) > 1. 28~0. 90(m, 15H, CzHsO, m, 6H, CIO)) 〇 製造例4 (金屬複核錯合物之製備) 將原料的Al/Zn莫耳比從丨.〇改變為〇. 8,除此以外, 與製造例3以同樣方法製造金屬複核錯合物。亦即,在安 裝有乱氣吹入管的四口燒瓶内安裝回流冷卻管,並使容器 内成為氮氣氛圍。其次,在容器内放入三異丙醇鋁117g、 雙乙酿丙酮鋅一水合物2. 〇lg及經脫水的乙酸乙酯 30. OmL ’於l〇〇°c回流12〇分鐘使反應。之後’使容器内 為50 C並減壓除去溶劑’得到2. 6〇g的a卜Zn複核錯合物 4(分子式:ZnsAhCCsHTOAoCGHsCOHCdO)、'H NMR : 5. 38 22 201138970 (s, 20H, C5Hv〇2) > 4. 02(st, 1H, C3H7O) ^ 3. 80~3. 36(m, 22H, C2H5〇)^ 1. 9 9- 1. 80(m, 120H, C5Ht〇2)> 1. 30~0. 88(m, 33H, C2H5O, m,6H, C3H7O)) 0 製造例5 (金屬複核錯合物之製備) 將原料的A1 /Zn莫耳比從1 _ 〇改變為1. 5,除此以外, 一製k例3以同樣方法製造金屬複核錯合物。亦即,在安 裝有氮氣吹入管的四口燒瓶内安裝回流冷卻管並使容器 内成為氮氣氛圍。其次,在容器内放入三異丙醇鋁219g、 又乙酿丙isj鋅一水合物2. 及經脫水的乙酸乙酯 30· OmL,於1〇(rc回流12〇分鐘使反應。之後,使容器内 為50 C並減壓除去溶劑’得到3. 44g的A卜Zn複核錯合物 5(分子式:Zn2Al3(C5H7〇2)4(C2H5〇^c.〇)、NMR : 5. 38 (s,4H,C5H7〇2)、4.〇2(st’lH,C3H7〇)、3.80~3.36(m,16H, 1. 99-1. 80(m, 24H, C5H7〇2). 1. 30~0. 88(m, 24H, C2H5O, m,6H,C3H7〇))。 製造例6 (金屬複核錯合物之製備) 將原料的A1 /Zn莫耳比從丨.〇改變為2. 0,除此以外, 與製造例3以同樣方法製造金屬複核錯合物。亦即,在安 裝有氮氣吹入管的四口燒瓶内安裝回流冷卻管,並使容器 内成為氮氣氛圍。其次’在容器内放入三異丙醇鋁2. 92g、 雙乙酿丙_鋅一水合物2. 〇lg及經脫水的乙酸乙酯 30. OmL,於i〇(rc回流12〇分鐘使反應。之後,使容器内 23 201138970 為50°C並減壓除去溶劑,得到4. 〇4g的a卜zn複核錯合物 6(分子式:ZnzAhCdO+CdOXCO)、NMR: 5. 36(s, 4H: C5H7〇2)、4. 02(st,1H, CIO)、3. 90~3· 30(m,22H,CIO)、 !· 99-1. 75(m, 24H, C5H7O2) ^ 1. 35~0. 80(ni, 33H, C2H5O, m, 6H, C3H7〇)) 〇 製造例7 (金屬複核錯合物之製備) 將原料的A1 /Zn莫耳比從1. 〇改變為3. 0,除此以外’ 與製造例3以同樣方法製造金屬複核錯合物。亦即,在安 裝有氣氣吹入管的四口燒瓶内安裝回流冷卻管,並使容器 内成為氮氣氛圍。其次,在容器内放入三異丙醇鋁437g、 &乙酿丙嗣鋅一水合物2.Olg及經脫水的乙酸乙酯 C\ • 〇mL ’於100°c回流12〇分鐘使反應。之後,使容器内 為5〇 C並減壓除去溶劑,得到5. 23g的a卜zn複核錯合物 7(分子式:Ζη2Α15((:5Η7〇2)4((:2Η5〇)15((:3Η7〇)2、'H NMR: 5. 36(s, 4H,CsIl7〇〇' 4. 02(st, 2H, CsHtO)' 4. 00~3. 30(m, 32H, C2H5O) ' ^ "^1· 75(m, 24H, C5H7O2)' 1. 35~0. 80(m, 48H, C2H5O, m, 12H, C3H7〇))。 製造例8 (金屬複核錯合物之製備) 將原料的Al/Zn莫耳比從1. 〇改變為3. 5,除此以外, 與製造例3以同樣方法製造金屬複核錯合物。亦即’在安 裝有氮氣吹入管的四口燒瓶内安裝回流冷卻管’並使容器 成為氮氣氛圍。其次,在容器内放入三異丙醇鋁5.1 Og、 24 201138970 雙乙醯丙酮鋅一水合物2.Olg及經脫水的乙酸乙酯 30. OmL,於10(TC回流120分鐘使反應。之後,使容器内 為50°C並減壓除去溶劑,得到5. 83g的A卜Zn複核錯合物 8(分子式:ZnzAlTCCsHTOzhCdOWCsIhCOz、1 MR: 5. 35(s, 4H,dCh)、4· 02(st,2H, C3H7〇)、4· 00~3. 28(m,38H,C2H5〇)、 1. 9 9-1. 7 5(m, 24H, C5H7O2) > 1. 35~0. 78(m, 57H, C2H5O, m, 12H, C3H7O))。 製造例9 (金屬複核錯合物之製備) 依照非專利文獻 3[Dalton Transactions 544-550 頁 (2003年)]的記載,製備金屬複核錯合物。亦即,在安裝 有氮氣吹入管的四口燒瓶内安裝回流冷卻管,並使容器内 成為氮氣氛圍。其次,在容器内放入三異丙醇鋁2.38g、 雙乙酿丙綱姑水合物1. 47g及經脫水的曱笨25. OmL,於130 C回流1 〇分鐘使反應。之後,於冰箱内於4〇c冷卻2小時。 一面授掉一面添加乙醯丙酮l17g後’使容器内為5〇〇c並 減壓除去溶劑’得到3.2lg的A卜Co複核錯合物(分子式: c〇Al2(C5H7〇2)4(c3H7〇)4) ’ 4 麵:5. 48(s,4H,dCh)、4. 02 (St,4H, C3Ht0) ' 2· 0〇-l. 90(m, 24H, C5H7O2) ^ 1. 26~1. 〇2(m, 24H,C3H7〇)。 ’ 製造例1 0 (雙庚二酮鋅一水合物之製備) 於燒杯中裝入氫氧化鈉〇· 622g、水7. 50mL及3, 5-庚 2· 0〇g ’攪拌直到成為均勻的黃色透明溶液。於另一 25 201138970 燒杯中’使硫酸鋅七水合物2.27g溶於水7.50mL,於其中 滴加前述黃色透明溶液。之後,將其於室溫攪拌1小時, 過濾生成的淡黃色沉澱,並以30OmL的水清洗。於5〇 t乾 燥2小時,得到雙庚二酮鋅一水合物1. 74g的淡黃色粉末。 (金屬複核錯合物之製備) 將乙醯丙酮改變為3, 5-庚二酮,除此以外與製造例j 以同樣方法製備金屬複核錯合物。亦即,在安裝有氮氣吹 入管的四口燒瓶内安裝回流冷卻管,並使容器内成為氮氣 氛圍其-人,在谷器内放入三異丙醇紹I.17g、雙乙酿庚 一酮鋅一水合物〇. 91 7g及經脫水的曱笨25. OmL,於130 C回机30分鐘使反應。之後,冷卻至室溫,於劇烈攪拌的 狀態添加乙酸〇. 189g、及3, 5_庚二酮〇. 37竑。並且使 容器内為5(TC並減壓除去溶劑,得到〇 87g的a卜Zn複核 錯合物 9(分子式:ZnAl2(C7Hn〇2)3(C3H7〇)4(CH3C〇〇)、1h NMR· 5. 46(s,3H,(Μ〇2)、4. 02(st,4H,C3H7〇)、2· 26〜2. 01(m, 12H,C7HnO〇 > 2.03(S,3H,CH3COO) . 1. 28^0. 92(m, 42H, GHuCh,dO)) 〇 製造例11 (金屬複核錯合物之製備) 在安裝有氮氣吹入管的四口燒瓶内安裝回流冷卻管, 並使容器内成為氮氣氛圍。其次,在容器内放入三異丙醇 鋁:.61g、雙乙醯丙鲷鋅一水合& 2. 2扛及經脫水的丙二 醇單曱轉乙酸酿12.0mL,於13〇t回流3〇〇分鐘使反應。 之後,使容器内為5(TC並減壓進行3〇分鐘溶劑濃縮,得 26 201138970 到7· 8〇g的Al~Zn複核錯合物ι〇的丙二醇單曱醚乙酸酯溶 液。 >至】的溶液採取到0. 5 0 g紹杯,於1 〇 〇 °C乾燥6 0分 鐘除去丙二醇單曱醚乙酸酯,殘留成分的重量為〇.28g。 藉此’獲得的溶液的固體成分濃度為56重量%。Al-Zn複 核錯合物 10 的分子為 Zn2Al3(C5H7〇2)4(cH3〇C3H6〇)7、1HNMR: 5· 38(s, 4H, C5H7〇2) ' 4. 〇6(ffi, 7H, CHsOCaHeO) ' 3. 50-3. 20(m, 35H,CH3〇C3Hb〇) > 2.0〇~i.8〇(m,24H,C5H7〇0'1. 24^ 1. 05(m, 21H, CHLO))。 實施例1 (複核錯合物對於溶劑的溶解度測定) 測定製造例1得到的A卜Zn複核錯合物1對於丙二醇 單曱醚乙酸酯或曱乙酮的溶解度。結果如表1所示。 [表1] — 實施例1 實施例2 實施例3 實施例4 實施例5 金屬複核錯合物 原子比 製造例1得到 的Al-Zn複核 錯合物1 Al/Zn=2 0 製造例2得到 的Al-Zn複核 錯合物2 製造例3得到 的Al-Zn複核 錯合物3 製造例4得到 的Α卜Ζη複核 錯合物4 製造例5得到 的Al-Zn複核 錯合物5 溶解度[g/l〇〇g-溶液] 甲乙酮111 丙二醇單甲醚乙酸酯⑴ 25 25 Al/U 25 25 Α1/Ζη=1·〇 43 43 Α1/Ζη=0.8 11 11 Α1/Ζη=1. 5 100 100 [π溶解度測定使用的有機溶劑 實施例2〜實施例11 利用與實施例1同樣的方法,測定製造例2〜製造例】】 得到的金屬複核錯合物對於丙二醇單甲醚乙酸酯或曱乙酮 的溶解度。結果合併顯示如表1、表2。 27 201138970 [表2] 實施例6 實施例7 實施例8 實施例9 實施例10 實施例11 金屬複核錯合物 製造例6得到 的Α1-Ζπ複核 錯合物6 製造例7得到 的Al-Zn複核 錯合物7 製造例8得到 的Al-Zn複核 錯合物8 製造例9得到 的Al-Co複核 製造例10得 到的A卜Zn複 核錯合物9 製造例11得 到的Al-Zn複 核錯合物]0 原子比 Α1/Ζη=2. 0 A)/Zn-3.〇 Al/Zn=3.5 Al/Co=2 0 Al/Zn=2. 0 ’ Al/Zn=l. 5 溶解度[g^OOg-溶液] 甲乙酮⑴ 100 25 11 25 25 25 100 丙二醇單曱醚乙酸酯tu 「Τ Ί冷ΛΕ疮丨它伯田66 5 100 办龙_ι 25 11 25 100 比較例1〜比較例6 (複核錯合物原料對於溶劑的溶解度測定) 利用與實施例1同樣的方法,測定製造例i〜製造例5 及製造例8〜製造例11使用的金屬複核錯合物的原料即金 屬化合物對於丙二醇單曱醚乙酸酯或甲乙酮的溶解度。結 果合併顯示如表3、表4。 [表3] 比較例1 比較例2 比較例3 原料之金屬化合物 三異丙醇鋁與雙乙醢丙酮 三異丙醇鋁與雙乙醯丙酮 三異丙醇鋁與雙乙醯丙酮 鋅一水合物的混合物 鋅一水合物的混合物 鋅一水合物的混合物 原子比 Al/Zn=l. 0 Α1/Ζη=0. 8 Α1/Ζη=1.5 對應的金屬複核錯合物 Al-Zn複核錯合物1、2、3 Al-Zn複核錯合物4 Al-Zn複核錯合物5、10 溶解度[g/100g-溶液] 曱乙酮m <1 <1 <1 <1 丙二醇單曱醚乙酸酯⑴ 「11!姐疳通丨宕铀爾66右·: <] 奴·'令豳1 <1 [表4] 比較例4 比較例5 6 原料之金屬化合物 三異丙醇鋁與雙乙醖丙酮 三異丙醇鋁與雙乙醞丙酮 三異丙醇鋁與雙乙醖庚二 鋅一水合物的混合物 鈷一水合物的混合物 原子比 Α1/Ζη=3·5 Al/Co=2. 0 Al/Zn-2 0 對應的金屬複核錯合物 Al-Zn複核錯合物8 M_Co複核錯合物 A]-7n滿炫雜A% Q 溶解度[g^〇〇g-溶液] 甲乙酮m <1 <1 <1 <1 丙二醇單曱醚乙酸酯⑴ <1 <1 U J浴解度測疋便用的有機溶劑 如表1〜表4可知,金屬複核錯合物的原料的金屬化合 物幾乎不溶於溶劑’可理解本發明的金屬複核錯合物藉由 形成金屬複核的錯合物,可獲得高溶解度。 28 201138970 製造例12 (非水性多元醇之製備) 於安裝有氮氣吹入管的四口燒瓶中裝入聚四亞曱基二 醇(PTG-2000SN,保土谷化學工業公司製,數平均分子量 1993)5〇〇g,於13(TC減壓乾燥!小時。使反應器内降溫, 並使反應1§内成為氣氣氛圍後,安裝攪拌葉及回流冷卻 官。其次,在反應器内放入新戍二醇13.lg、六亞甲基二 異氰酸酯79. 3g及甲乙酮149g,於8(rc反應3小時。之後, 於反應器内加人甲乙酮1G6g,於8代繼續反應3小時,於 異氰酸酯殘留量到達1. 06重量%的時點,冷卻至室溫,並 停止反應。之後一面攪拌一面在反應器内加入丙酮Μ。、 及二乙醇⑯22. 6g’得到非水性多元醇。得到的非水性多 元醇的固體成分濃度為50重量%,相對於固體成分的羥基 價為 35· OmgKOH/g。 製造例1 3 (非水性封端異氰酸酯之製備) 在安裝有氮氣吹入管的四口燒瓶安裝搜拌葉,使該容 器成為氮氣1圍後’在容以放人^他Ηχ(ja_Zn2Al2(C5H7〇2)4(c3H7〇)6 > NMR: 5. 47(S) 4H, C5H7O2) > 4· 21(st, 2H, CsHtO) ^ 3. 92(st, 4H, CsHtO) ' 1. 99-1. 85 (m, 24H, 21 201138970 dOO, 1. 30~1·04 (m, 36H, do)). Production Example 3 (Preparation of metal complexing complex) A metal complexing complex was produced in the same manner as in Production Example 2 except that the solvent was changed from toluene to ethyl acetate. That is, a reflow cooling pipe was installed in a four-necked flask equipped with an air blowing pipe, and the inside of the vessel was made to be a nitrogen atmosphere. Next, 148 g of aluminum triisopropoxide, 2. Olg of dipropylene-branched zinc hydride monohydrate, and dehydrated ethyl acetate 30. 〇mL were placed in a vessel, and the mixture was refluxed at 100 C for 12 minutes to cause a reaction. After that, the inside of the vessel was 5 〇〇c and the solvent was removed under reduced pressure to obtain 2.80 g of A1-Zn complex complex 3 (Molecular formula: Zn2Al2(C5H7〇〇4(C2H5〇)5(C3HT〇) ^ NMR : 5. 38(s, 4Η, C5H?〇2), 4.〇2(st, lH, C3H7〇), 3.80~3.22 (m, l〇H, C2H5〇), 1·99~1. 82( m, 24H, C5H7O2) > 1. 28~0. 90(m, 15H, CzHsO, m, 6H, CIO)) 〇Production Example 4 (Preparation of metal complex complex) Al/Zn Moer of raw material In the same manner as in Production Example 3, a metal complexing complex was produced in the same manner as in Production Example 3. That is, a reflow cooling tube was installed in a four-necked flask equipped with a gas-injection pipe, and The inside of the container is made into a nitrogen atmosphere. Next, 117 g of aluminum triisopropoxide, bis-ethyl acetonide monohydrate 2. 〇 lg and dehydrated ethyl acetate 30. OmL 'at l 〇〇 ° c The reaction was carried out by refluxing for 12 minutes, then '50 C in the vessel and the solvent was removed under reduced pressure' to obtain 2. 6 g of ab Zn complex complex 4 (molecular formula: ZnsAhCCsHTOAoCGHsCOHCdO), 'H NMR: 5. 38 22 201138970 (s, 20H, C5Hv〇2) > 4. 02(st, 1H, C3H7O) ^ 3. 80~3 36(m, 22H, C2H5〇)^ 1. 9 9- 1. 80(m, 120H, C5Ht〇2)> 1. 30~0. 88(m, 33H, C2H5O, m, 6H, C3H7O) 0 Production Example 5 (Preparation of metal complex complex) The A1 / Zn molar ratio of the raw material was changed from 1 _ 〇 to 1.5, except that, in the same manner, a metal complex nucleation was produced in the same manner. Things. Namely, a reflow cooling tube was installed in a four-necked flask equipped with a nitrogen gas injection tube, and the inside of the container was made to be a nitrogen atmosphere. Next, 219 g of aluminum triisopropoxide, 260 g of diethyl acrylate, and 30 mL of dehydrated ethyl acetate were placed in a container, and the reaction was carried out at 1 Torr for 1 hr. The inside of the vessel was 50 C and the solvent was removed under reduced pressure to give 3.44 g of Ab Zn complex complex 5 (molecular formula: Zn2Al3(C5H7〇2)4(C2H5〇^c.〇), NMR: 5.38 ( s, 4H, C5H7〇2), 4.〇2 (st'lH, C3H7〇), 3.80~3.36 (m, 16H, 1. 99-1. 80(m, 24H, C5H7〇2). 1. 30 ~0. 88(m, 24H, C2H5O, m, 6H, C3H7〇)). Production Example 6 (Preparation of metal complex complex) The A1 /Zn molar ratio of the raw material was changed from 丨.〇 to 2. 0. In the same manner as in Production Example 3, a metal complexing complex was produced in the same manner as in Production Example 3. That is, a reflux cooling tube was placed in a four-necked flask equipped with a nitrogen gas injection tube, and the inside of the container was made to be a nitrogen atmosphere. The inside of the mixture was placed in an amount of 2.92 g of diisopropoxide, 2. g of bis-branched propylene-zinc monohydrate, 〇 lg and dehydrated ethyl acetate 30. OmL, and the reaction was carried out by refluxing for 12 minutes. The solvent was removed in a container at 23,389,370 at 50 ° C under reduced pressure to obtain 4. 〇4g Abzn complex complex 6 (molecular formula: ZnzAhCdO+CdOXCO), NMR: 5. 36 (s, 4H: C5H7〇2), 4. 02 (st, 1H, CIO), 3.90~3·30 ( m, 22H, CIO), !· 99-1. 75(m, 24H, C5H7O2) ^ 1. 35~0. 80(ni, 33H, C2H5O, m, 6H, C3H7〇)) 〇 Manufacturing Example 7 (Metal Preparation of a complex complex) A metal complex complex was produced in the same manner as in Production Example 3 except that the A1 /Zn molar ratio of the raw material was changed from 1. 〇 to 3. 0. A reflux cooling tube was installed in the four-necked flask of the gas-injection tube, and the inside of the container was made to be a nitrogen atmosphere. Next, 437 g of aluminum triisopropoxide, & The dehydrated ethyl acetate C\ • 〇 mL ' was refluxed at 100 ° C for 12 minutes to react. After that, the inside of the vessel was 5 ° C and the solvent was removed under reduced pressure to give 5.23 g of abzn complex complex. 7(Molecular formula: Ζη2Α15((:5Η7〇2)4((:2Η5〇)15((:3Η7〇)2, 'H NMR: 5. 36(s, 4H, CsIl7〇〇' 4. 02(st, 2H, CsHtO)' 4. 00~3. 30(m, 32H, C2H5O) ' ^ "^1· 75(m, 24H, C5H7O2)' 1. 35~0. 80(m, 48H, C2H5O, m , 12H, C3H7 )). Production Example 8 (Preparation of metal complexing complex) A metal complexing complex was produced in the same manner as in Production Example 3 except that the Al/Zn molar ratio of the raw material was changed from 1. 〇 to 3.5. That is, a reflow cooling pipe was installed in a four-necked flask equipped with a nitrogen gas injection tube, and the container was made to have a nitrogen atmosphere. Next, in the vessel, 5.1 Og of aluminum triisopropoxide, 2.4 201138970 of diacetyl acetonide zinc monohydrate, and 2.0.0 mL of dehydrated ethyl acetate were placed in a vessel, and the reaction was carried out at 10 (TC reflux for 120 minutes). The solvent was removed at 50 ° C in a vessel to obtain 5.83 g of A Zn complex complex 8 (molecular formula: ZnzAlTCCsHTOzhCdOWCsIhCOz, 1 MR: 5.35 (s, 4H, dCh), 4·02 ( St, 2H, C3H7〇), 4· 00~3. 28(m, 38H, C2H5〇), 1. 9 9-1. 7 5(m, 24H, C5H7O2) > 1. 35~0. 78( m, 57H, C2H5O, m, 12H, C3H7O)). Production Example 9 (Preparation of metal complex complex) According to Non-Patent Document 3 [Dalton Transactions 544-550 (2003)], preparation of metal re-nucleation That is, a reflux cooling tube was installed in a four-necked flask equipped with a nitrogen gas injection tube, and the inside of the container was made to be a nitrogen atmosphere. Secondly, 2.38 g of aluminum triisopropoxide was placed in the container. The hydrate was 1.47 g and the dehydrated hydrazine was 25. OmL, and the reaction was refluxed at 130 C for 1 〇 minutes. Thereafter, it was cooled in a refrigerator at 4 ° C for 2 hours. Make up 5 〇〇c in the apparatus and the solvent was removed under reduced pressure' to obtain 3.2 lg of A-Bu complex complex (molecular formula: c〇Al2(C5H7〇2)4(c3H7〇)4) '4 face: 5.48 ( s, 4H, dCh), 4. 02 (St, 4H, C3Ht0) ' 2· 0〇-l. 90(m, 24H, C5H7O2) ^ 1. 26~1. 〇2(m, 24H, C3H7〇) 'Production Example 1 0 (Preparation of bisheptanedione zinc monohydrate) In a beaker, sodium hydroxide 〇·622g, water 7.50mL and 3, 5-hepta-2·0〇g 'stirred until homogeneous Yellow clear solution. In another 25 201138970 beaker, '2.27 g of zinc sulfate heptahydrate was dissolved in 7.50 mL of water, and the yellow transparent solution was added dropwise thereto. Thereafter, it was stirred at room temperature for 1 hour, and filtered. It was yellowish precipitated and washed with 30 mL of water. It was dried at 5 Torr for 2 hours to obtain 1.74 g of light yellow powder of bisheptanedione zinc monohydrate. (Preparation of metal complex complex) A metal complexing complex was prepared in the same manner as in Production Example j except that 3,5-heptanedione was used. That is, a reflux cooling tube was installed in a four-necked flask equipped with a nitrogen gas injection tube, and the inside of the container was replaced. Nitrogen The atmosphere is - human, in the barn is placed in the isopropanol I.17g, double ethyl hexanone ketone monohydrate 〇. 91 7g and dehydrated 曱 25 25. OmL, at 130 C back to 30 Minutes make the reaction. Thereafter, the mixture was cooled to room temperature, and cesium acetate. 189 g, and 3,5-heptanedione oxime. 37 Torr were added under vigorous stirring. Further, the inside of the vessel was 5 (TC and the solvent was removed under reduced pressure to obtain 87 g of a Zn complex complex 9 (molecular formula: ZnAl2(C7Hn〇2)3(C3H7〇)4(CH3C〇〇), 1h NMR· 5. 46(s, 3H, (Μ〇2), 4. 02(st, 4H, C3H7〇), 2·26~2. 01(m, 12H, C7HnO〇> 2.03(S,3H,CH3COO) 1. 28^0. 92(m, 42H, GHuCh, dO)) 〇 Manufacturing Example 11 (Preparation of metal complex complex) A reflux condenser was attached to a four-necked flask equipped with a nitrogen gas injection tube, and the container was placed. The inside was made into a nitrogen atmosphere. Secondly, aluminum triisopropoxide was placed in the container: .61 g, diacetyl hydrazine zinc monohydrate & 2. 2 hydrazine and dehydrated propylene glycol monoterpene acetic acid to make 12.0 mL, at 13 〇t reflux for 3 minutes to allow the reaction. After that, the inside of the vessel was 5 (TC and decompressed for 3 minutes, and the solvent was concentrated to obtain propylene glycol of Al 2011 Zn complex complex ι 26 26 201138970 to 7.8 〇g. The solution of the monoterpene ether acetate solution was taken to 0.50 g of the cup, dried at 1 ° C for 60 minutes to remove the propylene glycol monoterpene ether acetate, and the weight of the residual component was 〇. 28g. The solid concentration of the solution obtained by this 56% by weight. The molecule of Al-Zn complex complex 10 is Zn2Al3(C5H7〇2)4(cH3〇C3H6〇)7,1HNMR: 5·38(s, 4H, C5H7〇2) ' 4. 〇6( Ffi, 7H, CHsOCaHeO) ' 3. 50-3. 20(m, 35H, CH3〇C3Hb〇) > 2.0〇~i.8〇(m,24H,C5H7〇0'1. 24^ 1. 05( m, 21H, CHLO)). Example 1 (Measurement of Solubility of Compound Complex Complex for Solvent) The solubility of Ab Zn complex complex 1 obtained in Production Example 1 for propylene glycol monoterpene ether acetate or acetophenone was measured. The results are shown in Table 1. [Table 1] - Example 1 Example 2 Example 3 Example 4 Example 5 Metal complex complex atom atom ratio Al-Zn complex complex 1 obtained in Production Example 1 Al/ Zn=20 The Al-Zn complex complex 2 obtained in Production Example 2 The Al-Zn complex complex 3 obtained in Production Example 3 The indole complex complex 4 obtained in Production Example 4 Al-obtained in Production Example 5 Zn complex complex 5 Solubility [g/l〇〇g-solution] Methyl ethyl ketone 111 Propylene glycol monomethyl ether acetate (1) 25 25 Al/U 25 25 Α1/Ζη=1·〇43 43 Α1/Ζη=0.8 11 11 Α1/Ζη=1. 5 100 100 [Organic solvent used for π solubility measurement Example 2 to Example 11 Utilization and In the same manner as in Example 1, the solubility of the obtained metal complex complex complex with respect to propylene glycol monomethyl ether acetate or acetophenone was measured in Production Example 2 to Production Example. The results are combined and shown as Table 1 and Table 2. 27 201138970 [Table 2] Example 6 Example 7 Example 8 Example 9 Example 10 Example 11 Metal complex complex complex Production of the Α1-Ζπ complex complex 6 obtained in Example 6 Production of Al-Zn obtained in Example 7 Composite complex 7 Al-Zn complex complex 8 obtained in Production Example 8 A-Zn complex complex 9 obtained in Production Example 9 obtained by Al-Co complexation Production Example 9 Al-Zn complex error obtained in Production Example 11 ]]0 atomic ratio Α1/Ζη=2. 0 A)/Zn-3.〇Al/Zn=3.5 Al/Co=2 0 Al/Zn=2. 0 'Al/Zn=l. 5 Solubility [g ^OOg-solution] methyl ethyl ketone (1) 100 25 11 25 25 25 100 propylene glycol monoterpene ether acetate tu "" Ί cold acne 丨 伯 66 66 66 66 100 100 100 100 100 100 25 25 25 100 Comparative Example 1 ~ Comparative Example 6 (Measurement of Solubility of Recombinant Compound Raw Material in Solvent) The metal compound which is a raw material of the metal complexing complex used in Production Example i to Production Example 5 and Production Example 8 to Production Example 11 was measured in the same manner as in Example 1. The solubility of propylene glycol monoterpene ether acetate or methyl ethyl ketone. The results are shown in Table 3 and Table 4. [Table 3] Comparative Example 1 Comparative Example 2 Comparative Example 3 Metal Compound 3 of Raw Material Aluminum isopropoxide and diethyl acetoacetate aluminum triisopropoxide and diethyl acetoacetate mixture of aluminum triisopropoxide and zinc acetoacetate zinc monohydrate mixture of zinc monohydrate zinc atom monohydrate atomic ratio Al /Zn=l. 0 Α1/Ζη=0. 8 Α1/Ζη=1.5 Corresponding metal complex complex Al-Zn complex complex 1, 2, 3 Al-Zn complex complex 4 Al-Zn complex error Compound 5, 10 Solubility [g/100g-solution] Ethyl Ketone m <1 <1 <1 <1 Propylene glycol monoterpene ether acetate (1) "11! Sister 疳 丨宕 丨宕 66 66 right · : <] slave · ' 豳 1 < 1 [Table 4] Comparative Example 4 Comparative Example 5 6 Metal compound of raw material Aluminum triisopropoxide and diacetyl acetonide Aluminum triisopropoxide and diacetyl acetonide Mixture of aluminum propoxide and diacetyl hydrazine dizinc monohydrate. Cobalt monohydrate mixture atomic ratio Α1/Ζη=3·5 Al/Co=2. 0 Al/Zn-2 0 Corresponding metal complex complex Al-Zn complex complex 8 M_Co complex complex A]-7n full bright A% Q Solubility [g^〇〇g-solution] methyl ethyl ketone m <1 <1 <1 <1 <1 propylene glycol monoterpene Ether acetate (1) <1 <1 UJ bath solution Such as Table 1 ~ Table 4, the metal compound raw material metal complexes review hardly soluble in a solvent 'review understood metal complexes of the present invention is formed by metal complexes for review, a high solubility. 28 201138970 Production Example 12 (Preparation of non-aqueous polyol) Polytetradecyl diol (PTG-2000SN, manufactured by Hodogaya Chemical Industry Co., Ltd., number average molecular weight 1993) was placed in a four-necked flask equipped with a nitrogen gas injection tube. 5〇〇g, at 13 (TC dry under reduced pressure! hours. After cooling the reactor, and make the reaction 1 § into an atmosphere, install the stirring blade and reflux cooling officer. Second, put new in the reactor戍diol 13.lg, hexamethylene diisocyanate 79.3 g and methyl ethyl ketone 149 g, reacted at 8 (rc for 3 hours. Thereafter, 1 g 6 g of methyl ethyl ketone was added to the reactor, and the reaction was continued for 3 hours in the 8th generation for isocyanate residue. When the amount reaches 1.06 wt%, it is cooled to room temperature, and the reaction is stopped. Then, acetone ruthenium is added to the reactor while stirring, and diethanol 1622. 6 g' to obtain a non-aqueous polyol. The solid content concentration of the alcohol was 50% by weight, and the hydroxyl value of the solid content was 35.0 mg/g. Production Example 1 3 (Preparation of non-aqueous blocked isocyanate) Installation was carried out in a four-necked flask equipped with a nitrogen gas injection tube. Leaf, make the volume After the device became a nitrogen gas, it was placed in the room to let it go.
Polyu她ne公司製’六亞甲基二異氰酸醋三聚體,_ 21.3重量%)50.2g、及經脫水的甲乙_ iug,於攪拌 5分鐘。之後’在容器安裝滴加漏斗,保# 4G°C的狀態, 花費1小時對於容器内滴加曱乙酮肟 器安裝回流冷卻管’於701使反應i 氰酸酯的時點冷卻至室溫,停止反應 22.2g。之後,在容 小時,於檢測不到異 ’獲得非水性封端異 29 201138970 氰酸醋。得到的非水性封端異氰酸酯的固體成分濃度為4〇 重量%,有效 NCO 1.36mmol/g。 在此,有效NC0係指加熱封端異氰酸酯而使封端劑解 離成能夠反應的異氰酸酯基(NC0)的量。意指,有效NC0為 1 · 36mmol /g係指在封端異氰酸酯ig中,潛在含有1. 3gmm〇i 的異氰酸酯基(封端劑由於解離而再生)。 製造例14 (水性封端異氰酸酯之製備) 於安裝有氮氣吹入管的四口燒瓶安裝攪拌葉及回流冷 卻管,使該容器内成為氮氣氛圍。其次,在容器内放入Polyu, a hexamethylene diisocyanate trimer, _ 21.3 wt%, 50.2 g, and dehydrated methyl _ iug were stirred for 5 minutes. Then, 'install the dropping funnel in the container, keep the state of #4G °C, and take 1 hour to install the reflux cooling tube in the container with the dropwise addition of the ethyl ketone oxime. At 701, the reaction cyanate is cooled to room temperature. Stop the reaction 22.2g. After that, in the hour after, no non-aqueous end-clearing was obtained. The obtained nonaqueous blocked isocyanate had a solid concentration of 4% by weight and an effective NCO of 1.36 mmol/g. Here, the effective NC0 means an amount by which the blocked isocyanate is heated to dissociate the blocking agent into a reactable isocyanate group (NC0). It means that the effective NC0 is 1 · 36 mmol / g means that in the blocked isocyanate ig, the isocyanate group of 1. 3 g mm〇i is potentially contained (the blocking agent is regenerated by dissociation). Production Example 14 (Preparation of aqueous blocked isocyanate) A stirring blade and a reflux cooling tube were attached to a four-necked flask equipped with a nitrogen gas injection tube to make the inside of the container a nitrogen atmosphere. Second, put in the container
Coronate HX(Japan Polyurethane 公司製,六亞甲基二異 氰酸醋三聚體,NC0 21. 3重量%)49. Og、及聚乙二醇單甲 喊(Aldrich公司製’平均分子量550) 13. 7g,於8(rc使反 應9小時。之後,在容器内加入甲乙酮肟ι8.以及甲乙綱 20. 〇g ’於80°C使反應3小時,於檢測不到異氰酸酯的時 點冷卻至室溫,停止反應。 一面攪拌得到的組成物1 〇〇g —面緩慢加入水15〇g, 使水性封端異氰酸酯在水中乳化分散。從得到的乳化分散 液以蒸發器除去殘留的甲乙酮。得到的水性封端異氰酸酉旨 為固體成分濃度為39重量%,有效NC0為1. i9mmol/g的安 定分散液。 實施例12 (非水性一液型熱固性組成物中的金屬複核錯合物的觸媒 活性評價) 30 201138970 以表5所示的組成混合製造例12得到的非水性多元 醇、製造例1 3得到的非水性封端異氰酸酯、及甲乙酮後, 一面攪拌一面添加製造例1得到的A卜Zn複核錯合物1的 5重量%丙酮溶液,得到含有金屬複核錯合物的非水性一液 型熱固性組成物。 於110°C、120°C及130°C烘烤得到的非水性一液型熱 固性組成物後,測定财溶劑性。結果如表5所示。 [表5] 實施例12 實施例13 實施例14 實施例15 實施例16 非水性多元醇m 10. 〇g 10. 〇g 10. 〇g 10. 〇g 10. 〇g 非水性封端異氰酸酯ί2) 2.26g 2.26g 2. 26g 2. 26g 2. 26g 甲乙酮 7. 54g 7. 54g 7. 54g 7. 54g 7. 54g 製造例1得到的 製造例2得到的 製造例3得到的 製造例4得到的 製造例5得到的 Al-Zn複核錯合 Al-Zn複核錯合 Al-Zn複核錯合 Al-Zn複核錯合 Al-Zn複核錯合 觸媒落液 物1的5重量% 物2的5重量% 物3的5重量% 物4的5重量% 物5的5重量% 丙酮溶液 丙酮溶液 丙酮溶液 丙酮溶液 丙酮溶液 1.18g 1.18g 1.18g 1.18g 1.18g 金屬複核錯合物相對 於固體成分的比例 1重量!¾ 1重量% 1重量% 1重量% 1重量% 耐溶劑性(凝膠分率) 110°C(3) 22% 18% 10% 1¾ 34% 120°C(3) 58% 55¾ 56% 51% 56% 130°C(3> 87¾ 84¾ 86¾ 88% 86% (1) 製造例12得到的非水性多元醇 (2) 製造例13得到的非水性封端異氰酸酯 (3) 烘烤溫度 實施例1 3〜實施例2 0 以表5及表6所示組成,利用與實施例12同樣的方 法,得到含有金屬複核錯合物的非水性一液型熱固性組成 物。 於110°C、120°C及130°C烘烤得到的非水性一液型熱 固性組成物後,測定财溶劑性。結果合併顯示如表5、表6。 31 201138970 [表6] 實施例17 實施例18 實施例19 實施例20 實施例21 非水性多元醇(|) 10. 〇g 10. 〇g 10. 〇g 10. 〇g 10. 〇g 非水性封端異氰酸酯(2) 2. 26g 2.26g 2.26g 2_26g 2_26g 甲乙酮 7. 54g 7. 54g 7. 54g 7. 54g 7. 54g • 製造例2得到的 觸媒溶液 製造例6得到的 Al-Zn複核錯合 物6的5重量% 丙酮溶液 1.18g 製造例7得到的 ΑΙ-Ζη複核錯合 物7的5重量% 丙酮溶液 l_18g 製造例8得到的 Al-Zn複核錯合 物8的5重量% 丙酮溶液 l_18g 製造例Π得到 的Al-Zn複核錯 合物10的56重 量%丙二醇單甲 醚乙酸酯溶液 0.105g Al-Zn複核錯合 物2的5重量% 丙酮溶液 0. 59g 及 三乙醞丙酮鋁的 5重量%丙酮溶 液 0. 59g 金屬複核錯合物相對 於固體成分的比例 1重量% 1重量% 1重量% 1重量% 1重量!% 耐溶劑性(凝膠分率) 110°C(3) 37% 36¾ 21% 38% 29% 12(TCm) 55% 52¾ 50¾ 54% 43% 130°C<3) 83¾ 83% 80¾ 84¾ 80% (1) 製造例12得到的非水性多元醇 (2) 製造例】3得到的非水性封端異氱酸酯 (3) 烘烤溫度 比較例7 (非水性一液型熱固性組成物中的無添加觸媒的硬化性評Coronate HX (made by Japan Polyurethane Co., Ltd., hexamethylene diisocyanate vinegar trimer, NC0 21. 3 wt%) 49. Og, and polyethylene glycol monogram (Aldrich's 'average molecular weight 550') 13 7g, the reaction was carried out for 9 hours at 8 rc. Thereafter, the reaction was carried out for 3 hours at 80 ° C in the container by adding methyl ethyl ketone oxime 8 and y g. 20. 〇g ', and cooling to room temperature at the time when the isocyanate was not detected. The reaction was stopped. The obtained composition was stirred for 1 〇〇g, and 15 μg of water was slowly added to the surface to emulsify and disperse the aqueous blocked isocyanate in water. The obtained emulsified dispersion was removed by an evaporator to remove residual methyl ethyl ketone. The blocked isocyanic acid is a solid concentration of 39% by weight, and the effective NC0 is 1. 9 mmol/g of a stability dispersion. Example 12 (Touch of a metal complex complex in a non-aqueous one-liquid thermosetting composition) Evaluation of the activity of the vehicle) 30 201138970 The non-aqueous polyol obtained in the production example 12, the non-aqueous blocked isocyanate obtained in Production Example 13, and methyl ethyl ketone were mixed in the composition shown in Table 5, and then the A obtained in Production Example 1 was added while stirring. Bu Zn complex A 5% by weight acetone solution of the core complex 1 to obtain a non-aqueous one-liquid thermosetting composition containing a metal complexing complex. A non-aqueous one-liquid type obtained by baking at 110 ° C, 120 ° C and 130 ° C After the thermosetting composition, the solvent property was measured. The results are shown in Table 5. [Table 5] Example 12 Example 13 Example 14 Example 15 Example 16 Non-aqueous polyol m 10. 〇g 10. 〇g 10 〇g 10. 〇g 10. 〇g Non-aqueous blocked isocyanate ί2) 2.26g 2.26g 2. 26g 2. 26g 2. 26g methyl ethyl ketone 7. 54g 7. 54g 7. 54g 7. 54g 7. 54g Manufacturing Example 1 The Al-Zn complex-nuclear-alloyed Al-Zn complex-nucleated Al-Zn complex-nuclear-aligned Al-Zn complex-nuclear-aligned Al-Zn complex obtained in Production Example 5 obtained in Production Example 4 obtained in Production Example 2 5 wt% of the mismatched catalyst liquid 1 5 wt% of the material 2 5 wt% of the material 3 5 wt% of the material 4 5 wt% of the material 5 acetone solution acetone solution acetone solution acetone solution acetone solution 1.18 g 1.18 g 1.18g 1.18g 1.18g Ratio of metal complex complex to solid content 1 weight! 3⁄4 1% by weight 1% by weight 1% by weight 1% by weight Solvent resistance (gel fraction) 110 ° C (3) 22% 18% 10% 13⁄4 34% 120 ° C (3) 58% 553⁄4 56% 51% 56% 130 ° C (3 > 873⁄4 843⁄4 863⁄4 88% 86% (1) Non-aqueous polyol obtained in Production Example 12 (2) Non-aqueous blocked isocyanate obtained in Production Example 13 (3) Baking temperature Example 1 3 to Example 2 0 Table 5 and Table 6 are shown. In the same manner as in Example 12, a non-aqueous one-liquid thermosetting composition containing a metal complexing complex was obtained. After the nonaqueous one-liquid thermosetting composition obtained by baking at 110 ° C, 120 ° C and 130 ° C, the solvent property was measured. The results are combined and shown in Table 5 and Table 6. 31 201138970 [Table 6] Example 17 Example 18 Example 19 Example 20 Example 21 Non-aqueous polyol (|) 10. 〇g 10. 〇g 10. 〇g 10. 〇g 10. 〇g Non-aqueous Blocked isocyanate (2) 2. 26g 2.26g 2.26g 2_26g 2_26g Methyl ethyl ketone 7. 54g 7. 54g 7. 54g 7. 54g 7. 54g • The Al-Zn complex nucleation obtained in the catalyst solution obtained in Production Example 2 5% by weight of the compound 6 acetone solution 1.18 g 5% by weight of the ΑΙ-Ζη complex nucleus complex 7 obtained in Production Example 7 Acetone solution l_18 g The 5% by weight acetone solution of the Al-Zn complex nucleus complex 8 obtained in Production Example 8. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 5 wt% acetone solution of aluminum 0. 59 g ratio of metal complex complex to solid content 1 wt% 1 wt% 1 wt% 1 wt% 1 wt%% Solvent resistance (gel fraction) 110 ° C ( 3) 37% 363⁄4 21% 38% 29% 12(TCm) 55% 523⁄4 503⁄4 54% 43% 130°C<3) 833⁄4 83% 803⁄4 843⁄4 80% (1) Manufacture 12 obtained non-aqueous polyol (2) Production Example] 3 Non-aqueous blocked isononate (3) Baking temperature Comparative Example 7 (hardening of non-additive catalyst in non-aqueous one-liquid thermosetting composition) Sexual evaluation
以表7所示組合,混合製造例1 2得到的非水性多元 醇、製造例13得到的非水性封端異氰酸酯、及甲乙酮,得 到不含觸媒的非水性一液型熱固性組成物。 於110°C、120°C及130°C烘烤得到的非水性一液型熱 固性組成物後,測定对溶劑性。結果如表7。 32 201138970 [表7] #水性多元醇⑴ 比較例7 10. 〇g S---- ---- 比較例8 10. 〇g 非不性封端異氱酸酷(2) 2. 26g 曱乙酮 7. 54g -------- 2. 26g 觸媒溶液 無 ~-r~--7· 54g 一'月桂酸二丁基錫的5重量%丙綱溶液 ---- l-18g__ 風/两做似箱σ物相對於固體成分的比例 嘢洛劑性(凝膠分率) 110°c(3) 120〇C(3) 130〇C(3) 0重重% 0% 1% 17% ---- 1重量% 0% 1% 700/ U)製造例u得到的非水性多元醇 --—- 巧)製造例13得到的非水性封端異氰酸酯 (3)烘烤溫度 由表5〜表7可知,比較例7於13{rc的凝膠分率與實 施例12、13及19於1 lot的凝膠分率為同程度,可知由 於A卜Zn複核錯合物卜2及8的添加,使得封端劑的解離 溫度降低約2 0 °C。 又,實施例14及15於1201的凝膠分率大於比較例7 於130t的凝膠分率許多,彳知由於複核錯合物3 及4的添加,使得封端劑的解離溫度降低1 〇 c以上。 又,實施例16〜18、20於1HTC的凝膠分率,大於比 車乂例7於13ITC的凝膠分率許多,可知由於Α^Ζη複核錯 合物5〜8、1 〇的添加,使得封端劑的解離溫度降低2〇。匸以 上。 比較例8 (非水性一液型熱固性組成物中的公知觸媒的硬化性評價) ,以表7所示組成混合製造例12得到的非水性多元醇、 t ^例13得到的非水性封端異氰酸醋、及甲乙酮後,—面 33 201138970 攪拌一面添加二月桂酸二丁基錫的5重量%丙酮溶液,得到 含有為公知觸媒的二月桂酸二丁基錫的非水性一液型熱固 性組成物。 於11〇τ、12(TC及130。(:烘烤得到的非水性一液型熱 固性組成物後,測定耐溶劑性。組成及結果合併顯示如表 由表5~表7可知,比起比較例8,實施例丨2〜2〇在各 溫度的凝膠分率較高。由此可知Α^Ζη複核錯合物1〜8、 10比起二月桂酸二丁基錫有更優異的封端劑低溫解離活 性。 貫施例21 (非水性一液型熱固性組成物中,含有金屬複核錯合物以 的金屬化合物之系的硬化性評價) 以表6所示組成混合製造例12得到的非水性多元抵 製造例13得到的非水性封端異氰酸酯、及甲乙嗣後,— 授摔一面添加製造例2得到的Ai-Zn複核錯合物2的5 量%丙酮溶液、及三乙醯丙酮鋁的5曹番 。至:!: /6丙酮溶液,得 含有金屬複核錯合物以外的金屬化合物的非水性—液型 固性組成物。 MUOt'UiTCAUOt供烤得到的非水性—液型 固性組成物後,測定耐溶劑性。組成及处 人久、果合併顯示如 β . 實施例22~實施例25 (含有金屬複核錯合物之水性一液型熱固性組成物之製備) 34 201138970 於安裝有氮氣吹入管的四口燒瓶放入聚四亞曱基二醇 (PTG-2000SN,保土谷化學工業公司製,數平均分子量 1 993) 50 0g,於13〇。(:減壓乾燥1小時。使反應器内降溫, 並使反應器内成為氮氣氛圍後,在反應器安裝攪拌葉及回 流冷卻管。接著’於反應器内放入二羥甲基丙酸16. 9g、 六亞甲基二異氰酸酯79. 3g及甲乙酮I49g,於801反應3 小時。之後’加入曱乙酮l〇6g,於8(TC繼續反應3小時, 於異氰酸酯殘留量到達1. 1 〇重量%的時點冷卻至室溫並停 止反應。一面攪拌一面在反應器内加入丙酮341g及二乙醇 胺23. 5g,得到〇H末端預聚物溶液。 以表8所示組成,一面攪拌一面添加iRGAN〇x ι〇1〇(阻 滯苯紛系抗氧化劑,Chiba Japan公司製)、三乙胺及觸媒 溶液到所得到的〇H末端預聚物溶液,之後一面攪拌一面緩 慢添加水,使在水中乳化分散。從得到的乳化分散液以蒸 發器除去殘留的曱乙酮及丙酮。得到的水性多元醇為固體 成分濃度30重量%,相對於固體成分的羥基價為 35. OmgKOH/g的安定分散液。 之後,以表8所示組成,添加製造例14得到的水性封 端異氰酸酯並混合,得到含有金屬複核錯合物的水性—液 型熱固性組成物。得到的水性一液型熱固性組成物為固體 成分濃度31重量%的安定分散液。 (水性一液型熱固性組成物中的金屬複核錯合物的觸媒活 性評價) ' / 於1201及13〇t:烘烤上述得到的水性一液型熱固性 35 201138970 組成物後,測定财溶劑性。組成及結果合併顯示如表8。 [表8] 實施例22 實施例23 實施例24 實施例25 比較例9 0H末端預聚物溶液 40. 0g 40. 0g 40. 0g 40. 0g 40. 0g IRGAN0X 1010 (1) 0. 0400g 0. 0400g 0. 0400g 0. 0400g 0.0400g 三乙胺 0. 405g 0. 405g 0· 405g 0. 405g 0.405g 水 46. 7g 46. 7g 46. 7g 46. 7g 46. 7g 製造例1得到的 製造例2得到的 製造例9得到的 製造例10得到 Al-Zn複核錯合 Al-Zn複核錯合 A1-Co複核錯合 的Al-Zn複核錯 觸媒溶液 物1的5重量% 物2的5重量% 物的5重量%丙 合物9的5重量% 無 丙酮溶液 丙酮溶液 酮溶液 丙酮溶液 4. 82g 4.82g 4. 82g 4. 82g 水性封端異氰酸酯<2) 10. 5g 10. 5g 10. 5g 10. 5g 10. 5g 金屬複核錯合物相對 於固逋成分的比例 1重量% 1重量% 1重量% ]重量% 0重量% 耐溶劑性(凝膠分率) 120°C<3) 47¾ 42% 20% 13% 0% 130°C<3) 78% 72% 60% 50% 2% (1) 阻滯苯酚系抗氧化劑(Chiba Japan公司製) (2) 製造例14得到的水性封端異氱酸酯 (3) 烘烤溫度 比較例9 (水性一液型熱固性組成物中的無添加觸媒的硬化性評價) 以表8所示組成,利用與實施例22同樣的方法,得到 不含觸媒的水性一液型熱固性組成物。得到的水性一液型 熱固性組成物為固體成分濃度31重量%的安定分散液。 於120°C及130°C烘烤上述得到的水性一液型熱固性 組成物後,測定财溶劑性。組成及結果合併顯示如表8。 由表8可知,比起比較例9,實施例22〜25的各溫度 的凝膠分率較高。由此可知,由於金屬複核錯合物的添加 使得封端劑解離溫度降低。 比較例1 0〜比較例12 (水性一液型熱固性組成物中的公知觸媒的觸媒活性評價) 以表9所示組成,利用與實施例22同樣的方法,得到 36 201138970 $ 含有公知觸媒的水性一液型熱固性組成物。得到的水性一 液型熱固性組成物為固體成分濃度31重量%的安定分散 液。 於120°C及130°C烘烤上述得到的水性一液型熱固性 組成物後,測定耐溶劑性。組成及結果合併顯示如表9。 [表9] 比較例10 比較例Π 比較例12 比較例13 比較例14 0H末端預聚物溶液 40. Og 40. 0g 40. Og 40. Og 40. Og IRGAN0X 1010 ⑴ 0. 0400g 0. 0400g 0. 0400g 0. 0400g 0.0400g 三乙胺 0. 405g 0.405g 0. 405g 0· 405g 0. 405g 水 46. 7g 46. 7g 46. 7g 46. 7g 46. 7g 觸媒溶液 二月桂酸二丁基 錫的5重量%丙 酮溶液 4.82g 三苯基鉍的5重 量%丙酮溶液 4_82g 二-乙基己酸鋅 的5重量%丙酮 溶液 4. 82g 三乙醯丙酮鋁的 5重量%丙酮溶液 4.82g 二乙酿丙綱辞_ 水合物的5重量 %丙酮溶液 4. 82g 水性封端異氰酸酯(2) 10. 5g 10. 5g 10. 5g 10. 5g 10. 5g 金屬複核錯合物相對 於固體成分的比例 1重量56 1重量% 1重量% 1重量% 1重量% 耐溶劑性(凝膠分率) 120°C<3) 3% 0% 0% 7% 2% 130°C<3) 68% 80% 69% 45% 67¾ (1)阻滯笨酚系抗氧> ί匕劑(Chiba Japan公司製) (2) 製造例14得到的水性封端異氰酸酯 (3) 烘烤溫度 由表8、表9可知,比起比較例10〜12,實施例22~25 於120°C的凝膠分率較高。由此等結果可知,本發明的金 屬複核錯合物比起公知觸媒具有更為優異的封端劑低溫解 離活性。 比較例1 3〜比較例14 (水性一液型熱固性組成物中,複核錯合物的構成金屬化合 物的觸媒活性評價) 以表9所示組成,利用與實施例22同樣的方法,得到 含有為A1 -Zn複核錯合物的構成金屬即A1化合物或Zn化 合物的水性一液型熱固性組成物。得到的水性一液型熱固 37 201138970 性組成物為固體成分濃度31重量%的安定分散液。 、於”(TC及13(rc烘烤上述得到的水性—液型熱固性 組成物後,測定耐溶劑性,結果合併顯示如表9。 由表8、表9可知,比起比較例13〜14,實施例22〜25 於各溫度的凝膠分率較高。由此等結果可知,本發明的金 屬複核錯合物,比起其構成金屬的化合物,具有更高的封 端劑低溫解離活性,可知藉由製成複核錯合物,可獲得高 活性》 〇 [產業利用性] 由本發明的金屬複核錯合物構成的封端劑解離觸媒, 由於顯示高於公知解離觸媒的封端劑解離觸媒活性因此 在產業上極為有用,含有本發明的封端劑解離觸媒的一液 型熱固性組成物,於低溫的解離效果高,於能量方面有利, 而且即便在低耐熱性的基材的可利用性亦高。 又2010年1月29日提申的日本專利申請案 2010-017864號說明書、申請專利範圍及摘要的全文在此 W用,並納入當做本發明的說明書的揭示。 【圖式簡單說明】 jfe. 〇 【主要元件符號說明】 無。 38The non-aqueous polyol obtained in Production Example 12, the non-aqueous blocked isocyanate obtained in Production Example 13, and methyl ethyl ketone were mixed in the combination shown in Table 7, and a non-aqueous one-liquid thermosetting composition containing no catalyst was obtained. After the nonaqueous one-component thermosetting composition was baked at 110 ° C, 120 ° C and 130 ° C, the solvent property was measured. The results are shown in Table 7. 32 201138970 [Table 7] #aqueous polyol (1) Comparative Example 7 10. 〇g S---- ---- Comparative Example 8 10. 〇g Non-inactive blocking of isophthalic acid (2) 2. 26g 曱Ethyl Ketone 7. 54g -------- 2. 26g Catalyst Solution No ~-r~--7· 54g A '5% by weight of dibutyltin laurate solution---- l-18g__ wind /Two ratio of box σ to solid content 嘢 剂 剂 (gel fraction) 110 ° c (3) 120 〇 C (3) 130 〇 C (3) 0 weight % 0% 1% 17% - 1% by weight 0% 1% 700 / U) Non-aqueous polyol obtained in the production example u---- The non-aqueous blocked isocyanate obtained in Production Example 13 (3) Baking temperature is shown in Table 5~ As can be seen from Table 7, the gel fraction of the sample of Example 7 at 13{rc was the same as that of Examples 12, 13 and 19 at 1 lot, and it was found that the Ab Zn complex complexes 2 and 8 were The addition causes the dissociation temperature of the blocking agent to decrease by about 20 °C. Further, the gel fractions of Examples 14 and 15 at 1201 were larger than those of Comparative Example 7 at 130 t, and it was found that the dissociation temperature of the capping agent was lowered by 1 由于 due to the addition of the complex complexes 3 and 4. c or more. Further, in Examples 16 to 18 and 20, the gel fraction of 1HTC was larger than that of ruthenium Example 7 at 13ITC, and it was found that Α^Ζη complex complex 5~8, 1 〇 was added, The dissociation temperature of the blocking agent is lowered by 2 Torr. More than one. Comparative Example 8 (Evaluation of the hardenability of a known catalyst in a non-aqueous one-liquid type thermosetting composition), a non-aqueous polyol obtained by mixing the production example 12 shown in Table 7, and a non-aqueous capping obtained in Example 13 After isocyanic acid vinegar and methyl ethyl ketone, No. 33 201138970 A 5% by weight acetone solution of dibutyltin dilaurate was added while stirring to obtain a non-aqueous one-liquid thermosetting composition containing dibutyltin dilaurate which is a known catalyst. After 11 〇τ, 12 (TC and 130. (:: non-aqueous one-component thermosetting composition obtained by baking, the solvent resistance was measured. The composition and results are shown in the table as shown in Table 5 to Table 7, compared with In Example 8, the 丨2~2〇 examples had higher gel fractions at each temperature, and it was found that Α^Ζη complex complexes 1 to 8, 10 had superior blocking agents than dibutyltin dilaurate. The low-temperature dissociation activity. Example 21 (Evaluation of the hardenability of the metal compound containing the metal complexing complex in the non-aqueous one-liquid type thermosetting composition) The non-aqueous property obtained by mixing the production example 12 shown in Table 6 After the non-aqueous blocked isocyanate obtained in Production Example 13 and the methyl ethyl hydrazine, the 5% by volume acetone solution of the Ai-Zn complex complex 2 obtained in Production Example 2 and the aluminum acetonate aluminum carbonate were added. Cao Fan. To::: /6 Acetone solution, a non-aqueous-liquid solid composition containing a metal compound other than the metal complex complex. MUOt'UiTCAUOt non-aqueous-liquid solid composition for baking After that, the solvent resistance was measured. The composition and the person were long and the results were combined. For example, β. Example 22 to Example 25 (Preparation of aqueous one-component thermosetting composition containing metal complexing complex) 34 201138970 Polytetramethylene glycol was placed in a four-necked flask equipped with a nitrogen gas injection tube ( PTG-2000SN, manufactured by Hodogaya Chemical Industry Co., Ltd., number average molecular weight 1 993) 50 0g, at 13 〇. (: drying under reduced pressure for 1 hour. The temperature inside the reactor is lowered, and the inside of the reactor is made into a nitrogen atmosphere. The stirring blade and the reflux cooling tube were installed in the reactor. Then, 1. 9 g of dimethylolpropionic acid, 79.3 g of hexamethylene diisocyanate and I49 g of methyl ethyl ketone were placed in the reactor, and reacted at 801 for 3 hours. 6 g of ethyl ketone, 6 g, continued to react for 3 hours at TC, and cooled to room temperature when the residual amount of isocyanate reached 1.1% by weight, and the reaction was stopped. 341 g of acetone and diethanolamine 23 were added to the reactor while stirring. 5 g, a 〇H-terminal prepolymer solution was obtained. In the composition shown in Table 8, iRGAN〇x ι〇1〇 (blocking benzene-based antioxidant, manufactured by Chiba Japan Co., Ltd.), triethylamine and touch were added while stirring. The medium solution is obtained from the obtained 〇H end The solution of the solution is then slowly added with water while stirring to disperse and disperse in water. The obtained emulsified dispersion is removed by an evaporator to remove residual ketone and acetone. The obtained aqueous polyol has a solid concentration of 30% by weight, relative to The stability of the hydroxyl group of the solid content was 30.3 KOH/g. The aqueous blocked isocyanate obtained in Production Example 14 was added and mixed to obtain an aqueous-liquid type containing a metal complex complex. The thermosetting composition: The obtained aqueous one-component thermosetting composition was a stable dispersion having a solid concentration of 31% by weight. (Evaluation of the catalytic activity of the metal complexing complex in the aqueous one-component thermosetting composition) ' / at 1201 and 13〇t: Baking the above-mentioned aqueous one-liquid thermosetting 35 201138970 composition, measuring the solvent property . The composition and results are combined as shown in Table 8. [Example 8] Example 22 Example 23 Example 24 Example 25 Comparative Example 9 0H terminal prepolymer solution 40. 0g 40. 0g 40. 0g 40. 0g 40. 0g IRGAN0X 1010 (1) 0. 0400g 0. 0400g 0. 0400g 0. 0400g 0.0400g Triethylamine 0. 405g 0. 405g 0· 405g 0. 405g 0.405g Water 46. 7g 46. 7g 46. 7g 46. 7g 46. 7g Production Example 2 obtained in Production Example 1 Production Example 10 obtained in Production Example 9 obtained 5 wt% of 5% by weight of Al-Zn complex-nuclear solution 1 of Al-Zn complex-nuclear-aligned Al-Zn complex-nucleated A1-Co complex-nuclear complex 1 5% by weight of the propylene compound 9 5% by weight acetone-free solution acetone solution ketone solution acetone solution 4. 82g 4.82g 4. 82g 4. 82g aqueous blocked isocyanate < 2) 10. 5g 10. 5g 10. 5g 10. 5g 10. 5g ratio of metal complex complex to solid content 1% by weight 1% by weight 1% by weight]% by weight 0% by weight Solvent resistance (gel fraction) 120 °C <3) 473⁄4 42 % 20% 13% 0% 130°C<3) 78% 72% 60% 50% 2% (1) Blocking phenol-based antioxidant (manufactured by Chiba Japan Co., Ltd.) (2) Water-based end-end difference obtained in Production Example 14 Phthalate ester (3) baking Temperature Comparative Example 9 (Evaluation of the curability of the additive-free catalyst in the aqueous one-liquid thermosetting composition) The aqueous one-liquid thermosetting solution containing no catalyst was obtained in the same manner as in Example 22 using the composition shown in Table 8. Composition. The obtained aqueous one-liquid type thermosetting composition was a stable dispersion having a solid concentration of 31% by weight. The aqueous one-liquid thermosetting composition obtained above was baked at 120 ° C and 130 ° C, and then the solvent property was measured. The composition and results are combined as shown in Table 8. As is clear from Table 8, the gel fraction of each of Examples 22 to 25 was higher than that of Comparative Example 9. From this, it is understood that the dissociation temperature of the blocking agent is lowered due to the addition of the metal complexing complex. Comparative Example 1 0 to Comparative Example 12 (Evaluation of Catalytic Activity of Known Catalyst in Aqueous One-Liquid Thermosetting Composition) The composition shown in Table 9 was obtained in the same manner as in Example 22 to obtain 36 201138970 $ containing a known touch. A water-based one-component thermosetting composition of the medium. The obtained aqueous one-component thermosetting composition was a stable dispersion having a solid concentration of 31% by weight. The aqueous one-liquid thermosetting composition obtained above was baked at 120 ° C and 130 ° C, and the solvent resistance was measured. The composition and results are combined as shown in Table 9. [Table 9] Comparative Example 10 Comparative Example Π Comparative Example 12 Comparative Example 13 Comparative Example 14 0H terminal prepolymer solution 40. Og 40. 0g 40. Og 40. Og 40. Og IRGAN0X 1010 (1) 0. 0400g 0. 0400g 0 0400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Weight % acetone solution 4.82g Triphenylsulfonium 5% by weight acetone solution 4_82g bis-ethylhexanoate zinc 5% by weight acetone solution 4. 82g Triethylene acetonate aluminum 5% by weight acetone solution 4.82g Diethylene C _ 5% by weight of acetone acetate solution 4. 82g aqueous blocked isocyanate (2) 10. 5g 10. 5g 10. 5g 10. 5g 10. 5g ratio of metal complex complex to solids 1 weight 56 1% by weight 1% by weight 1% by weight 1% by weight Solvent resistance (gel fraction) 120 ° C < 3) 3% 0% 0% 7% 2% 130 ° C < 3) 68% 80% 69% 45 % 673⁄4 (1) Blocking phenol-based anti-oxidation agent (manufactured by Chiba Japan Co., Ltd.) (2) Aqueous blocked isocyanate obtained in Production Example 14 (3) Baking temperature is known from Tables 8 and 9, Comparative Example 10 12, Examples 22 to 25 in a gel fraction higher to 120 ° C. From these results, it is understood that the metal complex complex according to the present invention has a more excellent blocking agent low temperature dissociation activity than a known catalyst. Comparative Example 1 3 to Comparative Example 14 (Evaluation of Catalytic Activity of Component Metal Compound of Complex Nucleation Complex in Aqueous One-Liquid Thermosetting Composition) The composition shown in Table 9 was used to obtain a content in the same manner as in Example 22. It is an aqueous one-component thermosetting composition of a constituent metal of the A1-Zn complex complex, that is, an A1 compound or a Zn compound. The obtained aqueous one-liquid type thermosetting 37 201138970 The composition was a stable dispersion having a solid concentration of 31% by weight. (TC and 13 (TC and 13 after baking the aqueous-liquid thermosetting composition obtained above, the solvent resistance was measured, and the results are shown in Table 9. As shown in Tables 8 and 9, compared with Comparative Examples 13 to 14 In Examples 22 to 25, the gel fraction at each temperature was high. From the results, it was found that the metal complex complex of the present invention has a higher blocking agent low-temperature dissociation activity than the compound constituting the metal. It can be seen that high activity can be obtained by making a complex complex. [Industrial Applicability] The blocking agent dissociating catalyst composed of the metal complexing complex of the present invention exhibits a higher end than the known dissociating catalyst. The dissociation catalyst activity is therefore extremely useful in the industry, and the one-component thermosetting composition containing the capping agent dissociating catalyst of the present invention has high dissociation effect at low temperature, is advantageous in energy, and is even in low heat resistance. The entire disclosure of the specification of the Japanese Patent Application No. 2010-017864, the entire disclosure of which is hereby incorporated by reference in its entirety in its entirety in its entirety in [Simple Single explanation] jfe. 〇 [Main component symbol description] None. 38
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010017864 | 2010-01-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201138970A true TW201138970A (en) | 2011-11-16 |
Family
ID=44319446
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100103306A TW201138970A (en) | 2010-01-29 | 2011-01-28 | Catalyst for blocking-agent dissociation comprising polynuclear metal complex and method for using the same |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5724409B2 (en) |
TW (1) | TW201138970A (en) |
WO (1) | WO2011093466A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011093466A1 (en) * | 2010-01-29 | 2011-08-04 | 東ソー株式会社 | Catalyst for blocking-agent dissociation comprising polynuclear metal complex and method for using the same |
JP7557339B2 (en) | 2020-10-28 | 2024-09-27 | 旭化成株式会社 | Blocked polyisocyanate composition, one-component coating composition, coating film and coated article |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3652507A (en) * | 1968-12-03 | 1972-03-28 | Atlantic Richfield Co | Catalytic condensation of cyclic nitrile carbonates |
US5011902A (en) * | 1989-11-01 | 1991-04-30 | Georgia-Pacific Resins, Inc. | Co-catalyst system for preparing polyurethane based plywood-patch compositions |
JPH07207228A (en) * | 1994-01-19 | 1995-08-08 | Asahi Chem Ind Co Ltd | Cold-curing one-component coating composition |
JP3375736B2 (en) * | 1994-06-02 | 2003-02-10 | 神東塗料株式会社 | Resin composition for cationic electrodeposition paint |
US5587448A (en) * | 1994-12-29 | 1996-12-24 | Minnesota Mining And Manufacturing | Reaction system for producing a polyurethane and method of using same to seal a surface |
CA2207146A1 (en) * | 1996-05-28 | 1997-11-28 | Atofina Chemicals, Inc. | Catalyst for low temperature cure of blocked isocyanates |
US5908912A (en) * | 1996-09-06 | 1999-06-01 | Ppg Industries Ohio, Inc. | Electrodepositable coating composition containing bismuth and amino acid materials and electrodeposition method |
JP2005307164A (en) * | 2004-03-23 | 2005-11-04 | Tosoh Corp | Catalyst composition for producing polyurethane resin and method for producing the polyurethane resin |
JP2006206781A (en) * | 2005-01-28 | 2006-08-10 | Tosoh Corp | Catalyst composition for producing polyurethane resin and method for producing polyurethane resin |
US8389653B2 (en) * | 2006-03-30 | 2013-03-05 | Basf Corporation | Method of catalyzing a reaction to form a urethane coating and a complex for use in the method |
WO2011093466A1 (en) * | 2010-01-29 | 2011-08-04 | 東ソー株式会社 | Catalyst for blocking-agent dissociation comprising polynuclear metal complex and method for using the same |
JP2011157414A (en) * | 2010-01-29 | 2011-08-18 | Tosoh Corp | Catalyst for blocking-agent dissociation comprising aluminum compound and metal compound other than aluminum and its application |
-
2011
- 2011-01-28 WO PCT/JP2011/051803 patent/WO2011093466A1/en active Application Filing
- 2011-01-28 TW TW100103306A patent/TW201138970A/en unknown
- 2011-01-28 JP JP2011016617A patent/JP5724409B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011173116A (en) | 2011-09-08 |
WO2011093466A1 (en) | 2011-08-04 |
JP5724409B2 (en) | 2015-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2012152725A (en) | Blocked isocyanate dissociation catalyst and its application | |
JPWO2017154963A1 (en) | Polyisocyanate composition, coating composition, water-based coating composition, and coating substrate | |
JP2018517826A (en) | Aldehyde scavenger for polyurethane foam | |
RU2625229C2 (en) | Drying substance for self-coating coat compounds | |
JP2018517828A (en) | Aldehyde scavenger mixture for polyurethane foam | |
JPWO2018070532A1 (en) | Isocyanate composition, aqueous dispersion of isocyanate composition, and method for producing the same, coating composition, and coating film | |
DE102008026341A1 (en) | Catalysts for the synthesis of polyurethanes | |
TW201113325A (en) | Composition for metal surface treatment, method for treating metal surface using the same and metal surface treatment coating using the same | |
JP2007269954A (en) | Polyisocyanate composition and two package type polyurethane composition | |
KR20130128625A (en) | Organic-inorganic hybrid waterborne polyurethane coating agent for interior parts ofautomobile and process thereof | |
JP6843538B2 (en) | Paint composition | |
KR101939571B1 (en) | Electrodeposition coating material composition and catalyst for electrodeposition coating material | |
JP2008195925A (en) | Method for forming electrodeposition coating film | |
TW201138970A (en) | Catalyst for blocking-agent dissociation comprising polynuclear metal complex and method for using the same | |
CN104884495A (en) | Quaternary ammonium salt-containing catalyst for dissociation of blocking agent, and use for said catalyst | |
JP5344875B2 (en) | Cationic block polyisocyanate and urethane composition containing the same | |
JP2014084426A (en) | Dissociation catalyst for block agent containing quaternary ammonium salt and its use | |
TW513473B (en) | Catalyst for low temperature cure of blocked isocyanates | |
JP2011157414A (en) | Catalyst for blocking-agent dissociation comprising aluminum compound and metal compound other than aluminum and its application | |
EP4008757A1 (en) | Block polyisocyanate composition, one-component coating composition, coating film, and coated article | |
JP5918845B2 (en) | Electrodeposition coating composition, catalyst for electrodeposition coating composition | |
JP2011137090A (en) | Catalyst for low-temperature dissociation of blocking agent and aqueous one pack-type thermosetting composition containing the same | |
JP5952323B2 (en) | Novel titanium compound, catalyst for producing urethane resin containing titanium compound, urethane resin composition produced in the presence of the catalyst, and method for producing the urethane resin composition | |
EP2452749A1 (en) | Emulsifiers for Catalysts | |
JP2015108029A (en) | Electrodeposition coating composition, and catalyst for electrodeposition coating composition |