TW201138959A - A modified catalyst, its preparation method and uses thereof - Google Patents

A modified catalyst, its preparation method and uses thereof Download PDF

Info

Publication number
TW201138959A
TW201138959A TW99114672A TW99114672A TW201138959A TW 201138959 A TW201138959 A TW 201138959A TW 99114672 A TW99114672 A TW 99114672A TW 99114672 A TW99114672 A TW 99114672A TW 201138959 A TW201138959 A TW 201138959A
Authority
TW
Taiwan
Prior art keywords
catalyst
metal
platinum
ethanol
modified catalyst
Prior art date
Application number
TW99114672A
Other languages
Chinese (zh)
Other versions
TWI415677B (en
Inventor
Chen-Bin Wang
Chi-Han Wang
Original Assignee
Univ Nat Defense
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Defense filed Critical Univ Nat Defense
Priority to TW99114672A priority Critical patent/TWI415677B/en
Publication of TW201138959A publication Critical patent/TW201138959A/en
Application granted granted Critical
Publication of TWI415677B publication Critical patent/TWI415677B/en

Links

Landscapes

  • Catalysts (AREA)

Abstract

Provided herein is a modified catalyst. The modified catalyst includes a support, and a metal absorbed thereon. The absorbed metals include a precious metal and an alkaline earth metal. The precious metal includes platinum and ruthenium, which is about 3 wt% in the catalyst. The alkaline earth metal includes magnesium, and is about 0.25 - 2 wt% in the catalyst. According to one example of the present disclosure, the support is zirconium oxide. The method of making the modified catalyst and its use in producing hydrogen are also disclosed.

Description

201138959 六、發明說明: 【發明所屬之技術領域】 本發明是有關一種改質觸媒,特別是經過一鹼土金屬 改質後之觸媒’使得該改質媒具有較佳的低溫活性且在低 溫乙醇製程中會產生較低量的一氧化碳。 【先前技術】 氫氣可用於氫燃料電池中與氧氣反應產生電力,使用 鲁 氫氣做為燃料可減少溫室氣體的排放量,且氫氣的能量轉 化效率高’操作時的噪音小。目前氫氣的來源主要是將化 石燃料分解重組而得’並將所生產的氫氣以氣瓶或氣槽儲 存後,經由運輪系統送到每個需要的地方,因此這種方法 會產生大量的運輸成本。如可以化學反應的方式,將具有 高能量密度的有機物催化分解產生氫氣,即可大幅度降低 運輸氫氣所產生之成本。 乙醇蒸氣重組反應(Steam reforming of ethanol,SRE)是 鲁 一種將乙醇水溶液經高溫催化反應生成氫氣的方法。先前 技術中已有用鹼金族金屬對鉑-釕觸媒做改質,應用於乙醇 氧化蒸氣重組(Oxidative steam reforming of ethanol,OSRE)反應 上。 本領域亟需一種改良的觸媒,其具有較佳的觸媒活性 且可應用在乙醇蒸氣重組反應中,以產生氫氣,同時不會 產生高量的其他不欲求副產物,例如,一氧化碳。 【發明内容】 201138959 基於上述目的,本案發明人提供了一種新穎的改質觸 媒,其在低溫乙醇蒸氣重組反應中具有較佳的觸媒活性及 穩定性,同時可減少在乙醇製氫反應時所產生的co量。 依據本發明第一態樣,提供一種改質觸媒。此改質觸 媒包含一支撐物,以及鐘於此支撐物上的始、釕及鎂金屬, 其中鉑、釕及鎂金屬分別吸附於該支撐物中,其中鎂金屬 的重量約佔觸媒總重量的0.25-2%(重量%),鉑及釕的含量 分別約佔觸媒總重量的1.5%(重量%)。 依據本發明之一實施方式,上述之支撐物為氧化锆。 依據本發明一最佳實施方式中,鎂金屬的重量約佔改 質觸媒總重量的1%(重量%)。 依據本發明第二態樣,提供一種製造上述改質觸媒的 方法。本發明方法包含以下步驟。以初濕含浸法將包含鉑 與釕之金屬溶液中的鉑與釕金屬鍍在支撐物上。接著,將 該鍍有鉑與釕金屬的支撐物在400 °C下煅燒4小時,以製 造出m了觸媒。再次利用初濕含浸法將一石肖酸鎮溶液中的 鎂金屬鍍在該鉑_釕觸媒上,藉此製造出改質觸媒。依據一 實施方式,該支撐物是氧化锆,且該氧化锆支撐物更經過 400°c煅燒約4小時。依據另一實施方式,該包含鉑與釕之 金屬溶液是利用將氣化鉑(PtCl4)及氯化釕(RuC13)溶在水中 而形成,且氣化鉑及氯化釕在該金屬溶液中的濃度各約 1.5% (重量%)。 所述方法更包含在煅燒前,先將該鍍有鉑與釕金屬的 支撐物置於約110°c的溫度下,乾燥24小時。 依據本發明第三態樣,提供一種以上述改質觸媒來產 201138959 生氫氣的方法。所述方法包括:以約300°C的溫度,將本 發明之改質觸媒還原約2小時;以及在約175-325 °C的溫 度下,使乙醇水溶液通過該經還原處理的改質觸媒,以催 化該乙醇水溶液產生含氫氣體。 依據本發明一實施方式,上述之還原步驟包含使用氫 氣與氮氣之體積比約1 : 9的混合氣體進行還原。 依據本發明另一實施方式,上述乙醇水溶液的濃度約 為20 %(體積百分比)。依據一實例,上述使乙醇水溶液通 過該經還原處理的改質觸媒之步驟中的溫度約為250 °C, 在此溫度下,所述方法的氫氣轉換率約可達100 %。依據 另一實例,所述方法在約275°C時的CO產生率約為1%。 【實施方式】 為解決目前技藝中無法在低溫時無法將乙醇完全轉換 成氫氣以及無法進一步降低一氧化碳產生量的缺點,本案 發明人透過在已知的鉑-釕觸媒中添加鎂金屬以改善此鉑-釕觸媒活性。實驗發現,當以此經改質後的觸媒來進行乙 醇蒸氣重組反應(SRE)時,所產生之一氧化碳(CO)副產物 量,可因觸媒中添加的鎂而能在低溫時就使CO產物量下 降,同時可增加觸媒活性。 依據本發明一態樣,提供一種經鎂改質的鉑-釕觸媒。 此改質觸媒包含一支撐物,以及鍍於此支撐物上的鉑、釕 及鎂金屬,其中鉑、釕及鎂金屬分別吸附於該支撐物中, 其中鎂金屬的重量約佔觸媒總重量的〇.25-2%(重量%),鉑 及釕的含量分別約佔觸媒總重量的1.5%(重量%)。依據本 201138959 發明此態樣之最佳實施方式,鎂金屬的重量約佔改質觸媒 總重量的1%(重量%)。 據此,本發明另一態樣是提供一種用來製備上述經鎂 改質之鉑-釕觸媒的方法。所述方法包含: 0)以初濕含浸法將一包含鉑與釕之金屬溶液中的鉑 與釕金屬鍍在一支撐物上; (b)將該鍍有鉑與釕金屬的支撐物在4〇〇它下烺燒4 小時,以製造出一鉑-釕觸媒; # (c)再次利用初濕含浸法將一硝酸鎂溶液中的鎮金屬 鑛在該舶-釕觸媒上,藉此製造出該改質觸媒。 適用於本發明方法中的支撐物是以第IVB族金屬之烧 氧化物做為起始材料,利用溶膠凝膠法(sol_gel)所製造而 成。溶膠凝膠法簡單的說,就是將金屬燒氧化物由溶液狀 態經水解、縮合使產生具有交聯結構的膠體。操作方式大 致如下:首先’科取適量的第IVB族金屬之烧氧化物,例 如,正-丁基氧化锆(IV),將其溶於乙醇中。接著,將上述 • 含有第IVB族金屬之烷氧化物的乙醇溶液,以逐滴滴入的 方式滴進去離子水中,使產生第IVB族金屬之氫氧化物沉 殺’例如氫氧化鍅沉澱。接著’過濾收集此氫氧化物沉澱, 再經水洗、乾燥等初步處理後’再對已乾燥的沉澱物施以 煅燒處理,即可製成欲求的第IVB族金屬(例如,氧化錘) 支撐物。依據一實例,適合的煅燒溫度為300-500t,時間 約3-5小時。依據上述方式製成之適用於本發明改質觸媒 的第IVB族金屬氧化物支撐物包括,但不限於,氧化鈦、 氧化锆或氧化銓。在一實施方式中,所述支撐物為氧化锆。 201138959 在所述製造方法中,是利用初濕含浸法(wet impregnation, WI)將可做為催化劑的金屬,包括貴金屬(例 如,鉑與釕)與鹼土金屬(例如’鎂),分別鍍在依據上述方 法製成的支撐物上。初濕含浸法是一種常用技術,多半用 來合成異質催化劑(heterogeneous catalyst)。一般來說,先 將具活性的金屬前驅物溶在水或有機溶劑中。接著,將此 含有金屬的溶液加到催化劑支樓物表面上,藉由催化劑支 樓物本身孔洞的毛細作用,將該金屬溶液吸入支稽·物内。 再經過乾燥和锻燒處理,去除溶液中的揮發性成分,使金 屬沉積在支撐物上,即可獲得欲求的催化劑。 在步驟(a)中,將包括四氣化鉑(PtCl4)與三氯化釕 (RuCl3)之金屬前驅物分別溶在去離子水中,形成内含四氣 化翻(PtCU)與三氯化釕(R11CI3)之金屬溶液。接著,將此金 屬溶液以逐滴滴入的方式滴在上述的氧化錯支標物上。再 於步驟(b)中,將吸附了金屬離子的氧化鍅支撐物放在4〇〇 °C的溫度下烺燒約4小時,即可製成鉑-釕觸媒 (PtRu/Zr〇2)。在一實例中,所製成的鉑-釕觸媒含有1.5%(重 量°/〇)之鉑金屬與1.5%(重量°/〇)之釕金屬,亦即,鉑及釕金 屬重量約為觸媒總重量的3% (3wt°/。PtRu/Zr02)。 在步驟(c)中,再次利用前述的初濕含浸法將鹼土金屬 (例如,鎮)鑛在上述的鉑-釕觸媒上’藉以形成欲求的改質 觸媒。簡言之,先製成硝酸鎂溶液’接著,將此硝酸鎂金 屬溶液以逐滴滴入的方式滴在上述的鉑-釕觸媒上。再經過 烘乾及锻燒(400°C、4小時)處理,即可製成經過鎮改質之 鉑-釕觸媒,PtRuMgx/Zr〇2 ’其中X代表所吸附之鎂的重量 201138959 此X值可在約0.25%至約201138959 VI. Description of the Invention: [Technical Field] The present invention relates to a modified catalyst, in particular, a catalyst modified by an alkaline earth metal to make the modified medium have better low temperature activity and low temperature A lower amount of carbon monoxide is produced in the ethanol process. [Prior Art] Hydrogen can be used in a hydrogen fuel cell to react with oxygen to generate electricity, and Lu hydrogen as a fuel can reduce greenhouse gas emissions, and hydrogen has high energy conversion efficiency, and the noise during operation is small. At present, the source of hydrogen is mainly to decompose and recombine fossil fuels, and to store the produced hydrogen in a gas cylinder or a gas tank, and then send it to each place through the transport system, so this method will generate a large amount of transportation. cost. If the organic matter with high energy density can be catalytically decomposed to generate hydrogen by means of chemical reaction, the cost of transporting hydrogen can be greatly reduced. Steam reforming of ethanol (SRE) is a method for producing hydrogen by a high temperature catalytic reaction of an aqueous ethanol solution. In the prior art, an alkali metal group metal has been used to modify a platinum-ruthenium catalyst for use in an Oxidative steam reforming of ethanol (OSRE) reaction. There is a need in the art for an improved catalyst that has better catalyst activity and can be used in ethanol vapor recombination reactions to produce hydrogen without producing high amounts of other undesirable by-products, such as carbon monoxide. SUMMARY OF THE INVENTION 201138959 Based on the above object, the inventors of the present invention provide a novel modified catalyst which has better catalytic activity and stability in low temperature ethanol vapor recombination reaction, and can reduce hydrogen production reaction in ethanol. The amount of co produced. According to a first aspect of the invention, a modified catalyst is provided. The modified catalyst comprises a support and a starting, bismuth and magnesium metal on the support, wherein platinum, bismuth and magnesium metal are respectively adsorbed on the support, wherein the weight of the magnesium metal accounts for about the total catalyst Between 0.25 and 2% by weight of the weight, the contents of platinum and rhodium are respectively about 1.5% by weight based on the total weight of the catalyst. According to an embodiment of the invention, the support is zirconia. According to a preferred embodiment of the invention, the weight of the magnesium metal is about 1% by weight based on the total weight of the modified catalyst. According to a second aspect of the present invention, there is provided a method of making the above modified catalyst. The method of the invention comprises the following steps. Platinum and rhodium metal in a metal solution containing platinum and rhodium are plated on the support by incipient wetness. Next, the support plated with platinum and base metal was calcined at 400 °C for 4 hours to produce a catalyst. The magnesium metal in the solution of the sulphuric acid is again plated on the platinum-ruthenium catalyst by the incipient wetness method to thereby produce a modified catalyst. According to one embodiment, the support is zirconia and the zirconia support is further calcined at 400 ° C for about 4 hours. According to another embodiment, the metal solution containing platinum and ruthenium is formed by dissolving vaporized platinum (PtCl 4 ) and ruthenium chloride (RuC 13 ) in water, and vaporizing platinum and ruthenium chloride in the metal solution. The concentration is about 1.5% (% by weight) each. The method further comprises subjecting the platinum-plated and base metal-plated support to a temperature of about 110 ° C for 24 hours prior to calcination. According to a third aspect of the present invention, there is provided a method of producing hydrogen gas at 201138959 using the above modified catalyst. The method comprises: reducing the modified catalyst of the present invention at a temperature of about 300 ° C for about 2 hours; and passing the aqueous ethanol solution through the reduced modified touch at a temperature of about 175-325 ° C The medium is used to catalyze the aqueous solution of ethanol to produce a hydrogen-containing gas. According to an embodiment of the invention, the reducing step comprises reducing using a mixed gas having a volume ratio of hydrogen to nitrogen of about 1:9. According to another embodiment of the present invention, the concentration of the aqueous ethanol solution is about 20% by volume. According to an embodiment, the temperature in the step of passing the aqueous ethanol solution through the reduced modified catalyst is about 250 ° C, at which temperature the hydrogen conversion rate of the process is about 100%. According to another example, the process produces a CO production rate of about 1% at about 275 °C. [Embodiment] In order to solve the shortcomings in the prior art that it is impossible to completely convert ethanol into hydrogen at a low temperature and to further reduce the amount of carbon monoxide generated, the inventors of the present invention improved this by adding magnesium metal to a known platinum-ruthenium catalyst. Platinum-ruthenium catalyst activity. It has been found that when the reformed catalyst is used to carry out the ethanol vapor recombination reaction (SRE), the amount of carbon monoxide (CO) by-product produced can be caused by the magnesium added to the catalyst at low temperatures. The amount of CO product decreases while increasing the activity of the catalyst. According to one aspect of the present invention, a magnesium-modified platinum-ruthenium catalyst is provided. The modified catalyst comprises a support and platinum, rhodium and magnesium metal plated on the support, wherein platinum, rhodium and magnesium metal are respectively adsorbed on the support, wherein the weight of the magnesium metal accounts for about the total catalyst The weight of 〇.25-2% (% by weight), platinum and rhodium are respectively about 1.5% by weight based on the total weight of the catalyst. According to a preferred embodiment of this aspect of the invention, the weight of the magnesium metal is about 1% by weight based on the total weight of the modified catalyst. Accordingly, another aspect of the present invention provides a method for preparing the above-described magnesium-modified platinum-ruthenium catalyst. The method comprises the following steps: 0) plating platinum and rhodium metal in a metal solution containing platinum and rhodium on a support by incipient wetness impregnation; (b) supporting the platinum-plated and rhodium-plated support at 4 〇〇 烺 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 The modified catalyst is produced. The support suitable for use in the process of the present invention is produced by a sol-gel method using a burned oxide of a Group IVB metal as a starting material. The sol-gel method is simply a method of hydrolyzing and condensing a metal oxide oxide from a solution to produce a colloid having a crosslinked structure. The mode of operation is as follows: First, an appropriate amount of the Group IVB metal oxide oxide, for example, n-butyl zirconia (IV), is dissolved in ethanol. Next, the above-mentioned ethanol solution containing the alkoxide of the Group IVB metal is dropped into the deionized water dropwise, so that the hydroxide of the Group IVB metal is precipitated, for example, by precipitation of barium hydroxide. Then, 'the precipitate of the hydroxide is collected by filtration, and then subjected to preliminary treatment such as washing with water, drying, etc.', and then the dried precipitate is subjected to calcination treatment to obtain the desired Group IVB metal (for example, oxidized hammer) support. . According to an example, a suitable calcination temperature is from 300 to 500 t and the time is from about 3-5 hours. Group IVB metal oxide supports suitable for use in the modified catalyst of the present invention prepared in the manner described above include, but are not limited to, titanium oxide, zirconium oxide or hafnium oxide. In one embodiment, the support is zirconia. 201138959 In the manufacturing method, a metal which can be used as a catalyst, including a noble metal (for example, platinum and rhodium) and an alkaline earth metal (for example, 'magnesium), is plated separately according to a wet impregnation (WI) method. The support made by the above method. The incipient wetness method is a commonly used technique and is mostly used to synthesize heterogeneous catalysts. Generally, the active metal precursor is first dissolved in water or an organic solvent. Next, the metal-containing solution is applied to the surface of the catalyst support, and the metal solution is sucked into the support by the capillary action of the pores of the catalyst support itself. After drying and calcining, the volatile components in the solution are removed, and the metal is deposited on the support to obtain the desired catalyst. In the step (a), a metal precursor comprising platinum tetrachloride (PtCl4) and ruthenium trichloride (RuCl3) is separately dissolved in deionized water to form a tetragastric turn (PtCU) and antimony trichloride. Metal solution of (R11CI3). Next, the metal solution was dropped onto the above-mentioned oxidized mis-branch by dropwise addition. In the step (b), the ruthenium oxide support to which the metal ions have been adsorbed is calcined at a temperature of 4 ° C for about 4 hours to prepare a platinum-ruthenium catalyst (PtRu/Zr〇2). . In one example, the platinum-ruthenium catalyst produced contains 1.5% by weight of platinum metal and 1.5% by weight of ruthenium metal, that is, the weight of platinum and rhodium metal is about 3% of the total weight of the media (3wt ° / . PtRu / Zr02). In the step (c), the alkaline earth metal (e.g., town) ore is again applied to the platinum-ruthenium catalyst as described above by the incipient wetness impregnation method to form the desired reforming catalyst. In short, a magnesium nitrate solution is first prepared. Then, this magnesium nitrate metal solution is dropped onto the above platinum-ruthenium catalyst in a dropwise manner. After drying and calcination (400 ° C, 4 hours), a modified platinum-ruthenium catalyst, PtRuMgx/Zr〇2 ', where X represents the weight of the adsorbed magnesium, 201138959, X Values can range from about 0.25% to about

百分比。依據本發明實施方式, 2%(重量%) - 最佳實例, 之鎂金屬(PtRuMg^/ZrOJ。 依據上述方式製成之改質觸媒均可用 反應中來催化乙醇產氫,同時 的生成量。依據一實施方式,percentage. According to an embodiment of the present invention, 2% by weight - the best example, magnesium metal (PtRuMg^/ZrOJ. The modified catalyst prepared according to the above method can be used in the reaction to catalyze the hydrogen production of ethanol, and the amount of simultaneous generation According to an embodiment,

於習知的OSRE 同時可有效降低副產物(例如,c〇) 以下將透财補詳纟—造本㈣改f觸媒的方 • 法’以及以此觸媒催化乙醇水溶液的方法及其產物分析。 實施例 實施例1製造經鎂改質之鉑—釕觸媒 1.1製造鉑-釕觸媒(PtRu/Zr02) 首先,以溶膠凝膠法(s〇l_gel)方式製備觸媒支撐物,其 操作方式簡述如下:秤取適量之正_丁基氧化錘(IV)溶液與 99.5 /ί>的乙醇混合,而後逐步滴入去離子水中攪拌3小時之 • 後可見白色氫氧化錯沉澱,接者,過濾、水洗後在110 〇c 下烘乾,最後再經4〇〇 下烺燒4小時,即可得到氧化錯 (Zr〇2)支擇物。需知’在此所取用的正_丁基氧化锆(IV)溶 液體積適所欲形成之產物量而定,習知技藝人士可依據所 欲形成之終產物量自行決定出應該秤取的量。At the same time, the conventional OSRE can effectively reduce the by-products (for example, c〇). The following methods will be used to make up the details of the catalyst, and the method of catalyzing the aqueous solution of ethanol and its products. analysis. EXAMPLES Example 1 Preparation of Magnesium-Modified Platinum-Nb Catalyst 1.1 Production of Platinum-Nb Catalyst (PtRu/Zr02) First, a catalyst support was prepared by a sol-gel method in the manner of operation. Briefly described as follows: Take an appropriate amount of n-butyl oxidized hammer (IV) solution and mix it with 99.5 /ί> of ethanol, then gradually drip into deionized water and stir for 3 hours. After that, white hydroxide is precipitated. After filtering and washing, it is dried at 110 〇c, and finally simmered under 4 Torr for 4 hours to obtain oxidized error (Zr〇2). It is to be understood that the amount of the n-butyl zirconia (IV) solution taken here depends on the amount of product to be formed, and the skilled artisan can determine the amount to be weighed according to the amount of the final product to be formed. .

(重量4)的貝金屬(例如’各约1.5 % (重量%)的銘及釕)鑛 在上述的氧化錯支掉物上。簡言之,科取適量的氯化麵 (PtCU)及氣化釕(RuCl3),將兩者溶於去離子水中,將溶好 201138959 之金屬水溶液逐步滴入該氧化锆支撐物上,待達到初濕點 後將其磨乾,在110 °C下烘乾整晚,最後再經4〇〇°c下煅 燒4小時’即可得到鉑-釕觸媒(3 wt%PtRu/Zr〇2)。同樣的, 氣化鉑和氯化釕的用量可由習知技藝人士依據所欲形成之 終產物量而自行決定。 1.2 製造經鎂改質之鉑-釕觸媒(PtRuMgx/Zr02) 準備不同重量百分比的鎮金屬溶液,同樣以初濕含浸 法,將鎂金屬鍍在上述鉑-釕觸媒上。簡言之,分別配製出 • 0.25 %、0.5 %、1 %及2 % (重量%)的硝酸鎖水溶液,然後 逐步地將各分別配製成的硝酸鎂溶液滴入上述之鉑-釕觸 媒上’待達初濕點後磨乾’放入烘箱烘烤整晚,可得經鎖 改質之鉑-釕觸媒(PtRuMgx/Zr〇2,其中X代表鉑_釕觸媒上 所吸附的鎂重(重量%),且X = 0·25、〇.5、1或2),並分別 命名為 PtRuMg0 25/ZrO2、PtRuMg0 5/ZrO2、PtRuMg/Zr02 或PtRuMg/ZrO2。將所製得的改質觸媒保存在樣品瓶中, 直到後續應用為止。 實施例2 以實施例1之觸媒來進行低溫乙醇催化產氫反 應 2.1 觸媒之還原處理 在實施低溫乙醇催化產氫前,先對保存於樣品瓶中的 觸媒,包括鉑-釕觸媒及改質觸媒(PtRuMgx/Zr02),進行壓 旋、破碎、過篩(mesh 60-80)處理,接著,並以3〇〇°c溫度 以氫氣:氮氣之體積比約1 : 9 (¾ : Nfl :9)的混合氣體, 還原此觸媒約2小時,以去除離子,經此還源處理後的改 201138959 質觸媒方可用在低溫乙醇產氫製程中。 2.2 低溫乙醇產氫製程The (by weight 4) shell metal (e.g., about 1.5% by weight of each of the ingots and bismuth) is deposited on the above-mentioned oxidized miscible material. In short, take appropriate amount of chlorinated surface (PtCU) and vaporized ruthenium (RuCl3), dissolve the two in deionized water, and gradually dilute the metal solution of 201138959 into the zirconia support. After the initial wet point, it is dried, dried at 110 °C for the whole night, and finally calcined at 4 °C for 4 hours to obtain a platinum-ruthenium catalyst (3 wt% PtRu/Zr〇2). . Similarly, the amount of gasified platinum and ruthenium chloride can be determined by one skilled in the art depending on the amount of final product desired to be formed. 1.2 Preparation of magnesium-modified platinum-ruthenium catalyst (PtRuMgx/Zr02) Prepare different weight percentages of the town metal solution, and also apply magnesium metal to the above platinum-ruthenium catalyst by incipient wetness method. Briefly, 0.25 %, 0.5 %, 1 %, and 2 % (wt%) aqueous solutions of nitrate are separately prepared, and then each of the separately prepared magnesium nitrate solutions is dropped into the above-mentioned platinum-ruthenium catalyst. Put on the 'after the initial wet point, dry and dry' into the oven for baking all night, you can get the lock-modified platinum-ruthenium catalyst (PtRuMgx/Zr〇2, where X represents the adsorption on the platinum_钌 catalyst Magnesium weight (% by weight), and X = 0·25, 〇.5, 1 or 2), and is named PtRuMg0 25/ZrO2, PtRuMg0 5/ZrO2, PtRuMg/Zr02 or PtRuMg/ZrO2, respectively. The prepared modified catalyst is stored in a sample vial until subsequent application. Example 2 The catalytic hydrogen production reaction of the low temperature ethanol was carried out by using the catalyst of Example 1. 2.1 Reduction treatment of the catalyst Before the catalytic hydrogen production by low temperature ethanol was carried out, the catalyst stored in the sample bottle, including the platinum-ruthenium catalyst, was first used. And modified catalyst (PtRuMgx/Zr02), subjected to crushing, crushing, sieving (mesh 60-80) treatment, and then at a temperature of 3 ° C with a volume ratio of hydrogen: nitrogen of about 1: 9 (3⁄4) : Nfl : 9) The mixed gas is reduced for about 2 hours to remove ions. After the source treatment, the 201138959 catalyst can be used in the low-temperature ethanol hydrogen production process. 2.2 Low temperature ethanol hydrogen production process

將0.1克上述經還原處理的觸媒放入如第1圖所示以 加熱帶108包覆的管形反應器110中。之後,使進料容^ 102中的乙醇水溶液(20% (體積%))經液態幫浦1〇4與$氣 體(Ar)—起,以14.7毫升/分鐘的速度,注入混合^| j = 中加熱並氣化,其中載氣體的流速設定為22毫升/分鐘。 之後,使混合氣體進入管型反應器110中與上述經還原的 改質觸媒反應’其中混合氣體總流速控制約為36.7毫升/ 分鐘。 管形反應器110是採階段是升溫。首先將管形反應器 110的溫度預設在約175-325°C間。在預設溫度下,持續輸 入乙醇溶液蒸氣,使其於管形反應器110中與經還原的改 質觸媒反應2小時之後,使反應物進入分析器112中進 行產物分離及分析。之後,將管型反應器110升溫至下一 反應溫度進行反應。 以氣相層析儀(Gas chromatography, GC)進行產物分 離。此氣相層析儀使用分別為porapak Q和MS-5A的兩根 層析管柱來進行產物分離。porapak Q管柱可用來分離 C02、C2H4、H20、CH3CH0 和 C2H5OH,MS-5A 管柱則 可用來分離H2、02、CH4和CO。之後,以熱傳導偵測器 (Thermal conductivity detector,TCD)進行產物定量分析’並 依據下列方程式計算出乙醇轉換率(CEt0H)、氫氣產率(Yh2) 及二氧化碳的產物分佈(FC〇2)。0.1 g of the above reduced treated catalyst was placed in a tubular reactor 110 covered with a heating belt 108 as shown in Fig. 1. Thereafter, the aqueous ethanol solution (20% (% by volume)) in the feed volume 102 was injected through the liquid pump 1〇4 and the gas (Ar) to inject the mixture at a rate of 14.7 ml/min. It was heated and gasified, and the flow rate of the carrier gas was set to 22 ml/min. Thereafter, the mixed gas is introduced into the tubular reactor 110 to react with the above-mentioned reduced modified catalyst. The total flow rate of the mixed gas is controlled to be about 36.7 ml/min. The tubular reactor 110 is heated at the extraction stage. The temperature of the tubular reactor 110 is first preset between about 175 and 325 °C. The ethanol solution vapor was continuously fed at a preset temperature for 2 hours in the tubular reactor 110 after reacting with the reduced reforming catalyst, and the reactants were passed to the analyzer 112 for product separation and analysis. Thereafter, the tubular reactor 110 is heated to the next reaction temperature to carry out a reaction. The product was separated by gas chromatography (GC). This gas chromatograph uses two chromatography columns, porapak Q and MS-5A, for product separation. The porapak Q column can be used to separate C02, C2H4, H20, CH3CH0 and C2H5OH, while the MS-5A column can be used to separate H2, 02, CH4 and CO. Thereafter, the product was quantitatively analyzed by a Thermal Conduction Detector (TCD) and the ethanol conversion rate (CEt0H), hydrogen yield (Yh2), and carbon dioxide product distribution (FC〇2) were calculated according to the following equation.

=riEt〇H—n nEtOH~out x|Q〇% nEtOH-in [S3 11 201138959=riEt〇H—n nEtOH~out x|Q〇% nEtOH-in [S3 11 201138959

Y Η,一 Η2Y Η, one Η 2

outOut

11 CH jCHO -out + — Π 2 C3H60-out11 CH jCHO -out + — Π 2 C3H60-out

_nCQ2-out_ nH2-〇ut + nCH4-〇ut 七 nCO~ou! + nC〇2-out + nC3HbO-ow xlOO% 每小時進入氣相層析儀之氣體體積(Gas hour space velocity,GHSV)設定為22000I1-1,水醇比為13,改質觸媒 (PtRuMgx/Zr02)測試總時間為24小時,且各溫度下的反應 時間為累加時間。結果分別提供於下附表1-4及第2-6圖 中〇 表1及第2圖提供以PtRu/Zr02進行低溫產氫反應時, 其反應物產量及分析結果,包括YH2產率(%)、Fc〇2產率 (%)、氫氣(H2)/乙醇之莫耳比以及乙醇轉換率(%)。 表1 催化劑 反應溫度 (°C) 乙醇轉換率 (%) H2產率(%) CO產率(%) C02產率 (%) CH4產率 (%) PtRu/Zr〇2 200 37.6 53 9.2 1.6 5.4 225 60.9 58.1 8.8 2.5 12.1 250 84.8 57.1 10.6 5.2 17.2 275 100 60.4 9.4 9.1 18.9 300 100 62 _ 】9 19 325 100 64.5 • 18.6 17_nCQ2-out_ nH2-〇ut + nCH4-〇ut Seven nCO~ou! + nC〇2-out + nC3HbO-ow xlOO% The gas hour space velocity (GHSV) entering the gas chromatograph per hour is set to 22000I1-1, the water-alcohol ratio is 13, and the total time of the modified catalyst (PtRuMgx/Zr02) is 24 hours, and the reaction time at each temperature is the accumulation time. The results are provided in Tables 1-4 and 2-6 below, respectively. Tables 1 and 2 provide the reactant yield and analysis results, including YH2 yield (%), when PtRu/Zr02 is used for low-temperature hydrogen production. ), Fc〇2 yield (%), hydrogen (H2)/ethanol molar ratio, and ethanol conversion rate (%). Table 1 Catalyst reaction temperature (°C) Ethanol conversion rate (%) H2 yield (%) CO yield (%) C02 yield (%) CH4 yield (%) PtRu/Zr〇2 200 37.6 53 9.2 1.6 5.4 225 60.9 58.1 8.8 2.5 12.1 250 84.8 57.1 10.6 5.2 17.2 275 100 60.4 9.4 9.1 18.9 300 100 62 _ 】9 19 325 100 64.5 • 18.6 17

表2及第3圖提供以PtRuMg〇.25/Zr〇2進行低溫產氮反 [s] 12 201138959 應時,其反應物產量及分析結果,包括yH2產率(%)、fC02 產率(%)、氫氣(h2)/乙醇之莫耳比以及乙醇轉換率(%)。 催化劑 反應溫度 (°C) 乙醇轉換率 (%) H2產率(%) CO產率(%) co2產率 (%) CH4產率 (%) PtRuMg〇.25/Zr02 200 18 56.5 8.9 - 9.2 225 25.9 57.4 9.3 1.4 13.6 250 54.1 56.4 12.4 2.4 18.6 275 92 60.2 11.4 4.8 21 300 100 64 7.7 7.1 21 325 100 68.1 - 10.5 21.5Tables 2 and 3 provide low-temperature nitrogen production by PtRuMg〇.25/Zr〇2 [s] 12 201138959, the reaction yield and analysis results, including yH2 yield (%), fC02 yield (% ), hydrogen (h2) / ethanol molar ratio and ethanol conversion rate (%). Catalyst reaction temperature (°C) Ethanol conversion rate (%) H2 yield (%) CO yield (%) co2 yield (%) CH4 yield (%) PtRuMg〇.25/Zr02 200 18 56.5 8.9 - 9.2 225 25.9 57.4 9.3 1.4 13.6 250 54.1 56.4 12.4 2.4 18.6 275 92 60.2 11.4 4.8 21 300 100 64 7.7 7.1 21 325 100 68.1 - 10.5 21.5

表3及第4圖提供以PtRuMg0.5/ZrO2進行低溫產氫反 應時,其反應物產量及分析結果,包括YH2產率(%)、FC02 產率(%)、氫氣(H2)/乙醇之莫耳比以及乙醇轉換率(%)。 催化劑 反應溫度 CC) 乙醇轉換率 (%) H2產率(%) CO產率(%) C〇2產率 (%) CH4產率 (%) PtRuMg〇,5/Zr〇2 200 11.4 53.3 5.9 1.3 4.3 225 30 53.5 8.2 1.5 6.1 250 65.4 62.5 7.5 6.4 11.6 275 96.5 66 4.1 13 16.4 300 100 68 - 14.1 18 325 100 69.4 - 14.2 16.4 [S1 13 201138959 表4及第5圖提供以PtRuMg/Zr〇2進行低溫產氫反應 時,其反應物產量及分析結果,包括Yh2產率(%)、匕的^ 率(%)、氫氣(H2)/乙醇之莫耳比以及乙醇轉換率(%)。 表4 反應溫度 CC) A龄絲4&炎 ___ 催化劑 ^开予争供平 (%) H2產率(%) CO產率(%) C〇2產率 (%、 CH4產率 ί〇/\ 175 11.2 Γ — 50.5 \/ϋ7 1.6 (%) 200 54.1 57.2 12.6 4.7 13 PtRuMgi/Zr〇2 225 83.2 58.2 13.5 4.7 16 250 100 62.8 11.8 10 15 275 100 66.8 編 18.6 14.6 300 100 66 - 17.3 16.7 表5及第6圖提供以ptRuMg2/Zr〇2進行低溫產氫反應 時,其反應物產量及分析結果,包括YH2產率(%)、匕〇2產 率(%)、風氣(H2)/乙醇之莫耳比以及乙醇轉換率(%)。 表5 催化劑 反應溫度 (°C) 乙醇轉換率 _ (%) H2產率(%) CO產率(%) C〇2產率 (%) CH4產率 (%) PtRuMg2/Zr〇2 200 18.6 56.6 - 12 225 23.9 51.4 9.5 5 17.2 250 48.8 51.4 12 7.7 22.6 275 73.7 50.1 — 11.2 10 24 300 100 52.8 7.7 16 23.4 325 100 52 ----1 27 20.8Tables 3 and 4 provide the reactant yield and analysis results for the low-temperature hydrogen production reaction with PtRuMg0.5/ZrO2, including YH2 yield (%), FC02 yield (%), hydrogen (H2)/ethanol. Mohr ratio and ethanol conversion rate (%). Catalyst reaction temperature CC) Ethanol conversion rate (%) H2 yield (%) CO yield (%) C〇2 yield (%) CH4 yield (%) PtRuMg〇, 5/Zr〇2 200 11.4 53.3 5.9 1.3 4.3 225 30 53.5 8.2 1.5 6.1 250 65.4 62.5 7.5 6.4 11.6 275 96.5 66 4.1 13 16.4 300 100 68 - 14.1 18 325 100 69.4 - 14.2 16.4 [S1 13 201138959 Tables 4 and 5 provide low temperatures with PtRuMg/Zr〇2 The reactant yield and analysis results in the hydrogen production reaction, including Yh2 yield (%), ruthenium ratio (%), hydrogen (H2) / ethanol molar ratio, and ethanol conversion rate (%). Table 4 Reaction temperature CC) A-age silk 4 & inflammation ___ catalyst ^ open to contend for (%) H2 yield (%) CO yield (%) C 〇 2 yield (%, CH4 yield 〇 / \ 175 11.2 Γ — 50.5 \/ϋ7 1.6 (%) 200 54.1 57.2 12.6 4.7 13 PtRuMgi/Zr〇2 225 83.2 58.2 13.5 4.7 16 250 100 62.8 11.8 10 15 275 100 66.8 Section 18.6 14.6 300 100 66 - 17.3 16.7 Table 5 And Fig. 6 provides the reactant yield and analysis results when the low-temperature hydrogen production reaction is carried out with ptRuMg2/Zr〇2, including YH2 yield (%), 匕〇2 yield (%), and atmosphere (H2)/ethanol. Mohr ratio and ethanol conversion rate (%). Table 5 Catalyst reaction temperature (°C) Ethanol conversion rate _ (%) H2 yield (%) CO yield (%) C〇2 yield (%) CH4 yield (%) PtRuMg2/Zr〇2 200 18.6 56.6 - 12 225 23.9 51.4 9.5 5 17.2 250 48.8 51.4 12 7.7 22.6 275 73.7 50.1 — 11.2 10 24 300 100 52.8 7.7 16 23.4 325 100 52 ----1 27 20.8

LSI 14 201138959 比較上述結果,可發現經鎂改質後之銘-釕觸媒隨錢含 量之增加’使其活性上升且可提高C〇水氣移轉之功效。 但添加過量的鎂卻反會使之效能降低,因而從上述結果中 找出最佳觸媒(如表4及第5圖),從中了解添加鎂金屬之 最佳含量為1 wt% ;相反的,若吸附的鎂過量,也會造成活 性開始下降(如表5及第6圖)。 综上’可結論ptRuMg"Zr〇2為本發明之最佳改質觸 媒。LSI 14 201138959 Comparing the above results, it can be found that the increase in the content of the catalyst with the modification of the magnesium after the modification of magnesium has increased its activity and improved the effect of C〇 water vapor transfer. However, adding an excessive amount of magnesium will reduce the efficiency, so find the best catalyst (see Table 4 and Figure 5) from the above results, and understand that the optimum content of magnesium added is 1 wt%; If the amount of magnesium adsorbed is excessive, the activity will start to decrease (see Tables 5 and 6). In summary, ptRuMg"Zr〇2 is the best modified catalyst for the present invention.

【圖式簡單說明】 广第1圖為可用於本發明之具體實施方式的乙醇催化裝 置簡圖; 第2圖為依據本發明實施例1.1所製成之習知 觸媒PtRU/Zr〇2,其在不同溫度下催化乙醇的產物°變、化白圖封 第3圖為依據本發明實施例ι·2所製 ’BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of an ethanol catalyst device which can be used in the specific embodiment of the present invention; FIG. 2 is a conventional catalyst PtRU/Zr〇2 produced according to Example 1.1 of the present invention, The product of catalyzing the conversion of ethanol at different temperatures, and the whitening of the image is shown in Fig. 3 according to the embodiment of the present invention.

PtRuMgG.25/Zr〇2,其在不同溫度下催化乙醇的產物m媒 第4圖為依據本發明實施例ι·2所製成之纟 圖, PtRuMg0.5/Zr〇2 ’其在不同溫度下催化乙醇的產^勿改《質觸媒 第5圖為依據本發明實施例丨.2所製成 *化圖;PtRuMgG.25/Zr〇2, which catalyzes the production of ethanol at different temperatures. FIG. 4 is a diagram made according to the embodiment of the present invention, PtRuMg0.5/Zr〇2' at different temperatures. The production of the lower catalytic ethanol is not changed. "The catalytic catalyst is shown in Fig. 5 as a pattern according to the embodiment of the present invention.

PtRuMg,/Zr02,其在不同溫度下催化乙醇^改質觸媒 喂的產物變化圖. 第6圖為依據本發明實施例1.2所製成 M ’PtRuMg, /Zr02, which catalyzes the change of the product of the ethanol-modified catalyst at different temperatures. Fig. 6 shows the M' made according to the embodiment 1.2 of the present invention.

PtRuMfe/ZrO2 ’其在不同溫度下催化乙醇 =改質觸媒 的產物變化圖。 【主要元件符號說明】 ES] 201138959PtRuMfe/ZrO2' catalyzes the change in the product of ethanol = modified catalyst at different temperatures. [Main component symbol description] ES] 201138959

100 乙醇催化裝置 102 進料容器 104 液態幫浦 106 混合槽 108 加熱帶 110 觸媒床 112 分析儀器 [s] 16100 Ethanol Catalyst 102 Inlet Container 104 Liquid Pump 106 Mixing Tank 108 Heating Belt 110 Catalyst Bed 112 Analytical Instrument [s] 16

Claims (1)

201138959 七、申請專利範圍: L 一種改質觸媒,包含·· 一支撐物;及 其中=白4金24^金4 ’分__支樓物之中’ \\ \φ ^ 一釕金屬分別約佔該改質觸媒她^ 1 & 1.5% (重量〇/0),诗姓a研 只’蹄,、心夏里的 至2%(重量%)。屬約佔該改質觸媒總重量的0.25% L2!專利範圍第1項所述之改質觸媒,其甲 支撐物為氧化錯 該 3. 如 鎮金屬約觸媒,其中該 4. 造方法’ ^㈣料利躺述之改質 觸媒的製 金屬3=7包姆釘之—與釘 4 將該鍍有鉑與釕金屬的支撐物在400它 時,以製造出一鉑-釕觸媒; 料Μ含浸法將―献Μ溶液f的鎂金屬鍍在 該鉑-釕觸媒上,藉此製造出該改質觸媒。 5·如申請專利範圍第4項所述之方法,其中該支樓 17 •S] 201138959 物是Zr02。 6. 如申請專利範圍第5項所述之方法,其中該氧化 锆支撐物經過400 °C下煅燒約4小時。 7. 如申請專利範圍第4項所述之方法,其中該包含 鉑與釕之金屬溶液是利用將氯化鉑(PtCl4)及氣化釕(RuC13) 溶在水中而形成,且氣化鈾及氣化釕在該金屬溶液中的濃 φ 度各約1.5% (重量%)。 8. 如申請專利範圍第4項所述之方法,其中該鎂金 屬約佔該改質觸媒總重量的1% (重量%)。 9. 如申請專利範圍第4項所述之方法,更包含在煅 燒前,先將該鍍有鉑與釕金屬的支撐物置於約110°c的溫 度下,乾燥24小時。 10. —種催化製氩的方法,包含: 以約300°c的溫度,將如申請專利範圍第1項所述之 改質觸媒置還原約2小時; 在約175-325 °C的溫度下,使一乙醇水溶液通過該經 還原處理的改質觸媒,以催化該乙醇水溶液產生一含氫氣 201138959 如尹明專利㈣第10項所述之方法,M 步驟包含❹氫氣進行還原,並以4氣 #中該還原 1 : 9的混合氣體進行還原。 L乳之體積比约 12. 如申請專利範圍第1〇項所述之方 水溶液中包含約20 %(體積%)之乙醇。 *中該乙醇 13. 申請專利範圍第1〇項所述之 乙醇轉換率在2外ΐ時約達1〇〇%。 ,、中該方法之 14. 申請專利範圍第 CO產率在275。(:時約為1%。彳述之方法’其中該方法之201138959 VII. Patent application scope: L A modified catalyst, including · a support; and its medium = white 4 gold 24 ^ gold 4 ' points __ branch building ' \\ \ φ ^ one metal About the modified catalyst she ^ 1 & 1.5% (weight 〇 / 0), poetry a research only 'hoof, heart to summer 2% (% by weight). The genus accounts for about 0.25% of the total weight of the modified catalyst. L2! The modified catalyst described in the first paragraph of the patent scope, the support of the material is oxidized. 3. If the metal is about the catalyst, the 4. Method ' ^ (4) The material of the modified catalyst is 3=7 yam nails - and the nail 4 is coated with platinum and ruthenium metal support at 400 pm to produce a platinum-ruthenium Catalyst; The cerium impregnation method is applied to the platinum-ruthenium catalyst by plating the magnesium metal of the bismuth solution f, thereby producing the modified catalyst. 5. The method of claim 4, wherein the branch 17 • S] 201138959 is Zr02. 6. The method of claim 5, wherein the zirconia support is calcined at 400 ° C for about 4 hours. 7. The method of claim 4, wherein the metal solution comprising platinum and rhodium is formed by dissolving platinum chloride (PtCl4) and vaporized ruthenium (RuC13) in water, and vaporizing uranium and The concentration 气 of the vaporized ruthenium in the metal solution was about 1.5% by weight each. 8. The method of claim 4, wherein the magnesium metal comprises about 1% by weight of the total weight of the modified catalyst. 9. The method of claim 4, further comprising subjecting the platinum-plated and base metal-plated support to a temperature of about 110 ° C for 24 hours prior to calcination. 10. A method of catalytically producing argon comprising: reducing a modifying catalyst as described in claim 1 at a temperature of about 300 ° C for about 2 hours; at a temperature of about 175-325 ° C Next, an aqueous solution of ethanol is passed through the reformed modified catalyst to catalyze the aqueous solution of ethanol to produce a hydrogen-containing method 201138959, such as the method described in claim 10 of the Yinming patent (4), and the M step comprises hydrogen reduction for hydrogenation, and In the gas #4, the mixed gas of 1:9 is reduced. The volume ratio of L milk is about 12. The aqueous solution as described in the first aspect of the patent application contains about 20% by volume of ethanol. * The ethanol in the 13. The ethanol conversion rate described in the first paragraph of the patent application is about 1% in the case of 2 external helium. , the method of the method 14. The patent application range CO yield is 275. (: about 1%. The method of narration) where the method
TW99114672A 2010-05-07 2010-05-07 A modified catalyst, its preparation method and uses thereof TWI415677B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99114672A TWI415677B (en) 2010-05-07 2010-05-07 A modified catalyst, its preparation method and uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99114672A TWI415677B (en) 2010-05-07 2010-05-07 A modified catalyst, its preparation method and uses thereof

Publications (2)

Publication Number Publication Date
TW201138959A true TW201138959A (en) 2011-11-16
TWI415677B TWI415677B (en) 2013-11-21

Family

ID=46759990

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99114672A TWI415677B (en) 2010-05-07 2010-05-07 A modified catalyst, its preparation method and uses thereof

Country Status (1)

Country Link
TW (1) TWI415677B (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7264788B2 (en) * 2003-11-26 2007-09-04 Cabot Corporation Fuel reformer catalyst and absorbent materials

Also Published As

Publication number Publication date
TWI415677B (en) 2013-11-21

Similar Documents

Publication Publication Date Title
Zhang et al. Increasing the activity and selectivity of TiO2-supported Au catalysts for renewable hydrogen generation from ethanol photoreforming by engineering Ti3+ defects
Kusakabe et al. Methane steam reforming over Ce–ZrO2-supported noble metal catalysts at low temperature
Neltner et al. Production of hydrogen using nanocrystalline protein-templated catalysts on M13 phage
CN107649124A (en) A kind of single atomic dispersion noble metal catalyst and its application
Ma et al. Comparison of fibrous catalysts and monolithic catalysts for catalytic methane partial oxidation
CN113209976B (en) Catalyst for methanol steam reforming hydrogen production, preparation method and application thereof, and methanol steam reforming hydrogen production reaction
Lin et al. Methane conversion over artificial photocatalysts
Matus et al. Hydrogen production through autothermal reforming of CH4: Efficiency and action mode of noble (M= Pt, Pd) and non-noble (M= Re, Mo, Sn) metal additives in the composition of Ni-M/Ce0. 5Zr0. 5O2/Al2O3 catalysts
Gonzalez-A et al. FTIR investigation under reaction conditions during CO oxidation over Ru (x)-CeO2 catalysts
CN101632929B (en) Hydrogen production catalyst with high-temperature methyl alcohol water vapour and preparation method thereof
Luo et al. Atomic-scale observation of bimetallic Au-CuO x nanoparticles and their interfaces for activation of CO molecules
KR100858924B1 (en) Supported catalyst for producing hydrogen gas by steam reforming reaction of liquefied natural gas, method for preparing the supported catalyst and method for producing hydrogen gas using the supported catalyst
CN106040237A (en) Method for preparing nanogold catalyst for producing CO by catalyzing CO2 hydrogenation reduction and application of nanogold catalyst
JP2017522171A (en) Catalyst for selective oxidation of ammonia in hydrogen-containing gases.
CN1301793C (en) Nano carbon material modified copper base catalyst and its preparing method
EP2656912A1 (en) Photocatalyst, method for preparation, photolysis system
Liang et al. Ag Single Atoms Anchored on CeO2 with Interfacial Oxygen Vacancies for Efficient CO2 Electroreduction
Tu et al. Carbonized Nickel-Incorporated Metal–Organic Frameworks for Methane Reforming: Post-Synthetic Modification vs Impregnation
CN108654641A (en) A kind of carbon dioxide methane reforming catalyst and preparation method thereof
Wang et al. Pt nanoparticles supported LaCoO3 as highly efficient catalysts for photo-thermal catalytic CO2 methanation
Chai et al. Gold nanoparticles supported on ZnGa2O4 nanosheets as efficient photocatalysts for selective oxidation of methane to ethane under ambient conditions
TWI403459B (en) Process for producing hydrogen with high yield under low temperature
TW201138959A (en) A modified catalyst, its preparation method and uses thereof
JP3873964B2 (en) Ethanol steam reforming catalyst, method for producing the same, and method for producing hydrogen
CN101058073A (en) Method for preparing nickel nanometer line network particle catalyst

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees