TW201138657A - Tobacco smoke filter for smoking device with porous mass of active particulate - Google Patents

Tobacco smoke filter for smoking device with porous mass of active particulate Download PDF

Info

Publication number
TW201138657A
TW201138657A TW100100325A TW100100325A TW201138657A TW 201138657 A TW201138657 A TW 201138657A TW 100100325 A TW100100325 A TW 100100325A TW 100100325 A TW100100325 A TW 100100325A TW 201138657 A TW201138657 A TW 201138657A
Authority
TW
Taiwan
Prior art keywords
porous material
cigarette
particles
active
carbon
Prior art date
Application number
TW100100325A
Other languages
Chinese (zh)
Inventor
Peter Burke
Meinhard Gusik
Julia Hufen
Luis Jimenez
Raymond Robertson
Ramesh Srinivasan
Original Assignee
Celanese Int Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Celanese Int Corp filed Critical Celanese Int Corp
Publication of TW201138657A publication Critical patent/TW201138657A/en

Links

Landscapes

  • Cigarettes, Filters, And Manufacturing Of Filters (AREA)

Abstract

A tobacco smoking device comprises a porous mass of active particles adapted to enhance a tobacco smoke flowing over said active particles and binder particles. The active particles comprises about 1-99% weight of the porous mass, and the binder particles comprises about 1-99 % weight of said porous mass. The active particles and said binder particles are bound together at randomly distributed points throughout the porous mass. The active particles have a greater particle size than the binder particles.

Description

201138657 代號 說明 ' 44 — σ片 46 通道 47 腔 —~ ' 48 濾嘴 50 活性顆粒 52 黏合劑顆粒 ----- 五、本案若有化學式時,請揭示最能顯示發明特徵的化學弋 六、發明說明: 【發明所屬之技術領域】 本申請案是針對香麟嘴,其為具有提高煙草煙霧流通的元件之香煙 吸煙器。 【先前技術】 為減少香煙的某些成分,世界衛生組織(WHO)已提出建議。參閱: 世界衛生組織技術報告系列(WHO Technical Report Series)第951號,香 煙製品管制之科學基礎,世界衛生組織(2〇〇8)。其中,世衛組織建議 的某些成分,如乙醛、丙烯醛、苯、苯並[a]芘(benzo[a]pyrene)、1}3· 丁二烯、曱醛等,須減少到數據集平均值的125%以下,文獻同上,表 3.10,第112頁。鏗於香煙製品管制新的國際建議,需要有一個新的香 煙濾嘴和使用於香煙濾嘴的新材料。 以裝載碳的香煙;慮嘴除去煙霧成分是眾所周知的。這些過滤器包括絲 束碳過濾器和碳微粒濾室過濾器《美囪專利第5,423,336號揭露一種具 201138657 有活性炭腔的香煙濾嘴。美國專利申請公開案2010/0147317揭露一種 具有螺旋通道之香煙濾嘴,其中活性炭黏着在通道的内壁。英國專利 第丨,592,952號揭露一種香煙濾嘴,其中連續長絲圍繞吸附劑顆粒核心 (如活性炭),並以熱塑性黏合劑(如聚乙烯和聚丙烯)黏合在一起。 世界智財局PCT公開專利第WO-2008/142420號揭露一種香煙濾嘴, 其中吸收材料(如活性炭)塗有聚合物材料(如〇 4_5重量%的聚乙烯)。 世界智財局PCT公開專利第WO-2009/112591公開一種香煙濾嘴,其 藉由包括至少一種聚合物(如聚乙烯)和至少一種其他化合物(如活 性炭)之複合材料產生很少或幾乎沒有粉塵。 活性炭藉由黏合劑形成一個整體多孔塊之碳塊技術是眾所周知的。美 ,專利第 4,753,728 號,第 6,770,736 號,第 7,049,382 號,第 7,160,453 號,和第7,112,280號採用低熔融流動聚合物黏合劑之碳塊技術,主要 用於濾水器。 在二十世紀60年代中期到70年代中期,也曾試圖利用藉由商業熱塑 生塑料(如聚乙稀和聚丙稀)黏合在一起之活性炭顆粒多孔塊,參閱 英國專利第1,〇59,421號,英國專利第1030,680號,美國專利第 3353543號,美國專利第3217715號,美國專利第3474600號,美國 專利第3648711號,和英國專利第1592,952號。這幾種多孔塊用於香 煙濾嘴。但是,他們沒有提到使用低熔融流動聚合物。此外,這些碳 塊似乎並沒有被商業化或成功地商業化。為此失敗的技術一項建議是 採用高熔融流動聚合物,但會導致產品性能(例如:壓力下降,煙霧 成分移除)之逐塊的變化,因此,他們將無法用在大量香煙的生產。 在捲菸生產中,香煙成分均勻性是必要的。使用高熔融流動聚合物也 被稱為掩罩碳,從而減少可用的有效面積而呈現高度的碳無效。 因此有需要尋求可以用在香煙濾嘴之活性顆粒多孔塊。 【發明内容】 香煙香煙吸煙器包括活性顆粒多孔材質,適應提高煙草煙霧流過該活 性顆粒及黏合劑顆粒。該活性顆粒約佔多.孔材質重量的1〜99%,而黏 4 201138657 合劑顆粒約佔多孔材質重量的1~99%。活性顆粒及黏合劑顆粒社人在 一起,而黏合點隨機分佈*整個多孔材質中,其中活·_粒的^ 大於黏合劑顆粒的粒徑。 下文所述的多孔材質疋用於吸煙器,特別是香煙渡嘴。多孔材質可形 成吸煙器的過濾器部分。 參閱第1-4圖,所示的幾個吸煙器實施方式(這是代表例,但以下吸煙 器不揭限於此)。在此所用吸煙器最常見的是指香煙,但它沒有這樣的 限制’可用於其他香煙香煙吸煙器,如煙嘴、雪茄、雪莊持柄、管、 水柱管、水柱煙袋、電子器吸煙元件、無煙霧香煙吸煙器等。下文中 所述,將是指香煙(另有註明除外)。 在第1圖中,香煙10包括煙草柱12和濾嘴14 β濾嘴14包括至少兩個 部分,第一部分16和第二部分18 ^例如:第一部分16包括傳統的過 濾材料(下文中詳細討論),第二部分18包括多孔材質(下面詳細討 論)。 在第2圖中,香煙20有一煙草柱12和濾嘴22。濾嘴22多分割成三段。 在此實施方式,傳統的過濾材料24包夾多孔材質26。 在第3圖中,香煙30有煙草柱12和濾嘴32ι濾嘴32多分割成四段。 在此實施方式中,最終段34是傳統材料,但段36 ’ 37和38可為傳統 材料和多孔材質的任意組合(只要至少有一段是多孔材質即可)。 上述實施方式具有代表性’惟本發明並不侷限於此。當然,本發明的 渡嘴可以有許多段,例如:2、3、4、5、6段,或更多段。此外,諸段 可能是相同或彼此互相不同。該濾嘴直徑可能在5_1〇毫米的範圍和長 度5-30毫米的範圍。 在第4圖中’有一管道4〇具有燃燒缽42,口片44和聯接燃燒缽42和 口片44之通道46。通道46包括腔47 〇腔47收存濾嘴48。滤嘴48可 能是一個上面討論多的分段過濾器,也可能僅僅一段多孔材質。 在上述實施方式中’傳統的材料和多孔材質是合併使用。在此所用,,合 併使用’’意味著多孔材質在線上與煙草柱串聯,所以,吸煙時煙草煙霧 必經煙草柱及(例如:串聯)多孔材質,而最常見的是同時通過多孔 材質和傳統的過濾材料。如第1〜3圖所示,在多孔枒質和傳統的過濾 5 201138657 材料同軸’並列’毗鄰,且具 但是,據了解,多孔材質和m截面積(或實質上同等截面積)。 其他可能的配置。=材财必合併成這獅方式,而還有 ㈣μ ’按觀想纽材f最經常胁合併或多分段 香煙;慮货配置,如第1-3 m张-w Hη ^ 上渡嘴可能只包括多孔材質所^但上疋^發明/沒有這樣的限制,實際 ㈣以箱見,質如面關於第4圖所討論。此外,雖 然叮以預見纽材質可和鱗柱㈣ 於此。例如:多孔材質可藉由-空腔(比如,一個管:通i疋= 道或水柱煙筒,香煙飞通道’如在管 題㈣讀_之通道)和煙草分離,例如參見第4 1¾ 撕絲束(如醋酸纖維素絲束、聚稀烴 二:ί緩空腔(例如:由剛性元件(如紙張或塑料)形 ΐ組合。還包括具雜齡__束和紙 張(黏附或浸潰或以其他方式納入其中)。這種活性材料包括活性炭(或 木碳)、軒交換触、賴劑,或其雜卿鮮雖 腔 可能填充(或部分填充)活性成分或結合活性成分的材料。這種活性 成刀包括活J·生炭(或木碳),離子交換樹脂,乾燥劑,或其他能景煙 草煙霧的材^·。此外’傳統的材料可能是_個峰合劑顆粒組成之多 孔材質(即單獨、無任何活性顆粒之黏合_粒)。例如:這種無活性 顆粒之多孔材質可由熱塑性塑料顆粒(如輯烴粉末,包括下面討論 的黏合劑顆粒)’它們結合或塑造在__起呈多孔圓柱形狀。 多孔材質包含活性顆粒與黏合劑顆粒黏合在一起。例如:參見第5圖, -多孔材質實施方式的顯微照片,其中活性顆粒(例如:活性炭顆粒) 50係由黏合劑顆粒52黏合成多孔材質。(下文詳細討論活性顆粒和黏 合劑顆粒)。多孔材質具這種構造,使得它有最小的”封裝壓降,,(EpD, encapsulatedpressuredrop,即通過多孔材質的壓力損失),同時最大化的 活性顆粒表面積(也就是說’可增加活性雛功·的祕顆粒表面 積)。註.本實施方式(第5圖),黏合劑顆粒和活性顆粒在接觸點黏 合,接觸點是隨機分佈在整個多孔材質中,黏合劑顆粒保留其原來的 物理形狀(或實質上保留其原有的形狀,例如:從原來的形狀沒有超 過10%的變化(如收縮))。 6 201138657 在多孔材質中活性顆粒對黏合劑顆粒可呈任何重量比。這個比例可為 1-99重量%的活性顆粒和99-1%的黏合劑顆粒。這個比例可為25_99 %的重量活性顆粒和重量1-75%的黏合劑顆粒。這個比例可能是4〇_99 重量%的活性顆粒和1-60重量%的黏合劑顆粒。在一多孔材質實施方 式中,活性顆粒佔50-99重量%,而黏合劑顆粒佔ι_5〇重量%。在另 一實施方式中,活性顆粒佔60-95重量%,而黏合劑顆粒佔5_4〇重量 %。而且,在另-實施方式中,活性顆粒佔75_9G重量%,而黏合劑顆 粒佔10-25重量%。 在-多孔材質的實施方式巾,多孔材質之^_(VQidvdume)s4〇 9〇 %範圍内。在另一實施方式中,多孔材質之空隙率在6〇_9〇%範圍内。 在又另-實施方式巾’多孔材質之空_在㈤_85%範_。空隙體積 是在多孔材質形成後,活性顆粒和黏合劑顆粒之間的自由空間。 在一多孔材質的實施方式中,每毫米長度的多孔材質之封裝壓降(EpD) 為0·5〇-25毫米水柱的麵在另-實施方式中,每毫米長度的多孔材 質之封裝壓降(EPD)的範圍為〇·5㈣毫棘柱。而且,在另一實施 方式中,每毫米長度❹孔材質之封裝壓降(EPD)的範㈣2_7毫米 水柱(或每毫米長度的多孔材質不超過7毫米水柱)。為獲得所需的封 裝壓降(EPD),活性顆粒必須比黏合劑顆粒有更大的顆粒尺寸。在一 個實施方式巾’黏合綱㈣活性麵妹觀率範_丨:丨5_4〇。 在-實施方式中’多孔材質的長度為2·12毫米。在另一實施方式中, 多孔材質的長度為4-10毫米。 多孔材質可能有任何物理職’在—實施方式中,它呈陳體的形狀。 該活性齡相是能提高煙叙任何物料。能提高煙越·的是對 煙霧移除或添域分的任储料。移除可能是有選擇性的。在香煙排 放的煙霧中,麟化合物(如㈣、乙搭、丙酮、祕、巴豆路、丁 ,、甲基乙基酮、丙烯媒)和其他化合物(如苯、砂丁工稀和苯並间 芘(或BaPyrene)),例如:可以有選擇地移除。這種材料的一個例子 是活性炭(活性木炭或活性煤炭)。活性炭可能活性低(%四氣化 碳吸附率)或高活性(75·95%吨化碳吸_)或兩者混合4他的 這些材料例子包括離子錢樹脂、乾_、雜鹽、分刊、謂、. 7 201138657 活性氧化鋁、珍珠岩、海泡石(sepiolite)、矽藻土、矽酸鎮、金屬氧化 物(如氧化鐵),和上述的組合(包括活性炭)。離子交換樹脂包括, 例如:具骨幹的聚合物,如苯乙烯_二乙烯笨(DVB)共聚物、丙烯酸 酯、曱基丙烯酸酯、苯酚曱醛之縮合物,及環氧氣丙烷胺之縮合物; 以及具有多個帶電官能基之聚合物骨幹。在一實施方案中,活性顆粒 係各種活性顆粒之結合。 在一實施方式中’活性顆粒的粒徑在〇.5_5,000微米(mierons)之範圍。 在另一實施方式中,顆粒大小範圍從1〇到L000微米。在另一實施方 式中,顆粒大小範圍從200_900微米。在另一實施方式中,活性顆粒可 能是不同粒徑的混合物。在另一實施方式中,活性顆粒可能是各種粒 徑的混合物,平均粒徑範圍在0.5_5,000微米或1〇_1〇⑻微米或2〇〇·9〇〇 微米。 該黏合劑顆粒可能是任何的黏合劑顆粒。在一實施方式中,黏合劑顆 粒在其熔化溫度實質上無流動性。這意味著,該材料加熱到熔化溫度 幾乎沒有聚合物流動性。材料符合這些標準的材料包括但不限於超高 分子量聚乙烯,非常高的分子量的聚乙烯,高分子量聚乙烯及其組合 物。在一實施方式中,黏合劑顆粒的熔融流動指數(MFI,美國材料試 驗學會ASTMD1238)在190°C和15公斤荷重下小於或等於3 5克/1〇 分鐘(或0-3.5克/10分鐘在190oC和15公斤)。在另一實施方式中, 黏合劑顆粒的熔融流動指數(MFI)在190°C和15公斤荷重丁小於或 等於2.0克/10分鐘(或0-2.0克/10分鐘,19〇〇C和15公斤)。這種材 料的例子是超高分子量聚乙烯UHMWPE (它沒有聚合物流動性,在 190°C和15公斤荷重下’ MFI=0,或在190°C和15公斤荷重下,Mjq 為o-i.o克/ίο分鐘),另材料可為非常高分子量聚乙烯 可能的範圍’例如:在190。(:和15公斤荷重下,Luo克/1〇分鐘); 或高分子量聚乙烯HMWPE(MFI,例如:在19〇。(:和15公斤荷重下, 2.0-3.5克/10分鐘斤 就分子量而言’這裡所用的“超高分子量聚乙稀“是指重均分子量至少約 3χ106克/摩爾之聚乙稀組成物。在一些實施方式中,超高分子量聚乙稀 組成物的分子量在約3χ106克/摩爾和3〇χ106克/摩爾之間,或約3χ1〇6 s 201138657 克/摩爾和2(M06克/摩爾之間,或約3xl〇6克/摩爾和腦〇6克/摩爾之 間,或約广I。6克/摩爾和大約綱。6克/摩爾之間。“非常高的分子量 聚乙烯“是指重均分子量低於約3xl〇6克/摩爾和超過約^⑹克/摩爾的 聚乙稀組成物。在-些實施方式巾,非常高分子量的聚乙雜成物的 分子量在約2xl〇6克/摩爾和3χ1〇6克/摩爾之間。“超高分子量聚乙稀“是 指為重均分子量至少約3x⑽克/摩爾至1χ1〇6〜摩爾的聚乙烯組成 物。為本發明規範之目的,此處引用的分子量係按照,,馬戈利斯方程 式’’(Margoliesequation)測定(“馬戈利斯分子量“)。 適用的聚乙烯材料有市售的幾個來源,包括從Tic〇na泰科納聚合物公 司(德克薩斯州,達拉斯,Celanese塞拉尼斯公司的一個部門)的超高分 子量聚乙烯GUR®,和DSM公司(荷蘭),Bmskem公司(巴西),北 厅、第2工廠(BAAF),上海化學公司和齊魯公司(中華人民共和國), 三井公司和朝日公司(日本)。具體來說,GUR聚合物可包括:GUR2〇〇〇 系列(2105 ’ 2122 ’ 2122-5 ’ 2126) ’ GUR4000 系列(4120,4130,4150, 4170 ’ 4012 ’ 4122-5,4022-6,4050-3/4150-3),GUR8000 系列(8110, 8020),GURX 系列(X143,X184,X168,X172,X192)。 一種合適的聚乙烯材料例子是有特性黏度範圍為5升/1〇克到3〇升/1〇 克和結晶度80%以上’如美國專利專利申請公開案2〇〇8/〇〇9〇〇81所述 者。另一個合適的聚乙烯材料例子係以ASTM-D4020所測定的分子量 範圍約300,000克/摩爾至約2,000,000克/摩爾,平均粒徑,D50,在約 300微米及約1500微米之間,以及堆積密度(bulk density)在約0.25 及約0·5克/毫升之間’如2010年5月3曰提交之美國專利臨時申請號 61/330,535中所描述者。 在一實施方式中’黏合劑顆粒係各種黏合劑顆粒的組合。在一實施方 式中,黏合劑顆粒的顆粒大小在〇.5-5,000微米之範圍。在另一實施方 式中,顆粒大小範圍從10到1,〇〇〇微米。在其它實施方式中,顆粒大 小範圍從20-600微米,或125-5,000微米,或125-1,000微米,或150-600 微米’或200-600微米,或250-600微米,或300-600微米。在另一實 施方式中,黏合劑顆粒可能是各種顆粒大小的混合物。在另一實施方 式中,黏合劑顆粒可能是不同粒徑混合物,平均粒徑在125-5,000微米 201138657 或125-1,000微米或125-600微米之範圍。 此外,黏合劑顆粒之堆積密度可在0.10-0.55克/立方厘米之範圍。在 另一實施方式中,堆積密度可能在0.17-0.50公克/立方厘米之範圍。 在又一個實施方式中’堆積密度可在0.20-0.47公克/立方厘米之範圍。 除了上述黏合劑顆粒,其他常用熱塑性塑料可作為黏合劑顆粒。這種 熱塑性塑料包括:聚稀煙、聚S旨、聚醯胺(或尼龍)、聚丙烯酸化物、 聚本乙稀、乙稀類聚合物和纖維素。聚烯烴包括但不限於聚乙烯、聚 丙烯、聚丁烯、聚曱基戊烯’其共聚物,及其混合物p聚乙稀進一 步包括低密度聚乙烯、線性低密度聚乙稀、高密度聚乙稀,其共聚物 及其混合物等。聚酯包括聚對苯二曱酸乙二酯,聚對苯一 聚對苯二甲魏己撐二亞曱錢,料苯二情 及其混合物,等等。聚丙稀酸化物包括但不·聚甲基丙烯酸甲醋, 其共聚物,及其改質物等。本乙烯類聚合物包括但不限於聚笨乙烯, 丙烯腈丁二稀-苯乙稀共聚物,苯乙稀_丙稀猜共聚物,苯乙稀-丁二稀 共聚物’苯乙烯-馬來酸酐共聚物,其共聚物,及其混合物冑。乙稀類 聚合物包括但不限於乙稀-醋酸乙稀共聚物,乙稀_乙稀醇共聚物,聚氣 乙烯’其共聚物’及其混合物’科。纖維素包括但不限於醋酸纖維 素’醋酸丁酸纖維素,丙酸纖維素,乙基纖維素,其共聚物,及其混 合物等。 該黏合_粒可呈任何雜。這種包括_、海波餘、小行星 狀、科隆杜狀(chrondular)或星際塵埃狀、細褶皺狀、馬鈴薯狀、不規 則狀,或它們的組合。 多孔材質能有效從煙草煙霧去除不良成分。多孔材f可以用來減 送世衛組關定的煙草雜成分目標。例如:在活性制作活性顆粒 之多孔材質,可用於減少傳送料煙草煙霧成分至低於世界衛生组織 建議的濃度。見下面表13。在-實施方式中,使用活性炭之多孔材質 長度範圍4-n毫米。這些煙霧成分包括:乙經,丙祕,笨,苯 祐’ u-丁二稀’及甲酸。具活性炭之多孔材質可能會減少傳送:3〇·65 %乙酸/毫米長度的具活性炭多孔材質;7 5_ 125%丙稀崎米長度 活性厌多孔材質,5.5_8观苯/毫米長度的具活性炭多孔材質;9〇_則 201138657 %本並[a]祐/毫米長度的具活性炭多孔材質;ι.5·3.5%ι,3 丁二稀/毫米 長度的具活性炭多孔材質和甲路/毫米長度的具活性炭多孔 材質°另—烟子是’離子交麟脂被用作活性難的多孔材質可用 於減少傳送某魏草轉成分至低於世界衛生_所建_濃度。見 下面表在一實施方式中,使用離子交換樹脂的多孔材質長度在7-11 毫米之範圍。這些煙霧成分包括:乙路,丙稀搭及曱路。使用離子交 ^樹脂的多孔材質可減少:5〇·7〇%乙薛/毫米長度的具離子交換樹脂 多孔材質;4.0-6.5%丙稀齡/毫米長度的具離子交換樹脂多孔材質;和 9·0-11 ·0%甲輕/毫米長度的具離子交換樹脂多孔材質。 多孔材質可通過任何手段製備之。在一實施方式中,活性顆粒和黏合 劑顆粒混合在一起,並引入模具中。加熱模具到黏合劑顆粒熔點以上 的溫度,例如:在一個實施方式中,約2〇〇〇C,並保持在此溫度一段時 間(在一個實施方式中4〇±1〇分鐘)。此後,從模具取出多孔材質和冷 卻到室溫。在一實施方式中’這一過程的特點是自由的燒結過程,由 於黏合劑顆粒於模具中對於混合材料未加壓力,故在其溶融溫度不流 動(或流1很少)。在此實施方式中,活性顆粒和黏合劑顆粒之間形成 點的黏合。如此能優勢黏合,及最大限度提高間隙空間,同時盡量減 少活性顆粒的表面受到熔融黏合劑自由流動而鈍化。還可以參閱美國 專利第6,770,736號,第7,049,382號’第7,160,453號,在並納入參考。 另外,可以使用壓力下燒結(sintering)製程製備多孔材質。加熱(其 溫度可能低於,等於或高於黏合劑顆粒的熔化溫度)活性顆粒和黏合 劑顆粒混合物,並施加壓力於混合物,以方便多孔材質的結合。 此外,多孔材質可由擠壓燒結法製備’其中在擠筒加熱混合物,並擠 壓成多孔材質。 11 201138657 【實施方式】 進一步以下面的實施例來說明本發明。 實施例 在下面的實施例中,說明多孔碳材質移除在香煙煙霧中某些成分的效 力。碳材質是從25重量%的樹脂GUR2i〇5(德克薩斯州,達拉斯,泰 科納公司),和75重量%的?1<:人^〇259(95%活性炭)(美國俄亥俄州, 哥倫布的PICA公司)製得。碳材質有72%空隙體積和封裝壓降(epd) 2.2毫米水柱/毫米長度的碳材質。碳材質周長24 45毫米epiCARC259 炭的平均粒徑為569微米(μ)。碳材質之製備包含由樹脂(GUR21〇5) 和炭(PICARC259)混合,然後填充於模具中,胁加熱混合物未加 壓力(自由燒結)。然後,模具加熱到200。(:歷40分鐘。此後,從模 具取出碳材質,並冷卻。結合明確長度的多孔材質和足量醋酸纖維素 絲束產生總封裝壓降7〇毫米水柱的滤嘴。根據煙草行業標準檢測煙 霧。全部採用加拿大嚴格協議檢測煙霧(亦即τ_115“,測定煙箪 錢„中“焦油“,尼古丁和一氧化碳,加拿大衛生部,1999年),並 西魯林(Cemlean)#450吸煙機。 年)並矛J用 表1 羰基化合物 微克/香煙 對照 標準 5毫米 碳材質 20毫米 絲束 % 10毫米 碳材質 15毫米 絲束 — % 15毫米 碳材質 13毫米 % 曱搭 10.4 5.1 -51 0.0 ^100_ -37 0.0 188 5 -100 or 乙醛 295.3 211.2 -28 186.8〜 丙銅 601.0 287.7 -52 104.7 -83 〇ς 4 QA 丙酸· 100.2 42.4 -58 16.0 _zi〇0_ .1 〇(\ 14.9 -o4 -85— 巴豆醛 101.7 29.4 -71 0.0 ~ 0.0 -100 丁醛 114.8 43.3 -62 0.0 0.0 -100— 甲基乙基酮 178.8 64.2 -64 20.8 21.5 ~88 丙稀路 101.8 45.3 -56 13.6 •87 14.8 -85 12 201138657 表2 其他化合物 對照 標準 5毫米 碳材質 2〇毫米 絲束 % 10毫米 碳材質 15毫米 絲束 % 15毫米 碳材質 13毫米 絲束 % 苯(微克/支) 79.0 54.0 -32 22.0 -72 20.0 -75 1,3-丁二烯 (微克/支) 220.0 192.0 -13 162.0 -26 98.0 -55 苯並[a]芘 (奈克(ng)/ 支) 5.0 0.0 -100 0.0 -100 0.0 -100 表3 焦油、尼古 丁等 對照 標準 5毫米碳 材質 2〇毫米 絲束 對照 標準 10毫米 碳材質 15毫米 絲束 對照 標準 15毫米 碳材質 13毫米 絲束 焦油 (毫克/支) 39.0 37.1 35.8 34.4 33.7 34.9 尼古丁 (毫克/支) 2.8 2.8 2.5 2.6 2.6 2.7 水 (毫克/支) 17.7 17.0 14.0 13.3 14.7 11.2 一氧化碳 (毫克/支) 34.4 35.4 32.6 32.1 31.4 31.2 在下面的實施例中’說明多孔碳材質移除香煙煙霧中某些成分在的效 力。碳材質是由30重量%的樹脂GURX192(泰科納公司,達拉斯,德 克薩斯州)和70重量%的PICA30X70 (60%活性炭)(美國PICA公司, 哥倫布,俄亥俄州)所製成。碳材質有75%空隙體積的和封裝壓降(EPD) 的3.3毫米的水柱/毫米長度的碳材質。碳材質周長24.45毫米。 PICA30x70碳的平均粒徑為405微米(μ)。碳材質是由樹脂(GURX192) 13 201138657 和碳(PICA30X70)混合,然後填充於模具中,對於加熱混合物未加壓 力(自由燒結)。然後,加熱模具加熱到200°C歷60分鐘。此後,從 模具取出碳材質’並冷卻》結合明確長度的多孔材質和足量醋酸纖維 素絲束獲得總封裝壓降70毫米水柱的濾嘴。根據煙草行業標準檢測煙 霧。全部採用加拿大嚴格協議檢測煙霧(亦即T-115“,測定·捧應g 主流中“焦油“,尼古丁和一氣化碳,加拿大衛生部’ 1999年),並利用 西魯林#450吸煙機。 表4 幾·基化合物 微克/香煙 對照 標準 5毫米 碳材質 20毫米 絲束 % 10毫米 碳材質 15毫米 絲束 % 15毫米 碳材質 13毫米 絲束 % 甲醛 7.9 5.3 -32 0.0 -100 0.0 -100 乙醛 477.7 478.0 -0 413.5 -13 337.8 -29 丙_ 557.4 433.4 -22 214.0 -62 121.2 78 丙醛 118.5 72.5 -39 31.6 -73 17.4 -85 巴豆醛 83.0 38.5 -54 14.5 -83 10.7 -87 丁醛 86.8 39.7 -54 10.7 -88 5.9 -93 甲基乙基酮 195.7 100.8 -49 37.1 -81 19.2 -90 丙烯醛 84.0 55.5 -34 22.5 -73 13.3 -84 表5 其他化合物 對照 標準 5毫米 碳材質 20毫米 絲束 % 10毫米 碳材質 15毫米 絲束 % 15毫米37 材質13毫 米絲束 % 苯(微克/支) 118.7 82.7 -30 40.1 -66 23.5 -80 1,3-丁二烯 (微克/支) 257.3 259.1 1 204.4 -21 148.7 -42 笨並[a]芘(奈 克/支) 6.4 3.0 -53 0.0 -100 0.0 -100 14 201138657 表6 焦油、尼古丁 等 對照 標準 5 碳材質20毫 米絲束 10毫米碳 材質15毫 米碑束 15毫米 碳材質 13毫米絲走 焦油含量(毫 克/支) 41.5 41.5 41.2 38 4 尼古丁 (毫克/支) 2.8 —____ 2.9 2.8 水 (毫克/支) 16.7 _ 17.0 17.7 12 6 一氧化碳(毫 克/支) 30.8 33.2 35.5 31.6 f下面的實施例中,說明多孔離子交換樹脂材質去除香煙煙霧某些成 分的效果。多孔材質是從2〇重量%的(}1;1121〇5(泰科納公司,達拉斯, 德克薩斯州)和80重量%的胺系樹脂(Amberiiteno^RF,羅門哈斯公 司’費城’賓夕法尼亞州)製得。使1〇毫米的多孔材質加上足量的醋 酸纖維素絲束(12毫米),以產生濾嘴,總封裝壓降70毫米的水柱。 根據煙草行業標準,檢測煙霧。全部採用加拿大嚴格協議檢測煙霧(亦 即T-115“,測定煙蕈煙霧主流中“焦油“,尼.古丁和一笔ife毯’加拿大衛 生部,1999年),並利用西魯林#450吸煙機。 表7 羰基化合物 微克/香煙 對照標準 離子交換樹脂 %變化 甲醛 8.0 ND -100 乙醛 491.0 192.0 -61 丙酿1 519.0 589.0 14 丙烯醛 65.0 28.0 -56 丙搭 114.0 72.0 -37 巴豆醛 83.0 45.0 -45 甲基乙基酮 179.0 184.0 3 丁醛 54.0 61.0 13 15 201138657 在下面的實施m ’說明多孔乾麵材質從香煙煙_除水氣的有效 性。多孔材質是從20重量%的GUR2i〇5(泰科納公司,達拉斯,德克 薩斯州)和80重量%的硫酸弼乾燥劑(drierite⑧, W.A.Hamm〇ndDRIERITE有限公司,森雅,俄亥俄州)製得。使1〇毫 米的多孔材質加上足量的醋酸纖維素絲束(15毫米),以產生濾嘴,總 封裝壓降7G毫米的水柱。根親草行業鮮,^全^採用^ 拿大嚴格協議檢測煙霧(亦即T-115“,測定煙草煙霧主流中“焦油“,尼 古丁和-氧化碳’加拿大衛生部,1999年),並利用西魯林糾5〇吸煙 機。 表8 毫克/香煙 對照標準 乾燥劑 % 乾燥劑 % 調理過 改變 未調理過 改變 劍橋顆粒物 62.0 55.6 -10.3 54.0 -12.8 輸水 15.0 12.8 -15.1 11.2 -25.6 輸尼古丁 2.7 2.9 8.0 2.9 8.0 輸焦油 44.2 39.9 -9.7 40.0 -9.7 一氧化4 Γ 35.0 卜 35.9— 2.5 35.0 0.1 焦油/尼古丁比值 16.5 13.8 -16.4 13.8 -16.4 _ 在下面的實施方式巾,比較碳絲錢芯和本發❹孔碳材f。在這個 比較中’比較等總碳含量。換言之,其含量在每個元件中碳含量是相 ^ ’轉的長度是允許改變’故能麟等量的碳^告相對於傳統醋 心纖維過it H轉成分變化(相對轉_纖喊嘴之紐化)。 所有的渡嘴包含碳元素和麟纖維料、束。所有的射頂端有足夠長 =醋酸纖維素絲束以獲得射目標壓力降落γ()毫米水柱。滤嘴的總長 度,20毫米(碳元素和絲束成分)。此碳是3〇χ7〇,嶋活性碳picA。 全广採用加拿大嚴格協議檢測轉(亦即T11S“,測定煙草煙霧主流 中‘焦油“,尼古丁和一氧化碳,加拿大衛生部,1999年 201138657 表9 總碳含量=39毫克 總碳含量=56亳克 幾基化合物 — 碳-絲束(10毫米) %變化 碳材質 (2毫米) %變化 碳-絲束(10毫 米) %變化 碳材質 (3毫米) %變化 甲醛 -24.6 -13.7 -32.3 -27.6 乙路 -4.5 -3.4 -6.3 -- -12.5 丙酮 -19.7 -33.1 -27.3 -49.2 丙搭 -32.0 -42.2 -38.6 -55.7 巴豆路 -64.5 -57.3 -71.0 — -68.0 丁搭 7.9 -34.4 -8.2 -54.4 甲基6基綱 35.4 Γ -48.3 45.6 -63.2 丙烯酸 -22.5 -40.3 -31.3 -52.6 在下面的實施例,比較高活性炭(95%四氣化碳吸收率)所製備的多 孔碳材質和低活性炭(60%四氣化碳吸收率)製備的多孔炭材質。合 併的濾嘴使用10毫米的碳材質加上足夠長的醋酸纖維素,達到合併的 封裝壓降69-70毫米的水柱。這些濾嘴被裝入到商業化香煙,並利用西 魯林#450吸煙機’全部採用加拿大嚴格協議檢測煙霧(亦即τ_115‘‘, 測疋煙草煙霧主流中“焦油“,尼古丁和一氧化碳,加拿大衛生部,1999 年)。高活性炭是PICARC259,顆粒大小20x50,95%的活性(四氣化 碳吸附率)。低活性炭是PICAPCA,粒度30x70,60%的活性(四氣化 碳吸附率)。每個碳材質元件的碳含量為18_2毫克/毫米(低活性炭),167 毫克/毫米(高活性炭)。報告的數據是相對於傳統的醋酸纖維濾嘴而言。 17 201138657 表ίο 羰基化合物 60%活性炭 %變化 95%活性炭 °/〇變化 fm -100.0 -100.0 乙醛 -65.8 -37.0 丙酿I -89.9 -83.0 ~ 丙醛 -91.0 -84.0 巴豆醛 -100.0 -100.0 —~ 丁醛 -100.0 -100.0 — 曱基乙基酮 -100.0 -88.0 丙浠酸 -90.7 -87.0 表11 其他化合物 60%活性炭 %變化 95%活性炭〇/〇 變化 苯 _ 2.6 -72.0 1,3-丁二烯 -3.2 -26.0 本並[a]芘 -100.0 -100.0 在下面的實施例,說錄徑對封裝壓降(EPD)之效果。具各種顆粒大 小之多孔補f加人齡热翻旨(GUR21()5),械具巾在2⑽。〇加 熱混合物(自由燒結)4G分鐘,塑造成棒(長度=39毫米和周長=24·45 毫求)。此後’從難取丨碳㈣,並冷卻到室溫。測定⑴個破材質 之封裝壓降(EPD) ’取其平均值。 表12 碳 碳:GUR重 量比 平 (微米) — 平均封裝壓降(EPD) _(毫米水柱/毫米的碳材質長度) RC259 75:25 2 7 PICA 80:20 m3---' NC506 75:25 ZJtjTZ. _ 25.0 201138657 在下面的實細巾,如表1〜3巾所狀碳材f是絲刻這種碳材質 作出的濾嘴祕足世界衛生峡(WHC))的#煙鮮。世衛組織的標 準可參閱世衛組織技術報告系列第9M號,煙草製品管制之科學基礎, 世界衛生組織(2008年),表31〇,第112頁。結果,報告如下,表明 破材質可以用來齡絲的料轉成分餘世界触_所建議的 上限。 (微克) 中位數1 上限 (125% +位數) 品牌最高 輸送量1 %減少量2 5毫米 %減少量2 10毫米 輸送量 5毫米 輸送量10 毫米 1,3-丁二烯 53.3 66.7 75.5 13 26 65.7 55.9 乙醛 687.6 859.5 997.2 28 37 718 628.2 丙烯醛 66.5 83.2 99.5 56 87 43.8 12.9 苯 38 47.5 51.1 32 72 34.7 14.3 苯k[a]芘 9.1 11.4 13.8 100 100 0 0 甲鉍 37.7 47.1 90.5 51 100 44.4 0 19 1 資訊基於數據,參閱Counts’ME等氏(2004年)主流煙霧有毒物質和從全球市 場香煙品牌樣品的預測關係:國際標準組織吸煙條件,毒理學和藥理學監管 (Regulatory Toxicology and Pharmacology),39 期:111-134 頁;和 Counts,ME 等 氏,(2005年)藉由三台吸煙機-吸煙條件抽吸國際香煙品牌之煙霧組成和預測關 係,毒理學和藥理學監管,41期:185-227頁。 2 由表1〜3所獲得之%減少量。 在下面的實施例’如表4所列離子交換樹脂被用作活性顆粒之多孔材質是用來證 明這種多孔材質作出的遽嘴可用於製造香煙,以滿足世界衛生組織(WHO)的 香煙標準。世衛組織的標準記載於世衛組織技術報告系列第951號,星皇皇是置 制之科輋某礎(The Scientific Basis of Tobacco Product Regulation),世界衛生組織 (2008年)’表3.10,第112頁。結果,報告如下,表明多孔材質可以用來減少 煙草煙霧某些成分的濃度低於世界衛生組織所建議的標準。 201138657 A Η (微克) 中位數1 上限 (125%的中位數) 品牌最 輸送量1 %減少量2 10毫米 輸送量 10毫米 丙烯路 ββΤ~ 859.5 832 997.2 ~~993~~~ 61 56 388.9 ~~43^8 甲酸· _J2i7 47.1 90.5 卜100 0.0 1. 資訊基於數據,參M c〇劾,ME等氏⑽4年)主流煙霧有毒物質和從全球市 場香煙品雜品的酬_ : _鮮_吸煙狀況,毒 頁;和c。魂ME私,(屬年)藉由三纽賴·聽條件抽吸國 2煙时牌之煙霧組成和酬關係,毒理學和藥理學監管,期:⑻初頁。 2. 由表4所獲得之%減少量。 並據此, 【圖式簡單說明】 為說明發明,兹以較佳__式顯示, 侷限於所示明確的構形和工具。 疋貝理解的疋&項發明不 ^ 本發明香煙㈣的香煙橫截面示意圖。 : 本發明香煙滤嘴的香煙橫截面示意圖。 本發明香煙濾嘴的香煙橫截面示意圖。 香煙濾嘴的煙斗橫截面示意圖。 弟5圖疋-fP多孔材質的顯微照片。 20 201138657 【主要元件符號說明】 代號 說明 10 香煙 12 煙草柱 14 濾嘴 16 第一部分 18 第二部分 20 香煙 22 濾嘴 24 傳統的過濾材料 26 多孔材質 30 香煙 32 濾嘴 34 最終段 36 段 37 段 38 段 40 管道 42 燃燒缽 44 口片 21 201138657 代號 說明 46 通道 47 腔 48 濾嘴 50 活性顆粒 52 黏合劑顆粒 22201138657 Code Description '44 — σ片46 Channel 47 Cavity—~ ' 48 Filter 50 Active Particles 52 Adhesive Particles----- V. If there is a chemical formula in this case, please disclose the chemical that best shows the characteristics of the invention. [Description of the Invention] [Technical Field] The present application is directed to a fragrant mouth, which is a cigarette smoker having an element for improving the circulation of tobacco smoke. [Prior Art] To reduce certain components of cigarettes, the World Health Organization (WHO) has made recommendations. See: World Health Organization Technical Report Series No. 951, Scientific Foundation for the Control of Cigarette Products, World Health Organization (2〇〇8). Among them, some ingredients recommended by WHO, such as acetaldehyde, acrolein, benzene, benzo[a]pyrene, 1}3·butadiene, furfural, etc., must be reduced to data. Set the average value below 125%, the same as above, Table 3.10, page 112. A new international proposal for cigarette product control requires a new cigarette filter and new materials for cigarette filters. It is well known that cigarettes are loaded with carbon; These filters include a tow carbon filter and a carbon particulate filter. A honeycomb filter having an activated carbon chamber is disclosed in Japanese Patent No. 5,423,336. U.S. Patent Application Publication No. 2010/0147317 discloses a cigarette filter having a spiral passage in which activated carbon is adhered to the inner wall of the passage. British Patent No. 592,952 discloses a cigarette filter in which continuous filaments surround a core of adsorbent particles (e.g., activated carbon) and are bonded together with a thermoplastic binder such as polyethylene and polypropylene. The World Intellectual Property Office PCT Publication No. WO-2008/142420 discloses a cigarette filter in which an absorbent material such as activated carbon is coated with a polymer material (e.g., _ 4 - 5 wt% of polyethylene). The World Intellectual Property Office PCT Publication No. WO-2009/112591 discloses a cigarette filter which produces little or no material by a composite material comprising at least one polymer such as polyethylene and at least one other compound such as activated carbon. dust. It is well known that activated carbon forms a monolithic block of carbon blocks by means of a binder. U.S. Patent Nos. 4,753,728, 6,770,736, 7,049,382, 7,160,453, and 7,112,280, the use of a low-melting flow polymer binder carbon block technique, primarily for water filters. In the mid-1960s to the mid-1970s, attempts were made to utilize porous blocks of activated carbon particles bonded together by commercial thermoplastic green plastics (such as polyethylene and polypropylene). See British Patent No. 1, 〇59,421 , British Patent No. 1030, 680, U.S. Patent No. 3,335,543, U.S. Patent No. 3,217,715, U.S. Patent No. 3,474,600, U.S. Patent No. 3,648,711, and British Patent No. 1,592,952. These porous blocks are used for cigarette filters. However, they did not mention the use of low melt flow polymers. Moreover, these carbon blocks do not appear to have been commercialized or successfully commercialized. One suggestion for this failed technique is to use high melt flow polymers, but this will result in a block-by-block change in product performance (eg, pressure drop, smoke component removal) and, therefore, they will not be used in the production of large quantities of cigarettes. In cigarette production, cigarette composition uniformity is necessary. The use of high melt flow polymers is also known as masking carbon, thereby reducing the available effective area while presenting a high degree of carbon ineffectiveness. There is therefore a need to find porous pellets of active particles that can be used in cigarette filters. SUMMARY OF THE INVENTION A cigarette cigarette smoker comprises a porous material of active particles adapted to increase the flow of tobacco smoke through the active particles and binder particles. The active particles account for about 1 to 99% by weight of the porous material, and the sticky particles of 201138657 are about 1% to 99% of the weight of the porous material. The active particles and binder particles are grouped together, and the bonding points are randomly distributed* throughout the porous material, wherein the ^ of the living particles is larger than the particle size of the binder particles. The porous material described below is used in smoking articles, particularly cigarette spouts. The porous material forms the filter portion of the smoker. See Figures 1-4 for several smoker embodiments (this is a representative example, but the following smoking devices are not limited to this). The most common type of smoking device used here refers to cigarettes, but it does not have such restrictions. It can be used for other cigarette smoking devices, such as cigarette holders, cigars, snow handles, tubes, water column tubes, water column cigarettes, electronic smoking components, Smokeless cigarette smoker, etc. As used hereinafter, it will mean cigarettes (unless otherwise noted). In Fig. 1, the cigarette 10 includes a tobacco column 12 and a filter 14 The beta filter 14 includes at least two portions, a first portion 16 and a second portion 18. For example, the first portion 16 includes conventional filter material (discussed in detail below) The second portion 18 comprises a porous material (discussed in detail below). In Fig. 2, the cigarette 20 has a tobacco column 12 and a filter 22. The filter 22 is divided into three segments. In this embodiment, the conventional filter material 24 encases the porous material 26. In Fig. 3, the cigarette 30 has a tobacco column 12 and a filter 32. The filter 32 is divided into four segments. In this embodiment, the final section 34 is a conventional material, but the segments 36' 37 and 38 can be any combination of conventional materials and porous materials (as long as at least one of the sections is a porous material). The above embodiments are representative', but the invention is not limited thereto. Of course, the nozzle of the present invention can have many segments, such as: 2, 3, 4, 5, 6, or more segments. In addition, the segments may be the same or different from each other. The filter diameter may be in the range of 5_1 〇 mm and the length of 5-30 mm. In Fig. 4, there is a duct 4 having a combustion chamber 42, a port 44 and a passage 46 connecting the burner 42 and the flap 44. The passage 46 includes a cavity 47 and a chamber 47 for storing the filter 48. The filter 48 may be a segmented filter as discussed above, or it may be a single piece of porous material. In the above embodiment, the conventional material and the porous material are used in combination. As used herein, the combined use of '' means that the porous material is connected in series with the tobacco column on the line, so tobacco smoke must pass through the tobacco column and (for example, in series) porous material when smoking, and the most common is through porous material and tradition at the same time. Filter material. As shown in Figures 1 to 3, the porous tantalum and the conventional filter 5 201138657 are coaxially juxtaposed, and it is understood that the porous material and the m-sectional area (or substantially the same cross-sectional area). Other possible configurations. = material will be merged into this lion way, and there are (four) μ ' according to the idea of the new material f most often threatened to merge or multi-segment cigarettes; consider the cargo configuration, such as the first 1-3 m Zhang-w Hη ^ on the ferry may Only include porous materials ^ but the upper 疋 ^ invention / no such restrictions, the actual (four) see the box, the quality as discussed in Figure 4. In addition, although it is foreseeable, the material can be used with the scales (4). For example, a porous material can be separated from tobacco by a cavity (for example, a tube: a tube or a water column, a cigarette flight channel, as in the tube (4) read), for example, see Chapter 4 13⁄4. Bundles (such as cellulose acetate tow, poly-diuretic two: lye cavities (for example: a combination of rigid elements (such as paper or plastic). Also included are bundles of __ bundles and paper (adhesive or impregnated or It is otherwise included.) This active material includes activated carbon (or wood carbon), Xuan exchange touch, a liquid, or a material that may fill (or partially fill) the active ingredient or bind the active ingredient. Active cutting tools include live J. charcoal (or charcoal), ion exchange resins, desiccants, or other materials that can be used for tobacco smoke. In addition, 'the traditional material may be a porous material composed of particles of peak mixture. (ie, alone, without the adhesion of any active particles). For example, the porous material of such inactive particles can be combined or molded by thermoplastic particles (such as hydrocarbon powders, including the binder particles discussed below). Porous cylindrical The porous material comprises the active particles bonded to the binder particles. For example, see Figure 5, a photomicrograph of a porous material embodiment in which active particles (e.g., activated carbon particles) 50 are adhered to the porous by the binder particles 52. Material (discussed in detail for active particles and binder particles). The porous material has this construction, so that it has the smallest "package pressure drop, (EpD, encapsulatedpressuredrop, pressure loss through porous material), while maximizing The surface area of the active particles (that is, 'the surface area of the secret particles that can increase the activity of the active material.'). In this embodiment (Fig. 5), the binder particles and the active particles are bonded at the contact points, and the contact points are randomly distributed throughout the porous In the material, the binder particles retain their original physical shape (or substantially retain their original shape, for example: no more than 10% change from the original shape (such as shrinkage).) 6 201138657 Active particle pairs in porous materials The binder particles may be in any weight ratio. This ratio may range from 1 to 99% by weight of active particles and from 99 to 1%. Mixing granules. This ratio may be 25-99% by weight of active granules and 1-75% by weight of binder granules. This ratio may be 4 〇 _99% by weight of active granules and 1 to 60% by weight of binder granules. In the porous material embodiment, the active particles account for 50-99% by weight, and the binder particles account for 1⁄4% by weight. In another embodiment, the active particles account for 60-95% by weight, and the binder particles account for 5_4% by weight. In addition, in another embodiment, the active particles account for 75_9 Gwt%, and the binder particles account for 10-25 wt%. In the embodiment of the porous material, the porous material is ^_(VQidvdume)s4〇9〇 In another embodiment, in another embodiment, the porosity of the porous material is in the range of 6 〇 〇 9 〇 %. In yet another embodiment of the towel 'porous material empty _ in (five) _85% van _. The void volume is the free space between the active particles and the binder particles after the porous material is formed. In a porous material embodiment, the package pressure drop (EpD) of the porous material per mm length is 0. 5 〇 -25 mm water column surface. In another embodiment, the package pressure of the porous material per mm length The range of the drop (EPD) is 〇·5 (four) millispindle. Moreover, in another embodiment, the package pressure drop (EPD) of the pupil material per mm length is (4) 2-7 mm water column (or porous material per mm length does not exceed 7 mm water column). In order to achieve the desired package pressure drop (EPD), the active particles must have a larger particle size than the binder particles. In one embodiment, the towel's adhesion (four) active face is observed in the range of 妹 丨: 丨 5_4 〇. In the embodiment, the length of the porous material is 2·12 mm. In another embodiment, the porous material has a length of 4-10 mm. The porous material may have any physical position in the embodiment, which is in the shape of an old body. The active age phase is capable of improving any material in the smoke. It is the storage of the smoke removal or the addition of the domain. Removal may be selective. In the smoke emitted by cigarettes, lin compounds (such as (four), acetyl, acetone, secret, croton, butyl, methyl ethyl ketone, propylene) and other compounds (such as benzene, sardine and benzo)芘 (or BaPyrene)), for example: can be selectively removed. An example of such a material is activated carbon (active charcoal or activated coal). Activated carbon may have low activity (% carbonized carbon adsorption rate) or high activity (75.95% tons of carbon absorption) or a mixture of the two. Examples of these materials include ionic money resin, dry _, hetero salt, and separate articles. 7, 2011, 201138657 Activated alumina, perlite, sepiolite, diatomaceous earth, tannic acid town, metal oxides (such as iron oxide), and combinations of the above (including activated carbon). The ion exchange resin includes, for example, a backbone polymer such as a styrene-divinyl DVB copolymer, an acrylate, a decyl acrylate, a phenol furfural condensate, and an epoxy propylene amine condensate; And a polymer backbone having a plurality of charged functional groups. In one embodiment, the active particles are a combination of various active particles. In one embodiment, the particle size of the active particles is in the range of from 55 to 5,000 micrometers. In another embodiment, the particle size ranges from 1 L to L000 microns. In another embodiment, the particle size ranges from 200 to 900 microns. In another embodiment, the active particles may be a mixture of different particle sizes. In another embodiment, the active particles may be a mixture of various particle sizes ranging from 0.5 to 5,000 microns or 1 〇 1 〇 (8) microns or 2 〇〇 9 微米 microns. The binder particles may be any binder particles. In one embodiment, the binder particles are substantially free of fluidity at their melting temperature. This means that the material is heated to the melting temperature with little polymer flow. Materials that meet these criteria include, but are not limited to, ultra high molecular weight polyethylene, very high molecular weight polyethylene, high molecular weight polyethylene, and combinations thereof. In one embodiment, the melt flow index (MFI, American Society for Testing and Materials, ASTM D1238) of the binder particles is less than or equal to 35 g/1 min (or 0-3.5 g/10 min) at 190 ° C and a load of 15 kg. At 190oC and 15kg). In another embodiment, the binder particles have a melt flow index (MFI) of 190 ° C and a 15 kg load of less than or equal to 2.0 g/10 min (or 0-2.0 g/10 min, 19 C and 15) kg). An example of such a material is ultra high molecular weight polyethylene UHMWPE (which has no polymer flowability, 'MFI=0 at 190 ° C and 15 kg load, or 190 ° C and 15 kg load, Mjq is oi.o g / ίο min), another material can be a range of very high molecular weight polyethylene 'for example: at 190. (: and 15 kg load, Luo g / 1 〇 min); or high molecular weight polyethylene HMWPE (MFI, for example: at 19 〇. (: and 15 kg load, 2.0-3.5 g/10 min jin on the molecular weight The phrase "ultrahigh molecular weight polyethylene" as used herein refers to a polyethylene composition having a weight average molecular weight of at least about 3 χ 106 g/mol. In some embodiments, the ultrahigh molecular weight polyethylene composition has a molecular weight of about 3 χ 106.克/mol and 3〇χ106 g/mol, or about 3χ1〇6 s 201138657 g/mol and 2 (M06 g/mol, or about 3xl〇6 g/mol and cerebral palsy 6 g/mol , or about 1. 6 g / mol and about 6 g / mol. "Very high molecular weight polyethylene" means that the weight average molecular weight is less than about 3 x 16 6 / mol and more than about ^ (6) g / a molar polyethylene composition. In some embodiments, the molecular weight of the very high molecular weight poly-hybrid is between about 2 x 16 gram / mole and 3 χ 1 〇 6 gram / mole. "Ultra high molecular weight polyethylene "Thin" means a polyethylene composition having a weight average molecular weight of at least about 3 x (10) g / mol to 1 χ 1 〇 6 ~ mol. For the purpose, the molecular weights quoted herein are determined according to the Margoliesequation ("Margolis molecular weight"). Suitable polyethylene materials are commercially available from several sources, including from Tic〇. Na Ticona Polymers (a division of Celanese Celanese, Dallas, Texas) Ultra High Molecular Weight Polyethylene GUR®, and DSM (Netherlands), Bmskem (Brazil), North Hall, Plant 2 (BAAF), Shanghai Chemical Company and Qilu Company (PRC), Mitsui Corporation and Asahi Corporation (Japan). Specifically, GUR polymers may include: GUR2〇〇〇 series (2105 ' 2122 ' 2122- 5 ' 2126) ' GUR4000 series (4120, 4130, 4150, 4170 ' 4012 ' 4122-5, 4022-6, 4050-3/4150-3), GUR8000 series (8110, 8020), GURX series (X143, X184, X168, X172, X192) An example of a suitable polyethylene material is having an intrinsic viscosity ranging from 5 liters / 1 gram to 3 liters / 1 gram and a crystallinity of more than 80% - as disclosed in US Patent Application Publication No. 2 〇8/〇〇9〇〇81 Another suitable example of a polyethylene material is a molecular weight range of from about 300,000 g/mol to about 2,000,000 g/mol as measured by ASTM-D4020, an average particle size, D50, between about 300 microns and about 1500 microns, and stacking. The bulk density is between about 0.25 and about 0.5 g/ml as described in U.S. Patent Application Serial No. 61/330,535, filed on May 3, 2010. In one embodiment, the binder particles are a combination of various binder particles. In one embodiment, the binder particles have a particle size in the range of from 55 to 5,000 microns. In another embodiment, the particle size ranges from 10 to 1, 〇〇〇 microns. In other embodiments, the particle size ranges from 20-600 microns, or 125-5,000 microns, or 125-1,000 microns, or 150-600 microns' or 200-600 microns, or 250-600 microns, or 300-600 microns. . In another embodiment, the binder particles may be a mixture of various particle sizes. In another embodiment, the binder particles may be a mixture of different particle sizes having an average particle size in the range of 125-5,000 microns 201138657 or 125-1,000 microns or 125-600 microns. Further, the binder particles may have a bulk density in the range of from 0.10 to 0.55 g/cc. In another embodiment, the bulk density may range from 0.17 to 0.50 grams per cubic centimeter. In yet another embodiment, the bulk density can range from 0.20 to 0.47 grams per cubic centimeter. In addition to the above binder particles, other commonly used thermoplastics can be used as binder particles. Such thermoplastics include: polydue, polystyrene, polyamido (or nylon), polyacrylate, polyethylene, ethylene, and cellulose. Polyolefins include, but are not limited to, polyethylene, polypropylene, polybutene, polydecylpentene, copolymers thereof, and mixtures thereof. Polyethylene further includes low density polyethylene, linear low density polyethylene, high density poly Ethylene, its copolymers and mixtures thereof, and the like. The polyester includes polyethylene terephthalate, polyparaphenylene terephthalate, benzophenone and mixtures thereof, and the like. Polyacrylates include, but are not, polymethyl methacrylate, copolymers thereof, and modifications thereof. The ethylene-based polymer includes, but is not limited to, polystyrene, acrylonitrile butadiene-styrene copolymer, styrene-acrylic copolymer, styrene-butadiene copolymer, styrene-malay Anhydride copolymer, a copolymer thereof, and a mixture thereof. Ethylene polymers include, but are not limited to, ethylene-vinyl acetate copolymers, ethylene-ethylene glycol copolymers, polystyrene's copolymers', and mixtures thereof. Cellulose includes, but is not limited to, cellulose acetate, cellulose acetate butyrate, cellulose propionate, ethyl cellulose, copolymers thereof, and mixtures thereof and the like. The adhesive _ granules can be any impurities. This includes _, sea wave, asteroid, chrondular or interstellar dust, fine pleats, potato, irregular, or a combination thereof. Porous materials effectively remove undesirable components from tobacco smoke. The porous material f can be used to reduce the WHO's tobacco miscellaneous targets. For example, a porous material that is active in the production of active particles can be used to reduce the concentration of tobacco fumes in the delivery material to below the recommended concentration recommended by the World Health Organization. See Table 13 below. In the embodiment, the porous material using activated carbon has a length ranging from 4 nm to 1 mm. These smoke components include: Ethylene, Cing, Stupid, Benzo' u-butadiene and formic acid. Porous material with activated carbon may reduce the transmission: 3〇·65% acetic acid/mm length with activated carbon porous material; 7 5_ 125% acrylonitrile length active anaerobic material, 5.5_8 benzene/mm length with activated carbon porous material ;9〇_则201138657 %本[a]You/mm length of activated carbon porous material; ι.5·3.5% ι,3 diced dilute/mm length with activated carbon porous material and armor/mm length Activated carbon porous material ° Another - smoke is 'Ion Jiaolin' is used as a porous material that is difficult to use and can be used to reduce the transmission of certain Wei grass to the lower concentration. See the table below. In one embodiment, the length of the porous material using the ion exchange resin is in the range of 7-11 mm. These smoke components include: B Road, Acrylic and Kushiro. Porous material using ion exchange resin can reduce: 5 〇 · 7 〇 % 薛 / / mm length of porous material with ion exchange resin; 4.0 - 6.5% propylene / mm length of porous material with ion exchange resin; and 9 · 0-11 · 0% light/mm length porous material with ion exchange resin. The porous material can be prepared by any means. In one embodiment, the active particles and binder particles are mixed together and introduced into a mold. The mold is heated to a temperature above the melting point of the binder particles, for example, in one embodiment, about 2 ° C, and maintained at this temperature for a period of time (in one embodiment 4 〇 ± 1 〇 minutes). Thereafter, the porous material was taken out from the mold and cooled to room temperature. In one embodiment, this process is characterized by a free sintering process in which the binder particles do not flow at the melting temperature because the binder particles are not stressed in the mold (or stream 1 is small). In this embodiment, a point of adhesion is formed between the active particles and the binder particles. This is advantageous for bonding and maximizing the gap space while minimizing the surface of the active particles from being freely flow-passivated by the molten binder. See also U.S. Patent No. 6,770,736, the disclosure of which is incorporated herein by reference. Alternatively, a porous material can be prepared using a pressure sintering process. The mixture of active particles and binder particles is heated (the temperature may be lower than, equal to or higher than the melting temperature of the binder particles) and pressure is applied to the mixture to facilitate the bonding of the porous material. Further, the porous material can be prepared by extrusion sintering in which the mixture is heated in a squeeze barrel and extruded into a porous material. 11 201138657 [Embodiment] The present invention will be further described in the following examples. EXAMPLES In the following examples, the effect of a porous carbon material on the removal of certain components in cigarette smoke is illustrated. Carbon material is from 25% by weight of resin GUR2i〇5 (Dallas, Texas, Ticona), and 75% by weight? 1 <: Human 〇 259 (95% activated carbon) (PICA, Inc., Columbus, OH, USA). The carbon material has a 72% void volume and a package pressure drop (epd) of 2.2 mm water column/mm length carbon. Carbon material circumference 24 45 mm epiCARC259 Carbon has an average particle size of 569 microns (μ). The carbon material was prepared by mixing a resin (GUR21〇5) and carbon (PICARC259) and then filling it in a mold, and the mixture was heated without pressure (free sintering). The mold is then heated to 200. (: 40 minutes. After that, the carbon material is taken out from the mold and cooled. Combined with a clear length of porous material and a sufficient amount of cellulose acetate tow to produce a filter with a total packing pressure of 7 mm water column. Smoke is tested according to tobacco industry standards. All use the strict Canadian agreement to detect smog (ie τ_115", determine the smoky money „中“tar”, nicotine and carbon monoxide, Health Canada, 1999), and Cemlean #450 smoking machine. Spear J with Table 1 carbonyl compound microgram / cigarette control standard 5 mm carbon material 20 mm tow % 10 mm carbon material 15 mm tow - % 15 mm carbon material 13 mm% 曱 10.4 5.1 -51 0.0 ^100_ -37 0.0 188 5 -100 or acetaldehyde 295.3 211.2 -28 186.8~ copper copper 601.0 287.7 -52 104.7 -83 〇ς 4 QA propionic acid · 100.2 42.4 -58 16.0 _zi〇0_ .1 〇 (\ 14.9 -o4 -85 - Croton Aldehyde 101.7 29.4 -71 0.0 ~ 0.0 -100 Butanal 114.8 43.3 -62 0.0 0.0 -100 - Methyl ethyl ketone 178.8 64.2 -64 20.8 21.5 ~88 Propylene road 101.8 45.3 -56 13.6 •87 14.8 -85 12 201138657 Table 2 Otherization Comparison standard 5 mm carbon material 2 mm tow % 10 mm carbon material 15 mm tow % 15 mm carbon material 13 mm tow % benzene (microgram / support) 79.0 54.0 -32 22.0 -72 20.0 -75 1,3 - Butadiene (micrograms / support) 220.0 192.0 -13 162.0 -26 98.0 -55 Benzo[a]pyrene (Nike (ng) / branch) 5.0 0.0 -100 0.0 -100 0.0 -100 Table 3 Tar, nicotine, etc. Control standard 5 mm carbon material 2 mm tow contrast standard 10 mm carbon material 15 mm tow standard 15 mm carbon material 13 mm tow tar (mg / support) 39.0 37.1 35.8 34.4 33.7 34.9 Nicotine (mg / support) 2.8 2.8 2.5 2.6 2.6 2.7 Water (mg/support) 17.7 17.0 14.0 13.3 14.7 11.2 Carbon monoxide (mg/support) 34.4 35.4 32.6 32.1 31.4 31.2 In the following examples, the porous carbon material is used to remove certain components of cigarette smoke. Effectiveness. The carbon material was made from 30% by weight of resin GURX192 (Ticona, Dallas, Texas) and 70% by weight of PICA30X70 (60% activated carbon) (American PICA, Columbus, OH). The carbon material has a 75% void volume and a 3.3 mm water column/mm length carbon material with an encapsulated pressure drop (EPD). The carbon material has a circumference of 24.45 mm. The PICA 30x70 carbon has an average particle size of 405 microns (μ). The carbon material is mixed with a resin (GURX192) 13 201138657 and carbon (PICA30X70), and then filled in a mold, and the mixture is not pressurized (free sintering). Then, the heated mold was heated to 200 ° C for 60 minutes. Thereafter, the carbon material was removed from the mold and cooled. A well-defined porous material and a sufficient amount of cellulose acetate tow were used to obtain a filter having a total packing pressure of 70 mm. Smoke is detected according to tobacco industry standards. All use the strict Canadian agreement to detect smoke (also known as T-115", the determination of the "main" "tar", nicotine and a gasified carbon, Health Canada '1999", and the use of the West Lulin #450 smoking machine. Table 4 Micro-based compound microgram/cigarette control standard 5 mm carbon material 20 mm tow % 10 mm carbon material 15 mm tow % 15 mm carbon material 13 mm tow % formaldehyde 7.9 5.3 -32 0.0 -100 0.0 -100 B Aldehyde 477.7 478.0 -0 413.5 -13 337.8 -29 C - 557.4 433.4 -22 214.0 -62 121.2 78 Propionaldehyde 118.5 72.5 -39 31.6 -73 17.4 -85 Crotonaldehyde 83.0 38.5 -54 14.5 -83 10.7 -87 Butyraldehyde 86.8 39.7 -54 10.7 -88 5.9 -93 Methyl ethyl ketone 195.7 100.8 -49 37.1 -81 19.2 -90 Acrolein 84.0 55.5 -34 22.5 -73 13.3 -84 Table 5 Other compound control standard 5 mm carbon material 20 mm tow % 10 mm carbon material 15 mm tow % 15 mm 37 material 13 mm tow % benzene (micrograms / support) 118.7 82.7 -30 40.1 -66 23.5 -80 1,3-butadiene (micrograms / support) 257.3 259.1 1 204.4 -21 148.7 -42 Stupid [a] 芘 (Nike / Branch) 6.4 3.0 -53 0.0 -100 0.0 -100 14 201138657 Table 6 Control standards for tar, nicotine, etc. 5 Carbon material 20 mm tow 10 mm carbon material 15 mm monument bundle 15 mm carbon material 13 mm silk tar content (mg / support) 41.5 41.5 41.2 38 4 Nicotine (mg/support) 2.8 —____ 2.9 2.8 Water (mg/support) 16.7 _ 17.0 17.7 12 6 Carbon monoxide (mg/support) 30.8 33.2 35.5 31.6 f In the following examples, the porous ion exchange resin material is described. The effect of removing certain components of cigarette smoke. The porous material is from 2% by weight of (}1; 1121〇5 (Ticona, Dallas, Texas) and 80% by weight of amine resin (Amberiiteno^ RF, Rohm and Haas Company's 'Philadelphia' Pennsylvania). A 1 mm long porous material was added with a sufficient amount of cellulose acetate tow (12 mm) to create a filter with a total water pressure drop of 70 mm. Smoke is detected according to tobacco industry standards. All use the strict Canadian agreement to detect smoke (also known as T-115", the determination of "tar" in the mainstream of soot smoke, Ni. Gooding and a ife blanket 'Health Canada, 1999), and use Xilulin #450 smoking Table 7. Carbonyl compound microgram/cigarette control standard ion exchange resin % change formaldehyde 8.0 ND -100 acetaldehyde 491.0 192.0 -61 propylene 1 519.0 589.0 14 acrolein 65.0 28.0 -56 propylene 114.0 72.0 -37 crotonaldehyde 83.0 45.0 - 45 methyl ethyl ketone 179.0 184.0 3 butyraldehyde 54.0 61.0 13 15 201138657 In the following implementation m ' illustrate the effectiveness of the porous dry surface material from cigarette smoke _ removal of water vapor. The porous material is from 20% by weight of GUR2i 〇 5 ( Ticona, Dallas, TX) and 80% by weight of barium sulfate desiccant (drierite8, WAHamm〇nd DRIERITE GmbH, Xenia, Ohio). Made of 1 mm of porous material plus foot A volume of cellulose acetate tow (15 mm) to produce a filter, with a total packing pressure of 7 Gm of water. The roots are fresh in the industry, ^^^^^^^^^^^^^^^^^^^^ Determination of mainstream tobacco smoke in "tar" and nicotine - carbon monoxide 'Health Canada, 1999), and the use of Xi Lulin correct 5〇 smoking machine. Table 8 mg/cigarette control standard desiccant % desiccant % Conditioned change unconditioned change Cambridge granules 62.0 55.6 -10.3 54.0 -12.8 Water delivery 15.0 12.8 -15.1 11.2 -25.6 Nicotine 2.7 2.9 8.0 2.9 8.0 Tar tar 44.2 39.9 - 9.7 40.0 -9.7 Oxidation 4 Γ 35.0 Bu 35.9- 2.5 35.0 0.1 Tar/Nicodine ratio 16.5 13.8 -16.4 13.8 -16.4 _ In the following embodiment, compare the carbon wire core and the hairpin carbon material f. In this comparison, compare the total carbon content. In other words, the content of carbon in each component is the phase of the 'turning length is allowed to change', so the energy of the same amount of carbon compared to the traditional vinegar fiber over the change of H composition (relative to _ fiber shout mouth Newization). All the nozzles contain carbon and lining, bundles. All shot tips are long enough = cellulose acetate tow to obtain a target pressure drop gamma () mm water column. The total length of the filter, 20 mm (carbon and tow composition). This carbon is 3〇χ7〇, an active carbon picA. Quan Guang uses Canada's strict agreement to detect the transfer (also known as T11S), the determination of 'tar' in the mainstream of tobacco smoke, nicotine and carbon monoxide, Health Canada, 1999, 201138657 Table 9 Total carbon content = 39 mg total carbon content = 56 grams Base compound - carbon-tow (10 mm) % change carbon material (2 mm) % change carbon - tow (10 mm) % change carbon material (3 mm) % change formaldehyde -24.6 -13.7 -32.3 -27.6 -4.5 -3.4 -6.3 - -12.5 Acetone -19.7 -33.1 -27.3 -49.2 Propane -32.0 -42.2 -38.6 -55.7 Croton Road - 64.5 -57.3 -71.0 - -68.0 Ding 7.9 -34.4 -8.2 -54.4 A Base 6 Base 35.4 Γ -48.3 45.6 -63.2 Acrylic acid - 22.5 -40.3 -31.3 -52.6 In the following examples, porous carbon material and low activated carbon (60) prepared by comparing high activated carbon (95% carbonized carbon absorption) % Four gasified carbon absorption rate) Prepared porous carbon material. The combined filter uses 10 mm carbon material plus enough cellulose acetate to achieve a combined water column with a pressure drop of 69-70 mm. Loaded into commercial cigarettes and utilize Xi Lulin #45 0 smoking machines' all use the strict Canadian agreement to detect smoke (also known as τ_115'', measuring "tar" in the mainstream of tobacco smoke, nicotine and carbon monoxide, Health Canada, 1999). High activated carbon is PICARC259, particle size 20x50, 95 % activity (four gasification carbon adsorption rate). Low activated carbon is PICAPCA, particle size 30x70, 60% activity (four gasification carbon adsorption rate). Carbon content per carbon material component is 18_2 mg / mm (low activated carbon) , 167 mg/mm (high activated carbon). The reported data is relative to conventional acetate filters. 17 201138657 Table ί carbonyl compound 60% activated carbon % change 95% activated carbon ° / 〇 change fm -100.0 -100.0 acetaldehyde -65.8 -37.0 Propane I -89.9 -83.0 ~ Propionaldehyde-91.0 -84.0 Crotonaldehyde-100.0 -100.0 —~ Butyraldehyde-100.0 -100.0 — Mercaptoethyl ketone-100.0 -88.0 Propionate-90.7 -87.0 Table 11 other compounds 60% activated carbon % change 95% activated carbon 〇 / 〇 change benzene _ 2.6 -72.0 1,3-butadiene -3.2 -26.0 Ben and [a] 芘 -100.0 -100.0 In the following example, said the diameter For package voltage drop (EPD) effect. The porous supplement with various particle sizes plus the age of the human body (GUR21 () 5), the equipment towel in 2 (10). 〇 Heat the mixture (free sintering) for 4G minutes and shape into a rod (length = 39 mm and circumference = 24.45 m). After that, it was difficult to take carbon (four) and cooled to room temperature. The average pressure of the package pressure drop (EPD) of (1) broken material was measured. Table 12 Carbon-carbon: GUR weight ratio (micron) - average package pressure drop (EPD) _ (mm water column / mm carbon material length) RC259 75:25 2 7 PICA 80:20 m3---' NC506 75:25 ZJtjTZ. _ 25.0 201138657 In the following real fine towels, such as Table 1~3 towel-like carbon material f is a silky carbon-like material made of the filter secret world health gorge (WHC) #烟鲜. WHO standards can be found in WHO Technical Report Series No. 9M, Scientific Foundations of Tobacco Product Control, World Health Organization (2008), Table 31〇, p. 112. As a result, the report is as follows, indicating that the broken material can be used to limit the amount of material to the world. (microgram) median 1 upper limit (125% + digits) brand maximum delivery volume 1% reduction 2 5 mm% reduction 2 10 mm delivery volume 5 mm delivery volume 10 mm 1,3-butadiene 53.3 66.7 75.5 13 26 65.7 55.9 Acetaldehyde 687.6 859.5 997.2 28 37 718 628.2 Acrolein 66.5 83.2 99.5 56 87 43.8 12.9 Benzene 38 47.5 51.1 32 72 34.7 14.3 Benzene k[a]芘9.1 11.4 13.8 100 100 0 0 Hyperthyroidism 37.7 47.1 90.5 51 100 44.4 0 19 1 Information based on data, see Counts'ME et al. (2004) Mainstream smoke toxic substances and predictions of cigarette brand samples from global markets: International Standards Organization Smoking Conditions, Toxicology and Pharmacology (Regulatory Toxicology and Pharmacology), 39: 111-134; and Counts, ME et al., (2005) Smoking and predictive relationships, toxicology and pharmacology regulation of international cigarette brands by three smoking machines-smoking conditions 41, 185-227 pages. 2 The % reduction obtained from Tables 1 to 3. In the following examples, the ion exchange resin as listed in Table 4 was used as the porous material of the active particles to prove that the porous material made of the pout can be used to manufacture cigarettes to meet the World Health Organization (WHO) cigarette standard. . WHO standards are documented in the WHO Technical Report Series No. 951, The Scientific Basis of Tobacco Product Regulation, World Health Organization (2008) 'Table 3.10, No. 112 page. As a result, the report is as follows, indicating that porous materials can be used to reduce the concentration of certain components of tobacco smoke below the standards recommended by the World Health Organization. 201138657 A Η (microgram) median 1 upper limit (median of 125%) brand maximum delivery volume 1% reduction 2 10 mm delivery volume 10 mm propylene road ββΤ~ 859.5 832 997.2 ~~993~~~ 61 56 388.9 ~~43^8 Formic acid · _J2i7 47.1 90.5 Bu 100 0.0 1. Information based on data, see M c〇劾, ME et al (10) 4 years) mainstream smoke toxic substances and cigarettes from the global market _ _ _ fresh _ smoking Status, poison page; and c. Soul ME private, (years) by three Nilai · listening conditions to smoke the country 2 smoke time brand composition and reward relationship, toxicology and pharmacology supervision, period: (8) the first page. 2. The % reduction obtained from Table 4. And accordingly, [Simplified Description of the Drawings] To illustrate the invention, it is shown in a preferred form, limited to the explicit configurations and tools shown. The 疋&" item that is understood by Mube is not a schematic cross-sectional view of the cigarette of the cigarette (four) of the present invention. : A schematic cross-sectional view of a cigarette of the cigarette filter of the present invention. A schematic cross-sectional view of a cigarette of the cigarette filter of the present invention. A schematic cross-sectional view of a pipe of a cigarette filter. Micrograph of the 5th 疋-fP porous material. 20 201138657 [Description of main component symbols] Code description 10 Cigarette 12 Tobacco column 14 Filter 16 Part 1 18 Part 20 Cigarette 22 Filter 24 Traditional filter material 26 Porous material 30 Cigarette 32 Filter 34 Final segment 36 Segment 37 Segment 38 Section 40 Pipe 42 Burning 钵 44 Ports 21 201138657 Code Description 46 Channel 47 Cavity 48 Filter 50 Active Particles 52 Adhesive Particles 22

Claims (1)

201138657 七、申請專利範圍: l 一種香煙吸煙器,其包括: 具提南煙草煙顏通之活性顆粒和黏合綱粒城之多孔材質,該活 性顆粒佔多孔材質重量的5〇_99%,該黏合__纽㈣重量的 1-50%,該活性顆粒和該黏合劑顆粒黏合在一起,而黏合點賴分佈 在整個多孔材質中,其中活性顆粒的粒徑比大於黏合劑顆粒的粒徑。 2. 如申請專利範圍第1項所述之香煙吸煙器,其中該活性顆粒佔多孔材 質的60-95重量%,較佳為75_9〇重量%。 3. 如申請專機圍第1或2項所述之香煙缝n,其巾該纽材質孔隙 率在4〇-9〇%之範圍内,較佳為在60_90%範圍内,更佳為在6〇 85% 範圍內。 4·如前述任-項申請專利細所述之香煙0及煙器,其中該多孔材質封裝 壓降(EPD)的範圍為每毫米多孔材質長度有〇5·25毫米,較佳為 0.5-10毫米,更佳為不超過7毫米之水柱。 5. 如則述任-項巾請專利範騎述之香煙吸顧,其巾該多孔材質的長 度範圍為2-12毫米,較佳為4_1〇毫米。 6. 如則述任-項申請專利細所述之香煙吸煙器,其中該活性顆活 性炭組成。 7·如前述任-項中請專利細所述之香煙吸煙器,其中該活性顆粒由離 子交換樹脂組成。 8. 如前述任-項巾請專利範圍所述之香煙吸煙^,其中該活性顆粒的平 均粒徑範圍為G.5_5,_微米,較佳範_綱,_微米,更佳範圍 為200-900微采。 9. ^前述任-項中請專利所述之香煙吸煙器,其中該活性顆粒的黏 ί劑顆粒平均粒徑範關收,。。。鮮,較佳_為,_微 絲圍為a·微米’尤佳範圍為⑽⑻微米,更尤佳範 2 200·射’特佳範圍為25()__微米,最優選的 嶋 微米。 _述之香麵器,其中該黏合劑顆粒在 矛A斤負何下之溶融流動指數(ΜΠ)低於約3.5g/l〇分鐘, 23 10· 201138657 較佳為不超過約2.0g/10分鐘,尤佳為約0g/10分鐘。 11. 12. 13. 14. 15. 如前述任-項中請專利範圍所述之香煙吸煙器,其中該黏合劑顆粒由 器’其中該黏合劑顆粒之 較佳為範圍在0.17_〇.5〇 如前述任一項申請專利範圍所述之香煙吸煙 堆積密度範圍為0.10-0.55公克/立方厘米, 公克/立方厘米。 如前述任-項中請專利範圍所述之香煙吸煙器,其中黏合劑顆粒粒徑 對活性顆粒粒徑比例為丨:丨5_4 〇的範圍内。 一種製造吸煙器濾嘴的方法,包括下列步驟: 混合黏合劑顆粒和活性顆粒; 加熱混合物, 從而形成一種多孔的材質。 一種減少吸煙器煙草煙霧成分的方法,包括下列步驟: ,供具渡嘴的香煙吸煙器,該據嘴包括多孔材質含外如重量%活性 炭或離子交娜m峨的活賴粒,w重合麵粒,其粒 裡範圍125-5,000微米其中活性顆粒粒徑大於黏合劑顆粒粒徑,而長 度小於12毫#,其巾煙草煙霧成分減少量超過記載於世界衛生組織 技術報告系列第951號(2008年)的世界衛生組織(額〇)標準。 24201138657 VII. Patent application scope: l A cigarette smoking device, comprising: a porous material having the active granules of the Toyo Tobacco Yanyantong and the bonded granules, the active particles occupying 5〇_99% of the weight of the porous material, The adhesive particles are bonded to the binder particles by 1-50% by weight, and the binder points are distributed throughout the porous material, wherein the particle size ratio of the active particles is larger than the particle size of the binder particles. 2. The cigarette smoker of claim 1, wherein the active granules comprise from 60 to 95% by weight of the porous material, preferably from 75 to 9% by weight. 3. If the cigarette sewing machine mentioned in Item 1 or 2 is applied for the special machine, the porosity of the material of the towel is in the range of 4〇-9〇%, preferably in the range of 60_90%, more preferably in the range of 6-6%. 〇 85% range. 4. The cigarette 0 and the cigarette device according to the above-mentioned application, wherein the porous material packaging pressure drop (EPD) ranges from 〇5·25 mm, preferably 0.5-10 per mm of porous material. Mm, more preferably no more than 7 mm water column. 5. If the case is - the towel is required to be taken from the patent, the length of the porous material is 2-12 mm, preferably 4_1 mm. 6. A cigarette smoking device as described in the above-mentioned application, wherein the active active carbon is composed. 7. The cigarette smoker of any of the preceding claims, wherein the active particles consist of an ion exchange resin. 8. The cigarette smoking according to the above-mentioned patent application, wherein the active particles have an average particle size ranging from G.5_5, _micrometer, preferably van _ _, _ micron, and more preferably from 200 to 900. Micro mining. 9. The cigarette smoker of the above-mentioned patent, wherein the average particle size of the granules of the active granules is closed. . . Fresh, preferably _, _ microfilaments are a·micron', particularly preferably in the range of (10) (8) micrometers, and more preferably in the range of 2 200 Å. The preferred range is 25 () _ micrometers, most preferably 嶋 micrometers. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Minutes, especially about 0g/10 minutes. 11. The cigarette smoking device of the above-mentioned claim, wherein the binder particle comprises: wherein the binder particle preferably has a range of 0.17_〇.5 The cigarette smoking bulk density as set forth in any one of the preceding claims ranges from 0.10 to 0.55 grams per cubic centimeter, gram per cubic centimeter. A cigarette smoking device according to the above-mentioned claim, wherein the ratio of the particle diameter of the binder to the particle diameter of the active particles is in the range of 丨: 5_4 〇. A method of making a smoker filter comprising the steps of: mixing binder particles and active particles; heating the mixture to form a porous material. A method for reducing tobacco smoke constituents of a smoking device, comprising the steps of: providing a cigarette smoking device with a nozzle, the mouthpiece comprising a porous material containing an external weight such as activated carbon or ionized lyophilized granules, w coincident surface The granules have a particle size range of 125-5,000 micrometers, wherein the active particle size is larger than the particle size of the binder particles, and the length is less than 12 millimeters, and the amount of tobacco smoke constituents in the towel exceeds the number reported in the World Health Organization Technical Report Series No. 951 (2008). Year of the World Health Organization (WHO) standard. twenty four
TW100100325A 2010-01-06 2011-01-05 Tobacco smoke filter for smoking device with porous mass of active particulate TW201138657A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US29253010P 2010-01-06 2010-01-06

Publications (1)

Publication Number Publication Date
TW201138657A true TW201138657A (en) 2011-11-16

Family

ID=46003408

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100100325A TW201138657A (en) 2010-01-06 2011-01-05 Tobacco smoke filter for smoking device with porous mass of active particulate

Country Status (2)

Country Link
AR (1) AR080635A1 (en)
TW (1) TW201138657A (en)

Also Published As

Publication number Publication date
AR080635A1 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
US9386803B2 (en) Tobacco smoke filter for smoking device with porous mass of active particulate
US20220053822A1 (en) Aerosol generating product
TWI336247B (en) Filter cigarette
US20190090533A1 (en) Aerosol-generating device having a porous mass
TW490316B (en) High efficiency cigarette filters having shaped micro cavity fibers impregnated with adsorbent or absorbent materials
KR100773660B1 (en) Cigarette filters of shaped micro cavity fibers impregnated with flavorant materials
SG189267A1 (en) Smoke filters for smoking devices with porous masses having a carbon particle loading and an encapsulated pressure drop
AU2012334204B2 (en) Smoking article comprising menthol
KR20080059168A (en) Flavoured cigarette
AU2011273887A1 (en) Filter for a smoking article
CN103476279B (en) Smoking article including the ventilation of sorbent material
JP2014526269A (en) Filter materials and their use
WO2012047346A1 (en) Smoke filters for smoking devices with porous masses having active nanoparticles and binder particles
TW201138953A (en) Composite additive materials
WO2004019709A2 (en) Cigarette filters comprising unfunctionalized porous polyaromatic resins for removing gas phase constituents from mainstream tobacco smoke
RU2461342C2 (en) Filter including electrostatically charged fibrous material
CN110292207A (en) Aerosol cooling filter element and low temperature cigarette
TW201138657A (en) Tobacco smoke filter for smoking device with porous mass of active particulate
JP2001095552A (en) Filter for cigarette smoke
WO2020153491A1 (en) Filter for smoking article
CN203137016U (en) Novel cigarette filter tip
JP7187582B2 (en) Filters for smoking articles
EP4260715A1 (en) Application of spherical carbon in flue gas adsorption of heat-not-burn tobacco product
Taylor The influence of cigarette filters design on the yield and composition of cigarette smoke
Youxiang et al. Two Kinds of Leaf-making Techniques on the Quality of Fine Cigarettes: A Comparative Analysis