TW201138190A - Method for making electrode material of lithium-ion batteries - Google Patents

Method for making electrode material of lithium-ion batteries Download PDF

Info

Publication number
TW201138190A
TW201138190A TW099113283A TW99113283A TW201138190A TW 201138190 A TW201138190 A TW 201138190A TW 099113283 A TW099113283 A TW 099113283A TW 99113283 A TW99113283 A TW 99113283A TW 201138190 A TW201138190 A TW 201138190A
Authority
TW
Taiwan
Prior art keywords
carbon
electrode material
particles
coated
titanium dioxide
Prior art date
Application number
TW099113283A
Other languages
Chinese (zh)
Other versions
TWI403017B (en
Inventor
Li Wang
xiang-ming He
Jian-Guo Ren
Jian Gao
Jian-Jun Li
wei-hua Pu
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW099113283A priority Critical patent/TWI403017B/en
Publication of TW201138190A publication Critical patent/TW201138190A/en
Application granted granted Critical
Publication of TWI403017B publication Critical patent/TWI403017B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The present invention relates to a method for making an electrode material of lithium-ion batteries. In the method, a carbon source compound solution, titanium dioxide particles and a lithium source solution are provided. For forming a liquid mixture, the titanium dioxide particles are immersed in the carbon source compound solution. The carbon source compound is cracked, thereby forming a carbon layer coated with the surface of the titanium dioxide particles. For forming a sol, the lithium source solution and the titanium dioxide particles coated by the carbon layer are uniformly mixed according to a molar ratio of 4: 5 to 4.5: 5 of lithium element and carbon element. The sol is spray dried to form precursor particles. The precursor particles are heated, thereby forming the electrode material of lithium-ion batteries.

Description

201138190 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種鋰電池電極材料之製備方法,尤其涉及 一種複合鈦酸鋰電極材料之製備方法。 [先前技術] [0002] 近年來,尖晶石型鈦酸鐘(Li4Ti 5〇12 )作為新型儲能電 池之電極材料日益受到重視,這係因為尖晶石型鈦酸鋰 於鐘離子嵌入-脫敌過程中晶體結構能夠保持高度之穩定 性’鐘離子喪入前後都為尖晶石結構,且晶格常數變化 很小,同時體積變化很小’故尖晶石型鈦酸鋰被稱為“ 零應變”電極材料。這能夠避免充放電循環中,由於電 極材料之來回伸縮而導致結構之破壞,從而提高電極之 循環性能和使用壽命,減少了隨循環次數之增加而帶來 比容量之衰減幅度,使鈦酸鋰具有優異之循環性能。然 而鈦酸鋰之電導率較低,倍率性能較差,且振實密度較 低。 . - ::;-; [〇〇〇3] 為解決這一問題,人們通常採用之方法有:製備奈米級 欽酸裡顆粒以縮短裡離子擴散路徑,增加電化學反應之 表面積,於欽酸鐘粉末間混入較多之導電礙材料;或者 進行離子摻雜等。徐甯等人於2009年3月4曰公開之第 CN1013781 19號中國發明專利申請公佈說明書中揭示一 種碳包覆型複合鈦酸裡之製備方法,該方法具體為:將 具有一固定體積比之娌鹽和二氧化鈦混合,向該混合物 中加入分散劑並用球磨法充分混合,之後將球磨後之產 物真空烘乾制得前驅體·’將製備之前驅體於一固定溫度 099113283 表單編號A0101 第4頁/共23頁 0992023464-0 201138190 下培燒-固定時㈤,制得欽酸鐘;通過浸潰蒸乾法將— 碳源物質包覆於制得之鈦酸鐘表面;熱處理該包覆有碳 源物質之欽酸鐘’從而獲得碳包覆型複合鈦酸鋰。該種 製備方法通過碳包覆材料之熱解反應直接於鈦酸鋰表面 形成化學包覆碳’與將鈦酸鋰與碳機械混合相比,這種 包覆奴與鈦酸鋰材料表面接觸更牢固緊密,從而可以大 大改善材料之電子導電能力,有效提高材料之倍率充放 電性能。 [0004] Ο [0005] 〇 [0006] 然而,上述方法中,由於鈦酸鋰之表面形貌及粒徑大小 較難控制,使得包覆於其表面之碳源於熱處理加熱之過 程中容易出現偏析或結晶,從而無法㈣粒表面形成均 勻之碳包覆層,甚至當局部碳材料過量時,還可能影響 材料之電化學性能。 【發明内容】 有鑒於此’提供—種鐘電池電極材料之製備方法,該製 備方法可獲得表面包覆有均勻碳層之欽酸鐘電極材料實 為必要。 . .I. ' . ^ ·.::: 一種裡電池電極材料之製備方法,其包括:提供碳源化 合物溶液;提供二氧化欽顆粒,將所述二氧化鈦顆粒加 入上述碳源化合物溶液中,以形成—混合液;使所述碳 源化合物裂解’形成—碳層包覆於所述二氧化鈦顆粒之 表面,從而形成碳包覆之二氧化鈦顆粒;提供一鋰源溶 液,按鋰兀素與鈦元素摩爾比為4: 5至4. 5: 5之比例將該 鋰源溶液和該碳包覆之二氧化鈦顆粒均勻混合並形成一 溶膠,喷霧乾燥上述溶膠獲得前驅體顆粒;熱處理上述 099113283 表單編號Α0101 第5頁/共23頁 0992023464-0 201138190 前驅體顆粒,從而獲得所述鐘電池電極材料。 [0007] [0008] [0009] [0010] [0011] [0012] [0013] [0014] [0015] 與先前技術相比較,本發明之鋰電池電極材料之製備方 法中,由於直接使包覆有均勻碳層之二氧化鈦顆粒與鋰 源溶液發生反應形成碳包覆之鈦酸鋰顆粒,從而避免了 由於鈦酸鋰顆粒之表面形貌和粒徑大小難於控制而容易 出現奴源化合物出現偏析和結晶之現象,有利於形成表 面包覆有均勻碳層之複合鈦酸鋰電極材料。 【實施方式】 以下將結合附圖詳細說明本發明實施例鋰電池電極材料 之製備方法。 請參閱圖1、圖2及圖3,本發明第一實施例提供—種鋰電 池電極材料之製備方法。該方法包括以下步驟: 步驟一,提供一碳源化合物,將該碳源化合物溶於一溶 劑中以形成一碳源化合物溶液; 步驟二,提供二氧化鈦(Ti〇2)顆粒ίο,將所述二氧化鈦 顆粒10加入上述碳源化合物容液中,以形成一混合液; 步驟三,使所述碳源化合物裂解,形成碳包覆之二氧化 鈦顆粒100。 步驟四,提供-㈣溶液3〇,触元素減元素摩爾比 (Li: Τι )為4: 5至4. 5: 5之比例將該鋰源溶液3〇和該碳 包覆之二氧化鈦顆粒1〇〇均勻混合並形成一溶膠2〇(); 步驟五,噴霧乾燥上述溶膠2〇〇獲得前驅體顆粒5〇 ; 步驟六,熱處理上述前驅體顆粒50,從而獲得—複合鈦 099113283 表單編號Α0101 0992023464-0 201138190 [0016] [0017] Ο 〇 [0018] [0019] [0020] 酸鐘(Li4Tl5〇12)電極材料80。 以下將對上述各步驟進行具體描述。 於步驟—中’所㈣源化合物優選為可溶於水之還原性 有機化合物’該類有機化合物均可裂解成碳。所述有機 化合物可為嚴糖、葡萄糖、祕樹脂、聚丙稀酸、聚丙 聚km乙鱗等。本實施财,該碳源化 &物為聽。該碳源化合物溶解於溶射形成所述碳源 化合物溶液,祕解碳源化合物之溶财為水、乙醇、 2或丙㈣’本實_巾,讓轉輕。該碳源化合 各液之違度不宜太大’太大則使二氧化欽顆粒10不容 易均句分散於該碳㈣合物溶射,且造成碳源化合物 之浪費。該碳源化合物溶液之濃度也不宜太小,太小則 該碳源化合物雜之黏度太小,使絲絲物於步驟三 中裂解後形成之碳不容易充分包覆於二氧化鈦顆粒10之 表面。該碳源化合物溶液之濃度優選為跳娜,本實施 例中,該碳源化合物溶液之濃度為15%。 於步驟二中,可按照碳元素與鈦元音摩爾比(c:Ti)為 1.1至2:1之比例提供所述二氧化鈦顆粒1〇,並將該二 氧化鈦顆粒1〇加入上述碳源化合物溶液中。 所述二氧化賴粒1G之純越小越有利於後續步驟中形 成-均勻之溶膠’優選為,所述二氧化鈦顆粒1Q之粒經 為50奈米〜50微求,本實施例中,該二氧化鈦顆粒1〇妹 徑為5 0奈米。 該步驟中為使所祕源化合物溶液與二氧化鈦顆粒1〇均 099113283 表單编號A0101 第7頁/共23頁 0992023464-0 201138190 句混合,可、仓 J進一步包括採用超聲分散或高速攪拌之方 處理由該碳源化合物溶液與二氧化蝴粒 : :浮:過該4理過程,使所述二一㈣二: 心予:所述碳源化合物溶液中。 [0021] [0022] [0023] 於步驟二φ .. 、,— 所述使所述碳源化合物裂解之方法為水熱 法^該水熱法具體包括以下步驟:將該二氡化鈦顆㈣ 與奴源化合物溶液組成之混合液設置於—水熱反應爸中 ’=於UGt〜2GGt之溫度下進行水熱反應12~72個小時 ,從而形成粉末狀之碳包覆之二氧化鈦顆粒10〇。 於上述水熱溫度範_可以有效之控m述碳源化合物 脫水包覆之迷度。所述脫水包覆係指碳源化合物發生裂 脫去其中之氫和氧元素.而:禮剩碳元素後,該碳元素 於水分蒸發之過程中,於表面張力之作用下,被吸附於 所述—氧化鈦顆粒1Q之表面。具體地,若溫度過低,糖 類不谷易脫水;溫度過高,則所述碳源化合物容易裂解 形成游離態之碳’從而使形成之碳不能被充分利用,進 而使碳不能充分包覆所述二氧化欽顆粒1 〇。本實施例中 ’所述水熱溫度為18 0 °C ~ 18 5 °C ’水熱時間為1 6個小時 。請參閱圖4,通過該水熱法加熱,所述碳源化合物發生 裂解,從而形成一碳層20包覆於所述二氣化欽顆粒1〇之 表面。 該步驟中’為使碳源化合物充分且快速裂解,可進一步 於將該二氧化鈦顆粒10與碳源化合物溶液組成之混合液 設置於所述水熱反應蚤中之前’向碳源化合物溶液中加 入一催化劑’該催化劑可為含銀離子之鹽類,該催化劑 099.113283 表單編號A0101 第8頁/共23頁 0992023464-0 201138190 與該碳源化合物之品質比可為丨:2〇〇〜1 : 50 β本實施例中 ,該催化劑為硝酸銀(AgN〇3),該硝酸銀與碳源化合物之 品質比為1 : 125。 [0024] Ο [0025] [0026] 進一步地,上述獲得之粉末狀碳包覆之二氧化鈦顆粒1〇〇 可進一步進行一熱處理之步驟。具體為,於—惰性氣氛 下於450 C~650 C之溫度下加熱上述碳包覆之二氧化鈦顆 粒100約1〜3個小時左右。本實施例為於5〇〇°c之溫度下 加熱2個小時。請參閱圖5,通過該熱處理,所述包覆於 二氧化鈦顆粒10表面之殘餘碳源化合物可充分裂解,從 而使裂解後形成之碳層20更薄。 由於於該水熱反應之過程中,被逐漸裂解之碳源化合物 中之氫和氧元素會逸出,從而形成碳層2〇包覆於所述二 氧化鈦顆粒10之表面,且該碳層2〇與該二氧化鈦顆粒1〇 之間具有較大之原子間相互作用力,使得碳層2〇牢固地 吸附於所述二氧化鈦顆粒1Ό之奉缸,而不容易從所述二 氧化鈦顆粒10之表面脫落,從而不易於乾燥過程中產生 偏析或結晶。 所述複包覆之二氧化鈦顆粒100包括三氧化鈦顆粒10及包 覆於該二氧化鈦顆粒10表面之均勻碳層20,所述二氧化 鈦顆粒10呈顆粒狀’其粒徑尺寸不限,優選為5G奈米至 50微米,所述碳層20之厚度可為5奈米〜25奈米。 於步驟四中,所述鋰源溶液3〇係由鋰鹽或氫氧化鋰( LKOH)2)溶於一溶劑♦形成之。該鋰鹽優選為可溶於水 之裡鹽,該鐘鹽可為碳酸經、硫酸鐘、硝酸鐘或氣化鐘 099113283 表單編號Α0Ι0Ι 0992023464-0 [0027] 201138190 [0028] [0029] [0030] [0031] [0032] 等,且並不限於該所列舉之幾種。 本實施例中,驗源溶液3_ 5mQl/L HA之氮 氧化鋰溶液。 為形成-均勻之溶膠200,可進-步授拌上述由鐘源溶液 30和碳包覆之二氧化鈦顆粒1GG卿成之混合液,該挽摔 之具體方式不限’可為機械方式、磁力攪拌或超聲 分散等。 於本實施例之步驟五中,所述喷霧乾燥之過程採用氣流 式喷霧乾燥器,该氣流式喷.霧乾燥器具有.一霧化裝置, 該霧化裝置採用雙流式喷嘴,該氣流式喷霧乾燥器採用 並流乾燥方式乾燥。 具體為’採用一螺動泵將所述溶膠2〇〇於一熱空氣之氣流 作用下輸入到所述氣流式噴霧乾燥器中;採用所述雙流 式喷嘴霧化裝置霧化所述溶膠200,從而形成霧狀液滴; 所形成之霧狀液滴同熱空氣並流下降,於該熱空氣中, 所述霧狀液滴被瞬間蒸發出幾乎全部之水份,從而形成 多個多孔狀之球形前驅體顆粒50。 請參閱圖2及圖3,該喷霧乾燥之方法可使所述溶膠200分 散成極細之霧狀液滴,從而使該霧化後之溶膠200具有很 大之比表面積,當該霧狀液滴與熱空氣產生劇烈之熱交 換後,於幾秒至幾十秒内迅速排除霧狀液滴内之水分便 可獲得多個粒徑為1 〜10 /zm之多孔狀之球形前驅體顆 粒50。該多個多孔狀球形前驅體顆粒5〇具有粒徑分佈較 為均勻,流動性好、可加工性能好及形貌規則等優點。 099113283 表單编號A0101 第10頁/共23頁 0992023464-0 201138190 請參閱圖2 ’該每個球形前驅體顆粒5〇包括多個碳包覆之 二氡化鈦顆粒100 ’該多個碳包覆之二氧化鈦顆粒1〇〇聚 集成團,該每個碳包覆之二氧化欽顆粒之表面周圍包 覆有氫氧化鋰顆粒層40,且該多個表面包覆有碳層20之 一氡化鈦顆粒10之間存於間隙,從而使該每個球形前驅 體顆粒5 0為一多孔球形結構。 [0033] Ο 於步驟六中,該熱處理之條件具體為:於惰性氣氛下, ο 於400C~100(TC之溫度下熱處理所述球形前驅體顆粒5〇 約2〜40小時,本實施例中,該熱處理溫度為7〇〇艺,熱處 理時間為16個小時。於該熱處理之過程中,組成多孔狀 球开/剛驅體顆粒50之二氧化鈦顆粒和於它表面之氫氧 化鋰顆粒層4〇發生反應生成奈米鈦豉鋰顆粒6〇。具體為 ,於此熱處理過程中,所述氫氧化鋰顆粒層4〇將會通過 包覆於所述二氧化鈦顆粒10表自之碳層2〇擴散至二氧化 鈦顆粒_於位置,並與二氧化欽祕1()反應形成奈米 鈦酸鐘顆㈣,該碳層20之存於可抑制鈦酸鋰顆粒6〇晶 粒長大,從而形成碳包覆之欽酸鐘顆粗7〇,且由於前驅 體為球形顆粒,形成之複合鈦酸㈣極材獅也為球形 顆粒。另夕卜’於該熱處理過程中,所述碳層2〇中殘餘之 未裂解之碳源化合物會發生裂解反應而形成碳。 [0034] 本發明第二實施例提供-独電池電極材料之製備方法 ,該方法與第-實_之方法基本相同,錢別在於, 本實施例制浸潰錄法裂解麵化·, 法具體包㈣T㈣: 099113283 S21 ’從所述混合液中分離並乾燥 表單編號A〇l01 第11頁/共23頁 所述二氧化鈦顆粒10 0992023464-0 [0035] 201138190 從而形成包覆有碳源化合物溶液之二氧化鈦顆粒ίο ; [0036] S22,熱處理該表面包覆有碳源化合物溶液之二氧化鈦顆 粒10,從而形成碳包覆之二氧化鈦顆粒100。 [0037] 於S21步驟中,所述分離方法具體可為採用一漏斗過濾所 述混合液中之所述二氧化鈦顆粒10。由於所述碳源化合 物溶液與二氧化鈦顆粒表面具有物理吸附之作用,故, 分離後,該二氧化鈦顆粒10之表面仍然會有碳源化合物 溶液之包覆。所述乾燥該二氧化鈦顆粒10之方法優選為 採用快速乾燥之方法,以避免包覆於二氧化鈦顆粒10表 面之碳源化合物溶液中之碳源化合物結晶而析出較大晶 粒,不利於均勻包覆。該快速乾燥之方法可為真空乾燥 或離心乾燥法。 [0038] 於S22步驟中,所述熱處理之方法具體為:於惰性氣氛下 ,於450°C〜650°C之溫度下加熱上述表面包覆有碳源化合 物之二氧化鈦顆粒10約1小時至5小時。本實施例中,具 體為於惰性氣氛下,於500°C下加熱該表面包覆有碳源化 合物之二氧化鈇顆粒10為2小時。通過該熱處理過程,可 使所述碳源化合物發生裂解,從而形成碳包覆之二氧化 鈦顆粒100。 [0039] 該浸潰提拉法中,由於採用了快速乾燥方式,溶劑之揮 發速度很快,吸附之碳源化合物來不及偏析或結晶;且 於熱處理過程中,吸附於二氧化鈦顆粒10表面之碳源化 合物會軟化,軟化之碳源化合物黏度很大,使得碳源化 合物與二氧化鈦顆粒10之表面由於氫鍵作用而有較強之 099113283 表單編號A0101 第12頁/共23頁 0992023464-0 201138190 解過程中,裂解後 吸附結合力,故於後續碳源化合物裂 之碳也不會出現偏析或結晶之現象。 闺此外,本實_巾,可縣將二氧^祕㈣碳源化 合物溶液中浸泡一段較長之時間,優選為卜4小時’以使 該碳源化合物城巾之碳源化合物充分包賴述二氧化 欽顆粒1〇,本實施例中,該浸泡時間為3小時。201138190 VI. Description of the Invention: [Technical Field] The present invention relates to a method for preparing a lithium battery electrode material, and more particularly to a method for preparing a composite lithium titanate electrode material. [Prior Art] [0002] In recent years, spinel-type titanic acid clocks (Li4Ti 5〇12 ) have received increasing attention as electrode materials for new energy storage batteries, because spinel-type lithium titanate is embedded in the clock ions - The crystal structure can maintain a high degree of stability during the process of disengagement. 'The bell ion is a spinel structure before and after the annihilation, and the lattice constant changes little, and the volume change is small'. Therefore, the spinel type lithium titanate is called “Zero strain” electrode material. This can avoid the destruction of the structure due to the back and forth expansion of the electrode material in the charge and discharge cycle, thereby improving the cycle performance and the service life of the electrode, and reducing the attenuation range of the specific capacity with the increase of the number of cycles, so that the lithium titanate Excellent cycle performance. However, lithium titanate has a lower conductivity, a lower rate performance, and a lower tap density. - ::;-; [〇〇〇3] In order to solve this problem, the methods commonly used are: preparing nano-scale acid particles to shorten the ion diffusion path and increasing the surface area of the electrochemical reaction. A plurality of conductive materials are mixed between the acid clock powders; or ion doping is performed. The method for preparing a carbon-coated composite titanic acid is disclosed in the Chinese Patent Application Publication No. CN1013781 No. 19, the disclosure of which is incorporated herein by reference. The cerium salt and the titanium dioxide are mixed, a dispersing agent is added to the mixture and thoroughly mixed by ball milling, and then the ball-milled product is vacuum-dried to obtain a precursor. The precursor is prepared at a fixed temperature of 099113283. Form No. A0101 Page 4 / 23 pages 0992023464-0 201138190 Under the peening - at the time of fixing (5), the acid clock is obtained; the carbon source material is coated on the surface of the prepared titanic acid clock by the dipping and evaporation method; the heat treatment is coated with carbon The acid clock of the source material is obtained to obtain a carbon-coated composite lithium titanate. The preparation method directly forms a chemically coated carbon on the surface of the lithium titanate by a pyrolysis reaction of the carbon coating material, and mechanically mixes the lithium titanate with the carbon, and the coated slave is in contact with the surface of the lithium titanate material. It is firm and tight, which can greatly improve the electronic conductivity of the material and effectively improve the rate of charge and discharge of the material. [0004] 〇 [0006] However, in the above method, since the surface morphology and particle size of lithium titanate are difficult to control, the carbon source coated on the surface thereof is prone to occur during heat treatment and heating. Segregation or crystallization can not form a uniform carbon coating on the surface of the (four) particles, and even when the local carbon material is excessive, it may affect the electrochemical properties of the material. SUMMARY OF THE INVENTION In view of the present invention, there is a need to provide a method for preparing a battery electrode material which is coated with a uniform carbon layer. .I. ' . ^ ·.::: A method for preparing a battery electrode material, comprising: providing a carbon source compound solution; providing oxidized granules, adding the titanium dioxide particles to the carbon source compound solution, Forming a mixed liquid; dissolving the carbon source compound to form a carbon layer coated on the surface of the titanium dioxide particles to form carbon coated titanium dioxide particles; providing a lithium source solution, which is a molar ratio of lithium halogen and titanium The ratio of 4:5 to 4. 5: 5 ratio of the lithium source solution and the carbon-coated titanium dioxide particles are uniformly mixed to form a sol, spray drying the sol to obtain precursor particles; heat treatment of the above 099113283 Form No. Α 0101 5 pages/total 23 pages 0992023464-0 201138190 precursor particles, thereby obtaining the clock battery electrode material. [0010] [0015] [0015] [0015] [0015] Compared with the prior art, the lithium battery electrode material preparation method of the present invention, due to direct coating The titanium dioxide particles with a uniform carbon layer react with the lithium source solution to form carbon-coated lithium titanate particles, thereby avoiding the segregation of the slave compounds due to the difficulty in controlling the surface morphology and particle size of the lithium titanate particles. The phenomenon of crystallization is advantageous for forming a composite lithium titanate electrode material whose surface is coated with a uniform carbon layer. [Embodiment] Hereinafter, a method of preparing a lithium battery electrode material according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. Referring to FIG. 1, FIG. 2 and FIG. 3, a first embodiment of the present invention provides a method for preparing a lithium battery electrode material. The method comprises the following steps: Step one, providing a carbon source compound, dissolving the carbon source compound in a solvent to form a carbon source compound solution; and step 2, providing titanium dioxide (Ti〇2) particles ίο, the titanium dioxide The particles 10 are added to the above-mentioned carbon source compound liquid to form a mixed liquid; and in step 3, the carbon source compound is cracked to form carbon-coated titanium oxide particles 100. Step 4, providing - (iv) solution 3 〇, contact element minus element molar ratio (Li: Τι ) is 4: 5 to 4. 5: 5 ratio of the lithium source solution 3 〇 and the carbon coated titanium dioxide particles 1 〇 〇 uniformly mixed and formed a sol 2 〇 (); Step 5, spray drying the above sol 2 〇〇 to obtain precursor particles 5 〇; Step 6, heat treatment of the precursor particles 50, thereby obtaining - composite titanium 099113283 Form No. Α 0101 0992023464- [0017] [0020] [0020] [0020] Acid clock (Li4Tl5〇12) electrode material 80. The above steps will be specifically described below. In the step - the above, the source compound is preferably a water-reducible reducing organic compound. The organic compound can be cleaved into carbon. The organic compound may be a sugar, a glucose, a secret resin, a polyacrylic acid, a polyacrylonitrile, or the like. In this implementation, the carbonization & The carbon source compound is dissolved in a solution to form the carbon source compound solution, and the carbon source compound is dissolved in water, ethanol, 2 or C (four). The carbon source compounding liquid is not too large to be too large. If it is too large, the oxidized granules 10 are not easily dispersed in the carbon (tetra) compound to be sprayed, and the carbon source compound is wasted. The concentration of the solution of the carbon source compound is not too small. If the concentration of the carbon source compound is too small, the viscosity of the carbon source compound is too small, so that the carbon formed by the cracking of the filament in the third step is not easily coated on the surface of the titanium oxide particle 10. The concentration of the carbon source compound solution is preferably hop, and in the present embodiment, the concentration of the carbon source compound solution is 15%. In the second step, the titanium dioxide particles may be provided in a ratio of a carbon element to a titanium vowel molar ratio (c:Ti) of 1.1 to 2:1, and the titanium oxide particles are added to the above carbon source compound solution. . The smaller the purity of the oxidized granules 1G, the more favorable it is to form a uniform sol in the subsequent step. Preferably, the granules of the titanium dioxide particles 1Q are 50 nm to 50 μm. In this embodiment, the titanium dioxide is used. The particle 1 sister diameter is 50 nm. In this step, in order to make the secret source compound solution and the titanium dioxide particles 1〇099113283 Form No. A0101 Page 7 / 23 pages 0992023464-0 201138190 sentence, can, warehouse J further includes the use of ultrasonic dispersion or high-speed stirring From the carbon source compound solution and the oxidized butterfly: float: through the four processes, the two one (four) two: heart: the carbon source compound solution. [0022] [0023] [0023] in step two φ..,, - the method of cracking the carbon source compound is hydrothermal method ^ the hydrothermal method specifically includes the following steps: the titanium dioxide (4) The mixture with the slave compound solution is set in the hydrothermal reaction dad' = hydrothermal reaction at a temperature of UGt~2GGt for 12 to 72 hours to form a powdery carbon-coated titanium dioxide particle 10〇 . The above-mentioned hydrothermal temperature range can effectively control the degree of dehydration coating of the carbon source compound. The dehydrated coating refers to the hydrogen and oxygen elements in which the carbon source compound is cleaved. However, after the carbon element is left, the carbon element is adsorbed in the process of evaporation of water under the action of surface tension. Said - the surface of titanium oxide particles 1Q. Specifically, if the temperature is too low, the sugar is not easily dehydrated; if the temperature is too high, the carbon source compound is easily cleaved to form a free carbon', so that the formed carbon cannot be fully utilized, thereby preventing the carbon from being sufficiently coated. Dioxin granules 1 〇. In the present embodiment, the hydrothermal temperature is 18 0 ° C ~ 18 5 ° C 'the hydrothermal time is 16 hours. Referring to Fig. 4, by the hydrothermal heating, the carbon source compound is cleaved to form a carbon layer 20 coated on the surface of the gasifier. In this step, in order to sufficiently and rapidly crack the carbon source compound, a mixture of the titanium oxide particles 10 and the carbon source compound solution may be further added to the carbon source compound solution before the mixture of the titanium oxide particles 10 and the carbon source compound solution is disposed in the hydrothermal reaction crucible. Catalyst 'The catalyst can be a salt containing silver ions, the catalyst 099.113283 Form No. A0101 Page 8 of 23 0992023464-0 201138190 The quality ratio of the carbon source compound can be 丨: 2〇〇~1 : 50 β In this embodiment, the catalyst is silver nitrate (AgN〇3), and the mass ratio of the silver nitrate to the carbon source compound is 1:125. [0024] Further, the powdery carbon-coated titanium oxide particles 1 obtained above may be further subjected to a heat treatment step. Specifically, the carbon-coated titanium oxide particles 100 are heated at a temperature of 450 C to 650 C in an inert atmosphere for about 1 to 3 hours. This example was heated at a temperature of 5 ° C for 2 hours. Referring to Fig. 5, by the heat treatment, the residual carbon source compound coated on the surface of the titanium oxide particles 10 can be sufficiently cracked, so that the carbon layer 20 formed after the cracking is made thinner. Since hydrogen and oxygen elements in the gradually cleavable carbon source compound escape during the hydrothermal reaction, a carbon layer 2 is formed to coat the surface of the titanium oxide particles 10, and the carbon layer is 2〇 There is a large interatomic interaction force with the titanium dioxide particles, so that the carbon layer 2〇 is firmly adsorbed to the titanium dioxide particles, and is not easily peeled off from the surface of the titanium dioxide particles 10, thereby It is not easy to cause segregation or crystallization during the drying process. The overcoated titanium dioxide particles 100 comprise titanium oxide particles 10 and a uniform carbon layer 20 coated on the surface of the titanium dioxide particles 10, the titanium dioxide particles 10 being in a granular shape, the particle size of which is not limited, preferably 5G nai The silicon layer 20 may have a thickness of 5 nm to 25 nm. In the fourth step, the lithium source solution 3 is formed by dissolving a lithium salt or lithium hydroxide (LKOH) 2) in a solvent. The lithium salt is preferably a water-soluble salt, which may be a carbonic acid, a sulfuric acid clock, a nitric acid clock or a gasification clock. 099113283 Form No. Ι0Ι0Ι 0992023464-0 [0027] 201138190 [0028] [0030] [0032] etc., and are not limited to the enumerated ones. In this embodiment, the solution of the solution is 3_5mQl/L HA of a lithium oxynitride solution. In order to form a uniform sol 200, the above-mentioned mixture of the bell source solution 30 and the carbon-coated titanium oxide particles 1GG qing can be further mixed, and the specific manner of the smashing is not limited to mechanical, magnetic stirring. Or ultrasonic dispersion. In the fifth step of the embodiment, the spray drying process adopts a gas flow type spray dryer, and the air flow type spray dryer has an atomization device, and the atomization device adopts a dual flow nozzle, the air flow The spray dryer is dried by cocurrent drying. Specifically, the sol 2 is input into the airflow spray dryer by using a screw pump, and the sol 200 is atomized by the dual-flow nozzle atomizing device. Thereby forming a mist-like droplet; the formed mist-like droplets are cocurrent with the hot air, and in the hot air, the mist-like droplets are instantaneously evaporated to almost all of the water, thereby forming a plurality of porous shapes. Spherical precursor particles 50. Referring to FIG. 2 and FIG. 3, the spray drying method can disperse the sol 200 into extremely fine mist droplets, so that the atomized sol 200 has a large specific surface area when the mist liquid After the drip and the hot air exchange intense heat, the water in the mist droplets is quickly removed in a few seconds to several tens of seconds to obtain a plurality of porous spherical precursor particles 50 having a particle diameter of 1 to 10 /zm. . The plurality of porous spherical precursor particles 5 have the advantages of uniform particle size distribution, good fluidity, good processability and regular morphology. 099113283 Form No. A0101 Page 10 of 23 0992023464-0 201138190 Please refer to Figure 2 'The each spherical precursor particle 5〇 includes a plurality of carbon-coated titanium dichloride particles 100'. The titanium dioxide particles are aggregated, and the surface of each of the carbon coated oxidized particles is coated with a layer of lithium hydroxide particles 40, and the plurality of surfaces are coated with a titanium layer of titanium The particles 10 are present in the gap so that each of the spherical precursor particles 50 is a porous spherical structure. [0033] 步骤 In the sixth step, the heat treatment conditions are specifically: under an inert atmosphere, the heat treatment of the spherical precursor particles at a temperature of 400 C ~ 100 (the temperature of TC 5 〇 about 2 to 40 hours, in this embodiment The heat treatment temperature is 7 〇〇, and the heat treatment time is 16 hours. During the heat treatment, the titanium dioxide particles constituting the porous spherical opening/rigid body particles 50 and the lithium hydroxide particle layer on the surface thereof are 〇 The reaction occurs to form nano-titanium-niobium lithium particles 6 〇. Specifically, during the heat treatment, the lithium hydroxide particle layer 4 〇 is diffused by coating the carbon dioxide layer 2 on the surface of the titanium dioxide particles 10 The titanium dioxide particles are in position and react with the dilute secretarial 1 () to form a nano titanium titanate (four), and the carbon layer 20 is present to inhibit the growth of the lithium niobate particles 6 to form a carbon coating. The acid acid is 7 粗 thick, and since the precursor is a spherical particle, the formed composite titanic acid (4) lion is also a spherical particle. In addition, during the heat treatment, the remaining carbon layer is not The cracked carbon source compound undergoes a cleavage reaction [0034] The second embodiment of the present invention provides a method for preparing a single-cell electrode material, which method is basically the same as the method of the first-real method, and the money is in the embodiment of the immersion recording method. , Method specific package (4) T (four): 099113283 S21 'Separate and dry form from the mixture. Form No. A〇l01 Page 11 of 23 Titanium Dioxide Particles 10 0992023464-0 [0035] 201138190 Thus forming a compound coated with a carbon source The titanium dioxide particles of the solution are tempered; [0036] S22, heat-treating the titanium dioxide particles 10 coated with the carbon source compound solution to form the carbon-coated titanium dioxide particles 100. [0037] In the step S21, the separation method may specifically In order to filter the titanium dioxide particles 10 in the mixed liquid by using a funnel, since the carbon source compound solution has a physical adsorption effect on the surface of the titanium dioxide particles, after the separation, the surface of the titanium dioxide particles 10 still has a carbon source. Coating of the compound solution. The method of drying the titanium dioxide particles 10 is preferably a rapid drying method to avoid coating on the dioxide. The carbon source compound in the carbon source compound solution on the surface of the particle 10 crystallizes to precipitate larger crystal grains, which is disadvantageous for uniform coating. The rapid drying method may be vacuum drying or centrifugal drying. [0038] In the step S22, The heat treatment method is specifically: heating the titanium oxide particles 10 coated with the carbon source compound on the surface at 450 ° C to 650 ° C for about 1 hour to 5 hours under an inert atmosphere. In this embodiment, specifically The carbon dioxide compound coated with the carbon source compound is heated at 500 ° C for 2 hours under an inert atmosphere. By the heat treatment, the carbon source compound can be cracked to form a carbon coating. Titanium dioxide particles 100. [0039] In the immersion pulling method, since the rapid drying method is adopted, the solvent volatilization speed is fast, the adsorbed carbon source compound is less than segregation or crystallization; and during the heat treatment, the carbon source adsorbed on the surface of the titanium dioxide particle 10 is used. The compound softens and the softened carbon source compound has a large viscosity, so that the surface of the carbon source compound and the titanium dioxide particle 10 is stronger due to hydrogen bonding. 099113283 Form No. A0101 Page 12 of 23 0992023464-0 201138190 After the cracking, the binding force is adsorbed, so that the carbon of the subsequent carbon source compound is not segregated or crystallized. In addition, the actual _ towel, Kexian will be immersed in the dioxin (4) carbon source compound solution for a longer period of time, preferably for 4 hours 'to make the carbon source compound carbon source compound fully covered The oxidized granules were 1 Torr. In this example, the immersion time was 3 hours.

Ο _]通過上述第-實施例和第二實_巾採用水熱法和浸潰 提拉法’由於所包覆之碳層2Q係'由吸附於二氧化鈦顆粒 10表面之碳源化合物裂解形成之,故碳源化合物裂解形 成碳之過«二氧化賴粒大小和表㈣貌之影響很小 ,從而使碳層20均勻包覆。 _]彳以理解,該表面包覆有碳層2〇之二氧化鈦顆粒1〇不限 於上述水熱法和浸潰提拉法形成,也可以通過先前技術 中其他包碳方法形成,只要於二氧化鈦顆粒表面形成一 厚度均勻之碳層20即可。 [0043] 本發明鋰電池電極材料之製備方法具有以下優點:第一 、由於直接使包覆有均勻碳層之二氧化鈦與鋰源溶液發 生反應形成碳包覆之欽酸鋰顆粒,從而避免了由於鈦酸 鋰顆粒之表面形貌和粒徑大小難於控制而容易出現碳源 化合物出現偏析和結晶之現象;第二、與先製備球形鈦 酸鋰顆粒再將碳包覆於球形鈦酸鋰顆粒表面之方法相比 ,由於具有較小之且粒徑均勻分佈之二氧化鈦原料容易 得到,故,於該二氧化鈦表面預先形成碳層,再與鋰源 反應得到鈦酸鋰顆粒更易形成均勻之、不出現偏析和結 0992023464-0 099113283 表單編號A0101 第13頁/共23頁 201138190 晶現象之碳層;第三、通過採用喷霧乾燥使所製備獲得 之複合欽酸㈣極材料為多孔狀,即具有-以數量之 奈求通道’從而增加了電極之有效反應面積和娜子進 出之反應通道’使電極具有很高之可逆電化學容量;第 四、由於本方法通過讀絲賴得之球形前軀體顆粒 具有比表面積小、粒徑小、粒徑分佈較為均勻及顆粒形 貌較為規則等特點’從而使得最終獲得之複合鈦酸裡電 極材料具有較高之振實密度。 [0044] [0045] [0046] [0047] [0048] [0049] 综上所述’本發明確已符合_專狀要件,遂依法提 出專利巾請。惟’以上所述健為本發明之較佳實施方 式’自不能以此限制本案之中請專利範圍。舉凡熟悉本 案技藝之人士援依本發明之精神所作之等效修飾或變化 ’皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1為本發明實施例鐘電池電極材料之製備方法流程圖。 圖2為本發明實施例鐘電池電極材料之製備方法過程示意 圖。 圖3為圖2中碳包覆之二氧化欽顆粒表面包覆有氫氧化鐘 顆粒層之放大圖。 圖4為本發明第-實施例通過水熱法製備之未經熱處理之 碳包覆之二氧化鈦掃描電鏡照片。 圖5為本發明第一實施例通過水熱法製備之經過熱處理之 碳包覆之二氧化鈦掃描電鏡照片。 099113283 【主要元件符號說明】 表單編號A0101 第14頁/共23頁 0992023464-0 :100 201138190 [0050] 碳包覆之二氧化鈦顆粒 [0051] 二氧化鈦顆粒:10 [0052] 碳層:20 [0053] 鋰源溶液:30 [0054] 氫氧化鋰顆粒層:40 [0055] 前驅體顆粒:50 [0056] 鈦酸鋰顆粒:60 70 80 ❹ [0057] 碳包覆之鈦酸鋰顆粒: [0058] 複合鈦酸鋰電極材料: [0059] 溶膠:20 0_ _] by the above-mentioned first embodiment and the second real towel using hydrothermal method and impregnation pulling method 'because the coated carbon layer 2Q system' is formed by cracking of a carbon source compound adsorbed on the surface of the titanium dioxide particle 10 Therefore, the carbon source compound is cracked to form carbon. The influence of the size of the dioxide and the appearance of the surface (4) is small, so that the carbon layer 20 is uniformly coated. _] 彳 理解 彳 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二The surface may be formed with a carbon layer 20 of uniform thickness. [0043] The preparation method of the lithium battery electrode material of the invention has the following advantages: First, since the titanium dioxide coated with the uniform carbon layer is directly reacted with the lithium source solution to form the carbon coated lithium gallate particles, thereby avoiding The surface morphology and particle size of lithium titanate particles are difficult to control and are prone to segregation and crystallization of carbon source compounds. Second, the spherical lithium titanate particles are prepared first and then coated with carbon on the surface of spherical lithium titanate particles. Compared with the method, since the titanium dioxide raw material having a small particle size and uniform distribution is easily obtained, a carbon layer is formed on the surface of the titanium dioxide, and then reacted with a lithium source to obtain a lithium titanate particle which is more easily formed and does not segregate. And knot 0992023464-0 099113283 Form No. A0101 Page 13 of 23 201138190 Carbon layer of crystal phenomenon; Third, by using spray drying, the prepared composite acid (tetra) pole material is porous, that is, The number of channels to find the channel 'thus increases the effective reaction area of the electrode and the reaction channel of the in and out of the electrode' makes the electrode highly reversible Capacity; Fourth, because the spherical precursor particles obtained by the method have the characteristics of small specific surface area, small particle size, uniform particle size distribution and regular particle morphology, the resulting composite titanate is obtained. The electrode material has a high tap density. [0049] [0049] In summary, the present invention has indeed met the requirements of the _ specialization, and the patent towel is required according to law. However, the above-mentioned preferred embodiment of the present invention is not intended to limit the scope of patents in this case. Equivalent modifications or variations made by persons skilled in the art in light of the present invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow chart showing a method of preparing a clock battery electrode material according to an embodiment of the present invention. Fig. 2 is a schematic view showing the process of preparing a battery material for a clock battery according to an embodiment of the present invention. Fig. 3 is an enlarged view of the surface of the carbon-coated oxidized granules of Fig. 2 coated with a layer of oxidized granules. Figure 4 is a scanning electron micrograph of a carbon dioxide-coated titanium dioxide prepared by a hydrothermal method according to the first embodiment of the present invention. Fig. 5 is a scanning electron micrograph of a heat-treated carbon-coated titanium oxide prepared by a hydrothermal method according to a first embodiment of the present invention. 099113283 [Description of main component symbols] Form No. A0101 Page 14 of 23 0992023464-0 : 100 201138190 [0050] Carbon coated titanium dioxide particles [0051] Titanium dioxide particles: 10 [0052] Carbon layer: 20 [0053] Lithium Source solution: 30 [0054] Lithium hydroxide particle layer: 40 [0055] Precursor particles: 50 [0056] Lithium titanate particles: 60 70 80 ❹ [0057] Carbon coated lithium titanate particles: [0058] Composite Lithium titanate electrode material: [0059] Sol: 20 0

099113283 表單編號A0101 第15頁/共23頁 0992023464-0099113283 Form No. A0101 Page 15 of 23 0992023464-0

Claims (1)

201138190 七、申請專利範圍: 1 · 一種鋰電池電極材料之製備方法,其包括: 提供碳源化合物溶液; 提供二氧化飲顆粒,將所述二氧化鈦顆粒加入上述碳源化 合物溶液中,以形成一混合液; 使所述碳源化合物裂解,形成一碳層包覆於所述二氧化鈦 顆粒之表面,從而形成碳包覆之二氧化鈦顆粒; 提供一鋰源溶液,按鋰元素與鈦元素摩爾比為4: 5至 U:5之比例將該輯溶液和該碳包覆之二氧化欽顆教均 勻混合並形成一溶膠; 喷霧乾燥上述溶膠獲得前驅體顆粒;及 熱處理上述前驅體顆粒,從而獲得所述鐘電池電極材料。 .如申請專利範圍第i項所述之鐘電池電極杯料之製備H ,其中,所述碳包覆之二氧化敛顆粒中,所述碳層厘 為5奈米〜25奈米。 又 3 .如申請專利範圍第!項所述之鐘電池電極材料之 元=爾=:合物溶液與二氧化鈦按照碳-與欽 京厚爾比為0. 1:1至2 :1之量混备。 如申明專利範圍第3項所述之鐘電池| & 甘山 電極材料之製僙方牛 ,’、巾,所述麵化合物料之濃度為勝4〇%。 .如Π專利範圍第1項所述之料池電極材料之製備方法 =中’所述二氧化賴粒之粒徑為5q奈米,法 請專利範圍第}項所述之輯池電極㈣、 體=,所述使所述碳源化合物裂解之方 方法 體包括以下步驟: …、无具 099113283 H鵠號A0101 第16頁/共23頁 0992023464-0 201138190 將所述混合液設置於一水熱反應爸中;以及 於15(rc~200°c之溫度下進行水熱反應12 72個小時,從 而形成碳包覆之二氧化鈦顆粒。 7 .如申請專利範圍第6項所述之鐘電池電極材料之製備方法 ’其中’所述水熱法進-步包括於將該混合液設置於所 水熱反應爸之前,採用超聲分散或高速授摔之方法處理= 混合液之步驟。201138190 VII. Patent application scope: 1 · A method for preparing a lithium battery electrode material, comprising: providing a carbon source compound solution; providing a dioxide drink particle, adding the titanium dioxide particle to the carbon source compound solution to form a mixture Dissolving the carbon source compound to form a carbon layer coated on the surface of the titanium dioxide particles to form carbon-coated titanium dioxide particles; providing a lithium source solution in a molar ratio of lithium to titanium of 4: a ratio of 5 to U: 5 uniformly mixing the solution and the carbon-coated dioxygen to form a sol; spray drying the sol to obtain precursor particles; and heat treating the precursor particles to obtain the Clock battery electrode material. The preparation of the battery cell cup of the invention described in claim i, wherein in the carbon-coated oxidized particles, the carbon layer is from 5 nm to 25 nm. And 3. If you apply for a patent scope! The amount of the battery electrode material is as follows: the amount of the mixture of the compound and the titanium dioxide is mixed in a ratio of from 1:1 to 2:1 in terms of carbon-to-Qin. For example, the bell battery described in item 3 of the patent scope is & Ganshan electrode material, and the concentration of the surface compound material is 4% by weight. The preparation method of the cell electrode material according to the first item of the patent scope is as follows: the particle size of the oxidized granule is 5q nanometer, and the cell electrode (4) described in the patent scope is The method body for cracking the carbon source compound comprises the following steps: ..., without 099113283 H鹄号 A0101 Page 16 / 23 pages 0992023464-0 201138190 The mixture is set in a water heat In the reaction dad; and hydrothermal reaction at a temperature of 15 (rc~200 °c for 12 72 hours to form carbon-coated titanium dioxide particles. 7. The battery electrode material as described in claim 6 The preparation method 'where the hydrothermal method further comprises the step of treating the mixed solution by ultrasonic dispersion or high-speed drop before the mixture is placed in the hydrothermal reaction dad. 〇 8.如申請專利範圍第6項所述之鐘電池電極材料之製備方法 ,其中,該水熱法進-步包括於將該混合液設置於所迷水 熱反應爸之前,向該混合液中加々含銀離子之鹽類之步驟 〇 9 .如申請專利範圍第6項所述之鐘電池電極材料之製傷方法 ,其中,該水熱法進-步包括於形成碳包覆之二氧化㈣ 粒之後’熱處理上述碳包覆之二氧化欽顆粒之步驟。 10 .如申請專利範圍第1項所述之鲤電池電極材料之製備 ,其中’將料二氧化朗粒加入贿嶋合物溶 1 ~ 4個小時。 11 如申請專職㈣U)項所述德電池電極材料之製 ,==述碳源化合物裂解之方法為 ,具體包括以下步驟: π 099113283 從所述混合射絲並錢職二氧化鈦聽, 表面包覆有碳源化合物溶液之二氧化敘顆粒;& 戍 熱處理該表面包覆有碳源化合物溶液之 氧化鈇顆粒,從 而形成碳包覆之二氧化欽顆粒。 如申請專利範圍第U項所述之鋰電池電極材料之 ,其中,所述乾燥之方法為真空乾燥法或離心乾燥法。 表單编號Α0101 第17頁/共23頁 0992023464-0 12 . 201138190 13 .如申請專利範圍第11項所述之鋰電池電極材料之製備方法 ,其中,所述熱處理之條件為:於惰性氛圍下,於450°C 〜650 °C之溫度下加熱上述表面包覆有碳源化合物溶液之 二氧化鈦顆粒1小時至5小時。 14 .如申請專利範圍第1項所述之鋰電池電極材料之製備方法 ,其中,所述喷霧乾燥之方法具體包括以下步驟:將所述 溶膠輸入到一喷霧乾燥器採用一霧化裝置霧化所述溶 膠,從而形成多個霧狀液滴;乾燥該霧狀液滴,從而形成 多孔狀之前驅體顆粒。 15 .如申請專利範圍第1項所述之鋰電池電極材料之製備方法 ,其中,所述熱處理之條件為:於惰性氛圍下,於400°C ~ 1 0 0 0 °C之溫度下熱處理所述前驅體顆粒2〜4 0小時。 0992023464-0 099113283 表單編號A0101 第18頁/共23頁The method for preparing a clock battery electrode material according to claim 6, wherein the hydrothermal method further comprises: placing the mixture before the hydrothermal reaction dad, to the mixture The method of injecting a salt containing a silver ion according to the method of claim 6, wherein the hydrothermal method further comprises forming a carbon coating. After the oxidation of the (four) particles, the step of heat-treating the carbon-coated dioxygen granules described above is carried out. 10. The preparation of the battery electrode material according to item 1 of the patent application, wherein the material is added to the brittle compound for 1 to 4 hours. 11 If you apply for the full-time (4) U) item of the German battery electrode material, == the carbon source compound cracking method, specifically including the following steps: π 099113283 from the mixed shot and the money titanium dioxide, the surface is covered with The oxidized particles of the carbon source compound solution; & 戍 heat-treating the cerium oxide particles coated with the carbon source compound solution to form carbon-coated oxidized granules. The lithium battery electrode material according to claim U, wherein the drying method is a vacuum drying method or a centrifugal drying method. The method of preparing the lithium battery electrode material according to claim 11, wherein the heat treatment condition is: under an inert atmosphere, the method of preparing the lithium battery electrode material according to claim 11 of the invention. The titanium oxide particles coated with the carbon source compound solution are heated at a temperature of 450 ° C to 650 ° C for 1 hour to 5 hours. The method for preparing a lithium battery electrode material according to claim 1, wherein the method for spray drying comprises the following steps: inputting the sol into a spray dryer using an atomizing device The sol is atomized to form a plurality of mist droplets; the mist droplets are dried to form porous precursor particles. The method for preparing a lithium battery electrode material according to claim 1, wherein the heat treatment condition is: heat treatment at a temperature of 400 ° C to 1 0 0 ° C under an inert atmosphere The precursor particles are 2 to 40 hours. 0992023464-0 099113283 Form No. A0101 Page 18 of 23
TW099113283A 2010-04-27 2010-04-27 Method for making electrode material of lithium-ion batteries TWI403017B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099113283A TWI403017B (en) 2010-04-27 2010-04-27 Method for making electrode material of lithium-ion batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099113283A TWI403017B (en) 2010-04-27 2010-04-27 Method for making electrode material of lithium-ion batteries

Publications (2)

Publication Number Publication Date
TW201138190A true TW201138190A (en) 2011-11-01
TWI403017B TWI403017B (en) 2013-07-21

Family

ID=46759755

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099113283A TWI403017B (en) 2010-04-27 2010-04-27 Method for making electrode material of lithium-ion batteries

Country Status (1)

Country Link
TW (1) TWI403017B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113698183A (en) * 2021-08-27 2021-11-26 湖州南木纳米科技有限公司 Carbon-coated alumina ceramic material and preparation method and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101541684A (en) * 2006-09-12 2009-09-23 住友化学株式会社 Lithium composite metal oxides and nonaqueous-electrolyte secondary cell
CN101378119A (en) * 2008-10-06 2009-03-04 天津巴莫科技股份有限公司 Method for preparing carbon-coating type lithium titanate for lithium ion battery
CN101373829B (en) * 2008-10-07 2011-05-11 深圳市贝特瑞新能源材料股份有限公司 Titanium-series cathode active material and preparation method thereof, titanium-series lithium ion power battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113698183A (en) * 2021-08-27 2021-11-26 湖州南木纳米科技有限公司 Carbon-coated alumina ceramic material and preparation method and application thereof

Also Published As

Publication number Publication date
TWI403017B (en) 2013-07-21

Similar Documents

Publication Publication Date Title
US20110195177A1 (en) Method for making lithium-ion battery electrode material
US10854875B2 (en) Method for making lithium-ion battery electrode material
CN103474667B (en) A kind of silicon-carbon composite anode material for lithium ion battery and preparation method thereof
CN108550837A (en) Lithium ion battery comprehensive silicon negative material and preparation method thereof
CN106025219A (en) Spherical silicon-oxygen-carbon negative electrode composite material and preparation method and application thereof
CN103199242B (en) borosilicate coated and modified lithium cobaltate and preparation method thereof
CN105591109B (en) carbon material and preparation method thereof and lithium ion battery
WO2023207996A1 (en) Silicon negative electrode material, preparation method therefor, negative electrode sheet, and lithium ion battery
KR20210153710A (en) Silica granules for electrode materials and their manufacturing method and application
CN105280890B (en) A kind of core shell structure silicon-carbon composite cathode material and preparation method thereof
CN108774808B (en) Polyimide nanofiber membrane with cross-linked appearance and zirconium dioxide coated surface and preparation method thereof
CN106876665A (en) Silicon carbide composite particles, its preparation method and application
CN110098391A (en) Titanium dioxide/carbon-coated nano silicon trielement composite material derived from a kind of MXene and preparation method thereof
WO2006046656A1 (en) Spherical carbon particles and aggregate thereof
CN109742355A (en) A kind of preparation of silicon carbon composite materials method
TW200906715A (en) Improved method for producing lithium transition metal polyanion powders for batteries
CN109390577A (en) Si/SiO2/ C composite nano-fiber material and preparation method thereof and negative electrode material
CN108682833A (en) A kind of iron phosphate lithium-based modified anode material preparation method
CN108091856A (en) A kind of boehmite coated graphite composite negative pole material, preparation method and the usage
CN102503419B (en) YSZ (Yttria Stabilized Zirconia)-based composite thermal barrier coating material and preparation method thereof
CN108183204A (en) A kind of silicon nanometer sheet-graphene nanometer sheet composite material and preparation and application
CN110429263A (en) A kind of graphene/silicon carbon composite, preparation method and application
CN104692364A (en) Method for preparing ultra-dispersible graphene through liquid nitrogen cold quenching
CN109148865A (en) The preparation method of lithium or the compound carbosphere negative electrode material of sodium-ion battery hard charcoal
CN109428071A (en) Composite anode active material and preparation method thereof and lithium battery