TW201137000A - Biaxially oriented porous membranes, composites, and methods of manufacture and use - Google Patents

Biaxially oriented porous membranes, composites, and methods of manufacture and use Download PDF

Info

Publication number
TW201137000A
TW201137000A TW100108332A TW100108332A TW201137000A TW 201137000 A TW201137000 A TW 201137000A TW 100108332 A TW100108332 A TW 100108332A TW 100108332 A TW100108332 A TW 100108332A TW 201137000 A TW201137000 A TW 201137000A
Authority
TW
Taiwan
Prior art keywords
film
stretching
porous
woven
machine direction
Prior art date
Application number
TW100108332A
Other languages
Chinese (zh)
Inventor
Xiaomin Zhang
Gerald P Rumierz
Karl F Humiston
Charles E Haire
Tyrone S Fields
Michael A Braswell
Ronald A Proctor
Original Assignee
Celgard Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Celgard Llc filed Critical Celgard Llc
Publication of TW201137000A publication Critical patent/TW201137000A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

At least a selected microporous membrane is made by a dry-stretch process and has substantially round shaped pores and a ratio of machine direction tensile strength to transverse direction tensile strength in the range of 0.5 to 6.0. The method of making the foregoing microporous membrane may include the steps of: extruding a polymer into a nonporous precursor, and biaxially stretching the nonporous precursor, the biaxial stretching including a machine direction stretching and a transverse direction stretching, the transverse direction including a simultaneous controlled machine direction relax. At least selected embodiments of the invention may be directed to biaxially oriented porous membranes, composites including biaxially oriented porous membranes, biaxially oriented microporous membranes, biaxially oriented macroporous membranes, battery separators, filtration media, humidity control media, flat sheet membranes, liquid retention media, and the like, related methods, methods of manufacture, methods of use, and the like.

Description

201137000 六、發明說明: 【發明所屬之_技系好領域】 相關申請案之相互參照 本申請案主張2010年3月12曰所提出之申請中的美國 暫時性專利申請案序號61/313,152之利益及優先權。 發明領域 本發明係有關雙軸定向多孔膜、包含雙軸定向多孔膜 的複合物、雙軸定向微孔膜、雙軸定向大孔膜、電池隔板、 過漉媒質、濕度控制媒質、平板膜、液體滯留媒質及其類 似物、相關的方法、製造方法、使用方法及其類似方法。201137000 VI. Description of the invention: [Technical field of invention] Cross-reference to related application This application claims the benefit of US Provisional Patent Application No. 61/313,152 in the application filed on March 12, 2010. And priority. FIELD OF THE INVENTION The present invention relates to biaxially oriented porous membranes, composites comprising biaxially oriented porous membranes, biaxially oriented microporous membranes, biaxially oriented macroporous membranes, battery separators, percolating media, humidity control media, flat membranes Liquid retention media and the like, related methods, methods of manufacture, methods of use, and the like.

L· J 發明背景 微孔性聚合物膜已知,其可藉由多種方法製得且製得 該薄膜的方法可在薄膜的物理屬性上具有實質影響 (material impact)。參見例如,凱司汀(Kesting),羅伯特 (Robert)E. ’合成的聚合物薄膜,結構透視圖(Synthetic Polymeric Membranes, A Structural Perspective)(第二版,約 翰威利及宋斯(John Wiley & Sons),紐約,NY,(1985))。 三種不同已知用來製造微孔性聚合物薄膜的方法包括:乾 式拉伸方法(亦已知為西爾加得(CELGARD)方法)、溼式方 法及顆粒拉伸(particle stretch)方法。 乾式拉伸方法(西爾加得方法)指為孔洞形成係產生自 在機器方向上拉伸一無孔性、半結晶、經擠壓的聚合物前 驅物(MD拉伸)的方法。參見例如,凱司汀,同前所述第 201137000 29〇-297頁’其以參考之方式併人本文。此乾式拉伸方法與 溼式方法及顆粒拉伸方法不同。通常來說,在溼式方法(亦 已知為相轉換方法、抽提方法(extmetiGn帅咖)或丁們方 法)中’將聚合物補與加I油(有時指為塑化劑)混合,擠 壓此混合物’織當移除加工油_成孔洞(這些膜可在該 油移除前或後被拉伸)。參見例如,凱司汀,同前所述第 237·286頁,其以參考之方式併入本文。 通常來說’在顆粒拉伸方法中,將聚合物原料與微粒 物質混合’擠壓此混合物,及在拉伸期間,當在聚合物與 微粒物質間之界面由於拉伸力量而破裂時形成孔洞。參見 例如’美國專利案號6,〇57,061及6,〇8〇,5〇7,其以參考之方 式併入本文。 再者,由這些不同形成方法所產生的薄膜通常在物理 上不同,且製得每種薄膜的方法典型可區別出該等薄膜彼 此。例如,乾式拉伸製程薄膜可由於在機器方向(md)上拉 伸該前驅物而具有隙縫形孔洞(例如,參見第1·3ϋ)。渔式 製程薄膜由於油或塑化劑及在機器方向(MD)上與在橫向機 窃方向或檢向方向(TD)上拉伸該前驅物(例如,參見第4圖) 而趨向於具有較ϋ的孔洞及蕾絲狀外觀。另—方面,顆粒 拉伸製程射具有如微粒物質般的橢圓形孔洞,及機器 方向拉伸(MD^t伸)趨向於形成該等孔洞(例如,參見第5Α 圖)。此外,每種薄膜可由其製造方法與其它區別。 雖然由乾式拉伸方法製得之薄膜已獲得優良的商業成 就(諸如多種由北卡羅萊納州(Carolina)的夏洛特市 201137000 (Charlotte)之西爾加得LLC出售的西爾加得⑧乾式拉伸多孔 膜,包括平板膜、電池隔板、中空纖維及其類似物),有需 要改良、修改或提高至少其經選擇的物理屬性,以便它們 可使用在較寬的應用範圍中、可對特別目的有較好的表現 或其類似目的。 使用空氣濾清器來移除或減少氣載的污染物(諸如粉 塵、塵蟎、黴菌、細菌、狗毛髮皮屑、氣味及氣體)通常已 知。習知上,空氣濾清器包括從棉胎、草蓆或多孔材料薄 片形成的過濾器媒質,其經打摺及放置在矩形框架或支撐 物中或被折疊成波浪狀橢圓形或圓柱,以便在相當小的體 積中提供大過濾面積。 雖然至少某些空氣濾清器已獲得商業成就,尚對改良 過濾媒質或過濾器以便它們可使用在較寬的過濾或分離應 用範圍中、可對特別目的有較好的表現或其類似目的有需 求。 將多孔材料使用來選擇性通過氣體及阻擋液體已知。 例如,已使用里奎西爾(LIQUI-CEL)®中空纖維薄膜接觸器 (由北卡羅萊納州的夏洛特市之西爾加得L L C的免布蘭那-夏洛特市(Membrana-Charlotte)部門出售)對液體進行除氣 或除泡。更特別的是,里奎西爾®薄膜接觸器廣泛地使用在 環球的微電子學、醫藥、電力、食物、飲料、工業、攝影、 油墨及分析市場中來對液體進行除氣。 將多孔材料使用於過遽或分離方法已知。例如,由德 國烏帕塔(Wuppertal)的免布蘭那有限公司(Membrana 201137000BACKGROUND OF THE INVENTION Microporous polymer membranes are known which can be made by a variety of methods and the method of making the film can have a material impact on the physical properties of the film. See, for example, Kesting, Robert E. 'Synthetic Polymeric Membranes, A Structural Perspective' (Second Edition, John Wiley &; Sons), New York, NY, (1985)). Three different methods known for making microporous polymer films include: dry stretching methods (also known as the CELGARD method), wet methods, and particle stretch methods. The dry stretching method (Silga method) refers to a method of stretching a nonporous, semicrystalline, extruded polymer precursor (MD stretching) from the machine direction for the pore forming system. See, for example, Kestin, supra, 201137000, pp. 29-297, which is incorporated herein by reference. This dry stretching method is different from the wet method and the particle stretching method. In general, in a wet process (also known as a phase inversion method, an extraction method (extmetiGn) or a method), the polymer is compounded with I oil (sometimes referred to as a plasticizer). The mixture is extruded to "when the processing oil is removed" into holes (these films can be stretched before or after the oil is removed). See, for example, Kestin, supra, page 237, 286, which is incorporated herein by reference. Generally speaking, in the particle stretching method, the polymer raw material is mixed with the particulate matter to squeeze the mixture, and during the stretching, when the interface between the polymer and the particulate matter is broken due to the tensile force, a hole is formed. . See, for example, U.S. Patent No. 6, 〇 57, 061 and 6, 〇 8, 5, 7, which is incorporated herein by reference. Moreover, the films produced by these various forming methods are generally physically different, and the method of making each film typically distinguishes the films from each other. For example, a dry draw process film may have slit-shaped holes due to stretching the precursor in the machine direction (md) (see, for example, Section 1.3). The fishing process film tends to have an oil or plasticizer and stretches the precursor in the machine direction (MD) and in the transverse sling or direction of detection (TD) (see, for example, Figure 4). The pores and lace-like appearance of the skull. Alternatively, the particle stretching process has elliptical holes such as particulate matter, and the machine direction stretching (MD^t stretching) tends to form the holes (see, for example, Fig. 5). In addition, each film can be distinguished from others by its manufacturing method. Although films made by the dry stretching process have achieved excellent commercial success (such as a variety of Sergey 8 sold by Sylvain LLC in Charlotte, North Carolina, 201137000 (Charlotte). Dry stretched porous membranes, including flat membranes, battery separators, hollow fibers, and the like, there is a need to modify, modify or enhance at least their selected physical properties so that they can be used in a wide range of applications. Have a good performance for a particular purpose or a similar purpose. The use of air filters to remove or reduce airborne contaminants such as dust, dust mites, mold, bacteria, dog hair dander, odors and gases is generally known. Conventionally, an air cleaner comprises a filter medium formed from a batt, a mat or a sheet of porous material which is folded and placed in a rectangular frame or support or folded into a wavy oval or cylinder so that Provides a large filtration area in a relatively small volume. While at least some air filters have achieved commercial success, there are still improvements to filter media or filters so that they can be used in a wide range of filtration or separation applications, for better performance for a particular purpose, or the like. demand. The use of porous materials to selectively pass gases and block liquids is known. For example, LIQUI-CEL® Hollow Fiber Membrane Contactors (Membrana-Milbrana-based City of Sylvester LLC in Charlotte, North Carolina) have been used. Charlotte) sells) degassing or defoaming liquids. More specifically, the Riquis® membrane contactor is widely used in the global microelectronics, pharmaceutical, power, food, beverage, industrial, photographic, ink and analytical markets to degas liquids. The use of porous materials for the treatment of percolation or separation is known. For example, by Buppertal, Wuppertal, Germany (Membrana 201137000)

GmbH) ’或由西爾加得LLC及戴瑞米克(Daramic)LLC(二I 皆在北十羅萊納州夏洛特市)銷售或出售的多種平板膜已 使用於過濾或分離方法。更特別的是’已經使用此等平板 膜來分離固體顆粒與液體、氣體與液體、顆粒與氣體及其 類似物。 雖然此專用於過濾、或分離方法的多孔材料某些已獲得 商業成就,尚對改良多孔材料以便它們可使用在較寬的應 用範園中、對特別目的可有較好的表現或其類似目的有需 求。 將多孔材料使用來選擇性通過濕氣(水分蒸氣)及[5且擋 液體水、液體除濕劑或其它水溶液可已知。在此液體除满 系統中,溫度及濕度可由吸收或散發出水蒸氣的鹽溶液(成 除濕劑)控制。 將多孔材料使用來選擇性通過水蒸氣(熱及水分)及阻 擋氣體(排出及引入氣體)可已知與能源回收通風(energy recovery ventilation)(ERV)連結,其中在通風系統中熱與濕 氣於補償與排出空氣間交換。 將多孔材料使用來選擇性通過純或淡水及阻擔鹽或鹽 水亦已知與逆滲透除鹽連結,其中多孔材料(諸如逆滲透過 遽器(RO過濾器))允許純水(淡水)於此通過但是遏制鹽。隨 著鹽水在高壓下,淡水被強迫通過該多孔材料及形成淡水 流。 將多孔材料使用來選擇性通過水蒸氣或濕氣(水分蒸 氣)及阻擋液體鹽水亦可已知與蒸氣除鹽連結,其中多孔材 201137000 料(諸如高電荷密度薄膜)可阻止鹽水但是通過無鹽的水蒸 氣,以分離鹽水與淡水。隨著鹽水在高溫下,會從鹽水中 放出淡水蒸氣,其可漂移通過該多孔材料及凝結以形成淡 水流。 將多孔材料使用來選擇性通過氣體或濕氣(水分蒸氣) 及阻擋液體(諸如水)可已知與燃料電池(諸如具有質子交換 薄膜(PEM)的氫燃料電池,其必需持續保持濕潤)連結。呈 潮溼蒸氣形式的廢水可通過多孔材料及可收集在廢水容納 隔間中或排出。 雖然大概此等用於選擇性通過氣體或濕氣(水分蒸氣) 及阻擋液體水或鹽水之多孔材料某些可已獲得商業成就 (諸如由道化學(Dow Chemical)出售的RO薄膜,或由WL高 爾(Gore)BHA出售的膨體聚四氟乙烯(ePTFE)薄膜及其 匕)’尚對改良多孔材料以便它們可使用在較寬的應用範圍 中、可對特別目的有較好的表現或其類似目的有需求。 【發明内容】 發明概要 根據本發明之至少經選擇的多孔材料、膜、層、薄膜、 積層物、共擠壓物或複合物具體實例,某些改良區域可包 括除了隙縫外之孔洞形狀、圓形孔洞、增加橫向方向抗拉 強度、MD與TD物理性質之平衡、與例如水分傳送及水頭 壓力相關之高性能、減低哥雷(Gurley)、具有平衡的物理性 質之高孔隙度、孔洞結構(包括孔洞尺寸及孔洞尺寸分佈) 的一致性、提高耐久性、此等薄膜與其它多孔材料之複合 201137000 物;此等薄膜、膜或層與多孔不織布的複合物或積層物; 塗敷的薄膜、共擠壓的薄膜、積層的薄膜;具有想要的水 分傳送(或水分蒸氣傳送)、水頭性能及物理強度性質之薄 膜;在更物理嚴苛的環境下沒有損失想要的薄膜特徵之實 用性、薄膜水分傳送性能與巨觀物理性質結合之組合、疏 水性、高通透性、化學及機械安定性、具有高抗拉強度、 其組合、及/或其類似性質。 雖然藉由乾式拉伸方法製得的某些薄膜已獲得優良的 商業成就,尚對改良、修改或提高至少其經選擇的物理屬 性,以便它們可使用在較宽的應用範圍中、對特別目的有 較好的表現及/或其類似目的有需求。根據本發明的乾式拉 伸製程薄膜之至少經選擇的具體實例,某些改良區域可包 括除了隙縫外的孔洞形狀、圆形孔洞、增加橫向方向抗拉 強度、MD與TD物理性質之平衡、孔洞結構(包括孔洞尺寸 及孔洞尺寸分佈)之一致性、與例如水分傳送(或水分蒸氣傳 送)及水頭壓力相關的高性能、減低哥雷、具有平衡的物理 性質之高孔隙度、提高耐久性、此薄膜與其它多孔材料的 複合物、此薄膜與多孔不織布之複合物或積層物、塗敷的 薄膜、共擠壓的薄膜、積層的薄膜;具有想要的水分傳送、 水頭性能及物理強度性質之薄膜;在更物理嚴苛的環境下 有用而沒有損失想要的薄膜特徵、薄膜水分傳送性能與巨 觀物理性質結合之組合、其組合及/或其類似性質。 根據至少經選擇的可能較佳具體實例,本發明之多孔 膜可較佳為乾式拉伸製程的多孔膜、薄膜、層或複合物, 201137000 八八^水!1 生同通透性、化學及機械安定性、具有高抗拉 ,度及其組合。足些性質似乎讓其對下列應用成為理想的 4膜或膜其每種⑽了空氣過滤外)可包括選擇性通過水分 蒸氣(或其錢體)及卩*Mt液體水(或其它液體): 1. HVAC : a·液體除濕(LD)空調(溫度及濕度控制):在以薄膜為 基礎的LD系統中,溫度及濕度可藉由能透過多孔膜 吸收或放出水分蒸氣之鹽溶液控制。在該系統中, 熱為推動力量(非壓力,如在大部分空調系統中)。為 7讓該n作’會需要具有疏水性、容易讓水分 蒸氣通過的薄膜(以阻止液體)。 b.以水為基礎的空調(溫度及濕度控制):蒸發冷卻系 統或冷卻水系統係在與LD系統稍微不同的原理下 操作,但是其將使用該薄膜之相同基本性質。 C_能源回收通風(ERV):最簡單的HVAC應用,使用 遠薄膜作為在補償與排出空氣間之熱及濕氣交換的 關鍵構件。 2. 除鹽作用:蒸氣除鹽應用使用與HVAC相同的薄膜性 質。因為該薄膜阻止液體鹽水但是讓水蒸氣通過, 可建構出一藉由薄膜分離鹽水與淡水之系統。隨著 鹽水在較高的溫度下,從鹽水中放出淡水蒸氣,其 漂移通過薄膜及凝結以形成淡水流。 3. 燃料電池:在燃料電池中,質子交換薄膜(pem)必 需持續保持濕潤。此可隨著使用以薄膜為基礎的濕 201137000 潤單元達成。 4_液體及/或空氣過濾:在這些具體實例中,該多孔膜 可作用為簡單的過濾器。當液體、蒸氣、氣體或空 氣通過該薄料,太大無法通過孔洞的顆粒被阻擔 在薄膜表面處。 特別在液體及空氣過濾的情況中,本發明之至少經選 擇的具體實例之獨特的孔洞結構可提供具有某些特定利益 之具體實例、材料或薄膜,諸如耐久性、高效率、窄的孔 洞尺寸分佈及一致的流速之利益。 根據本發明之至少經選擇的多孔材料或多孔膜具體實 例’至少經選擇的多孔單層聚丙烯(單層pp)薄膜具⑽良 的MD與TD物理性質平衡,同時亦為一高性能薄膜(如藉由 水分傳送及水頭性能測量)。此經選擇的單層pp薄膜亦可具 有高孔隙度(> 6 0 % ),但是仍然維持平衡的物理性質(當與更 傳統的薄膜比較時)。同樣地,此所選擇的單層?1>薄膜或膜 可在其一或二邊上與多孔聚丙烯(PP)不織材料(不織pp)合 併或積層而製造。所產生的複合物、薄膜或產物(單層pp/ 不織PP)或(不織PP/單層PP/不織PP)可較佳地保留優良的水 分傳送及更改良的水頭性能。同樣地,此所產生的複合物 產物(單層PP/不織PP)或(不織PP/單層PP/不織PP)可具有遠 超過比較用薄膜之物理強度性質。因此,此新產生的複合 物產物(單層PP/不織PP)成(不織pp/單層PP/不織pp)可具有 加入的優點,其在更物理嚴苛的環境下有用而沒有損失高 度想要的薄膜特徵。咸信這些經選擇的單層Pp薄膜及複合 201137000 物產物(單層PP;單層Pp/不織PP;或不織pp/單層pp/不織 p p)在其薄膜水分傳送性能與其巨觀物理性質結合之組人 上獨特。例如’先前的薄膜可真實具有孔隙度但不足的水 頭壓力或性能、其它薄膜太易碎、其它薄膜強但是缺乏其 它性質或其類似事件,然而本發明之至少經選擇的具體實 例可具有例如想要的孔隙度、水分傳送'水頭壓力、強产 及其類似性質。 根據本發明之至少所選擇的多孔材料或多孔膜具體實 例,至少所選擇的多孔多層聚丙烯(多層PP)薄膜具有優良 的MD與TD物理性質平衡’同時亦為一高性能薄膜(如由水 分傳送及水頭性能測量)。此經選擇的多層PP薄膜亦可具有 高孔隙度(>6〇°/。),但是仍然維持平衡的物理性質(當與更傳 統的薄膜比較時)。同樣地,此經選擇的多層PP薄膜或膜可 在其一或二邊上與多孔聚丙稀(PP)不織材料(不織PP)合併 或積層而製造。所產生的複合物、薄膜或產物(多層pp/不織 PP)或(不織PP/多層PP/不織PP)可較佳地保留優良的水分傳 送及更改良的水頭性能。同樣地,此所產生的複合物產物 (多層PP/不織PP)或(不織PP/多層PP/不織PP)可具有遠超過 比較用薄膜之物理強度性質。因此,此新產生的複合物產 物(多層PP/不織PP)或(不織PP/多層PP/不織PP)可具有加入 的優點,其在更物理嚴苛的環境下有用而沒有損失高度想 要的薄膜特徵。咸信這些經選擇的多層PP薄膜及複合物產 物(多層PP;多層PP/不織PP;或不織PP/多層PP/不織PP)在 其薄膜水分傳送性能與其巨觀物理性質結合之組合上獨 201137000 特。例如,先前的賴可真實具有孔隙度但*足的水頭壓 力或性能、其它⑽太易碎、其它薄膜強但是缺乏其它性 質或其類似事件’然而本發明之至少經選擇的具體實例可 具有例如想要的孔隙度、水分傳送、水頭壓力、強度及其 類似性質。 根據本發明之至少經選擇的多孔材料或多孔膜具體實 例,至少所選擇的多孔單層聚乙烯(單層PE)薄膜具有優良 的MD與TD物理性質平衡,同時亦為—高性能㈣(如藉由 水分傳送及水頭性能測量)<5此經選擇的單層1>£薄膜亦可具 有高孔隙度(>6G%),但是仍然維持平衡的物理性f (當與更 傳統的薄膜比較時)。同樣地,此經選擇的單層卿膜或膜 可在其-或二邊上與多孔聚乙稀(PE)不織材料(不織pE)或 多孔聚丙烯(PP)不織材料(不織PP)合併或積層而製造。所產 生的複合物、薄膜或產物(單層PE/不織PE)或(不織pE/單層 PE/不織PE)可較佳地保留優良的水分傳送及更改良的水頭 性能。同樣地,此所產生的複合物產物(單層pE/不織pE)或 (不織PE/單層PE/不織PE)可具有遠超過比較㈣膜的物理 強度性質》因此,此新產生的複合物產物(單層pE/不織pE) 或(不織PE/單層PE/不織PE)可具有加入的優點,其在更物理 嚴苛的%境下有用而沒有損失高度想要的薄膜特徵。咸信 這些經選擇的單層PE薄膜及複合物產物(單層pE ;單層pE/ 不織PE ;或不織PE/單層PE/不織PE)在其薄膜水分傳送性能 與其巨觀物理性質結合之組合中獨特。例如,先前的薄膜 可真貫具有孔隙度但不足的水頭壓力或性能、其它薄膜太 12 201137000 易碎、其它薄膜強但是缺乏其它性質或其類似事件,然而 本發明之至少經選擇的具體實例可具有例如想要的孔隙 度、水分傳送、水頭壓力、強度及其類似性質。 根據本發明之至少經選擇的多孔材料或多孔膜具體實 例,至少所選擇的多孔多層聚乙烯(多層PE)薄膜具有優良 的MD與TD物理性質平衡,同時亦為—高性能薄膜(如藉由 水分傳送及水頭性能測量)。此所選擇的多層1>£薄膜亦可具 有高孔隙度(>60%) ’但是仍然維持平衡的物理性質(當與更 傳統的薄膜比較時)。同樣地,此經選擇的多層PE薄膜或膜 可在其一或二邊上與多孔聚乙烯(PE)不織材料(不織PE)或 多孔聚丙烯(PP)不織材料(不織PP)合併或積層而製造。所產 生的複合物、薄膜或產物(多層PE/不織PE)或(不織PE/多層 PE/不織PE)可較佳地保留優良的水分傳送及更改良的水頭 性能。同樣地,此所產生的複合物產物(多層PE/不織PE)或 (不織PE/多層PE/不織PE)可具有遠超過比較用薄膜的物理 強度性質。因此,此新產生的複合物產物(多層PE/不織PE) 或(不織PE/多層PE/不織PE)可具有加入的優點,其在更物理 嚴苛的環境下有用而沒有損失高度想要的薄膜特徵。咸信 這些經選擇的多層PE薄膜及複合物產物(多層PE ;多層PE/ 不織PE ;或不織PE/多層PE/不織PE)在其薄膜水分傳送性能 與其巨觀物理性質結合之組合上獨特。例如’先前的薄膜 可真實具有孔隙度但不足的水頭壓力或性能、其它薄膜太 易碎、其它薄膜強但是缺乏其它性質或其類似事件,然而 本發明之至少所選擇的具體實例可具有例如想要的孔隙 13 201137000 度、水分傳送、水頭壓力、強度及其類似性質。 根據本發明之至少經選擇的多孔材料或多孔膜具體實 例,至少所選擇的多孔單層聚合物薄膜(例如,單層(可具有 一或多層)聚烯烴(PO)薄膜,諸如聚丙烯(pp)及/或聚乙烯 (PE)(包括PE、PP或PE+PP摻合物)單層薄膜)具有優良的md 與TD物理性質平衡,同時亦為一高性能薄膜(如藉由水分傳 送(或水分蒸氣傳送)及水頭性能測量)。此所選擇的單層p〇 薄膜亦可具有咼孔隙度(>60°/。)’但是仍然維持平衡的物理 性質(當與更傳統的薄膜比較時)。同樣地,此所選擇的單層 PO薄膜或膜可在其一或二邊上與多孔不織材料(諸如不織 聚合物材料’例如,PO不織材料(諸如多孔聚乙烯(PE)不織 材料(不織PE)及/或多孔聚丙烯(PP)不織材料(不織pp)(包括 PE、PP或PE+PP摻合物)))合併或積層而製造。所產生的複 合物、薄膜或產物(單層PO/不織PO)或(不織PO/單層PO/不 織PO)可較佳地保留優良的水分傳送(或水分蒸氣傳送)及 更改良的水頭性能。同樣地,此所產生的複合物產物(單層 PO/不織PO)或(不織p0/單層P〇/不織PO)可具有遠超過比較 用薄膜的物理強度性質。因此’此新產生的複合物產物(單 層p〇/不織p〇)或(不織P〇/單層P〇/不織P〇)可具有加入的優 點,其在更物理嚴苛的環境下有用而沒有損失高度想要的 薄膜特徵。咸信這些經選擇的單層p◦薄膜及複合物產物(單 層P0;單層PO/不織PO;或不織PO/單層PO/不織PO)在其薄 膜水分傳送性能與其巨觀物理性質結合之組合上獨特。例 如,先前的薄膜可真實具有孔隙度但不足的水頭壓力或性 201137000 能、其它薄膜太易碎、其它薄膜強但是缺乏其它性質或其 類似事件,然而本發明之至少所選擇的具體實例可具有例 如想要的孔隙度、水分傳送、水分蒸氣傳送、水頭壓力、 強度及其類似性質。 根據本發明之至少經選擇的多孔材料或多孔膜具體實 例,至少所選擇的多孔多層聚合物薄膜(例如,多層(二或更 多層)聚烯烴(PO)薄膜,諸如聚丙烯(PP)及/或聚乙烯(PE)(包 括PE、PP或PE+PP摻合物)多層薄膜)具有優良的MD與TD 物理性質平衡,同時亦為一高性能薄膜(如藉由水分傳送(或 水分蒸氣傳送)及水頭性能測量)。此所選擇的多層PO薄膜 亦可具有高孔隙度(>60%),但是仍然維持平衡的物理性質 (當與更傳統的薄膜比較時)。同樣地,此所選擇的多層PO 薄膜或膜可在其一或二邊上與多孔PO不織材料(諸如多孔 聚乙烯(PE)不織材料(不織PE)及/或多孔聚丙烯(PP)不織材 料(不織PP))合併或積層而製造。所產生的複合物、薄膜或 產物(多層PO/不織PO)或(不織PO/多層PO/不織PO)可較佳 地保留優良的水分傳送及更改良的水頭性能。同樣地’此 所產生的複合物產物(多層PO/不織PO)或(不織P〇/多層P〇/ 不織PO)可具有遠超過比較用薄膜的物理強度性質。因此’ 此新產生的複合物產物(多層PO/不織PO)或(不織PO/多層 PO/不織PO)可具有加入的優點,其在更物理嚴苛的環境下 有用而沒有損失高度想要的薄膜特徵。咸信這些經選擇的 多層PO薄膜及複合物產物(多層PO;多層p〇/不織PO;或不 織PO/多層PO/不織PO)在其薄膜水分傳送性能與其巨觀物 15 201137000 理性質結合之組合上獨特《例如,先前的薄膜可真實具有 孔隙度但不足的水頭壓力或性能、其它薄膜太易碎、其它 薄膜強但是缺乏其它性質或其類似事件,然而至少經選擇 的具體實例本發明可具有例如想要的孔隙度、水分傳送、 水頭壓力、強度及其類似性質。 根據本發明之至少所選擇的多孔材料或多孔膜具體實 例,該孔洞(開口)具有下列孔洞縱深比率(根據該孔洞開口 在機器方向(MD)上(長度)及橫向機器方向上(TD)(寬度)的 物理尺寸,藉由測量例如在所選擇的薄膜或複合物(例如’ 單層、二層或三層薄膜)之表面(上或前(A邊))的SEMs中之 一或多個孔洞(以數個孔洞為較佳,以確認平均)): 典型: MD/TD縱深比率在範圍0.75至1.50内 較佳: MD/TD縱深比率在範圍0.75至1.25内 最佳: MD/TD縱深比率在範圍0.85至1.25内。 根據本發明之至少所選擇的多孔材料或多孔膜具體實 例,若MD/TD孔洞縱深比率為1 ·0時,則三維或3D孔洞球徑 率因子或比率(MD/TD/ND)範圍可為:1.〇至8_〇或更大;可 能較佳為1.0至2_5 ;及最可能較佳為1.0至2·〇或較少(根據該 孔洞開口在機器方向(MD)(長度)、橫向機器方向(TD)(寬度) 及厚度方向或截面(ND)(厚度)上的物理尺寸;例如,測量 在上或前表面(A邊)或下或背表面(B邊)之SEMs中的一或多 16 201137000 個孔洞之MD及TD(以數個孔洞為較佳,以確認平均),及測 量在截面、深度或高度(C邊)(長度或寬度截面或二者)的 SEMs中之一或多個孔洞(以數個孔洞為較佳,以確認平均) 的ND(當難以測量相同孔洞的ND、MD及TD尺寸時,該ND 尺寸可為與MD及TD尺寸不同的孔洞))。 根據本發明之至少經選擇的多孔材料或多孔膜具體實 例,該等孔洞(開口)具有下列孔洞縱深比率(以孔洞開口在 機器方向(MD)(長度)及橫向機器方向(TD)(寬度)上的物理 尺寸為基礎,以測量在所選擇的單層及三層薄膜之上或前 (A邊)的SEMs中之孔洞為基礎): 機器方向MD(長度)與橫向方向TD(寬度)的縱深比率範圍之 典型數值: MD/TD縱深比率在範圍0.75至1.50内。 根據本發明之至少所選擇的多孔材料或多孔膜具體實 例,該等孔洞(開口)具有下列三維或3D孔洞球徑率因子或 比率(以孔洞開口在機器方向(MD)(長度)、橫向機器方向 (TD)(寬度)及厚度方向或截面(ND)(厚度)上之物理尺寸為 基礎;例如,測量在所選擇的薄膜、層或複合物(例如’所 選擇的單層及三層薄膜)之上或前表面(A邊)、下或背表面(B 邊)、及截面、深度或高度(C邊)(長度或寬度截面或二者)的 SEMs中之一或多個孔洞(以數個孔洞為較佳,以確認平 均)(當難以測量相同孔洞的ND、MD及TD尺寸時’該ND尺 寸可為與MD及TD尺寸不同的孔洞): 例如: 17 201137000 典型: MD/TD縱深比率在範圍0.75至1.50内 MD/ND尺寸比率在範圍0.50至7.50内 TD/ND尺寸比率在範圍0.50至5.00内 較佳: MD/TD縱深比率在範圍0.75至1.25内 MD/ND尺寸比率在範圍1.0至2.5内 TD/ND尺寸比率在範圍1.0至2.5内 最佳: MD/TD縱深比率在範圍0.85至1.25内 MD/ND尺寸比率在範圍1.0至2.0内 TD/ND尺寸比率在範圍1.0至2.0内。 根據本發明之至少所選擇的多孔材料或多孔膜具體實 例,該等孔洞(開口)具有下列孔洞球徑率因子或比率(根據 該等孔洞開口在機器方向(MD)(長度)、橫向機器方向 (TD)(寬度)及厚度方向或截面(ND)(厚度)上的物理尺寸,以 測量在所選擇的單層及三層薄膜之上或前(A邊)的孔洞之 SEMs的長度與截面(C邊)為基礎): 機器方向MD(長度)、橫向方向TD(寬度)及厚度方向ND(垂 直高度)的球徑率因子或比率範圍之典型數值: MD/TD縱深比率在範圍0.75至1.50内 MD/ND尺寸比率在範圍0.50至7.50内 TD/ND尺寸比率在範圍0.50至5.00内。 根據本發明之至少所選擇的具體實例,藉由乾式拉伸 18 201137000 方法製得微孔膜及其具有實質上圓形孔洞,及機器方向抗 拉強度對橫向方向抗拉強度之比率在範圍0.5至6.0内,較佳 為0.5至5.0。製造前述微孔膜的方法包括下列步驟:將一聚 合物擠壓成一無孔性前驅物,及雙軸拉伸該無孔性前驅 物,該雙軸拉伸包括機器方向拉伸及橫向方向拉伸,該橫 向方向拉伸包括同步控制的機器方向鬆弛。 根據本發明之至少所選擇的具體實例,藉由經修改的 乾式拉伸方法製得多孔膜及其具有實質上圓形孔洞,機器 方向抗拉強度對橫向方向抗拉強度之比率在範圍0.5至6.0 内,及具有低哥雷(如與先前的乾式拉伸薄膜比較),具有較 大及更一致的平均流量孔徑(如與先前的乾式拉伸薄膜比 較),或低哥雷及較大與更一致的平均流量孔徑二者。 雖然藉由習知的乾式拉伸方法製得之某些薄膜已獲得 優良的商業成就,根據本發明之至少所選擇的具體實例, 有提供其經改良、修改或提高之至少所選擇的物理屬性, 以便它們可使用在較寬的應用範圍中、可對特別目的有較 好的表現及/或其類似目的。 雖然至少某些空氣濾清器已獲得商業成就,根據本發 明之至少所選擇的具體實例,有提供經改良、修改或提高 的過濾媒質,以便它們可使用在較寬的過濾或分離應用範 圍中、可對特別目的有較好的表現及/或其類似目的。 雖然至少某些用於過濾或分離方法的平板多孔材料已 獲得商業成就,根據本發明之至少所選擇的具體實例,有 提供經改良、修改或提高的多孔材料,以便它們可使用在 19 201137000 較宽的應用範圍中、可對特別目的有較好的表現及/或其類 似目的。 雖然某些用於選擇性通過氣體或濕氣(水分蒸氣)及阻 擋液體水或鹽水之多孔材料可已獲得商業成就(諸如由道 化學出售的RO薄膜、由W丄·高爾BHA出售的ePTFE薄膜及 其它),根據本發明之至少所選擇的具體實例,有提供經改 良、修改或提高的多孔材料,以便它們可使用在較寬的應 用範圍中、可對特別目的有較好的表現及/或其類似目的。 根據本發明之至少所選擇的具體實例,空氣濾清器匣 包括至少一片打摺的多孔膜(諸如微孔膜)。 圖式簡單說明 為了闡明本發明的多個觀點或具體實例之目的,在圖 形中有顯示出目前係典型的形式;但是,要了解本發明不 限於所顯示出之該等具體實例、精確安排或工具。 第1圖係西爾加得®單層的相片(SEM表面顯微照片), 其係習知的乾式拉伸型聚丙烯電池隔板。 第2圖係先述技藝之乾式拉伸型薄膜(單層薄膜)的相 片° 第3圖係先述技藝之乾式拉伸型薄膜(多層薄膜,積層 數層然後拉伸)的相片。 第4圖係西爾加得®單層的相片(SEM表面顯微照片), 其係溼式製程型聚乙烯電池隔板。 第5A圖係顆粒拉伸型薄膜的相片(SEM表面顯微照 片)。第5B圖係顆粒拉伸型薄膜的相片(SEM截面顯微照片)。 20 201137000 第6圖係根據本發明的—個具體實例之薄膜(單層薄 膜,雙軸定向方法)的相片(Sem表面顯微照片)。 第7圖係根據本發明的另—個具體實例之薄膜(多層薄 膜,一起積層數層然後拉伸’雙軸定向方法)的相片(saEM 表面顯微照片)。 第8圖係根據本發明的更另一個具體實例之薄膜(多層 薄膜’數層共擠壓然後拉伸,雙軸定向方法)的相片(s跑 表面顯微照片)。 第9圖係根據本發明的雙軸定向薄膜製造方法之至少 一個具體實例,典型的TD拉伸方法之圖式表示。 ^ 第10圖係習知的西爾加得⑧25〇〇薄膜(PP單層,乾式拉 伸方法)在20,000X倍率下之相片(SEM表面顯微照片)。 第11圖係第10圖之薄膜在5 〇〇〇χ倍率下的相片(SEM 表面顯微照片)。 第12圖係第10及11圖之薄膜在2〇,〇〇〇χ倍率下的相片 (SEM截面顯微照片)。 第13及14圖係根據本發明的另一個薄膜具體實例之薄 膜樣品Β(ΡΡ單層,塌陷的氣泡,雙軸定向方法)的各別相片 (在20,000Χ及5,000Χ倍率下之sem表面Α(上部)顯微照片)。 第15及16圖係第13及14圖的薄膜樣品B之各別相片(在 20,000X及5,000X倍率下之SEM表面B(底部)顯微照片)。 第17及18圖係第13至16圖的薄膜樣品B之各別相片(在 20,000X及5,000X倍率下之SEM截面顯微照片)。 第19、20及21圖係根據本發明的又另一個薄膜或複合 21 201137000 物具體實例(PP單層[樣品B]/不織pp,積層[熱+壓力D之薄 膜樣品C的各別相片(在20,000X、5,000X及1,〇〇〇χ倍率下之 SEM表面Α(上部)顯微照片)。 第22、23及24圖係第19至21圖之薄膜樣品C的各別相片 (在20,000Χ、5,ΟΟΟΧΑ1〇〇〇χ倍率下之SEM表面B(底部)顯 微照片)。 第25及26圖係第19至24圖之薄膜樣品C的各別相片(在 20,000X及5,0〇〇χ倍率下之SEM截面顯微照片)。 第2 7圖係第19至2 6圖在上部具有不織p p層之薄膜樣品 C(倒轉)的相片(在615X倍率下之SEM截面顯微照片)。 第27A圖係第27圖的薄膜樣品C之單層pp層的一部分 的相片(在3,420X倍率下之SEM截面顯微照片)(注意在第27 圖中之矩形)。 第28及29圖係根據本發明的更另一個薄膜具體實例之 薄膜樣品A(單層PP,非塌陷的氣泡,雙軸定向方法)的各別 相片(在20,000X及5,000X倍率下的SEM表面A(上部)顯微照 片)。 第30及31圖係第28及29圖之薄膜樣品A的各別相片(在 20,000X及5,000X倍率下之SEM表面B(底部)顯微照片)。 第32、33及34圖係根據本發明的另一個具體實例之薄 膜或複合物樣品G(PP單層,非塌陷的氣泡,雙軸定向方法 [樣品A]/不織PP,積層[熱+壓力])的各別相片(在20,000Χ、 5,000Χ及1,〇〇〇Χ倍率下之SEM表面Α(上部)顯微照片)。 第35、36及37圖係第32至34圖之薄膜樣品G的各別相片 22 201137000 (在20,000Χ、5,000乂及1,000乂倍率下2SENt表面B(底部)顯 微照片)。 第38及39圖係第32至37圖之薄膜樣品G的各別相片(在 20,000X及3,420X倍率下之SEM截面顯微照片)。 第4 0圖係第3 2至3 9圖在上部具有不織p P層之薄膜樣品 G(倒轉)的相片(在615X倍率下之SEM截面顯微照片)。 第40A圖係第40圖的薄膜樣品G之單層PP層的一部分 的相片(在3,420X倍率下的SEM截面顯微照片)(注意在第4〇 圖中的矩形)。 第41及42圖係根據本發明的又另一個薄膜具體實例之 薄膜樣品E(PP單層’塌陷的氣泡,雙軸定向方法)的各別相 片(在20,000X及5,000X倍率下之SEM表面A(上部)顯微照 片)。 第43及44圖係第41及42圖之薄膜樣品E的各別相片(在 20,000X及5,000X倍率下之SEM表面B(底部)顯微照片)。 第45及46圖係第41至44圖之薄膜樣品E的各別相片(在 20,000X及5,000X倍率下之SEM截面顯微照片)。 第4 7及4 8圖係根據本發明的更另一個薄膜具體實例之 薄膜樣品F(單層PP ’非塌陷的氣泡,雙軸定向方法)的各別 相片(在20,000X及5,000X倍率下之SEM表面A(上部)顯微照 片)〇 第49及50圖係第47及48圖之薄膜樣品F的各別相片(在 20,000X及5,000X倍率下之SEM表面B(底部)顯微照片)。 第51及52圖係根據本發明的又更另一個薄膜具體實例 23 201137000 之薄膜樣品D(共擠壓的PP/PE/PP三層,塌陷的氣泡,雙軸 疋向方法)的各別相片(在20,000X及5,000X倍率下之sem表 面A(上部)顯微照片)。 第53及54圖係第51及52圖之薄膜樣品D的各別相片(在 20,000X及5,〇〇〇χ倍率下之SEM表面B(底部)顯微照片)。 C實施方式3 較佳實施例之詳細說明 根據本發明之至少所選擇的具體實例,藉由較佳經修 改的乾式拉伸方法(雙軸定向方法)製得一微孔膜,其具有實 質上圓形孔洞及機器方向抗拉強度對橫向方向抗拉強度之 比率在範圍0.5至6.0内,較佳為0.5至5.0,最佳為〇 5至4 〇。 多孔膜(諸如微孔膜)係一具有複數個孔洞通過其之薄、柔 軟、聚合薄片、箔或薄膜。此等薄膜可為單或多層、單或 多層、複合物、積層物或其類似物及可使用在廣泛多種靡 用中,包括(但不限於)質量轉移薄膜、壓力調節器、過遽薄 膜、醫療裝置、用於電化學儲存裝置的隔板、使用在燃料 電池中之薄膜及/或其類似應用。 本發明的薄膜之至少所選擇的具體實例係藉由乾式拉 伸方法(亦已知為西爾加得方法)之經修改的版本製得。今乾 式拉伸方法指為孔洞形成係產生自拉伸一無孔蚀^ * 土則驅物的 方法。參見,凱司汀’ R.,合成的聚合物薄膜,、社構透視 圖(第二版,約翰威利及宋斯,紐約,NY’(1985),第29〇 297 頁),其以參考之方式併入本文。該乾式拉伸方法可與澄式 方法及顆粒拉伸方法區別,如上述討論。 24 201137000 本發明之至少所選擇的薄膜具體實例可與先前的乾式 拉伸薄膜在至少二個方面上區別:1}實質上圓形孔洞;及 2)機器方向抗拉強度對橫向方向抗拉強度之比率在範圍〇 5 至6.0内,較佳為〇·5至5.0,最佳為〇 5至4 〇。 本發明之至少所選擇的薄膜具體實例可與先前的乾式 拉伸薄膜在至少五個方面上區別:丨)實質上圓形孔洞;2) 機器方向抗拉強度對橫向方向抗拉強度之比率在範圍〇5 至6.0内;3)平均流量孔徑在範圍〇〇25至〇15〇微米内;句 高氣體或水分通透性,且JIS哥雷在範圍〇5至2〇〇秒内;及 (5)水頭壓力高於14〇磅/平方英寸。 考慮到孔洞形狀,該等孔洞以具有實質上圓形的特徵 為較佳。參見例如,第 6-8、13-16、19、20、22、23、28-31、 5 36 41-44、47-50及51-54圖。此孔洞形狀與 先前習知的乾式拉伸薄膜之隙縫形孔洞對照。參見第U圖 及凱:汀’同前所述。再者,本薄膜之孔洞形狀的特徵可 為縱深比率,孔洞的長度(MD)對寬度(TD)之比率。在本薄 膜的一個具體實例中,該縱深比率範圍從0.75至1.25。此與 先前的乾式拉伸薄膜之縣比率(其大於5_〇)制。參見在 下列的表I。 考慮到機器方向(MD)抗拉強度對橫向方向⑽抗拉強 度之比率’在-個具體實例中,此比率在〇 5至6.〇間較佳 為0.5至5_0。此比率與先述技藝薄膜的相應比率(其大於则) 對照。參見在下列的表j。 美國專利案號M〇2,593係有關藉由乾式拉伸方法製得 25 201137000 i L膜其令所產生的薄膜具有0.12至1.2之橫向方向抗 舍度對機器方向抗拉強度比率。在其中,該TD/MD拉力 比率係藉由至少丨“ Ha 的拉開比率獲得(當該前驅物經擠壓出 時)。 本薄膜之至少所選擇的具體實例可進一步具有如下的 ^文平均孔,同尺寸在範圍〇〇3至〇3〇微米内丨孔隙度在範 八8〇/°内’及/或橫向方向抗拉強度大於250公斤/平方公 ”則述值h典型的值及不想要限制,因此應該僅視為本 4膜之至少所選擇的具體實例的典型。 ,本薄膜之至少所選擇的具體實例可進一步具有如下的 特徵:孔洞尺寸在範圍〇 3〇至1〇微米内;及平均縱深比率 在範圍約1_0至M0内。前述值係典型的值及不想要限制, 因此應補視為本薄膜之至少所選擇的具體實例的典型。 本薄膜之至少所選擇的可能較佳具體實例可進一步具 有如下的特徵:平均水孔(叫uapore)尺寸在範圍〇〇5至〇5〇 微米内;孔隙度在範圍40-90%内;及/或橫向方向抗拉強度 大於250公斤/平方公分。前述值係典型的值及不想要限 制,因此應該僅視為本薄膜之至少所選擇的可能較佳具體 實例的典型。 在本薄膜中所使用的較佳聚合物可具有如熱塑性聚合 物之特徵。這些聚合物可進一步具有如半結晶聚合物的特 徵。在一個具體實例中,半結晶聚合物可為具有結晶性在 範圍20%至80%内之聚合物。此等聚合物可選自於由下列所 組成之群:聚烯烴類、碳氟化合物、聚醯胺類、聚醋類、 26 201137000 聚縮醛類(或聚曱醛類)' 聚硫化物、聚乙烯醇類、其共聚合 物及其組合。聚烯烴類可較佳及可包括聚乙烯類(LDPE、 LLDPE、HDPE、UHMWPE)、聚丙烯、聚丁烯、聚曱基戊 烯、其共聚合物及其摻合物。碳氟化合物可包括聚四氟乙 烯(PTFE)、聚氣三氟乙烯(PCTFE)、氟化的乙烯丙烯(FEP)、 乙烯氯二氟乙稀(ECTFE)、乙烯四氟乙烯(ETFE)、聚偏二氟 乙烯(PVDF)、聚氟乙烯(pvF)、全氟烷氧基(pFA)樹脂、其 共聚合物及其摻合物。聚醯胺類可包括(但不限於):聚醯胺 6、聚醯胺6/6、耐綸10/10、聚酞醯胺(ppA)、其共聚合物及 其摻合物。聚酯類可包括聚酯對酞酸酯(pET)、聚對酞酸丁 二酯(PBT)、聚對酞酸1,4_伸環己基二亞甲酯(pCT)及液晶聚 合物(LCP)。聚硫化物包括(但不限於)聚苯硫醚、其共聚合 物及其摻合物。聚乙烯醇類包括(但不限於)乙烯_乙烯醇、 其共聚合物及其摻合物。 本薄膜的至少某些具體實例可包含如已熟知的其它成 份。例如’那些成份可包括:充填劑(典型使用來減低薄膜 成本的惰性微粒物質,但是其它方面在薄膜之製造上沒有 明顯的影響)、抗靜電劑、抗結塊劑、抗氧化劑、潤滑劑(使 製造容易)、著色劑及/或其類似物。 可將多種材料加入至聚合物以修改或提高薄膜性質。 此等材料包括(但不限於):(丨)具有熔化溫度低於13〇〇c的聚 烯經類或聚烯烴寡聚物;(2)礦物充填劑,包括(但不限於): 碳酸鈣、氧化鋅、矽藻土、滑石、高嶺土、合成的二氧化 矽、雲母'黏土'氮化硼、二氧化矽、二氧化鈦、硫酸鋇、 27 201137000 氫氧化鋁、氫氧化鎂、及/或其類似物、及其摻合物;(3) 彈性體,包括(但不限於):乙烯-丙烯(EPR)、乙烯-丙烯-二 烯(EPDM)、苯乙烯-丁二烯(SBR)、苯乙烯異戊二烯(SIR)、 亞乙基降甘烯(ENB)、環氧樹脂及聚胺基曱酸酯、及其摻合 物;(4)潤溼劑,包括(但不限於)乙氧基化的醇類、一級聚 合羧酸類、二醇類(例如,聚丙二醇及聚乙二醇類)、官能化 的聚烯烴類等等;(5)潤滑劑,例如,聚矽氧、氟聚物、肯 醯胺(Kemamide)®、油酸醯胺、硬脂醯胺、芥酸醯胺、硬 脂酸鈣或其它金屬的硬脂酸鹽;(6)阻燃劑,例如,溴化的 阻燃劑、磷酸銨、氫氧化銨、氧化鋁三水合物及磷酸酯; (7)交聯或耦合劑;(8)聚合物加工助劑,諸如(但不限於)塑 化劑或加工油(例如,少於10重量%的加工油);及(9)任何型 式的成核劑,包括用於聚丙烯之β成核劑。(但是,至少該 較佳的本薄膜特別排除任何β成核的聚丙烯(ΒΝΡΡ),如揭示 在美國專利案號6,368,742中,其以參考之方式併入本文。 用於聚丙烯的β -成核劑係在聚丙烯中造成β結晶產生之物 質)。 本薄膜可為單層或多層薄膜。考慮到多層薄膜,本雙 軸定向薄膜可為該多層薄膜的一層,或本薄膜可為該多層 薄膜之全部層。若本薄膜少於該多層薄膜的全部層時,該 多層薄膜可經由塗佈、積層或黏合方法製得。若本薄膜係 該多層薄膜的全部層時,該多層薄膜可經由積層或擠壓方 法(諸如共擠壓)製得。再者,該多層薄膜可由相同材料或不 同材料層製得。 28 201137000 本薄膜藉由經修改的乾式拉伸方法製得為較佳,其中 該前驅物薄膜經雙軸拉伸(即,不僅在機器方向上,而且亦 在橫向機器方向上拉伸)。此方法將在下列更詳細地討論。 通常來說,用來製造前述薄膜的方法包括擠壓—無孔 性(單或多層)前驅物,然後雙軸拉伸該無孔性前驅物的步 驟。該無孔性前驅物可在拉伸前選擇性經退火。在—個具 體實例中,該雙軸拉伸包括機器方向拉伸及橫向方向拉伸 與同步控制的機器方向鬆弛。該機器方向拉伸及橫向方向 拉伸可同步或相繼。在一個具體實例中,機器方向拉伸接 著橫向方向拉伸伴隨著同步機器方向鬆弛。此方法在下列 更詳細地討論。 擠壓通常習知(習知指為習知用於乾式拉伸方法)。擠壓 器可具有縫模(用於平面前驅物)或環形模(用於型坏 (parison)或氣泡前驅物)。在後者的情況中,可使用膨脹型 坏技術(例如,當該前驅物經擠壓出時,吹開比(bl〇w叩 ratio)(BUR)小於丨.5)。但是,該無孔性前驅物之雙折射率不 必如在習知的乾式拉伸方法中高。例如,在從具有炼體流 動指數(MFI)<i .〇的聚丙稀樹脂製造出具有…^孔隙度之 /專膜的g知乾式拉伸方法中,該前驅物之雙折射率將為 >0.0130’同時隨著本方法,該pp前驅物的雙折射率可低如 〇·0100 1在另—個實施例中,來自聚乙職脂具有>35%孔 隙度之;«’㈣驅物的雙折射率將〉q g浏;同時隨著本 方法,忒PE則驅物的雙折射率可低如仙。 在一個具體實例中,可在溫度於鐵(其 29 201137000 中Tm為聚合物的熔化溫度)間進行退火(選擇性);及在另一 個具體實例中,在溫度KTm_5〇°C至Tm-15°C間。某些材料 (例如,在擠壓出後具有高結晶性的那些,諸如聚丁烯)可不 需要退火。可進行額外的選擇性步驟,例如(但不限於)熱定 型、抽出、移除、捲繞、縱切及/或其類似步驟。 該機器方向拉伸可以冷拉伸或熱拉伸或二者進行,及 以單一步驟或多重步驟進行。在一個具體實例中,可在 <Tm-50 °C下進行冷拉伸;及在另一個具體實例中,在 <Tm-80°C下。在一個具體實例中,可在<Tm_1〇〇c下進行熱 拉伸。在一個具體實例中,該總機器方向拉伸可在範圍 50-500%内;及在另一個具體實例中,在範圍1〇〇 3〇〇%内。 在機器方向拉伸期間,該前驅物可在橫向方向(習知)中收 縮。 橫向方向拉伸包括同步控制的機器方向鬆弛。此意謂 著當在橫向方向(TD拉伸)上拉伸該前驅物時,同步允許該 刖驅物以經控制的方式在機器方向上縮小(即,鬆弛)(MD鬆 弛)。該橫向方向拉伸可以冷步驟、或熱步驟、或二者之組 合進行。在一個具體實例中,總橫向方向拉伸可在範圍 100-1200°/。内;及在另一個具體實例中,在範圍2〇〇 9〇〇% 内。在一個具體實例中,經控制的機器方向鬆弛可在範圍 從5-80%内;及在另一個具體實例中,在範圍15 65%内。 在一個具體實例中,可以多重步驟進行橫向拉伸。在橫向 方向拉伸期間,該前驅物可或可不允許在機器方向上收 縮。在多步驟橫向方向拉伸的具體實例中,該第一橫向方 30 201137000 向步驟可包括橫向拉伸與經控制的機器方向鬆弛,接著同 步k向及機器方向拉伸,接著橫向方向鬆弛及無機器方向 拉伸或鬆弛。 «亥i驅物可在機益方向及橫向方向拉伸後選擇性接受 熱定型(如已熟知)。 丽述薄膜及方法具體實例在下列非為限制的實施例中 進一步闡明。 貫施例 除非其它方面有所描述,否則如下測量於本文中所報 導的測試值(厚度、孔隙度、抗拉強度及縱深比率)··厚度 ASTM D374’ 使用英維克微蓋巨(Emvec〇 Microgage)210-A 測微計;孔隙度-ASTMD-2873 ;抗拉強度-ASTMD-882, 使用尹士壯(Instron)型號4201 ;及縱深比率測量,從sem顯 微圖取得。 藉由習知的乾式拉伸技術製造下列實施例,除了如所 提到者外。 實施例1。使用2 · 5英吋擠壓器擠壓聚丙烯(pp)樹脂。擠 壓器炫融溫度為221 C。將聚合物炼融物進料至圓形模具。 該模具溫度設定在220°C ,聚合物熔融物藉由吹入空氣冷 卻。擠壓出的前驅物具有厚度27微米及雙折射率0 0120。 然後,在150°C下退火該擠壓出的薄膜2分鐘。然後,在室 溫下冷拉伸該經退火的薄膜至2〇%,然後在14〇。〇下熱拉伸 至228%及鬆弛至32%。經機器方向(MD)拉伸的薄膜具有厚 度16.4微米及孔隙度25%。然後,在14〇。匚下橫向方向(丁]:)) 31 201137000 拉伸該經MD拉伸的薄膜300%與]yjD鬆弛50%。所完成的薄 膜具有厚度14_ 1微米及孔隙度37%。所完成的薄膜之TD抗 拉強度為550公斤/平方公分。參見第6圖。 實施例2。使用2.5英吋擠壓器擠壓聚丙烯(PP)樹脂。擠 壓器炼融溫度為220°C。將聚合物溶融物進料至圓形模具。 该模具溫度設定在200°C,聚合物炼融物藉由吹入空氣冷 卻。經擠壓的前驅物具有厚度9·5微米及雙折射率〇〇16〇。 使用2.5英吋擠壓器擠壓HDPE樹脂。擠壓器熔融溫度為210 °C。將聚合物熔融物進料至圓形模具。該模具溫度設定在 2051,聚合物熔融物藉由空氣冷卻。經擠壓的前驅物具有 厚度9.5微米及雙折射率〇·〇330。一起積層二層pp層及一層 PE層以形成PP/PE/PP三層薄膜。積層滾筒溫度為15(rc。然 後,在125°C下退火所積層的三層薄膜2分鐘。然後,在室 溫下冷拉伸該經退火的薄膜至20%,然後在113°C下熱拉伸 至160%及鬆弛至35%。經MD拉伸的薄膜具有厚度25.4微米 及孔隙度39%。然後,在115。(:下TD拉伸該經MD拉伸之薄 膜400%與MD鬆弛30%。所完成的薄膜具有厚度19.4微米及 孔隙度63%。所完成的薄膜之TD抗拉強度為350公斤/平方 公分。參見第7圖。 實施例3。使用共擠壓模具來擠壓pp樹脂及11〇!>£樹脂 以形成PP/PE/PP三層薄膜。PP之擠壓器熔融溫度為243 °C及 PE之擠壓器熔融溫度為214t。然後,將聚合物熔融物進料 至共擠壓模頭(其設定在198t)。聚合物熔融物藉由吹入空 氣冷卻。擠壓出的薄膜具有厚度35.6微米。然後,在125。(: 32 201137000 下退火經擠壓的前驅物2分鐘。然後,在室溫下冷拉伸該經 退火的薄膜至45%及在113 X:下熱拉伸至247°/。及鬆弛至 42〇/。。經MD拉伸的薄膜具有厚度2丨5微米及孔隙度29〇/〇。 然後,在115 t下TD拉伸該經MD拉伸的薄膜450%與 50%MD鬆弛。所完成的薄膜具有厚度16 3微米及孔隙度 59%。所完成的薄膜iTD抗拉強度為57〇公斤/平方公分。 實施例4。共擠壓PP樹脂及HDPE樹脂,及使用與實施 例3相同的方法進行MD拉伸。然後,在115°C下TD拉伸經 MD拉伸的薄膜800%與65%MD鬆弛。所完成的薄膜具有厚 度17_2微米及孔隙度49%。所完成的薄膜之TE)抗拉強度為 730公斤/平方公分。參見第8圖。 實施例5。使用共擠壓模具擠壓pp樹脂及PB樹脂。pp 之擠壓器熔融溫度為230°C及PB之擠壓器熔融物為206°C。 然後,將聚合物熔融物進料至共擠壓模頭(其設定在21〇 °C)。然後’聚合物溶融物藉由吹入空氣冷卻。擠壓出的薄 膜具有厚度36.0微米。然後,在1〇5°C下退火該擠壓出的前 驅物2分鐘。然後,冷拉伸該經退火的薄膜至20%,然後, 在l〇5°C下熱拉伸至155%,然後鬆弛至35%。然後,在110 °C下TD拉伸該經MD拉伸的薄膜140%與20%MD鬆弛。所完 成的薄膜具有厚度14.8微米及孔隙度4 2 %。所完成的薄膜之 TD抗拉強度為286公斤/平方公分。 實施例6。使用共擠壓模具擠壓P P樹脂及P E樹脂以形成 PP/PE/PP三層薄膜。PP之擠壓器熔融溫度為245°C及PE之擠 壓器熔融溫度為230°C。然後,將聚合物熔融物進料至共擠 33 201137000 壓模頭(其設定在225 °C )。聚合物溶融物藉由吹入空氣冷 卻。該擠壓出的薄膜具有厚度27微米及雙折射率0.0120。 然後’在115 C下退火該擠壓出的前驅物2分鐘。然後,在 室溫下冷拉伸該經退火的薄膜至22%及在120。(:下熱拉伸 至254%及鬆弛至25°/。(總機器方向拉伸=251 %)。該經MD拉 伸的薄膜具有厚度15微米及孔隙度16%。然後,在130T:下 TD拉伸該經MD拉伸的薄膜260%與50%MD鬆弛,接著在 130°C下於每個方向上同步MD及TD拉伸50%及216%,及最 後在溫度13(TC下讓該薄膜快速保持在MD(100%)中及允許 在TD中鬆弛57.6°/。。所完成的薄膜具有厚度7.6微米及孔隙 度52%。所完成的薄膜之Td抗拉強度為513公斤/平方公分。 實施例7。使用共擠壓模頭來擠壓聚丙烯及聚乙烯樹脂 以形成PP/PE/PP三層薄膜。pp之擠壓器熔融溫度為222»c及 PE之擠壓器熔融溫度為225 C。然後’將聚合物溶融物進料 至共擠壓模頭(其設定在215 °C)。聚合物熔融物藉由吹入空 氣冷卻。該擠壓出的薄膜具有厚度4〇微米及雙折射率 0.0110。然後,在l〇5°C下退火該擠壓出的前驅物2分鐘。然 後,在室溫下冷拉伸該退火的薄膜至36%及在1〇9它下熱拉 伸至264%及鬆弛至29%(總機器方向拉伸=271%)。經MD拉 伸的薄膜具有厚度23.8微米及孔隙度29.6%。然後,在110 C下TD拉伸該經MD拉伸的薄膜1034%與75%MD鬆弛。所 完成的薄膜具有厚度16.8微米及孔隙度46%。所完成的薄膜 之TD抗拉強度為1〇37公斤/平方公分。 在下列表I中’總整理前述實施例之結果並與二種可商 34 201137000 業購得的乾式拉伸薄膜比較:ComA)西爾加得@2400(單層 聚丙烯薄膜),參見第2圖;及Com B)西爾加得®2300(三層 聚丙烯/聚乙烯/聚丙烯),參見第3圖。GmbH) or a variety of flat membranes sold or sold by Sylvain LLC and Daramic LLC (both in Charlotte, North Ten Carolina) have been used in filtration or separation processes. More specifically, these flat films have been used to separate solid particles from liquids, gases and liquids, particles and gases, and the like. Although some of the porous materials dedicated to filtration or separation processes have achieved commercial success, improvements have been made to porous materials so that they can be used in a wide range of applications, for better performance for special purposes, or the like. Have requests. The use of porous materials to selectively pass moisture (moisture vapor) and [5 and to block liquid water, liquid desiccants or other aqueous solutions is known. In this liquid filling system, the temperature and humidity can be controlled by a salt solution (forming a dehumidifying agent) that absorbs or emits water vapor. The use of porous materials to selectively pass water vapor (heat and moisture) and barrier gases (discharge and introduction of gases) can be known to be linked to energy recovery ventilation (ERV), where heat and moisture are present in the ventilation system. Exchange between compensation and exhaust air. The use of porous materials to selectively pass pure or fresh water and resistive salts or brine is also known to be linked to reverse osmosis desalting, wherein porous materials such as reverse osmosis buffers (RO filters) allow pure water (fresh water) to This passes but curbs the salt. As the brine is under high pressure, fresh water is forced through the porous material and forms a fresh water stream. The use of porous materials to selectively pass water vapor or moisture (moisture vapor) and barrier liquid brines is also known to be desalted in connection with vapors, wherein the porous material 201137000 material (such as a high charge density film) can block brine but pass salt-free Water vapor to separate brine from fresh water. As the brine is at a high temperature, fresh water vapor is evolved from the brine which can drift through the porous material and condense to form a fresh water stream. The use of porous materials to selectively pass gases or moisture (moisture vapor) and barrier liquids (such as water) is known to be linked to fuel cells, such as hydrogen fuel cells with proton exchange membranes (PEM), which must be kept moist. . Waste water in the form of moist steam can pass through the porous material and can be collected in or discharged from the wastewater containment compartment. Although some of these porous materials for selectively passing gases or moisture (moisture vapor) and blocking liquid water or brine may have gained commercial success (such as RO films sold by Dow Chemical, or by WL) The expanded polytetrafluoroethylene (ePTFE) film sold by Gore BHA and its bismuth) are still suitable for improving porous materials so that they can be used in a wide range of applications, and can be better for special purposes or There are needs for similar purposes. SUMMARY OF THE INVENTION Summary of the Invention According to at least selected porous materials, films, layers, films, laminates, coextrudates or composite embodiments of the present invention, certain modified regions may include pore shapes other than slits, circles Shaped holes, increased lateral tensile strength, balance of MD and TD physical properties, high performance associated with, for example, moisture transfer and head pressure, reduced Gurley, high porosity with balanced physical properties, and pore structure ( Consistency of pore size and pore size distribution, improved durability, composite of these films with other porous materials, 201137000; composites or laminates of such films, films or layers with porous nonwovens; coated films, Coextruded film, laminated film; film with desired moisture transport (or moisture vapor transport), head performance and physical strength properties; no practical loss of desired film characteristics in more physical and harsh environments Combination of film moisture transport performance and macroscopic physical properties, hydrophobicity, high permeability, chemical and mechanical stability With high tensile strength, combinations thereof, and / or similar properties. Although some films made by the dry stretching process have achieved excellent commercial success, they have been modified, modified or improved to at least their selected physical properties so that they can be used in a wide range of applications for special purposes. There is a need for better performance and/or similar purposes. According to at least selected specific examples of the dry drawing process film of the present invention, certain modified regions may include a hole shape other than a slit, a circular hole, an increase in the transverse direction tensile strength, a balance between MD and TD physical properties, and a hole. Consistency of structure (including pore size and pore size distribution), high performance associated with, for example, moisture transfer (or moisture vapor transport) and head pressure, reduced Gore, high porosity with balanced physical properties, improved durability, a composite of the film with other porous materials, a composite or laminate of the film and porous nonwoven, a coated film, a coextruded film, a laminated film; having desired moisture transport, head properties and physical strength properties The film; useful in more physical and harsh environments without loss of desired film characteristics, combination of film moisture transport properties and macrophysical properties, combinations thereof, and/or the like. The porous membrane of the present invention may preferably be a porous membrane, film, layer or composite of a dry stretching process, according to at least selected preferred preferred embodiments, 201137000 八八水!1生同透性,化学和Mechanical stability, high tensile strength, degree and combination. Some of the properties seem to make it ideal for the following applications: 4 membranes or membranes each of which (10) air filtration) may include selective passage of moisture vapor (or its body) and 卩*Mt liquid water (or other liquid): 1. HVAC: a. Liquid Dehumidification (LD) Air Conditioning (Temperature and Humidity Control): In a film-based LD system, temperature and humidity can be controlled by a salt solution that absorbs or releases moisture vapor through the porous membrane. In this system, heat is the driving force (non-pressure, as in most air conditioning systems). To allow the n to be 'requires a film that is hydrophobic and easily allows moisture vapor to pass (to prevent liquid). b. Water-based air conditioning (temperature and humidity control): The evaporative cooling system or cooling water system operates on a slightly different principle than the LD system, but it will use the same basic properties of the film. C_Energy Recovery Ventilation (ERV): The simplest HVAC application, using a far film as a key component in the exchange of heat and moisture between the compensation and exhaust air. 2. Desalination: Vapor desalination uses the same film properties as HVAC. Because the membrane blocks liquid brine but allows water vapor to pass through, a system for separating brine and fresh water by membrane can be constructed. As the brine is at a higher temperature, fresh water vapor is evolved from the brine, which drifts through the membrane and condenses to form a fresh water stream. 3. Fuel cells: In fuel cells, the proton exchange membrane (PEM) must be kept moist. This can be achieved with the use of a film-based wet 201137000 run unit. 4_Liquid and/or air filtration: In these specific examples, the porous membrane acts as a simple filter. When liquid, vapor, gas or air passes through the thin material, particles that are too large to pass through the pores are blocked at the surface of the film. Particularly in the case of liquid and air filtration, the unique pore structure of at least selected embodiments of the present invention can provide specific examples, materials or films having certain specific benefits, such as durability, high efficiency, narrow pore size. Distribution and consistent flow rate benefits. According to the at least selected porous material or porous film of the present invention, at least the selected porous single layer polypropylene (single layer pp) film (10) has good MD and TD physical properties, and is also a high performance film ( Such as by moisture transfer and head performance measurement). This selected single layer pp film can also have high porosity (> 60%), but still maintains balanced physical properties (when compared to more conventional films). Similarly, this single layer of choice? 1> The film or film can be produced by laminating or laminating one or both of the porous polypropylene (PP) nonwoven material (woven pp). The resulting composite, film or product (single layer pp/non-woven PP) or (non-woven PP/single layer PP/non-woven PP) preferably retains excellent moisture transport and altered head performance. Likewise, the resulting composite product (single layer PP/non-woven PP) or (non-woven PP/single layer PP/non-woven PP) can have properties far exceeding the physical strength of the comparative film. Therefore, this newly produced composite product (single layer PP/non-woven PP) can have the advantage of being added, which is useful in a more physical and harsh environment without Loss of the desired film characteristics. The selected single-layer Pp film and composite 201137000 product (single layer PP; single layer Pp/non-woven PP; or non-woven pp/single layer pp/non-woven pp) have their moisture transport properties and their macroscopic properties. The combination of physical properties is unique in people. For example, 'previous films may have porosity but insufficient head pressure or performance, other films are too fragile, other films are strong but lack other properties or the like, although at least selected specific examples of the invention may have, for example, The required porosity, moisture transport 'head pressure, strong production and similar properties. According to at least selected porous material or porous film embodiments of the present invention, at least the selected porous multilayer polypropylene (multilayer PP) film has excellent balance of physical properties of MD and TD' while also being a high performance film (eg, by moisture) Transfer and head performance measurement). This selected multilayer PP film can also have a high porosity (>6 〇 /.), but still maintain balanced physical properties (when compared to more conventional films). Similarly, the selected multilayer PP film or film can be produced by laminating or laminating one or both of the porous polypropylene (PP) nonwoven material (non-woven PP). The resulting composite, film or product (multilayer pp/non-woven PP) or (non-woven PP/multilayer PP/non-woven PP) preferably retains excellent moisture transport and altered head performance. Likewise, the resulting composite product (multilayer PP/non-woven PP) or (non-woven PP/multilayer PP/non-woven PP) can have properties far exceeding the physical strength of the comparative film. Therefore, this newly produced composite product (multilayer PP/non-woven PP) or (non-woven PP/multilayer PP/non-woven PP) can have the advantage of being added, which is useful in a more physical and harsh environment without loss of height. The desired film characteristics. The combination of these selected multilayer PP films and composite products (multilayer PP; multi-layer PP/non-woven PP; or non-woven PP/multi-layer PP/non-woven PP) in combination with their film moisture transport properties and their macroscopic physical properties On the exclusive 201137000 special. For example, previous remedies may have porosity but a sufficient head pressure or performance, others (10) are too fragile, other films are strong but lack other properties or the like. However, at least selected specific examples of the invention may have Desirable porosity, moisture transfer, head pressure, strength and similar properties. According to at least selected porous material or porous film embodiments of the present invention, at least the selected porous single layer polyethylene (single layer PE) film has excellent balance of MD and TD physical properties, and is also - high performance (four) (eg By moisture transfer and head performance measurement) <5 This selected single layer 1> film may also have a high porosity (> 6 G%), but still maintain a balanced physical f (when compared to more conventional films). Similarly, the selected monolayer film or film may be on its or both sides with a porous polyethylene (PE) nonwoven (non-woven pE) or porous polypropylene (PP) nonwoven material (not woven) PP) manufactured by merging or laminating. The resulting composite, film or product (single layer PE/non-woven PE) or (non-woven pE/single layer PE/non-woven PE) preferably retains excellent moisture transport and altered good head performance. Similarly, the resulting composite product (single layer pE/non-woven pE) or (non-woven PE/single layer PE/non-woven PE) can have far more physical properties than the comparative (four) film. Therefore, this new generation The composite product (single layer pE/non-woven pE) or (non-woven PE/single layer PE/non-woven PE) can have the advantage of being added, which is useful in a more physical and severe environment without loss. Film characteristics. The selected single-layer PE film and composite products (single layer pE; single layer pE/non-woven PE; or non-woven PE/single layer PE/non-woven PE) have their moisture transport properties and their macroscopic physics. The combination of properties is unique. For example, previous films may have porosity but insufficient head pressure or performance, other films are too fragile, other films are strong but lack other properties or the like, although at least selected specific examples of the invention may be There are, for example, desirable porosity, moisture transfer, head pressure, strength, and the like. According to at least selected porous material or porous film embodiments of the present invention, at least the selected porous multilayer polyethylene (multilayer PE) film has excellent balance of MD and TD physical properties, and is also a high performance film (eg, by Moisture transfer and head performance measurement). The selected multilayer 1 > film can also have a high porosity (> 60%) but still maintains a balanced physical property (when compared to more conventional films). Similarly, the selected multilayer PE film or film may be coated on one or both sides with a porous polyethylene (PE) nonwoven material (non-woven PE) or a porous polypropylene (PP) nonwoven material (non-woven PP). Made by combining or layering. The resulting composite, film or product (multilayer PE/non-woven PE) or (non-woven PE/multilayer PE/non-woven PE) preferably retains excellent moisture transport and altered head performance. Likewise, the resulting composite product (multilayer PE/non-woven PE) or (non-woven PE/multilayer PE/non-woven PE) can have physical strength properties far exceeding that of the comparative film. Therefore, this newly produced composite product (multilayer PE/non-woven PE) or (non-woven PE/multilayer PE/non-woven PE) can have the advantage of being added, which is useful in a more physical and harsh environment without loss of height. The desired film characteristics. The combination of these selected multilayer PE films and composite products (multilayer PE; multi-layer PE/non-woven PE; or non-woven PE/multi-layer PE/non-woven PE) in combination with its moisture transport properties and its macroscopic physical properties Unique on the ground. For example, 'previous films may have porosity but insufficient head pressure or performance, other films are too fragile, other films are strong but lack other properties or the like, although at least selected specific examples of the invention may have, for example The desired pores 13 201137000 degrees, moisture transfer, head pressure, strength and similar properties. At least selected porous single layer polymeric film (e.g., a single layer (which may have one or more layers) of a polyolefin (PO) film, such as polypropylene (pp), in accordance with at least selected porous material or porous film embodiments of the present invention. And/or polyethylene (PE) (including PE, PP or PE+PP blends) single-layer film) has excellent balance of md and TD physical properties, and is also a high performance film (eg by moisture transport ( Or moisture vapor transmission) and head performance measurement). The selected monolayer p〇 film may also have a germanium porosity (> 60°/.) but still maintain a balanced physical property (when compared to more conventional films). Similarly, the selected single-layer PO film or film may be on one or both sides with a porous nonwoven material (such as a non-woven polymer material 'for example, a PO non-woven material (such as porous polyethylene (PE) not woven) The material (non-woven PE) and/or porous polypropylene (PP) nonwoven material (non-woven pp) (including PE, PP or PE+PP blend))) are produced by lamination or lamination. The resulting composite, film or product (single layer PO/non-woven PO) or (non-woven PO/single layer PO/non-woven PO) preferably retains excellent moisture transport (or moisture vapor transport) and good modification Head performance. Likewise, the resulting composite product (single layer PO/non-woven PO) or (non-woven p0/monolayer P〇/non-woven PO) can have properties far exceeding the physical strength of the comparative film. Therefore, 'this newly produced composite product (single layer p〇/non-woven p〇) or (non-woven P〇/single layer P〇/non-woven P〇) can have the advantage of being added, which is more physically and severely It is useful in the environment without loss of highly desirable film characteristics. The selected single-layer p◦ film and composite products (single layer P0; single layer PO/non-woven PO; or non-woven PO/single layer PO/non-woven PO) have good moisture transport properties and their macroscopic properties. The combination of physical properties is unique in combination. For example, a prior film may have a porosity but insufficient head pressure or property 201137000, other films are too fragile, other films are strong but lack other properties or the like, although at least selected specific examples of the invention may have For example, desired porosity, moisture transport, moisture vapor transport, head pressure, strength, and the like. At least selected porous multilayer polymeric films (eg, multilayer (two or more layers) polyolefin (PO) films, such as polypropylene (PP), and at least selected porous material or porous film embodiments in accordance with the present invention. / or polyethylene (PE) (including PE, PP or PE + PP blend) multilayer film) has excellent MD and TD physical properties balance, but also a high performance film (such as by moisture transport (or moisture vapor) Transfer) and head performance measurement). The selected multilayer PO film can also have a high porosity (> 60%), but still maintain balanced physical properties (when compared to more conventional films). Similarly, the selected multilayer PO film or film may be on one or both sides with a porous PO nonwoven material (such as a porous polyethylene (PE) nonwoven material (non-woven PE) and/or a porous polypropylene (PP). ) Non-woven materials (non-woven PP) are manufactured by combining or laminating. The resulting composite, film or product (multilayer PO/non-woven PO) or (non-woven PO/multilayer PO/non-woven PO) preferably retains excellent moisture transport and altered good head performance. Similarly, the composite product (multilayer PO/non-woven PO) or (non-woven P/multilayer P〇/non-woven PO) produced by this can have physical strength properties far exceeding that of the comparative film. Therefore, this newly produced composite product (multilayer PO/non-woven PO) or (non-woven PO/multilayer PO/non-woven PO) can have the advantage of being added, which is useful in a more physical and harsh environment without loss of height. The desired film characteristics. These selected multi-layer PO films and composite products (multilayer PO; multi-layer p〇/non-woven PO; or non-woven PO/multi-layer PO/non-woven PO) in their film moisture transport properties and their macroscopic materials 15 201137000 The combination of properties is unique. For example, previous films may have porosity but insufficient head pressure or performance, other films are too brittle, other films are strong but lack other properties or similar events, but at least selected examples The invention may have, for example, the desired porosity, moisture transport, head pressure, strength, and the like. According to at least one selected porous material or porous film embodiment of the present invention, the hole (opening) has the following hole depth ratio (according to the hole opening in the machine direction (MD) (length) and the transverse machine direction (TD) ( The physical size of the width, by measuring one or more of the SEMs, for example, on the surface (upper or front (A side)) of the selected film or composite (eg, 'single, second or triple film') Holes (several holes are preferred to confirm the average)): Typical: MD/TD depth ratio is better in the range 0.75 to 1.50: MD/TD depth ratio is best in the range 0.75 to 1.25: MD/TD depth The ratio is in the range of 0.85 to 1.25. According to at least the selected porous material or porous film embodiment of the present invention, if the MD/TD hole depth ratio is 1.0, the three-dimensional or 3D hole ball diameter factor or ratio (MD/TD/ND) range may be :1. 〇 to 8_〇 or larger; may preferably be 1.0 to 2_5; and most preferably 1.0 to 2·〇 or less (according to the opening of the hole in the machine direction (MD) (length), lateral Physical dimension in machine direction (TD) (width) and thickness direction or cross section (ND) (thickness); for example, one of SEMs measured on the upper or front surface (A side) or the lower or back surface (B side) Or more than 16 201137000 holes MD and TD (several holes are preferred to confirm the average), and measure one of the SEMs in section, depth or height (C side) (length or width section or both) Or ND of multiple holes (several holes are preferred to confirm the average) (when it is difficult to measure the ND, MD, and TD dimensions of the same hole, the ND size may be a hole different from the MD and TD sizes)). According to at least selected porous material or porous film embodiments of the present invention, the holes (openings) have the following hole depth ratios (in the machine direction (MD) (length) and transverse machine direction (TD) (width) of the hole opening Based on the physical dimensions, based on the measurement of the holes in the SEMs above or in front of the selected single and triple film (A side): machine direction MD (length) and lateral direction TD (width) Typical values for the depth ratio range: The MD/TD depth ratio is in the range of 0.75 to 1.50. According to at least selected porous material or porous membrane embodiments of the present invention, the holes (openings) have the following three-dimensional or 3D hole sphericity factor or ratio (with hole opening in machine direction (MD) (length), transverse machine Based on the physical dimensions of the direction (TD) (width) and the thickness direction or section (ND) (thickness); for example, measuring the selected film, layer or composite (eg 'selected single and triple film One or more holes in the SEMs of the top or front surface (A side), the lower or back surface (B side), and the section, depth or height (C side) (length or width section or both) Several holes are preferred to confirm the average) (When it is difficult to measure the ND, MD and TD dimensions of the same hole, the ND size can be a hole different from the MD and TD dimensions): For example: 17 201137000 Typical: MD/TD The depth ratio is in the range of 0.75 to 1.50. The MD/ND size ratio is in the range of 0.50 to 7.50. The TD/ND size ratio is preferably in the range of 0.50 to 5.00: The MD/TD depth ratio is in the range of 0.75 to 1.25. The TD/ND size ratio in the range of 1.0 to 2.5 is in the range 1. Optimum within 0 to 2.5: The MD/TD depth ratio is in the range of 0.85 to 1.25. The MD/ND size ratio is in the range of 1.0 to 2.0. The TD/ND size ratio is in the range of 1.0 to 2.0. At least the selected porous according to the present invention. In the material or porous film embodiment, the holes (openings) have the following hole sphericity factors or ratios (in terms of machine direction (MD) (length), transverse machine direction (TD) (width), and thickness direction according to the opening of the holes) Or physical dimensions in section (ND) (thickness) to measure the length and cross section (C side) of the SEMs of the holes above or in front of the selected single and triple film (A side): Machine Typical values for the ball diameter factor or ratio range of direction MD (length), lateral direction TD (width), and thickness direction ND (vertical height): MD/TD depth ratio in the range of 0.75 to 1.50 MD/ND size ratio in the range The TD/ND size ratio in the range of 0.50 to 7.50 is in the range of 0.50 to 5.00. According to at least selected specific examples of the present invention, the microporous film and its substantially circular pores are produced by the dry stretching method 18 201137000, and Machine direction tensile strength The ratio of the tensile strength in the direction is in the range of 0.5 to 6.0, preferably 0.5 to 5.0. The method of producing the aforementioned microporous film comprises the steps of extruding a polymer into a nonporous precursor, and biaxial stretching. The non-porous precursor comprising machine direction stretching and transverse direction stretching, the transverse direction stretching comprising synchronously controlled machine direction relaxation. According to at least selected specific examples of the invention, by The modified dry stretching process produces a porous membrane having substantially circular pores, a ratio of machine direction tensile strength to transverse tensile strength in the range of 0.5 to 6.0, and a low gloss (as with prior dry) Stretched film comparisons) have larger and more consistent average flow pore sizes (as compared to previous dry stretched films), or lower Gorey and larger and more consistent average flow pore sizes. While some films made by conventional dry stretching methods have achieved excellent commercial success, at least selected physical properties are provided that are modified, modified or improved in accordance with at least selected specific examples of the present invention. , so that they can be used in a wide range of applications, can be better for special purposes and / or the like. While at least some air cleaners have achieved commercial success, in accordance with at least selected specific examples of the present invention, there are provided improved, modified or enhanced filter media so that they can be used in a wide range of filtration or separation applications. It can have a good performance for a special purpose and / or its like. While at least some of the flat porous materials used in the filtration or separation process have achieved commercial success, in accordance with at least selected specific examples of the present invention, there are provided improved, modified or enhanced porous materials so that they can be used at 19 2011 37000 Wide range of applications, good performance for special purposes and / or similar purposes. Although some of the porous materials used to selectively pass gas or moisture (moisture vapor) and block liquid water or brine have achieved commercial success (such as RO film sold by Dow Chemical, ePTFE sold by W丄 Gower BHA) Films and others, according to at least selected specific examples of the invention, there are provided improved, modified or enhanced porous materials so that they can be used in a wide range of applications, have better performance for special purposes and / or its similar purpose. According to at least selected embodiments of the present invention, the air cleaner 包括 comprises at least one sheet of a folded porous membrane (such as a microporous membrane). BRIEF DESCRIPTION OF THE DRAWINGS In order to clarify the various aspects or specific examples of the present invention, the present invention is shown in the drawings as a typical form; however, it is understood that the invention is not limited to such specific examples, precise arrangements or tool. Figure 1 is a photograph of a single layer of siggaide® (SEM surface photomicrograph), which is a conventional dry stretch type polypropylene battery separator. Fig. 2 is a photograph of a dry stretch type film (single layer film) of the prior art. Fig. 3 is a photograph of a dry stretch type film (multilayer film, several layers laminated and then stretched) of the prior art. Figure 4 is a photograph of a single layer of siggaide® (SEM surface photomicrograph), which is a wet process type polyethylene battery separator. Fig. 5A is a photograph of a particle-stretched film (SEM surface photomicrograph). Figure 5B is a photograph of a particle-stretched film (SEM cross-section photomicrograph). 20 201137000 Fig. 6 is a photograph (Sem surface photomicrograph) of a film (single layer film, biaxial orientation method) according to a specific example of the present invention. Fig. 7 is a photograph (saEM surface micrograph) of a film (multilayer film, a plurality of layers and then a stretched 'biaxial orientation method) according to another embodiment of the present invention. Fig. 8 is a photograph (s running surface photomicrograph) of a film (multilayer film' multi-layer co-extrusion and then stretching, biaxial orientation method) according to still another specific example of the present invention. Fig. 9 is a schematic representation of a typical TD stretching method according to at least one specific example of the method for producing a biaxially oriented film of the present invention. ^ Figure 10 is a photograph of a conventional Sirga 825 〇〇 film (PP monolayer, dry stretching method) at 20,000X magnification (SEM surface micrograph). Figure 11 is a photograph of the film of Figure 10 at 5 〇〇〇χ magnification (SEM surface photomicrograph). Figure 12 is a photograph of the film of Figures 10 and 11 at 2〇, 〇〇〇χ magnification (SEM cross-section photomicrograph). 13 and 14 are respective photographs of a film sample ΡΡ (ΡΡ single layer, collapsed bubble, biaxial orientation method) according to another film embodiment of the present invention (sem surface Α at 20,000 Χ and 5,000 Χ magnification) (upper) photomicrograph). Figures 15 and 16 are separate photographs of film sample B of Figures 13 and 14 (SEM surface B (bottom) photomicrograph at 20,000X and 5,000X magnification). Figures 17 and 18 are photographs of film samples B of Figures 13 through 16 (SEM cross-section micrographs at 20,000X and 5,000X magnification). Figures 19, 20 and 21 are still another film or composite 21 according to the present invention. Specific examples of the 2011 37000 material (PP single layer [sample B] / non-woven pp, laminated [heat + pressure D film sample C respective photos) (SEM surface Α (top) photomicrograph at 20,000X, 5,000X and 1, 〇〇〇χ magnification). Figures 22, 23 and 24 are separate photos of film sample C of sheets 19 to 21 ( SEM surface B (bottom) photomicrographs at 20,000 Χ, 5, ΟΟΟΧΑ1〇〇〇χ magnification. Figures 25 and 26 are individual photographs of film samples C of Figures 19 to 24 (at 20,000X and 5) SEM cross-section photomicrograph at 0〇〇χ magnification.) Figure 2-7 is a photograph of a film sample C (inverted) with a non-woven pp layer on the top (SEM cross section at 615X magnification) Photomicrograph). Figure 27A is a photograph of a portion of a single layer pp layer of film sample C of Figure 27 (SEM cross-section photomicrograph at 3,420X magnification) (note the rectangle in Figure 27). 28 and 29 are the respective phases of the film sample A (single layer PP, non-collapsed bubble, biaxial orientation method) according to still another specific film example of the present invention. Sheets (SEM surface A (upper) photomicrographs at 20,000X and 5,000X magnification). Figures 30 and 31 are separate photographs of film sample A of sheets 28 and 29 (at 20,000X and 5,000X magnifications) SEM surface B (bottom) photomicrograph). Figures 32, 33 and 34 are film or composite sample G according to another embodiment of the invention (PP monolayer, non-collapsed bubble, biaxial orientation method [ Sample A]/non-woven PP, laminated [hot + pressure]) separate photographs (micrographs of SEM surface Α (top) at 20,000 Χ, 5,000 Χ and 1, 〇〇〇Χ magnification). Figures 36 and 37 are separate photographs of Film Sample G from Figures 32 to 34. 22 201137000 (2SENt Surface B (bottom) photomicrograph at 20,000 Χ, 5,000 乂 and 1,000乂). Figures 38 and 39 Each photo of the film sample G of Figures 32 to 37 (SEM cross-section photomicrograph at 20,000X and 3,420X magnification). Figure 40 shows that the 3rd to 3rd figure has a non-woven p P at the top. Photograph of layer film G (inverted) of the layer (SEM cross-section micrograph at 615X magnification). Figure 40A is a phase of a portion of the single layer PP layer of film sample G of Figure 40. Sheet (SEM cross-section micrograph at 3,420X magnification) (note the rectangle in Figure 4). Figures 41 and 42 are film samples E (PP monolayer) according to still another film example of the present invention. Individual photographs of 'collapsed bubbles, biaxial orientation method' (SEM surface A (upper) photomicrograph at 20,000X and 5,000X magnification). Figures 43 and 44 are separate photographs of Film Sample E of Figures 41 and 42 (SEM surface B (bottom) photomicrograph at 20,000X and 5,000X magnification). Figures 45 and 46 are separate photographs of film sample E of Figures 41 to 44 (SEM cross-section micrographs at 20,000X and 5,000X magnification). 4th and 7th are respective photographs of film sample F (single layer PP 'non-collapsed bubble, biaxial orientation method) according to another film embodiment of the present invention (at 20,000X and 5,000X magnification) SEM Surface A (upper) photomicrograph) 〇 49 and 50 are separate photographs of film sample F of Figures 47 and 48 (SEM surface B (bottom) photomicrograph at 20,000X and 5,000X magnification) ). Figures 51 and 52 are still further photographs of another film embodiment of the present invention 23 film 3 of 201137000 (co-extruded PP/PE/PP three layers, collapsed bubbles, biaxial orientation method) (Sem surface A (upper) photomicrograph at 20,000X and 5,000X magnification). Figures 53 and 54 are separate photographs of Film Sample D of Figures 51 and 52 (SEM surface B (bottom) photomicrograph at 20,000X and 5, 〇〇〇χ magnification). C. Embodiment 3 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT According to at least selected specific examples of the present invention, a microporous film is obtained by a preferably modified dry stretching method (biaxial orientation method) having substantially The ratio of the circular hole and machine direction tensile strength to the transverse direction tensile strength is in the range of 0.5 to 6.0, preferably 0.5 to 5.0, most preferably 〇5 to 4 Torr. A porous membrane, such as a microporous membrane, is a thin, flexible, polymeric sheet, foil or film having a plurality of pores therethrough. These films may be single or multi-layer, single or multi-layer, composite, laminate or the like and may be used in a wide variety of applications including, but not limited to, mass transfer films, pressure regulators, over-ruthenium films, Medical devices, separators for electrochemical storage devices, films used in fuel cells, and/or the like. At least selected specific examples of films of the present invention are made by modified versions of the dry drawing process (also known as the Syracuse method). The present dry stretching method refers to a method of producing a self-stretching, non-porous, and soil-forming material for a hole-forming system. See, Kestin' R., Synthetic Polymer Films, Social Perspectives (Second Edition, John Willy and Songs, New York, NY' (1985), pp. 29, 297), for reference The manner is incorporated herein. The dry stretching method can be distinguished from the clear method and the particle stretching method as discussed above. 24 201137000 The at least selected film embodiment of the present invention may differ from the prior dry stretch film in at least two respects: 1} substantially circular holes; and 2) machine direction tensile strength versus transverse direction tensile strength The ratio is in the range of 〇5 to 6.0, preferably 〇·5 to 5.0, and most preferably 〇5 to 4 〇. The at least selected film embodiment of the present invention may differ from the prior dry stretch film in at least five respects: 丨) substantially circular holes; 2) the ratio of machine direction tensile strength to transverse direction tensile strength at Range 〇5 to 6.0; 3) average flow pore size in the range 〇〇25 to 〇15〇μm; sentence height gas or water permeability, and JIS Gore is in the range 〇5 to 2 〇〇 seconds; and 5) The head pressure is above 14 psi. In view of the shape of the holes, the holes are preferably characterized by having a substantially circular shape. See, for example, Figures 6-8, 13-16, 19, 20, 22, 23, 28-31, 5 36 41-44, 47-50, and 51-54. This hole shape is in contrast to the previously known slit-shaped holes of the dry stretch film. See Figure U and Kay: Ting's as mentioned above. Further, the shape of the hole of the film may be characterized by a ratio of depth to length (MD) to width (TD) of the hole. In one embodiment of the present film, the depth ratio ranges from 0.75 to 1.25. This is in accordance with the county ratio of the previous dry stretch film (which is greater than 5 mm). See Table I below. Considering the ratio of the machine direction (MD) tensile strength to the transverse direction (10) tensile strength', in a specific example, the ratio is preferably 0.5 to 5_0 between 〇 5 and 6. This ratio is in contrast to the corresponding ratio of the prior art film, which is greater than that. See table j below. U.S. Patent No. M. 2,593 relates to the production of a 25 201137000 i L film by a dry stretching process which results in a film having a transverse direction resistance to machine direction tensile strength ratio of 0.12 to 1.2. Wherein the TD/MD pull ratio is obtained by at least a pull ratio of "Ha" (when the precursor is extruded). At least selected specific examples of the film may further have the following average The same size is in the range of 〇〇3 to 〇3〇μm. The porosity is in the range of 八8〇/° and/or the transverse tensile strength is greater than 250kg/平方”. The typical value of the value h and It is not intended to be limiting, and therefore should only be considered as typical of at least the specific examples selected for the 4 film. At least selected specific examples of the film may further have the following features: a pore size in the range of 〇 3 〇 to 1 〇 micrometer; and an average depth ratio in the range of about 1_0 to M0. The foregoing values are typical values and are not intended to be limiting, and therefore should be considered as typical of at least selected specific examples of the film. At least selected possible preferred embodiments of the film may further have the following features: an average water hole (called a apore) size in the range of 〇〇5 to 〇5 〇 microns; a porosity in the range of 40-90%; / or transverse tensile strength greater than 250 kg / cm ^ 2 . The foregoing values are typical values and are not intended to be limiting, and therefore should be considered only as typical of at least selected possible preferred embodiments of the film. Preferred polymers for use in the film may be characterized as a thermoplastic polymer. These polymers may further have characteristics such as semi-crystalline polymers. In one embodiment, the semi-crystalline polymer can be a polymer having a crystallinity in the range of 20% to 80%. These polymers may be selected from the group consisting of polyolefins, fluorocarbons, polyamines, polyesters, 26 201137000 polyacetals (or polyacetals), polysulfides, Polyvinyl alcohols, copolymers thereof, and combinations thereof. The polyolefins may preferably and include polyethylenes (LDPE, LLDPE, HDPE, UHMWPE), polypropylene, polybutene, polydecene, copolymers thereof, and blends thereof. The fluorocarbons may include polytetrafluoroethylene (PTFE), polygas trifluoroethylene (PCTFE), fluorinated ethylene propylene (FEP), ethylene chlorodifluoroethylene (ECTFE), ethylene tetrafluoroethylene (ETFE), poly Vinylidene fluoride (PVDF), polyvinyl fluoride (pvF), perfluoroalkoxy (pFA) resins, copolymers thereof, and blends thereof. Polyamines can include, but are not limited to, polyamidamine 6, polyamido 6/6, nylon 10/10, polydecylamine (ppA), copolymers thereof, and blends thereof. The polyesters may include polyester terephthalate (pET), polybutylene terephthalate (PBT), poly(p-capric acid 1,4_cyclohexylene dimethylene methyl ester (pCT), and liquid crystal polymer (LCP). ). Polysulfides include, but are not limited to, polyphenylene sulfide, copolymers thereof, and blends thereof. Polyvinyl alcohols include, but are not limited to, ethylene vinyl alcohol, copolymers thereof, and blends thereof. At least some specific examples of the film may include other ingredients as are well known. For example, 'those ingredients may include: fillers (inert particulate materials typically used to reduce film cost, but otherwise have no significant effect on the manufacture of the film), antistatic agents, anti-caking agents, antioxidants, lubricants ( Making it easy to manufacture), colorants and/or the like. A variety of materials can be added to the polymer to modify or enhance film properties. Such materials include, but are not limited to, (丨) polyene or polyolefin oligomers having a melting temperature below 13 〇〇c; (2) mineral fillers including, but not limited to: calcium carbonate, Zinc oxide, diatomaceous earth, talc, kaolin, synthetic cerium oxide, mica 'clay' boron nitride, cerium oxide, titanium dioxide, barium sulfate, 27 201137000 aluminum hydroxide, magnesium hydroxide, and/or the like And blends thereof; (3) elastomers, including but not limited to: ethylene-propylene (EPR), ethylene-propylene-diene (EPDM), styrene-butadiene (SBR), styrene Pentadiene (SIR), ethylene norbornene (ENB), epoxy resins and polyamino phthalates, and blends thereof; (4) wetting agents, including but not limited to ethoxylates Alcohols, primary polymeric carboxylic acids, glycols (for example, polypropylene glycol and polyethylene glycols), functionalized polyolefins, etc.; (5) lubricants, for example, polyoxyxides, fluoropolymers , Kemamide®, oleic acid amide, stearylamine, erucamide, calcium stearate or other metal stearates; (6) flame retardant For example, brominated flame retardants, ammonium phosphate, ammonium hydroxide, alumina trihydrate and phosphate esters; (7) crosslinking or coupling agents; (8) polymer processing aids such as (but not limited to) A plasticizer or processing oil (eg, less than 10% by weight processing oil); and (9) any type of nucleating agent, including a beta nucleating agent for polypropylene. (However, at least the preferred film of the present invention specifically excludes any beta nucleated polypropylene (ΒΝΡΡ), as disclosed in U.S. Patent No. 6,368,742, incorporated herein by reference. A nucleating agent is a substance that causes β crystal formation in polypropylene). The film may be a single layer or a multilayer film. In view of the multilayer film, the biaxially oriented film may be a layer of the multilayer film, or the film may be the entire layer of the multilayer film. If the film is less than all of the layers of the multilayer film, the multilayer film can be formed by coating, lamination or bonding. If the film is the entire layer of the multilayer film, the multilayer film can be produced by a lamination or extrusion method such as co-extrusion. Further, the multilayer film can be made of the same material or a different material layer. 28 201137000 The film is preferably produced by a modified dry stretching process wherein the precursor film is biaxially stretched (i.e., stretched not only in the machine direction but also in the transverse machine direction). This method will be discussed in more detail below. Generally, the method used to make the aforementioned film comprises a step of extruding a non-porous (single or multi-layer) precursor and then biaxially stretching the non-porous precursor. The non-porous precursor can be selectively annealed prior to stretching. In a specific example, the biaxial stretching includes machine direction stretching and transverse direction stretching and machine direction slack for synchronous control. The machine direction stretching and the transverse direction stretching can be synchronized or successive. In one embodiment, the machine direction stretching followed by the transverse direction stretching is accompanied by a synchronous machine direction slack. This method is discussed in more detail below. Extrusion is generally known (commonly referred to as conventional dry stretching methods). The extruder can have a slot die (for a planar precursor) or a ring die (for a parison or bubble precursor). In the latter case, an expansion type bad technique can be used (for example, when the precursor is extruded, the bl〇w叩 ratio (BUR) is less than 丨.5). However, the birefringence of the non-porous precursor is not necessarily as high as in the conventional dry stretching method. For example, in having a refining fluidity index (MFI) <i. A polypropylene resin having a porosity of /... a dry film stretching method in which the birefringence of the precursor will be > 0.0130', and along with the method, the pp The birefringence of the precursor can be as low as 〇·0100 1 In another embodiment, the poly-binder has a > 35% porosity; the birefringence of the «'(4) drive will be >qg liu; With this method, the birefringence of the 忒PE can be as low as the imitation. In one embodiment, annealing (selectivity) may be performed at a temperature of iron (the Tm of which is the melting temperature of the polymer in 29 201137000); and in another embodiment, at a temperature of KTm_5 〇 °C to Tm-15 °C. Certain materials (e.g., those having high crystallinity after extrusion, such as polybutene) may not require annealing. Additional optional steps can be performed such as, but not limited to, heat setting, extraction, removal, winding, slitting, and/or the like. The machine direction stretching can be carried out by cold stretching or hot stretching or both, and in a single step or in multiple steps. In a specific example, <Tm-50 °C for cold stretching; and in another embodiment, <Tm-80 ° C. In a specific example, <Tm_1〇〇c is subjected to hot stretching. In one embodiment, the total machine direction stretch can be in the range of 50-500%; and in another embodiment, in the range 1〇〇3〇〇%. The precursor can be shrunk in the transverse direction (conventional) during stretching in the machine direction. Lateral direction stretching includes machine direction slack for synchronous control. This means that when the precursor is stretched in the transverse direction (TD stretching), the synchronization allows the crucible to shrink (i.e., relax) in the machine direction in a controlled manner (MD relaxation). The transverse direction stretching can be carried out in a cold step, a thermal step, or a combination of the two. In one embodiment, the total transverse direction stretch can range from 100 to 1200 °/. Within; and in another specific example, within the range 2〇〇 9〇〇%. In one embodiment, the controlled machine direction slack can range from 5 to 80%; and in another embodiment, within the range of 15 65%. In one embodiment, the transverse stretching can be performed in multiple steps. The precursor may or may not be allowed to contract in the machine direction during stretching in the transverse direction. In a specific example of multi-step transverse direction stretching, the first transverse side 30 201137000 step may comprise transverse stretching and controlled machine direction slack, followed by simultaneous k-direction and machine direction stretching, followed by lateral direction slack and no Stretch or loosen in the machine direction. «Hai-e-loading can be selectively heat-set (as is well known) after stretching in the machine direction and in the transverse direction. Specific examples of the film and method of the present invention are further clarified in the following non-limiting examples. Unless otherwise described, the test values (thickness, porosity, tensile strength, and depth ratio) reported in this article are measured as follows. · Thickness ASTM D374' Uses Invic Microcaps (Emvec〇 Microgage) 210-A micrometer; porosity - ASTM D-2873; tensile strength - ASTM D-882, using Instron model 4201; and depth ratio measurement, obtained from sem micrographs. The following examples were made by conventional dry stretching techniques, except as mentioned. Example 1. The polypropylene (pp) resin was extruded using a 2 · 5 inch extruder. The squeezer has a temperature of 221 C. The polymer smelt is fed to a circular mold. The mold temperature was set at 220 ° C and the polymer melt was cooled by blowing air. The extruded precursor has a thickness of 27 microns and a birefringence of 0 0120. Then, the extruded film was annealed at 150 ° C for 2 minutes. Then, the annealed film was cold drawn at room temperature to 2%, and then at 14 Torr. The underarm heat is stretched to 228% and slack to 32%. The film stretched in the machine direction (MD) had a thickness of 16.4 microns and a porosity of 25%. Then, at 14 〇. Lateral direction of the underarm (D):)) 31 201137000 The MD stretched film was stretched by 300% and the yjD was relaxed by 50%. The finished film has a thickness of 14 to 1 micron and a porosity of 37%. The finished film had a TD tensile strength of 550 kg/cm 2 . See Figure 6. Example 2. The polypropylene (PP) resin was extruded using a 2.5 inch extruder. The extruder has a smelting temperature of 220 °C. The polymer melt is fed to a circular mold. The mold temperature was set at 200 ° C and the polymer smelt was cooled by blowing air. The extruded precursor has a thickness of 9. 5 microns and a birefringence of 〇16〇. The HDPE resin was extruded using a 2.5 inch extruder. The extruder melt temperature was 210 °C. The polymer melt is fed to a circular mold. The mold temperature was set at 2051 and the polymer melt was cooled by air. The extruded precursor has a thickness of 9.5 microns and a birefringence 〇·〇330. A two-layer pp layer and a PE layer are laminated together to form a PP/PE/PP three-layer film. The stacking roll temperature was 15 (rc. Then, the laminated three-layer film was annealed at 125 ° C for 2 minutes. Then, the annealed film was cold drawn at room temperature to 20%, and then heated at 113 ° C. Stretched to 160% and relaxed to 35%. The MD stretched film had a thickness of 25.4 microns and a porosity of 39%. Then, at 115. (: TD stretched the MD stretched film 400% and MD relaxed 30%. The finished film had a thickness of 19.4 microns and a porosity of 63%. The finished film had a TD tensile strength of 350 kg/cm 2 . See Figure 7. Example 3. Extrusion using a co-extrusion die Pp resin and 11 〇! > £ resin to form a PP/PE/PP three-layer film. PP extruder melt temperature is 243 ° C and PE extruder melt temperature is 214 t. Then, the polymer melt Feed to the co-extrusion die (which was set at 198 t). The polymer melt was cooled by blowing air. The extruded film had a thickness of 35.6 microns. Then, at 125. (: 32 201137000, annealed and extruded Precursor for 2 minutes. Then, the annealed film was cold drawn at room temperature to 45% and hot drawn to 247° at 113 X: /. Relaxed to 42 〇 /. MD stretched film has a thickness of 2 丨 5 microns and a porosity of 29 〇 / 〇. Then, the MD stretched film 450% and 50 TD stretched at 115 t The %MD is relaxed. The finished film has a thickness of 16 3 μm and a porosity of 59%. The finished film iTD has a tensile strength of 57 〇 kg/cm 2 . Example 4. Co-extruded PP resin and HDPE resin, and use MD stretching was carried out in the same manner as in Example 3. Then, the MD-stretched film was stretched by 800% and 65% MD in TD at 115 ° C. The completed film had a thickness of 17 - 2 μm and a porosity of 49 %. The finished film has a TE) tensile strength of 730 kg/cm 2 . See Figure 8. Example 5. Extrusion of pp resin and PB resin using a co-extrusion die. pp extruder melt temperature is 230 ° C And the PB extruder melt was 206 ° C. Then, the polymer melt was fed to a co-extrusion die (which was set at 21 ° C). Then the 'polymer melt was cooled by blowing air. The extruded film had a thickness of 36.0 microns. Then, the extruded precursor was annealed at 1 〇 5 ° C for 2 minutes. Then, cold The annealed film was stretched to 20%, then thermally stretched to 155% at 10 ° C, and then relaxed to 35%. Then, the MD stretched film 140 was stretched at 110 ° C in TD. % is relaxed with 20% MD. The finished film has a thickness of 14.8 μm and a porosity of 42%. The finished film has a TD tensile strength of 286 kg/cm 2 . Example 6. Extrusion of PP using a co-extrusion die Resin and PE resin to form a PP/PE/PP three-layer film. The extrusion temperature of the extruder of PP was 245 ° C and the melting temperature of the extruder of PE was 230 ° C. The polymer melt was then fed to coextrusion 33 201137000 compression die (which was set at 225 °C). The polymer melt is cooled by blowing air. The extruded film had a thickness of 27 microns and a birefringence of 0.0120. The extruded precursor was then annealed at 115 C for 2 minutes. The annealed film was then cold drawn at room temperature to 22% and at 120. (: hot stretch to 254% and relaxation to 25 ° / (total machine direction stretch = 25 %). The MD stretched film has a thickness of 15 microns and a porosity of 16%. Then, at 130T: TD stretching of the MD stretched film by 260% and 50% MD relaxation, followed by simultaneous MD and TD stretching in each direction at 130 ° C for 50% and 216%, and finally at temperature 13 (TC The film was quickly held in MD (100%) and allowed to relax 57.6 ° in TD. The finished film had a thickness of 7.6 μm and a porosity of 52%. The finished film had a Td tensile strength of 513 kg/square. C. Example 7. A co-extrusion die was used to extrude polypropylene and polyethylene resin to form a PP/PE/PP three-layer film. The extruder of pp had a melting temperature of 222»c and a melt of PE extruder. The temperature was 225 C. The polymer melt was then fed to a co-extrusion die set at 215 ° C. The polymer melt was cooled by blowing air. The extruded film had a thickness of 4 〇. Micron and birefringence of 0.0110. The extruded precursor was then annealed at 1 〇 5 ° C for 2 minutes. Then, the annealed film was cold drawn at room temperature to 36%. It was hot stretched to 264% and relaxed to 29% at 1〇9 (total machine direction stretch = 271%). The MD stretched film had a thickness of 23.8 microns and a porosity of 29.6%. Then, at 110 C The TD-stretched MD-stretched film was relaxed by 1034% and 75% MD. The finished film had a thickness of 16.8 μm and a porosity of 46%. The finished film had a TD tensile strength of 1〇37 kg/cm 2 . In the following Table I, the results of the foregoing examples were summarized and compared with the dry stretched films commercially available from the two commercially available 34 201137000: ComA) Sergeka @2400 (single layer of polypropylene film), see Figure 2 And Com B) Sergeant® 2300 (three layers of polypropylene/polyethylene/polypropylene), see Figure 3.

表I TD 拉伸 厚度 (微米) 孔隙度 TD抗拉 強度 (公斤/ 平方公分) MD抗拉 強度 (公斤/ 平方公分) MD/TD 拉力比率 MD/TD 縱深比率 Com A N/A 25.4 37% 160 1700 10.6 6.10 Com B N/A 25.1 40% 146 1925 13.2 5.50 實施例1 300% 14.1 37% 550 1013 1.8 0.90 實施例2 400% 19.4 63% 350 627 1.8 0.71 實施例3 450% 16.3 59% 570 754 1.3 __ 實施例4 800% 17.2 49% 730 646 0.9 0.83 實施例5 140% 14.8 42% 286 1080 3.8 - 實施例6 418% 7.6 52% 513 1437 2.8 - 實施例7 1034% 16.8 46% 1037 618 0.6 - 根據本發明的薄膜之至少所選擇的具體實例: •對單層PP空氣過濾薄膜來說,較佳的JIS哥雷^2.5至 〜25。 •對單層PP HEPA/ULPA薄膜來說,較佳的JIS哥雷 $0.5至〜5 ° •較佳的圓孔結構及貫穿該薄膜高度一致的孔洞結 構。 根據本發明之至少所選擇的可能較佳具體實例,較佳 的薄膜具有或係下列: 藉由乾式方法製得,無加入油/溶劑。 高孔隙度:40-90%。 35 201137000 冋度疏水0 水頭壓力>14㈣/平方英寸,水侵人壓力>8_平方英 寸。 、 獨特的孔洞結構,如藉由毛細管流測孔術/水孔測試 麵來標出特徵:平均流量孔徑係藉由至少約G.04微米的 士細管流測量·’一致的圆或非隙縫型式孔洞結構,具有窄 範圍孔徑。水孔尺寸至少約〇 〇7微米。 尚氣體/空氣/水分通透性:JIS哥雷1〇至1〇〇;高流速, 如藉由毛細管流測孔術標出特徵;WVTRd,〇〇〇克/平方公 尺-天。 平衡的MD/TD強度:TD強度(>300公斤/平方公分)。 低TD收縮:TD收縮在90°C下52%。 較佳的PP聚合物:MFI=0.1至10.0,聚合物的結晶性 >45%。 較佳的PE聚合物:ΜΠ=0.01至5.0,結晶性>50%。 MFI以ASTM D-1238方法測試。 下列為八種根據本發明之所選擇的具體實例之薄膜 (A-G及Μ)、複合物或積層物及比較用樣品c〇m C之測試結 果: 36 201137000Table I TD Tensile Thickness (μm) Porosity TD Tensile Strength (kg/cm 2 ) MD Tensile Strength (kg/cm 2 ) MD/TD Tensile Ratio MD/TD Depth Ratio Com AN/A 25.4 37% 160 1700 10.6 6.10 Com BN/A 25.1 40% 146 1925 13.2 5.50 Example 1 300% 14.1 37% 550 1013 1.8 0.90 Example 2 400% 19.4 63% 350 627 1.8 0.71 Example 3 450% 16.3 59% 570 754 1.3 __ Implementation Example 4 800% 17.2 49% 730 646 0.9 0.83 Example 5 140% 14.8 42% 286 1080 3.8 - Example 6 418% 7.6 52% 513 1437 2.8 - Example 7 1034% 16.8 46% 1037 618 0.6 - According to the invention At least selected specific examples of the film: • For a single layer PP air filter film, a preferred JIS Glory ^2.5 to ~25. • For single layer PP HEPA/ULPA films, the preferred JIS GRAY is $0.5 to ~5 ° • a preferred round hole structure and a highly uniform hole structure throughout the film. In accordance with at least selected possible preferred embodiments of the present invention, preferred films have or are: The dry process is prepared without the addition of an oil/solvent. High porosity: 40-90%. 35 201137000 Hydrophobicity 0 Head pressure > 14 (four) / square inch, water intrusive pressure > 8_ square inch. Unique pore structure, such as by capillary flow perforation/water hole test surface: the average flow pore size is measured by a flow of at least about G.04 micron tube flow. 'Uniform circular or non-slit pattern The hole structure has a narrow range of apertures. The water hole size is at least about 微米 7 microns. Gas/air/moisture permeability: JIS Gore 1〇 to 1〇〇; high flow rate, as indicated by capillary flow perforation; WVTRd, gram/square metric-day. Balanced MD/TD intensity: TD intensity (> 300 kg/cm 2 ). Low TD shrinkage: TD shrinkage is 52% at 90 °C. Preferred PP polymer: MFI = 0.1 to 10.0, crystallinity of the polymer > 45%. Preferred PE polymers: ΜΠ = 0.01 to 5.0, crystallinity > 50%. MFI was tested by the ASTM D-1238 method. The following are the results of eight films (A-G and ruthenium), composites or laminates and comparative samples c〇m C of the specific examples selected according to the present invention: 36 201137000

表II 一般性質 樣品ID 單位 ComC Λ Β C D Β F G Μ 樣品描述 PP單層 比較例 ΡΡ單層 ΡΡ/ΡΡ 黏合的 二層 ΡΡ與 不織物 積層 ΡΡ/ΡΕ/ΡΡ 共擠壓 的=層 ΡΡ/ΡΡ 黏合的 -層 ΡΡ 單層 ΡΡ與 不織物 積層 ΡΡ/ΡΕ/ΡΡ 共擠壓 的二層 AVG厚度 微米 25 18 20 79 21 24 14 77 22 孔隙度 % 55 73 65 • 76 80 81 - 60 穿刺強度 克 335 226 374 553 256 285 135 358 346 MD拉力 公斤力/ 平方公分 1055 754 938 - 500 533 507 - 862 TD拉力 公斤力/ 平方公分 135 493 711 - 450 491 461 * 473 在90°C下 的MD收縮 % 5.0 6.1 5.0 1.21 13.8 6.0 6.5 2.29 5.5 在90°C下 的TD收縮 % 0.0 0.4 ~~αο 0.46 1.8 -0.0 ^0.0 0.19 1.5 AVGJIS 哥雷 秒/100cc 200 32 60 85 35 26 14 45 65 平均流量 孔徑 微米 0.0365 0.0543 0.0501 0.0468 0.0256 0.0610 0.0737 0.0542 0.250 平均流量1 孔徑的標 準偏差 0.0261 0.0183 0.0187 0.0181 0.0119 0.0190 0.0221 0.0183 0.110 氣泡點 直徑 微米 0.1141 0.0948 0.0892 0.0736 0.0504 0.1078 0.1039 0.0808 0.049 水頭壓力 時/平方英寸 155 149 159 277 364 222 153 206 377 水侵入 壓力 碎/平方英寸 >80 >80 >80 >80 >80 >80 >80 ° >80 >80 WVTR 克/平方公 尺•天 <6000 293⑻ 178000 8560 29800 >30000 >30000 23000 16500 WVTR測試係以ASTMF2298-03為基礎,使用水分差率(moisturegrad丨ent)方法。 織物材料的抗水蒸氣擴散及抗空氣流動性之測試方法係使用動態水分通透槽。 測試條件:上槽濕度95%,下槽濕度5%,水分差率9〇%。周溫。 厚度係根據ASTM-D374,使用英維克微蓋巨210A測微計來測量。 JIS哥雷係氣體通透性測試,其使用歐肯(0HKEN)通透性測試機來測量。哥雷定義為丨〇〇 cc空氣在4.8英吋水的固定壓力下通過一平方英吋薄膜所需要之時間,以秒計。孔隙度係 藉由ASTMD2873方法測量。 穿刺強度係使用尹士壯型號4442,根據ASTMD3763測量。貫穿薄膜寬度進行測量,及平 均穿刺能量(穿刺強度)定義為穿刺測試樣品所需要的力量。 拉力性質係使用ASTM-882標準,使用尹士壯型號4201測試。 收縮係使用經修改的ASTM-2732-96程序,在90°C下60分鐘測量。 平均流量孔徑、氣泡點孔徑係根據ASTMF3I6-86標準,以毛細管流分析測量。 水頭壓力係根據ASTM D3393-91測量。 水侵入係每ASTMF316-93測試(潤溼流體:水,68.8達因/公分。氣體:空氣)。 37 201137000 雖然較不佳,可使用經填充、微孔性超高分子量聚乙 烯薄膜作為在本發明之拉伸方法中的前驅物。 同樣地,為了額外的耐久性,本發明之薄膜可在一或 二邊上積層至不織基材,或其可塗佈界面活性劑以將其製 成親水性。 根據至少所選擇的具體實例,本發明可針對: 0同步拉伸及鬆弛來雙軸拉伸一吹膜,以製造出在需 要對空氣、水分蒸氣及其它氣體具有高程度通透 性,但是高程度疏水性之應用中有用的產物。此應 用可包括以薄膜為基礎的濕度及溫度控制系統,諸 如液體除濕HVAC系統;薄膜除鹽;排出;燃料電 池水分控制;液體過濾;及其類似系統。 根據至少所選擇的具體實例,本發明可針對具有下列 性質的薄膜:Table II General Properties Sample ID Unit ComC Λ Β CD Β FG Μ Sample Description PP Single Layer Comparative Example ΡΡ Single Layer ΡΡ/ΡΡ Adhesive Two-layer ΡΡ and Non-woven Layer ΡΡ/ΡΕ/ΡΡ Co-extruded = ΡΡ/ΡΡ Bonded-layer ΡΡ Single layer ΡΡ and non-woven layer ΡΡ/ΡΕ/ΡΡ Co-extruded two-layer AVG thickness micro 25 18 20 79 21 24 14 77 22 Porosity % 55 73 65 • 76 80 81 - 60 Puncture strength gram 335 226 374 553 256 285 135 358 346 MD Tensile force per square centimeter 1055 754 938 - 500 533 507 - 862 TD pull force kg / cm ^ 2 135 493 711 - 450 491 461 * 473 MD shrinkage at 90 ° C 5.0 6.1 5.0 1.21 13.8 6.0 6.5 2.29 5.5 TD shrinkage at 90 °C 0.0 0.4 ~~αο 0.46 1.8 -0.0 ^0.0 0.19 1.5 AVGJIS Gore seconds / 100cc 200 32 60 85 35 26 14 45 65 Average flow aperture micron 0.0365 0.0543 0.0501 0.0468 0.0256 0.0610 0.0737 0.0542 0.250 Average flow rate 1 Standard deviation of pore size 0.0261 0.0183 0.0187 0.0181 0.0119 0.0190 0.0221 0.0183 0.110 Bubble point diameter micron 0.1141 0.0948 0.0892 0.0736 0.0504 0 .1078 0.1039 0.0808 0.049 Head pressure / square inch 155 149 159 277 364 222 153 206 377 Water intrusion pressure crush / square inch >80 >80 >80 >80 >80 >80 >80 ° &gt 80 > 80 WVTR g/m2 • day < 6000 293 (8) 178000 8560 29800 > 30000 > 30000 23000 16500 The WVTR test is based on ASTM F2298-03 using a moisture gradient method. The test method for water vapor diffusion and air flow resistance of fabric materials uses a dynamic moisture permeable trough. Test conditions: the upper tank humidity is 95%, the lower tank humidity is 5%, and the moisture difference rate is 9〇%. Zhou Wen. The thickness is measured according to ASTM-D374 using an Invic Microcapsule 210A micrometer. JIS Gore is a gas permeability test that is measured using a Oken permeability tester. Gore is defined as the time, in seconds, required for cc air to pass through a square inch film at a fixed pressure of 4.8 inches of water. Porosity is measured by the ASTM D2873 method. The puncture strength was measured using an Instron model 4442 according to ASTM D3763. The measurement across the width of the film and the average puncture energy (puncture strength) are defined as the force required to puncture the test sample. The tensile properties were tested using the ASTM-882 standard using the Instron Model 4201. The shrinkage was measured using a modified ASTM-2732-96 procedure at 90 °C for 60 minutes. The average flow pore size, bubble point aperture is measured by capillary flow analysis according to ASTM F3I6-86. The head pressure is measured according to ASTM D3393-91. Water intrusion is tested per ASTMF 316-93 (wetting fluid: water, 68.8 dynes/cm. gas: air). 37 201137000 Although less preferred, a filled, microporous ultrahigh molecular weight polyethylene film can be used as a precursor in the stretching process of the present invention. Similarly, for additional durability, the film of the present invention may be laminated to the nonwoven substrate on one or both sides, or it may be coated with a surfactant to render it hydrophilic. According to at least selected specific examples, the present invention can be directed to: 0 simultaneous stretching and relaxation to biaxially stretch a blown film to produce a high degree of permeability to air, moisture vapor, and other gases, but high A useful product in the application of degree of hydrophobicity. Such applications may include film-based humidity and temperature control systems such as liquid dehumidification HVAC systems; membrane desalination; discharge; fuel cell moisture control; liquid filtration; and the like. According to at least selected specific examples, the invention is directed to films having the following properties:

表III 測量 單位 性能 厚度 微米 10-100 JIS哥雷 秒(每100毫升) 1-100 MD抗拉強度 公斤力/平方公分 500-1500 TD抗拉強度 公斤力/平方公分 350-800 孔隙度 百分比 60-90% 平均流量孔徑 微米 0.04-0.07 氣泡點直徑 微米 0.09-0.11 水孔尺寸 微米 0.04-0.12 水頭壓力 磅/平方英寸 149-222 侵入壓力 磅/平方英寸 >80 壓力降 psid(在5_3公分/秒下) <3.90 顆粒效率 百分比(在2.5公分/秒下) >99.99% 熔點 °C >165 38 201137000 根據本發明的可能較佳具體實例,該薄膜為一具疏水 性、高度可通透性、化學及機械安定性、高抗拉強度薄膜。 這些性質似乎讓其成為用於下列應用的理想薄膜,其每種 (除了空氣過濾外)可包括選擇性通過水分蒸氣及阻擋液體 水··Table III Measurement unit performance thickness micron 10-100 JIS Gore seconds (per 100 ml) 1-100 MD tensile strength kg force / square centimeter 500-1500 TD tensile strength kg force / square centimeter 350-800 porosity percentage 60 -90% average flow pore size micron 0.04-0.07 bubble point diameter micron 0.09-0.11 water hole size micron 0.04-0.12 head pressure pounds per square inch 149-222 intrusion pressure pounds per square inch > 80 pressure drop psid (at 5_3 cm / (seconds) <3.90 percentage of particle efficiency (at 2.5 cm/sec) >99.99% melting point °C >165 38 201137000 According to a possible preferred embodiment of the invention, the film is hydrophobic and highly permeable Permeability, chemical and mechanical stability, high tensile strength film. These properties seem to make it an ideal film for the following applications, each of which (in addition to air filtration) can include selective passage of moisture vapor and blocking liquid water··

1. HVAC 2. 液體除濕(LD)空調 3. 以水為基礎的空調 4. 能源回收通風(ERV) 5. 除鹽 6. RO除鹽 7. 蒸氣除鹽 8. 燃料電池 9. 液體及/或空氣過濾 特別在液體及空氣過濾的情況中,獨特的孔洞結構可 具有某些特定的利益。 根據至少所選擇的具體實例,較佳的積層產物可具有 想要的薄膜水分傳送性能與想要的巨觀物理性質結合之組 合0 根據至少所選擇的具體實例,較佳的單層PP產物可具 有優良的MD及TD物理性質平衡,同時亦為一高性能薄 膜,如藉由水分傳送(水分蒸氣傳送)及水頭性能測量。該薄 膜亦可具有非特徵性地高的孔隙度(>60%),但是仍然維持 平衡的物理性質(當與更傳統的薄膜比較時)。同樣地,該薄 39 201137000 膜可與積層的pp不織物合併製造。所產生的積層產物仍然 可保留優良的水分蒸氣傳送及更改良的水頭性能。同樣 地,所產生的產物可具有遠超過比較用薄膜的物理強度性 質。因此,該產物可具有加入的優點,其可使用在更物理 嚴苛的環境中而沒有損失高度想要的薄膜特徵。 根據本發明之至少所選擇的具體實例,該薄膜可具有 獨特的孔洞結構及分佈或性質,其似乎可讓其成為用於下 列應用的理想薄膜: 高效率空氣過濾, HEPA/ULPA應用, 接近零排放的粉塵移除應用(無塵室、真空袋、面罩、手術 套房、集塵袋、墨水匣), 過濾應用: 〇高效率HVAC過濾器媒質 o HEPA/ULPA媒質 〇過濾薄膜複合物 液體過濾, 保護性衣物, 官能性衣物/表現運動穿戴, 醫療織物, 及其類似物。 根據本發明之至少所選擇的多孔材料、膜、層、薄膜、 積層物、共擠壓或複合物具體實例,某些改良區域可包括 除了隙縫外的孔洞形狀、圓形孔洞、增加橫向方向抗拉強 40 201137000 度、平衡的MD及TD物理性質、與例如水分傳送(或水分蒸 氣傳送)及水頭壓力相關的高性能、減低哥雷、具有平衡的 物理性質之高孔隙度、孔洞結構(包括孔洞尺寸及孔洞尺寸 分佈)的一致性、提高耐久性、此等薄膜與其它多孔材料之 複合物;此等薄膜、薄膜或層與多孔不織布之複合物或積 層物;塗佈的薄膜、共擠壓的薄膜、積層的薄膜;具有想 要的水分傳送、水頭性能及物理強度性質之薄膜;在更物 理嚴苛的環境下沒有損失想要的薄膜特徵之實用性、薄膜 水分傳送(或水分蒸氣傳送)性能與巨觀物理性質結合之組 合 '具疏水性、高度可通透、化學及機械安定、具有高抗 拉強度、其組合、及/或其類似性質。 雖然某些藉由乾式拉伸方法製得的薄棋已獲得優良的 商業成就,有需要改良、修改或提高至少其所選擇的物理 屬性’以便它們可使用在較寬的應用範圍中、對特別目的 有較好的表現及/或其類似目的。根據本發明的乾式拉伸製 程薄膜之至少所選擇的具體實例’某些改良區域可包括除 了隙縫外的孔洞形狀、圓形孔洞、增加橫向方向抗拉強度、 平衡的MD及TD物理性質、孔洞結構(包括孔洞尺寸及孔洞 尺寸分佈)的一致性、與例如水分傳送(水分蒸氣傳送)及水 頭壓力相關之高性能、減低哥雷、具有平衡的物理性質之 高孔隙度、提高耐久性、此等薄膜與其它多孔材料之複合 物、此等薄膜與多孔不織布之複合物或積層物、塗佈的薄 膜、共擠壓的薄膜、積層的薄膜;具有想要的水分傳送(或 水分蒸氣傳送)、水頭性能及物理強度性質之薄膜;在更物 201137000 _之組合、其 理嚴苛的環境下有用而沒有損失想要的薄臈特徵、薄膜^ 分傳送(水分蒸氣傳送)性能與巨觀物理性質結4 組合、及/或其類似性質。 根據至少所選擇的可能較佳具體實例,本發明之多孔 膜可較佳為一乾式拉伸製程多孔薄膜、膜、層或複合物, 其具疏水性、高度可通透性、化學及機械安定性、 昇有焉 抗拉強度及其組合。這些性質似乎讓其成為用於下列應用 的理想薄膜或膜’其每種(除了空氣過濾外)可包括選擇性通 過水分蒸氣(或其它氣體)及阻擋液體水(或其它液體):1. HVAC 2. Liquid Dehumidification (LD) Air Conditioner 3. Water-based Air Conditioning 4. Energy Recovery Ventilation (ERV) 5. Desalting 6. RO Desalting 7. Vapor Desalting 8. Fuel Cell 9. Liquid and / Or air filtration, particularly in the case of liquid and air filtration, the unique pore structure may have certain specific benefits. Preferred laminate products may have a combination of desired film moisture transport properties in combination with desired macrophysical properties, according to at least selected specific examples. 0. According to at least selected specific examples, preferred monolayer PP products may be It has excellent balance of physical properties of MD and TD, and is also a high performance film, such as moisture transport (moisture vapor transport) and head performance measurement. The film may also have a non-characteristically high porosity (> 60%), but still maintain balanced physical properties (when compared to more conventional films). Similarly, the thin 39 201137000 film can be combined with a laminated pp non-woven fabric. The resulting laminate product still retains excellent moisture vapor transmission and altered good head performance. Likewise, the resulting product can have properties that far exceed the physical strength of the comparative film. Thus, the product can have the added advantage of being used in more physically harsh environments without the loss of highly desirable film characteristics. In accordance with at least selected embodiments of the present invention, the film can have a unique pore structure and distribution or properties that appear to make it an ideal film for: High efficiency air filtration, HEPA/ULPA applications, near zero Dust removal applications (clean rooms, vacuum bags, masks, surgical suites, dust bags, ink cartridges), Filtration applications: 〇High efficiency HVAC filter media o HEPA/ULPA media 〇Filter film composite liquid filtration, Protective clothing, functional clothing/performance sports wear, medical fabrics, and the like. According to at least selected porous material, film, layer, film, laminate, co-extrusion or composite embodiment of the present invention, certain modified regions may include void shapes other than slits, circular holes, and increased lateral direction resistance. Tension 40 201137000 degrees, balanced MD and TD physical properties, high performance associated with, for example, moisture transfer (or moisture vapor transport) and head pressure, reduced Gore, high porosity with balanced physical properties, pore structure (including Consistency of pore size and pore size distribution, improved durability, composite of such films with other porous materials; composites or laminates of such films, films or layers with porous nonwovens; coated films, coextrusion Pressed film, laminated film; film with desired moisture transport, head performance and physical strength properties; no loss of useful film characteristics in a more physical and harsh environment, film moisture transfer (or moisture vapor) The combination of performance and macroscopic physical properties is 'hydrophobic, highly transparent, chemically and mechanically stable, with Tensile strength, combinations thereof, and / or similar properties. Although some of the thin chess made by the dry stretching method have achieved excellent commercial success, there is a need to improve, modify or improve at least the physical properties selected so that they can be used in a wide range of applications, The purpose is to have a good performance and / or its similar purpose. At least selected specific examples of the dry draw process film according to the present invention 'Some modified regions may include hole shapes other than slits, circular holes, increased transverse direction tensile strength, balanced MD and TD physical properties, holes Consistency of structure (including pore size and pore size distribution), high performance related to, for example, moisture transfer (moisture vapor transport) and head pressure, reduction of Gore, high porosity with balanced physical properties, improved durability, this a composite of a film and other porous materials, a composite or laminate of such films and porous nonwovens, a coated film, a coextruded film, a laminated film; having a desired moisture transport (or moisture vapor transport) Film with water head performance and physical strength properties; useful in the combination of the 201137000 _, its harsh environment without loss of the desired thin 臈 characteristics, film transfer (water vapor transmission) performance and giant physics The nature of the knot 4 combination, and / or its similar properties. The porous membrane of the present invention may preferably be a dry stretching process porous film, film, layer or composite having at least a selected, preferably preferred embodiment, which is hydrophobic, highly permeable, chemically and mechanically stable. Sex, 焉 tensile strength and its combination. These properties appear to make it an ideal film or film for the following applications. Each of them (other than air filtration) may include selective passage of moisture vapor (or other gas) and blocking of liquid water (or other liquids):

5. HVAC a. 液體除濕(LD)空調(溫度及濕度控制):在以薄膜為 基礎的LD系統中,溫度及濕度可由鹽溶液(其經由 多孔膜吸收或放出水蒸氣)控制。熱為在該系統中的 推動力量(非壓力,如在大部分空調系統中)。為了 讓該系統工作,會需要容易通過水蒸氣之具有疏水 性的薄膜(以阻擋液體)。 b. 以水為基礎的空調(溫度及濕度控制):蒸發冷卻系 統或冷卻水系統在與LD系統稍微不同的原理下操 作’但是其將使用該薄膜之相同基本性質。 c•能源回收通風(ERV):最簡單的hvac應用使用該 薄膜作為在補償與排丨空氣間之熱及献交換的關 鍵構件。 6. 5® · 友 、風.热氧除鹽應用使用與HVAC相同的薄膜性質。 因為5亥薄膜阻擋液體鹽水但是通過水蒸氣,可建構 42 201137000 出一藉由薄膜分離鹽水與淡水的系統。隨著鹽水在 較高的溫度下,從鹽水中放出淡水蒸氣,其漂移通 過薄膜及凝結以形成淡水流。 7. 燃料電池:在燃料電池中,該質子交換薄膜(pEM) 必需持續保持濕潤。此可隨著使用以薄膜為基礎的 增濕單元達成。 8. 液體及/或空氣過濾:在這些具體實例中,多孔膜可 作用為簡單的過濾器。當液體、蒸氣、氣體或空氣 通過該薄膜時,太大無法通過孔洞的顆粒被阻擋在 薄膜表面處。 特別在液體及空氣過濾的情況中,本發明之至少所選 擇的具體實例之獨特的孔洞結構可具有某些特定的利益, 諸如耐久性、高效率、窄的孔洞尺寸分佈及一致的流速之 利益。 根據本發明之至少所選擇的多孔材料或多孔膜具體實 例,至少所選擇的多孔單層聚丙稀(單層PP)薄膜具有優良 的MD及TD物理性質平衡,同時亦為一高性能薄膜(如藉由 水分傳送及水頭性能測量)。此所選擇的單層pp薄膜亦可具 有咼孔隙度(>60%),但是仍然維持平衡的物理性質(當與更 傳統的薄膜比較時)。同樣地,此所選擇的單層pp薄膜或膜 可在其或一邊上與多孔聚丙稀(PP)不織材料(不織pp)合 併或積層而製造。所產生的複合物 '薄膜或產物(單層pp/ 不織PP)或(不織PP/單層PP/不織PP)可較佳地保留優良的水 分傳送及更改良的水頭性能。同樣地,此所產生的複合物 43 201137000 產物(單層PP/不織PP)或(不織PP/單層PP/不織pp)可具有遠 超過比較用薄膜的物理強度性質。因此,此新產生的複合 物產物(單層PP/不織PP)或(不織PP/單層pp/不織pp)可具有 加入的優點,其在更物理嚴苛的環境下有用而沒有損失高 度想要的薄膜特徵。咸信這些所選擇的單層pp薄膜及複合 物產物(單層PP ;單層PP/不織PP ;或不織pp/單層pp/不織 PP)在其薄膜水分傳送性能與其巨觀物理性質結合之組合 上獨特。例如,先前的薄膜可真實具有孔隙度但不足的水 頭壓力或性能、其它薄膜太易碎、其它薄膜強但是缺乏其 它性質、或其類似事件。同時本發明之至少所選擇的具體 貫例可具有例如想要的孔隙度、水分傳送、水頭壓力、強 度及其類似性質。 根據本發明之至少所選擇的多孔材料或多孔膜具體實 例’至少所選擇的多孔多層聚丙稀(多層PP)薄膜具有優良 的MD及TD物理性質平衡,同時亦為一高性能薄膜(如藉由 水分傳送及水頭性能測量)。此所選擇的多層PP薄膜亦可具 有高孔隙度(>60%) ’但是仍然維持平衡的物理性質(當與更 傳統的薄膜比較時)。同樣地’此所選擇的多層pp薄膜或膜 可在其一或二邊上與多孔聚丙烯(PP)不織材料(不織PP)合 併或積層而製造。所產生的複合物、薄膜或產物(多層PP/ 不織PP)或(不織PP/多層PP/不織PP)可較佳地保留優良的水 分傳送及更改良的水頭性能。同樣地,此所產生的複合物 產物(多層PP/不織PP)或(不織PP/多層PP/不織PP)可具有遠 超過比較用薄膜的物理強度性質。因此,此新產生的複合 44 201137000 物產物(多層pp/不織pp)或(不織pp/多層pp/不織pp)可具有 加入的優點,其在更物理嚴苛的環境下有用而沒有損失高 度想要的薄膜特徵。咸信這些所選擇的多層PP薄膜及複合 物產物(多層PP ;多層PP/不織PP ;或,不織PP/多層PP/不織 PP)在其薄膜水分傳送性能與其巨觀物理性質結合之组合 上獨特。例如,先前的薄膜可真實具有孔隙度但不足的水 頭壓力或性能、其它薄膜太易碎、其它薄膜強但是缺乏其 它性質、或其類似事件。同時本發明之至少所選擇的具體 實例可具有例如想要的孔隙度、水分傳送、水頭壓力、強 度及其類似性質。 根據本發明之至少所選擇的多孔材料或多孔膜具體實 例,至少所選擇的多孔單層聚乙烯(單層PE)薄膜具有優良 的MD及TD物理性質平衡,同時亦為一高性能薄膜(如藉由 水分傳送及水頭性能測量)。此經選擇的單層P E薄膜亦可具 有高孔隙度(>60%) ’但是仍然維持平衡的物理性質(當與更 傳統的薄膜比較時)。同樣地,此經選擇的單層PE薄膜或膜 可在其一或二邊上與多孔聚乙烯(PE)不織材料(不織PE)或 多孔聚丙稀(PP)不織材料(不織PP)合併或積層而製造。所產 生的複合物、薄膜或產物(單層PE/不織PE)或(不織PE/單層 PE/不織PE)可較佳地保留優良的水分傳送及更改良的水頭 性能。同樣地,此所產生的複合物產物(單層PE/不織pe)或 (不織PE/單層PE/不織PE)可具有遠超過比較用薄膜的物理 強度性質。因此,此新產生的複合物產物(單層pE/不織PE) 或(不織PE/單層PE/不織PE)可具有加入的優點,其在更物理 45 201137000 嚴苛的環境下有用而沒有損失高度想要的_特徵。咸作 4所選擇的單層PE薄膜及複合物產物(單層pE ;單層pE/ 不織PE ;或不織PE/單層pE/不織pE)在其薄膜水分傳送性能 與其巨觀物理性質結合之組合上㈣。例如,切的薄膜 可真實具有㈣度衫足的水賴力紐能、其它薄膜太 易碎、其它薄膜強但是缺乏其它性質、或其類似事件。同 時本發明之至少所轉的具體實例可具有例如想要的孔隙 度 '水分傳送、水頭壓力、強度及其類似性質。 根據本發明之至少所選擇的多孔材料或多孔膜具體實 例,至少所選擇的多孔多層聚乙烯(多層pE)薄膜具有優良 的MD及TD物理性質平衡,同時亦為一高性&薄膜(如藉由 水分傳送及水頭性能測量)^此所選擇的多層pE薄膜亦可具 有高孔隙度(> 6 0 % ),但是仍然維持平衡的物理性質(當與更 傳統的薄膜比較時)。同樣地,此所選擇的多層PE薄膜或膜 可在其一或二邊上與多孔聚乙烯(PE)不織材料(不織pE)或 多孔聚丙烯(PP)不織材料(不織PP)合併或積層而製造。所產 生的複合物、薄膜或產物(多層PE/不織pe)或(不織pe/多層 PE/不織PE)可較佳地保留優良的水分傳送及更改良的水頭 性能。同樣地,此所產生的複合物產物(多層PE/不織PE)或 (不織PE/多層PE/不織PE)可具有遠超過比較用薄膜的物理 強度性質。因此,此新產生的複合物產物(多層PE/不織PE) 或(不織PE/多層PE/不織PE)可具有加入的優點,其在更物理 嚴苛的環境下有用而沒有損失高度想要的薄膜特徵。咸信 這些經選擇的多層PE薄膜及複合物產物(多層PE ;多層PE/ 46 201137000 不織PE ;或不織PE/多層PE/不織PE)在其薄膜水分傳送性能 與其巨觀物理性質結合之組合上獨特。例如,先前的薄膜 可真實具有孔隙度但不足的水頭壓力或性能、其它薄膜太 易碎、其它薄膜強但是缺乏其它性質、或其類似事件。然 而本發明之至少所選擇的具體實例可具有例如想要的孔隙 度、水分傳送、水頭壓力、強度及其類似性質。 根據本發明之至少所選擇的多孔材料或多孔膜具體實 例’至少所選擇的多孔單層聚合物薄膜(例如,單層(可具有 一或多層)聚烯烴(PO)薄膜,諸如聚丙烯(pp)及/或聚乙烯 (PE)(包括PE、pp或pE+pp摻合物)單層薄膜)具有優良的md 及TD物理性質平衡,同時亦為一高性能薄膜(如藉由水分傳 送(或水分蒸氣傳送)及水頭性能測量)。此所選擇的單層p〇 薄膜亦可具有高孔隙度(>60%),但是仍然維持平衡的物理 性處(當與更傳統的薄膜比較時)。同樣地,此所選擇的單層 PO薄膜或膜可在其一或二邊上與多孔不織材料(諸如不織 聚合物材料,例如,p〇不織材料(諸如多孔聚乙烯(PE)不織 材料(不織PE)及/或多孔聚丙烯(pp)不織材料(不織pp)(包括 PE、PP或PE+PP摻合物)))合併或積層而製造。所產生的複 合物、薄膜或產物(單層PO/不織PO)或(不織p〇/單層p〇/不 織PO)可較佳地保留優良的水分傳送(或水分蒸氣傳送)及 更改良的水頭性能。同樣地,此所產生的複合物產物(單層 PO/不織PO)或(不織PO/單層PO/不織PO)可具有遠超過比較 用薄膜的物理強度性質。因此,此新產生的複合物產物(單 層PO/不織PO)或(不織PO/單層PO/不織PO)可具有加入的優 47 201137000 點’其在更物理嚴苛的環境下有用而沒有損失高度想要的 薄膜特徵。咸信這些經選擇的單層PO薄膜及複合物產物(單 層PO;單層p〇/不織PO;或不織PO/單層p〇/不織p〇)在其薄 膜水分傳送性能與其巨觀物理性質結合之組合上獨特。例 如’先前的薄膜可真實具有孔隙度但不足的水頭壓力或性 能、其它薄膜太易碎、其它薄膜強但是缺乏其它性質、或 其類似事件,然而本發明之至少經選擇的具體實例可具有 例如想要的孔隙度、水分傳送、水分蒸氣傳送、水頭壓力、 強度及其類似性質。 根據本發明之至少所選擇的多孔材料或多孔膜具體實 例’至少所選擇的多孔多層聚合物薄膜(例如,多層(二或更 多層)聚烯烴(PO)薄膜,諸如聚丙烯(PP)及/或聚乙烯(PE)(包 括PE、PP或PE+PP摻合物)多層薄膜)具有優良的MD及TD 物理性質平衡,同時亦為一高性能薄膜(如藉由水分傳送(或 水分蒸氣傳送)及水頭性能測量)。此經選擇的多層PO薄膜 亦可具有高孔隙度(>60%),但是仍然維持平衡的物理性質 (當與更傳統的薄膜比較時)。同樣地,此經選擇的多層PO 薄膜或膜可在其一或二邊上與多孔PO不織材料(諸如多孔 聚乙烯(PE)不織材料(不織PE)及/或多孔聚丙烯(PP)不織材 料(不織PP))合併或積層而製造。所產生的複合物、薄膜或 產物(多層PO/不織PO)或(不織PO/多層PO/不織PO)可較佳 地保留優良的水分傳送及更改良的水頭性能。同樣地,此 所產生的複合物產物(多層PO/不織PO)或(不織PO/多層Pd/ 不織PO)可具有遠超過比較用薄膜的物理強度性質。因此, 48 201137000 此新產生的複合物產物(多層PO/不織PO)或(不織PO/多層 PO/不織PO)可具有加入的優點,其在更物理嚴苛的環境下 有用而沒有損失高度想要的薄膜特徵。咸信這些所選擇的 多層PO薄膜及複合物產物(多層PO;多層PO/不織PO;或不 織PO/多層PO/不織PO)在其薄膜水分傳送性能與其巨觀物 理性質結合之組合上獨特。例如,先前的薄膜可真實具有 孔隙度但不足的水頭壓力或性能、其它薄膜太易碎、其它 薄膜強但是缺乏其它性質、或其類似事件,然而本發明之 至少所選擇的具體實例可具有例如想要的孔隙度、水分傳 送、水頭壓力、強度及其類似性質。 根據本發明之至少所選擇的多孔材料或多孔膜具體實 例,該等孔洞(開口)具有下列孔洞縱深比率(根據孔洞開口 在機器方向(MD)(長度)及橫向機器方向(TD)(寬度)上的物 理尺寸,藉由測量例如在所選擇的薄膜或複合物(例如,單 層、二層或三層薄膜)之上或前表面(A邊)的SEMs中之一或 多個孔洞(以數個孔洞為較佳,以確認平均)): 典型: MD/TD縱深比率在範圍0.75至1.50内 較佳: MD/TD縱深比率在範圍0.75至1.25内 最佳: MD/TD縱深比率在範圍0_85至1.25内。 根據本發明之至少所選擇的多孔材料或多孔膜具體實 例,若MD/TD孔洞縱深比率為1.0時,則三維或3D孔洞球徑 49 201137000 率因子或比率如0/丁0爪0)範圍可為1.〇至8.0或更大;可能 較佳為1.0至2·5 ;及最可能較佳為1.0至2.0或較小(根據孔洞 開口在機器方向(MD)(長度)、橫向機器方向(TD)(寬度)及厚 度方向或截面(ND)(厚度)中的物理尺寸;例如,測量在上 或前表面(Α邊)或下或背表面(Β邊)之SEMs中的一或多個孔 洞之MD及TD(以數個孔洞為較佳,以確認平均),及測量在 截面、深度或高度(C邊)(長度或寬度截面或二者)的SEMs中 之一或多個孔洞的ND(以數個孔洞為較佳,以確認平均)(當 相同孔洞難以測量ND、MD及TD尺寸時,該ND尺寸可為與 MD及TD尺寸不同的孔洞))。 根據本發明之至少所選擇的多孔材料或多孔膜具體實 例,三維或3D MD/TD/ND孔洞球徑率因子或比率範圍可為 0.25至8_0或更大;可能較佳為〇·50至4.0,及最可能較佳為 1.0至2.0或較小。 根據本發明之至少所選擇的多孔材料或多孔膜具體實 例’該等孔洞(開口)具有下列孔洞縱深比率(根據孔洞開口 在機器方向(MD)(長度)及橫向機器方向(TD)(寬度)中的物 理尺寸,以測量在所選擇的單層及三層薄膜之上或前(八邊) 的SEMs中之孔洞為基礎): 於此係機器方向MD(長度)與橫向方向TD(寬度)的縱深比率 範圍之典型數值: MD/TD縱深比率在範圍0.75至1.50内。 根據本發明之至少所選擇的多孔材料或多孔膜具體實 例’該等孔洞(口)具有下列三維或3D孔洞球徑率因子或 50 201137000 比率(根據孔洞開口在機器方向(MD)(長度)、橫向機器方向 (TD)(寬度)及厚度方向或截面(ND)(厚度)上的物理尺寸;例 如’測量在所選擇的薄膜、層或複合物(例如,所選擇的單 層及三層薄膜)之上或前表面(A邊)、下或背表面邊)及截 面、深度或高度(C邊)(長度或寬度截面或二者)之SEMs中的 一或多個孔洞(以數個孔洞為較佳,以確認平均)(當相同孔 洞難以測量ND、MD及TD尺寸時,該ND尺寸可為與 TD尺寸不同的孔洞)): 例如: 典型: MD/TD縱深比率在範圍0.75至1.50内 MD/ND尺寸比率在範圍〇.5〇至7.50内 TD/ND尺寸比率在範圍〇.50至5 00内 較佳: MD/TD縱深比率在範圍0.75至1.25内 ]^0〜0尺寸比率在範圍1.〇至2.5内 丁0心0尺寸比率在範圍1.〇至2.5内 較佳: MD/TD縱深比率在範圍0.85至1.25内 MD/ND尺寸比率在範圍1.〇至2.〇内 TD/ND尺寸比率在範圍1.〇至2.〇内。 根據本發明之至少所選擇的多孔材料或多孔膜具體實 例,該等孔洞(開口)具有下列孔洞球徑率因子或比率(根據 孔洞開口在機器方向(MD)(長度)、橫向機器方向(TD)(寬度) 51 201137000 及厚度方向或截面(ND)(厚度)上的物理尺寸,以測量在所 選擇的單層及三層薄膜之上或前(A邊)、長度及與截面(c邊) 的SEMs中之孔洞為基礎): 於此係機器方向MD(長度)與橫向方向TD(寬度)的球徑率因 子或比率範圍,及厚度方向ND(垂直高度)之典型數值: MD/TD縱深比率在範圍0.75至1.5〇内 MD/ND尺寸比率在範圍〇 5至7.50内 TD/ND尺寸比率在範圍〇 5至5.00内。 根據本發明之至少所選擇的具體實例,該微孔膜係藉 由乾式拉伸方法製得及具有實質上圆形孔洞,及機器方向 抗拉強度對橫向方向抗拉強度之比率在範圍〇 5至6 0内,較 佳為0.5至5.0。該製造前述微孔膜的方法包括下列步驟:將 一聚合物擠壓成一無孔性前驅物,及雙軸拉伸該無孔性前 驅物’該雙轴拉伸包括機器方向拉伸及橫向方向拉伸,該 橫向方向拉伸包括同步控制的機器方向鬆弛。 根據本發明之至少所選擇的具體實例,多孔膜係藉由 經修改的乾式拉伸方法製得及具有 實質上圓形孔洞’機器 方向抗拉強度對橫向方向抗拉強度之比率在範圍〇.5至6.0 内’及具有低哥雷(如與先前的乾式拉伸薄膜比較),具有較 大及更一致的平均流量孔徑(如與先前的乾式拉伸薄膜比 較)’或低哥雷及較大及更一致的平均流量孔徑二者。 雖然由習知的乾式拉伸方法製得之薄膜已獲得優良的 商業成就,根據本發明之至少所選擇的具體實例,有提供 經改良、修改或提高之其至少所選擇的物理屬性,以便它 52 201137000 們可使用在較寬的應用範圍中、可對特別目的有較好的表 現及/或其類似目的。 雖然至少某些空氣濾清器已獲得商業成就,根據本發 明之至少所選擇的具體實例,有提供經改良、修改或提高 的過濾媒質,以便它們可使用在較寬的過濾或分離應用範 圍中、可對特別目的有較好的表現及/或其類似目的。 雖然此等用於過濾或分離方法的平板多孔材料某些已 獲得商業成就,根據本發明之至少所選擇的具體實例,有 提供經改良、修改或提高的多孔材料,以便它們可使用在 較寬的應用範圍中、可對特別目的有較好的表現及/或其類 似目的。 雖然用來選擇性通過氣體或濕氣(水分蒸氣)及阻擋液 體水或鹽水之多孔材料可已獲得商業成就(諸如由道化學 出售的RO薄膜、由W丄.高爾BHA出售的ePTFE薄膜及其 它),根據本發明之至少所選擇的具體實例,有提供經改 良、修改或提高的多孔材料,以便它們可使用在較寬的應 用範圍中、可對特別目的有較好的表現及/或其類似目的。 根據本發明之至少所選擇的具體實例,空氣濾清器包 括至少一種多孔膜,諸如微孔膜。 根據本發明之至少所選擇的具體實例,微孔膜係藉由 乾式拉伸方法製得及具有實質上圓形孔洞,及機器方向抗 拉強度對橫向方向抗拉強度之比率在範圍0.5至5.0内。該製 造前述微孔膜的方法包括下列步驟:將一聚合物擠壓成一 無孔性前驅物,及雙軸拉伸該無孔性前驅物,該雙軸拉伸 53 201137000 包括機器方向拉伸及橫向方向拉伸,該橫向方向拉伸包括 同步控制的機器方向鬆弛。 根據本發明之至少所選擇的具體實例,多孔膜係藉由 t修改的乾式拉伸方法製得及具有實質上圓形孔洞,機器 方向抗拉強度對橫向方向抗拉強度之比率在範@()5至6〇 内’及具有低哥雷(如與先前的乾式拉伸薄膜比較),具有較 ^及更-致的平均流量孔徑(如與先前的乾式拉伸薄膜比 較)’或低哥雷及較大及更—致的平均流量孔徑二者。 根據本發明之空氣渡清器£可包括至少—片打指的微 孔膜、複數片微孔膜’及其可進—步包括端板、間隔器或 其類似物。 士於本文中所使用,空氣渡清器臣指為可使用在空氣 I月錢空氣純化器中的£。本巾請案就空氣濾清器絲 說明本發明;但是,本發财限於如此,及其同樣可包括 空⑽化器E。同樣地,該薄膜可經打摺以在相對小的體 積中提供大的賴面積。在替代方案中該薄膜可具有正 弦曲線圖案,以在相對小的體積中提供大的過渡面積。 再者,該薄膜可具有任何組態;例如,其可具有選自 ^打指的圓柱狀組態、打摺的平板組態及螺捲式組態 組成之群的組態。 在製造方法的實施财,建駐少1平板微孔膜, 2 ’將該_㈣成《或折疊式折疊雜,因此增加 衫士 ^ P現後’可將該經打摺的薄膜捲繞成圓柱狀,及 端板密封,因此職空_清器卜可將該空氣滤清 54 201137000 器匣插入外罩中,及經由端蓋密封。 根據至少所選擇可相當適合作為電池隔板的具體實例 中,該可能的較佳薄膜由一或多種聚烯烴製得為較佳,及 其可進一步以一或多個下列參數標出特徵:厚度、孔隙度、 平均孔洞尺寸、穿刺強度、jis哥雷數及停工溫度。 該薄膜厚度可少於6.0密耳(150微米)。在另一個具體實 例中’厚度範圍可從10微米至150微米。在更另一個具體實 例中,厚度範圍可從10微米至50微米。 薄膜的孔隙度可在40至90°/。間。在一個具體實例中, 孔隙度範圍從60-90%。在更另一個具體實例中,孔隙度範 圍從65-800/。。 薄膜之平均水孔尺寸可在〇·〇4-〇·2〇微米間。在一個具 體實例中,平均孔洞尺寸範圍從0.04-0.120微米。在更另一 個具體實例中,平均孔洞尺寸範圍從0·07·0·12微米。 穿刺強度可大於或等於3〇〇格令-力/密耳。穿刺強度係 使用米德泰克史狄芬斯(Midtech Stevens)LFRA紋理構造分 析益及具有1·65毫米直徑及〇.5毫米半徑的針,在速率2毫米 /秒與最大6毫米的偏離量下記錄資料,藉由平均10次貫穿 最後產物的寬度之度量來測量。 JIS哥雷數(已標準化至一密耳厚)可少於1〇〇秒/1〇〇 ec/ 社耳厚。在—個具體實例中,哥雷數範圍從12至80秒/100 cc/密耳。 根據某些具體實例,薄膜的本質點度(IV)可大於或等於 ·〇刀升/克。在另一個具體實例中,IV可大於或等於5 〇分 55 201137000 升/克。在另一個具體實例中,IV可較佳大於或等於3〇分升 /克。該薄膜的IV非構成該薄膜的預擠壓樹脂之加權平均, 因為在擠壓期間聚合物蒙受鏈斷裂及分子量因此降低。如 於本文中所使用,本質黏度指為聚合物在溶液中提高溶液 黏度之能力的度量。本質黏度數值定義為在零濃度處之特 疋黏度/濃度比率的極限值。因此,變成需要找出在不同濃 度下的黏度,然後外插至零濃度。黏度數值隨著濃度的變 化依分子型式和溶劑而定。通常來說,線性大分子物質的 本質黏度與重量平均分子量或聚合程度相關。關於線性大 分子’當在黏度與分子量間之關係已經建立時,黏度數值 測量可提供分子量快速測量方法。IV係藉由下列來測量: 首先在150°c下將0.02克薄膜溶解於100毫升萘烷中一小 時’然後’在135°C下經由烏貝羅(Ubbelohd)黏度計測量其 本質黏度。此根據ASTM D4020(於本文中報導RSV值)。 停工溫度可低於260°C(260攝氏度)。在一個具體實例 中’停工溫度可低於190°C。在更另一個具體實例中,停工 溫度可低於140°C。在仍然另一個具體實例中,停工溫度可 低於130°C。在更仍然另一個具體實例中,停工溫度可低於 120。。。 本發明之溥膜可由單一聚合物、或聚合物之摻合物、 或相同或不同聚合物層、或黏合、積層或共擠壓在一起的 不同材料層製得。該可能的較佳聚合物係聚烯烴類,諸如 聚丙稀(PP)及/或聚乙稀(PE)。例如,該薄膜可由一或多層 PP及/或PE製得。在一個特別的實施例中,該薄膜係多孔pp 56 201137000 膜或薄片。在另一個特別的實施例中,該薄膜係多孔PE膜 或薄片。在更另一個特別的實施例中,該薄膜係由二層外 部PP層及一中間或中心PE層製得的三層薄膜。在另一個特 別的實施例中,該薄膜係由二層PP層、二層PE層或一層PP 與一層PE層黏合在一起、積層在一起或共擠壓在一起所製 得之雙層薄膜。在又更另一個特別的實施例中,該薄膜係 一多孔PP膜或薄片與一多孔材料(諸如不織玻璃或PP材料) 之複合物。在又另一個特別的實施例中,該薄膜係一由具 有不同分子量的聚烯烴之摻合物製得的多孔膜或薄片。 根據至少所選擇的具體實例,氣體過濾媒質包含一微 孔膜。如於本文中所使用,氣體過濾媒質指為用來從氣體 (例如,空氣)中移除微粒物質之過濾媒質。 本發明之氣體過濾器媒質可包括超高分子量聚乙烯及 無機材料。該氣體過濾器媒質可進一步包括加工油(即,在 抽出後,餘留在媒質中的油)。該氣體過濾器媒質可進一步 包括熱塑性聚烯烴、習知的添加劑(諸如安定劑及抗氧化 劑),及其如在技藝中熟知的類似物。 該氣體過濾器媒質可使用作為過濾器媒質用於任何末 端使用應用。例如,該氣體過濾器媒質可使用作為過濾器 媒質用於選自於由下列所組成之群的末端使用應用:從氣 體中移除微粒物質、空氣過濾應用、高溫應用、濾袋間應 用、在食物及藥物中的微粒物質過濾、在燃燒方法中的微 粒物質過濾、在金屬中的微粒物質過濾及在水泥中的微粒 物質過濾。從氣體中移除微粒物質包括工業(諸如HVAC、 57 201137000 HEPA及ULPA無塵室)、真空清洗、呼吸罩、水泥、金屬、 食物、藥物、加工的流體及燃燒製程。 該氣體過濾、器媒質可獨立作為過遽器媒質;或在另一 個情況中’其可與(例如,積層至或黏合至)支撐材料(例如’ 不織材料或織物)連結。典型的積層或黏合技術包括此習知 的方法,如(但不限於)黏著劑、焊接(加熱/超聲波)及其類似 方法。再者’該氣體過濾器媒質可呈平坦或形成打摺或形 狀。 較大的電池有需要具有更尺寸安定(或高溫熔融完整 性)的隔板,因為若發生短路時電池破裂可更明顯,因為在 較大的電池中包含較大量的鋰物質。因此,根據至少某些 具體實例’電池隔板係從具有高溫熔融完整性的不織平板 材料、具有低溫停工特性的微孔性薄膜、及選擇性將該不 織平板黏合至該微孔性薄膜且適應於當由電解質接觸時的 膨脹之黏著劑製得。 尚溫熔融完整性隔板可包含一微孔性薄膜及一不織平 板,於其之間以或不以黏著劑或聚合物黏合在一起。不織 平板可指為複數條藉由多種方法約束在一起的纖維,例 如,熱熔融、樹脂、溶劑黏合或纖維的機械聯鎖,有時與 其擠壓同時發生。領平板包域由諸如乾式、歷式或氣 ML成網法針刺法、紡黏法或炫融吹出方法、及水纏結之 方法製得的纖維狀結構。該等纖維可有方向或無規地定 向。同時不織物典型不包括紙,對此應用來說,包括紙。 邊等纖維可由熱塑性聚合物、纖維素及/或陶党製得。熱塑 58 201137000 性聚合物包括(但不限於)聚苯乙烯類、聚氣乙烯類、聚丙烯 酸類、聚縮删、聚醯胺類、聚碳_旨類、聚§旨類、聚謎 醯亞胺類、聚醯亞胺類、聚酮類、聚伸苯基醚類、聚伸苯 基硫醚類、聚石風類。纖維素包括(但不限於)纖維素(例如, 棉花或其它天然發生來源)、再生纖維素(例如,嫘螢)及醋 酸酯纖維素(例如,醋酸酯纖維素及三醋酸酯纖維素)。陶瓷 包括(俱;f限於)全部型式的玻璃及氧化紹、二氧化石夕及氧化 锆化合物(例如,矽酸鋁)。 額外地,不織物或該不織物之纖維可經塗佈或表面處 理以改良該不織物的功能性。例如,該塗層或表面處理可 改良不織物或其纖維之黏著性、改良不織物的高溫熔融完 整性及/或改良不織物之潤溼能力。關於改良該高溫熔融完 整性,不織物及/或其纖維可以陶瓷材料塗佈或表面處理。 此等陶瓷材料包括(但不限於)氧化鋁、二氧化矽及氧化锆化 合物、及其組合。 根據至少所選擇的具體實例,微孔膜對不織平板之黏 合應S玄維持可需要的高釋放速率,其中在陽極與陰極間之 電解質的離子物種將有自由移動率。離子物種的移動率典 型以電阻(ER)或麥克慕冷(MacMullen)數測量(電解質飽和 的多孔媒質之電阻對相等體積的電解質之電阻的比率[參 見:美國專利案號4,464,238,其以參考之方式併入本文])。 此外會有需要使用不會減低穿過隔板的離子移動率(或增 加電阻)之材料將薄片黏附至該薄膜。 5亥黏著劑可選自於(但是不限於)聚偏二氟乙烯 59 201137000 (PVDF);聚胺基曱酸酯;聚環氧乙烷(PEG);聚丙烯腈 (PAN);聚丙烯酸曱酯(PMA);聚(甲基丙烯酸甲 酯)(PMMA);聚丙烯醯胺;聚醋酸乙烯酯;聚乙烯吡咯啶 酮;聚二丙烯酸四甘醇酯;任何前述之共聚物及其組合。 共單體選擇的一個準則為共單體修改均聚物之表面能量的 能力。表面能量影響至少:共聚物的溶解度,因此影響該 共聚物塗佈到薄膜上;共聚物對薄膜之黏附性,因此影響 電池製造及隨後的性能;及塗層的潤渔能力,因此影響液 體電解質吸收進隔板中。合適的共單體包括(但不限於)六氟 丙烯、八氟-1-丁烯、八氟異丁烯及四氟乙稀。該共單體成 分的較佳範圍從3至20重量%及最佳為7至15%。較佳的是, 該黏著劑或可膨潤的聚合物係聚偏二氟乙烯之共聚物。較 佳的是’該PVDF共聚物係聚偏二氟乙烯與六氟丙烯之共聚 物(PVDF : HFP),及最佳為該PVDF : HFP比率係91 : 9。 該PVDF共聚物可從美國ΡΑ.的費城(Philadelphia)之愛而富 阿托化學(Elf Atochem);比利時(Belgium)的布魯塞爾 (Brussels)之梭耳菲(Solvay)SA ;及曰本茨城(Ibaraki)的吳羽 化學工業有限公司(Kureha Chemical Industries, LTD.)商業 購得。較佳的PVDF : HFP共聚物係來自愛而富阿托化學的 金拿(KYNAR)2800。 該潤溼劑可選自於與該可膨潤的聚合物相容(即,可溶 混或將不相分離)之材料(諸如,包括砜類、硫酸鹽及氮的潤 溼劑),其在微量(例如,該可膨潤聚合物的10-20%)下將不 會在電池化學中具有有害的影響,及其在室溫下為流體或 60 201137000 具有Tg(玻璃轉換溫度)<50°C。該潤溼劑可選自於(但是不限 於)以酞酸酯為基礎的酯類、環狀碳酸酯類、聚合的碳酸酯 類及其混合物。該以酞酸酯為基底的酯類係選自於(但不限 於)酞酸二丁酯(DBP)。該環狀碳酸酯類係選自於碳酸乙二 酯(EC)、碳酸丙二酯(PC)、碳酸丁二酯(BC)及其混合物。 該聚合的碳酸酯類係選自於(但不限於)聚碳酸伸乙烯酯及 線性碳酸伸丙酯類。 本發明之至少所選擇的具體實例可提供一種具有二個 黏合在一起的部分之微孔性電池隔板。每個部分可由共擠 壓或非共擠壓的層組成及可由相同或不同材料製得。為了 獲得較大的穿刺強度,某些具體實例可將二個部分黏合在 一起,其經筛選以便當結合時具有想要的總隔板厚度。較 佳的是,所選擇的具體實例可藉由塌陷的氣泡技術製得; 即,吹膜技術,其中將單一炫融聚合物(或聚合物之摻合物) 擠壓通過環形模,從模具中放出的氣泡具有第一部分及第 二部分(每個部分粗略地代表該氣泡圓周的一半),然後該氣 泡塌陷到其自身上且在微孔形成(較佳為藉由退火及拉伸) 前黏合。當從模具中放出氣泡時,其實質上定向在機器方 向上。因此,當氣泡塌陷到其自身上且黏合時,該第一部 分及第二部分可定向在實質上相同方向(在定向的部分間 之角度偏差少於15〇)上。在相同步驟中,藉由允許該氣泡 的熔融(或接近熔融)聚合物接合在一起來進行塌陷及黏 合。藉由該氣泡塌陷到其自身上且黏合其,在可相等於其 它隔板的厚度下獲得增加的穿刺強度。該第一部分及第二 61 201137000 部分(其當黏合時提供用於微孔形成方法(例如,退火及拉伸 操作)的前驅物)可由下列材料製得,諸如聚烯烴類,較佳為 聚乙烯或聚丙烯、其共聚物及其混合物,及最佳為聚乙烯 及聚丙烯。 三層、停工電池隔板可指為使用在電化學電池(例如, 電池,特別是二級(或可再充電)電池,諸如鋰電池)中的多 孔膜。此三層隔板可具有聚丙烯-聚乙烯-聚丙烯架構。該隔 板可具有厚度小於3密耳(約75微米)。該隔板的厚度範圍在 0.5密耳(約12微米)至1.5密耳(約38微米)間為較佳。該隔板 厚度約1密耳(約25微米)為最佳。較佳的是,該隔板具有通 透性(如藉由JIS哥雷測量)少於300秒。以該隔板具有穿刺強 度至少300克為較佳。以該隔板具有孔隙度在範圍40%至 70°/。内為較佳。 製造該三層、停工電池隔板的方法之一通常包括下列 步驟:擠壓一無孔聚丙烯前驅物;擠壓一無孔聚乙烯前驅 物;形成一無孔三層前驅物,其中該聚乙烯前驅物夾在該 聚丙烯前驅物間;黏合該三層前驅物;退火該三層前驅物; 及拉伸該經黏合及退火的無孔性三層前驅物,以形成該多 孔電池隔板。 在至少一個具體實例中,該薄膜可為一從至少二種超 高分子量、具有不同分子量的聚烯烴之摻合物製得的微孔 性薄片。在一個具體實例中,這些超高分子量聚烯烴類可 為超高分子量聚乙烯(UHMWPE)。在另一個具體實例中, 該薄膜係一具有第一分子量的第一超高分子量聚乙烯與一 62 201137000 具有第二分子量的第二超高分子量聚乙烯之摻合物,該第 一分子量及該第二分子量皆大於1百萬且彼此不同。在另一 個具體實例中,該薄膜係一具有第一分子量的第一超高分 子量聚乙烯、具有第二分子量的第二超高分子量聚乙烯(該 第一分子量及第二分子量皆大於1百萬且彼此不同)與具有 第三分子量的第三聚烯烴(第三分子量為少於1百萬)之摻合 物。在更另一個具體實例中,該薄膜可具有IV大於或等於 6.3分升/克。在另一個具體實例中,該薄膜可具有IV大於或 等於7.7分升/克。 在至少所選擇的具體實例中,本發明係有關雙軸定向 多孔膜、包含雙轴定向多孔膜的複合物、雙軸定向微孔膜、 雙軸定向大孔膜、電池隔板、過濾媒質、濕度控制媒質、 平板膜、液體滯留媒質及其類似物、相關的方法、製造方 法、使用方法及其類似方法。 根據至少所選擇的具體實例,積層材料或織物可併入 一根據本發明所製得之複合物薄膜,其擋風及抗液體通 透、水分蒸氣穿透及空氣可通透。該積層織物亦可包括一 或多層紡織品基底或面布材料,其藉由任何合適的方法積 層至該薄膜。該面布可從任何滿足經建立用於所提供的應 用之性能及其它準則的合適材料製得。 使用“水分蒸氣穿透”來描述一准許水蒸氣通過該物件 的物件,諸如積層的織物或複合物薄膜。用語“抗液體通透” 使用來描述不由挑戰液體(諸如水)“弄濕”或“浸溼”,及防止 液體在相當低壓的週圍條件下通透過薄膜之物件。用語“阻 63 201137000 播風通透描述在貫穿一物件〇 5,,水的壓力差下,該物件防 止空氣通透大於多於約每平方叹三(3)(:™之能力。 以實施例說明之,併入該積層織物之炎克、外套或其 匕衣物或所凡成的產物可准許水分蒸氣穿透通過該衣物。 水刀热氣可產生自使用者的汗水,及衣物或所完成的產物 准許在對使用者足_速率下讓水分蒸氣穿透為較佳,以 便在典型條件下的使㈣間賊㈣及舒適。該積層織物 亦抗液體及風通透為較佳,同時空氣可通透。 根據本發明之至少所選擇的具體實例,該空氣滤清器 匣包括至少一片打摺的微孔膜。 至少所選擇的微孔膜係藉由乾式拉伸方法製得及具有 實質上圓形制,且機財向抗拉強度對橫向方向抗拉強 度之比率在範圍0.5至6鄭該製造前述微孔膜的方法可包 括下列步驟:將—聚合物擠壓成-無孔‘I·績驅物,及雙軸 拉伸該無祕前㈣,該雙錄伸包括絲方向拉伸及橫 向方向拉伸’該橫向方向包括同步控制的機器方向鬆弛。 本發明之至少所選擇的具體實例可針對雙軸定向多孔 膜、包含雙軸定向多孔膜之複合物、雙財向微孔膜、雙 軸定向大孔膜、電池隔板、料„、濕度控制媒質、平 板膜、液體滯留媒質及其類似物、相關的方法、製造方法、 使用方法及其類似方法。 根據本發明之至少所選擇的具體實例,有提供至少下 列之一 ·· 一種薄膜,其包含: 64 201137000 至少一層藉由乾式拉伸方法製得的多孔聚合物膜, 該方法包括下列步驟: 將一聚合物擠壓成至少單一層無孔性前驅物,及 雙軸拉伸該無孔性前驅物,該雙軸拉伸包括機器方 向拉伸及橫向方向拉伸,該橫向方向拉伸包括同步控制的 機器方向鬆弛; 且具有實質上圓形孔洞,孔隙度約40%至90%;機器方 向抗拉強度對橫向方向抗拉強度的比率在範圍約0.5至5.0 内,哥雷小於約100,平均流量孔徑至少約0.04微米,水孔 尺寸至少約0.07微米及水頭壓力大於約140磅/平方英寸。 上述薄膜,其中該雙轴拉伸的機器方向拉伸包括橫向 方向拉伸與同步機器方向拉伸之步驟,及其中該雙軸拉伸 進一步包括橫向方向鬆弛的步驟。 上述薄膜,其中該無孔性前驅物的雙軸拉伸進一步包 括額外的機器方向拉伸步驟。 上述薄膜,其中該乾式拉伸方法進一步包括下列步驟: 機器方向拉伸以在該雙軸拉伸前形成多孔中間物。 上述薄膜,其中該無孔性前驅物的雙軸拉伸包括機器 方向拉伸,額外的橫向方向拉伸與同步機器方向拉伸,及 橫向方向鬆弛。 上述薄膜,其中該乾式拉伸方法包括下列步驟: 機器方向拉伸接著包括該橫向方向拉伸與同步控制 的機器方向鬆弛之雙軸拉伸,第二橫向方向拉伸與同步機 器方向拉伸,接著橫向方向鬆弛。 65 201137000 上述薄膜,該多孔聚合物膜進一步具有厚度至少約8微 米,橫向方向抗拉強度至少約300公斤力/平方公分,平均 流量孔徑的標準偏差小於約0.025,水侵入壓力至少約8〇時 /平方英寸及WVTR至少約8,000克/平方公尺-天。 上述薄膜’該多孔聚合物膜進一步具有橫向方向收縮 在90°C下少於約1.0%。 上述薄膜’該多孔聚合物膜進一步具有橫向方向收縮 在105°C下少於約1.5%。 上述薄膜,該多孔聚合物膜進一步具有橫向方向收縮 在120°C下少於約3.0〇/〇。 上述薄膜,該多孔聚合物膜進一步具有機器方向收縮 在90°C下少於約10%。 上述薄膜,該多孔聚合物膜進一步具有機器方向收縮 在105°C下少於約20%。 上述薄膜,該多孔聚合物膜進一步具有機器方向收縮 在120°C下少於約30%。 上述薄膜,該多孔聚合物膜進一步具有厚度在範圍約8 微米至80微米内。 上述薄膜,其中該無孔性前驅物為吹膜及縫模膜之一。 上述薄膜,其中該無孔性前驅物係藉由單層擠壓及多 層擠壓之至少一種所形成的單層前驅物。 上辻·薄膜其中该無孔性前驅物係藉由共擠壓及積層 之至少一種所形成的多層前驅物。 上述/專膜,其中該多孔聚合物膜包含聚丙稀、聚乙稀、 66 201137000 其摻合物及其組合之一。 上述薄膜,其中該多孔聚合物膜使用具有熔體流動指 數(MFI)約0.01至10·0及聚合物結晶性至少約45%的聚烯烴 樹脂。 上述薄膜,其中該前驅物係單層前驅物及多層前驅物 之一。 上述薄膜,其中該薄膜進一步包括至少一種黏合至該 多孔聚合物膜之至少一邊的不織、機織或編織層。 上述薄膜,其中該薄膜由複數層該多孔聚合物膜組成。 上述薄膜,其中該多孔聚合物膜由至少二層組成。 上述薄膜,其中該薄膜具有實質上圓形孔洞,孔隙度 約40%至90%,機器方向抗拉強度對橫向方向抗拉強度的比 率在範圍約0.5至5.0内,哥雷小於約100,平均流量孔徑至 少約0.04微米,水孔尺寸至少約0.07微米及水頭壓力大於約 140磅/平方英寸。 上述薄膜,其中該聚合物係一半結晶聚合物。 上述薄膜,其中該聚合物係選自於由下列所組成之 群:聚烯烴類、碳氟化合物、聚醯胺類、聚酯類、聚縮醛 類(或聚甲醛類)、聚硫化物、聚苯基硫醚、聚乙烯醇類、其 共聚物、其摻合物及其組合。 上述薄膜,該多孔聚合物膜進一步具有孔隙度約65% 至90%,機器方向抗拉強度對橫向方向抗拉強度的比率在 範圍約1.0至5_0,哥雷小於約20,平均流量孔徑至少約0.05 微米,水孔尺寸至少約0.08微米及水頭壓力大於約145磅/ 67 201137000 平方英寸。 上述薄膜,其中該實質上圓形孔洞具有縱深比率在範 圍約0.75至1.25内及球徑率因子在範圍約0.25至8·0内之至 少 '種。 過濾薄膜、濕度控制薄膜、氣體及/或液體分離薄膜、 選擇性通過濕氣及阻擋液體水的薄膜、及多層薄膜結構之 至少一種,其包含上述薄膜。 上述薄膜,其中該乾式拉伸方法的雙軸拉伸步驟包括 同步雙軸拉伸複數層分離、疊置的無孔性前驅物層,其中 該等層在拉伸方法期間沒有黏合在一起。 上述薄膜,其中該乾式拉伸方法的雙軸拉伸步驟包括 同步雙軸拉伸至少三層分離、疊置的無孔性前驅物層。 上述薄膜,其中該乾式拉伸方法的雙軸拉伸步驟包括 同步雙軸拉伸至少八層分離、疊置的無孔性前驅物層。 上述薄膜,其中該乾式拉伸方法的雙軸拉伸步驟包括 同步雙轴拉伸至少十六層分離、疊置的無孔性前驅物層。 上述薄膜,其中該乾式拉伸方法的雙軸拉伸步驟包括 同步雙軸拉伸複數層經黏合、疊置的無孔性前驅物層,其 中全部的層在拉伸方法期間黏合在一起。 上述薄膜,其中該乾式拉伸方法的雙軸拉伸步驟包括 同步雙軸拉伸複數層分離、疊置的無孔性前驅物層,及複 數層經黏合、疊置的無孔性前驅物層,其中該等層某些在 拉伸方法期間黏合在一起。 上述薄膜,其中該擠壓步驟係乾式擠壓方法,其使用 68 201137000 具有縫模及環形模之至少一種的擠壓器。 一種電池隔板,其包含: 至少一層藉由乾式拉伸方法製得的多孔聚合物膜, 該方法包括下列步驟: 將一聚合物擠壓成至少一單層無孔性前驅物,及 雙軸拉伸該無孔性前驅物,該雙軸拉伸包括機器方 向拉伸及橫向方向拉伸,該橫向方向拉伸包括同步控制的 機器方向鬆弛; 及具有實質上圓形孔洞,孔隙度約40%至70%,機器方 向抗拉強度對橫向方向抗拉強度的比率在範圍約0.5至5.0 内,哥雷小於約300,平均流量孔徑至少約0.01微米及水孔 尺寸至少約0.04微米。 上述電池隔板,其中該至少一層多孔聚合物膜進一步 具有厚度至少約8微米,橫向方向抗拉強度至少約300公斤 力/平方公分,平均流量孔徑的標準偏差少於約0.025。 上述電池隔板,其中該至少一層多孔聚合物膜進一步 具有橫向方向收縮在90°C下少於約2%。 上述電池,其中該至少一層多孔聚合物膜進一步具有 機器方向收縮在90°C下少於約6%。 上述電池隔板,其中該無孔性前驅物藉由單層擠壓及 多層擠壓之至少一種形成。 上述電池隔板,其中該無孔性前驅物係藉由共擠壓及 積層之至少一種所形成的多層前驅物。 上述電池隔板,其中該隔板由複數層該多孔聚合物膜 69 201137000 組成。 上述電池隔板,其中該聚合物係選自於由下列所組成 之群:聚稀烴類、碳a化合物、聚醯胺類、聚s旨類、聚縮 醛類(或聚甲醛類)、聚硫化物、聚苯基硫醚、聚乙烯醇類、 其共聚物、其換合物及其組合。 上述電池隔板,其中該實質上圓形孔洞具有縱深比率 在範圍約0.75至1.25内及球徑率因子在範圍約〇 25至8 〇内 之至少一種。 一種多孔膜,其包含: 至少一層藉由乾式拉伸方法製得的多孔聚合物膜,該 方法包括下列步驟: 將一聚合物擠壓成至少一單層無孔性前驅物,及 雙軸拉伸該無孔性前驅物,該雙軸拉伸包括機器方 向拉伸及橫向方向拉伸,該橫向方向拉伸包括同步控制的 機器方向鬆弛; 及具有實質上圓形孔洞,孔隙度至少約40% ,機器方 向抗拉強度對橫向方向抗拉強度之比率在範圍約〇 5至5 〇 内’哥雷小於約300 ’平均流量孔徑至少約〇.〇1微米及水孔 尺寸至少約0.04微米。 電池隔板、過濾薄膜、濕度控制薄膜、氣體及/或液體 分離薄膜、選擇性通過濕氣及阻擋液體水的薄膜、及多層 薄膜結構之至少一種,其包含上述薄膜。 在需要濕度控制的裝置中,該改良包括上述薄膜。 在過濾裝置中,該改良包括上述薄膜。 201137000 在溫度影響裝置中,該改良包括上述薄膜。 一種製造微孔膜的方法,其包括下列步驟: 將一聚合物擠壓成一無孔性前驅物,及 雙軸拉伸該無孔性前驅物,該雙轴拉伸包括機器方 向拉伸及橫向方向拉伸,該橫向方向包括同步控制的機器 方向鬆弛。 上述方法,其中該聚合物排除用於隨後移除以形成孔 洞之任何油類或促進孔洞形成之任何孔洞形成材料。 上述方法,其中該聚合物係一半結晶聚合物。 上述方法,其中該聚合物係選自於由下列所組成之 群:聚烯烴類、碳氟化合物、聚醯胺類、聚酯類、聚縮醛 類(或聚曱醛類)、聚硫化物、聚乙烯醇類、其共聚合物及其 組合。 上述方法,更包括下列步驟: 在擠壓後及在雙軸拉伸前退火該無孔前驅物。 上述方法,其中在溫度範圍Tm-80°C至Tm-10°C下進行 該退火。 上述方法,其中該雙軸拉伸包括下列步驟: 機器方向拉伸,及 之後,橫向方向拉伸,包括同步機器方向鬆弛。 上述方法,其中熱或冷或二者進行機器方向拉伸。 上述方法,其中在溫度<Tm-50°C下進行冷機器方向拉 伸。 上述方法,其中在溫度<Tm-10°C下進行熱機器方向拉 71 201137000 伸。 上述方法,其中該總機器方向拉伸係在範圍50-500% 内。 上述方法,其中該總橫向方向拉伸係在範圍100-1200% 内。 上述方法,其中該機器方向鬆弛係在範圍5-80%内。 一種薄膜,其包含: 一藉由乾式拉伸方法製得的微孔性聚合物膜及具有 實質上圓形孔洞,且機器方向抗拉強度對橫向方向抗拉強 度之比率在範圍0.5至6.0内。 上述薄膜,其中該微孔性聚合物膜的平均孔洞尺寸在 範圍0.03至0.30微米内。 上述薄膜,其中該微孔性聚合物膜具有孔隙度在範圍 20-80% 内。 上述薄膜,其中該實質上圓形孔洞具有縱深比率在範 圍約0.75至1.25内及球徑率因子在範圍約0.25至8.0内之至 少-*種。 上述薄膜,其中該橫向抗拉強度係>250公斤/平方公 分。 一種電池隔板,其包含上述薄膜。 一種多層薄膜結構,其包含上述薄膜。 一種空氣濾、清器匣,其包含上述薄膜。 在從氣體中過濾出微粒物質的方法中,該改良包括上 述薄膜。 72 201137000 一種氣體過濾媒質,其包含上述薄膜。 一種電池隔板,其包含一具有高溫熔融完整性的不織 平板及上述薄膜。 一種以上述隔板製得的電池。 在多孔膜中,該改良包括下列之至少一種:除了隙縫 外的孔洞形狀、圓形孔洞、如在第6-8及13-54圖之一中所顯 示出的那些孔洞、如在第13-50圖之一中所顯示出的那些孔 洞、如在第6-8及13-50圖之一中所顯示出的那些孔洞、在表 I、II或III之一中所顯示出的性質、增加橫向方向抗拉強度、 平衡的MD及TD物理性質、與水分傳送及水頭壓力相關的 高性能、減低哥雷、具有平衡的物理性質之高孔隙度、孔 洞結構(包括孔洞尺寸及孔洞尺寸分佈)的一致性、提高耐久 性、此等薄膜與其它多孔材料之複合物;此等薄膜、膜或 層與多孔不織布之複合物或積層物;塗佈的薄膜、共擠壓 的薄膜、積層的薄膜;具有想要的水分傳送或水分蒸氣傳 送、水頭性能及物理強度性質之薄膜;在更物理嚴苛的環 境下沒有損失想要的薄膜特徵之實用性、薄膜水分傳送性 能與巨觀物理性質結合之組合、具疏水性、高度可通透性、 化學及機械安定性、具有南抗拉強度及其組合。 至少所選擇的微孔膜係藉由乾式拉伸方法製得及具有 實質上圓形孔洞,且機器方向抗拉強度對橫向方向抗拉強 度之比率在範圍0.5至6.0内。該製得前述微孔膜的方法可包 括下列步驟:將一聚合物擠壓成一無孔性前驅物,及雙軸 拉伸該無孔性前驅物,該雙軸拉伸包括機器方向拉伸及橫 73 201137000 向方向拉伸,該橫向方向包括同步控制的機器方向鬆弛。 本發明之至少所選擇的具體實例可針對雙軸定向多孔膜、 包含雙軸定向多孔膜的複合物、雙軸定向微孔膜、雙軸定 向大孔膜、電池隔板、過濾媒質、濕度控制媒質、平板膜、 液體滯留媒質及其類似物、相關的方法、製造方法、使用 方法及其類似方法。 本發明可以其它形式具體化而沒有離開其精神及基本 屬性,因此,當指示出本發明之範圍時,應該參照所附加 的申請專利範圍而非前述專利說明書。再者,於本文中所 提出的全部數值範圍應該視為近似範圍及不必需為絕對範 圍。 【圖式簡單說明3 第1圖係西爾加得®單層的相片(SEM表面顯微照片), 其係習知的乾式拉伸型聚丙烯電池隔板。 第2圖係先述技藝之乾式拉伸型薄膜(單層薄膜)的相 片。 第3圖係先述技藝之乾式拉伸型薄膜(多層薄膜,積層 數層然後拉伸)的相片。 第4圖係西爾加得®單層的相片(SEM表面顯微照片), 其係溼式製程型聚乙烯電池隔板。 第5A圖係顆粒拉伸型薄膜的相片(SEM表面顯微照 片)。第5B圖係顆粒拉伸型薄膜的相片(SEM截面顯微照片)。 第6圖係根據本發明的一個具體實例之薄膜(單層薄 膜,雙軸定向方法)的相片(SEM表面顯微照片)。 74 201137000 第7圖係根據本發_另—個具體實例之薄膜(多層薄 膜’-起積層數層然後拉伸’雙軸定向方法)的相片(SEM 表面顯微照片)。 第8圖係根據本發明的更另一個具體實例之薄膜(多層 薄膜,數層共擠壓然後拉伸,雙軸定向方法)的相片(讀 表面顯微照片)。 第9圖係根據本發明的雙軸定向薄膜製造方法之至少 一個具體實例,典型的TD拉伸方法之圖式表示。 弟10圖係習知的西爾加得@2500薄膜(pp單層,乾式拉 伸方法)在20,000X倍率下之相片(SEM表面顯微照片)。 第11圖係第10圖之薄膜在5,000x倍率下的相片(SEM 表面顯微照片)。 第12圖係第10及11圖之薄膜在2〇,〇〇〇χ倍率下的相片 (SEM截面顯微照片)。 第13及14圖係根據本發明的另一個薄膜具體實例之薄 膜樣品Β(ΡΡ單層,塌陷的氣泡,雙軸定向方法)的各別相片 (在20,000Χ及5,000Χ倍率下之SEM表面Α(上部)顯微照片)。 第15及16圖係第13及14圖的薄膜樣品B之各別相片(在 20,000X及5,000X倍率下之SEM表面B(底部)顯微照片)。 第17及18圖係第13至16圖的薄膜樣品B之各別相片(在 20,OOOX及5,000X倍率下之SEM截面顯微照片)。 第19、20及21圖係根據本發明的又另一個薄膜或複合 物具體實例(PP單層[樣品不織PP,積層[熱+壓力])之薄 膜樣品C的各別相片(在2〇,〇〇〇χ、5,〇〇〇X及1,〇〇〇Χ倍率下之 75 201137000 SEM表面A(上部)顯微照片)。 第22、23及24圖係第19至21圖之薄膜樣品C的各別相片 (在2〇,OOOX、5,〇〇〇χ及1,000χ倍率下之SEM表面B(底部)顯 微照片)。 第25及26圖係第19至24圖之薄膜樣品C的各別相片(在 20,000X及5,000X倍率下之SEM截面顯微照片)。 第27圖係第19至26圖在上部具有不織PP層之薄膜樣品 C(倒轉)的相片(在615X倍率下之SEM截面顯微照片)。 第27A圖係第27圖的薄膜樣品C之單層PP層的—部分 的相片(在3,420X倍率下之SEM截面顯微照片)(注意在第27 圖中之矩形)。 第28及29圖係根據本發明的更另一個薄膜具體實例之 薄膜樣品A(單層PP ’非塌陷的氣泡,雙軸定向方法)的各別 相片(在20,000X及5,000X倍率下的SEM表面A(上部)顯微照 片)。 第30及31圖係第28及29圖之薄膜樣品A的各別相片(在 20,000X及5,000X倍率下之SEM表面B(底部)顯微照片)。 第32、33及34圖係根據本發明的另一個具體實例之薄 膜或複合物樣品G(PP單層,非塌陷的氣泡,雙軸定向方法 [樣品A]/不織PP ’積層[熱+壓力])的各別相片(在2〇,〇〇〇χ、 5,000Χ及Ι,ΟΟΟΧ倍率下之SEM表面Α(上部)顯微照片)。 第35、36及37圖係第32至34圖之薄膜樣品G的各別相片 (在2〇,OOOX、5,000X及ΐ,〇〇〇χ倍率下之SEM表面B(底部)顯 微照片)。 76 201137000 第38及39圖係第32至37圖之薄膜樣品G的各別相片(在 20,000X及3,420X倍率下之SEM截面顯微照片)。 第40圖係第32至39圖在上部具有不織pp層之薄膜樣品 G(倒轉)的相片(在615X倍率下之SEM截面顯微照片)。 第40A圖係第40圖的薄膜樣品g之單層PP層的—部分 的相片(在3,420X倍率下的SEM截面顯微照片)(注意在第4〇 圖中的矩形)。 第41及42圖係根據本發明的又另一個薄膜具體實例之 薄膜樣品E(PP單層,塌陷的氣泡,雙軸定向方法)的各別相 片(在20,000X及5,000X倍率下之SEM表面A(上部)顯微照 片)。 第43及44圖係第41及42圖之薄膜樣品e的各別相片(在 20,000X及5,000X倍率下之SEM表面B(底部)顯微照片)。 第45及46圖係第41至44圖之薄膜樣品E的各別相片(在 20,000X及5,000X倍率下之SEM截面顯微照片)。 第4 7及4 8圖係根據本發明的更另一個薄膜具體實例之 薄膜樣品F(單層PP,非塌陷的氣泡,雙軸定向方法)的各別 相片(在20,000X及5,000X倍率下之SEM表面A(上部)顯微照 片)〇 第49及50圖係第47及48圖之薄膜樣品F的各別相片(在 20,000X及5,000X倍率下之SEM表面B(底部)顯微照片)。 第51及52圖係根據本發明的又更另一個薄膜具體實例 之薄膜樣品D(共擠壓的PP/PE/PP三層,塌陷的氣泡,雙軸 定向方法)的各別相片(在20,000X及5,000X倍率下之SEM表 77 201137000 面A(上部)顯微照片)。 第53及54圖係第51及52圖之薄膜樣品D的各別相片(在 20,000X及5,000X倍率下之SEM表面B(底部)顯微照片)。 【主要元件符號說明】 (無) 785. HVAC a. Liquid Dehumidification (LD) Air Conditioning (Temperature and Humidity Control): In a film-based LD system, temperature and humidity can be controlled by a salt solution that absorbs or releases water vapor through the porous membrane. Heat is the driving force in the system (non-pressure, as in most air conditioning systems). In order for the system to work, a hydrophobic film that is easily passed through water vapor (to block the liquid) is required. b. Water-based air conditioning (temperature and humidity control): The evaporative cooling system or cooling water system operates on a slightly different principle than the LD system' but it will use the same basic properties of the film. c•Energy Recovery Ventilation (ERV): The simplest hvac application uses this membrane as a key component in compensating for heat and exchange between the exhaust and exhaust air. 6. 5® · Friendly, Wind. Thermal oxygen desalination applications use the same film properties as HVAC. Because the 5 liter film blocks the liquid brine but passes through the water vapor, it can be constructed 42 201137000 A system for separating brine and fresh water by membrane. As the brine is at a higher temperature, fresh water vapor is evolved from the brine, which drifts through the membrane and condenses to form a fresh water stream. 7. Fuel cell: In a fuel cell, the proton exchange membrane (pEM) must be kept moist. This can be achieved with the use of a film-based humidification unit. 8. Liquid and/or air filtration: In these specific examples, the porous membrane acts as a simple filter. When liquid, vapor, gas or air passes through the film, particles that are too large to pass through the pores are blocked at the surface of the film. Particularly in the case of liquid and air filtration, the unique pore structure of at least selected embodiments of the present invention may have certain specific benefits such as durability, high efficiency, narrow pore size distribution, and consistent flow rate benefits. . According to at least the selected porous material or porous film embodiment of the present invention, at least the selected porous single-layer polypropylene (single-layer PP) film has excellent balance of MD and TD physical properties, and is also a high-performance film (such as By moisture transfer and head performance measurement). The single layer pp film selected may also have germanium porosity (> 60%), but still maintain balanced physical properties (when compared to more conventional films). Similarly, the selected single layer pp film or film can be produced by laminating or laminating a porous polypropylene (PP) nonwoven material (not pp) on one or both sides. The resulting composite 'film or product (single layer pp/non-woven PP) or (non-woven PP/single layer PP/non-woven PP) preferably retains excellent moisture transport and altered head performance. Similarly, the resulting composite 43 201137000 product (single layer PP/non-woven PP) or (non-woven PP/single layer PP/non-woven pp) can have properties far exceeding the physical strength of the comparative film. Therefore, this newly produced composite product (single layer PP/non-woven PP) or (non-woven PP/single layer pp/non-woven pp) can have the advantage of being added, which is useful in a more physical and harsh environment without Loss of the desired film characteristics. These are the single-layer pp films and composite products (single layer PP; single layer PP/non-woven PP; or non-woven pp/single layer pp/non-woven PP) in their film moisture transport properties and their macroscopic physics. The combination of properties is unique. For example, previous films may have real porosity but insufficient head pressure or performance, other films are too brittle, other films are strong but lack other properties, or the like. At the same time, at least selected specific embodiments of the invention may have, for example, desired porosity, moisture transport, head pressure, strength, and the like. At least selected porous multi-layer polypropylene (multilayer PP) films having at least selected porous multi-layer polypropylene (multilayer PP) films according to the present invention have excellent balance of MD and TD physical properties, and are also a high performance film (eg, by Moisture transfer and head performance measurement). The multilayer PP film selected may also have a high porosity (> 60%) but still maintain a balanced physical property (when compared to more conventional films). Similarly, the multilayer pp film or film selected as such can be produced by laminating or laminating one or both of the porous polypropylene (PP) nonwoven material (non-woven PP). The resulting composite, film or product (multilayer PP/non-woven PP) or (non-woven PP/multilayer PP/non-woven PP) preferably retains excellent moisture transport and altered head performance. Likewise, the resulting composite product (multilayer PP/non-woven PP) or (non-woven PP/multilayer PP/non-woven PP) can have properties far exceeding the physical strength of the comparative film. Therefore, this newly produced composite 44 201137000 product (multilayer pp/nonwoven pp) or (nonwoven pp/multilayer pp/nonwoven pp) can have the advantage of being added, which is useful in a more physical and harsh environment without Loss of the desired film characteristics. The selected multilayer PP film and composite products (multilayer PP; multi-layer PP/non-woven PP; or non-woven PP/multilayer PP/non-woven PP) combine their moisture transport properties with their macroscopic physical properties. Unique in combination. For example, previous films may have real porosity but insufficient head pressure or performance, other films are too brittle, other films are strong but lack other properties, or the like. At the same time, at least selected specific examples of the invention may have, for example, desired porosity, moisture transport, head pressure, strength, and the like. According to at least selected porous material or porous film embodiments of the present invention, at least the selected porous single layer polyethylene (single layer PE) film has excellent balance of MD and TD physical properties, and is also a high performance film (eg, By moisture transfer and head performance measurement). This selected single layer of P E film can also have high porosity (> 60%) but still maintain balanced physical properties (when compared to more conventional films). Similarly, the selected single-layer PE film or film may be coated on one or both sides with a porous polyethylene (PE) nonwoven material (non-woven PE) or a porous polypropylene (PP) nonwoven material (non-woven PP). ) Manufactured by merging or laminating. The resulting composite, film or product (single layer PE/non-woven PE) or (non-woven PE/single layer PE/non-woven PE) preferably retains excellent moisture transport and altered head performance. Likewise, the resulting composite product (single layer PE/non-woven pe) or (non-woven PE/single layer PE/non-woven PE) can have physical strength properties far exceeding that of the comparative film. Therefore, this newly produced composite product (single layer pE/non-woven PE) or (non-woven PE/single-layer PE/non-woven PE) can have the advantage of being added, which is useful in the more physical 45 201137000 harsh environment. There is no loss of the highly desirable _ characteristics. The choice of single-layer PE film and composite product (single-layer pE; single-layer pE/non-woven PE; or non-woven PE/single-layer pE/non-woven pE) in its film moisture transport performance and its macroscopic physics Combination of properties (4). For example, a cut film may have a water repellency of (four) degrees, other films that are too fragile, other films that are strong but lack other properties, or the like. At the same time, the specific examples of the at least the transition of the present invention may have, for example, the desired porosity 'moisture transfer, head pressure, strength and the like. According to at least the selected porous material or porous film embodiment of the present invention, at least the selected porous multilayer polyethylene (multilayer pE) film has excellent balance of MD and TD physical properties, and is also a high-quality film. The multilayer pE film selected by this means of moisture transport and head performance measurement can also have high porosity (> 60%), but still maintain balanced physical properties (when compared to more conventional films). Similarly, the selected multilayer PE film or film may be coated on one or both sides with a porous polyethylene (PE) nonwoven material (non-woven pE) or a porous polypropylene (PP) nonwoven material (non-woven PP). Made by combining or layering. The resulting composite, film or product (multilayer PE/non-woven pe) or (non-woven/multi-layer PE/non-woven PE) preferably retains excellent moisture transport and altered head performance. Likewise, the resulting composite product (multilayer PE/non-woven PE) or (non-woven PE/multilayer PE/non-woven PE) can have physical strength properties far exceeding that of the comparative film. Therefore, this newly produced composite product (multilayer PE/non-woven PE) or (non-woven PE/multilayer PE/non-woven PE) can have the advantage of being added, which is useful in a more physical and harsh environment without loss of height. The desired film characteristics. These selected multilayer PE films and composite products (multilayer PE; multilayer PE/ 46 201137000 non-woven PE; or non-woven PE/multilayer PE/non-woven PE) combine their moisture transport properties with their macroscopic physical properties. The combination is unique. For example, previous films may have real porosity but insufficient head pressure or performance, other films are too brittle, other films are strong but lack other properties, or the like. However, at least selected specific examples of the invention may have, for example, desirable porosity, moisture transport, head pressure, strength, and the like. At least selected porous single-layer polymer film (for example, a single layer (which may have one or more layers) of a polyolefin (PO) film, such as polypropylene (pp), according to at least selected porous material or porous film of the present invention. And / or polyethylene (PE) (including PE, pp or pE + pp blend) single-layer film) has excellent balance of md and TD physical properties, and is also a high-performance film (such as by moisture transport ( Or moisture vapor transmission) and head performance measurement). The selected monolayer p〇 film can also have a high porosity (> 60%), but still maintain a balanced physical location (when compared to more conventional films). Likewise, the selected single layer PO film or film may be on one or both sides with a porous nonwoven material (such as a non-woven polymeric material, such as a p〇 non-woven material (such as porous polyethylene (PE)). The woven material (non-woven PE) and/or the porous polypropylene (pp) nonwoven material (non-woven pp) (including PE, PP or PE+PP blend)) are produced by lamination or lamination. The resulting composite, film or product (single layer PO/non-woven PO) or (non-woven p/monolayer p〇/non-woven PO) preferably retains excellent moisture transport (or moisture vapor transport) and Change the performance of the head. Likewise, the resulting composite product (single layer PO/non-woven PO) or (non-woven PO/single layer PO/non-woven PO) can have properties far exceeding the physical strength of the comparative film. Therefore, this newly produced composite product (single layer PO/non-woven PO) or (non-woven PO/single layer PO/non-woven PO) can have the added excellent 47 201137000 points 'in a more physical and harsh environment Useful without loss of highly desirable film characteristics. These selected single-layer PO films and composite products (single layer PO; single layer p〇/non-woven PO; or non-woven PO/monolayer p〇/non-woven p〇) have their moisture transport properties in the film The combination of giant physical properties is unique in combination. For example, 'previous films may have porosity but insufficient head pressure or performance, other films are too fragile, other films are strong but lack other properties, or the like, although at least selected specific examples of the invention may have Desirable porosity, moisture transport, moisture vapor transport, head pressure, strength and similar properties. At least selected porous multilayer polymer films (eg, multilayer (two or more layers) polyolefin (PO) films, such as polypropylene (PP), and at least selected porous materials or porous films according to the present invention. / or polyethylene (PE) (including PE, PP or PE + PP blend) multilayer film) has excellent MD and TD physical properties balance, but also a high performance film (such as by moisture transport (or moisture vapor) Transfer) and head performance measurement). This selected multilayer PO film can also have high porosity (> 60%), but still maintain balanced physical properties (when compared to more conventional films). Similarly, the selected multilayer PO film or film may be on one or both sides with a porous PO nonwoven material (such as a porous polyethylene (PE) nonwoven material (non-woven PE) and/or a porous polypropylene (PP). ) Non-woven materials (non-woven PP) are manufactured by combining or laminating. The resulting composite, film or product (multilayer PO/non-woven PO) or (non-woven PO/multilayer PO/non-woven PO) preferably retains excellent moisture transport and altered good head performance. Likewise, the resulting composite product (multilayer PO/non-woven PO) or (non-woven PO/multilayer Pd/non-woven PO) can have physical strength properties far exceeding that of the comparative film. Thus, 48 201137000 This newly produced composite product (multilayer PO/non-woven PO) or (non-woven PO/multi-layer PO/non-woven PO) can have the added advantage that it is useful in more physical and harsh environments without Loss of the desired film characteristics. The combination of these selected multilayer PO films and composite products (multilayer PO; multilayer PO/non-woven PO; or non-woven PO/multilayer PO/non-woven PO) in combination with its moisture transport properties and its macroscopic physical properties Unique on the ground. For example, previous films may have porosity but insufficient head pressure or performance, other films are too fragile, other films are strong but lack other properties, or the like, although at least selected specific examples of the invention may have Desirable porosity, moisture transfer, head pressure, strength and similar properties. According to at least selected porous material or porous film embodiments of the present invention, the holes (openings) have the following hole depth ratios (according to the hole opening in the machine direction (MD) (length) and the transverse machine direction (TD) (width) Physical dimensions, by measuring, for example, one or more holes in the SEMs above or on the front surface (A side) of the selected film or composite (eg, a single layer, two or three layers of film) Several holes are preferred to confirm the average)): Typical: MD/TD depth ratio is better in the range of 0.75 to 1.50: MD/TD depth ratio is best in the range of 0.75 to 1.25: MD/TD depth ratio is in the range 0_85 to 1.25. According to at least the selected porous material or porous film embodiment of the present invention, if the MD/TD hole depth ratio is 1.0, the three-dimensional or 3D hole diameter 49 201137000 rate factor or ratio such as 0/but 0 claw 0) may be 1. 〇 to 8.0 or more; may preferably be 1.0 to 2.5; and most preferably 1.0 to 2.0 or less (according to the opening of the hole in the machine direction (MD) (length), transverse machine direction ( TD) (width) and physical dimensions in the thickness direction or section (ND) (thickness); for example, measuring one or more of the SEMs on the upper or front surface (edge) or the lower or back surface (edge) MD and TD of the hole (several holes are preferred to confirm the average), and one or more holes in the SEMs of the section, depth or height (C side) (length or width section or both) are measured ND (several holes are preferred to confirm the average) (when the same hole is difficult to measure ND, MD, and TD dimensions, the ND size can be a hole different from the MD and TD dimensions)). According to at least selected porous material or porous membrane embodiments of the present invention, the three-dimensional or 3D MD/TD/ND pore sphericity factor or ratio may range from 0.25 to 8_0 or more; it may preferably be from 5050 to 4.0. And most preferably it is preferably 1.0 to 2.0 or less. Specific examples of at least selected porous materials or porous membranes according to the present invention 'The holes (openings) have the following hole depth ratios (according to the hole opening in the machine direction (MD) (length) and the transverse machine direction (TD) (width) The physical dimensions in the measurement are based on the holes in the SEMs above or in the front (eight sides) of the selected single and triple film: in this machine direction MD (length) and transverse direction TD (width) Typical values for the range of depth ratios: The MD/TD depth ratio is in the range of 0.75 to 1.50. Specific examples of at least selected porous materials or porous membranes according to the present invention 'The holes (ports) have the following three-dimensional or 3D hole sphericity factor or 50 201137000 ratio (according to the hole opening in the machine direction (MD) (length), Transverse machine direction (TD) (width) and physical dimensions in thickness direction or cross section (ND) (thickness); for example 'measured in selected films, layers or composites (eg selected single and triple film) One or more holes in the SEMs of the top or front surface (A side), the lower or back surface side) and the section, depth or height (C side) (length or width section or both) (with a few holes) Preferably, to confirm the average) (when the same hole is difficult to measure ND, MD and TD dimensions, the ND size can be a hole different from the TD size)): For example: Typical: MD/TD depth ratio in the range of 0.75 to 1.50 The inner MD/ND size ratio is in the range 〇.5〇 to 7.50. The TD/ND size ratio is preferably in the range 〇.50 to 500. The MD/TD depth ratio is in the range of 0.75 to 1.25. ^0~0 size ratio In the range 1. 〇 to 2.5 丁 0 0 heart 0 size ratio in the range 1. 〇 to 2.5 Preferred: MD / TD ratio of depth within the range of 0.85 to 1.25 MD / ND ratio in size to within the range 1.〇 2.〇 TD / ND ratio of size to within the range 1.〇 2.〇. According to at least selected porous material or porous membrane embodiments of the present invention, the holes (openings) have the following pore sphericity factors or ratios (according to the opening of the hole in the machine direction (MD) (length), transverse machine direction (TD) ) (width) 51 201137000 and the physical dimension in the thickness direction or section (ND) (thickness) to measure above or before (A side), length and section (c side) of the selected single and triple film ) Based on the holes in the SEMs: The range of the ball diameter factor or ratio of the machine direction MD (length) and the lateral direction TD (width), and the typical value of the thickness direction ND (vertical height): MD/TD The depth ratio is in the range of 0.75 to 1.5 MD. The MD/ND size ratio is in the range 〇5 to 7.50 within the range 〇5 to 5.00. According to at least selected specific examples of the present invention, the microporous film is produced by a dry stretching process and has substantially circular pores, and the ratio of machine direction tensile strength to transverse tensile strength is in the range 〇5 It is preferably from 0.5 to 5.0 within 60%. The method of making the aforementioned microporous film comprises the steps of: extruding a polymer into a non-porous precursor, and biaxially stretching the non-porous precursor. The biaxial stretching comprises machine direction stretching and lateral direction. Stretching, the transverse direction stretching includes simultaneous machine direction slack control. According to at least selected specific examples of the present invention, the porous film is produced by a modified dry stretching process and has a substantially circular hole 'machine direction tensile strength to transverse direction tensile strength ratio in the range 〇. 5 to 6.0 'with low Gore (as compared to previous dry stretch film), with larger and more consistent average flow pore size (as compared to previous dry stretch film) 'or low Gorey and Both large and more consistent average flow pore sizes. While the film produced by the conventional dry stretching process has achieved excellent commercial success, in accordance with at least selected specific examples of the present invention, there is provided at least selected physical properties that have been modified, modified or enhanced so that it 52 201137000 We can use it in a wide range of applications, with good performance for special purposes and/or similar purposes. While at least some air cleaners have achieved commercial success, in accordance with at least selected specific examples of the present invention, there are provided improved, modified or enhanced filter media so that they can be used in a wide range of filtration or separation applications. It can have a good performance for a special purpose and / or its like. While some of these flat porous materials for filtration or separation processes have achieved commercial success, in accordance with at least selected specific examples of the present invention, there are provided improved, modified or enhanced porous materials so that they can be used over a wide range In the scope of application, it can be better for special purposes and/or its like. Although commercial materials have been commercially available for the selective passage of gases or moisture (moisture vapor) and porous liquids that block liquid water or brine (such as RO membranes sold by Dow Chemical, ePTFE membranes sold by W. Galle BHA and Further, according to at least selected specific examples of the invention, there are provided improved, modified or enhanced porous materials so that they can be used in a wide range of applications, have better performance for special purposes and/or It has a similar purpose. According to at least selected specific examples of the invention, the air cleaner comprises at least one porous membrane, such as a microporous membrane. In accordance with at least selected embodiments of the present invention, the microporous film is produced by a dry stretching process and has substantially circular voids, and the ratio of machine direction tensile strength to transverse tensile strength is in the range of 0.5 to 5.0. Inside. The method of making the aforementioned microporous film comprises the steps of: extruding a polymer into a non-porous precursor, and biaxially stretching the non-porous precursor, the biaxial stretching 53 201137000 including machine direction stretching and Stretching in the transverse direction, which includes machine direction slack for synchronous control. According to at least selected specific examples of the present invention, the porous film is produced by a t-modified dry stretching process and has substantially circular pores, and the ratio of the machine direction tensile strength to the transverse tensile strength is in the range @( ) 5 to 6 inches 'and have a low GRAY (as compared to the previous dry stretch film), with a higher and even average flow pore size (as compared to the previous dry stretch film) 'or low brother Both the larger and the more average flow pore size. The air eliminator according to the present invention may comprise at least a sheet-fingered microporous membrane, a plurality of microporous membranes' and its further comprising an end plate, a spacer or the like. As used herein, the air-passing device is used in the air I monthly air purifier. The present invention describes the invention in terms of an air cleaner filament; however, the present invention is limited to this, and it may equally include an air conditioner. As such, the film can be folded to provide a large area in a relatively small volume. In the alternative the film may have a sinusoidal pattern to provide a large transition area in a relatively small volume. Furthermore, the film may have any configuration; for example, it may have a configuration selected from the group consisting of a pointed cylindrical configuration, a folded flat configuration, and a spiral configuration. In the implementation of the manufacturing method, the construction of a small plate microporous film, 2 'the _ (four) into "or folding folding, so increase the shirt ^ P now" can be wound into a folded film The cylindrical shape and the end plate are sealed, so the air filter _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ In a particular embodiment, which may be quite suitable as a battery separator, at least selected, the possible preferred film is preferably made from one or more polyolefins, and may further be characterized by one or more of the following parameters: thickness , porosity, average pore size, puncture strength, jis mine number and shutdown temperature. The film thickness can be less than 6.0 mils (150 microns). In another specific embodiment, the thickness can range from 10 microns to 150 microns. In still another specific embodiment, the thickness can range from 10 microns to 50 microns. The porosity of the film can be from 40 to 90 ° /. between. In one embodiment, the porosity ranges from 60-90%. In still another embodiment, the porosity ranges from 65 to 800/. . The average pore size of the film can be between 〇·〇4-〇·2〇 micron. In a specific example, the average pore size ranges from 0.04 to 0.120 microns. In still another embodiment, the average pore size ranges from 0·07·0·12 microns. The puncture strength can be greater than or equal to 3 〇〇 gram-force/mil. The puncture strength was recorded using Midtech Stevens LFRA texture analysis and a needle with a diameter of 1.65 mm and a radius of 5 mm, recording data at a rate of 2 mm/sec and a maximum of 6 mm. , measured by an average of 10 measurements across the width of the final product. JIS Gore number (standardized to one mil thick) can be less than 1 sec / 1 〇〇 ec / ear thickness. In a specific example, the Gurley number ranges from 12 to 80 seconds / 100 cc / mil. According to some embodiments, the essential point (IV) of the film may be greater than or equal to: 〇 升/克. In another embodiment, IV can be greater than or equal to 5 55 55 201137000 liters / gram. In another embodiment, IV may preferably be greater than or equal to 3 〇 deciliter per gram. The IV of the film does not constitute a weighted average of the pre-extruded resin of the film because the polymer suffers from chain breakage and molecular weight during extrusion. As used herein, intrinsic viscosity refers to a measure of the ability of a polymer to increase the viscosity of a solution in solution. The intrinsic viscosity value is defined as the limit of the specific viscosity/concentration ratio at zero concentration. Therefore, it becomes necessary to find the viscosity at different concentrations and then extrapolate to zero concentration. Viscosity values vary with concentration depending on the molecular formula and solvent. In general, the intrinsic viscosity of a linear macromolecular substance is related to the weight average molecular weight or degree of polymerization. About linear macromolecules When the relationship between viscosity and molecular weight has been established, viscosity measurement provides a quick measure of molecular weight. The IV system was measured by the following: First, 0.02 g of the film was dissolved in 100 ml of decalin at 150 ° C for one hour 'then' and its intrinsic viscosity was measured at 135 ° C via an Ubbelohd viscometer. This is in accordance with ASTM D4020 (reporting RSV values herein). The shutdown temperature can be below 260 ° C (260 ° C). In one embodiment, the shutdown temperature can be below 190 °C. In still another embodiment, the shutdown temperature can be less than 140 °C. In still another embodiment, the shutdown temperature can be below 130 °C. In still another embodiment, the shutdown temperature can be below 120. . . The tantalum film of the present invention can be made from a single polymer, or a blend of polymers, or a layer of the same or different polymers, or a different layer of material that is bonded, laminated or coextruded together. The possible preferred polymers are polyolefins such as polypropylene (PP) and/or polyethylene (PE). For example, the film can be made from one or more layers of PP and/or PE. In a particular embodiment, the film is a porous pp 56 201137000 film or sheet. In another particular embodiment, the film is a porous PE film or sheet. In still another particular embodiment, the film is a three layer film made from two outer PP layers and one intermediate or central PE layer. In another particular embodiment, the film is a two-layer film made of a two-layer PP layer, a two-layer PE layer, or a layer of PP bonded to a layer of PE, laminated or co-extruded together. In still another particular embodiment, the film is a composite of a porous PP film or sheet and a porous material such as a non-woven glass or PP material. In yet another particular embodiment, the film is a porous film or sheet made from a blend of polyolefins having different molecular weights. The gas filtering medium comprises a microporous membrane, according to at least selected specific examples. As used herein, a gas filtering medium refers to a filtering medium used to remove particulate matter from a gas (e.g., air). The gas filter medium of the present invention may comprise ultra high molecular weight polyethylene and inorganic materials. The gas filter medium may further comprise processing oil (i.e., oil remaining in the medium after withdrawal). The gas filter media can further comprise thermoplastic polyolefins, conventional additives such as stabilizers and antioxidants, and analogs thereof as are well known in the art. The gas filter media can be used as a filter media for any end use application. For example, the gas filter medium can be used as a filter medium for end use applications selected from the group consisting of: removal of particulate matter from gases, air filtration applications, high temperature applications, inter-filter bag applications, Filtration of particulate matter in food and medicine, filtration of particulate matter in combustion methods, filtration of particulate matter in metals, and filtration of particulate matter in cement. Removal of particulate matter from gases includes industrial (such as HVAC, 57 201137000 HEPA and ULPA clean rooms), vacuum cleaning, respirator, cement, metal, food, pharmaceuticals, processed fluids, and combustion processes. The gas filter, the media can be used independently as a filter media; or in another case' can be joined to (e.g., laminated or bonded to) a support material (e.g., 'nonwoven or fabric). Typical lamination or bonding techniques include such conventional methods as, but not limited to, adhesives, welding (heating/ultrasonic), and the like. Further, the gas filter medium may be flat or formed in a folded or shaped shape. Larger batteries require separators that have greater dimensional stability (or high temperature melt integrity) because battery breakage can be more pronounced if a short circuit occurs because a larger amount of lithium material is included in the larger battery. Thus, according to at least some specific examples, the battery separator is from a nonwoven sheet material having high temperature melt integrity, a microporous film having low temperature shutdown characteristics, and selectively bonding the nonwoven sheet to the microporous film. And adapted to be made by an expanding adhesive when contacted by an electrolyte. The still temperature melt integrity separator may comprise a microporous film and a non-woven sheet with or without an adhesive or polymer bonded therebetween. Non-woven panels can refer to a plurality of fibers that are bound together by a variety of methods, such as thermal fusion, resin, solvent bonding, or mechanical interlocking of fibers, sometimes occurring simultaneously with extrusion. The collar plate area is a fibrous structure obtained by a method such as a dry type, a calendar or a gas ML-forming method, a spunbond method or a blister blowing method, and a hydroentanglement method. The fibers can be oriented in a direction or randomly. At the same time, no fabric typically does not include paper, and for this application, paper is included. The edge fibers can be made from thermoplastic polymers, cellulose, and/or pottery. Thermoplastics 58 201137000 Polymers include, but are not limited to, polystyrenes, polystyrenes, polyacrylics, polycondensation, polyamines, polycarbons, and gems. Imines, polyimines, polyketones, polyphenylene ethers, polyphenylene sulfides, polyliths. Cellulose includes, but is not limited to, cellulose (e.g., cotton or other naturally occurring sources), regenerated cellulose (e.g., sputum), and cellulose acetate (e.g., acetate cellulose and triacetate cellulose). Ceramics include all types of glass and oxidized, cerium oxide and zirconia compounds (e.g., aluminum silicate). Additionally, the non-woven or non-woven fibers can be coated or surface treated to improve the functionality of the non-woven fabric. For example, the coating or surface treatment can improve the adhesion of the non-woven fabric or its fibers, improve the high temperature melt integrity of the non-woven fabric, and/or improve the wetting ability of the non-woven fabric. Regarding the improvement of the high temperature melt integrity, the non-woven fabric and/or its fibers may be coated or surface treated with a ceramic material. Such ceramic materials include, but are not limited to, alumina, ceria and zirconia compounds, and combinations thereof. According to at least selected specific examples, the adhesion of the microporous membrane to the nonwoven web should maintain a desired high release rate, wherein the ionic species of the electrolyte between the anode and the cathode will have a free mobility. The mobility of ionic species is typically measured as the resistance (ER) or MacMullen number (the ratio of the resistance of the electrolyte-saturated porous medium to the resistance of an equal volume of electrolyte [see: US Patent No. 4,464,238, which is incorporated by reference. The way is incorporated into this article]). In addition, there may be a need to adhere the sheet to the film using a material that does not reduce the rate of ion mobility (or increase resistance) through the separator. 5Had adhesive may be selected from, but not limited to, polyvinylidene fluoride 59 201137000 (PVDF); polyamino phthalate; polyethylene oxide (PEG); polyacrylonitrile (PAN); Ester (PMA); poly(methyl methacrylate) (PMMA); polyacrylamide; polyvinyl acetate; polyvinylpyrrolidone; polytetraethylene glycol diacrylate; any of the foregoing copolymers and combinations thereof. One criterion for comonomer selection is the ability of the comonomer to modify the surface energy of the homopolymer. The surface energy affects at least: the solubility of the copolymer, thus affecting the application of the copolymer to the film; the adhesion of the copolymer to the film, thus affecting the cell manufacturing and subsequent performance; and the ability of the coating to wet, thus affecting the liquid electrolyte Absorbed into the separator. Suitable co-monomers include, but are not limited to, hexafluoropropylene, octafluoro-1-butene, octafluoroisobutylene, and tetrafluoroethylene. The comonomer component preferably ranges from 3 to 20% by weight and most preferably from 7 to 15%. Preferably, the adhesive or swellable polymer is a copolymer of polyvinylidene fluoride. More preferably, the PVDF copolymer is a copolymer of polyvinylidene fluoride and hexafluoropropylene (PVDF: HFP), and most preferably the PVDF: HFP ratio is 91:9. The PVDF copolymer is available from the love of Philadelphia in the United States and Elf Atochem; in Brussels, Solvay SA; and Ibaraki in Ibaraki Kureha Chemical Industries, LTD. is commercially available. The preferred PVDF: HFP copolymer is from KYNAR 2800 from Atoin Chemicals. The wetting agent may be selected from materials that are compatible (ie, miscible or non-separable) with the swellable polymer (such as wetting agents including sulfones, sulfates, and nitrogen), A trace amount (for example, 10-20% of the swellable polymer) will not have a detrimental effect in battery chemistry, and it is a fluid at room temperature or 60 201137000 with Tg (glass transition temperature) <50 ° C. The wetting agent can be selected from, but is not limited to, phthalate-based esters, cyclic carbonates, polymeric carbonates, and mixtures thereof. The phthalate-based ester is selected from, but is not limited to, dibutyl phthalate (DBP). The cyclic carbonate is selected from the group consisting of ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and mixtures thereof. The polymerized carbonate is selected from the group consisting of, but not limited to, polyvinyl carbonate and linear propylene carbonate. At least selected embodiments of the present invention can provide a microporous battery separator having two bonded portions. Each portion may be composed of a coextruded or non-coextruded layer and may be made of the same or different materials. In order to achieve greater puncture strength, some specific examples may bond the two portions together, which are screened to have the desired total separator thickness when combined. Preferably, the selected specific example can be made by a collapsed bubble technique; that is, a blown film technique in which a single smelting polymer (or blend of polymers) is extruded through an annular die from a mold. The bubble emitted therein has a first portion and a second portion (each portion roughly representing half of the circumference of the bubble), and then the bubble collapses onto itself and before the micropore is formed (preferably by annealing and stretching) Bonding. When bubbles are released from the mold, they are oriented substantially in the machine direction. Thus, when the bubble collapses onto itself and is bonded, the first portion and the second portion can be oriented in substantially the same direction (with an angular deviation of less than 15 在 between the oriented portions). In the same step, collapse and adhesion are carried out by allowing the molten (or nearly molten) polymer of the bubbles to join together. By collapsing the bubble onto itself and bonding it, an increased puncture strength is obtained at a thickness comparable to the other baffles. The first portion and the second portion 61 201137000 (which provides a precursor for micropore formation methods (eg, annealing and stretching operations) when bonded) may be made of the following materials, such as polyolefins, preferably polyethylene. Or polypropylene, copolymers thereof and mixtures thereof, and most preferably polyethylene and polypropylene. A three-layer, shutdown battery separator can be referred to as a porous membrane for use in an electrochemical cell (e.g., a battery, particularly a secondary (or rechargeable) battery, such as a lithium battery). The three-layer separator may have a polypropylene-polyethylene-polypropylene structure. The separator can have a thickness of less than 3 mils (about 75 microns). The separator preferably has a thickness in the range of from 0.5 mils (about 12 microns) to 1.5 mils (about 38 microns). The separator is preferably about 1 mil (about 25 microns) thick. Preferably, the separator is permeable (as measured by JIS Gorey) for less than 300 seconds. Preferably, the separator has a puncture strength of at least 300 grams. The separator has a porosity in the range of 40% to 70°/. The inside is better. One of the methods for producing the three-layer, shutdown battery separator generally comprises the steps of: extruding a non-porous polypropylene precursor; extruding a non-porous polyethylene precursor; forming a non-porous three-layer precursor, wherein the polymerization An ethylene precursor is sandwiched between the polypropylene precursors; the three-layer precursor is bonded; the three-layer precursor is annealed; and the bonded and annealed non-porous three-layer precursor is stretched to form the porous battery separator . In at least one embodiment, the film can be a microporous sheet made from a blend of at least two ultrahigh molecular weight polyolefins having different molecular weights. In one embodiment, these ultrahigh molecular weight polyolefins may be ultra high molecular weight polyethylene (UHMWPE). In another embodiment, the film is a blend of a first ultrahigh molecular weight polyethylene having a first molecular weight and a second ultrahigh molecular weight polyethylene having a second molecular weight of 62 201137000, the first molecular weight and the The second molecular weights are all greater than 1 million and are different from each other. In another embodiment, the film is a first ultrahigh molecular weight polyethylene having a first molecular weight and a second ultrahigh molecular weight polyethylene having a second molecular weight (the first molecular weight and the second molecular weight are both greater than 1 million) And different from each other) with a blend of a third polyolefin having a third molecular weight (the third molecular weight is less than 1 million). In still another embodiment, the film can have an IV greater than or equal to 6.3 deciliters per gram. In another embodiment, the film can have an IV greater than or equal to 7.7 deciliters per gram. In at least selected specific examples, the present invention relates to biaxially oriented porous membranes, composites comprising biaxially oriented porous membranes, biaxially oriented microporous membranes, biaxially oriented macroporous membranes, battery separators, filter media, Humidity control media, flat membranes, liquid retention media and the like, related methods, methods of manufacture, methods of use, and the like. According to at least selected specific examples, the laminate material or fabric can be incorporated into a composite film made in accordance with the present invention that is wind and liquid resistant, moisture vapor permeable, and air permeable. The laminate fabric may also comprise one or more layers of textile substrate or face cloth material which are laminated to the film by any suitable means. The face cloth can be made from any suitable material that satisfies the performance and other criteria established for the application provided. "Moisture Vapor Penetration" is used to describe an article that permits water vapor to pass through the article, such as a laminated fabric or composite film. The term "anti-liquid permeable" is used to describe an article that is not "wet" or "wet" by a challenge liquid, such as water, and that prevents liquid from passing through the film under relatively low pressure ambient conditions. The term "resistance 63 201137000 broadcasts air permeability is described throughout an object 〇 5, under the pressure difference of water, the object prevents air permeability greater than about three (3) per square sigh (: TM ability. Illustratively, the inflamed crepe, outer jacket or its crepe or the resulting product incorporated into the laminated fabric may permit moisture vapor to penetrate through the garment. The waterjet hot air may be generated from the user's sweat, and the garment or finished The product permits better penetration of moisture vapor at the user's foot rate, so that (4) thieves (4) and comfort under typical conditions. The laminated fabric is also resistant to liquid and wind penetration, while air Permeable according to at least selected embodiments of the present invention, the air cleaner cartridge comprises at least one folded microporous membrane. At least the selected microporous membrane is produced by a dry stretching process and has substantial The upper circular system and the ratio of the tensile strength of the machine to the transverse tensile strength are in the range of 0.5 to 6. The method of manufacturing the aforementioned microporous film may include the following steps: extruding the polymer into a non-porous shape. I. performance drive, and double shaft pull Before the secret (4), the double recording includes stretching in the direction of the filament and stretching in the transverse direction. The transverse direction comprises synchronously controlled machine direction relaxation. At least selected specific examples of the invention may be directed to a biaxially oriented porous membrane, a composite comprising a biaxially oriented porous membrane, a bisecretic microporous membrane, a biaxially oriented macroporous membrane, a battery separator, a material, a humidity control medium, a flat membrane, a liquid retention medium and the like, related methods, Manufacturing method, method of use, and the like. According to at least selected specific examples of the invention, there is provided at least one of the following: a film comprising: 64 201137000 at least one layer of porous polymerization produced by a dry stretching process The film comprises the steps of: extruding a polymer into at least a single layer of non-porous precursor, and biaxially stretching the non-porous precursor, the biaxial stretching comprising machine direction stretching and transverse direction Stretching, the transverse direction stretching comprises synchronously controlled machine direction relaxation; and having substantially circular holes, porosity of about 40% to 90%; machine direction tensile strength pair The ratio of the direction tensile strength is in the range of about 0.5 to 5.0, the Gurley is less than about 100, the average flow pore size is at least about 0.04 microns, the water pore size is at least about 0.07 microns, and the head pressure is greater than about 140 psi. Wherein the machine direction stretching of the biaxial stretching comprises the steps of stretching in the transverse direction and stretching in the synchronous machine direction, and wherein the biaxial stretching further comprises the step of relaxing in the transverse direction. The film, wherein the nonporous precursor The biaxial stretching further includes an additional machine direction stretching step. The above film, wherein the dry stretching method further comprises the following steps: machine direction stretching to form a porous intermediate before the biaxial stretching. The biaxial stretching of the non-porous precursor includes machine direction stretching, additional transverse direction stretching and simultaneous machine direction stretching, and lateral direction relaxation. The above film, wherein the dry stretching method comprises the steps of: machine direction stretching followed by biaxial stretching of the transverse direction stretching and synchronously controlled machine direction relaxation, second transverse direction stretching and simultaneous machine direction stretching, Then the lateral direction is relaxed. 65 201137000 The film, the porous polymer film further having a thickness of at least about 8 microns, a transverse tensile strength of at least about 300 kilograms per square centimeter, a standard deviation of the average flow pore size of less than about 0.025, and a water intrusion pressure of at least about 8 inches. / square inch and WVTR at least about 8,000 grams / square meter - day. The above film ' the porous polymer film further has a transverse direction shrinkage of less than about 1.0% at 90 °C. The above film ' the porous polymer film further has a transverse direction shrinkage of less than about 1.5% at 105 °C. In the above film, the porous polymer film further has a transverse direction shrinkage of less than about 3.0 Å/Torr at 120 °C. In the above film, the porous polymer film further has a machine direction shrinkage of less than about 10% at 90 °C. In the above film, the porous polymer film further has a machine direction shrinkage of less than about 20% at 105 °C. In the above film, the porous polymer film further has a machine direction shrinkage of less than about 30% at 120 °C. In the above film, the porous polymer film further has a thickness in the range of about 8 μm to 80 μm. The above film, wherein the non-porous precursor is one of a blown film and a slit film. The above film, wherein the non-porous precursor is a single layer precursor formed by at least one of a single layer extrusion and a multi-layer extrusion. The upper film·the film wherein the non-porous precursor is a multilayer precursor formed by at least one of co-extrusion and lamination. The above/specific film, wherein the porous polymer film comprises one of polypropylene, polyethylene, 66 201137000, a blend thereof, and a combination thereof. The above film, wherein the porous polymer film uses a polyolefin resin having a melt flow index (MFI) of about 0.01 to 1.0% and a polymer crystallinity of at least about 45%. The above film, wherein the precursor is one of a single layer precursor and a multilayer precursor. The above film, wherein the film further comprises at least one non-woven, woven or braided layer bonded to at least one side of the porous polymer film. The above film, wherein the film is composed of a plurality of layers of the porous polymer film. The above film, wherein the porous polymer film is composed of at least two layers. The above film, wherein the film has substantially circular pores, a porosity of about 40% to 90%, a ratio of machine direction tensile strength to transverse direction tensile strength in a range of about 0.5 to 5.0, and a Gurley of less than about 100, an average The flow aperture is at least about 0.04 microns, the water hole size is at least about 0.07 microns, and the head pressure is greater than about 140 psi. The above film, wherein the polymer is a semi-crystalline polymer. The above film, wherein the polymer is selected from the group consisting of polyolefins, fluorocarbons, polyamines, polyesters, polyacetals (or polyoxymethylenes), polysulfides, Polyphenylene sulfide, polyvinyl alcohols, copolymers thereof, blends thereof, and combinations thereof. In the above film, the porous polymer film further has a porosity of about 65% to 90%, and the ratio of the machine direction tensile strength to the transverse direction tensile strength is in the range of about 1.0 to 5_0, the Gurley is less than about 20, and the average flow pore diameter is at least about 0.05 microns, water hole size at least about 0.08 microns and head pressure greater than about 145 pounds / 67 201137000 square inches. The above film, wherein the substantially circular hole has a depth ratio in a range of about 0.75 to 1.25 and a ball diameter factor in a range of at least about 0.25 to 8.0. At least one of a filtration membrane, a humidity control membrane, a gas and/or liquid separation membrane, a membrane selectively permeable to moisture and liquid water, and a multilayer film structure comprising the above membrane. The above film, wherein the biaxial stretching step of the dry stretching method comprises simultaneous biaxial stretching of a plurality of layer separated, stacked nonporous precursor layers, wherein the layers are not bonded together during the stretching process. The above film, wherein the biaxial stretching step of the dry stretching method comprises simultaneous biaxial stretching of at least three layers of the separated, stacked nonporous precursor layer. The above film, wherein the biaxial stretching step of the dry stretching method comprises simultaneous biaxial stretching of at least eight layers of the separated, stacked nonporous precursor layer. The above film, wherein the biaxial stretching step of the dry stretching method comprises simultaneous biaxial stretching of at least sixteen layers of the separated, stacked nonporous precursor layer. The above film, wherein the biaxial stretching step of the dry stretching method comprises synchronously biaxially stretching a plurality of layers of a bonded, stacked nonporous precursor layer, wherein all of the layers are bonded together during the stretching process. The above film, wherein the biaxial stretching step of the dry stretching method comprises simultaneous biaxial stretching of a plurality of layers, a stacked nonporous precursor layer, and a plurality of layers of a bonded, stacked nonporous precursor layer , wherein some of the layers are bonded together during the stretching process. The above film, wherein the pressing step is a dry extrusion method using 68 201137000 an extruder having at least one of a slit die and an annular die. A battery separator comprising: at least one porous polymer film produced by a dry stretching process, the method comprising the steps of: extruding a polymer into at least one single layer nonporous precursor, and biaxial Stretching the non-porous precursor, the biaxial stretching comprising machine direction stretching and transverse direction stretching, the transverse direction stretching comprising synchronously controlled machine direction relaxation; and having substantially circular holes, having a porosity of about 40 From % to 70%, the ratio of machine direction tensile strength to transverse direction tensile strength is in the range of about 0.5 to 5.0, Gore is less than about 300, average flow pore size is at least about 0.01 microns, and water pore size is at least about 0.04 microns. The battery separator, wherein the at least one porous polymer film further has a thickness of at least about 8 microns, a transverse tensile strength of at least about 300 kilograms per square centimeter, and a standard deviation of the average flow pore size of less than about 0.025. The above battery separator, wherein the at least one porous polymer film further has a transverse direction shrinkage of less than about 2% at 90 °C. The above battery wherein the at least one layer of the porous polymer film further has a machine direction shrinkage of less than about 6% at 90 °C. The above battery separator, wherein the non-porous precursor is formed by at least one of a single layer extrusion and a multilayer extrusion. The above battery separator, wherein the non-porous precursor is a multilayer precursor formed by at least one of co-extrusion and lamination. The above battery separator, wherein the separator is composed of a plurality of layers of the porous polymer film 69 201137000. The above battery separator, wherein the polymer is selected from the group consisting of: a polyhydrocarbon, a carbon a compound, a polyamine, a polys, a polyacetal (or a polyoxymethylene), Polysulfides, polyphenylene sulfides, polyvinyl alcohols, copolymers thereof, combinations thereof, and combinations thereof. The above battery separator, wherein the substantially circular hole has at least one of a depth ratio in a range of about 0.75 to 1.25 and a ball diameter factor in a range of about 25 to 8 Torr. A porous membrane comprising: at least one porous polymer membrane produced by a dry stretching process, the method comprising the steps of: extruding a polymer into at least one monolayer nonporous precursor, and biaxially pulling Extending the non-porous precursor, the biaxial stretching comprises machine direction stretching and transverse direction stretching, the transverse direction stretching comprising synchronously controlled machine direction relaxation; and having substantially circular holes having a porosity of at least about 40 %, the ratio of the machine direction tensile strength to the transverse direction tensile strength is in the range of about 至5 to 5 ' 'Gore is less than about 300' and the average flow pore size is at least about 〇.〇1 μm and the water hole size is at least about 0.04 μm. At least one of a battery separator, a filter film, a humidity control film, a gas and/or liquid separation film, a film selectively passing moisture and blocking liquid water, and a multilayer film structure, which comprises the above film. In a device requiring humidity control, the improvement includes the above film. In the filtration device, the improvement includes the above film. 201137000 In a temperature influencing device, the improvement includes the above film. A method of making a microporous film comprising the steps of: extruding a polymer into a non-porous precursor, and biaxially stretching the non-porous precursor, the biaxial stretching comprising machine direction stretching and lateral direction Directional stretching, which includes synchronously controlled machine direction slack. The above method wherein the polymer excludes any pore forming material for subsequent removal of any oil to form pores or to promote pore formation. The above method, wherein the polymer is a semi-crystalline polymer. The above method, wherein the polymer is selected from the group consisting of polyolefins, fluorocarbons, polyamines, polyesters, polyacetals (or polyacetals), polysulfides , polyvinyl alcohols, copolymers thereof, and combinations thereof. The above method further comprises the steps of: annealing the non-porous precursor after extrusion and prior to biaxial stretching. The above method, wherein the annealing is carried out in a temperature range of Tm - 80 ° C to Tm - 10 ° C. The above method, wherein the biaxial stretching comprises the steps of: stretching in the machine direction, and then stretching in the transverse direction, including simultaneous machine direction relaxation. The above method wherein heat or cold or both are stretched in the machine direction. The above method, wherein the temperature <Tm-50 ° C for cold machine direction drawing. The above method, wherein the temperature <Tm-10 ° C in the direction of the hot machine pull 71 201137000 stretch. The above method wherein the total machine direction stretch is in the range of 50-500%. The above method, wherein the total transverse direction stretching is in the range of from 100 to 1200%. The above method wherein the machine direction relaxation is within the range of 5-80%. A film comprising: a microporous polymer film produced by a dry stretching process and having substantially circular pores, and the ratio of machine direction tensile strength to transverse direction tensile strength is in the range of 0.5 to 6.0 . The above film, wherein the microporous polymer film has an average pore size in the range of 0.03 to 0.30 μm. The above film, wherein the microporous polymer film has a porosity in the range of 20 to 80%. The above film, wherein the substantially circular hole has a depth ratio in a range of about 0.75 to 1.25 and a ball diameter factor in a range of at least about 0.25 to 8.0. The above film, wherein the transverse tensile strength is > 250 kg/cm 2 . A battery separator comprising the above film. A multilayer film structure comprising the above film. An air filter, a cleaner comprising the above film. In the method of filtering out particulate matter from a gas, the improvement includes the above film. 72 201137000 A gas filtering medium comprising the above film. A battery separator comprising a nonwoven sheet having high temperature melt integrity and the above film. A battery made of the above separator. In the porous film, the improvement includes at least one of the following: a hole shape other than the slit, a circular hole, a hole as shown in one of Figures 6-8 and 13-54, as in the 13th- The pores shown in one of the figures 50, such as those shown in one of Figures 6-8 and 13-50, the properties shown in one of Tables I, II or III, increase Transverse tensile strength in the transverse direction, balanced MD and TD physical properties, high performance associated with moisture transport and head pressure, reduced Gore, high porosity with balanced physical properties, and pore structure (including pore size and pore size distribution) Consistency, improved durability, composites of such films with other porous materials; composites or laminates of such films, films or layers with porous nonwovens; coated films, coextruded films, laminated films Film with desired moisture transport or moisture vapor transport, head performance and physical strength properties; no loss of useful film characteristics in a more physical and harsh environment, film moisture transport performance and macroscopic properties The nature of the binding composition, is hydrophobic, highly permeability, chemical and mechanical stability, tensile strength, and combinations thereof having south. At least the selected microporous film is produced by a dry stretching process and has substantially circular pores, and the ratio of machine direction tensile strength to transverse direction tensile strength is in the range of 0.5 to 6.0. The method of making the aforementioned microporous film may comprise the steps of: extruding a polymer into a non-porous precursor, and biaxially stretching the non-porous precursor, the biaxial stretching comprising machine direction stretching and Transverse 73 201137000 Stretched in the direction, which includes the machine direction slack for synchronous control. At least selected specific examples of the invention may be directed to biaxially oriented porous membranes, composites comprising biaxially oriented porous membranes, biaxially oriented microporous membranes, biaxially oriented macroporous membranes, battery separators, filter media, humidity control Media, flat membranes, liquid retention media and the like, related methods, methods of manufacture, methods of use, and the like. The present invention may be embodied in other specific forms without departing from the spirit and scope of the invention. Furthermore, all numerical ranges set forth herein are to be construed as a &quot BRIEF DESCRIPTION OF THE DRAWINGS 3 Fig. 1 is a photograph of a single layer of silgaide® (SEM surface micrograph), which is a conventional dry stretch type polypropylene battery separator. Fig. 2 is a photograph of a dry stretch type film (single layer film) of the prior art. Fig. 3 is a photograph of a dry stretch type film (multilayer film, several layers laminated and then stretched) of the prior art. Figure 4 is a photograph of a single layer of siggaide® (SEM surface photomicrograph), which is a wet process type polyethylene battery separator. Fig. 5A is a photograph of a particle-stretched film (SEM surface photomicrograph). Figure 5B is a photograph of a particle-stretched film (SEM cross-section photomicrograph). Fig. 6 is a photograph (SEM surface micrograph) of a film (single layer film, biaxial orientation method) according to an embodiment of the present invention. 74 201137000 Fig. 7 is a photograph (SEM surface micrograph) of a film (multilayer film '-layered layer and then stretched 'biaxial orientation method) according to the present invention. Fig. 8 is a photograph (read surface micrograph) of a film (multilayer film, several layers of co-extrusion and then stretching, biaxial orientation method) according to still another specific example of the present invention. Fig. 9 is a schematic representation of a typical TD stretching method according to at least one specific example of the method for producing a biaxially oriented film of the present invention. Figure 10 is a photograph of a conventional Sergeant @2500 film (pp single layer, dry stretching method) at 20,000X magnification (SEM surface micrograph). Figure 11 is a photograph of the film of Figure 10 at 5,000x magnification (SEM surface photomicrograph). Figure 12 is a photograph of the film of Figures 10 and 11 at 2〇, 〇〇〇χ magnification (SEM cross-section photomicrograph). Figures 13 and 14 are respective photographs of a film sample ΡΡ (ΡΡ single layer, collapsed bubble, biaxial orientation method) according to another film embodiment of the present invention (SEM surface Α at 20,000 Χ and 5,000 Χ magnification) (upper) photomicrograph). Figures 15 and 16 are separate photographs of film sample B of Figures 13 and 14 (SEM surface B (bottom) photomicrograph at 20,000X and 5,000X magnification). Figures 17 and 18 are photographs of film samples B of Figures 13 through 16 (SEM cross-section micrographs at 20, OOOX and 5,000X magnification). Figures 19, 20 and 21 are still further photographs of another film or composite according to the present invention (PP single layer [sample non-woven PP, laminated [hot + pressure]) film sample C (in 2〇) , 〇〇〇χ, 5, 〇〇〇X and 1, under the magnification of 75 201137000 SEM surface A (upper) photomicrograph). Figures 22, 23 and 24 are separate photographs of film sample C of Figures 19 to 21 (SEM surface B (bottom) photomicrographs at 2 〇, OOOX, 5, 〇〇〇χ and 1,000 χ magnification ). Figures 25 and 26 are separate photographs of film sample C of Figures 19 through 24 (SEM cross-section micrographs at 20,000X and 5,000X magnification). Figure 27 is a photograph of a film sample C (inverted) having a non-woven PP layer on the upper side of Figs. 19 to 26 (SEM cross-sectional micrograph at 615X magnification). Fig. 27A is a photograph of a portion of the single layer PP layer of the film sample C of Fig. 27 (SEM cross section photomicrograph at 3,420X magnification) (note the rectangle in Fig. 27). Figures 28 and 29 are separate photographs of Film Sample A (single layer PP 'non-collapsed bubble, biaxial orientation method) according to another film embodiment of the present invention (SEM at 20,000X and 5,000X magnification) Surface A (upper) photomicrograph). Figures 30 and 31 are individual photographs of Film Sample A of Figures 28 and 29 (SEM surface B (bottom) photomicrograph at 20,000X and 5,000X magnification). Figures 32, 33 and 34 are film or composite samples G according to another embodiment of the present invention (PP single layer, non-collapsed bubbles, biaxial orientation method [Sample A] / non-woven PP 'layer [hot + Individual photographs of pressure]) (micrographs of SEM surface Α (top) at 2 〇, 〇〇〇χ, 5,000 Χ and Ι, ΟΟΟΧ magnification). Figures 35, 36 and 37 are separate photographs of film samples G of Figures 32 to 34 (SEM surface B (bottom) photomicrographs at 2〇, OOOX, 5,000X and ΐ, 〇〇〇χ magnification) . 76 201137000 Figures 38 and 39 are separate photographs of film samples G of Figures 32 to 37 (SEM cross-section micrographs at 20,000X and 3,420X magnification). Figure 40 is a photograph of a film sample G (inverted) having a non-woven pp layer on the upper side of Figs. 32 to 39 (SEM cross-sectional micrograph at 615X magnification). Fig. 40A is a photograph of a portion of the single layer PP layer of the film sample g of Fig. 40 (SEM cross section photomicrograph at 3,420X magnification) (note the rectangle in Fig. 4). 41 and 42 are respective photographs of film sample E (PP monolayer, collapsed bubble, biaxial orientation method) according to still another film example of the present invention (SEM surface at 20,000X and 5,000X magnification) A (upper) photomicrograph). Figures 43 and 44 are separate photographs of film samples e of Figures 41 and 42 (SEM surface B (bottom) photomicrographs at 20,000X and 5,000X magnification). Figures 45 and 46 are separate photographs of film sample E of Figures 41 to 44 (SEM cross-section micrographs at 20,000X and 5,000X magnification). 4th and 7th are respective photographs of film sample F (single layer PP, non-collapsed bubble, biaxial orientation method) according to another film embodiment of the present invention (at 20,000X and 5,000X magnification) SEM Surface A (upper) photomicrograph) 〇 49 and 50 are separate photographs of film sample F of Figures 47 and 48 (SEM surface B (bottom) photomicrograph at 20,000X and 5,000X magnification) ). Figures 51 and 52 are separate photographs of film sample D (co-extruded PP/PE/PP three layers, collapsed bubbles, biaxial orientation method) according to still another film embodiment of the present invention (at 20,000) SEM table 77 at X and 5,000X magnification 201137000 Face A (upper) photomicrograph). Figures 53 and 54 are separate photographs of film sample D of Figures 51 and 52 (SEM surface B (bottom) photomicrograph at 20,000X and 5,000X magnification). [Main component symbol description] (none) 78

Claims (1)

201137000 七、申請專利範圍: 1. 一種多孔膜,其包含: 至少一層藉由乾式拉伸方法製得的多孔聚合物 膜,該方法包括下列步驟: 將一聚合物擠壓成至少一單層無孔性前驅物,及 雙軸拉伸該無孔性前驅物,該雙軸拉伸包括機器 方向拉伸及橫向方向拉伸 > 該橫向方向拉伸包括同步經 控制的機器方向鬆弛; 及具有實質上圓形孔洞,孔隙度約40%至90%,機 器方向抗拉強度對橫向方向抗拉強度的比率在範圍約 0.5至5.0内,哥雷(Gurley)小於約100,平均流量孔徑至 少約0.04微米,水孔尺寸至少約0.07微米及水頭壓力大 於約140磅/平方英寸。 2. 如申請專利範圍第1項之薄膜,其中該雙軸拉伸的機器 方向拉伸包括橫向方向拉伸與同步機器方向拉伸的步 驟,及其中該雙軸拉伸進一步包括橫向方向鬆弛的步 驟。 3. 如申請專利範圍第2項之薄膜,其中該無孔性前驅物的 雙軸拉伸進一步包括額外的機器方向拉伸步驟。 4. 如申請專利範圍第1項之薄膜,其中該乾式拉伸方法進 一步包括下列步驟: 機器方向拉伸,以便在該雙軸拉伸前形成一多孔中 間物。 5. 如申請專利範圍第1項之薄膜,其中該無孔性前驅物的 79 201137000 雙軸拉伸包括機器方向拉伸、額外的橫向方向拉伸與同 步機器方向拉伸、及橫向方向鬆弛。 6.如申請專利範圍第】項之_,其中該乾式拉伸方法包 括下列步驟: 機器方向拉伸,接著進行包括該横向方向拉伸愈同 步經控制的機器方向祕之雙軸拉伸、第二橫向方向拉 伸與同步機器方向拉伸,接著進行橫向方向鬆弛。 7. 如申睛專職圍第丨項之薄膜,該多孔聚合物膜進一步 具有厚度至少約8微米、橫向方向抗拉強度至少約3〇〇公 斤力/平方公分、平均流量孔徑的標準偏差小於約 0.025、水侵入壓力至少約8〇磅/平方英寸及wvtr至少 約8,000克/平方公尺-天。 8. 如申請專利範圍第1項之薄膜,該多孔聚合物膜進一步 具有橫向方向收縮在90°C下少於約1.〇〇/〇。 9. 如申請專利範圍第1項之薄膜,該多孔聚合物膜進一步 具有橫向方向收縮在1〇5。(:下少於約1.5%。 10. 如申請專利範圍第1項之薄膜,該多孔聚合物膜進一步 具有橫向方向收縮在120。(:下少於約3.0%。 11·如申請專利範圍第1項之薄膜,該多孔聚合物膜進一步 具有厚度在範圍約8微米至80微米内。 12. 如申請專利範圍第丨項之薄膜,其中該無孔性前驅物係 吹膜及縫模膜之一者。 13. 如申請專利範圍第丨項之薄膜,其中該無孔性前驅物係 一藉由單層擠壓及多層擠壓之至少一者所形成的單層 80 201137000 前驅物。 14.如:請專利範圍第1之薄膜,其t該無孔性前驅物係 一藉由共擠壓及積層之至少—者所形成的多層前驅物。 15·如申請專利範圍第旧之薄膜,其中該多孔聚合物 含聚丙烯、聚乙烯、其摻合物及其組合之—者。、 16·如申請專利範圍第旧之薄膜,其中該前驅物係單層前 驅物及多層前驅物之一者。 17. 如申請專利範圍第1項之薄膜,其中該薄膜進—步包括 至少-種黏合至該多孔聚合物膜的至少—邊之不織、機 織或編織層。 18. 如申請專利範圍第㈣之薄膜,其中該薄膜具有實質上 圓形孔洞,孔隙度約40%至90%,機器方向抗拉強1對 橫向方向抗拉強度的比率在範圍約〇5至5〇内,哥^小 於約100,平均流量孔徑至少約〇 〇4微米,水孔尺寸至少 約〇·〇7微米及水頭壓力大於約14〇磅/平方英寸。 19. 如申請專利範圍第旧之薄膜,其中該聚合物係選自於 由下列所組成之群:聚稀烴類、碳氟化合物、聚酿胺類、 聚酿類、聚縮賴(或聚甲_)、聚硫化物、聚苯基硫 醚、聚乙稀醇類、其共聚合物、其#合物、及其組^ 2〇·如申晴專利範圍第丨項之薄膜,該多孔聚合物膜進一步 具有孔隙度約65%至90%、_方向抗㈣度對橫向方 向抗拉強度的比率在範圍約L〇至5 〇、哥雷小於約2〇、 平均流量孔徑至少約0.05微米、水孔尺寸至少約⑽微 米及水頭壓力大於約145磅/平方英寸。 201137000 21. 如申請專利範圍第1項之薄膜,其中該實質上圓形孔洞 具有縱深比率在範圍約0.75至1.25内及球徑率因子在範 圍約0.25至8.0内之至少一者。 22. 至少一種過濾薄膜、濕度控制薄膜、氣體及/或液體分 離薄膜、選擇性通過濕氣及阻擋液體水的薄膜、及多層 薄膜結構,其包含如申請專利範圍第1項的薄膜。 23. 如申請專利範圍第1項之薄膜,其中該乾式拉伸方法的 雙轴拉伸步驟包括同步雙軸拉伸複數分離、疊置的無孔 性前驅物層,其中該等層在拉伸製程期間沒有黏合在一 起。 24. 如申請專利範圍第1項之薄膜,其中該乾式拉伸方法的 雙軸拉伸步驟包括同步雙軸拉伸複數黏合、疊置的無孔 性前驅物層,其中全部的層在拉伸製程期間黏合在一 起。 25. —種電池隔板,其包含: 至少一層藉由乾式拉伸方法製得的多孔聚合物 膜,其包括下列步驟: 將一聚合物擠壓成至少一單層無孔性前驅物,及 雙軸拉伸該無孔性前驅物,該雙軸拉伸包括機器 方向拉伸及橫向方向拉伸,該橫向方向拉伸包括同步經 控制的機器方向鬆弛; 及具有實質上圓形孔洞,孔隙度約40%至70%,機 器方向抗拉強度對橫向方向抗拉強度的比率在範圍約 0.5至5.0内,哥雷小於約300,平均流量孔徑至少約0.01 82 201137000 微米及水孔尺寸至少約0.04微米。 26.如申請專利範圍第25項的電池隔板,其中該實質上圓形 孔洞具有縱深比率在範圍約0.75至1.25内及球徑率因子 在範圍約0.25至8.0内之至少一者。 83201137000 VII. Patent Application Range: 1. A porous film comprising: at least one porous polymer film produced by a dry stretching method, the method comprising the steps of: extruding a polymer into at least one single layer; a porous precursor, and biaxially stretching the nonporous precursor, the biaxial stretching comprising machine direction stretching and transverse direction stretching> the transverse direction stretching comprising simultaneous controlled machine direction relaxation; a substantially circular hole having a porosity of about 40% to 90%, a ratio of machine direction tensile strength to transverse direction tensile strength in the range of about 0.5 to 5.0, Gurley less than about 100, and an average flow pore size of at least about 0.04 microns, the water hole size is at least about 0.07 microns and the head pressure is greater than about 140 psi. 2. The film of claim 1, wherein the machine direction stretching of the biaxial stretching comprises a step of transverse direction stretching and simultaneous machine direction stretching, and wherein the biaxial stretching further comprises lateral direction relaxation. step. 3. The film of claim 2, wherein the biaxial stretching of the non-porous precursor further comprises an additional machine direction stretching step. 4. The film of claim 1, wherein the dry stretching method further comprises the step of: stretching in a machine direction to form a porous intermediate prior to the biaxial stretching. 5. The film of claim 1 wherein the non-porous precursor 79 201137000 biaxial stretching comprises machine direction stretching, additional transverse direction stretching and synchronous machine direction stretching, and lateral direction relaxation. 6. The method of claim 1, wherein the dry stretching method comprises the following steps: stretching in a machine direction, followed by performing a biaxial stretching of the machine direction including the transversely controlled stretching in the transverse direction, Two transverse direction stretching and simultaneous machine direction stretching, followed by lateral direction relaxation. 7. The porous polymer film further having a thickness of at least about 8 microns, a transverse tensile strength of at least about 3 kilograms per square centimeter per square centimeter, and a standard deviation of the average flow pore size of less than about 0.025, water intrusion pressure of at least about 8 psi/w and wvtr of at least about 8,000 gram per square meter-day. 8. The film of claim 1, wherein the porous polymer film further has a transverse direction shrinkage of less than about 1. 〇〇/〇 at 90 °C. 9. The film of claim 1, wherein the porous polymer film further has a transverse direction contraction of 1〇5. (: less than about 1.5%. 10. The film of the first aspect of the patent application, the porous polymer film further has a transverse direction shrinkage of 120. (: less than about 3.0%. 11) The film of the first aspect, the porous polymer film further having a thickness in the range of about 8 micrometers to 80 micrometers. 12. The film according to claim 2, wherein the non-porous precursor is a blown film and a slit film. 13. The film of claim 3, wherein the non-porous precursor is a single layer 80 201137000 precursor formed by at least one of a single layer extrusion and a multilayer extrusion. For example, please refer to the film of the first patent range, wherein the non-porous precursor is a multilayer precursor formed by at least co-extruding and laminating. The porous polymer comprises polypropylene, polyethylene, blends thereof, and combinations thereof. 16) The film of the patent application, wherein the precursor is a single layer precursor and one of the multilayer precursors. 17. Film as claimed in item 1 of the patent application Wherein the film further comprises at least one non-woven, woven or woven layer bonded to the at least one side of the porous polymer film. 18. The film of claim 4, wherein the film has substantially circular holes The porosity is about 40% to 90%, the ratio of the tensile strength in the machine direction to the tensile strength in the transverse direction is in the range of about 至5 to 5 ,, the ^ is less than about 100, and the average flow pore diameter is at least about 4 μm. The water pore size is at least about 〇·〇 7 μm and the head pressure is greater than about 14 〇 psi. 19. The film according to the patent application, wherein the polymer is selected from the group consisting of: Hydrocarbons, fluorocarbons, polyamines, polystyrenes, poly-reduced (or poly-methyl), polysulfides, polyphenylene sulfides, polyethylenes, copolymers thereof, And a group thereof, wherein the porous polymer film further has a porosity of about 65% to 90%, and a ratio of _ direction resistance (four degrees) to transverse direction tensile strength is The range is about L〇 to 5 〇, Gore is less than about 2〇, and the average flow aperture is at least about 0.0. 5 microns, having a water hole size of at least about (10) microns and a head pressure of greater than about 145 psi. The film of claim 1 wherein the substantially circular aperture has a depth ratio in the range of about 0.75 to 1.25. The inner and ball diameter factor is at least one of a range of about 0.25 to 8.0. 22. at least one filter film, a humidity control film, a gas and/or liquid separation film, a film that selectively passes moisture and blocks liquid water, and A multilayer film structure comprising the film of the first aspect of the invention. The film of claim 1, wherein the biaxial stretching step of the dry stretching method comprises simultaneous biaxial stretching, plural separation, stacking A non-porous precursor layer disposed, wherein the layers are not bonded together during the stretching process. 24. The film of claim 1, wherein the biaxial stretching step of the dry stretching method comprises simultaneous biaxial stretching of a plurality of bonded, superposed non-porous precursor layers, wherein all layers are stretched Bonded together during the process. 25. A battery separator comprising: at least one porous polymer film produced by a dry stretching process comprising the steps of: extruding a polymer into at least one single layer nonporous precursor, and Biaxially stretching the non-porous precursor, the biaxial stretching comprising machine direction stretching and transverse direction stretching, the transverse direction stretching comprising simultaneous controlled machine direction relaxation; and having substantially circular holes, pores The degree is about 40% to 70%, the ratio of the machine direction tensile strength to the transverse direction tensile strength is in the range of about 0.5 to 5.0, the Gurley is less than about 300, the average flow pore diameter is at least about 0.0182, 2011, 37,000 microns, and the water hole size is at least about 0.04 microns. 26. The battery separator of claim 25, wherein the substantially circular aperture has at least one of a depth ratio in the range of about 0.75 to 1.25 and a ball diameter factor in the range of about 0.25 to 8.0. 83
TW100108332A 2010-03-12 2011-03-11 Biaxially oriented porous membranes, composites, and methods of manufacture and use TW201137000A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US31315210P 2010-03-12 2010-03-12
US4470811A 2011-03-10 2011-03-10

Publications (1)

Publication Number Publication Date
TW201137000A true TW201137000A (en) 2011-11-01

Family

ID=46759354

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100108332A TW201137000A (en) 2010-03-12 2011-03-11 Biaxially oriented porous membranes, composites, and methods of manufacture and use

Country Status (1)

Country Link
TW (1) TW201137000A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104640914A (en) * 2012-10-03 2015-05-20 东丽电池隔膜株式会社 Biaxially stretched microporous film
CN114307650A (en) * 2022-01-18 2022-04-12 杭州科百特过滤器材有限公司 Sulfone polymer microporous liquid-stopping membrane and preparation method and application thereof
EP3960421A4 (en) * 2019-11-19 2023-01-25 Qingdao Lanketu Membrane Materials Co., Ltd. Device and method for preparing high-strength high-modulus polyolefin thin film, and high-strength high-modulus polyolefin thin film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104640914A (en) * 2012-10-03 2015-05-20 东丽电池隔膜株式会社 Biaxially stretched microporous film
EP3960421A4 (en) * 2019-11-19 2023-01-25 Qingdao Lanketu Membrane Materials Co., Ltd. Device and method for preparing high-strength high-modulus polyolefin thin film, and high-strength high-modulus polyolefin thin film
CN114307650A (en) * 2022-01-18 2022-04-12 杭州科百特过滤器材有限公司 Sulfone polymer microporous liquid-stopping membrane and preparation method and application thereof
CN114307650B (en) * 2022-01-18 2023-05-02 杭州科百特过滤器材有限公司 Sulfone polymer microporous liquid-stopping film and preparation method and application thereof

Similar Documents

Publication Publication Date Title
TWI635644B (en) Porous-membrane, and article and battery separator comprising the membrane
US10240013B2 (en) Microporous material from ethylene-chlorotrifluoroethylene copolymer and method for making same
US9890498B2 (en) Hydrophilic sheet and process for producing the same
TW200948466A (en) Polyethylene membrane
JP2017197746A (en) Microporous materials with fibrillar mesh structure and methods of making and using the same
CA2623179A1 (en) Production method of microporous polyethylene membrane and battery separator
JP2017528561A (en) Microporous sheet products and their production and use
JP7227507B2 (en) Air filter medium, filter pack, air filter unit, and manufacturing method thereof
JP2017535642A (en) Microporous sheet product and method for producing and using the same
TW201137000A (en) Biaxially oriented porous membranes, composites, and methods of manufacture and use
JP6311585B2 (en) Porous body and method for producing the same
JP2018143993A (en) Laminated unwoven fabric and vent filter
US20050202231A1 (en) Filter material for micro-filter
JP2024110682A (en) Polyolefin microporous membrane