TW201136977A - Epoxy resin composition - Google Patents
Epoxy resin composition Download PDFInfo
- Publication number
- TW201136977A TW201136977A TW100104501A TW100104501A TW201136977A TW 201136977 A TW201136977 A TW 201136977A TW 100104501 A TW100104501 A TW 100104501A TW 100104501 A TW100104501 A TW 100104501A TW 201136977 A TW201136977 A TW 201136977A
- Authority
- TW
- Taiwan
- Prior art keywords
- epoxy resin
- resin composition
- coupling agent
- weight
- group
- Prior art date
Links
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Epoxy Resins (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
Abstract
Description
.201136977 六、發明說明: 【發明所屬之技術領域】 本發明係關於環氧樹脂組成物,更詳細係關於適合作 爲半導體樹脂密封材料,尤其是倒裝晶片(flip Chip)組裝中 的底部塡充材料之環氧樹脂組成物。 【先前技術】 近年來伴隨著數位相機、行動電話機等之小型電子機 器的普及’持續有在追求LSI裝置的小型化。因此,取代 以往的焊線組裝,藉由使半導體晶片成爲俯向,而直接組 裝於電路基板,而謀求組裝面積的極小化之稱爲倒裝晶片 組裝的組裝方法逐漸普及。 在倒裝晶片組裝中,使經形成晶片連接用墊片的面朝 向下側’藉由焊料凸點而在電氣上及機械上將此連接用墊 片與對向封裝或印刷電路板(PCB)的表面的電極連接。此 時’在組裝基板與晶片之間,由於焊料凸點而導致產生空 隙’將稱爲密封組裝基板與晶片間的底部塡充材的樹脂組 成物注入此空隙。底部塡充材通常含有環氧樹脂與二氧化 矽塡充材。底部塡充材不僅是·塡埋上述空隙,在將使用焊 料凸點之電氣的接點密封並由周圍保護(防止大氣中的水 分的入侵)的同時,亦兼具預防過度的力作用於機械的接合 點之焊料凸點接合部(使接合強度提升)的目的。 '在最近,藉由倒裝晶片組裝的焊料凸點之窄間隙化、 窄間距化而強烈地追求底部塡充的注入性之高度。注目於BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epoxy resin composition, and more particularly to a bottom charge suitable as a semiconductor resin sealing material, particularly a flip chip assembly. The epoxy resin composition of the material. [Prior Art] In recent years, with the spread of small electronic devices such as digital cameras and mobile phones, there has been a continuing demand for miniaturization of LSI devices. Therefore, in place of the conventional wire bonding assembly, an assembly method called flip chip assembly has been gradually spread by directly assembling the semiconductor wafer to the circuit board and minimizing the assembly area. In flip-chip assembly, the surface of the pad for forming the wafer connection is oriented toward the lower side. Electrically and mechanically, the pad for the connection is opposed to the opposite package or printed circuit board (PCB) by solder bumps. The electrode of the surface is connected. At this time, a gap is formed between the assembled substrate and the wafer due to the solder bumps. A resin composition called a bottom entangled material between the sealed assembly substrate and the wafer is injected into the gap. The bottom ram filler usually contains epoxy resin and ruthenium dioxide. The bottom 塡 filling material not only buryes the above-mentioned voids, but also seals the electrical contacts using the solder bumps and protects them from the surrounding (preventing the intrusion of moisture in the atmosphere), and also prevents excessive force from acting on the machinery. The purpose of the solder bump joint of the joint (to increase the joint strength). Recently, the thickness of the underfill of the underfill has been strongly pursued by the narrow gap and narrow pitch of the solder bumps assembled by flip chip bonding. Pay attention to
S -4- 201136977 爲了解決此等之課題之底部塡充材的構成成分之一的二氧 化矽塡充材,而混和不同粒徑的塡充材(日本特開 2007-204511 號公報)、施予表面處理(日本特開 2002-146233號公報、日本特開2003-238141號公報、日本 特開2006-193595號公報、日本特開2007-254543號公報、 曰本特開2008-297373號公報)等,持續在嘗試提升底部塡 充材的流動性。 又,與上述的底部塡充材之流動性相關的物性之一係 在於黏度。若使底部·塡充材的黏度降低,可期待流動性的 升高。然而,若使爲取決黏度之巨大因子的二氧化矽粒子 含量減少,相對上樹脂成分的含量變多,會有在底部塡充 材之硬化後的狀態下的線膨脹變大,可靠度降低的問題。 亦可考慮使構成底部塡充材之樹脂本身的黏度降低的 手法作爲底部塡充材之低黏度化的另一個方法。然而,就 一般可取得之環氧樹脂而言,可列舉黏度高的環氧丙基型 之環氧化合物。就係低黏度且可輕易取得的環氧化合物而 言,可列舉脂環族環氧。例如於專利第43 22〇47號公報中, 有揭示含有特定結構的脂環族二環氧化合物的環氧樹脂組 成物。 [先前技術文獻] [專利文獻] [專利文獻1]日本特開2007-204511號公報 [專利文獻2]日本特開2002-146233號公報 201136977 [專利文獻3]日本特開2003_238141號公報 [專利文獻4]日本特開2006-193595號公報 [專利文獻5]日本特開2007-254543號公報 [專利文獻6]日本特開2008-297373號公報 [專利文獻7]日本專利第4322047號公報 【發明內容】 [發明欲解決之課題] 然而,脂環族環氧基的反應性非常高,若使其成爲與 二氧化矽混合之狀態’則會增黏。含有脂環族環氧基與二 氧化矽的環氧樹脂組成物,其儲存安定性會有問題。 因此’本發明的目的係在於提供一種低黏度、具有高 流動性且儲存安定性優良的環氧樹脂組成物。尤其,本發 明的目的係在於提供一種適合作爲低黏度、具有高流動性 且儲存安定性優良的倒裝晶片組裝中的底部塡充材料的環 氧樹脂組成物。此外,本發明的目的係在於提供一種使用 前述環氧樹脂組成物作爲底部塡充材料的半導體封裝體。 [用於解決課題的手段] 本發明中係包含以下的發明。 (1) 一種環氧樹脂組成物,其係含有環氧化合物(A)、硬 化劑(B )、硬化促進劑(C)、無機塡充材(D)與政院偶合劑(E) 的環氧樹脂組成物’前述環氧化合物(A)係由以下列通式 .201136977S -4- 201136977 In order to solve the cerium oxide filling material which is one of the constituent components of the underlying ceramium material of the above-mentioned problems, a ceramium filling material of different particle diameters is mixed (JP-A-2007-204511) The surface treatment is disclosed in Japanese Unexamined Patent Application Publication No. Publication No. Publication No. No. Publication No. Publication No. No. Publication No. Publication No. Publication No. Publication No. Publication No. Publication No. No. Publication No. Publication No. JP-A Etc., continue to try to improve the fluidity of the bottom enamel. Further, one of the physical properties relating to the fluidity of the above-described underfill material is the viscosity. If the viscosity of the bottom and crucible is lowered, the fluidity can be expected to rise. However, when the content of the cerium oxide particles, which is a large factor depending on the viscosity, is reduced, the content of the resin component increases, and the linear expansion in the state after the hardening of the bottom enamel is increased, and the reliability is lowered. problem. It is also conceivable to use a method of lowering the viscosity of the resin itself constituting the bottom enamel as another method of lowering the viscosity of the underfill. However, as the epoxy resin which can be generally obtained, a epoxy propylene type epoxy compound having a high viscosity can be cited. As the epoxy compound which is low in viscosity and can be easily obtained, an alicyclic epoxy group can be cited. For example, Patent Publication No. 43 22〇47 discloses an epoxy resin composition containing an alicyclic diepoxide compound having a specific structure. [PRIOR ART DOCUMENT] [Patent Document 1] [Patent Document 1] Japanese Laid-Open Patent Publication No. JP-A-2007-204233 (Patent Document No. JP-A-2002-146233) [Patent Document 5] Japanese Patent Laid-Open Publication No. Hei. No. 2008-297373 (Patent Document 7) Japanese Patent No. 4322047 [The problem to be solved by the invention] However, the reactivity of the alicyclic epoxy group is extremely high, and if it is mixed with cerium oxide, it will increase in viscosity. An epoxy resin composition containing an alicyclic epoxy group and ruthenium dioxide has a problem in storage stability. Therefore, the object of the present invention is to provide an epoxy resin composition which has low viscosity, high fluidity and excellent storage stability. In particular, it is an object of the present invention to provide an epoxy resin composition suitable as a bottom entanglement material in a flip chip assembly which is low in viscosity, high in fluidity, and excellent in storage stability. Further, it is an object of the present invention to provide a semiconductor package using the above epoxy resin composition as a bottom charge material. [Means for Solving the Problems] The present invention includes the following inventions. (1) An epoxy resin composition comprising an epoxy compound (A), a hardener (B), a hardening accelerator (C), an inorganic filler (D), and a ring of a government coupling agent (E) Oxygen resin composition 'The aforementioned epoxy compound (A) is based on the following formula. 201136977
(此處,^〜尺^可各自相同’亦可各自不同’係表不亦可 含有氫原子、鹵素原子、氧原子或_素原子的烴基或亦可 具有取代基的烷氧基。) 或以下列通式(II):(Here, the ^^^^ can be the same or different from each other', and may not contain a hydrogen atom, a halogen atom, an oxygen atom or a hydrocarbon atom of a halogen atom or an alkoxy group which may have a substituent.) Take the following general formula (II):
(此處,R21〜R38可各自相同’亦可各自不同’係表示亦可 含有氫原子、鹵素原子、氧原子或鹵素原子的烴基或亦可 具有取代基的烷氧基。) . 表示之脂環族二環氧化合物(a1)20〜80重量%及前述脂環 族二環氧化合物(al)以外的環氧化合物(a2)80〜20重量% 構成,前述無機塡充材(D)係以矽烷偶合劑表面處理過之無 機微粒子。 (2) 如上述(1)中記載的環氧樹脂組成物,其中相對於(A) 成分1當量,前述硬化劑(B)的調配比例係0.6〜1 .05當量; 相對於(A)成分1〇〇重量份,前述硬化促進劑(C)的調配比 201136977 例1糸0‘1〜10重量份;以(A)、(B)、(c)及(D)成分的總量爲 基準’ mi述無機塡充材(D)的調配比例係3〇〜8〇重量% ; 相^於(A)成分丨〇〇重量份,前述矽烷偶合劑(E)的調配比 例係0.1〜5重量份。 (3) 如上述(1)或(2)中記載的環氧樹脂組成物,其中前述 脂環族二環氧化合物(al)係前述通式(1)之中Ri〜Ri8爲氫 原子之化合物及/或前述通式(II)之中r2i〜r3i爲氫原子之 化合物。 (4) 如上述(1)〜(3)之中任1項所記載的環氧樹脂組成 物’其中前述無機微粒子係二氧化矽微粒子、氧化鋁微粒 子或氧化鈦微粒子。 (5) 如上述(1)〜(4)之中任1項所記載的環氧樹脂組成 物’其中將前述無機微粒子表面處理之矽烷偶合劑係含環 氧基的矽烷偶合劑或含胺基的矽烷偶合劑。 (6) 如上述(1)〜(5)之中任1項所記載的環氧樹脂組成 物,其中前述無機微粒子的平均粒徑係0.1〜50//m。 (7) 如上述(1)〜(6)中之任1項所記載的環氧樹脂組成 物,其中前述無機微粒子中的至少一部份之矽烷偶合劑係 以化學鍵進行鍵結,以前述微粒子的總表面積爲基準,以 化學鍵進行鍵結之矽烷偶合劑所被覆的前述微粒子表面的 面積比例係1 〇 %以上。 (8) 如上述(1)〜(7)中之任1項所記載的環氧樹脂組成 物,其係底部塡充材料用。(herein, R21 to R38 may be the same 'may be different' each other means a hydrocarbon group which may further contain a hydrogen atom, a halogen atom, an oxygen atom or a halogen atom or an alkoxy group which may have a substituent.) 20 to 80% by weight of the cyclopentadiene compound (a1) and 80 to 20% by weight of the epoxy compound (a2) other than the alicyclic diepoxide (al), and the inorganic cerium (D) Inorganic fine particles surface-treated with a decane coupling agent. (2) The epoxy resin composition according to the above (1), wherein the ratio of the curing agent (B) is 0.6 to 1.05 equivalent to 1 equivalent of the component (A); 1 part by weight, the formulation of the hardening accelerator (C) is 1 糸 0'1 to 10 parts by weight of the 201136977 example; based on the total amount of the components (A), (B), (c) and (D) 'Mi's inorganic enamel filling material (D) is formulated in a proportion of 3 〇 to 8 〇 by weight; and the proportion of the arkane coupling agent (E) is 0.1 to 5 by weight in parts (A). Share. (3) The epoxy resin composition according to the above (1) or (2), wherein the alicyclic diepoxide (al) is a compound in which Ri~Ri8 in the above formula (1) is a hydrogen atom And/or a compound of the above formula (II) wherein r2i to r3i are a hydrogen atom. (4) The epoxy resin composition according to any one of the above (1) to (3) wherein the inorganic fine particle type cerium oxide fine particles, alumina fine particles or titanium oxide fine particles. (5) The epoxy resin composition according to any one of the above (1) to (4), wherein the sulfonate coupling agent which is surface-treated with the inorganic fine particles is an epoxy group-containing decane coupling agent or an amine group-containing group Decane coupling agent. (6) The epoxy resin composition according to any one of (1) to (5) wherein the inorganic fine particles have an average particle diameter of 0.1 to 50/m. The epoxy resin composition according to any one of the above-mentioned items, wherein at least a part of the arsenal coupling agent of the inorganic fine particles is bonded by a chemical bond to the fine particles. The total surface area is based on the area ratio of the surface of the fine particles coated with the decane coupling agent bonded by a chemical bond of 1% or more. (8) The epoxy resin composition according to any one of the above items (1) to (7), which is for use as a bottom charge material.
S 201136977 (9) 一種半導體封裝體,其係含有組裝基板與透過 (bump)而配置在前述組裝基板上的半導體晶片之半導 裝體,且前述組裝基板與前述半導體晶片之間的間隙 如上述(1 )〜(8 )中之任1項所記載的環氧樹脂組成物 化物密封。 [發明的效果] 本發明的環氧樹脂組成物由於包含上述特定的脂 二環氧化合物作爲樹脂成分,包含以矽烷偶合劑表面 過之無機微粒子作爲無機塡充材,在室溫附近(例如f °C )具有低黏度與高流動性,且歷經長時間之儲存安 (使用期限)優良。又,本發明的環氧樹脂組成物,其 物的歷時安定性亦優良。 本發明的環氧樹脂組成物由於在室溫附近具有低 與高流動性,且歷經長時間之儲存安定性(使用期p 良’故非常適合作爲塡充於倒裝晶片組裝中的組裝基 半導體晶片之間的間隙之底部塡充材料。 即’本發明的環氧樹脂組成物,由於在進行底部 注入作業的室溫附近具有低黏度與高流動性,即使當 裝基板與半導體晶片窄間隙化、窄間距化之時,仍可 短時間內對注入面全部區域進行均質的底部塡充注入 又’本發明的環氧樹脂組成物的使用期限優良, 長時間可維持在室溫附近的低黏度與高流動性。因此 有底部塡充注入的作業性大幅提升的優點。當作爲底 凸塊 體封 係被 的硬 環族 處理 丨〜30 定性 硬化 黏度 艮)優 板與 塡充 將組 在極 〇 歷經 ,具 .部塡S201136977 (9) A semiconductor package comprising a semiconductor package having an assembled substrate and a semiconductor wafer that is disposed on the assembled substrate, wherein a gap between the assembled substrate and the semiconductor wafer is as described above The epoxy resin composition material according to any one of (1) to (8) is sealed. [Effects of the Invention] The epoxy resin composition of the present invention contains the above-mentioned specific died epoxy compound as a resin component, and contains inorganic fine particles having a surface of a decane coupling agent as an inorganic cerium material, and is near room temperature (for example, f °C) has low viscosity and high fluidity, and is excellent in storage safety (lifetime) after a long period of time. Further, the epoxy resin composition of the present invention is excellent in stability over time. The epoxy resin composition of the present invention is very suitable as an assembly semiconductor for flip chip assembly because of its low and high fluidity at room temperature and long-term storage stability (good use period p) The bottom of the gap between the wafers is filled with the material. That is, the epoxy resin composition of the present invention has a low viscosity and a high fluidity near the room temperature at the bottom implantation operation, even when the substrate and the semiconductor wafer are narrowly spaced. When the narrow pitch is formed, the homogeneous bottom enthalpy injection can be performed on all the injection surfaces in a short time. The epoxy resin composition of the present invention has a good service life and can maintain a low viscosity near room temperature for a long time. And high fluidity. Therefore, there is a great advantage of the workability of the bottom sputum filling. When the hard ring family is sealed as a bottom bump, the 丨~30 qualitative hardening viscosity 艮) 〇历经,有部塡
S 201136977 充材料的環氧樹脂組成物的黏度高時,一般係採用使該樹 脂組成物的溫度上升而使注入時的黏度下降的方法。然 而’若使該樹脂組成物的溫度上升,亦促進環氧樹脂組成 物的硬化反應,就結果而言,黏度會更加上升。視情況, 有在該樹脂組成物流入全部注入面前就已硬化之虞。若利 用本發明的環氧樹脂組成物,由於使用期限優良,且歷經 長時間可維持在室溫附近的低黏度與高流動性,故在底部 塡充注入作業時,不需利用加溫之黏度調整,可進行安定 且均質的底部塡充注入。 此外,藉由本發明的環氧樹脂組成物而密封之半導體 封裝體(半導體裝置),由於注入了均質的底部塡充材料, 故可靠度高。 [用於實施發明的形態] 本發明的環氧樹脂組成物係含有環氧化合物(A)、硬化 劑(B)、硬化促進劑(C)、無機塡充材(D)與矽烷偶合劑(E)。 前述環氧化合物(A)係由以下列通式(I):S 201136977 When the viscosity of the epoxy resin composition of the filler is high, a method of increasing the temperature of the resin composition and lowering the viscosity at the time of injection is generally employed. However, if the temperature of the resin composition is raised, the curing reaction of the epoxy resin composition is promoted, and as a result, the viscosity is further increased. Depending on the situation, there is a tendency to harden the resin composition before it is completely injected. When the epoxy resin composition of the present invention is used, since it has a good service life and can maintain a low viscosity and a high fluidity near room temperature over a long period of time, it is not necessary to utilize the viscosity of the heating during the bottom filling operation. Adjusted to provide a stable and homogeneous bottom charge injection. Further, the semiconductor package (semiconductor device) sealed by the epoxy resin composition of the present invention has high reliability because a homogeneous bottom susceptor is injected. [Formation for Carrying Out the Invention] The epoxy resin composition of the present invention contains an epoxy compound (A), a curing agent (B), a curing accelerator (C), an inorganic cerium filling material (D), and a decane coupling agent ( E). The aforementioned epoxy compound (A) is derived from the following general formula (I):
(此處,Ri〜Ris可各自相同’亦可各自不同’表示亦可含 有氫原子、鹵素原子、氧原子或鹵素原子的烴基或亦可具(here, Ri~Ris may be the same or different), and a hydrocarbon group which may further contain a hydrogen atom, a halogen atom, an oxygen atom or a halogen atom may be used.
S -10- .201136977 有取代基的烷氧基)或以下列通式(Π):S -10- .201136977 Alkoxy having a substituent) or by the following formula (Π):
、R38 R37 (II) (此處,R21〜R38可各自相同,亦可各自不同,表示亦可含 有氫原子、鹵素原子' 氧原子或鹵素原子的烴基或亦可具 有取代基的烷氧基)表示之脂環族二環氧化合物(a i)及前述 脂環族二環氧化合物(a 1 )以外的環氧化合物(a2 )構成。 就前述脂環族二環氧化合物U1)而言,可使用以前述通 式(I)表示之脂環族二環氧化合物及以前述通式(11)表示之 脂環族二環氧化合物中之任一者,亦可倂用兩者。在室溫 (例如5〜3 0 °C )附近,前述脂環族二環氧化合物(a 1)爲低黏 度,故可賦予環氧樹脂組成物高流動性。 在前述通式(I)中,就Ri〜R18表示之鹵素原子而言’ 可列舉氟原子、氯原子、溴原子、碘原子。 就1〜1118表示之烴基而言,可列舉碳原子數1〜10 的低級烷基,就具體例子而言,可列舉甲基、乙基、己基 等之直鏈烷基、異丙基、新戊基、2 -乙基己基等之分支烷 基等。烴基亦可含有氧原子或鹵素原子。就鹵素原子而言, 可列舉與前述相同者。所謂含有氧原子的情形,係意指OH 基作爲取代基或具有羧基的情形。 就表示之烷氧基而言,可列舉碳原子數1〜10 -11 - 201136977 的低級烷氧基,就具體例子而言,可列舉甲氧基、乙氧基、 丙氧基、丁氧基等。烷氧基亦可具有取代基,就取代基而 言,例如可列舉低級烷氧基、鹵素原子等。 在本發明中,較佳係前述通式(1)中Rl〜Rl8爲氫原子 之化合物(3,4-環氧環己基甲基-3,4-環氧環己烷羧酸酯)。 3,4-環氧環己基甲基-3,4-環氧環己烷羧酸酯,例如可取得 DAICEL 化學工業公司製的 CELLOXIDE CEL-2021P、Union Carbide 製的 ERL422 1。 在前述通式(II)中,就R21〜R38表示之鹵素原子而言, -可列舉氟原子、氯原子、溴原子、碘原子。 就表示之烴基而言,可列舉碳原子數1〜10 的低級烷基’就具體例子而言,可列舉甲基、乙基、己基 等之直鏈烷基、異丙基、新戊基、2 -乙基己基等之分支烷 基等。烴基亦可含有氧原子或鹵素原子。就鹵素原子而言, 可列舉與前述相者。所謂含有氧原子的情形,係意指〇H 基作爲取代基的或具有羧基的情形。 就Rn〜R38表示之烷氧基而言,可列舉碳原子數1〜 1 〇的低級烷氧基’就具體例子而言,可列舉甲氧基、乙氧 基、丙氧基、丁氧基等。烷氧基亦可具有取代基,就取代 基而言’例如可列舉低級烷氧基、鹵素原子等。 在本發明中’較佳係前述通式(11)中r21〜R38爲氫原 子之化合物(聯環己基-3,3’ -二環氧乙烷)。 前述通式(II)的化合物,例如可藉由具有聯環己基R38 R37 (II) (here, R21 to R38 may be the same or different, and each represents a hydrocarbon group which may also contain a hydrogen atom, a halogen atom 'oxygen atom or a halogen atom or an alkoxy group which may have a substituent) The alicyclic diepoxide (ai) and the epoxy compound (a2) other than the alicyclic diepoxide (a1) are represented. In the above alicyclic diepoxide compound U1), an alicyclic diepoxy compound represented by the above formula (I) and an alicyclic diepoxide compound represented by the above formula (11) can be used. Either of them can be used. The alicyclic diepoxide (a1) has a low viscosity in the vicinity of room temperature (e.g., 5 to 30 °C), so that the epoxy resin composition can be imparted with high fluidity. In the above formula (I), examples of the halogen atom represented by Ri to R18 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. Examples of the hydrocarbon group represented by 1 to 1118 include a lower alkyl group having 1 to 10 carbon atoms, and specific examples thereof include a linear alkyl group such as a methyl group, an ethyl group or a hexyl group, an isopropyl group, and a new one. a branched alkyl group such as a pentyl group or a 2-ethylhexyl group. The hydrocarbon group may also contain an oxygen atom or a halogen atom. The halogen atom is the same as the above. The case of containing an oxygen atom means a case where an OH group has a substituent or has a carboxyl group. The alkoxy group represented by the above may, for example, be a lower alkoxy group having 1 to 10 -11 to 201136977, and specific examples thereof include a methoxy group, an ethoxy group, a propoxy group, and a butoxy group. Wait. The alkoxy group may have a substituent, and examples of the substituent include a lower alkoxy group and a halogen atom. In the present invention, a compound (3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate) wherein R1 to Rl8 in the above formula (1) are a hydrogen atom is preferred. As the 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, for example, CELLOXIDE CEL-2021P manufactured by DAICEL Chemical Industry Co., Ltd. and ERL422 1 manufactured by Union Carbide can be obtained. In the above formula (II), examples of the halogen atom represented by R21 to R38 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. The hydrocarbon group represented by the above is a lower alkyl group having 1 to 10 carbon atoms. Specific examples thereof include a linear alkyl group such as a methyl group, an ethyl group or a hexyl group, an isopropyl group, a neopentyl group, and the like. a branched alkyl group such as 2-ethylhexyl or the like. The hydrocarbon group may also contain an oxygen atom or a halogen atom. The halogen atom is exemplified by the above. The case of containing an oxygen atom means a case where the oxime H group is a substituent or has a carboxyl group. Examples of the alkoxy group represented by Rn to R38 include a lower alkoxy group having 1 to 1 carbon atom. Specific examples thereof include a methoxy group, an ethoxy group, a propoxy group, and a butoxy group. Wait. The alkoxy group may have a substituent, and the substituent may, for example, be a lower alkoxy group or a halogen atom. In the present invention, it is preferred that the compound of the above formula (11) wherein r21 to R38 are a hydrogen atom (bicyclohexyl-3,3'-diethylene oxide). The compound of the above formula (II), for example, having a cyclohexyl group
S -12- 201136977 -3,3二烯骨架的不飽和化合物與氧化劑,尤其是與有機 過酸(過甲酸、過乙酸、過苯甲酸、過異丁酸、三氟過乙酸 等)進行反應而製造。由反應性 '安定度的點來看,在有機 過酸之中,過乙酸爲較佳的環氧化劑。關於前述通式(II) 的化合物的製造,可參考日本專利第43 22047號公報。 就前述脂環族二環氧化合物(al)以外的環氧化合物(a2) 而言,若爲在1分子中具有2個以上環氧基者,可使用任 一者,尤其可列舉雙酚A及F型環氧樹脂、苯酚酚醛清漆 型環氧樹脂、萘型環氧樹脂、聯苯型環氧樹脂、環戊二烯 型環氧樹脂等來說明。此等之中,爲了要進行低黏度化, 較佳係雙酚A及F型環氧樹脂。 在本發明中,調配20〜80重量%前述脂環族二環氧化 合物(al)與SO〜20重量%前述脂環族二環氧化合物(al)以 外的環氧化合物(a2)作爲前述環氧化合物(A)。化合物(al) 與化合物(a2)的總量爲100重量%。若化合物(al)的調配量 未達2 〇重量%,則對環氧樹脂組成物之流動性賦予效果會 變弱。另一方面’若化合物(al)的調配量超過80重量%, 則環氧樹脂組成物的硬化物會變脆,且耐衝撃性會降低。 較佳的調配量係25〜"75重量%化合物(ai)、75〜25重量% 化合物U2)’更佳的調配量係3〇〜70重量%化合物(al)' 70〜30重量%化合物(a2)。 藉由使環氧化合物(A)爲上述般的構成,可獲得在室溫 附近爲低黏度且具有高流動性的環氧樹脂組成物。另外,S -12- 201136977 -3,3 The unsaturated compound of the diene skeleton reacts with an oxidizing agent, especially with an organic peracid (percarboxylic acid, peracetic acid, perbenzoic acid, perisobutyric acid, trifluoroperacetic acid, etc.) Manufacturing. From the point of view of reactivity 'degree of stability, peracetic acid is a preferred epoxidizing agent among organic peracids. For the production of the compound of the above formula (II), reference is made to Japanese Patent No. 43 22047. In the case of the epoxy compound (a2) other than the alicyclic diepoxy compound (al), if it has two or more epoxy groups in one molecule, any one may be used, and in particular, bisphenol A may be mentioned. And F-type epoxy resin, phenol novolac type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, cyclopentadiene type epoxy resin, etc. are demonstrated. Among these, in order to achieve low viscosity, bisphenol A and F type epoxy resins are preferred. In the present invention, 20 to 80% by weight of the alicyclic diepoxide (al) and SO to 20% by weight of the epoxy compound (a2) other than the alicyclic diepoxide (al) are blended as the ring. Oxygen compound (A). The total amount of the compound (al) and the compound (a2) was 100% by weight. When the compound (al) is blended in an amount of less than 2% by weight, the effect of imparting fluidity to the epoxy resin composition is weak. On the other hand, when the compounding amount of the compound (al) exceeds 80% by weight, the cured product of the epoxy resin composition becomes brittle and the impact resistance is lowered. A preferred blending amount is 25 to <75 wt% of compound (ai), 75 to 25 wt% of compound U2) 'better blending amount is 3 〇 to 70 wt% of compound (al) '70 to 30 wt% of compound (a2). By forming the epoxy compound (A) as described above, an epoxy resin composition having a low viscosity at room temperature and having high fluidity can be obtained. In addition,
S -13- 201136977 環氧化合物(A),該等本身經常被稱爲環氧樹脂。 就使上述環氧化合物(A)硬化之硬化劑(B)而言,可使 用苯酚樹脂、酸酐 '胺系化合物。由組成物的低黏度化的 觀點來看,此等之中較佳係酸酐。 就作爲硬化劑(B)的酸酐而言,可列舉甲基四氫鄰苯二 甲酸酐、甲基六氫鄰苯二甲酸酐、烷基化甲基四氫鄰苯二 甲酸酐、六氫鄰苯二甲酸酐、甲基降冰片烯二酸酐(methyl himic anhydride)、十二烯基琥珀酸酐等來說明。 前述酸酐(B)的調配比例,較佳係相對於每1當量前述 環氧化合物(A)中的環氧基,前述酸酐當量爲〇.6〇〜1.05, 更佳係0.80〜1.00當量。當酸酐(B)的調配量未達0.60當 量時’會有硬化性不充分的情形,另一方面,若超過1.05 當量,則未反應的酸酐會大量存在,且會有導致製得之硬 化物的玻璃轉移溫度降低的情形。另外,關於環氧化合物 (A)與酸酐(B)的當量關係’相對於化合物(A)中的!個環氧 基’將酸酐中的酸酐基爲1個的情形作爲丨當量。藉由以 上述範圍的調配量使用前述硬化劑(B),會成爲硬化性與流 動性的平衡爲特優者。此等之硬化劑可單獨使用亦可倂用 2種以上。 作爲硬化劑(B)的苯酚樹脂係含有2個以上苯酚性羥基 的化合物’可列舉苯酚酚醛清漆樹脂、甲苯酚酚醛清漆樹 脂等之酚醛清漆型苯酚樹脂、三苯酚甲烷型苯酚樹脂、三 苯酚丙烷型苯酚樹脂、萜改質苯酚樹脂 '二環戊二烯改質S -13- 201136977 Epoxy compound (A), which is often referred to as epoxy resin. A phenol resin or an acid anhydride 'amine compound can be used for the curing agent (B) which hardens the epoxy compound (A). From the viewpoint of low viscosity of the composition, among these, an acid anhydride is preferred. Examples of the acid anhydride as the curing agent (B) include methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, alkylated methyltetrahydrophthalic anhydride, and hexahydroortho Phthalic anhydride, methyl himic anhydride, dodecenyl succinic anhydride, and the like are described. The blending ratio of the acid anhydride (B) is preferably from 0.05 to 1.05, more preferably from 0.80 to 1.00 equivalent, per 1 equivalent of the epoxy group in the epoxy compound (A). When the amount of the acid anhydride (B) is less than 0.60 equivalent, the curing property may be insufficient. On the other hand, if it exceeds 1.05 equivalent, the unreacted acid anhydride may be present in a large amount, and the cured product may be obtained. The glass transition temperature is reduced. Further, the equivalent relationship between the epoxy compound (A) and the acid anhydride (B) is relative to that in the compound (A)! The epoxy group 'is one equivalent of the acid anhydride group in the acid anhydride. By using the above-mentioned curing agent (B) in a compounding amount within the above range, the balance between hardenability and fluidity is excellent. These hardeners may be used alone or in combination of two or more. The phenol resin as the curing agent (B) is a compound containing two or more phenolic hydroxyl groups, and examples thereof include a phenol novolak resin, a novolak type phenol resin such as a cresol novolak resin, a trisphenol methane type phenol resin, and a trisphenol propane. Type phenol resin, hydrazine modified phenol resin 'dicyclopentadiene modification
S -14- 201136977 苯酚樹脂等之改質苯酚樹脂、具有伸苯基及/或伸聯苯骨架 的苯酣芳院基樹脂、具有伸苯基及/或伸聯苯骨架的萘酸芳 烷基樹脂等之芳烷基型苯酚樹脂、雙酚化合物等。 作爲硬化劑(B)的胺系化合物係含有2個以上1級胺或 2級胺的化合物,可列舉二伸乙三胺、三伸乙四胺、四伸 乙五胺、間苯二甲基二胺、三甲基六亞甲基二胺、2_甲基 五亞甲基二胺等之脂肪族聚胺、異佛酮二胺、1,3-雙胺基甲 基環己烷、雙(4-胺基環己基)甲烷、降萡烯二胺、丨,、二 胺基環己烷等之脂環族聚胺、間伸苯基二胺等之芳香族聚 胺等。 當使用苯酣樹脂或胺系化合物時的調配量,相對於每 1當量環氧基,可使苯酚樹脂的OH基當量(活性氫當量)、 胺系化合物的胺基當量(活性氫當量)成爲0.60〜1 .〇5。 在本發明的組成物中調配硬化促進劑(C)。 就前述硬化促進劑(C)而言,可列舉作爲咪唑系、3級 胺系、磷化合物系等之環氧樹脂的硬化促進劑而使用者, 並無特別限定。·例如可列舉2 -甲基咪唑、2 -十一基咪唑、 2-乙基-4-甲基咪唑、2-苯基咪唑等之咪唑系;苄基二甲基 胺、參二甲基胺基甲基苯酚、三乙二胺等之3級胺系;溴 化四丁基鞍等之4級錢鹽;二卩丫雙環十一燃(DBU)或DBU 之有機酸鹽;三苯基膦、磷酸酯等之磷化合物系等。可使 用此等之以微膠囊包衣(capsule coating)及形成錯鹽等而 潛在化者。配合硬化條件,次等可單獨使用,亦可倂用2S -14- 201136977 Modified phenol resin such as phenol resin, benzoquinone-based resin with phenylene and/or extended benzene skeleton, aralkyl naphthoate with phenyl and/or extended benzene skeleton An aralkyl type phenol resin such as a resin, a bisphenol compound or the like. The amine compound as the curing agent (B) is a compound containing two or more primary amines or secondary amines, and examples thereof include diethylenetriamine, triethylenetetramine, tetraethyleneamine, and m-xylylene. Aliphatic polyamines such as diamine, trimethylhexamethylenediamine, 2-methylpentamethylenediamine, isophoronediamine, 1,3-diaminomethylcyclohexane, double An alicyclic polyamine such as 4-aminocyclohexylmethane, norbornene diamine, hydrazine or diaminocyclohexane; or an aromatic polyamine such as an exophenylene diamine. When the amount of the benzoquinone resin or the amine compound is used, the OH group equivalent (active hydrogen equivalent) of the phenol resin and the amine group equivalent (active hydrogen equivalent) of the amine compound can be made per equivalent of the epoxy group. 0.60~1 .〇5. A hardening accelerator (C) is formulated in the composition of the present invention. The hardening accelerator (C) is not particularly limited as long as it is a curing accelerator for an epoxy resin such as an imidazole, a tertiary amine or a phosphorus compound. Examples thereof include imidazoles such as 2-methylimidazole, 2-undecylimidazole, 2-ethyl-4-methylimidazole, and 2-phenylimidazole; benzyldimethylamine and dimethylamine; a tertiary amine system such as methyl phenol, triethylene diamine, etc.; a 4-grade salt of a tetrabutyl saddle such as bromide; an organic acid salt of a diterpene double-cycloid (DBU) or DBU; A phosphorus compound such as a phosphate ester or the like. Such a potential use can be achieved by microcapsule coating and formation of a wrong salt or the like. In combination with hardening conditions, inferior can be used alone or in combination with 2
S -15- 201136977 種以上。 相對於前述環氧化合物(A) 100重量份,前述硬化 劑(C)的調配量較佳係〇 · 1〜1 〇重量份,更佳係〇 . 5〜5 份。當硬化促進劑(C)的調配量未達0_1重量份時,難 得硬化促進效果,另一方面,若調配量超過10重量份 化反應會變爲過快。藉由在上述範圍的調配量內使用 硬化促進劑(C),可快速地進行硬化,且可期待密封步 出量的提升。 在本發明的組成物中調配無機塡充材(D)。前述無 充材(D)係以矽烷偶合劑表面處理過之無機微粒子。前 機微粒子係選自二氧化矽微粒子' 氧化鋁微粒子、氧 微粒子等。此等之中,由低線膨脹係數來看,較佳係 化砍。藉由使組成物中含有二氧化矽,可使環氧樹脂 物硬化後的線膨脹係數變小。藉此,當使用環氧樹脂 物作爲半導體封裝體的底部塡充材時,可使硬化後的 塡充材的線膨脹係數接近半導體晶片或基板的線膨 數,其結果,可回避對焊料凸點接合部的應力集中, 提升熱循環處理時的連接可靠度。 作爲前述無機塡充材(D)之前述無機微粒子係以 偶合劑表面處理過者。此處的矽烷偶合劑較佳係環氧 有矽烷偶合劑或胺基含有矽烷偶合劑。就含環氧基的 偶合劑而言,例如可列舉2 -(3,4-環氧環己基)乙基 氧基矽烷、3 -環氧丙氧基丙基三甲氧基矽烷、3-環 促進 重量 以獲 ,硬 BU述 驟產 機塡 述無 化鈦 二氧 組成 組成 底部 脹係 且可 矽烷 基含 矽烷 三甲 氧丙 -16- 201136977 氧基丙基甲基二乙氧基矽烷、3-環氧丙氧基丙基三乙氧基 矽烷等。 就含胺基的矽烷偶合劑而言,例如可列舉N-2-(胺基乙 基)-3-胺基丙基甲基二甲氧基矽烷、N-2-(胺基乙基)-3-胺基 丙基三甲氧基矽烷、N-2-(胺基乙基)-3-胺基丙基三乙氧基 砍院、3 -胺基丙基二甲氧基砂院、3 -胺基丙基三乙氧基砂 烷、3-三乙氧基矽烷基-N-(l,3-二甲基-亞丁基)丙基胺、N-苯基-3-胺基丙基三甲氧基矽烷、N-(乙烯基苄基)_2 -胺基乙 基-3-胺基丙基三甲氧基矽烷的鹽酸鹽等。 就SU述無機微粒子的形狀而g,較佳係球狀者,尤其 從流動性的觀點來看,較佳係溶融二氧化矽且近似真球 者。又,氧化鋁之中,較佳係溶融氧化鋁且近似真球者。 前述無機微粒子的平均粒徑較佳係〇 . 1〜1 0 y m、更佳係〇 . 5 〜5ym。藉由使用具有如此範圍的平均粒徑之二氧化矽等 之粒子,可確保對狹窄隙間的侵入性。此處所謂的平均粒 徑係意指中位直徑(median diameter)d5〇。 就前述無機微粒子的表面處理方法而言,可列舉一面 將無機微粒子均勻攪拌一面將矽烷偶合劑噴霧或以蒸氣狀 態噴吹,視需要而進行加熱處理之乾式法;使無機微粒子 分散於溶劑中’另一方面,將矽烷偶合劑稀釋於水或有機 溶劑’在漿體狀態下一面將兩者攪拌一面混合,之後將溶 劑除去之濕式法。較佳係如砂院偶合劑以化學鍵而鍵結於 -17- 1 201136977 的合說 劑偶行 合烷進 •偶矽形 烷之情 矽積的 的面矽 用表化 使部氧 中全二 理的對 處矽針。 面化,同 表氧下亦 的二以子 子覆。粒 ¾被示機 ί於表I 述量Η其 前加 # 於 在添量.關 論的。 理劑明 矽烷偶合劑的理論添加量(g)=〔二氧化矽重量(g)x二氧化 矽比表面積(m2/g)〕/矽烷偶合劑的最小被覆面積(m2/g) 各矽烷偶合劑的最小被覆面積係如下來計算。 當官能基爲三烷氧基矽烷時,將水解而製得的Si(0)3 假設爲1個由半徑2.1 〇A的球形形成的Si原子與3個由半 徑1.52A的球形形成的0原子、Si-Ο的鍵長1.51A'四面 體角109.5°,且進一步假設模型中的3個0原子全部與二 氧化矽表面的矽烷醇基進行反應’而計算3個Ο原子可被 覆之最小的圓形面積。其結果,每1分子的被覆面積爲13.3 Χ1 0·2βιη2/分子。例如在3-環氧丙氧基丙基三甲氧基矽烷(分 子量:2 3 6.3 )的情形,最小被覆面積爲3 3 0 m 2 / g。若將經計 算之最小被覆面積套用於上式’可求取矽烷偶合劑的理論 添加量。 矽烷偶合劑的最小被覆面積係以下式表示。 矽烷偶合劑的最小被覆面積(m2/g)= 〔 6.02χ10 23 χ13·3χ l〇-2Q〕/矽烷偶合劑的分子量 在本發明中,相對於矽烷偶合劑的理論添加量之化學 鍵結於二氧化矽表面的砍院偶合劑量的比例’即相對於二 氧化砍的全部表面積之藉由化學鍵結於二氧化砂表面的砂S -15- 201136977 or more. The compounding amount of the hardener (C) is preferably 〇1 to 1 〇 by weight, more preferably 5% to 5 parts by weight based on 100 parts by weight of the epoxy compound (A). When the amount of the curing accelerator (C) is less than 0 to 1 part by weight, the hardening promoting effect is hardly obtained. On the other hand, if the amount is more than 10 parts by weight, the reaction may become too fast. By using the hardening accelerator (C) in the amount of the above range, the hardening can be performed rapidly, and the increase in the sealing step can be expected. The inorganic cerium (D) is formulated in the composition of the present invention. The above-mentioned non-filled material (D) is an inorganic fine particle surface-treated with a decane coupling agent. The precursor microparticles are selected from the group consisting of cerium oxide microparticles, alumina microparticles, and oxygen microparticles. Among these, it is better to cut by the low coefficient of linear expansion. By containing cerium oxide in the composition, the coefficient of linear expansion of the epoxy resin can be made small. Therefore, when an epoxy resin is used as the underfill of the semiconductor package, the linear expansion coefficient of the cured ruthenium can be made close to the linear expansion of the semiconductor wafer or the substrate, and as a result, the solder bump can be avoided. The stress concentration at the joint of the joint improves the connection reliability during the heat cycle treatment. The inorganic fine particles as the inorganic cerium filler (D) are surface-treated with a coupling agent. The decane coupling agent herein is preferably an epoxy decane coupling agent or an amine group decane coupling agent. Examples of the epoxy group-containing coupling agent include 2-(3,4-epoxycyclohexyl)ethyloxydecane, 3-glycidoxypropyltrimethoxynonane, and 3-ring promotion. The weight is obtained, the hard-boiled production machine describes the composition of the titanium-free dioxane composition, the bottom-swelling system and the decyl-alkyl-containing decane-trimethoxypropane-16-201136977 oxypropylmethyldiethoxy decane, 3-ring Oxypropoxypropyltriethoxydecane, and the like. Examples of the amine group-containing decane coupling agent include N-2-(aminoethyl)-3-aminopropylmethyldimethoxydecane and N-2-(aminoethyl)- 3-Aminopropyltrimethoxydecane, N-2-(aminoethyl)-3-aminopropyltriethoxy chopping, 3-aminopropyldimethoxy sand, 3 - Aminopropyltriethoxysilane, 3-triethoxydecyl-N-(l,3-dimethyl-butylene)propylamine, N-phenyl-3-aminopropyltrimethyl The hydrochloride salt of oxydecane, N-(vinylbenzyl)-2-aminoethyl-3-aminopropyltrimethoxydecane, and the like. In the case where SU describes the shape of the inorganic fine particles, g is preferably spherical, and particularly from the viewpoint of fluidity, it is preferred to melt the cerium oxide and approximate the true sphere. Further, among the aluminas, it is preferred to melt the alumina and approximate the true sphere. The average particle diameter of the inorganic fine particles is preferably 11 to 1 0 y m, more preferably 5 5 to 5 ym. By using particles such as cerium oxide having an average particle diameter in such a range, intrusion into a narrow gap can be ensured. The average particle diameter referred to herein means the median diameter d5〇. The surface treatment method of the inorganic fine particles may be a dry method in which a decane coupling agent is sprayed or a vapor state is sprayed while uniformly stirring the inorganic fine particles, and if necessary, heat treatment is performed; and the inorganic fine particles are dispersed in a solvent. On the other hand, a wet method in which a decane coupling agent is diluted in water or an organic solvent in a slurry state while being stirred and mixed, and then the solvent is removed. It is preferred that the sand chamber coupling agent is bonded to the -17- 1 201136977 by a chemical bond, and the enthalpy of the argon-containing argon-like alkane is used to form a surface. The opposite is true. Face-to-face, the same as the oxygen is also covered by the child. The grain 3⁄4 is shown in Table I, and the amount is added to the front. Theoretical addition amount of physicochemical decane coupling agent (g) = [weight of cerium oxide (g) x specific surface area of cerium oxide (m2 / g)] / minimum coated area of decane coupling agent (m2 / g) The minimum coverage area of the mixture is calculated as follows. When the functional group is a trialkoxy decane, Si(0)3 obtained by hydrolysis is assumed to be one Si atom formed by a sphere having a radius of 2.1 〇A and three 0 atoms formed by a sphere having a radius of 1.52A. The bond length of Si-Ο is 1.51A' tetrahedral angle 109.5°, and further assume that all three 0 atoms in the model react with the stanol group on the surface of cerium oxide, and calculate the smallest of the three yttrium atoms that can be coated. Round area. As a result, the coated area per molecule was 13.3 Χ1 0·2βιη2/molecule. For example, in the case of 3-glycidoxypropyltrimethoxydecane (molecular weight: 2 3 6.3 ), the minimum coated area is 3 3 0 m 2 /g. If the calculated minimum coated area is applied to the above formula, the theoretical addition amount of the decane coupling agent can be obtained. The minimum coated area of the decane coupling agent is represented by the following formula. The minimum coated area of the decane coupling agent (m2/g) = [6.02χ10 23 χ13·3χ l〇-2Q]/the molecular weight of the decane coupling agent is chemically bonded to the theoretical addition amount of the decane coupling agent in the present invention. The proportion of the decoupling coupling dose on the surface of the cerium oxide is the sand that is chemically bonded to the surface of the sand dioxide relative to the total surface area of the oxidized chopping
S -18 - 201136977 烷偶合劑而被被覆之二氧化矽的表面積的面 說明書中此稱爲「化學鍵表面處理率」),較佳 此化學鍵表面處理率可使用示差熱分析 析。 當經以矽烷偶合劑進行表面處理之二氧 熱重量測定/示差熱分析(TG/DTA)時,係由室 8 00。。〇 在使用之矽烷偶合输的沸點附近,可觀 粒子的重量減少。此重量減少係起因於在二 面,無化學鍵結而以物理或化學附著之矽烷 點附近的溫度下發生飛散。 若超過沸點附近的溫度且進一步昇溫至 觀察到二氧化矽粒子的重量更加地減少。此 因於在二氧化矽粒子表面上透過 Si-O-Si化 矽烷偶合劑由於高溫而熱分解,矽烷偶合劑 失。 因此,視使用之矽烷偶合劑的沸點不同 烷偶合劑的沸點+ 3 0 °C的溫度)〜8 0 0 °c的溫 氧化矽粒子的重量減少’由下式算出前述化 率(% )。 化學鍵表面處理率(%)=〔矽烷偶合劑的沸爵 °c中的每ig二氧化砂的重量減少(g) /每1g二 偶合劑的理論添加量(g)〕xl00 丨積比例(在本 係1 0 %以上。 (DTA)進行分 化矽粒子進行 溫附近昇溫至 察到二氧化矽 氧化矽粒子表 偶合劑在其沸 8 00°C ,貝II 可 重量減少係起 學鍵而鍵結之 的有機部分消 ,藉由測定(矽 度範圍中的二 學鍵表面處理 弓 + 30。。〜800 氧化矽的矽烷 -19- .201136977 在上述中舉例說明之矽烷偶合劑的沸點,例如由於爲 2-(3,4-環氧環己基)乙基三甲氧基矽烷(分子量:246.4,沸 點:31(TC)、3-環氧丙氧基丙基三甲氧基矽烷(分子量:236.3, 沸點:2 9 0 °C ),故在此等情.形下,測定實質上在3 5 0 °C〜8 0 0 °C中的二氧化矽的重量減少即可。 在本發明中,較佳係使用前述化學鍵表面處理率爲10 %以上的二氧化矽等之無機微粒子,更佳係使用30%以上 的無機微粒子,進一步更加係使用60%以上的無機微粒 子、最佳係使用80%以上的無機微粒子。藉由使用此種化 擧鍵表面處理率的二氧化矽等之無機微粒子,可提升與樹 脂成分的親和性,又由於二氧化矽等之無機微粒子表面的 酸性(例如矽烷醇基)變少,可提升環氧樹脂組成物的儲存 安定性且可抑制黏度上昇。 以前述(A)、(B)、(C)及(D)成分的總量爲基準,較佳係 使前述無機塡充材(D)的調配比例爲30〜80重量%,更佳 係使其爲35〜80重量%,進一步更佳係使其爲45〜75重 鼇%。若無機塡充材(D)的調配比例未達30重量%,則樹 脂成分相對上變多而製得之硬化物的線膨脹係數容易變 大。另一方面,若無機塡充材(D)的調配比例超過80重量 %,則會有組成物的黏度上昇、流動性降低的傾向。 在本發明的組成物中調配矽烷偶合劑(E)。 就矽烷偶合劑(E)而言,可使用周知者,較佳係使用例 如2-(3,4-環氧環己基)乙基三甲氧基矽烷、3-環氧丙氧基丙S -18 - 201136977 The surface area of the surface area of the cerium oxide coated with the alkane coupling agent is referred to as "chemical bond surface treatment rate" in the specification. Preferably, the surface treatment rate of the chemical bond can be analyzed by differential thermal analysis. When subjected to a dioxometric gravimetric/differential thermal analysis (TG/DTA) surface treatment with a decane coupling agent, it is from room 800. .附近 Near the boiling point of the decane coupling used, the weight of the particles is reduced. This weight reduction is caused by scattering at a temperature near the decane point which is physically or chemically bonded on the two sides without chemical bonding. If the temperature near the boiling point is exceeded and the temperature is further raised until the weight of the cerium oxide particles is observed to be further reduced. This is because the Si-O-Si decane coupling agent is thermally decomposed on the surface of the cerium oxide particles due to high temperature, and the decane coupling agent is lost. Therefore, depending on the boiling point of the decane coupling agent to be used, the boiling point of the alkane coupling agent + the temperature of 30 ° C), the weight of the cerium oxide particles in the temperature of ~800 °C is decreased, and the above-mentioned chemical conversion rate (%) is calculated by the following formula. Chemical bond surface treatment rate (%) = [weight loss per ig silica sand in the boiling point of the decane coupling agent (g) / theoretical addition amount (g) per 1 g of the coupling agent] xl00 hoarding ratio (in The system is more than 10%. (DTA) is carried out to differentiate the cerium particles to warm up near the temperature until the cerium oxide cerium oxide particle surface coupling agent is in boiling at 800 ° C, and the shell II can be reduced in weight and the bonding bond is bonded. The organic fraction is eliminated by measuring (the temperature of the two-key surface treatment bow + 30. ~800 yttrium oxide decane-19-.201136977 The boiling point of the decane coupling agent exemplified in the above, for example due to Is 2-(3,4-epoxycyclohexyl)ethyltrimethoxydecane (molecular weight: 246.4, boiling point: 31 (TC), 3-glycidoxypropyltrimethoxydecane (molecular weight: 236.3, boiling point) : 2 90 ° C), in this case, the weight loss of cerium oxide substantially in the range of 350 ° C to 800 ° C can be measured. In the present invention, it is preferred. The inorganic fine particles such as cerium oxide having a surface treatment ratio of 10% or more are used, and more preferably 30% or more of the inorganic fine particles are used. Further, 60% or more of the inorganic fine particles are used in the fine particles, and 80% or more of the inorganic fine particles are preferably used. By using the inorganic fine particles such as cerium oxide having a surface treatment ratio of the chemical bond, the resin component can be improved. In addition, since the acidity (for example, stanol group) on the surface of the inorganic fine particles such as cerium oxide is reduced, the storage stability of the epoxy resin composition can be improved and the viscosity can be suppressed from increasing (A) and (B). The ratio of the total amount of the components (C) and (D) is preferably from 30 to 80% by weight, more preferably from 35 to 80% by weight, further preferably from 35 to 80% by weight. More preferably, it is 45 to 75% by weight. If the proportion of the inorganic filler (D) is less than 30% by weight, the resin component is relatively increased, and the linear expansion coefficient of the obtained cured product tends to become large. On the other hand, when the blending ratio of the inorganic ceramium filler (D) exceeds 80% by weight, the viscosity of the composition tends to increase and the fluidity tends to decrease. The decane coupling agent (E) is formulated in the composition of the present invention. In the case of a decane coupling agent (E), By using well known, the preferred system using, for example 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, Silane, 3-glycidoxy propyl
S -20- .201136977 基三甲氧基矽烷、3-環氧丙氧基丙基甲基二乙氧基矽烷、 3 -環氧丙氧基丙基三乙氧基矽烷等之含環氧基的矽烷偶合 劑;例如N-2-(胺基乙基)-3-胺基丙基甲基二甲氧基矽烷、 N-2-(胺基乙基)-3-胺基丙基三甲氧基矽烷、N-2-(胺基乙 基)-3-胺基丙基三乙氧基矽烷、3-胺基丙基三甲氧基矽烷、 3-胺基丙基三乙氧基矽烷、3-三乙氧基矽烷基-N-(l,3-二甲 基-亞丁基)丙基胺、N-苯基-3-胺基丙基三甲氧基矽烷' N-(乙烯基苄基)-2 -胺基乙基-3-胺基丙基三甲氧基矽烷的 鹽酸鹽等之含胺基的矽烷偶合劑等》可使用與用於作爲前 述無機塡充材(D)的表面處理劑者同種者,亦可使用不同 者。 相對於前述環氧化合物(A) 100重量份,較佳係使前述 矽烷偶合劑(E)的調配比例爲〇. 1〜5重量份,更佳係使其爲 0.5〜3重量份。藉由使其在此種範圍內,矽晶片或對基板 表面的緊密性會變高且可提升可靠度。 在不違背本發明的目的之範圍中,除了以上說明過的 各成分(A)〜(E)之外,在本發明的環氧樹脂組成物中可調 配顏料、染料、改質劑、觸變性賦予劑、抗著色劑、抗氧 化劑、脫模劑、界面活性劑、稀釋劑等之添加劑。 可將各成分(A)〜(E)以規定比例調配而調製本發明的 環氧樹脂組成物。使用自轉公轉型混合機、乾式攪拌機、 帶式攪拌機、亨舍爾混合機(^^11“1^1111&6〇等周知者,在 常溫(炉1如5〜3〇°C )下進行調配即可。S -20- .201136977 based on trimethoxy decane, 3-glycidoxy propyl methyl diethoxy decane, 3-glycidoxy propyl triethoxy decane, etc. a decane coupling agent; for example, N-2-(aminoethyl)-3-aminopropylmethyldimethoxydecane, N-2-(aminoethyl)-3-aminopropyltrimethoxy Decane, N-2-(aminoethyl)-3-aminopropyltriethoxydecane, 3-aminopropyltrimethoxydecane, 3-aminopropyltriethoxydecane, 3- Triethoxydecyl-N-(l,3-dimethyl-butylene)propylamine, N-phenyl-3-aminopropyltrimethoxydecane 'N-(vinylbenzyl)- An amine group-containing decane coupling agent such as a hydrochloride of 2-aminoethyl-3-aminopropyltrimethoxydecane or the like can be used as a surface treatment agent for the above-mentioned inorganic cerium filling material (D). The same species can also use different people. The blending ratio of the above decane coupling agent (E) is preferably from 1 to 5 parts by weight, more preferably from 0.5 to 3 parts by weight, based on 100 parts by weight of the epoxy compound (A). By making it within such a range, the tightness of the wafer or the surface of the substrate becomes high and the reliability can be improved. In addition to the components (A) to (E) described above, pigments, dyes, modifiers, thixotropic agents may be formulated in the epoxy resin composition of the present invention, without departing from the object of the present invention. Additives such as an imparting agent, an anti-coloring agent, an antioxidant, a releasing agent, a surfactant, a diluent, and the like. Each of the components (A) to (E) may be formulated in a predetermined ratio to prepare an epoxy resin composition of the present invention. Use a self-rotating public-transition mixer, dry mixer, belt mixer, Henschel mixer (^^11"1^1111&6〇, etc., at room temperature (furnace 1 such as 5~3〇°C) Just fine.
S -21- •201136977 經調製之環氧樹脂組成物可使用於以接著劑爲首 種用途。當作爲半導體封裝體的底部塡充材使用時, 分注器將環氧樹脂組成物注入至組裝基板與透過凸塊 置於前述組裝基板上之半導體晶片之間的間隙。注入 室溫(5〜3 0°C )下進行。然後,以企望的硬化條件,例 溫度100〜200 °C下,較佳係在100〜190 °C下,更佳 100〜180 °C下,硬化時間爲30〜600分鐘,較佳係45, 分鐘,更佳係60〜480分鐘而使其硬化。硬化溫度可 性上昇或下降。 本發明的環氧樹脂組成物由於在進行底部塡充注 業的室溫附近具有低黏度與高流動性,故在注入前不 環氧樹脂組成物加溫並調整黏度,又即使當將組裝基 半導體晶片窄間隙化、窄間距化之時,可在極短時間 注入面全部區域進行均質的(未殘留與各構件之間的 或氣泡)底部塡充注入。 又,本發明的環氧樹脂組成物不僅是作爲底部塡 料的用途,亦適合於將經配置於狹窄間隙之應互相接 物體(構件)之間接著的用途。例如亦可適用於使用於 .攝影裝置、光感測器、攜帶用模組相機等之攝影鏡頭 中的透鏡架與透鏡之間的接著。 使用於攝影鏡頭單元中的透鏡架的材料並無特 定’例如可列舉液晶聚合物:LCP(液晶聚合物(黑色 PPS (聚苯硫醚)PEEK(聚醚醚酮)等之熱可塑性樹脂、苯 之各 利用 而配 可在 如在 係在 -540 階段 入作 需將 板與 內對 間隙 充材 著的 小型 單元 別限 ))、 酚樹 •22- 201136977 脂等之熱硬化性樹脂。又,就光學透鏡的材料而言,可列 舉矽;玻璃;將環氧基、乙烯基、(甲基)丙烯醯基等之具 有反應性的有機單體聚合、交聯而製得之樹脂組成物等。 在攝影鏡頭單元的製造中,在透鏡架與透鏡之間有狹 窄間隙存在。將本發明的環氧樹脂組成物注入至此間隙。 由於本發明的環氧樹脂組成物具有低黏度與高流動性,故 會在短時間內均質地滲透至前述間隙。然後,若以如前述 之硬化條件使其硬化,則會堅固地將鏡頭架與鏡頭接著。 [實施例] 在以下列舉實施例以更具體地說明本發明,但本發明 並非限定於此等之實施例者。首先,針對各測定方法進行 說明。 〔實施例1〕 用自轉公轉型混合機在室溫下將作爲脂環族二環氧化 合物之 3,4-環氧環己基甲基-3,4_環氧環己烷羧酸酯 (DAICEL化學工業公司製,CELLOXIDE 2021P,通式(I)中 的R,〜R1S= H)10.0重量份、雙酚F型環氧樹脂(日本化藥 公司製’ RE- 3 03 L) 10.0重量份,作爲硬化劑之甲基六氫鄰 苯二甲酸酐(新日本理化公司製,MH700,酸酐當量:約 1 6 8 ) 2 3 . 3重量份,作爲硬化促進劑之咪唑的環氧樹脂加成 物硬化劑(旭化成 E Materials公司製,Novacure HX-3088)1·2重量份’作爲矽烷偶合劑之r-環氧丙氧基丙 基三甲氧基矽烷(東京化成公司製)〇.4重量份及作爲塡充 -23- 201136977 材之二氧化矽SC4500-SQ(Admatechs股份有限公司製,平 均粒徑l.Oym、比表面積4_0m2/g,經以胺基丙基三乙 氧基矽烷表面處理之真球狀溶融二氧化矽)67.4重量份攪 拌·混合而製得接著劑組成物。 〔實施例2〕 除了取代作爲塡充材之二氧化矽SC4500-SQ,使用二 氧化矽SC4 5 00-SEJ(Admatechs股份有限公司製,平均粒徑 1.0/zm、比表面積4.0m2/g,經以r-環氧丙氧基丙基三甲 氧基矽烷表面處理之真球狀溶融二氧化矽)67.4重量份以 外,與實施例1相同地製得接著劑組成物。 〔實施例3〕 除了取代作爲脂環族二環氧化合物之3,4-環氧環己基 甲基-3,4 -環氧環己烷羧酸酯(DAICEL化學工業公司製, CELLOXIDE 202 1 P,在通式(I)中的 Ri 〜R18=h)10.0 重量 份’使用聯環己基-3,3’ -二環氧乙烷(在通式(II)中的r2| 〜R38= Η) 10.0童量份以外,與實施例2相同地製得接著 劑組成物。 〔比較例1〕 除了取代作爲塡充材之二氧化矽SC4500-SQ,使用二 氧化砂SC-C3(AdmatechS股份有限公司製,平均粒徑i.o 从m、比表面積4.0m2/g,未經表面處理之真球狀溶融二氧 化砂)67.4重量份以外,與實施例1相同地製得接著劑組成 物。 -24 - .201136977 〔比較例2〕 除了不使用脂環族二環氧化合物 CELLOXIDE 2021P(DAICEL化學工業公司製)1〇〇重量份,而使用2〇〇 重量份的雙酚F型環氧樹脂(日本化藥公司製,re-303L) 以外,與實施例2相同地製得接著劑組成物。 將各實施例及比較例的組成物之調配組成表示於表 1。在表1中,各調配量係表示重量份。 [表1] 調配組成 調配物名 實施例1 實施例2 實施例3 比較例1 比較例2 脂環族二琿 氣化合物 2021P(通式⑴的 R1〜R18=H) 10.0 10.0 — 10.0 一 通式(丨丨)的R21~R38=H 一 10.0 一 — 環氧樹脂 RE-303L 10.0 10.0 10.0 10.0 20.0 硬化劑 MH7O0 23.3 23.3 27.3 23.3 23.3 硬化促進劑 HX-3088 1.2 1.2 1.2 1.2 1.2 矽烷偶合劑 r-環氣丙氣基丙基三 甲氣基矽烷 0.4 0.4 0.4 0.4 0.4 填充材 SC4S00-SQ 67.4 — — 一 — SC4500-SEJ 一 67.4 67.4 一 67.4 SC-C3 一 — —* 67.4 — 使用的原料係如以下。 <脂環族二環氧化合物> .3,4-環氧環己基甲基·3,4-環氧環己烷羧酸酯(DAICEL化 學工業公司製,CELLOXIDE 202 1 Ρ’通式(I)中的Ri〜Ris =Η) .聯環己基-3,3’ -二環氧乙烷(通式(II)中的R2i〜R38=H) -25- 201136977 <環氧樹脂> .雙酚F型環氧樹脂(日本化藥公司製,RE-3 03 L) <硬化劑> •甲基六氫鄰苯二甲酸酐(.新日本理化公司製,MH700,酸 酐當量:約168) <硬化促進劑> .咪唑的環氧樹脂加成物硬化劑(旭化成E Materials公司 製,Novacure HX- 3 08 8 ) <塡充材> • SC4500-SQ(Admatechs股份有限公司製,平均粒徑1.0/z m、比表面積4.0m2/g,經以r -胺基丙基三乙氧基矽烷表面 處理之真球狀溶融二氧化矽)根據TG/DTA之在350°C〜800 °C下的重量減少率爲0.40%。 .二氧化矽SC4500-SEJ(Admatechs股份有限公司製,平均 粒徑1.0"m、比表面積4.〇m2/g,經以環氧丙氧基丙基 三甲氧基矽烷表面處理之真球狀溶融二氧化矽)根據 TG/DTA之在350°C〜800°C下的重量減少率爲1.01%。 •二氧化矽SC-C3(Admatechs股份有限公司製,平均粒徑 1.0 /z m、比表面積4.0m2/g,未經表面處理之真球狀溶融二 氧化矽)根據TG/DTA之在35〇°C〜800°C下的重量減少率爲 0.17%。 <矽烷偶合劑> .環氧丙氧基丙基三甲氧基矽烷(東京化成公司製)S -21- • 201136977 The prepared epoxy resin composition can be used for the first use of the adhesive. When used as a bottom cladding of a semiconductor package, the dispenser injects an epoxy resin composition into a gap between the assembly substrate and the semiconductor wafer through which the bumps are placed on the assembly substrate. The injection was carried out at room temperature (5 to 30 ° C). Then, in the desired curing condition, for example, the temperature is 100 to 200 ° C, preferably 100 to 190 ° C, more preferably 100 to 180 ° C, and the curing time is 30 to 600 minutes, preferably 45. Minutes, more preferably 60 to 480 minutes to make it harden. The hardening temperature can rise or fall. Since the epoxy resin composition of the present invention has low viscosity and high fluidity in the vicinity of the room temperature of the bottom crucible filling industry, the epoxy resin composition is not heated and the viscosity is adjusted before the injection, even when the assembly base is to be used. When the semiconductor wafer has a narrow gap and a narrow pitch, the bottom portion of the injection surface can be uniformly filled (without remaining between the members or bubbles) in a very short time. Further, the epoxy resin composition of the present invention is not only used as a bottom material but also suitable for use in connection between objects (members) to be placed in a narrow gap. For example, it can be applied to a follower between a lens holder and a lens used in a photographing lens such as a photographing device, a photo sensor, or a module camera for carrying. The material of the lens holder used in the photographic lens unit is not specific. For example, a liquid crystal polymer: LCP (liquid crystal polymer (black PPS (polyphenylene sulfide)) PEEK (polyether ether ketone) or the like thermoplastic resin, benzene For each use, it can be used as a thermosetting resin such as phenolic tree 22-201136977 grease, which can be used as a small unit filled with a gap between the board and the inner side. Further, examples of the material of the optical lens include enamel; glass; and a resin composition obtained by polymerizing and crosslinking a reactive organic monomer such as an epoxy group, a vinyl group or a (meth) acryl fluorenyl group. Things and so on. In the manufacture of the photographic lens unit, a narrow gap exists between the lens holder and the lens. The epoxy resin composition of the present invention is injected into this gap. Since the epoxy resin composition of the present invention has low viscosity and high fluidity, it will homogeneously penetrate into the aforementioned gap in a short time. Then, if it is hardened under the above-described hardening conditions, the lens frame and the lens are firmly attached. [Examples] The present invention will be specifically described by the following examples, but the present invention is not limited to the examples. First, each measurement method will be described. [Example 1] 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate as an alicyclic diepoxide at room temperature using a self-rotating conversion mixer (DAICEL) Manufactured by Chemical Industry Co., Ltd., CELLOXIDE 2021P, R, R1S = H) in the formula (I), 10.0 parts by weight, bisphenol F-type epoxy resin ("Re- 3 03 L, manufactured by Nippon Kayaku Co., Ltd.", 10.0 parts by weight, Methylhexahydrophthalic anhydride as a curing agent (manufactured by Nippon Chemical Co., Ltd., MH700, acid anhydride equivalent: about 168) 233 parts by weight, epoxy resin adduct of imidazole as a hardening accelerator Hardening agent (Novacure HX-3088, manufactured by Asahi Kasei E Materials Co., Ltd.), 1.2 parts by weight of r-glycidoxypropyltrimethoxydecane (manufactured by Tokyo Chemical Industry Co., Ltd.) as a decane coupling agent, 4 parts by weight and As a cerium oxide -23-201136977 cerium oxide SC4500-SQ (Admatechs Co., Ltd., average particle size l.Oym, specific surface area 4_0m2 / g, treated with aminopropyl triethoxy decane surface 67.4 parts by weight of spherical molten cerium oxide was stirred and mixed to prepare an adhesive composition. [Example 2] In place of the cerium oxide SC4500-SQ as a cerium material, cerium oxide SC4 5 00-SEJ (manufactured by Admatech Co., Ltd., average particle diameter: 1.0/zm, specific surface area: 4.0 m 2 /g, An adhesive composition was prepared in the same manner as in Example 1 except that 67.4 parts by weight of a true spherical molten cerium oxide surface-treated with r-glycidoxypropyltrimethoxydecane was used. [Example 3] In addition to the substitution of 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate as an alicyclic diepoxide (manufactured by DAICEL Chemical Industry Co., Ltd., CELLOXIDE 202 1 P , in the general formula (I), Ri to R18 = h) 10.0 parts by weight 'using bicyclohexyl-3,3'-dioxirane (r2| to R38 = Η in the formula (II)) An adhesive composition was prepared in the same manner as in Example 2 except for 10.0 parts by volume. [Comparative Example 1] In place of the cerium oxide SC4500-SQ as a cerium material, silica sand SC-C3 (manufactured by Admatech S. Co., Ltd., average particle diameter io from m, specific surface area: 4.0 m 2 /g, without surface) was used. An adhesive composition was prepared in the same manner as in Example 1 except that 67.4 parts by weight of the treated true spherical molten silica sand was treated. -24 - .201136977 [Comparative Example 2] Two parts by weight of bisphenol F-type epoxy resin was used, except that one part by weight of an alicyclic diepoxide CELLOXIDE 2021P (manufactured by DAICEL Chemical Industry Co., Ltd.) was used. An adhesive composition was obtained in the same manner as in Example 2 except for (manufactured by Nippon Kasei Co., Ltd., re-303L). The composition of the compositions of the respective examples and comparative examples is shown in Table 1. In Table 1, each compounding amount represents a part by weight. [Table 1] Formulation Formulation Formulation Example 1 Example 2 Example 3 Comparative Example 1 Comparative Example 2 Cycloaliphatic dioxane compound 2021P (R1 to R18 = H of the formula (1)) 10.0 10.0 - 10.0 One formula (丨丨) R21~R38=H-10.0 I—Epoxy Resin RE-303L 10.0 10.0 10.0 10.0 20.0 Hardener MH7O0 23.3 23.3 27.3 23.3 23.3 Hardening accelerator HX-3088 1.2 1.2 1.2 1.2 1.2 Decane coupling agent r-ring gas Propyl propyl trimethyl decyl oxime 0.4 0.4 0.4 0.4 0.4 Filler SC4S00-SQ 67.4 — — I— SC4500-SEJ A 67.4 67.4 A 67.4 SC-C3 I—*67.4 — The raw materials used are as follows. <Cycloaliphatic diepoxide>. 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (manufactured by DAICEL Chemical Industry Co., Ltd., CELLOXIDE 202 1 Ρ' Ri~Ris=Η) in I). Bicyclohexyl-3,3'-dioxirane (R2i~R38=H in the formula (II)) -25- 201136977 <Epoxy resin> . Bisphenol F type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., RE-3 03 L) <hardener> • Methyl hexahydrophthalic anhydride (manufactured by Nippon Chemical and Chemical Co., Ltd., MH700, anhydride equivalent: About 168) <hardening accelerator>. Epoxy resin adduct hardener of imidazole (Novacure HX- 3 08 8 manufactured by Asahi Kasei E Materials Co., Ltd.) <塡 塡 filling material> • SC4500-SQ (Admatechs limited stock) Made by the company, the average particle size is 1.0/zm, the specific surface area is 4.0m2/g, and the true spherical molten cerium oxide is treated with r-aminopropyltriethoxydecane. According to TG/DTA at 350 °C The weight reduction rate at ~800 °C was 0.40%. . Cerium oxide SC4500-SEJ (Admatechs Co., Ltd., average particle size 1.0 " m, specific surface area 4. 〇 m2 / g, true spherical shape treated with glycidoxypropyl trimethoxy decane The weight reduction rate of the molten cerium oxide at 350 ° C to 800 ° C according to TG/DTA was 1.01%. • Ceria SC-C3 (Admatechs Co., Ltd., average particle size 1.0 / zm, specific surface area 4.0 m2 / g, true spherical spheroidal cerium dioxide without surface treatment) according to TG / DTA at 35 ° ° The weight reduction rate at C to 800 ° C was 0.17%. <decane coupling agent>. Glycidoxypropyltrimethoxydecane (manufactured by Tokyo Chemical Industry Co., Ltd.)
S -26- .201136977 〔.評價方法〕 (二氧化矽的化學鍵表面處理率) 針對各種二氧化矽 SC4500-SQ' SC4500-SEJ' SC-C3 ’ 使用 TG/DTA(EXSTAR6300’ Seiko Instruments 公司製), 將試料由室溫加熱至8〇〇°C (昇溫速度:20°C /min) ’測定在 350 °C至800 °C下的重量減少,如上述般算出重量減少率。 然後,針對藉由矽烷偶合劑而經表面處理之 SC4500-SQ、SC4500-SEJ,由下式算出化學鍵表面處理率。 化學鍵表面處理率(%)=〔350°C〜800°C中的每lg二氧化 矽的重量減少(g)/每lg二氧化矽的矽烷偶合劑的理論添 加量(g)〕X 1 0 0 對於實施例及比較例中製得之各組成物,如以下般地 進行黏度、滲透性的評價。評價係針對剛調製後的組成物 (初始)與在溫度25 °C、濕度50%的環境下由調製開始經放 置2 4小時的組成物(2 4小時後)而進行。其結果表示於表2。 (黏度) 使用流變儀(PHYSICA,UDS200/Paar,Physica 公司 製)’由25°C下的切斷速度15-25S·1區域的黏度的平均來求 取(單位P a · S)。 (滲透性) 在將MATSUNAMI沈渣用板(18x18mm,間隙70μηι, 松浪硝子工業公司製)維持於50t的狀態下,將組成物(室 溫)注入至1邊,測量塡充至間隙爲止的時間(秒)。S -26- .201136977 [Evaluation method] (Chemical bond surface treatment rate of cerium oxide) For various types of cerium oxide SC4500-SQ' SC4500-SEJ' SC-C3 ' TG/DTA (EXSTAR6300' Seiko Instruments) The sample was heated from room temperature to 8 ° C (temperature rising rate: 20 ° C / min). The weight loss at 350 ° C to 800 ° C was measured, and the weight reduction rate was calculated as described above. Then, the chemical bond surface treatment ratio was calculated from the following formula for SC4500-SQ and SC4500-SEJ which were surface-treated by a decane coupling agent. Chemical bond surface treatment rate (%) = [weight loss per lg of cerium oxide at 350 ° C to 800 ° C (g) / theoretical addition amount of decane coupling agent per lg of cerium oxide (g)] X 1 0 0 For each of the compositions obtained in the examples and the comparative examples, the evaluation of the viscosity and the permeability was carried out as follows. The evaluation was carried out for the immediately-prepared composition (initial) and a composition which was left to stand for 24 hours from the start of the preparation in an environment of a temperature of 25 ° C and a humidity of 50% (after 24 hours). The results are shown in Table 2. (Viscosity) The rheometer (PHYSICA, UDS200/Paar, manufactured by Physica) was used to obtain the average of the viscosity at the cutting speed of 15-25S·1 at 25 °C (unit P a · S). (Permeability) The composition (room temperature) was injected to one side while the MATSUNAMI sediment board (18x18 mm, gap 70 μηι, manufactured by Matsunaga Glass Industry Co., Ltd.) was maintained at 50 t, and the time until the gap was measured was measured ( second).
S -27- 201136977 (塡充性) 在上述滲透性試驗中,以目視觀察注入組成物後的玻 璃板,將無氣泡者當作〇,將有氣泡者當作X。 [表2]S -27- 201136977 (Filling property) In the above permeability test, the glass plate after the composition was injected was visually observed, and the bubble-free person was regarded as 〇, and the bubbled person was regarded as X. [Table 2]
測定項目 單位 實施例1 實施例2 比較例1 比較例2 矽的化學鍵 峩面處理率 % 35 83 0 83 黏度25°C (初始) Pa.s 2.0 1.6 6.1 21.1 黏度25弋(2你後) Pa-s 4.5 2.6 45.0 27.4 滲透性50°C (初始) 秒 152 137 270 338 滲透性50eC (24h 後〉 秒 167 152 640 364 填充性 (初始〉 〇 〇 X X 填充性 (24h 後) 〇 〇 X X 由表2來看,實施例卜2的環氧樹脂組成物的黏度低、 滲透性及塡充性非常優良,又即使在經過24小時後’仍顯 示良好的結果且儲存安定性亦非常優良。實施例3的環氧 樹脂組成物的初始的黏度爲〇 . 8 P a · S之非常低者。此等環 氧樹脂組成物可適用作爲半導體封裝體的底部塡充材。 〔實施例4〕 對晶片尺寸:1 m m X 1 m m、凸塊間距:2 0 0 // m、間隙 (gap): 43〜45/zm的裝置試驗品’在60°C下將實施例1的 接著劑組成物注入至間隙並使其滲透’然後,藉由進行在 1 0 0 t:下1小時,接著在1 5 0 °C下2小時的加熱使其硬化作Measurement item unit Example 1 Example 2 Comparative Example 1 Comparative Example 2 Chemical bond kneading treatment rate of 矽% 35 83 0 83 Viscosity 25 ° C (initial) Pa.s 2.0 1.6 6.1 21.1 Viscosity 25 弋 (2 after you) Pa -s 4.5 2.6 45.0 27.4 Permeability 50 °C (initial) seconds 152 137 270 338 Permeability 50eC (24h after > seconds 167 152 640 364 Fillability (initial > 〇〇 XX fillability (after 24h) 〇〇 XX by table 2, the epoxy resin composition of Example 2 has a very low viscosity, excellent permeability and susceptibility, and shows good results even after 24 hours and is excellent in storage stability. The initial viscosity of the epoxy resin composition of 3 is very low. 8 P a · S. These epoxy resin compositions are applicable as the bottom enthalpy of the semiconductor package. [Example 4] Dimensions: 1 mm X 1 mm, bump pitch: 2 0 0 // m, gap: 43 to 45/zm device test article 'Inject the adhesive composition of Example 1 at 60 ° C to Gap and make it infiltrate' then, by performing at 1 0 0 t: 1 hour, then at 1 2 hours of heating at 50 °C to harden it
S •28- 201136977 爲半導體裝置模型(3cmx4Cm)。在硬化後經觀察,對於裝置 試驗品之接著劑組成物的滲透狀態爲良好,且在裝置試驗 品上未觀察到接著劑組成物的未滲透部分、殘留氣泡等之 缺陷。又,經將硬化後的裝置試驗品供給-5 0 °C下3 0分鐘、 125°C下30分鐘的熱循環試驗,就算經過200循環後亦無 接著面的剝離,就算翻轉亦停留在實用上不發生故障的程 度。 又’將實施例1的接著劑組成物其本身在與上述同條 件下使其硬化而將其作爲硬化物試樣。製得之硬化物試樣 的玻璃轉移溫度(Tg)爲1 7 1 °C,可確認硬化物試樣具有良好 的耐熱性。 〔實施例5〕 除了取代實施例1的接著劑組成物,使用實施例2的 接著劑組成物以外,與實施例4相同地使用半導體裝置模 型(3 cmx4 cm)進行注入、硬化、熱循環試驗。在硬化後經觀 察’對於裝置·試驗品之接著劑組成物的滲透狀態爲良好, 在裝置試驗品上未觀察到接著劑組成物的未滲透部、殘留 氣泡等之缺陷。又’就算經過2 0 0循環後亦無接著面的剝 離’就算翻轉亦停.留在實用上不發生故障的程度。 又’將實施例2的接著劑組成物其本身在與上述同條 件下使其硬化而將其作爲硬化物試樣。製得之硬化物試樣 的玻璃轉移溫度(Tg)爲165°C,可確認硬化物試樣具有良好 的耐熱性。 〔實施例6〕 使用黑色LCP(液晶聚合物)作爲代表性的透鏡架構S •28- 201136977 is a semiconductor device model (3cmx4Cm). After the hardening, it was observed that the penetration state of the adhesive composition of the device test article was good, and no defects such as an unpermeated portion of the adhesive composition, residual bubbles, and the like were observed on the device test article. Moreover, after the hardened test piece of the device is supplied to a thermal cycle test at -50 ° C for 30 minutes and at 125 ° C for 30 minutes, even after 200 cycles, there is no peeling of the adhesive surface, and even if the flipping is stopped, it is practical. The extent to which no fault has occurred. Further, the adhesive composition of Example 1 was itself cured under the same conditions as above to obtain a cured sample. The glass transition temperature (Tg) of the obtained cured product sample was 171 ° C, and it was confirmed that the cured product sample had good heat resistance. [Example 5] Injecting, hardening, and heat cycle test using a semiconductor device model (3 cm x 4 cm) in the same manner as in Example 4 except that the adhesive composition of Example 1 was used instead of the adhesive composition of Example 2. . After the hardening, it was observed that the penetration state of the adhesive composition of the device and the test article was good, and no defects such as an unpermeated portion of the adhesive composition, residual bubbles, and the like were observed on the test piece of the device. In addition, even after the cycle of 200 cycles, there is no peeling of the next face, and even if it is turned over, it stops. It remains practically free from failure. Further, the adhesive composition of Example 2 was itself cured under the same conditions as above to obtain a cured sample. The glass transition temperature (Tg) of the obtained cured product sample was 165 ° C, and it was confirmed that the cured product sample had good heat resistance. [Example 6] Using a black LCP (liquid crystal polymer) as a representative lens structure
S •29- ‘201136977 件,使用矽凸透鏡作爲透鏡,進行兩者的接著作爲使用於 小型攝影裝置、光感測器、攜帶用模組相機等之攝影鏡頭 單元的模型。 將透鏡安裝在黑色LCP製的圓筒狀透鏡架內的透鏡維 持部(在圓筒內由支架內面突出之圓筒狀的肋拱)上並使透 鏡的中心經位置調整至支架的中心。此時支架內周面與透 鏡外周端面之間有1 〇 〇 // m左右的間隙。接著由前述間隙將 實施例1的接著劑組成物注入,將接著劑組成物塡充至支 架內周面及肋拱與透鏡外周部的間隙,隨即進行在100 °C 下1小時,接著進行在1 5 0 °c下2小時的加熱而使其硬化, 製得具備透鏡的支架。以目視觀察硬化後之具備透鏡的支 架,經評價接著劑組成物的滲透性與塡充性後,接著劑組 成物均等地廣布至支架內周面及肋拱與透鏡外周部的間隙 的同時’亦未觀察到未滲透部或氣泡等之殘留。如此地顯 示良好的滲透性、塡充性。 又’經將此處製得之具備透鏡的支架供給-50。(:下30 分鐘、125°C下30分鐘的熱循環試驗,就算經過10〇循環 後透鏡亦堅固地接著於支架且顯示良好的接著性。 【圖式簡單說明】 Μ 。S • 29- ‘201136977, using a lenticular lens as a lens, and the combination of the two is a model for a photographic lens unit used in small-sized imaging devices, optical sensors, and portable module cameras. The lens was attached to a lens holding portion (a cylindrical rib protruding from the inner surface of the holder in the cylinder) in a cylindrical lens holder made of black LCP, and the center of the lens was adjusted to the center of the holder. At this time, there is a gap of about 1 〇 〇 // m between the inner circumferential surface of the bracket and the outer circumferential end surface of the lens. Next, the adhesive composition of Example 1 was injected from the gap described above, and the adhesive composition was applied to the inner peripheral surface of the stent and the gap between the rib arch and the outer peripheral portion of the lens, and then at 100 ° C for 1 hour, followed by It was hardened by heating at 150 ° C for 2 hours to obtain a holder having a lens. By visually observing the lens-attached stent after hardening, after evaluating the permeability and the entanglement of the adhesive composition, the adhesive composition was uniformly spread to the inner peripheral surface of the stent and the gap between the rib arch and the outer peripheral portion of the lens. 'No residue of non-permeate or bubbles, etc. was observed. This shows good permeability and susceptibility. Further, the bracket having the lens prepared here is supplied to -50. (: 30 minutes of thermal cycle test at 30 ° C, 125 ° C, even after 10 〇 cycle, the lens is firmly attached to the bracket and shows good adhesion. [Simplified illustration] Μ .
JWS 【主要元件符號說明】 int 挑。JWS [Main component symbol description] int Pick.
S -30·S -30·
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010031652A JP2011168650A (en) | 2010-02-16 | 2010-02-16 | Epoxy resin composition |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201136977A true TW201136977A (en) | 2011-11-01 |
Family
ID=44599792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100104501A TW201136977A (en) | 2010-02-16 | 2011-02-11 | Epoxy resin composition |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2011168650A (en) |
KR (1) | KR20110095172A (en) |
CN (1) | CN102190863A (en) |
TW (1) | TW201136977A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105647114A (en) * | 2014-12-02 | 2016-06-08 | 信越化学工业株式会社 | Resin composition for semiconductor encapsulation and semiconductor encapsulation method using same |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5668659B2 (en) * | 2011-09-29 | 2015-02-12 | 日本ゼオン株式会社 | Underfill material, semiconductor device and manufacturing method thereof |
CN104220479A (en) * | 2012-04-13 | 2014-12-17 | 株式会社大赛璐 | Diepoxy compound and method for producing same |
CN104072946B (en) * | 2013-03-28 | 2017-03-22 | 太阳油墨(苏州)有限公司 | Thermosetting resin composition and printed circuit board filled with the resin composition |
US11171309B2 (en) | 2016-12-09 | 2021-11-09 | Lg Chem, Ltd. | Encapsulating composition |
WO2018106092A1 (en) | 2016-12-09 | 2018-06-14 | 주식회사 엘지화학 | Sealant composition |
JP7216288B2 (en) * | 2017-03-30 | 2023-02-01 | 日本ゼオン株式会社 | Manufacturing method of microfluidic chip |
JP7155929B2 (en) * | 2018-11-20 | 2022-10-19 | 住友ベークライト株式会社 | Mold underfill materials and electronic devices |
KR20220039206A (en) * | 2020-09-22 | 2022-03-29 | ㈜ 엘프스 | Self-sealing type conductive connection material, bonding module including same, and manufacturing method thereof |
WO2023157542A1 (en) * | 2022-02-21 | 2023-08-24 | 味の素株式会社 | Resin composition |
-
2010
- 2010-02-16 JP JP2010031652A patent/JP2011168650A/en active Pending
-
2011
- 2011-02-11 TW TW100104501A patent/TW201136977A/en unknown
- 2011-02-15 KR KR1020110013285A patent/KR20110095172A/en not_active Application Discontinuation
- 2011-02-15 CN CN2011100385566A patent/CN102190863A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105647114A (en) * | 2014-12-02 | 2016-06-08 | 信越化学工业株式会社 | Resin composition for semiconductor encapsulation and semiconductor encapsulation method using same |
Also Published As
Publication number | Publication date |
---|---|
CN102190863A (en) | 2011-09-21 |
KR20110095172A (en) | 2011-08-24 |
JP2011168650A (en) | 2011-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201136977A (en) | Epoxy resin composition | |
TWI601784B (en) | Liquid resin composition for electronic component and producing method thereof, and electronic component device | |
JP6331570B2 (en) | Underfill material, electronic component sealed with underfill material, and manufacturing method thereof | |
CN102834907B (en) | The manufacture method of semiconductor core chip bonding adhesives, semiconductor core chip bonding adhesive film, semiconductor device and semiconductor device | |
KR20170008210A (en) | Liquid sealing material, and electronic component using same | |
EP3064521B1 (en) | Liquid epoxy resin composition for semiconductor sealing and resin-sealed semiconductor device | |
US20120126434A1 (en) | Liquid resin composition and semiconductor device using the same | |
WO2011090038A1 (en) | Thermosetting resin composition, flip-chip mounting adhesive, semiconductor device fabrication method, and semiconductor device | |
JP2009091510A (en) | Liquid epoxy resin composition and semiconductor device using the composition | |
JP2008069291A (en) | Liquid epoxy resin composition for sealing semiconductor and semiconductor device | |
TW201932530A (en) | Resin composition, semiconductor sealing material, one-part adhesive and adhesive film | |
JP2013127039A (en) | Epoxy resin composition | |
JP5682470B2 (en) | RESIN COMPOSITION FOR ELECTRONIC COMPONENT AND ELECTRONIC COMPONENT DEVICE | |
JP2018123340A (en) | Underfill material, electronic component encapsulated by the underfill material and manufacturing method therefor | |
JPWO2018198992A1 (en) | Liquid sealing resin composition, electronic component device, and method of manufacturing electronic component device | |
JP5593259B2 (en) | Liquid epoxy resin composition | |
JP2019083225A (en) | Liquid resin composition for underfill, electronic component device, and method of manufacturing electronic component device | |
JP2005105243A (en) | Side filling material for flip chip mounting, and semiconductor device | |
JP2009057575A (en) | Liquid epoxy resin composition and electronic component device | |
JP2015054952A (en) | Epoxy resin composition, electronic part device and production method of electronic part device | |
JP6686433B2 (en) | Underfill resin composition, electronic component device, and method for manufacturing electronic component device | |
JP2021174939A (en) | Resin composition for underfill and production method thereof, method for manufacturing semiconductor device, and semiconductor device | |
JP6388228B2 (en) | Liquid epoxy resin composition for semiconductor encapsulation and semiconductor device using the same | |
JP7216878B2 (en) | RESIN COMPOSITION FOR UNDERFILL, ELECTRONIC COMPONENT DEVICE, AND MANUFACTURING METHOD THEREOF | |
JP2016040393A (en) | Liquid epoxy resin composition, and electronic component device |