TW201136869A - Alkylated aromatics production - Google Patents

Alkylated aromatics production Download PDF

Info

Publication number
TW201136869A
TW201136869A TW099144498A TW99144498A TW201136869A TW 201136869 A TW201136869 A TW 201136869A TW 099144498 A TW099144498 A TW 099144498A TW 99144498 A TW99144498 A TW 99144498A TW 201136869 A TW201136869 A TW 201136869A
Authority
TW
Taiwan
Prior art keywords
stream
alkylation
aromatic compound
catalyst
impurities
Prior art date
Application number
TW099144498A
Other languages
Chinese (zh)
Other versions
TWI523831B (en
Inventor
Matthew J Vincent
Vijay Nanda
Maruti Bhandarkar
Brian Maerz
Terry Eugene Helton
Original Assignee
Exxonmobil Chem Patents Inc
Stone & Amp Webster Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/721,326 external-priority patent/US8629311B2/en
Priority claimed from PCT/US2010/026844 external-priority patent/WO2011112189A1/en
Application filed by Exxonmobil Chem Patents Inc, Stone & Amp Webster Inc filed Critical Exxonmobil Chem Patents Inc
Publication of TW201136869A publication Critical patent/TW201136869A/en
Application granted granted Critical
Publication of TWI523831B publication Critical patent/TWI523831B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

Disclosed is a process for the production of alkylated aromatics by contacting a feed stream comprising an alkylatable aromatic, an alkylating agent and trace amounts of water and impurities in the presence of first and second alkylation catalysts wherein the water and impurities are removed in order to improve the cycle length of such alkylation catalysts. Water and a portion of impurities are removed in a dehydration zone. A first alkylation zone having a first alkylation catalyst which, in some embodiments is a large pore molecular sieve, acts to remove a larger portion of impurities, such as nitrogenous and other species, and to alkylate a smaller portion of the alkylatable aromatic compound. A second alkylation zone, which in some embodiments is a medium pore molecular sieve, acts to remove a smaller portion of impurities, and to alkylate a larger portion of the alkylatable aromatic compound.

Description

201136869 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種自包含烷化劑、可烷化的芳族物質 和微量水和雜質之進料流製造經烷化芳族化合物之方法。 【先前技術】 經烷化芳族化合物(如異丙苯··乙苯和二級丁苯)通 常藉可烷化的芳族物質(如苯)和烷化劑(如烯烴,如乙 烯、丙烯和丁烯)之液相烷化反應,在酸性分子篩觸媒( 如沸石)存在下製造。相較於早期的蒸氣相技術,液相芳 族物質烷化法通常導致減低的操作成本和製得較少的所不 欲副產物(如二甲苯)。 可用於此液相芳族物質烷化反應之酸性分子篩觸媒包 括沸石 /3、沸石 Y、沸石 ω、ZSM-5·. ZSM-12、MCM-22、 MCM-36、MCM-49、MCM-56、MCM-58、MCM-68、UZM- 8、八面沸石、絲光沸石、多孔晶狀矽酸鎂和、經鎢酸鹽 改質的氧化銷(如Zr(W04)2 ),皆爲此技術已知者。 特別於相對低溫操作之液相芳族物質院化反應得到對 於在可烷化的芳族物質或烷化劑進料流中之微量雜質的較 高觸媒感度(如“觸媒毒劑”)。此雜質通常導致在須置換 之前更頻繁的觸媒再生需求及最終壽命減低。觸媒置換通 常含括停機程序、損失產能及顯著成本。開發出多種方法 用以對方族物質和/或院化劑進料流進行前處理以移除觸 媒毒劑。這些方法包括蒸餾、吸附、和萃取。 201136869 美國專利案第6,3 1 3,3 62號(Green)提出芳族物質烷 化法,其中烷化產物與大孔分子篩觸媒(如MCM-22 )在 液相步驟中接觸以在液相烷化法之前移除雜質。據稱移除 的雜質包括烯烴、二烯烴、苯乙烯、含氧的有機化合物、 含硫化合物、含氮化合物、和低聚化合物。 美國專利案第4,3 5 8,3 62號(Smith)提出一種藉由令 含有不利於催化的雜質之進料流與沸石吸收劑接觸而增進 沸石觸媒之催化活性之方法。此揭示使用Si/Al比大於12之 1 0· 1 2員環且約束指數介於1和1 2之間的吸收劑,較佳爲 ZSM-1 1。 美國專利案第5,03 0,7 8 6號(Shamshoum)提出一種製 造乙苯之方法,其中藉由降低供至反應器的進料中之水濃 度而提高觸媒壽命。 美國專利案第5,744,686號(Gajda)提出一種藉由令 芳族烴流與平均孔尺寸低於約5.5埃的選擇性吸附劑接觸 而自該芳族烴流移除氮化合物之方法。此選擇性吸附劑係 非酸性分子篩’其選自孔密閉的沸石4A、沸石4A、沸石 5A、矽質岩、F -矽質岩、ZSM-5、及彼等之混合物。 一種製備經烷化的苯之方法揭示於美國專利案第 6,297,417號(Samson)。此方法包括令苯原料與固態酸( 如酸性黏土或酸性沸石)在前處理區中於介於約1 3 0 °C和 約3 00。(:之間的溫度接觸以改良烷化和轉烷化觸媒的壽命 美國專利案第6,3 5 5,8 5 1號(Wu )揭示沸石催化的異 201136869 丙苯合成法,其中苯原料與“熱”黏土床接觸,然後苯原料 經蒸餾以於熱黏土處理期間內自烯烴毒劑形成之較高分子 量物質分離苯,然後進行“冷”黏土處理,其中苯餾出物與 常溫黏土接觸。丙烯原料藉由與氧化鋁接觸以移除微量鈉 化合物和水氣,與分子篩接觸以移除水,及與兩種經改質 的氧化鋁接觸以移除其他觸媒毒劑的方式進行前處理。然 後,經前處理的丙烯和苯原料在沸石觸媒存在下反應以形 成異丙苯且未引發觸媒活性的迅速降低。 PCT公開的申請案W00214240 (Venkat)揭示移除芳 族物質原料中之極性污染物之方法,其藉由令原料與孔尺 寸大於5.6埃的分子篩於溫度低於1 3 (TC接觸的方式進行。 美國專利案第6,894,20 1號(Schmidt)揭示使用吸附 鹼性有機氮化合物的慣用吸附床和吸附弱鹼性氮化合物( 如亞硝酸鹽)之酸性分子篩的熱吸附床,在烷化反應之前 ,自院化基質(如苯)移除氮化合物。Schmidt指出水有 助於弱鹼性氮化合物之吸附及烷化基質流於提高溫度及適 當水濃度自分餾管流至熱吸附床較有利。 美國專利案第7, 1 99,27 5號(Smith )提出烴轉化法, 其中經部分脫水的烴原料與至少兩種不同的分子篩材料( 包括Si/Al莫耳比低於約5的第一分子篩和Si/Al莫耳比高於 約5的第二分子篩)接觸。此外,Smith提出的方法中,此 原料與孔洞至少約6埃的第一分子篩和孔洞低於約6埃的第 二分子篩接觸。 這些以前的參考資料未提供進料流藉由與烷化觸媒接 201136869 觸之烷化反應,其中該進料流包含可 化劑和微量水和雜質且一部分的水和 同時被移除。存在於進料流中的水和 媒在烷化法中之催化活性和循環長度 因此,需要用於製造經烷化的芳 由令進料流與第一及然後與不同的第 除水和雜質的一部分及將可烷化的芳 烷化,以緩和水和雜質對於此烷化觸 之負面衝擊。此揭示符合此和其他要 【發明內容】 本揭示描述一種自包含烷化劑、 微量水和雜質之進料流製造經烷化芳 和選擇性的雜質的一部分係在脫水區 床中,經脫水流和烷化劑與第一烷化 同的第二烷化觸媒接觸,其中任何殘 化的同時經移除。或者,在非反應性 第一觸媒接觸,其中移除任何殘留雜 與烷化觸媒接觸而以烷化劑加以烷化 —些實施態樣中,第一烷化區中 孔分子篩。一些實施態樣中,第二烷 媒係中孔分子篩或M C Μ - 2 2家族材料。 不欲限於任何理論,咸信此脫水 擇性地降低可烷化的芳族物質進料中 烷化的芳族物質、烷 雜質於進料流烷化的 雜質負面衝擊烷化觸 〇 族物質之改良法,藉 二烷化觸媒接觸以移 族物質的一部分加以 媒的活性和循環長度 求。 可烷化的芳族物質和 族化合物之方法。水 中被移除。反應性護 觸媒接觸,然後與不 留的雜質於此流被烷 護床中,經脫水流與 質,及然後此流藉由 〇 的第一烷化觸媒係大 化區中的第二烷化觸 步驟降低水濃度並選 之雜質含量。雜質的 -8 - 201136869 一部分與水的一部分同時移除。此有助於第一烷化步驟移 除可烷化的芳族物質進料中所含的·一部分(較佳大部分) 殘留雜質(如含氮或其他物種),及令可烷化的芳族化合 物的一部分被加以烷化。較佳地,至少80%,至少70%, 或至少60重量%殘留雜質經移除。此第二烷化步驟亦用以 移除殘留雜質的一部分,及令大部分可烷化的芳族物質被 烷化。較佳地,至少8 0 %,至少7 0 %或至少6 0重量%,可烷 化的芳族化合物經烷化劑烷化。 所製得之經烷化芳族化合物主要包含經單烷化芳族化 合物和在烷化反應區中伴隨製得之微量經多烷化芳族化合 物。此經多烷化芳族化合物可於之後藉由與額外可烷化的 芳族化合物在獨立的轉烷化觸媒存在下在轉烷化步驟接觸 而轉化成額外之經單烷化的化合物。 【實施方式】 定義 此處所謂“可烷化的芳族化合物”是指可接受烷基的芳 族化合物。可烷化的芳族化合物的一個非限制例係苯。 此處所謂“烷化劑”是指可提供可烷化的芳族化合物烷 基之化合物。烷化劑的非限制例係乙烯、丙烯、和丁烯。 另一非限制例係能夠提供可烷化的芳族化合物烷基之任何 經多烷化的芳族化合物。 此處所謂“芳族物質”是指根據其技術中認知範圍瞭解 之可用於此處之可烷化的芳族化合物,其包括經取代和未 • 9 - 201136869 經取代的單-和多核化合物。芳族特徵之具有雜原子(如N 或S)的化合物亦有用’只要它們在選用的反應條件下不 會作爲下文定義的觸媒毒劑即可。 此處所謂“至少部分液相”是指混合物於選定溫度、壓 力和組成下,具有至少1重量%液相,選擇性地至少5重量 %液相。 此處所謂“觸媒毒劑”是指文中定義之降低分子篩或沸 石之循環時間的雜質。 此處所謂“循環長度”是指在再生之間的總運轉時間, 或在新載入和再生之間的運轉時間。在未經使用的觸媒或 經再生的觸媒用於運轉後,觸媒會因爲焦炭澱積或毒劑而 被鈍化。隨著觸媒被鈍化,反應區必須於較高溫度操作以 維持相同產能或催化活性。一旦反應區溫度達到臨界溫度 (基本上由反應器的冶金學決定)或當有經濟因素時,觸 媒必須經再生。 此處所謂“網絡型”具有“Atlas of Zeolite Framework Types ”,Ch. Baerlocher, W.M.Meier and D.H.Olson (Elsevier,5th Ed.,200 1 )中描述的意義。 此處使用之週期表族元素的編號具有Intetnational201136869 VI. INSTRUCTIONS OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to a process for producing an alkylated aromatic compound from a feed stream comprising an alkylating agent, an alkylatable aromatic material, and traces of water and impurities. [Prior Art] Alkylated aromatic compounds (such as cumene·ethylbenzene and secondary butylbenzene) are usually alkylated aromatic materials (such as benzene) and alkylating agents (such as olefins such as ethylene and propylene). The liquid phase alkylation reaction with butene) is carried out in the presence of an acidic molecular sieve catalyst such as zeolite. Compared to earlier vapor phase technologies, liquid phase aromatics alkylation processes typically result in reduced operating costs and the production of less undesirable by-products such as xylene. The acidic molecular sieve catalyst which can be used for the alkylation reaction of the liquid phase aromatic substance includes zeolite/3, zeolite Y, zeolite ω, ZSM-5·. ZSM-12, MCM-22, MCM-36, MCM-49, MCM- 56, MCM-58, MCM-68, UZM-8, faujasite, mordenite, porous crystalline magnesium niobate and tungstate modified oxidation pins (such as Zr (W04) 2 ) Known by technology. The liquid phase aromatics gasification reaction, particularly for relatively low temperature operation, results in a higher catalyst sensitivity (e.g., "catalytic agent") for trace impurities in the alkylateable aromatic or alkylating agent feed stream. This impurity typically results in more frequent catalyst regeneration requirements and reduced end life before being replaced. Catalyst replacement typically includes downtime, lost capacity, and significant cost. A variety of methods have been developed for pretreatment of the parent material and/or the chemical feed stream to remove the catalyst poison. These methods include distillation, adsorption, and extraction. 201136869 U.S. Patent No. 6,3, 3, 3, 62 (Green) proposes an aromatics alkylation process in which an alkylation product is contacted with a macroporous molecular sieve catalyst (such as MCM-22) in a liquid phase step. The impurities are removed prior to the phase alkylation process. The impurities removed are said to include olefins, dienes, styrene, oxygen-containing organic compounds, sulfur-containing compounds, nitrogen-containing compounds, and oligomeric compounds. U.S. Patent No. 4,3,8,3,62 (Smith) teaches a method for enhancing the catalytic activity of a zeolite catalyst by contacting a feed stream containing impurities which are unfavorable for catalysis with a zeolite absorbent. This discloses the use of an absorbent having a Si/Al ratio greater than 12 to 0.12 member rings and a constraining index between 1 and 12, preferably ZSM-1 1. U.S. Patent No. 5,030,075 (Shamshoum) teaches a process for the production of ethylbenzene wherein the catalyst life is increased by reducing the concentration of water in the feed to the reactor. U.S. Patent No. 5,744,686 (Gajda) teaches a method of removing nitrogen compounds from an aromatic hydrocarbon stream by contacting the aromatic hydrocarbon stream with a selective adsorbent having an average pore size of less than about 5.5 angstroms. The selective adsorbent is a non-acid molecular sieve' which is selected from the group consisting of pore-sealed zeolite 4A, zeolite 4A, zeolite 5A, smectite, F-phthalmic rock, ZSM-5, and mixtures thereof. One method of preparing alkylated benzene is disclosed in U.S. Patent No. 6,297,417 (Samson). The method comprises reacting a benzene feedstock with a solid acid (e.g., an acidic clay or an acidic zeolite) in the pretreatment zone at between about 130 ° C and about 300 °. (: Temperature contact between to improve the life of alkylation and transalkylation catalysts. US Patent No. 6, 3 5 5, 8 5 1 (Wu) discloses zeolite-catalyzed iso-201136869 propylbenzene synthesis, in which benzene is used. Contact with a "hot" clay bed, and then the benzene feedstock is distilled to separate the benzene from the higher molecular weight species formed by the olefinic agent during the hot clay treatment and then subjected to "cold" clay treatment wherein the benzene distillate is contacted with normal temperature clay. The propylene feedstock is pretreated by contact with alumina to remove traces of sodium compounds and moisture, contact with molecular sieves to remove water, and contact with the two modified aluminas to remove other catalyst poisons. The pretreated propylene and benzene starting materials are then reacted in the presence of a zeolite catalyst to form cumene without a rapid decrease in catalyst activity. The PCT published application W00214240 (Venkat) discloses the removal of aromatic materials. A method of polar contaminants by using a molecular sieve having a pore size greater than 5.6 angstroms at a temperature below 13 (TC contact). U.S. Patent No. 6,894,20 (Schmidt) discloses use. A conventional adsorption bed for adsorbing an alkaline organic nitrogen compound and a thermal adsorption bed of an acidic molecular sieve adsorbing a weakly basic nitrogen compound (such as nitrite) remove a nitrogen compound from a domesticated substrate such as benzene before the alkylation reaction. Schmidt pointed out that water contributes to the adsorption of weakly basic nitrogen compounds and the alkylation of the substrate stream to increase the temperature and the appropriate water concentration from the fractionation tube to the thermal adsorption bed. US Patent No. 7, 1 99, 27 5 (Smith) a hydrocarbon conversion process in which a partially dehydrated hydrocarbon feedstock and at least two different molecular sieve materials (including a first molecular sieve having a Si/Al molar ratio of less than about 5 and a Si/Al molar ratio of greater than about 5) In addition, in the method proposed by Smith, the material is contacted with a first molecular sieve having a pore of at least about 6 angstroms and a second molecular sieve having a pore of less than about 6 angstroms. These prior references do not provide a feed stream by means of a feed stream. The alkylation reaction with the alkylation catalyst is carried out in 201136869, wherein the feed stream contains a chemical agent and traces of water and impurities and a portion of the water is simultaneously removed. The water and medium present in the feed stream are alkylated. Catalysis in the law The nature and length of the cycle are therefore required to make the alkylation of the feed stream with the first and then with a different portion of the water and impurities and the alkylation of the aralkyl to mitigate water and impurities. A negative impact on this alkylation touch. This disclosure is consistent with this and other aspects. [Disclosure] This disclosure describes a process for producing a portion of an alkylated aromatic and selective impurity from a feed stream comprising an alkylating agent, traces of water, and impurities. In the dehydration zone bed, the dehydration stream and the alkylating agent are contacted with a second alkylation catalyst of the first alkylation, wherein any residue is removed simultaneously. Alternatively, in the non-reactive first catalyst contact, Wherein any residual impurities are removed from contact with the alkylation catalyst and alkylated with an alkylating agent - in some embodiments, the first alkylation zone is a pore molecular sieve. In some embodiments, the second alkane medium is a mesoporous molecular sieve or a M C Μ - 2 2 family material. Without wishing to be bound by any theory, it is believed that this dehydration selectively reduces the alkylation of the aromatic material in the alkylate-containing aromatic material feed, and the impurity of the alkylation impurity in the feed stream is negatively impacted by the alkylation of the contact group. The improved method is based on the activity of the medium and the length of the cycle by the dialkylation catalyst contact. A method of alkylating aromatic substances and group compounds. The water was removed. The reactive protective agent is contacted, and then the impurities are left in the flow through the alkane guard bed, the dehydrated stream and the mass, and then the second in the first alkylation catalyst system of the ruthenium The alkylation step reduces the water concentration and selects the impurity content. Part of the impurity -8 - 201136869 is removed simultaneously with a part of the water. This facilitates the removal of a portion (preferably a majority) of residual impurities (such as nitrogen or other species) contained in the feed of the alkylateable aromatic material by the first alkylation step, and the alkylation of the aromatics A portion of the family compound is alkylated. Preferably, at least 80%, at least 70%, or at least 60% by weight of residual impurities are removed. This second alkylation step is also used to remove a portion of the residual impurities and to alkylate most of the alkylateable aromatic species. Preferably, at least 80%, at least 70% or at least 60% by weight of the alkylatable aromatic compound is alkylated with an alkylating agent. The alkylated aromatic compound produced mainly comprises a monoalkylated aromatic compound and a trace amount of the polyalkylated aromatic compound which is produced in the alkylation reaction zone. This polyalkylated aromatic compound can then be converted to an additional monoalkylated compound by contact with an additional alkylatable aromatic compound in the presence of a separate transalkylation catalyst in a transalkylation step. [Embodiment] Definitions The term "alkylatable aromatic compound" as used herein means an aromatic compound which is acceptable for an alkyl group. A non-limiting example of an alkylatable aromatic compound is benzene. The term "alkylating agent" as used herein refers to a compound which provides an alkyl group of an aromatic compound which can be alkylated. Non-limiting examples of alkylating agents are ethylene, propylene, and butene. Another non-limiting example is any polyalkylated aromatic compound capable of providing an alkyl group of an alkylate that can be alkylated. The term "aromatic material" as used herein refers to an alkylated aromatic compound useful herein according to the recognized range of the art, including substituted and unsubstituted mono- and polynuclear compounds. Aromatically characterized compounds having a hetero atom such as N or S are also useful 'as long as they do not act as a catalytic agent as defined below under the selected reaction conditions. By "at least a portion of the liquid phase" herein is meant a mixture having at least 1% by weight liquid phase, optionally at least 5% by weight liquid phase, at a selected temperature, pressure and composition. The term "catalytic agent" as used herein refers to an impurity defined herein to reduce the cycle time of a molecular sieve or a zeolite. The term "cycle length" as used herein refers to the total running time between regenerations, or the running time between new loading and regeneration. After the unused catalyst or regenerated catalyst is used for operation, the catalyst is passivated by coke deposition or poison. As the catalyst is passivated, the reaction zone must be operated at a higher temperature to maintain the same capacity or catalytic activity. Once the temperature of the reaction zone reaches a critical temperature (basically determined by the metallurgy of the reactor) or when there are economic factors, the catalyst must be regenerated. The "network type" herein has the meaning described in "Atlas of Zeolite Framework Types", Ch. Baerlocher, W. M. Meier and D. H. Olson (Elsevier, 5th Ed., 2001). The number of the periodic table family elements used here has Intetnational

Union of Pure and Applied Chemistry於 2007年 6 月 22 曰發 佈的元素週期表中描述的意義。 此處所謂“雜質”包括,但不限於,具有下列元素之至 少一者的化合物:氮、鹵素、氧、硫、砷、硒、蹄、隣和 第1族至第12族金屬。 -10- 201136869 此揭示中所用的雜質含量是指以反應區中之合倂之可 院化的芳族化合物和院化劑總重計之雜質的wppm數。 此處所謂“MCM-22家族材料,,(或“MCM-22家族的材 料”或“MCM-22家族的分子篩”)包括: (i)由一般一級晶體建構單元(building block) “具 有M WW網絡拓樸的單位晶胞”所形成的分子篩。單位晶胞 是在用以描述晶體的三維空間中傾斜之原子的空間排列, 此述於 “Atlas of Zeolite Framework Types,,,Ch.The meaning described in the Periodic Table of the Elements published by Union of Pure and Applied Chemistry on June 22, 2007. The term "impurities" as used herein includes, but is not limited to, compounds having at least one of the following elements: nitrogen, halogen, oxygen, sulfur, arsenic, selenium, hoof, ortho and Group 1 to Group 12 metals. -10- 201136869 The amount of impurities used in this disclosure refers to the number of wppm of impurities based on the total weight of the aromatized aromatic compound and the bulking agent in the reaction zone. The so-called "MCM-22 family of materials," (or "MCM-22 family of materials" or "MCM-22 family of molecular sieves") include: (i) from a general primary crystal building block (building block) "with M WW A molecular sieve formed by a network of unit cells. The unit cell is a spatial arrangement of atoms that are tilted in a three-dimensional space describing the crystal, as described in "Atlas of Zeolite Framework Types,,, Ch.

Baerlocher, W.M.Meier and D.H.Olson (Elsevier, 5,h Ed., 2001); (Π)由一般二級建構單元,2-維傾斜的此MWW網絡 型單位晶胞’形成“一個單位晶胞厚度的單層”,較佳一個 c -單位晶胞厚度,所形成的分子篩; (iii)由一般二級建構單元,“一或多個超過一個單 位晶胞厚度的層”’所形成的分子篩,其中超過一個單位 晶胞厚度的層由堆疊、封包或結合至少兩個具有MWW網 絡拓樸之單位晶胞之一個單位晶胞厚度的單層所形成。此 二級建構單元的堆疊可爲規則方式、不規則方式、隨機方 式、和彼等之任何組合;或 (iv )藉具有MWW網絡拓樸之單位晶胞之任何規則或 隨機的2-維或3-維組合所形成的分子篩。 MCM-22家族材料以X-射線繞射圖案包括晶格面距( d-spacing)最大値位於 12.4±0.25、3.57±0.07 和 3.42±0.07 埃處爲特徵(經锻燒或合成形式)。MCM-22家族材料亦 -11 - 25、 201136869 以X-射線繞射圖案包括晶格面距最大値位於12.4 ±0. 6.9±0.15、3.57±0.07 和 3·42±0·07 埃處爲特徵(經锻燒 成形式)。用以作爲分子篩之特徵的X-射線繞射數據 準技巧使用銅的κ- α雙線作爲入射射線及配備閃爍計 和作爲收集系統的相關電腦之繞射儀測得。 此處所謂“經單烷化的芳族化合物”是指僅具有一 基取代基的芳族化合物。經單烷化的芳族化合物的非 例係乙苯、異丙苯和二級丁基苯。 此處所謂“運轉”是指觸媒處於烷化或轉烷化條件 烷化或轉烷化條件包括溫度、壓力、可烷化的芳族化 、烷化劑和WHSV,其適合將至少1重量%,較佳至少 量%可烷化的芳族化合物(以進料中之可烷化的芳族 物總量計)轉化成經單烷化的芳族化合物。 此處所謂“毒化力”是指每克觸媒樣品(其已在氮 於200°C乾燥60分鐘)吸收柯林鹼(一種觸媒毒劑) 莫耳數,此於熱重分析儀 (Model Q5000 Instruments, New Castle,Delaware製造)測得。乾燥 ,於柯林鹼分壓爲3托耳,柯林鹼觸媒毒劑噴灑在觸 品上60分鐘。自下列式計算毒化力:(噴灑柯林鹼之 觸媒樣品重量-經乾燥的觸媒樣品重量)〇6+ (柯林 子量X經乾燥的觸媒樣品重量)。當觸媒樣品重量和 燥的觸媒樣品重量以克表示時,柯林鹼的分子量是 克/毫莫耳。 此處所謂“經多烷化的芳族化合物”是指具有超過 或合 藉標 數器 個烷 限制 下。 合物 10重 化合 流下 的毫 -TA 之後 媒樣 後的 鹼分 經乾 12 1.2 一個 -12- 201136869 烷基取代基的芳族化合物。經多烷化的芳族化合物的非限 制例係經多烷化的苯,如二乙苯、三乙苯、二異丙基苯和 三異丙基苯。 此處所謂“wppb”定義爲以重量計’每十億之份數。 此處所謂“wppm”定義爲以重量計’每百萬之份數。 原料和產物 可用於此揭示之適當之未經取代的芳族化合物包括苯 、萘 '蒽、稠四苯、茈、蔻和菲’以苯爲佳。 可用於此揭示之經取代的芳族化合物應具有至少一個 氫原子直接鍵結至芳核。此芳環可經一或多個烷基、芳基 、烷芳基、烷氧基、芳氧基、環烷基、鹵素和/或其他不 會干擾烷化反應的基團取代。通常’可以在芳族化合物上 的取代基存在的烷基含有1至約22個碳原子且通常約1至8 個碳原子,最常約1至4個碳原子。 可用於此揭示之適當之經取代的芳族化合物包括,但 不限於,甲苯、二甲苯、異丙苯、正丙苯、α -甲萘、乙 苯、1,3,5 -三甲苯、茌、異丙甲苯、丁苯、1,2,4 -三甲苯、 鄰-二乙苯、間-二乙苯、對-二乙苯、異戊苯、異己苯、五 乙苯、五甲基苯;1,2,3,4 -四乙苯;1,2,3,5 -四甲基苯; 1,》,4 -三乙苯;1,2,3 -三甲基苯、間-丁基甲苯;對-丁基甲 苯;3,5-二乙基甲苯;鄰-乙基甲苯;對-乙基甲苯;間-丙 基甲苯;4_乙基-間-二甲苯;二甲基萘;乙基萘;2,3-二 甲基蒽;9-乙基蒽;2-甲基蒽;鄰-甲基蒽;9,1〇-二甲基 -13- 201136869 菲;和3 -甲基-菲。 較高分子量烷基芳族烴亦可作爲起始物並包括如藉芳 族烴與烯烴低聚物之烷化反應製造的芳族烴。此技術中通 常將此產物稱爲院基化物並包括,但不限於,己苯、壬苯 、月桂基苯、十五基苯、己基甲苯、壬基甲苯、月桂基甲 苯、十五基甲苯等。極常得到高沸點餾份形式的烷基化物 ’其接至芳核的烷基尺寸變化由約C6至約C16。 可含有實質量之苯、甲苯和/或二甲苯的重整產物流 特別適合作爲用於此揭示之方法之可烷化的芳族物質進料 。雖然此方法特別係針對自聚合物等級和稀乙烯製造乙苯 ’其亦可用以製造其他C7-C2〇烷基芳族化合物(如異丙苯 )及C6 +烷基芳族物質(如c8-cl6直鏈和近直鏈烷基苯)。 可用於此揭示之適當的烷化劑包含鏈烯化合物、醇化 合物和/或烷基苯、及彼等之混合物。可用於此揭示之方 法之其他適合的烷化劑通常包括,但不限於,任何具有一 或多個可用之能夠與可烷化的芳族化合物反應的烷化用脂 基之脂族或芳族有機化合物。適當烷化劑的例子爲c2-c16 烯烴,如c2-c5烯烴,包括乙烯、丙烯、丁烯、和戊烯; Ci-Cu-醇類(含括單醇、二醇、三醇等),較佳爲(^-0:5 醇類,如甲醇、乙醇、丙醇、丁醇和戊醇;c2-c2〇醚,如 c2-c5醚,包括二甲醚和二乙醚:醛,如甲醛、乙醛、丙 醛、丁醛和正戊醛;及烷基鹵化物,如甲基氯、乙基氯、 丙基氯、丁基氯、和戊基氯;經多烷化的芳族化合物’如 經二烷化的苯(如二乙苯或二異丙苯)和經三烷化的苯( -14- 201136869 如三乙苯或三異丙苯)等。因此,烷化劑較佳選自c2-c5 烯烴、CrC5醇、二乙苯、二異丙苯、三乙苯和/或三異丙 苯。 雜質 此揭示中,包含可烷化的芳族化合物之進料流可包含 雜質。選擇性地,第一烷化劑流和/或第二烷化劑流可包 含雜質。此雜質包含具有下列元素之至少一者的化合物: 氮、鹵素、氧、硫 '砷、硒、碲、磷和第1族至第12族金 屬。此雜質之例子包括柯林鹼和N-甲醯基嗎啉。用於此揭 示之目的,“雜質”不包括水,H20。 —些實施態樣中,在該進料流(或第一和/或第二烷 化劑流)中的該雜質量以該進料流重量計爲低於2 0 wppm ’低於15 wppm >低於10 wppm,低於5 wppm或低於1 wppm 〇 水含量 一或多個實施態樣中,進料流可包含水。選擇性地, 第一烷化劑流和/或第二烷化劑流可包含水。進料流或烷 化劑流可藉例如,在一或多個脫水區中蒸餾、吸附、蒸發 、萃取或驟蒸而脫水。脫水區可爲蒸餾塔、苯塔或驟蒸塔 、輕組份塔(1 i g h t s C ο 1 u m η )或萃取器、吸收器或驟沸桶 〇 一些實施態樣中,進料流於進料流的溫度和壓力條件 -15- 201136869 下飽含水。其他實施態樣中,該進料流中的水量以 流重量計爲至少500 wppm,至少400 wppm,3 wppm或至少 200 wppm。 雜質或水含量可藉慣用技巧(如GC、GC/MS ) 此技術者已知的其他適當技巧測定。 反應條件 所揭示方法包括:(1 )在於適當脫水條件下 該脫水區中,移除水的至少一部分和選擇性地,雜 部分;(2)第一烷化反應區具有第一烷化觸媒, 一烷化區在適合移除大部分殘留雜質及令可烷化的 合物的一部分被烷化的第一反應條件下操作;(3 烷化反應區具有與第一烷化觸媒不同的第二烷化觸 中第二烷化區在適合移除殘留雜質的一部分及令大 烷化的芳族物質被烷化以製造額外量之經單烷化的 合物的第二反應條件下操作。 脫水區中,適當的脫水條件係此技術已知之自 質流分離水和雜質之慣用脫水條件。 第一烷化反應區和/或第二烷化反應區中,當 的芳族化合物和烷化劑在至少部分液相條件下接觸 當的第一和第二條件分別包括溫度爲100至2 8 5 °C, ,溫度爲150至260°C ;壓力爲689至4601 kPa-a,較 壓力爲1 5 00至3 000 kPa-a ;而就總反應器而言,以 烷化劑和可烷化的芳族物質爲基礎的WHSV是103 該進料 少3 00 或嫻於 操作的 質的一 其中第 芳族化 )第二 媒,其 部分可 芳族化 芳族物 可烷化 時,適 較佳地 佳地, 此二種 :100 小 -16- 201136869 時-1,較佳地,2 0至5 0小時1。可烷化的芳族化合物對烷 化劑(如分別爲苯和乙稀)的總莫再比範圍由1 : 1至10: 1,2: 1至 8: 1,3: 1至 7: 1,或 1.5: 1至 4.5: 1。 一些實施態樣中,第一烷化反應區可以反應性護床形 式操作,於其中移除進料流中之雜質的至少一部分。此實 施態樣中,可烷化的芳族化合物對烷化劑(如分別爲苯和 乙烯)的總莫耳比較僅單獨用於烷化用途時高得多,其範 圍由 10: 1至 200: 1’ 或15: 1至150: 1,或20: 1至 100: 1 或 25: 1至 50: 1。 其他實施態樣中,第一反應烷化區係以移除進料流中 的至少一部分雜質之非反應性護床形式操作的第一反應區 。此實施態樣中,僅可烷化的芳族化合物供至第一反應區 〇 一些實施態樣中,所揭示的方法包括具有處理材料的 處理區,其中處理區在適當處理條件下操作以移除一部分 雜質。此處理區可爲脫水區的上游或下游。此處理區係第 一和第二烷化區的上游。 當使用處理材料移除一部分雜質時,適當處理條件包 括溫度由約30至200°C,且較佳介於約60至150°C之間,每 小時的重量空間速度(WHSV)由約0.1小時^至約200小 時^,較佳由約0.5小時_1至約1 00小時_1,且更佳由約1 . 〇小 時_1至約5 0小時_1 ;而壓力介於約常壓和3 0 0 0 k P a - a之間。 一些實施態樣中,所揭示的方法包括轉烷化區,其於 適當的轉烷化條件下操作以自經多烷化的芳族化合物和可 -17- 201136869 烷化的芳族化合物製造額外量之經單烷化的芳族化合物。 轉烷化區中,當經多烷化的芳族化合物(如聚乙苯或 聚異丙苯)與可烷化的芳族化合物在至少部分液相條件下 接觸時,適當的轉烷化條件包括溫度由約1 0 0至約3 0 0 °C, 壓力爲696至4137 kPa-a ( 101至600 psia),以供至烷化反 應區之經多烷化的芳族化合物重量爲基礎之WHSV由約0.5 小時η至約100小時μ且苯對經多烷化的芳族化合物的莫耳 比由1 : 1至3 0 : 1,較佳地,1 : 1至1 0 : 1,更佳地,1 : 1 至 5 : 1。 觸媒 所揭示的方法包括:(1)第一烷化觸媒:和(2)與 該第一烷化觸媒不同的第二烷化觸媒。 第一院化觸媒包含約束指數(Constraint Index)低於 2和第一毒化力的大孔分子篩。 約束指數係鋁矽酸鹽或分子篩控制不同尺寸的分子到 達其內部結構的程度之便利的指標。例如,極難接近且不 易自其內部結構離開的鋁矽酸的約束指數値高,此種鋁矽 酸鹽通常具有小孔,如低於5埃。另一方面,極易接近內 部鋁矽酸鹽結構的鋁矽酸鹽之約束指數値低,且通常爲大 孔。測定約束指數之方法完全述於美國專利案第4,〇 16,2 18 號。Baerlocher, WMMeier and DHOlson (Elsevier, 5, h Ed., 2001); (Π) formed by a general secondary construction unit, 2-dimensionally inclined MWW network type unit cell 'with one unit cell thickness a single layer", preferably a c-unit unit cell thickness, formed molecular sieve; (iii) a molecular sieve formed by a general secondary construction unit, "one or more layers exceeding one unit cell thickness", wherein A layer having more than one unit cell thickness is formed by stacking, encapsulating, or combining a single layer of at least two unit cell thicknesses of a unit cell having a MWW network topology. The stack of secondary construction units may be in a regular manner, an irregular manner, a random manner, and any combination thereof; or (iv) by any rule or random 2-dimensional or unit cell having a MWW network topology The molecular sieve formed by the 3-dimensional combination. The MCM-22 family of materials is characterized by an X-ray diffraction pattern including d-spacing maximum enthalpy at 12.4 ± 0.25, 3.57 ± 0.07, and 3.42 ± 0.07 angstroms (calcined or synthesized). The MCM-22 family material is also -11 - 25, 201136869. The X-ray diffraction pattern includes the lattice face distance maximum 値 at 12.4 ± 0. 6.9 ± 0.15, 3.57 ± 0.07 and 3.42 ± 0 · 07 angstroms are characteristic (by calcination into a form). The X-ray diffraction data used as a feature of molecular sieves was measured using a copper κ-α double line as the incident ray and a diffractometer equipped with a scintillation meter and associated computer as a collection system. The term "monoalkylated aromatic compound" as used herein means an aromatic compound having only one substituent. Non-exemplified examples of monoalkylated aromatic compounds are ethylbenzene, cumene and secondary butylbenzene. By "running" herein is meant that the catalyst is under alkylation or transalkylation conditions for alkylation or transalkylation conditions including temperature, pressure, alkylatable aromatization, alkylating agent and WHSV, which are suitable for at least 1 weight. Preferably, at least a quantity of the alkylatable aromatic compound (based on the total amount of the alkylateable aromatics in the feed) is converted to the monoalkylated aromatic compound. The term "toxicity" as used herein refers to the absorption of Colin base (a catalyzed poison) mole number per gram of catalyst sample (which has been dried at 60 ° C for 60 minutes), which is used in a thermogravimetric analyzer (Model Q5000). Instruments, New Castle, manufactured by Delaware). Dry, the partial pressure of Colin base was 3 Torr, and the Colin base catalyzed poison was sprayed on the contact for 60 minutes. The poisoning power was calculated from the following formula: (the weight of the catalyst sample sprayed with Colin base - the weight of the dried catalyst sample) 〇6+ (the amount of the Co-X dry X catalyst sample). When the catalyst sample weight and the dry catalyst sample weight are expressed in grams, the molecular weight of the Colin base is gram per millimole. The term "polyalkylated aromatic compound" as used herein means having an excess or a combination of alkane limits. The compound 10 is combined with the milli-TA after the flow of the base after the base is dried 12 1.2 a -12-201136869 alkyl substituent aromatic compound. Non-limiting examples of polyalkylated aromatic compounds are polyalkylated benzenes such as diethylbenzene, triethylbenzene, diisopropylbenzene and triisopropylbenzene. The term "wppb" is defined herein as 'per billion parts by weight. The term "wppm" as used herein is defined as 'parts per million by weight. Starting Materials and Products Suitable unsubstituted aromatic compounds which may be disclosed herein include benzene, naphthalene 'anthracene, fused tetraphenyl, anthracene, anthracene and phenanthrene. Benzene is preferred. The substituted aromatic compound which can be used in the disclosure should have at least one hydrogen atom bonded directly to the aromatic nucleus. The aromatic ring may be substituted with one or more alkyl, aryl, alkaryl, alkoxy, aryloxy, cycloalkyl, halogen and/or other groups which do not interfere with the alkylation reaction. Typically, the alkyl group which may be present on the substituent on the aromatic compound contains from 1 to about 22 carbon atoms and is usually from about 1 to 8 carbon atoms, and most usually from about 1 to 4 carbon atoms. Suitable substituted aromatic compounds which may be used herein include, but are not limited to, toluene, xylene, cumene, n-propylbenzene, alpha-methylnaphthalene, ethylbenzene, 1,3,5-trimethylbenzene, anthracene. , isopropyl toluene, butylbenzene, 1,2,4-trimethylbenzene, o-diethylbenzene, m-diethylbenzene, p-diethylbenzene, isoamylbenzene, isohexylbenzene, pentaethylbenzene, pentamethylbenzene ; 1,2,3,4-tetraethylbenzene; 1,2,3,5-tetramethylbenzene; 1,",4-triethylbenzene; 1,2,3-trimethylbenzene, m-butyl Toluene; p-butyltoluene; 3,5-diethyltoluene; o-ethyltoluene; p-ethyltoluene; m-propyltoluene; 4-ethyl-m-xylene; dimethylnaphthalene ; ethyl naphthalene; 2,3-dimethylhydrazine; 9-ethyl hydrazine; 2-methyl hydrazine; o-methyl hydrazine; 9,1 〇-dimethyl-13- 201136869 phenanthrene; Base-Philippines. Higher molecular weight alkyl aromatic hydrocarbons can also be used as starting materials and include aromatic hydrocarbons such as those produced by alkylation of aromatic hydrocarbons with olefin oligomers. This product is commonly referred to as a hospital base in the art and includes, but is not limited to, hexylbenzene, anthracene, laurylbenzene, pentadecylbenzene, hexyltoluene, decyltoluene, lauryltoluene, fifteen toluene, and the like. . It is very common to obtain an alkylate in the form of a high-boiling fraction, which has an alkyl size change from about C6 to about C16. A reformate stream which may contain substantial amounts of benzene, toluene and/or xylene is particularly suitable as an alkylateable aromatic material feed for use in the disclosed process. Although this method is particularly directed to the manufacture of ethylbenzene from polymer grades and dilute ethylene, it can also be used to make other C7-C2 alkylaromatic compounds (such as cumene) and C6+alkylaromatics (such as c8-). Cl6 straight chain and near linear alkyl benzene). Suitable alkylating agents which may be used herein include olefinic compounds, alcoholic compounds and/or alkylbenzenes, and mixtures thereof. Other suitable alkylating agents which may be used in the processes disclosed herein generally include, but are not limited to, any aliphatic or aromatic having one or more usable alkylating groups capable of reacting with an alkylatable aromatic compound. Organic compound. Examples of suitable alkylating agents are c2-c16 olefins, such as c2-c5 olefins, including ethylene, propylene, butene, and pentene; Ci-Cu-alcohols (including monools, diols, triols, etc.), Preferred are (^-0:5 alcohols such as methanol, ethanol, propanol, butanol and pentanol; c2-c2 oxime ethers, such as c2-c5 ethers, including dimethyl ether and diethyl ether: aldehydes such as formaldehyde, Acetaldehyde, propionaldehyde, butyraldehyde and n-pentanal; and alkyl halides such as methyl chloride, ethyl chloride, propyl chloride, butyl chloride, and pentyl chloride; polyalkylated aromatic compounds' a dialkylated benzene (such as diethylbenzene or diisopropylbenzene) and a trialkylated benzene (-14-201136869 such as triethylbenzene or triisopropylbenzene), etc. Therefore, the alkylating agent is preferably selected from the group consisting of C2-c5 olefin, CrC5 alcohol, diethylbenzene, diisopropylbenzene, triethylbenzene and/or triisopropylbenzene. Impurities In this disclosure, the feed stream comprising an alkylatable aromatic compound may comprise impurities. Optionally, the first alkylating agent stream and/or the second alkylating agent stream may comprise impurities. The impurities comprise a compound having at least one of the following elements: nitrogen, halogen, oxygen, sulfur 'arsenic, selenium, tellurium, phosphorus with Group 1 to Group 12. Metals include Colin base and N-methyl morphomorph. For the purposes of this disclosure, "impurities" do not include water, H20. - In some embodiments, The amount of impurities in the feed stream (or the first and/or second alkylating agent stream) is less than 20 wppm by weight of the feed stream 'less than 15 wppm > less than 10 wppm, less than 5 Wppm or less than 1 wppm In one or more embodiments, the feed stream may comprise water. Optionally, the first alkylating agent stream and/or the second alkylating agent stream may comprise water. The stream or alkylating agent stream can be dehydrated by, for example, distillation, adsorption, evaporation, extraction or flash evaporation in one or more dehydration zones. The dehydration zone can be a distillation column, a benzene column or a steaming column, a light component column ( 1 ights C ο 1 um η ) or extractor, absorber or quench drum 〇 In some implementations, the feed stream is saturated with water and temperature conditions -15- 201136869. Other implementations The amount of water in the feed stream is at least 500 wppm, at least 400 wppm, 3 wppm or at least 200 wppm by weight of the stream. It is determined by techniques such as GC, GC/MS, and other suitable techniques known to those skilled in the art. The methods disclosed in the reaction conditions include: (1) removing at least a portion of the water and selectivity in the dehydration zone under suitable dehydration conditions. (1) the first alkylation reaction zone has a first alkylation catalyst, and the first alkylation zone is first adapted to remove most of the residual impurities and to alkylate a portion of the alkylatetable compound Operating under the reaction conditions; (3 the alkylation reaction zone has a second alkylation zone different from the first alkylation catalyst; the second alkylation zone is suitable for removing a part of the residual impurities and the macroalkylated aromatic substance is The alkylation is carried out under the second reaction conditions to produce an additional amount of the monoalkylated compound. In the dehydration zone, suitable dehydration conditions are conventional dehydration conditions for separating water and impurities from the self-mass stream known in the art. In the first alkylation reaction zone and/or the second alkylation reaction zone, the first and second conditions when the aromatic compound and the alkylating agent are contacted under at least partial liquid phase conditions include a temperature of 100 to 2 8 respectively. 5 ° C, , the temperature is 150 to 260 ° C; the pressure is 689 to 4601 kPa-a, the pressure is 1 500 to 3 000 kPa-a; and for the total reactor, the alkylating agent and the alkane The aromatic-based WHSV is 103. The feed is less than 300 or the quality of the operation is one of the first aromatics. The second medium, when part of the aromatic aromatics can be alkylated, Preferably, the two are: 100 small -16 - 201136869 hours -1, preferably, 20 to 50 hours 1 . The total molar ratio of the alkylatable aromatic compound to the alkylating agent (such as benzene and ethylene, respectively) ranges from 1:1 to 10: 1, 2: 1 to 8: 1, 3: 1 to 7: 1 , or 1.5: 1 to 4.5: 1. In some embodiments, the first alkylation reaction zone can be operated in the form of a reactive guard bed in which at least a portion of the impurities in the feed stream are removed. In this embodiment, the total molar ratio of the alkylatable aromatic compound to the alkylating agent (such as benzene and ethylene, respectively) is much higher when used alone for alkylation purposes, ranging from 10: 1 to 200. : 1' or 15: 1 to 150: 1, or 20: 1 to 100: 1 or 25: 1 to 50: 1. In other embodiments, the first reactive alkylation zone is a first reaction zone operated in the form of a non-reactive guard bed that removes at least a portion of the impurities in the feed stream. In this embodiment, only the alkylatable aromatic compound is supplied to the first reaction zone. In some embodiments, the disclosed method includes a processing zone having a processing material, wherein the processing zone is operated under appropriate processing conditions. Remove a portion of the impurities. This treatment zone can be upstream or downstream of the dewatering zone. This treatment zone is upstream of the first and second alkylation zones. When a portion of the impurities is removed using the treatment material, suitable processing conditions include a temperature of from about 30 to 200 ° C, and preferably between about 60 and 150 ° C, and a weight space velocity per hour (WHSV) of about 0.1 hours. Up to about 200 hours ^, preferably from about 0.5 hours _1 to about 100 hours _1, and more preferably from about 1. 〇 hour _1 to about 50 hours _1; and the pressure is between about atmospheric pressure and 3 0 0 0 k P a - a between. In some embodiments, the disclosed method includes a transalkylation zone that operates under appropriate transalkylation conditions to produce additional from polyalkylated aromatic compounds and aromatic compounds that can be alkylated at -17-201136869 A quantity of a monoalkylated aromatic compound. In the transalkylation zone, when the polyalkylated aromatic compound (such as polyethylbenzene or polycumene) is contacted with the alkylatable aromatic compound under at least partial liquid phase conditions, suitable transalkylation conditions Including a temperature of from about 100 to about 300 ° C and a pressure of 696 to 4137 kPa-a (101 to 600 psia) based on the weight of the polyalkylated aromatic compound to the alkylation reaction zone. The WHSV is from about 0.5 hours η to about 100 hours μ and the molar ratio of benzene to the polyalkylated aromatic compound is from 1:1 to 3:1, preferably, from 1:1 to 1 0:1. Good place, 1: 1 to 5: 1. Catalyst The disclosed method includes: (1) a first alkylating catalyst: and (2) a second alkylating catalyst different from the first alkylating catalyst. The first hospitalized catalyst contains a large pore molecular sieve having a Constraint Index of less than 2 and a first poisoning power. The Constraint Index is a convenient indicator of the extent to which aluminosilicates or molecular sieves control the size of molecules of different sizes to their internal structure. For example, aluminophthalic acid, which is extremely difficult to access and does not readily exit from its internal structure, has a high confinement index, and such aluminosilicates typically have small pores, such as less than 5 angstroms. On the other hand, the aluminosilicate having a very close access to the internal aluminosilicate structure has a low confinement index and is usually macroporous. The method for determining the constraint index is fully described in U.S. Patent No. 4, 〇 16, 2 18 .

適當的大孔分子篩包括沸石/3、沸石Y、Ultrastable Y (USY) ' Dealuminized Y (Deal Y) ' Ultrahydrophobic Y -18- 201136869 (UHP-Y) ' Rare Earth Exchanged Y (REY)、絲光沸石、 TEA-絲光沸石、ZSM-3、ZSM-4、ZSM-14、ZSM-18、和 ZSM-20。沸石ZSM-14述於美國專利案第3,923,63 6號。沸 石ZSM-20述於美國專利案第3,972,983號。沸石々述於美 國專利案第3,3 08,〇69號,和美國再頒佈專利案第2 8,3 4 1號 。低鈉Ultrastable Y分子篩(USY )述於美國專利案第 3,293,192和 3,449,070號。〇63111111111126(1丫沸石(〇631丫) 可藉美國專利案第3,442,795號中之方法製備。 Ultrahydrophobic Y (UHP-Y)述於美國專利案第 4,401,556 號。Rare Earth exchanged Y (REY)述於美國專利案第 3,524,820號。絲光沸石係天然生成的材料,但亦可以合成 形式得到’如T E A-絲光沸石(即,自包含四乙基鋁指向劑 之反應混合物製備之合成的絲光沸石)。TEA-絲光沸石述 於美國專利案第3,766,093和3,894,104號。Suitable macroporous molecular sieves include zeolite/3, zeolite Y, Ultrastable Y (USY) 'Dealuminized Y (Deal Y) ' Ultrahydrophobic Y -18- 201136869 (UHP-Y) 'Rare Earth Exchanged Y (REY), mordenite, TEA - Mordenite, ZSM-3, ZSM-4, ZSM-14, ZSM-18, and ZSM-20. Zeolite ZSM-14 is described in U.S. Patent No. 3,923,63. The zeolite ZSM-20 is described in U.S. Patent No. 3,972,983. Zeolites are described in U.S. Patent Nos. 3, 3 08, 〇 69, and U.S. Reissue Patent No. 2 8, 3 4 1 . Low sodium Ultrastable Y molecular sieves (USY) are described in U.S. Patent Nos. 3,293,192 and 3,449,070. 〇63111111111126 (1丫 zeolite (〇631丫) can be prepared by the method of U.S. Patent No. 3,442,795. Ultrahydrophobic Y (UHP-Y) is described in U.S. Patent No. 4,401,556. Rare Earth exchanged Y (REY) U.S. Patent No. 3,524,820. Mordenite is a naturally occurring material, but can also be obtained in synthetic form, such as TE A-mordenite (i.e., synthetic mercerized from a reaction mixture comprising a tetraethylaluminum directing agent). Zeolites. TEA-mordenite is described in U.S. Patent Nos. 3,766,093 and 3,894,104.

International Zeolite Association Structure Committee (IZA-SC)指定爲MWW拓樸的沸石材料係具有源自於二者 皆存在的10和12員環之兩種孔系統的多層材料。The Atlas of Zeolite Framework Types目前將具有此相同拓樸的材料 分類成至少五種不同名稱包括,但不限於MCM-22、ERB-1 、ITQ-1、PSH-3 和 SSZ-25。 一些實施態樣中,包含MCM-22家族分子篩的第二烷 化觸媒,較佳爲酸性觸媒,具有第二毒化力。已發現 MCM-22家族分子篩可用於各種烴轉化法。MCM-22家族分 子篩的例子爲 MCM-22、MCM-36、MCM-49、MCM-56、 -19· 201136869 ITQ-l、ITQ-2、ITQ-30、PSH-3、SSZ-25、ERB-1 和 UZM-8 o 屬於MCM-22家族的材料包括MCM-22 (述於美國專利 案第4,954,325號)、PSH-3 (述於美國專利案第4,439,409 號)、352-25(述於美國專利案第4,826,667號)、丑118-1 (述於歐洲專利案第0293032號)、ITQ-1 (述於美國專利 案第6,077,498號)、ITQ-2 (述於國際專利公告第 WO97/1 7290號)、IT Q - 3 0 (述於國際專利公告第 W02005 1 1 8476號)、M C Μ - 3 6 (述於美國專利案第 5,250,277號)、14€1^-49(述於美國專利案第5,236,575號 )、^^1^-56(述於美國專利案第5,362,697號)、和1^1^-8 (述於美國專利案第6,756,030號)。 瞭解前述MCM-22家族分子篩與下文討論之慣用的大 孔沸石烷化觸媒(如絲光沸石)的差別在於M C Μ - 2 2材料 具有12 -環表面袋,其不與分子篩的丨〇環內部孔系統連通 〇 或者,第二烷化觸媒,較佳爲酸性觸媒,包含約束指 數2-12的中孔分子篩(如美國專利案第4,016,218號中之定 義),包括 ZSM-5、ZSM-1 1、ZSM-1 2、ZSM-22、ZSM-2 3 、ZSM-35和ZSM-48。ZSM-5詳述於美國專利案第 3,702,886號和美國再頒佈專利案29,948號)。ZSM-11詳述 於美國專利案第3,709,979號。ZSM-12述於美國專利案第 3,8 3 2,449號。ZSM-22述於美國專利案第4,5 56,477號。 231^-23述於美國專利案第4,〇76,842號。23^1-35述於美國 -20- 201136869 專利案第4,0 1 6,245號。ZSM-48更特別述於美國專利案第 4,234,231號。 一或多個實施態樣中,該第一烷化觸媒的該第一毒化 力大於該第二烷化觸媒的該第二毒化力,該毒化力係藉柯 林鹼力測定。 一些實施態樣中,所揭示方法包括處理材料。此處理 材料選自黏土、樹脂、Linde type x、Linde type A、和彼 等之組合。此處理材料可爲酸性或非酸性。 一些實施態樣中,所揭示方法包括轉烷化觸媒。轉烷 化觸媒包含約束指數低於2的大孔分子篩。轉烷化觸媒可 與第一烷化觸媒相同或不同。 方法之詳述 一實施態樣(如反應性護床)之操作中’用以製造經 烷化的芳族化合物(例如經單烷化和經多烷化的芳族化合 物)之方法包含下列步驟:(a )將進料流供應至脫水區 ,該進料流包含可烷化的芳族化合物、水、和雜質’其中 該雜質包含具有下列元素之至少一者的化合物:氮、鹵素 、氧、硫、碑、晒、硫、隣和弟1族生第12族金屬,(b) 在該脫水區中,自該進料流移除該水的至少—部分’以產 生包含該可烷化的芳族化合物、任何殘留的水、和該雜質 之經脫水流;(c )令該經脫水流的至少一部分和第一烷 化劑流與具有第一毒化力的第一烷化觸媒在第一烷化反應 區中,於適當的至少部分液相第一反應條件下接觸’以移 -21 - 201136869 除該雜質的至少一部分,及令該可烷化的芳族化合物的一 部分以該第一烷化劑流加以烷化並產生第一經烷化流,此 第一經烷化流包含經烷化芳族化合物(如經單烷化和經多 烷化的芳族化合物)、未反應之可烷化的芳族化合物、任 何殘留的水、和任何殘留的雜質,較佳地,其中相較於該 經脫水流中的該雜質,該殘留雜質減少至少25% 和(d ) 令該第一經烷化流和第二烷化劑流與不同於該第一烷化觸 媒的第二烷化觸媒接觸,該第二烷化觸媒在第二烷化反應 區及適合之至少部分液相第二反應條件下具有第二毒化力 ,以使得該未反應之可烷化的芳族化合物的至少一部分以 該第二烷化劑流加以烷化並產生第二經烷化流,該第二經 烷化流包含額外的該(等)經烷化芳族化合物、未反應之 可烷化的芳族化合物、任何殘留的水、和任何殘留的雜質 〇 反應性護床中,會毒化第二烷化觸媒之反應性雜質( 如觸媒毒劑)的一部分自第一烷化反應區的進料流藉第一 烷化觸媒移除並同時以烷化劑將可烷化的芳族化合物予以 烷化。 另一實施態樣(如非反應性護床)之操作中,用以製 造經烷化的芳族化合物(例如經單烷化和多烷化的芳族化 合物)之方法包含下列步驟:(a )將一進料流供應至脫 水區,該進料流包含可烷化的芳族化合物、水、和雜質, 其中該雜質包含具有下列元素之至少一者的化合物:氮、 鹵素、氧、硫、砷、硒、碲、磷和第1族至第12族金屬; -22- 201136869 (b )在該脫水區中,自該進料流移除該水的至少一部分 ,以產生包含該可烷化的芳族化合物、任何殘留的水、和 該雜質之經脫水流;(c )令該經脫水流的至少一部分與 具有第一毒化力的第一觸媒在第一反應區中,於適合的至 少部分液相第一反應條件下接觸,以移除該雜質的至少一 部分/並產生雜質量減少且包含該可烷化的芳族化合物、 任何殘留的水、和任何殘留的雜質之可烷化的芳族物流, 其中相較於該經脫水流中的該雜質,該殘留雜質較佳減少 至少25% ;和(d )令步驟(c )之該可烷化的芳族物流和 烷化劑流與不同於該第一觸媒的烷化觸媒接觸,該烷化觸 媒具有比該第一毒化力爲高的第二毒化力,此接觸發生於 烷化反應區及適合之至少部分液相第二反應條件下,以令 該未反應之可烷化的芳族化合物的至少一部分以該第二烷 化劑流予以烷化並產生第二經烷化流,該第二經烷化流包 含經烷化芳族化合物、未反應之可烷化的芳族化合物、任 何殘留的水、和任何殘留的雜質。 在非反應性護床中,在烷化劑不存在且沒有可烷化的 芳族化合物之烷化反應下,雜質自第一反應區中的進料流 藉第一觸媒移除。 較佳地,至少80%,或至少70%,或至少60%,或至少 5 0重量%的該雜質在步驟(c)中移除。 選擇性地,在步驟(b )中,在該進料流中的該雜質 的至少一部分在該脫水區中移除。較佳地,步驟(b )之 後,在該經脫水流中的雜質比該進料流中的雜質低1 〇%, -23- 201136869 低5 %或低1重量%。更佳地,在脫水區移除該雜質的至少 —部分之後,該經脫水流中的雜質低於1 000 wppb,低於 750 wppb,低於 500 wppb或低於 250 wppb。 反應性護床中,該第一烷化觸媒的第一毒化力可高於 該第二烷化觸媒的該第二毒化力。較佳地,該第一烷化觸 媒的該第一毒化力比該第二烷化觸媒的該第二毒化力高出 至少5 %,至少1 0 %,至少1 5 %,至少2 0 %,至少2 5 %,至少 3 〇 %,至少3 5 %,至少4 0 %,至少4 5 %或至少5 0 %。 非反應性護床中,該第一觸媒的第一毒化力可高於該 烷化觸媒的該第二毒化力。較佳地,比該烷化觸媒的該第 二毒化力高出至少5%,至少1 〇%,至少1 5%,至少20%, 至少2 5 %,至少3 0 %,至少3 5 %,至少4 0 %,至少4 5 %或至 少 5 0 %。 反應性護床中,在步驟(e )中經烷化劑烷化之該經 烷化的芳族化合物的部分係該可烷化的芳族化合物之至少 1 %,至少2 %,至少5 %,至少7 %,至少1 〇 %,至少1 3 %或 至少1 5 %。 反應性護床中,該第二烷化劑流的流率可大於該第〜 烷化劑流的流率。較佳地,該第二烷化劑流的流率比該第 一烷化劑流的流率高至少5 %,至少1 0 %,至少1 5 %,至少 20%,至少25%,至少30% ’至少35%,至少40%,至少 4 5 %或至少5 0 %。 一些實施態樣中,步驟(c )之前,該經脫水流供至 含有處理材料的處理區,及然後該經脫水流與該處理材料 -24- 201136869 在該處理區中於適當處理條件下接觸,以移除該殘留雜質 量的至少—部分和形成該第一經烷化流。這些實施態樣中 ,與該處理材料接觸之後,雜質量比該經脫水流低1 %,低 5 %,低1 0%或低1 5重量%。 其他實施態樣中,步驟(a )之前,該進料流供至含 有處理材料的處理區,且然後該進料流與在該處理區中的 該處理材料在適合移除該雜質的至少一部分之適當處理條 件下接觸。較佳地,處理之後的雜質量比該進料流低1 %, 低5%,低10%或低15重量%。這些實施態樣中,處理材料 選自黏土、樹脂、經活化的氧化銘、Linde type X、Linde type A、和彼等之組合。 反應性護床中,該第一烷化觸媒係約束指數低於2的 大孔分子篩。此大孔分子篩選自沸石/3、八面沸石、沸石 Y ' Ultrastable Y (USY) ' Dealuminized Y (Deal Y) ' Rare Earth Y (REY)、Ultrahydrophobic Y (UHP-Y)、絲光沸石 、TEA-絲光沸石、ZSM-3、ZSM-4、ZSM-14、ZSM-18、 ZSM-20、及彼等之組合<· 非反應性護床中,該第一觸媒係約束指數低於2的大 孔分子篩。此大孔分子篩選自沸石A、八面沸石、沸石Y ' Ultrastable Y (USY)' Dealuminized Y (Deal Υ)' Rare Earth Υ (REY)、Ultrahydrophobic Υ (UHP-Y)、絲光沸石 、TEA-絲光沸石、ZSM-3 ' ZSM-4、ZSM-14、ZSM-18、 ZSM-20、及彼等之組合。 第二烷化觸媒(如反應性護床)或烷化觸媒(如非反 -25- 201136869 應性護床)係MCM-22家族材料,其具有MWW網絡拓樸的 單位晶胞且以X-射線繞射圖案包括晶格面距最大値位於 12.4±0.25、3.57±0.07 和 3·42±〇·〇7 埃處爲特徵。此 MCM-22 家族材料選自 ERB-1、ITQ-1、ITQ-2、ITQ-30、PSH-3、 SSZ-25、MCM-22、MCM-36、MCM-49、MCM-56、UZM-8 、EMM-10、EMM-10P、EMM-12、EMM-13和彼等之混合 物。 在脫水區移除水的至少一部分之後,該經脫水流中的 水以該經脫水流計爲低於100 wppm,低於50 wppm,低於 25 wppm ’ 低於 10 wppm。 此水例如,藉由蒸餾、吸附、蒸發、萃取或驟蒸移除 。脫水區係蒸餾塔、苯塔或輕組份塔。 在該第一烷化區或該第一反應區移除額外雜質之後, 該第一經烷化流中的雜質量比該進料流的重量低2 5 %,低 2 0%,低15%,低10%或低5%。較佳地,在該第一烷化區 移除額外雜質之後,在該第一經烷化流中的雜質量低於 100 wppb , 75 wppb , 50 wppb或25 wppb 。 該第二經烷化流中的雜質比該第一經烷化流中的雜質 低1 0%,低5%,或低1重量%。較佳地,該第二經烷化流中 的雜質低於1 wppm,5 wppm,低於10 wppm’低於15 wppm,低於 20 wppm或低於 25 wppm 〇 一些實施態樣中,烷化反應區較佳在單一反應器槽中 。或者,該第一烷化反應區可位於獨立槽中且可以反應性 護床操作。該第一反應區可位於獨立槽中且可以非反應性 -26- 201136869 護床操作。反應性或非反應性護床中的觸媒比第二烷化觸 媒更常進行再生和/或替換,因此,基本上配備旁通管, 使得烷化進料可以在護床停止操作的同時直接供至反應器 中之串接的反應區。 較佳地,可旁通的反應性護床位於第二烷化區上游。 可旁通的非反應性護床位於烷化區上游。此護床可以並流 上流或下流方式操作。反應性或非反應性護床維持於適當 的至少部分液相條件下。 反應性護床中,可烷化的芳族化合物的至少一部分及 烷化劑的至少一部分在進入第二烷化反應區之前,通過反 應性護床。 非反應性護床中,可烷化的芳族化合物在進入烷化反 應區之前,通過非反應性護床。 反應性護床或非反應性護床中使用的觸媒組成物與第 二和後續烷化反應區中使用的觸媒組成物不同。反應性護 床或非反應性護床中使用的觸媒組成物可具有多重觸媒組 成(如絲光沸石和沸石Y的混合物,或沸石/3和沸石Y之 混合物)。反應性護床和一般的每一烷化反應區,維持於 在烷化反應存在下’有效引發可烷化的芳族化合物與烷化 劑之烷化反應的條件下。 其他實施態樣中,該經脫水流進一步包含來自蒸餾區 之塔頂流的至少一部分。 另一實施態樣中,該經脫水流經冷卻以令該經脫水流 的至少一部分凝結以移除任何殘留的水和雜質的至少一部 -27- 201136869 分。 另一實施態樣中,該方法進一步包含將該經脫水流供 應至蒸餾區以在接觸步驟(C )之前移除任何殘留水中之 該至少一部分的步驟》 另一實施態樣中,此方法進一步包含在接觸步驟(C )之前,令該經脫水流與來自蒸餾區的流體合倂以移除任 何該殘留水的至少一部分之步驟,該蒸餾區係蒸餾塔、苯 塔或輕組份塔。 申請專利範圍第1項之方法,進一步包含令來自該脫 水區之該經脫水流的至少一部分以回流形式供應至蒸餾塔 的步驟。 一些實施態樣中’該可烷化的芳族化合物係苯。該第 一烷化劑流或該第二烷化劑流包含烯烴。選擇性地,該第 一或第二烷化劑流僅包含烷化劑和雜質,或僅包含院化劑 和水,或烷化劑和雜質和水之混合物》 一些實施態樣中’該經烷化的芳族化合物係經單院化 的芳族化合物。此情況中’該烷化劑係乙烯而該經單院化 芳族化合物係乙苯,或該烷化劑係丙烯而該經單院化芳族 化合物係異丙苯’或該烷化劑係丁烯而該經單院化芳族化 合物係二級丁基苯。 本發明的一些贲施態樣中’該經單烷化的芳族化合物 流,和選擇性地該經多院化的化合物流,自該第二經院化 流分離。 該經院化的芳族化合物係經多院化的芳族化合物,宜 -28 - 201136869 中此方法進一步包含步驟(e )令該經多烷化的芳族化合 物與轉烷化觸媒在轉烷化反應區中於適合製造額外量之該 經單烷化的芳族化合物之轉烷化條件下接觸。 另一實施態樣中,該轉烷化觸媒係約束指數低於2的 大孔分子篩。 另一實施態樣中,該大孔分子篩選自沸石Θ、八面沸 石、沸石 Y、Ultrastable Y (USY)、Dealuminized Y (Deal Y)、Rare Earth Y (REY)、絲光沸石、TEA-絲光沸石、 ZSM-3、ZSM-4、ZSM-18、ZSM-20、及彼等之組合。 本揭示之方法中使用的烷化反應器可爲對所欲之經單 烷化的芳族化合物(如乙苯)具高選擇性者,但基本上至 少製造一些經多烷化的物種。來自最終烷化反應區的流出 物可進行分離步驟以回收經單烷化和經多烷化的芳族化合 物。經多烷化的芳族化合物的至少一部分可以供應至可與 烷化反應器分隔的轉烷化反應器。轉烷化反應器中,經多 烷化的芳族化合物與可烷化的芳族化合物反應以產生含有 額外之經單烷化的芳族化合物之流出物。這些流出物的至 少一部分可經分離以回收經烷化的芳族化合物(經單烷化 的芳族化合物和/或經多烷化的芳族化合物)。 此揭示的一或多個實施態樣於圖1至8中以圖解說明。 圖1出示用以製造經烷化的芳族化合物(例如,經單 烷化的芳族化合物,如乙苯)之方法5 0,其中進料流1 ( 包含可烷化的芳族化合物、水和雜質)供至處理器2 (具 有處理區2 a並含有處理材料4 ),於此處於適合移除該雜 -29- 201136869 質的第一部分之處理條件(參考前文)下處理,及產生處 理器流出流5。選擇性地,處理器流出流5在熱交換機1 2a 中加熱或冷卻。 然後,處理器流出流5供至脫水區1 4 (如輕組份移除 蒸餾塔),於此處自處理器流出流5移除該水的至少一部 分和選擇性的該雜質的第二部分以產生包含該可烷化的芳 族化合物、任何殘留量的水和該雜質之經脫水流1 3。 經脫水流1 3供至蒸餾區1 8的累積槽1 6。蒸餾區1 8可爲 苯蒸餾塔。累積槽16中,經脫水流13與來自蒸餾區18的塔 頂流15 (其藉熱交換機l2c冷卻)合倂以產生累積槽流出 物17。累積槽流出物17的一部分以回流19形式供至蒸餾區 18。來自累積槽16的蒸氣24供至脫水區14用於進一步分離 。流體2 1,累積槽流出物1 7的殘留部分,形成至烷化器20 之可烷化的芳族進料流41,及至轉烷化器30之可烷化的芳 族進料流3 9。選擇性地,流體2 1可在熱交換機1 2b中加熱 或冷卻。重質化合物(如經多烷化的芳族化合物)以蒸餾 區18的塔底流22形式移出並在下游分離設備(未示)中分 離以產生經單烷化的芳族化合物(如乙苯)和經多烷化的 芳族化合物(如經多烷化的進料流39a,於下文中討論) 〇 烷化器20至少具有第一烷化區20a (其含有第一烷化 觸媒26 )位於至少第二烷化區2〇b (其含有第二烷化觸媒 28)上游並與之連通。一些實施態樣中,有多個串接的烷 化區。第一烷化觸媒具有第一毒化力而第二烷化觸媒具有 -30- 201136869 第二毒化力,其中該第一毒化力大於該第二毒化力。此實 施態樣中,第一烷化反應區係反應性護床’其整體在烷化 器20內。 第一烷化觸媒26包含約束指數低於2的大孔分子篩。 一些實施態樣中,第二烷化觸媒包含MCM-22家族分子篩 ,請參考前文。其他實施態樣中,第二烷化觸媒包含約束 指’數爲2 -1 2的中孔分子篩。 第一烷化區20a中,可烷化的芳族進料流41至烷化器 而第一烷化劑流43的一部分與第一烷化觸媒26在第一烷化 反應區中在適合至少部分液相的第一反應條件下接觸。該 雜質的至少一部分’以重量計’被移除’且該可院化的芳 族化合物的至少一部分,以重量計’以該第一烷化劑流4 3 加以烷化,產生包含經烷化的芳族化合物、未反應之可烷 化的芳族化合物、任何殘留的水、和任何殘留的雜質之第 一經烷化流。 第一經烷化流與該烷化劑43的另一部分在第二烷化觸 媒28 (不同於該第一烷化觸媒)存在下在第二烷化反應區 2 0b中於適合至少部分液相第二反應條件接觸。該未反應 之可烷化的芳族化合物經該第二烷化劑流烷化’以產生包 含額外的該經烷化的芳族化合物、任何殘留水、和任何殘 留雜質的第二經烷化流。第一和第二經烷化流’和之後的 烷化區(若有的話),合倂形成含有未經反應之可烷化的 芳族化合物、任何殘留的水、和經單烷化和經多烷化的芳 族化合物之經烷化流出物4 5。不同但可能地,有一些殘留 -31 - 201136869 的烷化劑存在。 至轉烷化器之可烷化的芳族進料流3 9包含可烷化的芳 族化合物,而經多烷化的進料流3 9 a (包含來自下游分離 設備(未示)之經多烷化的芳族化合物)供至轉烷化器3 0 的轉烷化區30a。轉烷化區30具有至少一個轉烷化觸媒34 。一些實施態樣中,轉烷化觸媒34係約束指數低於2的大 孔分子篩。 轉烷化區30a中,在經多烷化的進料流39a中之經多烷 化的芳族化合物與轉烷化器可烷化的芳族進料流39在轉烷 化觸媒34存在下在適當之至少部分液相轉烷化條件下接觸 ,以在轉烷化器流出物47中製造額外之該經單烷化的芳族 化合物》 經烷化的流出物45,選擇性地與轉烷化器流出物47合 倂,以蒸餾進料流49形式供至蒸餾區1 8,以自該經多烷化 的化合物和重質化合物分離經單烷化的化合物。 圖2-4出示圖1所示之用以製造經單烷化的芳族化合物 之方法5 0的蒸餾區1 8中使用經脫水流1 3的替代實施態樣。 具有與圖1相同編號的設備和流體方塊係相同者。圖2的實 施態樣中,經脫水流1 3與回流1 9供至蒸餾區1 8。塔頂流1 5 在熱交換機1 2 c中冷卻及然後流入累積槽1 6中。流體1 7, 其包含可烷化的芳族物質流,自累積槽1 6流出。流體1 7的 —部分分裂並以回流1 9形式供至蒸餾區1 8,請參考前文。 如圖1所示,流體2 1,流體1 7的殘留部分,形成至轉烷化 器30之轉烷化器可烷化的芳族進料流39,和至烷化器2〇之 -32- 201136869 可烷化的芳族進料流4 1。 圖3的實施態樣中,經脫水流1 3與來自蒸餾區1 8的塔 頂流15合倂及然後在熱交換機12c中冷卻以形成流體23, 其然後供至累積槽1 6。流體25,包含可烷化的芳族化合物 ,自累積槽16流出並分裂成回流流27和流體29。流體29, 流體25的殘留部分,形成至轉烷化器30之轉烷化器可烷化 的芳族進料流3 9,及至烷化器20之可烷化的芳族進料流4 1 〇 圖4的實施態樣中,蒸餾區1 8的塔頂流1 5流入累積槽 1 6形成流體1 7,此如圖1。此實施態樣中,經脫水流1 3與 回流流1 9合倂形成至蒸餾區1 8的經合併的回流流3 3。流體 35 ’流體17的殘留部分,形成至轉烷化器30之轉烷化器可 烷化的芳族進料流3 9,及至烷化器2 0之可烷化的芳族進料 流4 1。選擇性地,流體3 5可在熱交換機1 2b中加熱或冷卻 〇 圖5出示用以製造經單烷化的芳族化合物丨〇 〇 (如乙苯 )之方法100,其使用在獨立槽中的護床,且其以反應性 模式或非反應性模式操作。當護床以非反應性模式操作時 ’未供入烷化劑。當護床以反應性模式操作時,其接收烷 化劑的一部分。 進料流1 0 1,包含可烷化的芳族化合物、水和雜質, 供至脫水區1 4 ’如輕組份移除蒸餾塔。如圖1中具有相同 編號的設備和流體方塊係相同者。脫水區〗4中,該水的至 少一部分’和選擇性地該雜質的—部分自進料流1 〇丨移除 -33- 201136869 以產生經脫水流1 09,其包含該可烷化的芳族化合物、任 何殘留量的該雜質和任何殘留的水。經脫水流1 09供至含 有處理材料l〇2a的處理區102,於此處在適合移除額外的 該雜質並產生流出流111之處理條件下處理。此雜質和處 理材料1 02a與前述者相同。選擇性地,流出流n丨可以在 熱交換機(未示)中加熱和冷卻。 流出流111供至蒸餾區18的累積槽16,於此處與來自 蒸餾區1 8的塔頂流1 1 5合倂以產生經合倂的流出物〗丨7。蒸 餾區18可爲苯蒸餾塔。經合倂的流出物117的一部分以回 流119形式供至蒸餾區18。來自累積槽16的蒸汽124,供至 脫水區1 4用於進一步分離。流體1 2 1,經合倂的流出物1 1 7 的殘留部分,可在熱交換機12<1中加熱或冷卻。同樣地, 流體1 2 1形成至轉烷化器3 0之可烷化的芳族進料流1 3 9,及 至(反應性或非反應性)護床2 2之可烷化的芳族進料流 1 4 1。重質化合物(如經多烷化的芳族化合物)以蒸餾區 18的塔底流122形式移出並在下游分離設備(未示)中分 離以產生經烷化芳族化合物(如乙苯)和經多烷化的芳族 化合物(如經多烷化的進料流1 3 9 a,於下文中討論)。 護床22與烷化器20分隔並位於至少一個第二烷化區 20b上游並與之連通。護床22係反應性護床時,其係第一 烷化區並含有第一烷化觸媒26。當護床22係非反應性護床 時,其因爲未供以烷化劑,所以不是烷化反應區。 第二烷化區2〇b含有第二烷化觸媒28。第一烷化觸媒 具有第一毒化力,其與具有第二毒化力的第二烷化觸媒不 -34- 201136869 同。第一毒化力大於第二毒化力。較佳地,第一烷化觸媒 26包含約束指數低於2的大孔分子篩。 一些實施態樣中,第二烷化觸媒包含MCM-22家族分 子篩’請參考前文。其他實施態樣中,第二烷化觸媒包含 約束指數爲2-12的中孔分子篩。 護床22係反應性護床時,可烷化的芳族進料流1 4 1和 烷化劑流143的一部分在第一烷化觸媒26存在時,在至少 部分液相條件下接觸,以形成包含經烷化的芳族化合物、 未反應之可烷化的芳族化合物、任何殘留水、和任何殘留 雜質之第一經烷化流。 護床22係非反應性護床時,其接收可烷化的芳族進料 流1 4 1,該進料流與第一烷化觸媒2 6 (無烷化劑存在)在 適合至少部分液相第一反應條件下接觸,以移除該雜質的 至少一部分,以重量計,及產生包含該可烷化的芳族化合 物、任何殘留水、和任何殘留雜質之可烷化的芳族流。 然後,第一經烷化流或可烷化的芳族流供至第二烷化 區2 Ob並與額外的烷化劑流143在第二烷化觸媒28存在下, 在適當之至少部分液相第二反應條件下接觸’以產生包含 額外量之經烷化的芳族化合物之第二經烷化流。 第一和第二經烷化流,和之後的烷化區(若有的話) ,合倂形成含有經烷化的芳族化合物 '未經反應之可烷化 的芳族化合物、任何殘留的水、和任何殘留雜質之經烷化 的流出物1 4 5。 轉烷化器可烷化的芳族進料流1 3 9 (包含可烷化的芳 -35- 201136869 族化合物)和經多烷化的芳族進料流1 3 9a (包含經多烷化 的芳族化合物)供至轉烷化區3 0 a。轉烷化區3 0具有至少 —個轉烷化觸媒3 4 » —些實施態樣中,轉烷化觸媒3 4係約 束指數低於2的大孔分子篩。 轉烷化區30a中,經多烷化的芳族進料流139a與轉烷 化器可烷化的芳族進料流139在轉烷化觸媒34存在下在適 當之至少部分液相轉烷化條件下接觸,以在轉烷化器流出 物147中產生額外之該經單烷化的芳族化合物。 經烷化的流出物1 45,選擇性地與轉烷化器流出物1 47 合倂,以蒸餾進料流1 49形式供至蒸餾區1 8,以自該經多 烷化的化合物和重質化合物分離經單烷化的化合物。經多 烷化的和重質化合物在下游分離設備(未示)中分離。 圖6-8出示用以製造圖5所示之經單烷化的芳族化合物 之方法1 〇〇的蒸餾區1 8中使用流出流1 1 1 (其包含經脫水流 1 09 )的替代實施態樣。具有與圖5相同編號的設備和流體 方塊係相同者。圖6的實施態樣中,流出流1 Π與回流流 1 19供至蒸餾區18 »蒸餾區18的塔頂流1 15流入累積槽16中 。流體1 1 7,其包含可烷化的芳族物質流,自累積槽1 6流 出。流體1 1 7的一部分分裂並以回流1 9形式供至蒸餾區1 8 。如圖5所示,流體1 2 1,流體1 1 7的殘留部分形成至轉烷 化器3 0之轉烷化器進料流1 3 9,和至護床22之烷化器進料 流1 4 1。選擇性地,流體1 2 1可在熱交換機1 2 d中加熱或冷 卻。 圖7的實施態樣中,流出流1 1 1與來自蒸餾區1 8的塔頂 -36- 201136869 流1 1 5合倂及然後在熱交換機1 2 c中冷卻以形β 其然後供至累積槽1 6。流體1 2 5,包含經烷化 物,自累積槽16流出。此流體16分裂成回流吞 1 2 9。流體1 2 9,流體1 2 5的殘留部分’形成至 之轉烷化器可烷化的芳族進料流1 3 9 ’及至護 化的芳族進料流141。選擇性地,流體129可 1 2 d中加熱或冷卻。 圖8的實施態樣中,塔頂流Π 5流入累積槽 1 1 7和回流流1 1 9,此如圖5。此實施態樣中’ I 流體1 1 9 (其爲流體1 1 7的分裂流)合倂形成進 的回流流1 3 3。流體1 3 5,流體1 1 7的殘留部分 烷化器3 0之轉烷化器可烷化的芳族進料流1 3 9 22之可烷化的芳族進料流Μ 1。選擇性地,流i 交換機1 2 d中加熱或冷卻。 將參考下列實例,更特別地描述此揭示。 實例1 毒化力之測定 實例1 - 6中,藉由供應氣相柯林鹼,經由 記錄其攝入量,定出柯林驗的毒化力。總攝入 含氮化合物之能力的指標。 S流體1 2 3, 的芳族化合 ΐ 1 2 7和流體 轉烷化器30 床22之可烷 在熱交換機 16形成流體 ϋ出流1 1 1與 入蒸餾區18 ,形成至轉 ,及至護床 I 135可在熱 熱重分析儀 係沸石吸附 -37- 201136869 表1 實例 觸媒 沸石含量 (%) 大約毒化力 (毫當量/克) 1 仳較例) MWW iMCM-49) 80 80-130 2 β (非 MWW) 80 701 3 USY (非 MWW) 80 925 4 ZSM-12 (非 MWW) 65 531 5 絲光沸石 (非 MWW) 65 385 6 固態磷酸 (非 MWW) 4τττ. 無 501 如所示者,表1顯示’就ί吏用柯林驗的毒化力而言’ 用於具有MWW拓樸的觸媒時比用於具有非MWW拓樸的觸 媒時低得多。 實例7和8 實例7和8中,測定MWW和沸石々觸媒吸收Ν-甲醯基 嗎啉(NFM)雜質的能力。兩個烷化反應器串接’含NFM 雜質的苯進料供應至具有第一烷化觸媒的第一烷化反應器 (Rx 1 ) 。Rx 1的流出物供至具有第二烷化觸媒的第二烷 化反應器(Rx 2) "Rx 1和Rx 2各反應器具有獨立的乙烯 注入點且其構造與多階段串接的烷化反應器的首二階段類 似。用於這些實驗,Rx 1係反應性護床且係烷化反應器中 的第一反應區。Rx 2之鈍化用以指出當Rx 1已達到其最大 毒化力及觸媒毒劑不再完全被Rx 1所留置之時》NFM以苯 -38- 201136869 進料重量計爲0.3重量wppm濃度供入。 自運轉時間和在Rx 2中觀察到的鈍化時間計算實例中 的NFM吸收力。 表2 實例 Rx 1的沸石 (以沸石重量計爲80 重量%沸石含量) Rx 2的沸石 (以沸石重量計爲80 重量%沸石含量) NFM吸收力 (以沸石重量 計之wppm) 7 (比較例) MWW MWW 900-1000 8 β MWW 5950 如可看出者,表2顯示沸石yS作爲第一觸媒的NFM吸 收力優於第一觸媒包含MWW觸媒之時。 茲將文中所列的所有專利案、專利申請案、試驗程序 、優先文件、論文、公告、手冊、和其他文件全數之與此 揭示不一致且合乎所有司法管轄權者以引用方式納入本文 中。 此處列出數値下限和數値上限時,含括的範圍由任何 下限至任何上限。 已經特別描述此揭示的例示實施態樣,將了解在未背 離此揭示之精神和範圍的情況下,各式各樣的其他修飾爲 嫻於此技術者顯見且可輕易達成者。據此,所附申請專利 範圍之範圍不限於此處所列的實例和描述,而是申請專利 範圍含括在本揭示中之可申請專利之所有新奇的特徵,包 括嫻於此技術者以此揭示含括之其對等物處理的所有特徵 -39- 201136869 【圖式簡單說明】 圖1 -8係根據本揭示之實施態樣之用於製造經烷化芳 族化合物之方法的方法流程圖。 【主要元件符號說明】 1 :進料流 2 :處理器 2a :處理區 4 :處理材料 5 :處理器流出流 12a :熱交換機 12b :熱交換機 12c :熱交換機 12d :熱交換機 1 3 :經脫水流 1 4 :脫水區 1 5 :塔頂流 16 :累積槽 1 7 :累積槽流出物 18 :蒸餾區 1 9 :回流 20 :烷化器 20a :第一烷化反應區 -40- 201136869 2 0b :第二烷化反應區 2 1 :流體 2 2 :塔底流 24 :蒸氣 26 :第一烷化觸媒 2 8 :第二烷化觸媒 3 0 :轉烷化器 3 0 a :轉烷化區 3 3 :流體 3 4 :轉烷化觸媒 3 5 :流體 3 9 :可烷化的芳族進料流 39a :經多烷化的進料流 4 1 :可烷化的芳族進料流 43 :第一烷化劑流 4 5 :經烷化流出物 47 :轉烷化器流出物 49 :蒸餾進料流 5 0 :方法 1 〇 〇 :方法 1 〇 1 :進料流 1 0 2 :處理區 1 0 2 a :處理材料 1 〇 9 :經脫水流 -41 201136869 1 1 1 :流出流 1 1 5 :塔頂流 1 1 7 :合倂的流出物 1 1 9 :回流流 1 2 1 :流體 1 2 2 :塔底流 123 :流體 124 :蒸汽 1 2 5 :流體 1 3 3 :流體 1 3 5 :流體 1 3 9 :可烷化的芳族進料流 1 3 9 a :經多烷化的進料流 1 4 1 :可烷化的芳族進料流 1 4 3 :烷化劑流 1 4 5 :經烷化的流出物 1 4 7 :轉烷化器流出物 149 :蒸餾進料流 -42-The International Zeolite Association Structure Committee (IZA-SC) designates a MWW topological zeolitic material with a multilayer material having two pore systems derived from both 10 and 12 membered rings. The Atlas of Zeolite Framework Types currently classifies materials with this same topology into at least five different names including, but not limited to, MCM-22, ERB-1, ITQ-1, PSH-3, and SSZ-25. In some embodiments, the second alkylating catalyst comprising the MCM-22 family molecular sieve, preferably an acidic catalyst, has a second poisoning power. MCM-22 family molecular sieves have been found to be useful in a variety of hydrocarbon conversion processes. Examples of MCM-22 family molecular sieves are MCM-22, MCM-36, MCM-49, MCM-56, -19·201136869 ITQ-l, ITQ-2, ITQ-30, PSH-3, SSZ-25, ERB- 1 and UZM-8 o Materials belonging to the MCM-22 family include MCM-22 (described in U.S. Patent No. 4,954,325), PSH-3 (described in U.S. Patent No. 4,439,409), 352-25 (described in U.S. Patent Case No. 4,826,667), Ugly 118-1 (described in European Patent No. 0293032), ITQ-1 (described in U.S. Patent No. 6,077,498), ITQ-2 (described in International Patent Publication No. WO97/1 7290) ), IT Q - 3 0 (described in International Patent Publication No. WO2005 1 1 8476), MC Μ - 3 6 (described in US Patent No. 5,250,277), 14 €1^-49 (described in the US Patent No. 5, 236, 575), ^^1^-56 (described in U.S. Patent No. 5,362,697), and 1^1^-8 (described in U.S. Patent No. 6,756,030). It is understood that the aforementioned MCM-22 family molecular sieve differs from the conventional large pore zeolite alkylation catalyst (such as mordenite) discussed below in that the MC Μ - 2 2 material has a 12 - ring surface pocket which is not internal to the ruthenium ring of the molecular sieve. The pore system is in communication with a second alkylation catalyst, preferably an acidic catalyst, comprising a mesoporous molecular sieve having a Constraint Index of 2-12 (as defined in U.S. Patent No. 4,016,218), including ZSM-5, ZSM- 1 1. ZSM-1 2. ZSM-22, ZSM-2 3, ZSM-35 and ZSM-48. ZSM-5 is described in detail in U.S. Patent No. 3,702,886 and U.S. Patent No. 29,948. ZSM-11 is described in detail in U.S. Patent No. 3,709,979. ZSM-12 is described in U.S. Patent No. 3,8 3 2,449. ZSM-22 is described in U.S. Patent No. 4,5,567,77. 231^-23 is described in U.S. Patent No. 4, No. 76,842. 23^1-35 is described in the United States -20- 201136869 Patent No. 4,0 1 6,245. ZSM-48 is more specifically described in U.S. Patent No. 4,234,231. In one or more embodiments, the first poisoning power of the first alkylating catalyst is greater than the second poisoning power of the second alkylating catalyst, and the poisoning power is determined by Colin base force. In some embodiments, the disclosed methods include processing materials. This treatment material is selected from the group consisting of clay, resin, Linde type x, Linde type A, and combinations thereof. This treatment material can be acidic or non-acidic. In some embodiments, the disclosed methods include transalkylation catalysts. The transalkylation catalyst comprises a macroporous molecular sieve having a Constraint Index of less than 2. The transalkylation catalyst can be the same or different than the first alkylation catalyst. DETAILED DESCRIPTION OF THE PROCESS In an embodiment (e.g., a reactive guard bed), the method for producing an alkylated aromatic compound (e.g., a monoalkylated and polyalkylated aromatic compound) comprises the following steps : (a) supplying a feed stream to a dehydration zone comprising an alkylatable aromatic compound, water, and an impurity 'where the impurity comprises a compound having at least one of the following elements: nitrogen, halogen, oxygen , sulphur, monument, sun, sulphur, ortho to Group 1 Group 12 metal, (b) in the dewatering zone, removing at least a portion of the water from the feed stream to produce the alkylate An aromatic compound, any residual water, and a dehydrated stream of the impurity; (c) causing at least a portion of the dehydrated stream and the first alkylating agent stream to be associated with the first alkylating catalyst having a first poisoning power In the first alkylation reaction zone, in contact with at least a portion of the liquid phase first reaction conditions, at least a portion of the impurity is removed by shifting - 21,368,869, and a portion of the alkylatetable aromatic compound is An alkylating agent stream is alkylated to produce a first alkylation stream, This first alkylation stream comprises an alkylated aromatic compound (such as a monoalkylated and polyalkylated aromatic compound), an unreacted alkylatable aromatic compound, any residual water, and any residual Impurity, preferably wherein the residual impurity is reduced by at least 25% and (d) such that the first alkylation stream and the second alkylating agent stream are different from the impurity in the dehydrated stream Contacting a second alkylation catalyst of the first alkylation catalyst, the second alkylation catalyst having a second poisoning force in the second alkylation reaction zone and at least a portion of the liquid phase second reaction conditions, such that At least a portion of the unreacted alkylatable aromatic compound is alkylated with the second alkylating agent stream and produces a second alkylation stream comprising additional (etc.) alkylation. An aromatic compound, an unreacted alkylatable aromatic compound, any residual water, and any residual impurities in the reactive bed, poisoning the reactive impurities of the second alkylating catalyst (such as a catalytic agent) Part of the feed stream from the first alkylation reaction zone is shifted by the first alkylation catalyst The alkylatable aromatic compound is alkylated with an alkylating agent. In another embodiment (e.g., a non-reactive guard bed), the method for making an alkylated aromatic compound (e.g., a monoalkylated and polyalkylated aromatic compound) comprises the steps of: (a Providing a feed stream to a dehydration zone comprising an alkylatetable aromatic compound, water, and impurities, wherein the impurity comprises a compound having at least one of the following: nitrogen, halogen, oxygen, sulfur , arsenic, selenium, tellurium, phosphorus, and Group 1 to Group 12 metals; -22- 201136869 (b) in the dehydration zone, removing at least a portion of the water from the feed stream to produce the hexane a derivatized aromatic compound, any residual water, and a dehydrated stream of the impurity; (c) aligning at least a portion of the dehydrated stream with a first catalyst having a first poisoning force in the first reaction zone Contacting at least a portion of the liquid phase under the first reaction conditions to remove at least a portion of the impurity/and resulting in a reduction in the amount of impurities and comprising the alkylatable aromatic compound, any residual water, and any residual impurities Aromatic logistics, which is compared to Preferably, the impurity in the dehydration stream is reduced by at least 25%; and (d) the alkylate and alkylating agent stream of step (c) is different from the alkane different from the first catalyst Contacting the catalyst, the alkylation catalyst has a second poisoning power higher than the first poisoning force, and the contacting occurs in the alkylation reaction zone and at least a portion of the liquid phase second reaction conditions, so that the At least a portion of the reactable alkylatable aromatic compound is alkylated with the second alkylating agent stream and produces a second alkylation stream comprising an alkylated aromatic compound, unreacted An alkylateable aromatic compound, any residual water, and any residual impurities. In a non-reactive guard bed, the impurity is removed from the feed stream in the first reaction zone by the first catalyst under the alkylation reaction in the absence of an alkylating agent and without an alkylating aromatic compound. Preferably, at least 80%, or at least 70%, or at least 60%, or at least 50% by weight of the impurities are removed in step (c). Optionally, in step (b), at least a portion of the impurities in the feed stream are removed in the dewatering zone. Preferably, after step (b), the impurities in the dewatered stream are 1% lower than the impurities in the feed stream, -23-201136869 is 5% lower or 1% lower. More preferably, after removing at least a portion of the impurity in the dehydration zone, the dehydrated stream has an impurity of less than 1 000 wppb, less than 750 wppb, less than 500 wppb or less than 250 wppb. In the reactive guard bed, the first poisoning power of the first alkylating catalyst may be higher than the second poisoning power of the second alkylating catalyst. Preferably, the first poisoning power of the first alkylating catalyst is at least 5% higher than the second poisoning power of the second alkylating catalyst, at least 10%, at least 15%, at least 2 0 %, at least 2 5 %, at least 3 %, at least 3 5 %, at least 40 %, at least 4 5 % or at least 50 %. In the non-reactive guard bed, the first poisoning force of the first catalyst may be higher than the second poisoning power of the alkylating catalyst. Preferably, the second poisoning power is at least 5%, at least 1%, at least 1%, at least 20%, at least 25%, at least 30%, at least 35% higher than the second poisoning power of the alkylation catalyst. , at least 40%, at least 45% or at least 50%. In the reactive guard bed, the portion of the alkylated aromatic compound alkylated by the alkylating agent in step (e) is at least 1%, at least 2%, at least 5% of the alkylatable aromatic compound. , at least 7%, at least 1%, at least 1 3 % or at least 1 5 %. In the reactive guard bed, the flow rate of the second alkylating agent stream can be greater than the flow rate of the first alkylating agent stream. Preferably, the flow rate of the second alkylating agent stream is at least 5% higher than the flow rate of the first alkylating agent stream, at least 10%, at least 15%, at least 20%, at least 25%, at least 30 % 'at least 35%, at least 40%, at least 45% or at least 50%. In some embodiments, prior to step (c), the dehydrated stream is supplied to a treatment zone containing the treatment material, and then the dewatered stream is contacted with the treatment material in the treatment zone at -24,368,869 under appropriate processing conditions. And removing at least a portion of the residual impurity mass and forming the first alkylation stream. In these embodiments, after contact with the treated material, the amount of impurities is 1% lower, 5% lower, 10% lower, or 15% lower than the dehydrated stream. In other embodiments, prior to step (a), the feed stream is supplied to a treatment zone containing the treatment material, and then the feed stream and the treatment material in the treatment zone are adapted to remove at least a portion of the impurity. Contact under appropriate processing conditions. Preferably, the amount of impurities after treatment is 1% lower, 5% lower, 10% lower or 15% lower than the feed stream. In these embodiments, the treatment material is selected from the group consisting of clay, resin, activated oxidation, Linde type X, Linde type A, and combinations thereof. In a reactive guard bed, the first alkylating catalyst is a macroporous molecular sieve having a Constraint Index of less than 2. This macroporous molecule was screened from zeolite/3, faujasite, zeolite Y' Ultrastable Y (USY) 'Dealuminized Y (Deal Y) 'Rare Earth Y (REY), Ultrahydrophobic Y (UHP-Y), mordenite, TEA- Mordenite, ZSM-3, ZSM-4, ZSM-14, ZSM-18, ZSM-20, and combinations thereof <· In a non-reactive guard bed, the first catalyst is a macroporous molecular sieve having a Constraint Index of less than 2. This macroporous molecule was screened from zeolite A, faujasite, zeolite Y ' Ultrastable Y (USY)' Dealuminized Y (Deal Υ)' Rare Earth Υ (REY), Ultrahydrophobic Υ (UHP-Y), mordenite, TEA-silk Zeolite, ZSM-3 'ZSM-4, ZSM-14, ZSM-18, ZSM-20, and combinations thereof. a second alkylation catalyst (such as a reactive guard bed) or an alkylation catalyst (such as a non-trans-25-201136869 compliant bed) is a MCM-22 family material having a unit cell of the MWW network topology and The X-ray diffraction pattern is characterized by a lattice spacing of at most 値 at 12.4 ± 0.25, 3.57 ± 0.07, and 3.42 ± 〇 · 〇 7 angstroms. This MCM-22 family material is selected from ERB-1, ITQ-1, ITQ-2, ITQ-30, PSH-3, SSZ-25, MCM-22, MCM-36, MCM-49, MCM-56, UZM- 8. EMM-10, EMM-10P, EMM-12, EMM-13 and mixtures thereof. After removing at least a portion of the water in the dewatering zone, the water in the dewatered stream is less than 100 wppm, less than 50 wppm, less than 25 wppm ' less than 10 wppm, based on the dewatered stream. This water is removed, for example, by distillation, adsorption, evaporation, extraction or flash evaporation. The dehydration zone is a distillation column, a benzene column or a light component column. After removing additional impurities in the first alkylation zone or the first reaction zone, the amount of impurities in the first alkylation stream is 25% lower, 20% lower, and 15% lower than the weight of the feed stream. , 10% lower or 5% lower. Preferably, after the additional impurities are removed in the first alkylation zone, the amount of impurities in the first alkylation stream is less than 100 wppb, 75 wppb, 50 wppb or 25 wppb. The impurities in the second alkylation stream are 10% lower, 5% lower, or 1% lower than the impurities in the first alkylation stream. Preferably, the impurities in the second alkylation stream are less than 1 wppm, 5 wppm, less than 10 wppm 'less than 15 wppm, less than 20 wppm or less than 25 wppm. In some embodiments, the alkane The reaction zone is preferably in a single reactor tank. Alternatively, the first alkylation reaction zone can be located in a separate tank and can be operated by a reactive guard bed. The first reaction zone can be located in a separate tank and can be operated non-reactive -26-201136869. The catalyst in the reactive or non-reactive guard bed is more often regenerated and/or replaced than the second alkylation catalyst, and therefore, is basically equipped with a bypass tube so that the alkylation feed can be stopped while the guard bed is being operated Directly supplied to the reaction zone in series in the reactor. Preferably, the bypassable reactive guard bed is located upstream of the second alkylation zone. A bypassable non-reactive guard bed is located upstream of the alkylation zone. This guard can be operated in a cocurrent upstream or downstream mode. The reactive or non-reactive guard bed is maintained under appropriate at least partial liquid phase conditions. In the reactive guard bed, at least a portion of the alkylatable aromatic compound and at least a portion of the alkylating agent pass through the reactive guard bed prior to entering the second alkylation reaction zone. In a non-reactive guard bed, the alkylatable aromatic compound passes through a non-reactive guard bed before entering the alkylation reaction zone. The catalyst composition used in the reactive or non-reactive guard bed is different from the catalyst composition used in the second and subsequent alkylation reaction zones. The catalyst composition used in the reactive or non-reactive guard bed may have multiple catalyst compositions (e.g., a mixture of mordenite and zeolite Y, or a mixture of zeolite/3 and zeolite Y). The reactive guard bed and each of the general alkylation reaction zones are maintained under conditions effective to initiate alkylation of the alkylatable aromatic compound with the alkylating agent in the presence of an alkylation reaction. In other embodiments, the dewatered stream further comprises at least a portion of the overhead stream from the distillation zone. In another embodiment, the dewatered stream is cooled to condense at least a portion of the dewatered stream to remove at least one of any residual water and impurities -27-201136869. In another embodiment, the method further comprises the step of supplying the dehydrated stream to the distillation zone to remove at least a portion of any residual water prior to contacting step (C). In another embodiment, the method further Included prior to contacting step (C), the dehydrated stream is combined with the fluid from the distillation zone to remove at least a portion of any of the residual water, the distillation zone being a distillation column, a benzene column or a light component column. The method of claim 1, further comprising the step of supplying at least a portion of the dehydrated stream from the dewatering zone to the distillation column in reflux. In some embodiments, the alkylenable aromatic compound is benzene. The first alkylating agent stream or the second alkylating agent stream comprises an olefin. Optionally, the first or second alkylating agent stream comprises only alkylating agents and impurities, or only a domesticating agent and water, or an alkylating agent and a mixture of impurities and water. In some embodiments, The alkylated aromatic compound is a single-chambered aromatic compound. In this case, the alkylating agent is ethylene and the single-combined aromatic compound is ethylbenzene, or the alkylating agent is propylene and the single-combined aromatic compound is cumene or the alkylating agent. Butene and the single-institutional aromatic compound is a secondary butylbenzene. In some embodiments of the invention, the monoalkylated aromatic stream, and optionally the multi-combined compound stream, is separated from the second mesa stream. The olefinized compound is a multi-chambered aromatic compound, and the method further comprises the step (e) of ordering the polyalkylated aromatic compound and the transalkylation catalyst in trans-alkane, preferably from -28 to 201136869 The reaction zone is contacted under transalkylation conditions suitable for the manufacture of additional amounts of the monoalkylated aromatic compound. In another embodiment, the transalkylation catalyst is a macroporous molecular sieve having a Constraint Index of less than 2. In another embodiment, the macroporous molecule is selected from the group consisting of zeolite strontium, faujasite, zeolite Y, Ultrastable Y (USY), Dealuminized Y (Deal Y), Rare Earth Y (REY), mordenite, TEA-mordenite , ZSM-3, ZSM-4, ZSM-18, ZSM-20, and combinations thereof. The alkylation reactor used in the process of the present disclosure may be highly selective for the desired monoalkylated aromatic compound (e.g., ethylbenzene), but at least some polyalkylated species are produced at least. The effluent from the final alkylation reaction zone can be subjected to a separation step to recover the monoalkylated and polyalkylated aromatic compound. At least a portion of the polyalkylated aromatic compound can be supplied to a transalkylation reactor which can be separated from the alkylation reactor. In the transalkylation reactor, the polyalkylated aromatic compound is reacted with an alkylatable aromatic compound to produce an effluent containing additional monoalkylated aromatic compounds. At least a portion of these effluents can be separated to recover the alkylated aromatic compound (monoalkylated aromatic compound and/or polyalkylated aromatic compound). One or more embodiments of this disclosure are illustrated in Figures 1-8. Figure 1 shows a process 50 for producing an alkylated aromatic compound (e.g., a monoalkylated aromatic compound such as ethylbenzene) wherein feed stream 1 (containing an alkylatable aromatic compound, water) And impurities) are supplied to the processor 2 (having a treatment zone 2a and containing the treatment material 4), which is processed under the processing conditions (refer to the foregoing) suitable for removing the first part of the hybrid -29-201136869, and is produced and processed. The stream flows out of the stream 5. Optionally, the processor effluent stream 5 is heated or cooled in the heat exchanger 12a. The processor effluent stream 5 is then supplied to a dewatering zone 14 (e.g., a light component removal distillation column) where at least a portion of the water and a second portion of the impurity are selectively removed from the processor effluent stream 5. To produce a dehydrated stream 13 comprising the alkylatable aromatic compound, any residual amount of water, and the impurity. The dewatering stream 13 is supplied to the accumulation tank 16 of the distillation zone 18. The distillation zone 18 can be a benzene distillation column. In the accumulation tank 16, the dewatering stream 13 is combined with the overhead stream 15 from the distillation zone 18 (which is cooled by the heat exchanger l2c) to produce the cumulative tank effluent 17. A portion of the accumulated tank effluent 17 is supplied to the distillation zone 18 in the form of a reflux 19. Vapor 24 from accumulation tank 16 is supplied to dewatering zone 14 for further separation. The fluid 2 1 accumulates the residual portion of the tank effluent 17 , forms the alkylateable aromatic feed stream 41 to the alkylator 20, and the alkylatetable aromatic feed stream to the transalkylation unit 30. . Alternatively, fluid 2 1 can be heated or cooled in heat exchanger 12b. The heavy compound (e.g., polyalkylated aromatic compound) is removed as a bottoms stream 22 of distillation zone 18 and separated in a downstream separation apparatus (not shown) to produce a monoalkylated aromatic compound (e.g., ethylbenzene). And a polyalkylated aromatic compound (such as the polyalkylated feed stream 39a, discussed below). The oximation unit 20 has at least a first alkylation zone 20a (which contains a first alkylation catalyst 26) Located upstream of and in communication with at least a second alkylation zone 2〇b (which contains a second alkylation catalyst 28). In some embodiments, there are a plurality of alkylation zones connected in series. The first alkylating catalyst has a first poisoning power and the second alkylating catalyst has a second poisoning power of -30-201136869, wherein the first poisoning power is greater than the second poisoning power. In this embodiment, the first alkylation reaction zone reactive guard bed' is entirely within the alkylator 20. The first alkylation catalyst 26 comprises a macroporous molecular sieve having a Constraint Index of less than 2. In some embodiments, the second alkylation catalyst comprises a molecular sieve of the MCM-22 family, please refer to the foregoing. In other embodiments, the second alkylation catalyst comprises a mesoporous molecular sieve having a number of constraints of from 2 to 12. In the first alkylation zone 20a, the alkylateable aromatic feed stream 41 is passed to the alkylator and a portion of the first alkylating agent stream 43 and the first alkylation catalyst 26 are suitable in the first alkylation reaction zone. At least a portion of the liquid phase is contacted under the first reaction conditions. At least a portion of the impurity 'removed' and at least a portion of the processable aromatic compound is alkylated by weight of the first alkylating agent stream 4 3 to produce an alkylation-containing The first alkylation stream of the aromatic compound, the unreacted alkylateable aromatic compound, any residual water, and any residual impurities. The first alkylation stream and another portion of the alkylating agent 43 are at least partially suitable in the second alkylation reaction zone 20b in the presence of the second alkylation catalyst 28 (different from the first alkylation catalyst) The second reaction condition of the liquid phase is contacted. The unreacted alkylatable aromatic compound is alkylated by the second alkylating agent stream to produce a second alkylation comprising additional the alkylated aromatic compound, any residual water, and any residual impurities. flow. The first and second alkylation streams' and subsequent alkylation zones, if any, are combined to form an unreacted alkylatable aromatic compound, any residual water, and monoalkylated and The alkylated effluent of the polyalkylated aromatic compound is 4 5 . Different but possible, there are some residues -31 - 201136869 of alkylating agent present. The alkylateable aromatic feed stream to the alkylating unit 39 comprises an alkylatable aromatic compound and the polyalkylated feed stream 3 9 a (comprising from downstream separation equipment (not shown) The polyalkylated aromatic compound is supplied to the transalkylation zone 30a of the transalkylation unit 30. The transalkylation zone 30 has at least one transalkylation catalyst 34. In some embodiments, the transalkylation catalyst 34 is a macroporous molecular sieve having a Constraint Index of less than 2. In the transalkylation zone 30a, the polyalkylated aromatic compound in the polyalkylated feed stream 39a and the aromatic alkylation stream 39 which can be alkylated in the transalkylation unit are present in the transalkylation catalyst 34. Contacting under appropriate at least partial liquid phase alkylation conditions to produce additional monoalkylated aromatic compound alkylate effluent 45 in transalkylating effluent 47, optionally with The transalkylation effluent 47 is combined and supplied to the distillation zone 18 as a distillation feed stream 49 to separate the monoalkylated compound from the polyalkylated compound and the heavy compound. 2-4 illustrate an alternate embodiment of the dehydration stream 13 in the distillation zone 18 of the process 50 for making a monoalkylated aromatic compound of FIG. The device having the same number as in Figure 1 and the fluid block are the same. In the embodiment of Figure 2, it is supplied to the distillation zone 18 via a dehydration stream 13 and a reflux of 19. The overhead stream 15 is cooled in the heat exchanger 12c and then flows into the accumulation tank 16. Fluid 177 contains an alkylate stream of aromatic material which flows out of the accumulation tank 16. The portion of the fluid 17 is split and supplied to the distillation zone 18 as reflux 9. The reference is made to the foregoing. As shown in Figure 1, the fluid 2, the residual portion of the fluid 17 is formed into an aromatic feed stream 39 which can be alkylated by the transalkylation converter of the transalkylation unit 30, and to the alkylation unit 2 -32 - 201136869 Alkylated aromatic feed stream 4 1 . In the embodiment of Figure 3, the dewatering stream 13 is combined with the overhead stream 15 from the distillation zone 18 and then cooled in the heat exchanger 12c to form a fluid 23 which is then supplied to the accumulation tank 16. Fluid 25, comprising an alkylatable aromatic compound, exits from accumulation tank 16 and splits into reflux stream 27 and fluid 29. Fluid 29, a residual portion of fluid 25, an aromatic feed stream 39 that can be alkylated to a transalkylation unit of transalkylation unit 30, and an alkylateable aromatic feed stream 4 to alkylation unit 20 In the embodiment of Fig. 4, the overhead stream 15 of the distillation zone 18 flows into the accumulation tank 16 to form a fluid 17, which is as shown in Fig. 1. In this embodiment, the combined reflux stream 3 3 of the distillation zone 18 is formed by combining the dehydration stream 13 with the reflux stream 19 . The remainder of the fluid 35' fluid 17 forms an aromatic feed stream 39 that can be alkylated to the transalkylating unit of the transalkylation unit 30, and an alkylateable aromatic feed stream 4 to the alkylator 20 1. Alternatively, the fluid 35 can be heated or cooled in the heat exchanger 12b. Figure 5 shows a method 100 for producing a monoalkylated aromatic compound such as ethylbenzene, which is used in a separate tank. A guard bed and it operates in a reactive mode or a non-reactive mode. When the guard bed is operated in a non-reactive mode, no alkylating agent is supplied. When the guard bed is operated in a reactive mode, it receives a portion of the alkylating agent. The feed stream 101 comprises an alkylate-containing aromatic compound, water and impurities which are supplied to a dehydration zone 14' such as a light component removal distillation column. The devices and fluid blocks having the same number in Figure 1 are identical. In dewatering zone 4, at least a portion of the water and optionally a portion of the impurity are removed from the feed stream 1 - 33 - 201136869 to produce a dehydrated stream 109 comprising the alkylatable aromatic Group compound, any residual amount of this impurity and any residual water. The dewatering stream 1 09 is supplied to a treatment zone 102 containing a treatment material 10a, where it is treated under conditions suitable for removing additional impurities and producing an effluent stream 111. This impurity and treatment material 102a are the same as those described above. Alternatively, the effluent stream n丨 can be heated and cooled in a heat exchanger (not shown). The effluent stream 111 is supplied to the accumulation tank 16 of the distillation zone 18 where it is combined with the overhead stream 1 15 from the distillation zone 18 to produce a combined effluent 丨7. The distillation zone 18 can be a benzene distillation column. A portion of the combined effluent 117 is supplied to the distillation zone 18 in the form of a reflux 119. Steam 124 from the accumulation tank 16 is supplied to the dewatering zone 14 for further separation. Fluid 1 2 1, residual portion of the combined effluent 1 1 7 , available in heat exchanger 12 <1 heating or cooling. Similarly, fluid 1 2 1 forms an alkylateable aromatic feed stream 13 to the transalkylating unit 30 and a (reactive or non-reactive) guard bed 2 2 alkylateizable aromatic Stream 1 4 1. The heavy compound (e.g., polyalkylated aromatic compound) is removed as a bottoms stream 122 of distillation zone 18 and separated in a downstream separation apparatus (not shown) to produce an alkylated aromatic compound (e.g., ethylbenzene) and Polyalkylated aromatics (e.g., a polyalkylated feed stream 139 a, discussed below). The guard bed 22 is separated from the alkylator 20 and is located upstream of and in communication with the at least one second alkylation zone 20b. When the guard bed 22 is a reactive guard bed, it is a first alkylation zone and contains a first alkylation catalyst 26. When the guard bed 22 is a non-reactive guard bed, it is not an alkylation reaction zone because it is not supplied with an alkylating agent. The second alkylation zone 2〇b contains a second alkylation catalyst 28. The first alkylating catalyst has a first poisoning power which is the same as the second alkylating catalyst having the second poisoning power. The first poisoning power is greater than the second poisoning power. Preferably, the first alkylation catalyst 26 comprises a macroporous molecular sieve having a Constraint Index of less than 2. In some embodiments, the second alkylating catalyst comprises a molecular sieve of the MCM-22 family. Please refer to the foregoing. In other embodiments, the second alkylation catalyst comprises a mesoporous molecular sieve having a Constraint Index of 2-12. When the guard bed 22 is a reactive guard bed, the alkylateable aromatic feed stream 141 and a portion of the alkylating agent stream 143 are contacted in at least a portion of the liquid phase conditions in the presence of the first alkylating catalyst 26, To form a first alkylation stream comprising an alkylated aromatic compound, an unreacted alkylatable aromatic compound, any residual water, and any residual impurities. When the guard bed 22 is a non-reactive guard bed, it receives an alkylateable aromatic feed stream 141, and the feed stream is at least partially compatible with the first alkylation catalyst 26 (the absence of an alkylating agent) Contacting under liquid phase first reaction conditions to remove at least a portion of the impurities, by weight, and producing an alkylatable aromatic stream comprising the alkylatable aromatic compound, any residual water, and any residual impurities . The first alkylated stream or alkylatable aromatic stream is then supplied to the second alkylation zone 2 Ob and with additional alkylating agent stream 143 in the presence of the second alkylation catalyst 28, at least in appropriate The liquid phase is contacted under the second reaction conditions to produce a second alkylation stream comprising an additional amount of alkylated aromatic compound. The first and second alkylation streams, and subsequent alkylation zones, if any, are combined to form an alkylation-containing aromatic compound 'unreacted alkylatetable aromatic compound, any residue The alkylated effluent of water, and any residual impurities, 1 4 5 . The alkylate can be alkylated in an aromatic feed stream 1 3 9 (comprising an alkylatable aryl-35-201136869 compound) and a polyalkylated aromatic feed stream 1 3 9a (including polyalkylation) The aromatic compound) is supplied to the transalkylation zone 30 a. The transalkylation zone 30 has at least one transalkylation catalyst 3 4 » In some embodiments, the transalkylation catalyst 34 is a macroporous molecular sieve having a bundle index of less than 2. In the transalkylation zone 30a, the polyalkylated aromatic feed stream 139a and the aromatic alkylation stream 139 which can be alkylated by the transalkylation converter are suitably at least partially liquid phase in the presence of the transalkylation catalyst 34. Contacting under alkylation conditions produces additional monoalkylated aromatics in the transalkylator effluent 147. The alkylated effluent 1 45 is selectively combined with the transalkylation effluent 1 47 and supplied to the distillation zone 18 as a distillation feed stream 1 49 to be derived from the polyalkylated compound and The compound is isolated from the monoalkylated compound. The polyalkylated and heavy compounds are separated in a downstream separation unit (not shown). 6-8 illustrate an alternate embodiment of the use of an effluent stream 1 1 1 (which includes a dehydrated stream 1 09) in a distillation zone 18 of the process 1 for the manufacture of the monoalkylated aromatic compound of FIG. Aspect. The device having the same number as in Fig. 5 and the fluid block are the same. In the embodiment of Fig. 6, the effluent stream 1 Π and the reflux stream 1 19 are supplied to the distillation zone 18 » the overhead stream 1 15 of the distillation zone 18 flows into the accumulation tank 16. Fluid 117 contains an alkylate stream of aromatics which flows out of the accumulation tank 16. A portion of the fluid 117 is split and supplied to the distillation zone 18 as reflux 9. As shown in Figure 5, the fluid 1 2 1 , the residual portion of the fluid 1 1 7 forms a transalkylating agent feed stream 13 3 of the transalkylating unit 30 and the alkylate feed stream to the guard bed 22 1 4 1. Alternatively, fluid 1 2 1 can be heated or cooled in heat exchanger 12 2 d. In the embodiment of Figure 7, the effluent stream 1 1 1 is combined with the stream from the distillation zone 18 - 36 - 201136869 1 1 5 and then cooled in the heat exchanger 1 2 c to form β which is then supplied to the accumulation. Slot 1 6. The fluid 1 2 5 , containing the alkylate, flows out of the accumulation tank 16 . This fluid 16 splits into a reflux 194. The fluid 1 2 9, the residual portion of the fluid 1 2 5 is formed to the aromatic feed stream 1 3 9 ' to which the transalkylating agent can be alkylated and to the protected aromatic feed stream 141. Alternatively, fluid 129 can be heated or cooled in 12 2 d. In the embodiment of Fig. 8, the top flow raft 5 flows into the accumulation tank 1 17 and the return flow 1 1 9, which is as shown in Fig. 5. In this embodiment, the 'I fluid 1 1 9 (which is the split flow of the fluid 117) merges to form the incoming reflux stream 1 3 3 . Fluid 1 3 5, residual portion of fluid 1 1 7 alkylate 30 ° alkylate can be alkylated aromatic feed stream 1 3 9 22 alkylateable aromatic feed stream 1 . Optionally, the stream i switch 1 2 d is heated or cooled. This disclosure will be more specifically described with reference to the following examples. Example 1 Determination of Toxicity In Examples 1 - 6, the poisoning power of Colin was determined by supplying a gas phase of Colin base and recording its intake. An indicator of the total intake of nitrogen-containing compounds. The S fluid 1 2 3 , the aromatic compound ΐ 1 2 7 and the fluid transalkylation unit 30 of the bed 22 can form a fluid enthalpy stream 1 1 1 in the heat exchanger 16 and enter the distillation zone 18 to form a turn, and to protect Bed I 135 can be adsorbed in the thermogravimetric analyzer zeolite -37- 201136869 Table 1 Example Catalyst Zeolite Content (%) Approximate Toxicity (Millieq/g) 1 仳 Comparative Example) MWW iMCM-49) 80 80-130 2 β (non-MWW) 80 701 3 USY (non-MWW) 80 925 4 ZSM-12 (non-MWW) 65 531 5 mordenite (non-MWW) 65 385 6 solid phosphoric acid (non-MWW) 4τττ. None 501 as shown Table 1 shows that 'in terms of the poisoning power of Colin' is much lower for use with catalysts with MWW topologies than for catalysts with non-MWW topologies. Examples 7 and 8 In Examples 7 and 8, the ability of MWW and zeolite ruthenium to absorb Ν-methyl morpholine (NFM) impurities was determined. The two alkylation reactors are connected in series with a benzene feed containing NFM impurities to a first alkylation reactor (Rx 1 ) having a first alkylation catalyst. The effluent of Rx 1 is supplied to a second alkylation reactor (Rx 2) having a second alkylation catalyst. "Rx 1 and Rx 2 reactors have independent ethylene injection points and are constructed in series with multiple stages. The first two stages of the alkylation reactor are similar. For these experiments, the Rx 1 is a reactive guard bed and is the first reaction zone in the alkylation reactor. The passivation of Rx 2 is used to indicate that when Rx 1 has reached its maximum poisoning power and the catalyst poison is no longer completely retained by Rx 1, the NFM is fed at a concentration of 0.3 weight wppm based on the weight of the benzene-38-201136869 feed. The NFM absorption in the example was calculated from the run time and the passivation time observed in Rx 2. Table 2 Example Rx 1 zeolite (80% by weight of zeolite by weight of zeolite) Rx 2 zeolite (80% by weight of zeolite by weight of zeolite) NFM absorption (wppm by weight of zeolite) 7 (Comparative Example) MWW MWW 900-1000 8 β MWW 5950 As can be seen, Table 2 shows that the NFM absorption of zeolite yS as the first catalyst is better than when the first catalyst contains the MWW catalyst. All patents, patent applications, test procedures, priority documents, papers, bulletins, manuals, and other documents listed herein are inconsistent with this disclosure and are incorporated by reference. When the lower and upper limits are listed here, the range is from any lower limit to any upper limit. The exemplified embodiments of the present disclosure have been particularly described, and it is understood that various modifications of the invention are apparent to those skilled in the art and can be readily achieved without departing from the spirit and scope of the disclosure. Accordingly, the scope of the appended claims is not limited to the examples and descriptions set forth herein, but the claims are intended to cover all the novel features of the patents disclosed in the present disclosure. All features of its equivalent treatment are included -39-201136869 [Schematic Description of the Drawings] Figures 1-8 are flow diagrams of methods for making an alkylated aromatic compound in accordance with an embodiment of the present disclosure. [Main component symbol description] 1: Feed stream 2: Processor 2a: Processing area 4: Processing material 5: Processor outflow 12a: Heat exchanger 12b: Heat exchanger 12c: Heat exchanger 12d: Heat exchanger 1 3: Water stream 1 4 : Dewatering zone 1 5 : Tower top stream 16 : Accumulation tank 1 7 : Accumulation tank effluent 18 : Distillation zone 1 9 : Reflow 20 : Alkerator 20a : First alkylation reaction zone -40 - 201136869 2 0b : second alkylation reaction zone 2 1 : fluid 2 2 : bottoms stream 24 : vapor 26 : first alkylation catalyst 2 8 : second alkylation catalyst 3 0 : transalkylation converter 3 0 a : transalkylation Zone 3 3 : Fluid 3 4 : Transalkylation Catalyst 3 5 : Fluid 3 9 : Alkylated Aromatic Feed Stream 39a: Polyalkylated Feed Stream 4 1 : Alkylated Aromatic Feed Stream 43: first alkylating agent stream 4 5 : alkylating effluent 47 : transalkylating unit effluent 49 : distillation feed stream 5 0 : method 1 〇〇: method 1 〇 1 : feed stream 1 0 2 : treatment zone 1 0 2 a : treatment material 1 〇 9 : dehydrated stream -41 201136869 1 1 1 : effluent stream 1 1 5 : tower top stream 1 1 7 : combined effluent 1 1 9 : reflux stream 1 2 1 : Fluid 1 2 2 : bottom flow 123: fluid 124: steam 1 2 5 : flow Body 1 3 3 : Fluid 1 3 5 : Fluid 1 3 9 : Alkylated aromatic feed stream 1 3 9 a : Polyalkylated feed stream 1 4 1 : Alkylated aromatic feed stream 1 4 3 : alkylating agent stream 1 4 5 : alkylated effluent 1 4 7 : transalkylating effluent 149 : distillation feed stream - 42-

Claims (1)

201136869 七、申請專利範圍: 1. 一種製造經烷化芳族化合物之方法,該方法包含以 下步驟: (a )將進料流供應至脫水區,該進料流包含可烷化 的芳族化合物、水、和雜質,其中該雜質包含具有下列元 素之至少一者的化合物:氮、鹵素、氧、硫、砷、硒、碲 、磷和第1族至第12族金屬; (b )在於適當脫水條件下操作的該脫水區中’自該 進料流移除該水的至少一部分,以產生包含該可烷化的芳 族化合物、任何殘留的水、和該雜質之經脫水流; (c )令該經脫水流的至少一部分和第一烷化劑流與 具有第一毒化力的第一烷化觸媒在第一烷化反應區中,於 適當的至少部分液相第一反應條件下接觸,以移除該雜質 的至少一部分,及令該可烷化的芳族化合物的至少一部分 以該第一烷化劑流加以烷化並產生第一經烷化流,此第一 經烷化流包含經烷化芳族化合物、未反應之可烷化的芳族 化合物、任何殘留的水、和任何殘留的雜質;和 (d )令該第一經烷化流和第二烷化劑流與不同於該 第一烷化觸媒的第二烷化觸媒接觸,該第二烷化觸媒在第 二烷化反應區及適合之至少部分液相第二反應條件下具有 第二毒化力,以使得該未反應之可烷化的芳族化合物的至 少一部分以該第二院化劑流加以院化並產生第二經垸化流 ,該第二經烷化流包含額外的該(等)經烷化芳族化合物 、未反應之可烷化的芳族化合物、任何殘留的水、和任何 -43- 201136869 殘留的雜質。 2.如申請專利範圍第1項之方法,其中在移除步驟(b )中,該進料流中之該雜質的至少一部分在該脫水區中被 移除。 3 .如申請專利範圍第1項之方法,其中在步驟(c )之 前,將該經脫水流送至含有處理材料的處理區,然後使該 經脫水流與該處理材料在該處理區中於適當處理條件下接 觸以移除該雜質的至少一部分。 4 ·如申請專利範圍第1項之方法,其中在步驟(a )之 前,將該進料流送至含有處理材料的處理區,然後,使該 進料流與該處理材料在該處理區中於適當處理條件下接觸 以移除該雜質的至少一部分。 5 .如申請專利範圍第1項之方法,其中該第一烷化觸 媒係約束指數(Constraint Index )低於2的大孔分子篩。 6. 如申請專利範圍第5項之方法,其中該大孔分子篩 選自沸石yS、八面沸石、沸石Y、Ultrastable Y (USY)、 Dealuminized Y (Deal Y) 、 Rare Earth Y (RE Y)、 Ultrahydrophobic Y (UHP-Y)、絲光沸石、TEA-絲光沸石 、ZSM-3、ZSM-4、ZSM-14、ZSM-18、ZSM-20、及彼等 之組合。 7. 如申請專利範圍第1項之方法,其中該第二烷化觸 媒係MCM-22家族材料,其具有MWW網絡拓樸的單位晶胞 且以X-射線繞射圖案包括晶格面距(d-spacing)最大値位 於 12·4±0·25' 3.57±0.07和3.42±0.07埃處爲特徵。 • 44 - 201136869 8 .如申請專利範圍第7項之方法,其中該M C Μ - 2 2家族 材料選自 ERB-1、ITQ-1、ITQ-2、ITQ-30、PSH-3、SSZ-25、MCM-22、MCM-36、MCM-49、MCM-56、UZM-8、 EMM-10、EMM-10P、EMM-12、EMM-13 和彼等之混合物 ο 9 ·如申請專利範圍第1項之方法,其中該(等)經烷 化芳族化合物包含經單烷化的芳族化合物和經多烷化的芳 族化合物;且其中該方法進一步包含下列步驟: (e )自該第二經烷化流分離經單烷化芳族化合物流 t (f )自該第二經烷化流分離經多烷化的化合物流; 和 (g )令該經多烷化的芳族化合物流和另一部份該進 料流與轉烷化觸媒在轉烷化反應區中在適合的至少部分液 相轉烷化條件下接觸以將該經多烷化芳族化合物流加以轉 烷化並製得額外的該經單烷化芳族化合物。 10.如申請專利範圍第9項之方法,其中該轉烷化觸媒 係約束指數低於2的大孔分子篩。 1 1 . 一種用以製造經烷化芳族化合物之方法,該方法 包含下列步驟: (a )將一進料流供應至脫水區,該進料流包含可烷 化的芳族化合物、水、和雜質’其中該雜質包含具有下列 元素之至少一·者的化合物:氮、鹵素、氧、硫、砷、硒、 碲、磷和第1族至第12族金屬; -45- 201136869 (b )在於適當脫水條件下操作的該脫水區中,自該 進料流移除該水的至少一部分’以產生包含該可烷化的芳 族化合物、任何殘留的水、和該雜質之經脫水流; (c )令該經脫水流的至少一部分與具有第一毒化力 的第一觸媒在第一反應區中,於適合的至少部分液相第一 反應條件下接觸,以移除該雜質的至少—部分,並產生雜 質量減少且包含該可烷化的芳族化合物、任何殘留的水、 和任何殘留的雜質之可烷化的芳族物流;和 (d )令步驟(c )之該可烷化的芳族物流和烷化劑流 與不同於該第一觸媒的烷化觸媒接觸,該烷化觸媒具有比 該第一毒化力爲高的第二毒化力,此接觸發生於烷化反應 區及適合之至少部分液相第二反應條件下,以令該未反應 之可烷化的芳族化合物的至少一部分以該烷化劑流予以烷 化並產生經烷化流,該經烷化流包含經烷化芳族化合物、 未反應之可烷化的芳族化合物、任何殘留的水、和任何殘 留的雜質。 12.如申請專利範圍第11項之方法,其中在移除步驟 (b )中,在該進料流中之該雜質的至少一部分在該脫水 區中被移除。 1 3 ·如申請專利範圍第1 1項之方法,其中在步驟(c ) 之前,將該經脫水流送至含有處理材料的處理區’然後’ 使該經脫水流與該處理材料在該處理區中於適當處理條件 下接觸以移除該雜質的至少一部分。 1 4 ·如申請專利範圍第1 1項之方法’其中在步驟(a ) -46 - 201136869 之前’將該進料流送至含有處理材料的處理區,然後,使 該進料流與該處理材料在該處理區中於適當處理條件下接 觸以移除該雜質的至少一部分。 1 5 .如申請專利範圍第3、4、;! 3或〗4項之方法,其中 該處理材料選自黏土、樹脂、活化的氧化鋁、Linde型X、 Linde型A、和彼等之組合。 1 6.如申請專利範圍第丨丨項之方法,其中該第一觸媒 係約束指數低於2的大孔分子篩。 1 7 ·如申請專利範圍第1 6項之方法,其中該大孔分子 篩選自沸石冷、八面沸石、沸石Y、Ultrastable Y (USY) 、Dealuminized Y (Deal Y)、Rare Earth Y (REY)、 Ultrahydrophobic Y (UHP-Y)、絲光沸石、TEA-絲光沸石 、ZSM-3 ' ZSM-4 ' ZSM-14、ZSM-18、ZSM-20、及彼等 之組合。 1 8 .如申請專利範圍第1 1項之方法,其中該烷化觸媒 係MCM_22家族材料,其具有MWW網絡拓樸的單位晶胞且 以X-射線繞射圖案包括晶格面距最大値位於12.4±0.25、 3·57±0.07 和 3.42±0.07 埃處爲特徵。 1 9 ·如申請專利範圍第1 8項之方法,其中該M C Μ - 2 2家 族材料選自 ERB-1、ITQ-1、ITQ-2、ITQ-30、PSH-3、 SSZ-25、MCM-22、MCM-36、MCM-49、MCM-56、UZM-8 、EMM-10、ΕΜΜ-10Ρ、EMM-12、ΕΜΜ-13和彼等之混合 物。 20.如申請專利範圍第11項之方法,其中該可院化的 -47- 201136869 芳族化合物係苯。 2 1 ·如申請專利範圍第1 1項之方法,其中該烷化劑流 包含烯烴和該雜質’且其中在步驟(c)中移除該雜質的 至少一部分。 2 2 _如申請專利範圍第2 0項之方法,其中該烷化劑係 乙烯而該經單烷化芳族化合物係乙苯,或該烷化劑係丙烯 而該經單烷化芳族化合物係異丙苯,或該烷化劑係丁烯而 該經單烷化芳族化合物係二級丁基苯。 23.如申請專利範圍第11項之方法,其中該(等)經 烷化芳族化合物包含經單烷化芳族化合物和經多烷化芳族 化合物;且其中該方法進一步包含下列步驟: (e )自該第二經烷化流分離經單烷化芳族化合物流 » (f )自該第二經烷化流分離經多烷化的化合物流; 和 (g )令該經多烷化芳族化合物流和另一部份該經脫 水流與轉烷化觸媒在轉烷化反應區中在適合的至少部分液 相轉烷化條件下接觸以將該經多烷化芳族化合物流加以轉 烷化並製得額外的該經單烷化芳族化合物。 24·如申請專利範圍第23項之方法,其中該轉烷化觸 媒係約束指數低於2的大孔分子篩。 2 5 _如申請專利範圍第1 〇或2 4項之方法,其中該大孔 分子篩選自沸石/3 、八面沸石、沸石Y、Ultrastable Y (USY)、Dealuminized Y (Deal Y)、Rare Earth Y (REY)、 -48- 201136869 Ultrahydrophobic Υ (UHP-Υ)、絲光沸石、TEA-絲光沸石 、ZSM-3、ZSM-4、ZSM-14、ZSM-18、ZSM-20、及彼等 之組合。 -49 ·201136869 VII. Patent application scope: 1. A method for producing an alkylated aromatic compound, the method comprising the steps of: (a) supplying a feed stream to a dehydration zone, the feed stream comprising an alkylatable aromatic compound , water, and impurities, wherein the impurity comprises a compound having at least one of the following elements: nitrogen, halogen, oxygen, sulfur, arsenic, selenium, tellurium, phosphorus, and Group 1 to Group 12 metals; (b) Removing at least a portion of the water from the feed stream in the dewatering zone operated under dehydration conditions to produce a dehydrated stream comprising the alkylatable aromatic compound, any residual water, and the impurities; Passing at least a portion of the dehydrated stream and the first alkylating agent stream with a first alkylating catalyst having a first poisoning power in a first alkylation reaction zone, under appropriate at least partial liquid phase first reaction conditions Contacting to remove at least a portion of the impurity, and subjecting at least a portion of the alkylatable aromatic compound to alkylation with the first alkylating agent stream to produce a first alkylation stream, the first alkylation Stream containing alkylated aromatic compounds An unreacted alkylatable aromatic compound, any residual water, and any residual impurities; and (d) a first alkylation stream and a second alkylating agent stream different from the first alkylation contact Contacting a second alkylation catalyst of the medium, the second alkylation catalyst having a second poisoning force in the second alkylation reaction zone and at least a portion of the liquid phase second reaction conditions, such that the unreacted alkane At least a portion of the aromatic compound is hospitalized with the second source of chemical agent and produces a second vaporized stream comprising additional (e.g.) alkylated aromatic compounds, The reaction of the alkylatable aromatic compound, any residual water, and any impurities remaining in -43-201136869. 2. The method of claim 1, wherein in the removing step (b), at least a portion of the impurities in the feed stream are removed in the dewatering zone. 3. The method of claim 1, wherein before the step (c), the dehydrated stream is sent to a treatment zone containing the treatment material, and then the dewatered stream and the treatment material are in the treatment zone. Contact is made under appropriate processing conditions to remove at least a portion of the impurities. 4. The method of claim 1, wherein before the step (a), the feed stream is sent to a treatment zone containing the treatment material, and then the feed stream and the treatment material are in the treatment zone. Contacting under appropriate processing conditions to remove at least a portion of the impurities. 5. The method of claim 1, wherein the first alkylation catalyst is a macroporous molecular sieve having a Constraint Index of less than 2. 6. The method of claim 5, wherein the macroporous molecule is selected from the group consisting of zeolite yS, faujasite, zeolite Y, Ultrastable Y (USY), Dealuminized Y (Deal Y), Rare Earth Y (RE Y), Ultrahydrophobic Y (UHP-Y), mordenite, TEA-mordenite, ZSM-3, ZSM-4, ZSM-14, ZSM-18, ZSM-20, and combinations thereof. 7. The method of claim 1, wherein the second alkylation catalyst is a MCM-22 family material having a unit cell of the MWW network topology and including a lattice spacing in an X-ray diffraction pattern. The (d-spacing) maximum 値 is characterized by 12.4±0·25' 3.57±0.07 and 3.42±0.07 angstroms. • 44 - 201136869 8. The method of claim 7, wherein the MC Μ - 2 2 family material is selected from the group consisting of ERB-1, ITQ-1, ITQ-2, ITQ-30, PSH-3, SSZ-25 , MCM-22, MCM-36, MCM-49, MCM-56, UZM-8, EMM-10, EMM-10P, EMM-12, EMM-13 and a mixture of them ο 9 · As claimed in the patent scope 1 The method of the present invention, wherein the (alternate) alkylated aromatic compound comprises a monoalkylated aromatic compound and a polyalkylated aromatic compound; and wherein the method further comprises the step of: (e) from the second Separating the monoalkylated aromatic stream t (f ) from the second alkylated stream via a alkylation stream to separate the polyalkylated compound stream; and (g) allowing the polyalkylated aromatic stream to Another portion of the feed stream is contacted with a transalkylation catalyst in a transalkylation reaction zone under suitable at least partial liquid phase alkylation conditions to transalkylate the polyalkylated aromatic stream. Additional monoalkylated aromatic compounds are obtained. 10. The method of claim 9, wherein the transalkylation catalyst is a macroporous molecular sieve having a constrained index of less than 2. 1 1. A method for producing an alkylated aromatic compound, the method comprising the steps of: (a) supplying a feed stream to a dehydration zone comprising an alkylatable aromatic compound, water, And impurities wherein the impurity comprises at least one of the following elements: nitrogen, halogen, oxygen, sulfur, arsenic, selenium, tellurium, phosphorus, and Group 1 to Group 12 metals; -45-201136869 (b) Removing at least a portion of the water from the feed stream in the dewatering zone operated under suitable dehydration conditions to produce a dehydrated stream comprising the alkylatable aromatic compound, any residual water, and the impurities; (c) contacting at least a portion of the dehydrated stream with a first catalyst having a first poisoning force in a first reaction zone, under suitable at least partial liquid phase first reaction conditions, to remove at least the impurity a portion, and producing an alkylenable aromatic stream comprising a reduced amount of impurities and comprising the alkylatable aromatic compound, any residual water, and any residual impurities; and (d) enabling the step (c) Alkylated aromatic and alkylating agent streams Contacting with the alkylating catalyst of the first catalyst, the alkylating catalyst has a second poisoning power higher than the first poisoning force, and the contacting occurs in the alkylation reaction zone and is suitable for at least part of the liquid phase Under two reaction conditions, at least a portion of the unreacted alkylatable aromatic compound is alkylated with the alkylating agent stream to produce an alkylation stream comprising an alkylated aromatic compound, Unreacted alkylateable aromatic compound, any residual water, and any residual impurities. 12. The method of claim 11, wherein in the removing step (b), at least a portion of the impurities in the feed stream are removed in the dewatering zone. The method of claim 11, wherein before the step (c), the dehydrated stream is sent to a treatment zone containing the treatment material 'and then' the dehydrated stream and the treated material are treated in the treatment The zone is contacted under appropriate processing conditions to remove at least a portion of the impurity. 1 4 · The method of claim 1 of the patent scope 'where the feed stream is sent to the treatment zone containing the treatment material before step (a) -46 - 201136869, and then the feed stream is treated with the treatment The material is contacted in the treatment zone under appropriate processing conditions to remove at least a portion of the impurities. The method of claim 3, 4, 3, or 4, wherein the treatment material is selected from the group consisting of clay, resin, activated alumina, Linde X, Linde A, and combinations thereof. . The method of claim 2, wherein the first catalyst is a macroporous molecular sieve having a constrained index of less than 2. 1 7 · The method of claim 16, wherein the macroporous molecule is selected from zeolite cold, faujasite, zeolite Y, Ultrastable Y (USY), Dealuminized Y (Deal Y), Rare Earth Y (REY) , Ultrahydrophobic Y (UHP-Y), mordenite, TEA-mordenite, ZSM-3 'ZSM-4' ZSM-14, ZSM-18, ZSM-20, and combinations thereof. 18. The method of claim 11, wherein the alkylation catalyst is a MCM_22 family material having a unit cell of the MWW network topology and including a lattice spacing maximum in an X-ray diffraction pattern. It is characterized by 12.4 ± 0.25, 3.57 ± 0.07 and 3.42 ± 0.07 angstroms. 1 9 · The method of claim 18, wherein the MC Μ - 2 2 family material is selected from the group consisting of ERB-1, ITQ-1, ITQ-2, ITQ-30, PSH-3, SSZ-25, MCM -22. MCM-36, MCM-49, MCM-56, UZM-8, EMM-10, ΕΜΜ-10Ρ, EMM-12, ΕΜΜ-13 and mixtures thereof. 20. The method of claim 11, wherein the pharmaceutically acceptable -47-201136869 aromatic compound is benzene. The method of claim 11, wherein the alkylating agent stream comprises an olefin and the impurity 'and wherein at least a portion of the impurity is removed in step (c). The method of claim 20, wherein the alkylating agent is ethylene and the monoalkylated aromatic compound is ethylbenzene, or the alkylating agent is propylene and the monoalkylated aromatic compound Is cumene, or the alkylating agent is butene and the monoalkylated aromatic compound is a secondary butylbenzene. 23. The method of claim 11, wherein the (alternate) alkylated aromatic compound comprises a monoalkylated aromatic compound and a polyalkylated aromatic compound; and wherein the method further comprises the steps of: e) separating the monoalkylated aromatic stream from the second alkylation stream » (f) separating the polyalkylated compound stream from the second alkylation stream; and (g) polyalkylating the mixture The aromatic stream and another portion of the dehydrated stream are contacted with a transalkylation catalyst in a transalkylation reaction zone under suitable at least partial liquid phase alkylation conditions to stream the polyalkylated aromatic compound It is transalkylated and an additional monoalkylated aromatic compound is obtained. 24. The method of claim 23, wherein the transalkylation catalyst is a macroporous molecular sieve having a Constraint Index of less than 2. 2 5 _ as in the method of claim 1 or 2, wherein the macroporous molecule is selected from zeolite/3, faujasite, zeolite Y, Ultrastable Y (USY), Dealuminized Y (Deal Y), Rare Earth Y (REY), -48- 201136869 Ultrahydrophobic Υ (UHP-Υ), mordenite, TEA-mordenite, ZSM-3, ZSM-4, ZSM-14, ZSM-18, ZSM-20, and combinations thereof . -49 ·
TW099144498A 2010-03-10 2010-12-17 Alkylated aromatics production TWI523831B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/721,326 US8629311B2 (en) 2010-03-10 2010-03-10 Alkylated aromatics production
PCT/US2010/026844 WO2011112189A1 (en) 2010-03-10 2010-03-10 Alkylated aromatics production

Publications (2)

Publication Number Publication Date
TW201136869A true TW201136869A (en) 2011-11-01
TWI523831B TWI523831B (en) 2016-03-01

Family

ID=46759346

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099144498A TWI523831B (en) 2010-03-10 2010-12-17 Alkylated aromatics production

Country Status (1)

Country Link
TW (1) TWI523831B (en)

Also Published As

Publication number Publication date
TWI523831B (en) 2016-03-01

Similar Documents

Publication Publication Date Title
CA2674939C (en) Liquid phase alkylation with multiple catalysts
KR100981467B1 (en) Mixed phase, multistage alkylaromatics production
RU2756570C2 (en) Method for alkylation of aromatic compounds
KR101533875B1 (en) Alkylated aromatics production
US7649122B2 (en) Alkylaromatics production
EP1542947A2 (en) Alkylaromatics production
TWI451907B (en) A process for rejuvenating a catalyst composition
US10053399B2 (en) Production of monoalkyl aromatic compounds
US8877996B2 (en) Alkylated aromatics production
WO2014182440A1 (en) Regeneration of aromatic alkylation catalysts using hydrogen-containing gases
KR20190002657A (en) Process for preparing mono-alkylated aromatic compounds
CN110214131B (en) Transalkylation process and catalyst composition therefor
TWI523831B (en) Alkylated aromatics production