201135286 六、發明說明: 【發明所屬之技術領域】 本發明通常係關於產生三維影像資訊, 於-種用於響應收到藉由 特別係闕 所捕捉之光夹^- 像路徑之—成像透鏡 產生一维影像資訊的適配器。 【先前技術j 在-傳統二維(2D)成像令,代表一三維(叫 之物件的光·線係被捕捉且被映射至一 深度未因此被記錄。立體光與维〜像千面,而 生…… 係藉由從不同透視點產 夠產生用以代表影像資訊的影像。該深度 :例如被用來在該景象的多個點之間產生三维測 或者’該等各別影像係、可被分別呈現予—使用者各 :右眼和左眼,以便模擬肉眼在觀看一實際景象的運作 ^午該❹者感知所呈現影像的深度。所分離或立體影 致上係藉由具有一對空間分隔的成像路徑之一光學系 2或藉由使用單-成像路徑之不同部分所產生,以產生呈 t不同透視點的影像。該等影像接著係可使用能夠選擇性 允許各別影像到達該使用者各自的左眼和右眼之眼鏡來予 2現。另或者’-特殊顯示器係可經纽態以將空間分隔 衫像投射至该使用者各自的左眼和右眼。 立體成像之使用係發現應用在手術領域上,盆中—二 2内視鏡係、可制來提供_三維 用係亦可使用於諸如例如海底探索之遠端操作上,其中_ 機械式致動器之控制係藉由提供三維影像資訊予遠離該致 4 201135286 ::之—操作者而得以加速。立體成像作用之其它應用係 » X現在物理測量系統和娛樂產業中。 【發明内容】 依據本發明—個觀點,兹揭示-種用於響應收到藉由 具有相關的一视野,i _ V, .Λ,. 成像路徑的一成像透鏡所捕捉之 光線而於—影像記㈣之—影像平面處產生三維影像資訊 的相^設備。該適配器設備係包含-殼體,其係具有用 於女裝至該影像印銘哭略 ^ β录态的一第一"面和用於安裝該成像透 兄的第一 ’丨面。泫適配器設備係亦包含一第一中繼透 鏡,以用於將該成傻读辟_夕 ., 一 战像通鏡之一出射光瞳成像至該殼體内之 孔仫平面的位置,_影像調變器,其係位於該殼體内之 孔位平面的位置或在其附近、且操作上係、可經組態為選擇 性允許來自該成像路徑之各別第一部分和第二部分的光線 被導向該成像平面;以及一第二中繼透鏡,以用於在該影 像平面處形成相對應的第一影像和第二影像。肖第一影像 和該第二影像―起係可操作以呈現多個物件在該成像透鏡 之視野内的三維空間屬性。 該第一中繼透鏡係可包含複數個透鏡。 忒第一中繼透鏡係可進一步包含一透鏡群組,其操作 上係可經組態為致使由該成傻读越_ β 1 “ ~ X仗田及风诼逯鏡所捕捉的光線針對該適 配器而予以格式化。 該透鏡群組係包含至少一個可移動透鏡元件。 該影像調變器操作上係可經組態為選擇性傳送來自該 單一成像路徑之各別第一部分和第二部分的光線。 201135286 该影像調變器操作上 ^ ^ ^ 1示H組態為藉由交替$ γ ·ττ述 動作來選擇性傳送光 錯由“進仃# 的同砵分隔該早—成像路徑之第—部分 的Π時允汗先線透過該單_成像路徑 和阻隔該單-成像路徑之第-邛八的门斤接收, _Ε ㈣攸〆 第一 J刀的同時允許光線透過該 早一成像路牷之第一部分所接收。 达l 該影像調變器係可包含— Ρ隔态,其係經佈置在噠單 一成像路徑中且操作上係 在。亥旱 二位置之間。 …且“移動在第-位置和第 該影像調變器係可包含具有第— 彳第—區域的一光學 元件,其令該等第一和第_ 一 β°°呆作上係可經組態為選擇 性被致動以阻隔該單—成像路徑之第—部分和第。 該影像調變器係可包含具有經個 刀 _ 〃虿、、.i個別致動的複數個元件 之一光學元件,且該第一區域和該第_ 弟一£域係可包含該複 數個元件令被選擇性致動的第一群組和第二群組。 該影像調變器操作上係可經_為選擇性變動該複數 個元件的-致動㈣’以致使該影像調變器降低穿過該第 一區域和該第二區域中各者的光線傳輸。 該影像調變器操作上係可經組鲅A谐埋ω 〃 a + 心与璉擇性改變來自該 單一成像路徑之第一部分和第二部分中至少―者的光線之 一極化狀態。 該影像調變器操作上係可經組態為響應一同步訊號而 選擇性傳送來自該單一成像路徑之各別第—部分和第二部 分的光線。 該第二中繼透鏡係可包含複數個透鏡。 該第二中繼透鏡係可進一步包含一透鏡群組,其操作 6 201135286 上係可經組態以在該影像 像,其中該格式係對應經佈 產生具有一格式的一影 的一影像記錄考夕—& 5己錄該影像平面處之影像 j、β < —格式。 該透鏡群組係包含至少— 該影像調變器操作上係可^移動透鏡元件。 影像平面處所形成之第—^組態為產生用以代表在該 依據本發明另-個觀:第二影像的電氣訊號。 由具有相關的一視二錄揭示-種用於響應收到藉 之光'“於-影像記錄器二m成像透鏡所捕捉 訊的方法。哕方本总I 衫像平面處產生三維影像資 λ法係涉及將該成像透鏡— 至-殼體内之一孔徑平面的位置象:鏡射“成像 至該影像記錄器的一第一介 ^體係具有用於安裝 在Γ法係亦涉及致使位於該殼體内之孔徑平面 路_之各Μ附近之—影像調變11選擇性允許來自該成像 ==一部分和第二部分的光線被導向該成像平 影像和第二二 t t涉二在該影像平面處形成對應的第- 以 〜〜H像和該第二影像-起係可操作 夕物件在該成像透鏡之視野内的三維空間屬性。 成像該出射光曈係可涉及在該㉟體内佈置—第 、鏡以將4出射光瞳成像至該孔徑平面的位置。 佈置邊第一中繼透鏡係可涉及佈置一透鏡群組以致使 该成像透鏡所捕捉的光線經過格式化以供 鏡的接收。 示中繼透 佈置該第一中繼透鏡係可涉及在該殼體内佈置 個可移動透鏡元件。 201135286 致使5亥景〉像調變遗埋 月夂器選擇性允許來自該成 第-部分和第二部分的光-之各別 使該影像調變器選擇性傳逆炎玄成像+面係可涉及致 一部分和第二部分的光線。 ^之各別第 致使該影像調變器谐埋^ mm 選擇性傳送光線係可涉及交替進扞 下述動作.阻隔該單-成像路徑之第-部分的同時分t 成像路徑之第二部分的^ =刀所接收’和阻隔該單一 之第-部分所接收。问時允許光線透過該單—成像路徑 交替進行該單一成像路徑之第一部分和 隔係可涉及致使經佈置在該單-成像路徑申的的阻 動在第一位置和第二位置之間。 辛的—阻隔器移 交替進行料1像路#之帛-部分 隔係可涉及選擇性致動一 7刀的阻 m 元学疋件的第一γ ^ 域,以選擇性阻隔該單— °° 5 。第二區 成像路彳二之第一部分和第_八 該影像調變器係可包含複數個元件,且-二二: 一成像路徑之第—部分和k部分的阻隔係可涉^早 致動5亥第一區域和該第二區域中的元件,以選擇選擇陡 單-成像路徑之第-部分和第二部分。選擇性阻隔該 省方法係可涉及選擇性變動該複數個元件的 樣’以致使該哥:;傍▲用h 致動Ί 办像凋變器降低穿過該第一區域 域中各者的光線傳輪。 < 4第一區 =該影像調變器選擇性允許來自該成像 部分和第:部分的光線被導向該成像 使該影像調變器選擇性變動來自該單一成像路== 8 201135286 分和第二部分中 父 者的光線之一極化狀態。 使該影像調變器選擇 第一部分和第二邱八^才來自该成像路徑之各別 祐访史你上,°p刀的先線被導向該成像平面係可涉月站 使3亥衫像調變器塑庙 门 及致 ,,,,. θ應一同步訊號而選擇性傳送來自該| 成像路徑之各別第— ^ ^ ^ ^ 史 〇Ρ刀和第二部分的光線。 /像平面處形成對應一 _ 涉及在該殼體内 “像和第-衫像係可 第一中繼透鏡以在該影傻半而老 成對應的第-影像和第二影像。 在4像千面處形 與傻:I :第一中繼透鏡係可涉及佈置複數個透鏡以在咳 -像+面處形成對應的第一影像和第二影像。 在3 布置X第一中繼透鏡係可涉及在該殼 個可移動透鏡元件,且 忡1至^ 一 , 、 疋位6亥至少一個可移動透鏡元件以 使开7成對應的第—影像和第二影像於該成像平面處。 :該2平面處形成對應的第一影像和第二 且=殼體内佈置至少-個可移動的聚焦透鏡, 像和第二影像。在该成像平面處之對應的第-影 在該影像平面處形成對應的第一影像和第二影像係可 /y及形成s亥第一影像和該第_ 币一,v像於一影像感測器處,該 影像感測器係可操作以產生 压玍用U代表該第一影像和該第二 影像的電氣訊號。 依據本發明另一個觀點,# a曰_ 蜆4 錄揭示一種用於響應收到藉 由具有相關的一視野之單—士 成像路搜的一成像透鏡所捕捉 之光線而於-影像§己錄器之一影像平面處產生三維影像資 訊的適配器設備。該適配器設備係包含一殼體,其係具有 201135286 用於女裝至β玄影像記錄器的一第一介面和用於安襄該成像 透鏡的一第二介面。該適配器設備係亦包含準備將該成像 透鏡之一出射光瞳成像至該殼體内之一孔徑平面的位置, 且準備選擇性允許來自該成像路徑之各別第一部分和第二 部分的光線被導向該成像平面,準備選擇性動作係位於該 殼體内之孔徑平面的位置或在其附近。該適配器設備係進 一步包含準備在該影像平面處形成對應的第一影像和第二 影像,該第一影像和該第二影像一起係可操作以呈現多個 物件在該成像透鏡之視野内的三維空間屬性。 準備成像該出射光瞳係可在該殼體内包含至少一個可 移動透鏡元件,且準備定位該至少―個可移動透鏡元件係 致使該出射光瞳被成像至該一孔徑平面的位置。 •準備選擇性允許光線被導向t亥成像平面係可包含準備 選擇性傳it來自f亥單-成像路徑 < 各別第—部分和第二部 分的光線。 ° 準備選擇性傳送光線係可包含準備藉由交替進行下述 :作:阻隔該單-成像路徑之第一部分的同時允許光線透 =早-成像路徑之第二部分所接收,和阻隔該單一成像 —仅之第:部分的同時允許光線透過該單—成像路徑之第 —部分所接收。 準備交替阻隔該單—成像路徑之第—部分和第二部分 移動2準備致使經佈置在該單—成像路徑中的—阻隔器 助在第一位置和第二位置之間。 準備交替阻隔該單1像路徑之第—部分和第二部分 …包含-光學元件,其操作上係可經組態為選擇性阻隔 10 201135286 該單-成像路#之第—部分和帛二部分。 準備致使該影像調變器選擇性允許來自該成像路徑之 各別第4刀和第二部分的光線被導向該成像平面係可包 含準備致使該影像調變器選擇性改變來自該單-成像路徑 之第一部分和第二部分中至少一者的光線之一極化狀態。 準備在該影像平面處形成對應的第一影像和第二影像 係可在該殼體内包含至少—個可移動透鏡元件,且準備定 位該至少一個可移動透鏡元件係致使在該影像平面處形成 對應的第一影像和第二影像。 準備在該影像平面處形成對應的第一影像和第二影像 係了進步包3準備聚焦在該成像平面處之對應的第一影 像和第二影像。 該適配器設備係可包含準備產生用以代表在該影像平 面處所形成之第一影像和該第二影像的電氣訊號。 在配合後附圖式檢閱下述本發明具體實施例的說明後,本 發明其它觀點和特色對熟習該項技術人士係將變為顯明。 【實施方式】 參考圖1 ’ 一成像系統一般係被顯示為1 〇〇。該成像系 統1 00係包含一影像記錄器1 02和一成像透鏡1 〇該成像 透鏡104係具有相關的一視野之單一成像路徑。該成像系 統100係亦包含一適配器設備108 ’以用於響應接收由該成 像透鏡1 04所捕捉的光線而於該影像記錄器1 〇2的一影像 平面1 06處產生三維影像訊。 適配器108係包含一殼體110’其係具有用於安裝至該 201135286 影像記錄器1 02的一第一介面11 2和用於安裝成像透鏡1 〇4 的一第二介面1 1 4。該適配器1 08係亦包含一第一中繼透鏡 1 16 ’以用於將該成.像透鏡1〇4的一出射光瞳成像至一孔徑 平面位置1 1 8。該適配器1 0 8係進一步包含一影像調變器 1 20 ’其係位於該殼體1 1 〇内的孔徑平面位置丨丨8處或在其 附近。該影像調變器1 20操作上係可經組態為選擇性允許 來自e亥成像路徑之各別第一部分和第二部分的光線被導向 該成像平面1 0 6。 該適配器1 0 8係亦包含用於形成對應的第一影像和第 二影像於該影像平面1 06的一第二中繼透鏡丨22。該第—影 像和該第二影像一起係包含可被處理或予以顯示的影像資 料,以至於呈現一物件132在該成像透鏡1〇4之一視野内 的三維空間屬性。 在所示實施例中’該第一中繼透鏡丨16係包括具有兩 個個別透鏡124和126的一中繼透鏡群組,而該第二中繼 透鏡122係包括具有兩個個別透鏡128和丨3〇的一中繼透 鏡群組。在其它實施例中(未圖示),該第一中繼透鏡U6 和邊第二中繼透鏡1 22係可包括僅單一透鏡或超過兩個透 鏡的一群組。 參考圖1’該成像透鏡104在傳統二維(2D)成像中— 般被直接麵合至該影像記錄器102的第一介面112。在此實 轭例中,該成像透鏡104係包括一雙高斯透鏡,其係具有 位於沿著一中央孔徑欄156中任一側上之一中央軸15\'的 大致上對稱的複數個透鏡元件(150、152)。然而在复它 實施例中,該成像透们04係可為用於形成影像之變隹透 12 201135286 鏡、攝遠透鏡、超廣角透鏡、或任何數目的不同透鏡組態。 該成像透鏡104之出射光瞳的位置係顯示為1 58。一透 鏡之出射光瞳係被定義成該透鏡之孔徑欄在影像空間中的 影像’亦即如圖2中由透鏡元件1 52所成像至孔徑攔1 56 之右側的孔徑攔。在此案例中,孔徑欄丨56之影像係一虛 擬影像。出射光瞳15 8之位置和尺寸係可藉由追蹤一主光 束1 60和一邊緣光束162穿過透鏡元件152之路徑而找到。 該出射光瞳158係位於其中該主光束16〇之一投影164跨 過該中央軸1 54的一點處。該邊緣光束丨62之一投影166 係定義該出射光瞳的直徑。該成像透鏡丨〇4係具有單一成 像路瓜’因為由該等透鏡所捕捉之所有光束係被傳送穿過 相同的複數個透鏡元件150、152且該影像平面1〇6處所形 成之影像係為提供任何3D影像資訊。 該出射光瞳158係與該影像平面iOG隔離一距離D,其 大致上係被維持在某一距離内以確保該影像平面處的適當 影像資訊。無法將D維持在對該成像透鏡〗〇4之組態為特 有的一範圍内係可造成諸如該影像之過填滿、未填滿、或 其它漸暈的影像形成問題。一影像記錄器丨〇2 一般係將能 夠X在某範圍内具有各別出射光瞳位置的一組成像透鏡 進行操作。在此範圍外具有—出射光瞳之—成像透鏡係可 能未填滿該影像感測器168 (亦即:所生成影像出現漸暈) 或過填滿該影像感測器(亦即:可能存在可觀光損)。 在圖2所示實施例中,該影像記錄器丨〇2係包含一影 像感測器168,其係經佈置於該影像平面】〇6處以記錄該= 像。該影像感測H 168係可為例如一電荷輕合^牛(c 13 201135286 或一CMOS主動像素元件。另或者,該影像係可以諸如感 光膠片之其它任何適當的影像記錄媒體或元件來記錄。 該影像記錄器1 02係亦包含一控制器170,其係與該影 像感測器1 68鄉通訊以用於控制該影像感測器1 68的影像 記錄操作。該控制器17 0係亦經組態以控制該影像記錄器 令諸如聚焦、曝光、及孔徑控制的其它功能。在一些實施 例中’該介面112係在該影像記錄器1 〇2和該成像透鏡1 〇4 之間提供電氣及/或機械驅動耦合,以為提供該等透鏡的自 動聚焦。例如:在所示雙高斯透鏡配置中,該複數個透鏡 凡件1 50和1 52係可被耦合至一機械致動器(未圖示), 以用於沿著該中央軸1 5 4移動該等透鏡來促進聚焦。 圖1之三維成像系統1 〇〇係在圖3中以俯視圖顯示。 參考圖3 ’對三維成像來說,該適配器1 〇8係直接被耦合至 该影像記錄器102的第一介面丨丨2,且該成像透鏡丨〇4係被 耦合至該適配器1〇8的第二介面114。該第一中繼透鏡ιΐ6 係將a亥出射光瞳15 8成像至該孔徑平面位置丨i 8 (位於其中 該主光束160跨過該中央軸154的一點處)^該影像調變 益120係位在盡可能接近該孔徑平面位置118的地方。在 所述實施例中’該孔徑平面位i i i 8係屬於該第二中繼透 鏡122的透鏡元件128 ’且因而不可能將該影像調變器12〇 準確疋位在該孔徑平面處。然而,只要該影像調變器 定位在至少近接該孔徑平面位置m的地方,該等影像之 顯著漸晕係不太可能發生。對任何特定透鏡組態來說,該 透鏡設計之一光學公葚总-Γ一 一 差係可被貫行以決定該調變器離開該 孔挺平面位置11 8的—可技為办從 J接又位移。在此貫施例中要注意: 14 201135286 該衫像ί周變器12 0係延伸超過該邊緣光束16 2使得該影像 調變器位有意成為該系統的一孔徑。 邊景> 像s周變器120係包含用於接收一驅動訊號的一輸 入端2 0 0,該驅動訊號操作上係致使該影像調變器1 2 〇選擇 性將光線傳送穿過該影像調變器的第一區域202和第二區 域204。該影像調變器1 20係在本文中將更詳細敘述。 該適配器1 08係亦包含一控制器206以用於控制該影 像調變器1 20的操作。該控制器2〇6係可位於該殼體η 〇 内或所述接至該殼體11〇的一分離殼體中(未圖示)。另 或者’該控制器206之功能係可由該影像記錄器丨〇2的控 制器170來提供。 該控制器206係包含用於產生該影像調變器之驅動訊 號的一輸出端208。該控制器206係亦具有用於產生一同步 afl说的一輸出端21 0。該輸出端2 1 0係與該影像記錄器1 〇 2 的控制器1 70相通訊以用於控制該影像感測器1 68同步於 該影像調變器1 20的致動來進行影像記錄操作。另或者, 一影像調變器的同步訊號係可取自一内部同步訊號,其係 由該控制器170所產生且經由一輸入端(未圖示)所提供 至該控制器206以用於同步致動該影像調變器12〇。 該適配器108在產生三維影像資訊之操作係參考圖4 和5作出近一步敘述。圖4中,散發自該物件13 2上—第 一點222之一第一光線束220係由該成像透鏡1 〇4所捕捉 且照射在該影像調變器1 20的第一區域202上,而散發自 該物件132上一第二點226之一第二光線束224係由該成 像透鏡1 04所捕捉且照射在該影像調變器120的第二區域 15 201135286 204上。該影像調變器1 20的第一區域2〇2係被致動以允許 來自該單一成像路徑之一第一部分的光線被傳送穿過該第 二中繼透鏡122到該影像平面i 〇6。同時,該影像調變器 1 20的第二區域204係被致動以避免來自該單一成像路徑之 -第-部分的光線被傳送。當如_ 4所示致動該影像調變 器120時,光線因此係被傳送穿過該成像透鏡1〇4之單— 成像路徑的一第一部分(對應該影像調變器1?〇的第—區 域202 ),且一第一影像係被形成在該影像平面1〇6處。春 致動該影像調變器120以致使該第一區域2〇2避免光線^ 輸而致動該第一區域202進行傳輸時,光線係被傳送穿過 該成像透㉟104之單-成像路徑的—第二部分(對應該与 像調變器m的第^區域204),且一第二影像係被形成: 該影像平面106處。 參考圖5’該物件132之代表性的第一影像和第二影像 一般係被顯示為25G和252。因為該單—成像路徑之第一部 分偏離該中央軸154’所以該第一影像25〇係具有來自該物 件132之一側的一透視點,且自-影像中心、254偏移朝向 左邊。當致動該影像調變器120之第二區域2〇“ 線時,具有來自該物件132 t其它側的一透視點之第二影 :252係自該影像中心254偏移朝向右邊所形 ‘ ^影像250和該第二影像⑸選擇性導向―使用者各: 目二和左眼時,職用者係將能夠以在觀看實際物件時 ^二維資訊之大致相同方式從該等影像中識別三維資 …:個實施例中,該第,250和該第二影像252 —顯示監視器上被交替顯示成分離的視頻場。各種 16 201135286 類型之主動或被動式眼鏡係可取用於將此等顯示的第—影 像250和第二影像252導向該使用者的眼睛。被動類型的 眼鏡通常係依靠該等影像的額外波長或極化處理以使該眼 鏡中的被動濾波元件能夠分離該等影像。被動類型的眼鏡 通常係包含一接收器以用於從一顯示器接收—同步訊號, 而另外允許將該第—影像250和該第二影像252傳送至各 自的右眼和左眼另或者,該第一影像25〇和該第二影像 252係可被處理以配合各別影響中的可識別特徵且決定所 識別特徵之間的橫向偏移。所決定橫向偏移伴隨該成像系 統100之成像參數的一認知係可被用來計算在—物件上多 個點之間的深度差異、或多個物件於不同深度之間的差異。 在此實施例中,各別該第一影像250和該第二影像252 係具有幾近相同的程度(亦即:該影像調變器120之程度 的50% )。在其它實施例中,該第一影像25〇和該第二影 像252係可大於或小於該影像調變器120之程度的5〇%。 當該第-影像250和該第二影像252各者之透視點從該中 央軸1 54被空間分隔一較大距離時,由等影像所提供之三 維深度識別位準一般係較大。 有利地,除了在製造時組裝該等透鏡上正常所需條件 外’穿過該成像透冑1G4之單—成像路徑係在不需任何空 間對齊下從所能感知及/或擷取的三維資訊中產生該第一影 像250和該第二影像252。反之,使用分離影像路徑以形成 刀離的第衫像和第二影像之立體成像系統係可在分離影 像路控中存有甚至—微量失準時弓丨起使用者的眼睛疲勞或 其它不舒服效應。 17 201135286 影像調變器 在一個實施例中,該影像調變器12〇係可使用液晶元 件(LCD )來實施’其係響應在該輪入端·處所接收驅動 訊號之而交替致動該第-區域202和該第二區域2〇4以傳 送光線》參考圖6, 一 LCD影像調變器—般係被顯示為3〇〇。 LCD調變器300係包含經佈置在一第—玻璃板3〇4和一第 二玻璃板306之間的一液晶材料層3〇2。該第一玻璃板3〇4 係包含經縱向配置的複數個透明電極3〇卜各個電極3〇8係 具有相關的-連接器31〇’其例如係可為—有線接合連接或 可撓性電路連接。該連接器31〇係連接至一集管器3丨2,且 依次係促進到圖3中所示控制器2〇6之輸出端21〇處的連 接。該第二玻璃板306係包含所延伸跨過本身一表面上且2 充當-共同電極的一透明區域電#(未圖示)。各個透明 電極308係定義在該電極和該透明區域電極之間的一元件 而因此定義複數個元件3 i 8,其係可藉由在對應的電極3 〇 8 和該透明區域電極之間提供__驅動電位而分別被致動。 該LCD影像調變器3〇〇係亦包含具有一第一線性極化 特性(此案例中為垂直極化)之一第一極化器314。該第一 極化器3 14係疊覆該複數個透明電極3〇8。該調變器3卯係 進一步包含疊覆該第二電極且具有n性極化特性 (此案例中為水平極化)的一第二極化器3 16。圖6中之各 種疊層係未依比例來顯示。 該控制器2〇6(如® 3中所示)係更詳細顯示在ϋ 7中。 该控制器206係包含一輪出端21〇以用於產生該同步訊號 (NC )八典型係包括一時間分離的脈衝列。該輪出端2⑺ 18 201135286 係與該影減測n178進行敎q 測器174處的影像捕捉。該控制請係進—步包= 驅動器212以用於在哕鉍山山 凋支态 u輪出端208處產生該等驅動 示實施例中,該調變器驅動 ° 在斤 LCD調變器,且該輪出端驅動圖6中所示 扣鸹208係因此具有對應該 上之元件-數目〜個輸出通道。在_個實施例;,該 控制器施係可使用諸如例如一微控制器之—處理器電路予以 實施。在所示實施例中,該控制器2〇6之輪出端2〇8操作上係 經組態以對各個電極扇提供個別驅動訊號。該等驅動訊號係 經由该集官IS 312和該等連接器31〇被轉合至該等各個電 極308,而該共同電極係充當一接地連接。在一個實施例 中,該驅動電壓係可為在—電壓v+和v•間變動之具有观 工:週期的-方波,其中的電壓係選擇於安全操作電壓的 一範圍内以在對照射於該LCD調變器3〇〇上之光線進行傳 輸和阻隔之間提供充足對比。在所示實施例中,複數個柱狀 凡件318係促進圖1和3所示第一區域2〇2和第二區域2料之 一程度的改變。然而在其它實施例中,該LCD調變器3〇〇係 可經組態為包含僅兩個柱狀元件,各個元件係具有該LCD調 钇态3 0 0之近似5 0 %該前方表面的一程度。另或者’該等柱 狀元件318另外係可被進一步劃分成複數個像素,其係可經個 別致動以提供該第一區域202和該第二區域2〇4之所欲程度。 操作上,該第一極化器3 14係傳送具有一垂直極化的 光線。在此實施例中’該液晶材料302係被選定使得在其 鬆弛階段(未致動)中,穿過此晶體之光線的極化係未受 到影響且該第二極化器3 1 ό係因而阻隔該光線。當被所施 19 201135286 加至任一電極3 0 8之驅動電壓予以致動時,該等電極下方 之一部分該液晶材料層3 02係致使光線經過90度的一極化 改變而因此穿過該第二極化器3 1 6和該調變器30。藉由交 替對第一和第二複數個電極308產生驅動訊號,該調變器 300係分別在該第一區域202和該第二區域204處交替阻隔 和傳送光線。 在一替代性實施例中,該等極化器3 14和3 1 6兩者係 "Τ經垂直極化使付LCD s周變器在沒有施加致動電壓時係透 射。在此案例中當致動一元件時,該液晶材料係致使光線 經過90度的一極化改變而引起元件356阻隔光線的傳輸。 在另一實施例中,該調變器300之電極3〇8係可被劃 刀成複數個像素(如虛線320所示),且該等連接器3 i 〇 和該集管器312係可經組態為個別驅動各個像素32〇<}操作 上,π件3 1 8之打部分係可藉由致動該行部分中的各個像 素320而被致動。另或者,將柱狀態樣以外之像素予以致 動係可為所欲的°例如:像纟320係可被致動以藉由致動 -圓形態樣或半圓形態樣中的像素來致使該影像在該孔徑 平面6 1 4處的孔徑。 機械式影像調變器 • 卿^ π不硐變器]20係可 —般在圖8顯示為380之—* 两螺。。工 — &二間调變益予以實施。參 8 ’該空間調變器380係包含1 地η 匕3具有一缺口 383之經安裝 ’部384上一不透明的快門 ]葉片382。5亥臂部384係被 在—樞軸386上以提供該臂邱砧士士你去 穿。Ρ的左右移動。該臂部3! 亦包含沿者其中途所安步·沾 、的一磁鐵390。該磁鐵390係 20 201135286 置在第一電磁鐵392 ¾势 & 382、夺”384 電磁鐵394之間。該快門葉片 …如、該抱轴386、該 二電磁鐵394係—妞如山 娜鐵J W和。玄第 力产以評在/ 機械致動器而操作上可產生一 力度於在前頭388的方向上將該快門葉片382在一對 光攔(stop) 414和416之門;t 士教i ._ 〇 日1左右移動,來分別定義該臂部 和§亥缺口 383的第一位置和第 久去#句括碑 第-位置”亥荨光欄414和416 各者係包括—螺紋部分來提供用較齊該缺口 383的調 整,以選擇性允許來自該成像路徑之各別第—部分和第二 部分的光線被導向該成像平面⑽。在—個實施例中,該等 光攔414和4 1 6係可祐無人5 , 矛』破耦合至—電氣致動器(未圖示), 藉此促進該缺口 383的對齊而不需存取該調變器380。 對於驅動4工間s周變器38〇來說’該控制器雇係可 被圖8所示調變器控制器彻所取代。該調變器控制器彻 係包含用於驅動該第一電磁鐵392之_線圈4〇4的一第一 對輸出端402、和用於驅動該第二電磁鐵394之一線圈4〇8 的一第二對輸出端406。該調變器控制器4〇〇係亦包含用於 產生一同步訊號(SYNC)之一輸出端412,以進行如上文 配合圖3所述同步該相機102的操作。另或者,該輸出端 412係可經組態成一輸入端以用於接收由該相機1〇2之控制 器170所產生的一同步訊號。 操作上’該調變器控制器400係從内部產生synch訊 號或於412處接收SYNC訊號。響應該SYNCH訊號,該調 變器係在該等輸出端402和406處產生電流波形以用於驅 動各別線圈404和408。流過各別線圈404和408之電流係 引起要發揮在該臂部384上的力度來朝一所欲光欄41 4或 21 201135286 4 1 6移動》有利地’該調變器控制器4〇〇係可被實施為一推 挽式驅動器’其中該等電磁鐵392和394中一者係在該磁 鐵390上提供一引力、而該等電磁鐵392和394甲另一者 係提供一斥力。 圖9係顯示所提供至該等線圈4〇4和408之一電流驅 動的不$&性波形引起該臂部384朝該第一電磁鐵392移 動。流過該線圈404的電流波形係顯示於44〇,而流過該線 圈408的電流波形係顯示於442。言亥synch訊號之脈衝波 形係顯示於446。該synch訊號446之一上升緣係定義一 第時間週期444的一起始時間,其中該電流44〇係迅速 上升以在該臂部384上產生_引力。該引力係勝過該臂部 384的慣性且致使該臂部384加速遠離該光欄414和該第二 電磁鐵394 〇在該第-時間週期444期間,該電流起始 係〇,而一旦該臂部384開始加速,該電流442係迅速增加 Μ在該臂部384接近該光襴416時提供—減速力度藉此 ^臂部的移動提供阻尼來避免該臂部在銜接該光棚的反 。该臂部384係停止於該光攔416冑’且該等線圈4〇4 各者中之電流44"口 442係降低到一微小保持電流 將该臂部保持於該光攔416處。期間將該臂部384保持 ^亥先攔416處之-第二時間週期448係提供充足時間以 凡成該第一影像的捕捉。 類似地,該SYNCH訊號446之_後續上升緣係定義一 .第::間週期450的一起始時間’其中該電流442係引起 =力而該電流440係在該料384上引起一斥力以致使 4部384朝向該光欄414移動。期間該臂部384至少在 22 201135286 肩光欄41 4處之—時間週期452係定義一第四時間週期 452’其係提供充足時間以完成該第:·影像的捕捉。 參考圖10,該空間調變器380 (圊10所示)之致動器 4为的一替代性實施例一般被顯示為5〇〇。該致動器5〇〇係 包含一馬達502,其係具有延伸穿過該馬達之一馬達傳動軸 5 06。忒臂部384係攜載該快門葉片382且被安裝至該傳動 軸506以在該等光攔414和416之間進行左右移動。在此 實施例中,s亥馬達502係使用—對磁鐵5〇8和5丨〇來實施, 且泫傳動軸506係將一致動器線圈5丨6支持在該對磁鐵5〇8 和5 1 0之間。s玄致動器線圈5〗6係可被柄合至該調變器的 輸出端402以用於接收一驅動電流,其係致使一扭力被產 生在該傳動軸506上。一般來說,該致動器5〇〇係以類似 一類比指針量錶之一方式來操作且在光攔414和416之間 提供移動。在其它實施例中,該馬達部分5〇2係可經組態 使得忒傳動轴5 0 6被磁化、且該線圈被纏繞於磁極部件(亦 即 508 和 510)。 替代性的適配器實施例 參考圖1 1 ’ 一替代性的適配器實施例一般係被顯示為 600。該適配器600係包含一殼體602,其係具有用於安裝 至s亥影像記錄器1 〇2的一第一介面604和用於安裝一成像 透鏡608的一第二介面606。該成像透鏡6〇8係具有一出射 光瞳610。該適配器600係進一部包含一第一中繼透鏡 612。該適配器600係進一部包含位於—孔徑平面位置614 處或在其附近的一影像調變器6 16。 . 在此實施例中,該第一中繼透鏡012係包括一中繼透 23 201135286 鏡對618’其係包含用於將該成像透鏡608之出射光瞳成像 至該孔徑平面位置614的中繼透鏡620和622。該第一中繼 透鏡612係亦包括一透鏡群組624,其係經組態為調適由該 成像透鏡608所產生到該適配器600的一影像尺寸和格 式。在一個實施例中,該透鏡群組624係使用一聚焦透鏡 三合系統(triplet)(透鏡626、628和630 )來實施,其中 至少透鏡628和630係可移動以變動該透鏡群組的聚焦長 度。在其它實施例中’該透鏡群組624中之透鏡係可被固 定在該殼體602中,該適配器600在此案例中係將被組態 為單一影像尺寸/格式。 該適配器600係亦包含用於形成對應的第一影像和第 一景> 像於該影像平面1 06處之一第二中繼透鏡63丨。該第二 中繼透鏡631係包含一中繼透鏡對632,其係包含用於形成 一影像於該影像平面1 〇6處的中繼透鏡634和636。該第二 中繼透鏡631係亦包含一透鏡群組638,其係經組態以在該 影像平面106處產生依據該影像感測器168之尺寸進行尺 寸设s十的一影像。在此實施例中,該透鏡群組63 8係使用 一聚焦透鏡二合系統(透鏡640、642和644)來實施,其 中至少透鏡642和644係可移動以變動該透鏡群組的聚焦 長度。又在一實施例中,其中的適配器6〇〇係預期供一特 定的影像記錄器1〇2來使用,該透鏡群組624中之透鏡係 可被固定在該殼體602中。 在此實施例中,該適配器600係亦包含一選用可移動 聚焦透鏡646’以用於調整在該影像平面1〇6處的影像聚焦。 操作上,該透鏡群組624之可移動元件626和628係 24 201135286 允許該透鏡群組624之聚焦長度的調整以將該適配器組態 為供具有不同影像格式的成像透鏡6 〇 8使用,而該中繼透 鏡對6 1 8係將該成像透鏡608之一出射光瞳6 1 0成像至該 孔徑平面位置6 14。有利地,所提供調整係允許廣泛種類之 透鏡結合該適配器使用,且亦促進未完全相容於該影像記 錄器102之格式的透鏡使用。該等透鏡628和63〇係可使 用一機械式致動器環(未圖示)來移動以改變該第一申繼 透鏡612的一整體聚焦長度,而將該成像透鏡6〇8之出射 光瞳610.成像至該孔徑平面位置61 4 ,, 相似地,移動該透鏡群組638之透鏡642和644係將 該適配器600組態以與該影像記錄器1〇2操作,使得將在 該影像平面106處的影像針對該影像感測器168予以正確 地格式化。有利地,該透鏡群組638係促進該適配器的調 t以匹配更大範圍的影像記錄元件而不發生過填滿或未 填滿該影像感測器168。 該成像透鏡608 —般係將準備聚焦調整,使得在該影 像平面106處所形成之影像被正確聚焦。此調整係可以在 該殼體外側上之—手動機械式致動n帛(未圖示)的形式 來進仃手動聚焦、《以—電動致動器的形式來進行自動聚 …、°亥聚焦透鏡646係額外允許該成像透鏡6〇8的聚焦範 圍可被選擇H偏移’而該成像透豸_之聚焦範圍應該不 足夠允心玄景> 像聚焦在該影像平φ 106處。 一 °亥等中繼透鏡612矛° 639經調整以與該成像透鏡 608和〜像5己錄$ 1〇2進行操作該適配$ 6〇〇在產生三維 景“象上之刼作一般係如上文配合圖4和圖5所敘述。 25 201135286 其它實施例 在圖6所示該影像調變器300之其它實施例中,該第 二極化器3 1 6係可被忽略以將該調變器組態為選擇性改變 所傳送光線的極化狀態、而非選擇性阻隔光線的傳輸。因 此’未致動電極308下方之部分該液晶材料層3〇2係對將 作為垂直極化光進行傳送之光線的極化狀態不具影響。經 致動電極308下方之部分該液晶材料35〇係致使該光線經 過90度的一極化改變,因而致使所傳送光線具有一水平極 化。在此替代性實施例中,該影像調變器3〇〇因此係將造 成具有各別垂直極化狀態和水平極化狀態之第一影像和第201135286 VI. Description of the Invention: [Technical Field of the Invention] The present invention generally relates to generating three-dimensional image information for generating an imaging lens in response to receiving a photo-clamp image captured by a special system. An adapter for one-dimensional image information. [Prior Art j in the traditional two-dimensional (2D) imaging order, representing a three-dimensional (called the object's light and line system is captured and mapped to a depth is not thus recorded. Stereoscopic light and dimension ~ like thousands of faces, and Raw... produces images that represent image information from different perspective points. This depth: for example, is used to generate three-dimensional measurements between multiple points of the scene or 'these individual images, They are respectively presented to the user: the right eye and the left eye, in order to simulate the operation of the naked eye while viewing an actual scene. The viewer perceives the depth of the presented image. The separated or stereoscopic image has a pair of One of the spatially separated imaging paths is produced by the optical system 2 or by using different portions of the single-imaging path to produce images of different perspective points. These images can then be used to selectively allow individual images to arrive at the image. The user's left and right eye glasses are used for two. Another or '- special display can be used to project the space divider image to the user's left and right eyes. Discovery Used in the field of surgery, the basin-two-2 endoscope system can be made to provide a three-dimensional system that can also be used for remote operations such as, for example, submarine exploration, where the control of the mechanical actuator is Providing 3D image information to be accelerated away from the operator 4 201135286: - Operators. Other applications of stereo imaging » X is now in the physical measurement system and entertainment industry. [Invention] According to the present invention - Revealing-receiving a three-dimensional image information generated in response to an image obtained by an imaging lens having an associated field of view, i _ V, .Λ,. imaging path, at the image plane of the image (4) The adapter device comprises a housing, which has a first "face for the women's clothing to the image, and a first one for mounting the imaging body.泫 泫 泫 泫 泫 泫 泫 泫 泫 泫 泫 泫 泫 泫 泫 泫 泫 泫 泫 泫 泫 泫 泫 泫 泫 泫 泫 泫 泫 泫 泫 泫 泫 泫 泫 泫 泫 泫 泫 泫 泫 泫 泫 泫 泫 泫Position, _image modulator, which is located in the The position of the hole plane in or near the body, and operatively configured to selectively allow light from respective first and second portions of the imaging path to be directed to the imaging plane; a second relay lens for forming a corresponding first image and a second image at the image plane. The first image and the second image are operable to present a plurality of objects in a field of view of the imaging lens The first relay lens system can include a plurality of lenses. The first relay lens system can further include a lens group operatively configured to cause the stupid read _ β 1 “ ~ X The field and the wind ray mirror capture the light that is formatted for the adapter. The lens group contains at least one movable lens element. The image modulator is operationally configurable Light from the respective first and second portions of the single imaging path is selectively transmitted. 201135286 The image modulator operates on ^ ^ ^ 1 to indicate that H is configured to selectively transmit optical errors by alternating the actions of $ γ · ττ. The first part of the imaging path is separated by the same The 允 允 允 先 先 先 先 透过 允 允 允 允 允 允 允 允 允 允 允 允 允 允 允 允 允 允 允 允 允 允 允 允 允 允 允 允 允 允 允 允 允 允 允 允 允 允 允 允 允 允 允 允The first part is received. The image modulator system can include a Ρ-interval state, which is arranged in a single imaging path and is operatively tied between the two positions. ... and "moving in the first - The position and the image modulator system can include an optical component having a first - first region that allows the first and the first beta to be selectively actuated To block the single - the first part of the imaging path and the first. The image modulator may include one of a plurality of elements having a plurality of elements actuated by a plurality of knives, .i, and the first region and the first domain may include the plurality of The component causes the first group and the second group to be selectively actuated. The image modulator is operative to selectively shift - activating (four) of the plurality of components to cause the image modulator to reduce light transmission through each of the first region and the second region . The image modulator is operative to modulate a polarization state of light from at least one of the first portion and the second portion of the single imaging path via the group 鲅A. The image modulator is operatively configured to selectively transmit light from respective first and second portions of the single imaging path in response to a synchronization signal. The second relay lens system can include a plurality of lenses. The second relay lens system can further include a lens group, and operation 6 201135286 can be configured to be in the image image, wherein the format corresponds to an image recording of a shadow having a format.夕—& 5 has recorded the image j, β at the image plane < - format. The lens group includes at least - the image modulator is operative to move the lens element. The first configuration formed at the image plane is configured to generate an electrical signal representative of the second image in accordance with the present invention. A method for responding to the receipt of a light-receiving light from a two-dimensional imaging lens of a video recorder is generated by a related one-to-two recording. A three-dimensional image is generated at the image plane of the square I. The method of the invention relates to imaging the image to a position of an aperture plane in the housing: "mirror imaging" to a first medium of the image recorder having a means for mounting in the sputum system is also involved in causing the The image modulation 11 selectively in the vicinity of each of the aperture planes in the housing allows light from the imaging == part and the second portion to be directed to the imaging flat image and the second image in the image plane Forming a corresponding third-to-H image and the second image--the three-dimensional property of the operable object in the field of view of the imaging lens. Imaging the exit pupil system may involve arranging in the 35-body, the mirror to image the exit pupil exit to the aperture plane. Arranging the edge first relay lens system may involve arranging a lens group such that the light captured by the imaging lens is formatted for reception by the mirror. Having the relay relay arrangement of the first relay lens system can involve arranging a movable lens element within the housing. 201135286 causes the 5 Haijing> image modulation to be allowed to selectively allow the light from the first part and the second part to make the image modulator selectively transmit the inverse inflammatory image + facial system It involves the light of part and the second part. ^ respective of the image modulator embedding ^ mm selective transmission of the light system may involve alternating the following actions. Blocking the first portion of the single-imaging path while dividing the second portion of the imaging path ^ = the knife received 'and the block received by the single part - received. Allowing light to pass through the single-imaging path alternately performing the first portion of the single imaging path and the septum may involve causing the displacement disposed in the single-imaging path to be between the first position and the second position. The symplectic-blocker shift alternately feeds the material 1 like the road - the partial compartment may involve selectively actuating a first gamma domain of a 7-knife resistance element to selectively block the single-° ° 5 . The first portion of the second imaging channel and the eighth image sensor may comprise a plurality of components, and -22: the first portion of the imaging path and the blocking portion of the k portion may be early activated The first region of the first region and the second region are selected to select the first portion and the second portion of the steep single-imaging path. Selectively blocking the provincial method may involve selectively altering the plurality of components' such that the brother: 傍 ▲ is actuated with h to reduce the light passing through each of the first region domains Passing the wheel. < 4 first zone = the image modulator selectively allows light from the imaging portion and the: portion to be directed to the imaging such that the image modulator selectively varies from the single imaging path == 8 201135286 points and The polarized state of one of the rays of the father in the two parts. Let the image modulator select the first part and the second Qiu Ba ^ from the imaging path of each visit history, the first line of the °p knife is directed to the imaging plane can be related to the month station to make the 3 hood image The modulator of the temple door, and, θ, should be a synchronous signal and selectively transmit the light from the | imaging path - ^ ^ ^ ^ 〇Ρ 和 and the second part of the light. Forming a corresponding image at the image plane _ involved in the housing "image and first-shirt image system may be the first relay lens to be corresponding to the first image and the second image in the shadow half. Face shape and stupidity: I: The first relay lens system may involve arranging a plurality of lenses to form corresponding first image and second image at the cough-image + face. The X first relay lens system may be arranged at 3 Referring to the movable lens element of the housing, and at least one movable lens element of the first to the second, the first image and the second image are opened at the imaging plane. Forming a corresponding first image and a second at the plane 2 and arranging at least one movable focusing lens, the image and the second image in the housing. A corresponding first image at the imaging plane is formed at the image plane Corresponding first image and second image system can /y and form a first image and the first coin, v is imaged at an image sensor, and the image sensor is operable to generate pressure U represents the electrical signal of the first image and the second image. According to another aspect of the present invention, # a曰_ 蚬 4 records reveal a type of three-dimensional image information generated in response to receiving an image captured by an imaging lens with a single field of view with an associated field of view Adapter device. The adapter device comprises a housing having a first interface for the 201135286 for women's clothing to the beta image recorder and a second interface for mounting the imaging lens. Also included is a position to prepare an exit pupil of the imaging lens to an aperture plane in the housing, and is prepared to selectively allow light from respective first and second portions of the imaging path to be directed to the imaging plane And preparing the selective action to be located at or near the aperture plane in the housing. The adapter device further includes a first image and a second image to be formed at the image plane, the first image and the The second image is operative together to present a three-dimensional spatial property of the plurality of objects within the field of view of the imaging lens. Preparing to image the exit pupil can be in the shell Having at least one movable lens element therein, and preparing to position the at least one movable lens element causes the exit pupil to be imaged to the position of the aperture plane. • Preparing to selectively allow light to be directed to the imaging plane Contains ready to selectively pass it from f Hai single-imaging path < Light of each of the first part and the second part. ° Preparing the selective transmission of the light system may include preparing to alternately perform the following: blocking the first portion of the single-imaging path while allowing light to pass through the second portion of the early-imaging path, and blocking the single imaging - The only part: part allows light to be received through the single-part of the imaging path. Preparing to alternately block the single-first portion of the imaging path and the second portion of the movement 2 are prepared to cause the blocker disposed in the single-imaging path to be assisted between the first position and the second position. Preparing to alternately block the first-part and second-part of the single-image path...including-optical elements, which are operatively configured to selectively block 10 201135286 the first-part of the single-imaging road# and the second part . Preparing to cause the image modulator to selectively direct light from respective fourth and second portions of the imaging path to the imaging plane may include preparing to cause the image modulator to selectively change from the single-imaging path One of the first portion and the second portion of the light is polarized. Preparing to form a corresponding first image and second image system at the image plane may include at least one movable lens element within the housing, and preparing to position the at least one movable lens element to cause formation at the image plane Corresponding first image and second image. The first image and the second image to be formed at the image plane are prepared to be associated with the first image and the second image that are to be focused on the imaging plane. The adapter device can include electrical signals to be generated to represent the first image and the second image formed at the image plane. Other aspects and features of the present invention will become apparent to those skilled in the art of the invention. [Embodiment] Referring to Figure 1 'an imaging system is generally shown as 1 〇〇. The imaging system 100 includes an image recorder 102 and an imaging lens 1 that has a single imaging path associated with a field of view. The imaging system 100 also includes an adapter device 108' for generating a three-dimensional video image at an image plane 106 of the image recorder 1 响应2 in response to receiving light captured by the imaging lens 104. The adapter 108 includes a housing 110' having a first interface 11 2 for mounting to the 201135286 image recorder 102 and a second interface 1 14 for mounting the imaging lens 1 〇4. The adapter 108 also includes a first relay lens 1 16 ' for imaging an exit pupil of the image lens 1 〇 4 to an aperture plane position 1 1 8 . The adapter 108 further includes an image modulator 1 20 ' at or near the aperture plane position 丨丨 8 in the housing 1 1 。. The image modulator 120 is operatively configured to selectively allow light from respective first and second portions of the e-Hai imaging path to be directed to the imaging plane 1 06. The adapter 1 0 8 system also includes a second relay lens 22 for forming a corresponding first image and second image on the image plane 106. The first image and the second image together contain image data that can be processed or displayed such that a three-dimensional property of an object 132 within a field of view of the imaging lens 1 〇 4 is presented. In the illustrated embodiment, the first relay lens unit 16 includes a relay lens group having two individual lenses 124 and 126, and the second relay lens 122 includes two individual lenses 128 and A relay lens group of 丨3〇. In other embodiments (not shown), the first relay lens U6 and the side second relay lens 22 may comprise only a single lens or a group of more than two lenses. The imaging lens 104 is generally directly surfaced to the first interface 112 of the image recorder 102 in conventional two-dimensional (2D) imaging with reference to FIG. In this embodiment, the imaging lens 104 includes a pair of Gauss lenses having a plurality of substantially symmetrical lens elements located along a central axis 15' of either side of a central aperture column 156. (150, 152). However, in the alternative embodiment, the imaging system 04 can be used to form an image-changing lens, a telephoto lens, a super wide-angle lens, or any number of different lens configurations. The position of the exit pupil of the imaging lens 104 is shown as 158. The exit pupil of a lens is defined as the image of the aperture of the lens in the image space, i.e., the aperture stop as imaged by lens element 152 to the right of aperture stop 1 56. In this case, the image of the aperture bar 丨 56 is a virtual image. The position and size of the exit pupil 15 8 can be found by tracking the path of a primary beam 160 and an edge beam 162 through the lens element 152. The exit pupil 158 is located at a point where the projection 164 of the main beam 16 跨 spans the central axis 1 54. A projection 166 of the edge beam 丨 62 defines the diameter of the exit pupil. The imaging lens 丨〇 4 has a single imaging path 'because all of the beam beams captured by the lenses are transmitted through the same plurality of lens elements 150, 152 and the image formed at the image plane 1 〇 6 is Provide any 3D image information. The exit pupil 158 is isolated from the image plane iOG by a distance D that is substantially maintained within a certain distance to ensure proper image information at the image plane. The inability to maintain D within a range specific to the configuration of the imaging lens 〇 4 can cause image formation problems such as overfilling, underfill, or other vignetting of the image. An image recorder 丨〇 2 is generally operable to operate a set of imaging lenses having X respective exit pupil positions within a range. Outside of this range - the exit pupil - the imaging lens may not fill the image sensor 168 (ie, the generated image appears vignetting) or overfill the image sensor (ie: may exist Sightseeing damage). In the embodiment shown in Figure 2, the image recorder 丨〇 2 includes an image sensor 168 disposed at the image plane 〇6 to record the image. The image sensing H 168 can be, for example, a charge coupled light (c 13 201135286 or a CMOS active pixel element. Alternatively, the image can be recorded by any other suitable image recording medium or component such as photographic film. The image recorder 102 further includes a controller 170 for communicating with the image sensor 1 for controlling the image recording operation of the image sensor 168. The controller 17 is also Configuring to control the image recorder to enable other functions such as focus, exposure, and aperture control. In some embodiments, the interface 112 provides electrical between the image recorder 1 〇 2 and the imaging lens 1 〇 4 And/or mechanically driving coupling to provide autofocusing of the lenses. For example, in the dual Gauss lens configuration shown, the plurality of lens members 150 and 52 can be coupled to a mechanical actuator (not The figure is used to move the lenses along the central axis 1 54 to facilitate focusing. The three-dimensional imaging system 1 of Figure 1 is shown in top view in Figure 3. Referring to Figure 3 'for three-dimensional imaging , the adapter 1 〇 8 Directly coupled to the first interface 丨丨2 of the image recorder 102, and the imaging lens 丨〇4 is coupled to the second interface 114 of the adapter 〇8. The first relay lens ΐ6 is a The exit pupil 15 8 is imaged to the aperture plane position 丨i 8 (located at a point where the main beam 160 spans the central axis 154). The image modulation is 120 as close as possible to the aperture plane position 118. In the embodiment, the aperture plane iii 8 belongs to the lens element 128 ′ of the second relay lens 122 and thus it is impossible to accurately clamp the image modulator 12 在 at the aperture plane. However, as long as the image modulator is positioned at least close to the aperture plane position m, significant vignetting of the images is less likely to occur. For any particular lens configuration, one of the lens designs is optically common. The 葚 Γ Γ Γ 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 Shirt like ί varactor 12 0 series extends beyond the edge The beam 16 2 makes the image modulator bit intentionally an aperture of the system. Edge </ RTI> The s-variant 120 includes an input terminal 200 for receiving a drive signal, the drive signal is operationally The image modulator 1 2 〇 selectively transmits light through the first region 202 and the second region 204 of the image modulator. The image modulator 1 20 is described in more detail herein. The 1 08 system also includes a controller 206 for controlling the operation of the image modulator 110. The controller 2〇6 can be located in the housing η 或 or the one connected to the housing 11 〇 Separate the housing (not shown). Alternatively or in addition, the functionality of the controller 206 can be provided by the controller 170 of the image recorder 丨〇2. The controller 206 includes an output 208 for generating a drive signal for the image modulator. The controller 206 also has an output 210 for generating a synchronization afl. The output terminal 2 1 0 is in communication with the controller 1 70 of the image recorder 1 〇 2 for controlling the image sensor 1 68 to be synchronized with the image modulator 1 20 for image recording operation. . Alternatively, the sync signal of an image modulator can be taken from an internal sync signal generated by the controller 170 and provided to the controller 206 via an input (not shown) for synchronization. The image modulator 12 is actuated. The operation of the adapter 108 in generating three-dimensional image information is further described with reference to Figures 4 and 5. In FIG. 4, a first ray bundle 220, which is emitted from the object 133, is captured by the imaging lens 1 〇4 and is incident on the first region 202 of the image modulator 110. A second light beam 224, which is emitted from a second point 226 of the object 132, is captured by the imaging lens 104 and illuminates the second region 15 201135286 204 of the image modulator 120. The first region 2〇2 of the image modulator 1 20 is actuated to allow light from a first portion of the single imaging path to be transmitted through the second relay lens 122 to the image plane i 〇6. At the same time, the second region 204 of the image modulator 110 is actuated to avoid light from the - portion of the single imaging path being transmitted. When the image modulator 120 is actuated as shown in FIG. 4, the light is thus transmitted through the single portion of the imaging lens 1〇4—the first portion of the imaging path (corresponding to the image modulator 1? - Area 202), and a first image is formed at the image plane 1〇6. When the image modulator 120 is actuated in spring to cause the first region 2〇2 to avoid the light transmission and actuate the first region 202 for transmission, the light is transmitted through the single-imaging path of the imaging through 35104. - a second portion (corresponding to the second region 204 of the modulator m), and a second image is formed: at the image plane 106. Referring to Figure 5', representative first and second images of the object 132 are generally shown as 25G and 252. Because the first portion of the single-imaging path is offset from the central axis 154', the first image 25 has a perspective point from one side of the object 132 and the self-image center, 254 offset toward the left. When the second region 2 of the image modulator 120 is actuated, the second shadow having a perspective point from the other side of the object 132 t: 252 is offset from the image center 254 toward the right side. ^ Image 250 and the second image (5) are selectively directed to the user: for the second and left eyes, the user will be able to identify from the images in substantially the same way as when viewing the actual object. In the embodiment, the second, the second image 252 is displayed on the monitor as alternately displayed as separate video fields. Various active or passive glasses of the type 201135286 are available for display. The first image 250 and the second image 252 are directed to the user's eyes. Passive type glasses typically rely on additional wavelength or polarization processing of the images to enable the passive filtering elements in the glasses to separate the images. Types of glasses typically include a receiver for receiving a sync signal from a display, and additionally allowing the first image 250 and the second image 252 to be transmitted to respective right and left eyes or The first image 25 〇 and the second image 252 can be processed to match the identifiable features of the respective influences and to determine a lateral offset between the identified features. The determined lateral offset is accompanied by imaging of the imaging system 100. A cognitive system of parameters can be used to calculate the difference in depth between a plurality of points on the object, or the difference between the plurality of objects at different depths. In this embodiment, the first image 250 and the respective image The second image 252 has approximately the same extent (ie, 50% of the extent of the image modulator 120). In other embodiments, the first image 25 〇 and the second image 252 may be greater than or Less than 5〇% of the extent of the image modulator 120. When the perspective points of the first image 250 and the second image 252 are spatially separated by a large distance from the central axis 1 54 The three-dimensional depth recognition level provided is generally large. Advantageously, the single-imaging path through the imaging lens 1G4 is provided without any spatial alignment, except for the conditions normally required to assemble the lenses at the time of manufacture. 3D information from what you can perceive and/or capture The first image 250 and the second image 252 are generated. Conversely, a stereoscopic imaging system that uses a separate image path to form a knife-off shirt image and a second image can have even a slight loss in the separation image path control. The on-time bow picks up the user's eye strain or other uncomfortable effects. 17 201135286 Image Modulator In one embodiment, the image modulator 12 can be implemented using a liquid crystal element (LCD) The first end region 202 and the second region 2〇4 are alternately actuated to receive light by receiving the driving signal. Referring to FIG. 6, an LCD image modulator is generally displayed as 3 turns. The LCD modulator 300 includes a layer of liquid crystal material 3〇2 disposed between a first glass sheet 3〇4 and a second glass sheet 306. The first glass plate 3〇4 includes a plurality of transparent electrodes 3 arranged longitudinally. Each of the electrodes 3〇8 has an associated connector 31〇 which may be, for example, a wired joint or a flexible circuit. connection. The connector 31 is tethered to a header 3丨2 and, in turn, facilitates the connection to the output 21〇 of the controller 2〇6 shown in FIG. The second glass sheet 306 includes a transparent region (not shown) that extends across a surface of itself and that acts as a common electrode. Each transparent electrode 308 defines an element between the electrode and the transparent area electrode and thus defines a plurality of elements 3 i 8 which are provided between the corresponding electrode 3 〇 8 and the transparent area electrode The _ drive potential is activated separately. The LCD image modulator 3 also includes a first polarizer 314 having a first linear polarization characteristic (vertical polarization in this case). The first polarizer 3 14 overlaps the plurality of transparent electrodes 3 〇 8 . The modulator 3 further includes a second polarizer 316 that overlies the second electrode and has n-polar polarization characteristics (horizontal polarization in this case). The various laminates in Figure 6 are not shown to scale. The controller 2〇6 (shown in ® 3) is shown in more detail in ϋ 7. The controller 206 includes a round of output 21 〇 for generating the synchronization signal (NC). The eight typical system includes a time-separated pulse train. The wheel end 2 (7) 18 201135286 performs image capture at the detector 174 with the shadow subtraction n178. The control is stepped into the step package = the driver 212 for generating the driving at the output end 208 of the Laoshan Mountain. The modulator is driven in the LCD modulator. And the wheel drive 208 shown in FIG. 6 thus has the corresponding component-number to output channel. In an embodiment, the controller implementation can be implemented using a processor circuit such as, for example, a microcontroller. In the illustrated embodiment, the wheel terminals 2〇8 of the controller 2〇6 are operatively configured to provide individual drive signals to the respective electrode fans. The drive signals are coupled to the respective electrodes 308 via the collective IS 312 and the connectors 31, and the common electrode system acts as a ground connection. In one embodiment, the driving voltage may be a watch-period-square wave that varies between voltages v+ and v•, wherein the voltage is selected within a range of safe operating voltages to illuminate the pair The light on the LCD modulator 3 provides sufficient contrast between transmission and blocking. In the illustrated embodiment, a plurality of columnar members 318 promote a degree of change in the first region 2〇2 and the second region 2 shown in Figures 1 and 3. In other embodiments, however, the LCD modulator 3 can be configured to include only two columnar elements, each element having approximately 50% of the LCD tuned state of the front surface. To a certain extent. Alternatively or in addition, the columnar elements 318 can be further divided into a plurality of pixels that can be individually actuated to provide the desired extent of the first region 202 and the second region 2〇4. Operationally, the first polarizer 314 transmits light having a vertical polarization. In this embodiment, the liquid crystal material 302 is selected such that in its relaxed phase (unactuated), the polarization of the light passing through the crystal is unaffected and the second polarizer 3 1 is thus Block the light. When actuated by the driving voltage applied to any of the electrodes 3 0 8 to be applied, a portion of the liquid crystal material layer under the electrodes causes the light to undergo a polarization change of 90 degrees and thus passes through the The second polarizer 3 16 and the modulator 30. By alternately generating drive signals for the first and second plurality of electrodes 308, the modulator 300 alternately blocks and transmits light at the first region 202 and the second region 204, respectively. In an alternative embodiment, both of the polarizers 3 14 and 3 16 are vertically polarized such that the LCD s-perimeter is transmissive when no actuation voltage is applied. In this case, when an element is actuated, the liquid crystal material causes a change in polarization of the light through 90 degrees to cause the element 356 to block the transmission of light. In another embodiment, the electrodes 3〇8 of the modulator 300 can be diced into a plurality of pixels (as indicated by the dashed line 320), and the connectors 3 i 〇 and the header 312 can be Configured to individually drive each pixel 32〇 <}Operation, the portion of the π-piece 3 1 8 can be actuated by actuating the respective pixels 320 in the line portion. Alternatively, the actuation of pixels other than the pillar state can be desired. For example, the image 320 can be actuated to cause the image by actuating a pixel in a circular or semicircular morph. The aperture at the aperture plane 6 1 4 . Mechanical image modulator • Qing ^ π non-deformer] 20 series can be generally shown in Figure 8 as 380 - * two screws. . Work - & two adjustments are implemented. The spatial modulator 380 includes a mounted opaque shutter 382 on the mounted 'section 384' of the notch 383. The 5 liter arm 384 is provided on the pivot 386 The arm Qiu anvils you go to wear. Move left and right. The arm 3! also includes a magnet 390 which is placed along the way. The magnet 390 series 20 201135286 is disposed between the first electromagnet 392 3⁄4 potential & 382, the "384" electromagnet 394. The shutter blade ... such as the holding shaft 386, the two electromagnet 394 system - Niu Rushana iron JW and Xuan Dili can operate with a mechanical actuator to generate a force in the direction of the head 388 to position the shutter blade 382 at a pair of stops 414 and 416; Teach i._ move around 1 day to define the first position of the arm and the §Hay 383, and the first time to go to the #句碑第-location" 荨 荨 414 414 and 416 each include - thread Partially provides adjustments that are aligned with the gap 383 to selectively allow light from the respective first and second portions of the imaging path to be directed to the imaging plane (10). In one embodiment, the light barriers 414 and 4 16 are capable of unmanned 5, and the spears are coupled to an electrical actuator (not shown), thereby facilitating alignment of the gap 383 without the need to save The modulator 380 is taken. For the drive 4 s s variator 38 ’ the controller is replaced by the modulator controller shown in Figure 8. The modulator controller includes a first pair of output terminals 402 for driving the coil 4〇4 of the first electromagnet 392, and a coil 4〇8 for driving the second electromagnet 394. A second pair of outputs 406. The modulator controller 4 also includes an output 412 for generating a sync signal (SYNC) for synchronizing the operation of the camera 102 as described above in connection with FIG. Alternatively, the output 412 can be configured as an input for receiving a synchronization signal generated by the controller 170 of the camera 1〇2. The modulator controller 400 operates internally to generate a synch signal or receive a SYNC signal at 412. In response to the SYNCH signal, the modulator produces current waveforms at the outputs 402 and 406 for driving the respective coils 404 and 408. The current flowing through the respective coils 404 and 408 causes the force to be exerted on the arm portion 384 to move toward a desired light bar 41 4 or 21 201135286 4 1 6 " advantageously" the modulator controller 4 The system can be implemented as a push-pull driver 'where one of the electromagnets 392 and 394 provides a gravitational force on the magnet 390 and the other of the electromagnets 392 and 394 provides a repulsive force. Figure 9 is a diagram showing that the currentless drive provided to one of the coils 4〇4 and 408 causes the arm 384 to move toward the first electromagnet 392. The current waveform flowing through the coil 404 is shown at 44 〇, and the current waveform flowing through the coil 408 is shown at 442. The pulse waveform of the speech synch signal is shown at 446. One of the rising edges of the synch signal 446 defines a start time of a first time period 444, wherein the current 44 is rapidly ramped up to produce a gravitational force on the arm 384. The gravitational force outperforms the inertia of the arm 384 and causes the arm 384 to accelerate away from the diaphragm 414 and the second electromagnet 394. During the first time period 444, the current initiates a system, and once the The arm 384 begins to accelerate, and the current 442 is rapidly increased. When the arm 384 approaches the aperture 416, a decelerating force is provided to provide damping by the movement of the arm to prevent the arm from engaging the opposite side of the shed. The arm portion 384 is stopped at the optical stop 416' and the current 44" 442 in each of the coils 4〇4 is lowered to a small holding current to hold the arm at the optical stop 416. The arm portion 384 is held during the second time period 416 - the second time period 448 provides sufficient time for the capture of the first image. Similarly, the subsequent rising edge of the SYNCH signal 446 defines a first start time of the :: inter-period 450, wherein the current 442 causes a force that causes a repulsive force on the material 384 to cause a repulsive force. The four portions 384 move toward the diaphragm 414. The arm portion 384 is at least at 22 201135286 shoulder beam 41 4 - time period 452 defines a fourth time period 452' which provides sufficient time to complete the capture of the image. Referring to Figure 10, an alternative embodiment of the actuator 4 of the spatial modulator 380 (shown in Figure 10) is generally shown as 5 turns. The actuator 5 includes a motor 502 having a motor drive shaft 56 extending through the motor. The arm portion 384 carries the shutter blade 382 and is mounted to the drive shaft 506 to move left and right between the light stops 414 and 416. In this embodiment, the s-motor 502 is implemented using the pair of magnets 5〇8 and 5丨〇, and the 泫 drive shaft 506 supports the actuator coils 5丨6 at the pair of magnets 5〇8 and 5 1 Between 0. The squat actuator coil 5-6 can be shanked to the output 402 of the modulator for receiving a drive current that causes a torque to be generated on the drive shaft 506. In general, the actuator 5 operates in a manner similar to one of the analog pointer scales and provides movement between the light barriers 414 and 416. In other embodiments, the motor portion 5〇2 can be configured such that the 忒 drive shaft 506 is magnetized and the coil is wound around the pole members (i.e., 508 and 510). Alternative Adapter Embodiments Referring to Figure 1 '' an alternative adapter embodiment is generally shown as 600. The adapter 600 includes a housing 602 having a first interface 604 for mounting to the image recorder 1 〇 2 and a second interface 606 for mounting an imaging lens 608. The imaging lens 6 〇 8 has an exit pupil 610. The adapter 600 is further incorporated into a first relay lens 612. The adapter 600 is incorporated into an image modulator 6 16 that is located at or near the aperture plane location 614. In this embodiment, the first relay lens 012 includes a relay lens 23 201135286 mirror pair 618' that includes a relay for imaging the exit pupil of the imaging lens 608 to the aperture plane position 614. Lenses 620 and 622. The first relay lens 612 also includes a lens group 624 that is configured to accommodate an image size and format produced by the imaging lens 608 to the adapter 600. In one embodiment, the lens group 624 is implemented using a focusing lens triplet (lenses 626, 628, and 630), wherein at least lenses 628 and 630 are movable to vary the focus of the lens group. length. In other embodiments, the lens system in the lens group 624 can be fixed in the housing 602, which in this case will be configured as a single image size/format. The adapter 600 also includes a second relay lens 63A for forming a corresponding first image and first scene> like the image plane 106. The second relay lens 631 includes a relay lens pair 632 that includes relay lenses 634 and 636 for forming an image at the image plane 1 〇 6. The second relay lens 631 also includes a lens group 638 that is configured to produce an image at the image plane 106 that is sized according to the size of the image sensor 168. In this embodiment, the lens group 63 8 is implemented using a focus lens combining system (lenses 640, 642, and 644) in which at least lenses 642 and 644 are movable to vary the focus length of the lens group. In still another embodiment, the adapter 6 is intended for use with a particular image recorder 1〇2, and the lens in the lens group 624 can be secured in the housing 602. In this embodiment, the adapter 600 also includes a selectable movable focus lens 646' for adjusting image focus at the image plane 1〇6. Operationally, the movable elements 626 and 628 of the lens group 624 24 201135286 allow adjustment of the focus length of the lens group 624 to configure the adapter for use with imaging lenses 6 〇 8 having different image formats, The relay lens pair 618 images the exit pupil 610 of one of the imaging lenses 608 to the aperture plane position 614. Advantageously, the adjustments provided allow a wide variety of lenses to be used in conjunction with the adapter, and also facilitate the use of lenses that are not fully compatible with the format of the image recorder 102. The lenses 628 and 63 can be moved using a mechanical actuator ring (not shown) to change an overall focus length of the first sequential lens 612 to exit the imaging lens 6〇8.瞳 610. Imaging to the aperture plane position 61 4 , similarly, moving the lens 642 and 644 of the lens group 638 configures the adapter 600 to operate with the image recorder 1 , 2 such that the image will be The image at plane 106 is properly formatted for image sensor 168. Advantageously, the lens group 638 facilitates tuning of the adapter to match a wider range of image recording elements without overfilling or unfilling the image sensor 168. The imaging lens 608 will generally be ready for focus adjustment such that the image formed at the image plane 106 is properly focused. This adjustment can be carried out in the form of a manual mechanical actuation n帛 (not shown) on the outside of the housing for manual focusing, "automatic focusing in the form of an electric actuator..." The lens 646 additionally allows the focus range of the imaging lens 6 〇 8 to be selected by H offset 'and the focus range of the imaging 豸 _ should not be enough to allow the focus </ RTI> to focus on the image plane φ 106. The one-hundred relay lens 612 spears 639 is adjusted to operate with the imaging lens 608 and the image 5 己 〇 进行 适配 适配 适配 适配 适配 适配 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生As described above in connection with Figures 4 and 5. 25 201135286 Other Embodiments In other embodiments of the image modulator 300 shown in Figure 6, the second polarizer 3 16 can be ignored to adjust the tone The transformer is configured to selectively change the polarization state of the transmitted light, rather than selectively blocking the transmission of light. Thus, the portion of the liquid crystal material layer 3〇2 that is under the unactuated electrode 308 will act as vertically polarized light. The polarization state of the transmitted light has no effect. The portion of the liquid crystal material 35 that is under the actuating electrode 308 causes the light to undergo a polarization change of 90 degrees, thereby causing the transmitted light to have a horizontal polarization. In an alternative embodiment, the image modulator 3 will thus cause a first image and a first image having respective vertical polarization states and horizontal polarization states.
二影像同時被形成在該影像平面丨〇6處。另或者該[CD 調變器300之液晶材料層3〇2係可經組態以產生具有右圓 極化光線的一第一影像和具有左圓極化光線的一第二影 像。該影像感測器168係可經組態以藉由在個射彡像陣列元件 前方增加極化元件來同時接收各別第一影像和第二影像。例 如:相鄰感測器像素係可經交替經過水平極化和垂直極化 以提供僅對-個極化取向為㈣的極化選定像素。此感測 器因而係將允許該第-影像和該第二影像兩者的同時接收。 該第一影像和該第二影像係可在從該陣列讀取出期間或以一 分離處理步驟而被分離。 一 上述適配ϋ之實施例係促進二維成像透鏡和二維影像 自己錄器用於產生三維影像資訊之—廣泛調適 為使用該成像透鏡之單—办 利也因 衫像路徑來捕捉該等影傻 該適配器係在對成像敗― 像所以 下促進三維影像的產生。 進步而求 26 201135286 儘管已經敛述和例示本-發明具體實施例,然❿此 施例係應該被視為僅例示本發明而非視為將本發明限 依據後附申睛專利範圍所建構者。 【圖式簡單說明] 用以例示本發明實施例之圖式: 圖1係包含一適配器設備之一成像系統的一部分剖視 立體視圖,其中用於依據本發明一第一實施例來產生三維 影像資訊; 圖2係先前技術之二維成像系統的一俯視示意圖; 圖3係成像系統和圖1所示適配器設備之俯視示意圖; 圖4係成像系統和圖丨所示適配器設備之另一俯視示 意圖; 圖5係由圖1所示成像系統所產生之第一影像和第二 影像的一表示方式; 圖6係圖1所示適配器設備所使用之一液晶影像調變 益的一立體視圖, 圖7係用於控制圖1所示適配器設備之操作的一控制 器之一方塊圖; 圖8係依據本發明一替代性實施例中一空間調變器的 —示意圖; 圖9係用於控制圖8所示空間調變器之控制訊號的一 圖形描述; 圖10係在圖8所示空間調變器中所使用之—致動器的 —替代性實施例之一立體視圖;以及 27 201135286 圖11係依據本發明一替代性實施例中一適配器設備的 一俯視示意圖。 【主要元件符號說明】 100 成像系統/相機 102 記錄器 1 04 成像透鏡 106 108 110 1 12 114 116 118 120 122 影像平面 適配器 殼體 第一介面 第二介面 第一中繼透鏡 孔徑平面位置 影像調變器 第二中繼透鏡 124,126,128, 1 30 透鏡 132 物件 150, 152 154 156 158 160 162 透鏡元件 中央軸 中央孔徑欄1 出射光瞳 主光束 邊緣光束 164, 166 投影 28 201135286 168 170 200 202 204 206 208, 210 212 220 222 224 226 250 252 254 300 302 304 306 308 3 10 312 314 316 感測器 控制器 輸入端 第一區域 第二區域 控制器 輸出端 調變器驅動器 第一光線束 第一點 第二光線束 第二點 第一影像 第二影像 影像中心 調變器 液晶材料層 第一玻璃板 第-~玻璃板 電極 連接器 集管器 第一極化器 第二極化器 元件 29 318 201135286 320 像素 380 調變器 382 葉片 383 缺口 384 臂部 386 枢轴 388 箭頭 390 磁鐵 392 第一電磁鐵 394 第二電磁鐵 400 調變器驅動器 402 第一對輸出端 404, 408 線圈 406 第二對輸出端 412 輸出端 414, 416 光棚 420 螺紋部分 440, 442 電流波形 444 第一時間週期 446 脈衝波形 448 第二時間週期 450 第三時間週期 452 第四時間週期 500 致動器 502 馬達 30 201135286 506 508, 510 516 600 602 604 606 608 610 612 614 616 618 620, 622 624 626, 628, 630 631 632 634, 636 638 640-644 傳動軸 磁鐵 線圈 適配器 殼體 第一介面 第二介面 成像透鏡 光瞳 第一中繼透鏡 孔徑平面 調變器 中繼透鏡對 中繼透鏡 透鏡群 透鏡 第二中繼透鏡 中繼透鏡對 中繼透鏡 透鏡群 透鏡 聚焦透鏡 31 646Two images are simultaneously formed at the image plane 丨〇6. Alternatively or the [liquid crystal material layer 3〇2 of the CD modulator 300 can be configured to produce a first image having right circularly polarized light and a second image having left circularly polarized light. The image sensor 168 is configurable to simultaneously receive the respective first image and second image by adding a polarization element in front of the individual image array elements. For example, adjacent sensor pixel systems may alternate between horizontal and vertical polarization to provide polarization-selected pixels with only one polarization orientation of (iv). This sensor will thus allow simultaneous reception of both the first image and the second image. The first image and the second image system can be separated during reading from the array or in a separate processing step. An embodiment of the above-described adaptation is to facilitate the use of a two-dimensional imaging lens and a two-dimensional image recorder for generating three-dimensional image information - widely adapted to use the imaging lens to capture the shadows Silly, the adapter is used to promote the generation of 3D images below the image failure. </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> <RTIgt; . BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partially cutaway perspective view of an imaging system including an adapter device for generating a three-dimensional image in accordance with a first embodiment of the present invention. Figure 2 is a top plan view of a prior art two-dimensional imaging system; Figure 3 is a top plan view of the imaging system and the adapter device of Figure 1; Figure 4 is another top view of the imaging system and the adapter device shown in Figure Figure 5 is a representation of the first image and the second image produced by the imaging system of Figure 1. Figure 6 is a perspective view of one of the liquid crystal image adjustments used in the adapter device of Figure 1. 7 is a block diagram of a controller for controlling the operation of the adapter device shown in FIG. 1. FIG. 8 is a schematic diagram of a spatial modulator in accordance with an alternative embodiment of the present invention; FIG. 9 is for a control map 8 is a graphical depiction of the control signal of the spatial modulator shown in FIG. 10; FIG. 10 is a perspective view of an alternative embodiment of the actuator used in the spatial modulator shown in FIG. 8; and 27 2011 35286 Figure 11 is a top plan view of an adapter device in accordance with an alternative embodiment of the present invention. [Main component symbol description] 100 imaging system / camera 102 recorder 1 04 imaging lens 106 108 110 1 12 114 116 118 120 122 image plane adapter housing first interface second interface first relay lens aperture plane position image modulation Second relay lens 124, 126, 128, 1 30 lens 132 object 150, 152 154 156 158 160 162 lens element central axis central aperture column 1 exit pupil main beam edge beam 164, 166 projection 28 201135286 168 170 200 202 204 206 208, 210 212 220 222 224 226 250 252 254 300 302 304 306 308 3 10 312 314 316 Sensor controller input first area second area controller output end modulator driver first light beam first Point second light beam second point first image second image image center modulator liquid crystal material layer first glass plate first ~ ~ glass plate electrode connector header first polarizer second polarizer element 29 318 201135286 320 pixels 380 modulator 382 blade 383 notch 384 arm 386 pivot 388 arrow 390 magnet 392 first electromagnet 394 second electromagnet 400 Modulator driver 402 first pair of outputs 404, 408 coils 406 second pair of outputs 412 outputs 414, 416 light booth 420 threaded portions 440, 442 current waveform 444 first time period 446 pulse waveform 448 second time period 450 Third Time Period 452 Fourth Time Period 500 Actuator 502 Motor 30 201135286 506 508, 510 516 600 602 604 606 608 610 612 614 616 618 620, 622 624 626, 628, 630 631 632 634, 636 638 640-644 Drive shaft magnet coil adapter housing first interface second interface imaging lens diaphragm first relay lens aperture plane modulator relay lens pair relay lens lens group lens second relay lens relay lens pair relay lens lens Group lens focusing lens 31 646