TW201134949A - Method for making aluminium-based metal matrix composites - Google Patents

Method for making aluminium-based metal matrix composites Download PDF

Info

Publication number
TW201134949A
TW201134949A TW99110098A TW99110098A TW201134949A TW 201134949 A TW201134949 A TW 201134949A TW 99110098 A TW99110098 A TW 99110098A TW 99110098 A TW99110098 A TW 99110098A TW 201134949 A TW201134949 A TW 201134949A
Authority
TW
Taiwan
Prior art keywords
aluminum
composite material
semi
based metal
mixed slurry
Prior art date
Application number
TW99110098A
Other languages
Chinese (zh)
Other versions
TWI414610B (en
Inventor
Wen-Zhen Li
shi-ying Liu
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW99110098A priority Critical patent/TWI414610B/en
Publication of TW201134949A publication Critical patent/TW201134949A/en
Application granted granted Critical
Publication of TWI414610B publication Critical patent/TWI414610B/en

Links

Abstract

The invention relates to a method for making aluminium-based metal matrix composite. The method includes the following steps: providing a half solid state's aluminium-based metal; stirring the half solid state's aluminium-based metal and adding a plurality of nano-sized reinforced particles into the half solid state's aluminium-based metal to obtain a half solid state's mixture; converting the half solid state'mixture into a liquid state mixture by increasing the temperature of the half solid state'mixture; ultrasonically dispersing the liquid state mixture; cooling the liquid state mixture to obtain a aluminium-based metal matrix composite.

Description

201134949 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種金屬基複合材料的製備方法,尤其涉及 一種鋁基複合材料的製備方法。 [先前技術] [0002] ❹ [0003] 〇 [0004] 099110098 金屬基複合材料具有重量輕,比強度高、比剛度高及耐 磨性好等優異的物理性能及力學性能,將在航空銳天、 軍事領域及汽車等行業越來越得到廣泛的應用。其中顆 粒增強金屬基複合材料具有成本低,製備工藝簡單等特 點,已經逐漸成為國内外金屬基複合材料領域的研究重 鋁基複合材料具有高的比強度、比剛度、比彈性模量, 同時還具有較好的耐磨、耐高溫性能,因此受到了廣泛 的關注。常用的顆粒增強鋁基複合材料製備技術有粉末 冶金法及鑄造法兩種工藝。但粉末冶金法的工藝設備複 雜、成本偏尚,不易製備大體積及形狀複雜的零件。而 且在生產過程中存在粉末燃燒及爆炸等危險。鑄造法工 藝簡單,操作方便’可以生產大鱧積的複合材料(可到達 500kg),設備投入少’生產成本低’適宜大規模生產。 顆粒增強鋁基複合材料的性能與增強顆粒的尺寸有很大 關係,廣泛使用的顆粒大都在3至30/zm之間"研究表 明,增強顆粒尺寸越小,則增強效果越好,這是因為小 顆粒不僅自身很少存在結構缺陷,而且其周圍還具有更 高的熱錯配位元錯密度。奈米顆粒對鋁基金屬表現出良 好的強化作用,但因細小顆粒易於團聚,因而使其增強 表單編號A0101 第1頁/共21頁 0992017825-0 201134949 效果大為降低。因此,解決奈米雖在轉複合材料的 分散問題成為鋁基複合材料研究的重點。 [0005] [0006] [0007] [0008] 099110098 高能超聲法係—種將奈㈣粒分散域合錄體的有效 方法。高能超聲法的原理係利用超聲波在鋁合金熔體中 產生的聲空化效應及聲流效應所引起的力學效應中的攪 拌、分散、除氣等來促進奈求顆粒混入鋁合金熔體,改 善奈米顆粒與銘合祕體間的潤濕性,迫使奈米顆粒在 鋁合金熔體中均勻分散。高能超聲法係一種工藝簡便、 成本低廉的顆粒增強鋁基複合材料的製備方法。然而高 能超聲法為—種魏的分散方法,因此在分散過程中礙 夕不米顆粒易浮在紹合金的表面,不 '易均勻分散至整 個鋁5金中。最終得到的鋁基複合材料中碳化矽顆粒整 體上刀散不均勻’部份區域碳化矽顆粒密度較大,部份 區域碳化矽顆粒密度較小’難以達到一種宏觀的均勻分 散。 【發明内容】 有鑒於此,提供一種奈米顆教均勻分被地鋁基複合材料 的製備方法實為必要。 本發明提供一種鋁基複合材料的製備方法 ,其包括以下 步驟.提供一半固態的鋁基金屬;攪拌上述半固態鋁基 金屬,並加入奈米顆粒,得到半固態混合漿料;將上述 丰固態混合漿料升溫至液態得到液態的混合漿料;高能 超聲處理該液態的混合漿料;冷卻該液態的混合漿料, 得到一鋁基複合材料。 相較於先前技術,本發明提供的鋁基複合材料的製備方 表單編珑A0101 第4頁/共21頁 201134949 法中將奈米顆粒加入半固態鋁合金,並攪拌半固態鋁合 金,鋁合金在半固態下黏度較大,利用攪拌作用產生的 漩渦將奈米顆粒帶入到整個半固態鋁合金中得到鋁基複 合材料,然後在液態下對鋁基複合材料施加高能超聲處 理,以此將奈米顆粒均勻統一地分散到整個鋁基複合材 料中。 【實施方式】 [0009] 請參閱圖1,本發明提供一種鋁基複合材料的製備方法, 其包括以下步驟: 〇 [0010] 步驟S10,提供一半固態的鋁基金屬。 [0011] 所述鋁基金屬的材料可為純鋁或鋁合金。所述鋁合金由 鋁及其他金屬組成。所述其他金屬可為銅、矽、鎂、辞 、錳、鎳、鐵、鈦、鉻及鋰等元素中的一種或幾種組成 〇 [0012] 所述半固態鋁基金屬的製備方法可為加熱固態的鋁基金 屬的方法,其具體包括兩個方法,方法一,加熱固態的 ^ 鋁基金屬直接至半固態得到半固態的鋁基金屬,方法二 ,先將固態的鋁基金屬加熱至液態,再降溫至半固態, 從而得到半固態的鋁基金屬。方法一中所述半固態鋁基 金屬的製備方法具體包括以下步驟: [0013] 步驟S1 01,提供一固態的鋁基金屬。該鋁基金屬可為純 鋁顆粒、鋁合金顆粒或鋁合金鑄錠。所述鋁基金屬可置 於一石墨陶土坩堝或不銹鋼容器中。 [0014] 步驟S102,將鋁基金屬加熱至鋁基金屬的液相線和固相 099110098 表單編號A0101 第5頁/共21頁 0992017825-0 201134949 [0015] [0016] [0017] 099110098 t間的溫度從而得到半固態的銘基金屬。所述加熱紹 屬的方法為採用一電阻爐加熱。所述電阻爐可採用 p電阻爐。可選擇地’在保護氣體的作用下加熱該銘 屬或在真空下加熱该紹基金屬從而減輕紹基金屬的 氧化。所述保護氣體可為氬氣。若採用保護氣體,則該 保護氡體可在後續的步财—直㈣通人,直至步驟湖 中銘基複合材料被冷卻之前。 所述液相線和固相線的定義為:當合金(泛指任一合金)由 液態開始冷卻時,會在某一個溫度開始形成固體晶體( t大部份為液體),隨著合金成分的變化,該溫度也會 變化,因此形成一個相對合金成分變化的液相線。再繼 續冷卻,就會在一個更低的溫度完全變成固體,隨著合 金成分的變化,該溫度點也會變化,因此形成一個相對 合金成分變化的曲線,即為固相線。 步驟S103,將所述鋁基金屬在半固態下保溫—段時間。 保溫可使鋁基金屬完全處轉半固態避免了鋁基金屬外部 處於半固態’内部處於_的情⑽現。所述保溫時間 為10分鐘至60分鐘。 方法二具體包括以下步驟:提供一鋁基金屬;將鋁基金 屬加熱至比鋁基金屬的液相線高5(rc以上的溫度使其完 全熔化;降低鋁基金屬的溫度至鋁基金屬的液相線和: 相線之間,從而得到半固態的鋁基金屬。通過將鋁基金 屬加熱至比鋁基金屬的液相線高5(rc以上的溫度可使鋁 基金屬完全處於液態,之後降低鋁基金屬的溫度可使鋁 基金屬全部處於半固態而避免鋁基金屬外部為半固熊, 表單編號A0101 第6頁/共21頁 0992017825-0 201134949 [0018] [0019] Ο [0020] ο 内部為固態的情況出現。 步驟S20,攪拌上述半固態鋁基金屬,並加入奈米顆粒, 得到半固態混合漿料。 所述攪拌半固態鋁基金屬的方法為強力攪拌。強力攪拌 使奈米顆粒在鋁基金屬中宏觀均勻分散。所述強力攪拌 的方法可為機械攪拌方法或電磁攪拌方法。所述電磁攪 拌方法可通過一電磁攪拌器進行。所述機械攪拌則可採 用一具有攪拌槳的裝置進行。所述攪拌槳可為雙層或三 層的葉片式。所述攪拌槳的速度的範圍為200轉/分至500 轉/分(r/min),擾拌時間為1分鐘至5分鐘。 所述奈米顆粒可為奈米陶瓷顆粒及奈米碳管,所述奈米 陶瓷顆粒包括奈米碳化矽(SiC)顆粒、奈米氧化鋁 (ai2〇3)顆粒及奈米碳化领(b4c)顆粒中的一種或幾種。 奈米顆粒的粒徑為1. 0奈米至100奈米,其中奈米碳管的 外徑為10奈米至50奈米,長度為0. 1微米至50微米。奈 米顆粒的重量百分比為0. 5%至5. 0%。較少地加入奈米顆 粒可避免奈米顆粒在鋁基金屬中團聚。因此,優選地所 述奈米顆粒的重量百分比為0. 5%至2. 0%。為了提高奈米 顆粒同鋁基金屬之間的潤濕性,在將奈米顆粒加入鋁基 金屬之前,可將奈米顆粒預熱至300 °C至350 °C,以除去 奈米顆粒表面吸附的水分。 所述奈米顆粒加入半固態鋁基金屬的時機為攪拌的過程 中。所述奈米顆粒的加入方式優選地為連續少量緩慢加 入,如此有利於奈米顆粒的分散,避免了大量奈米顆粒 099110098 表單編號A0101 第7頁/共21頁 0992017825-0 [0021] 201134949 同時加入鋁基金屬造成奈米顆粒的團聚。本實施例中奈 米顆粒採用送料管加入,所述送料管可為一鋼管。具體 地還可採用一裝有奈米顆粒的漏斗,或者採用一具有複 數個細孔的篩子,將奈米顆粒放置在篩子中,奈米顆粒 從篩子的細孔中漏出,從而添加奈米顆粒至半固態鋁基 金屬中。如此可使奈米顆粒連續少量緩慢地添加至鋁基 金屬中,同時可使奈米顆粒的加入速度一致,有助於奈 米顆粒均勻分散於鋁基金屬中。 [0022] 半固態下鋁基金屬具有一定的柔軟度,奈米顆粒於半固 態下加入鋁合金,可避免對奈米顆粒的損傷。另外,由 於半固態下鋁基金屬之黏滯阻力比較大,因此,奈米顆 粒分散進入鋁基金屬之後,奈米顆粒會被鋁基金屬桎梏 於其中,不易上升或下沉,在攪拌形成的旋渦的帶動下 使奈米顆粒分散至整個鋁基金屬中。由於機械攪拌方法 或電磁攪拌方法為一種宏觀的分散方法,因此在步驟S20 結束後,奈米顆粒在鋁基複合材料中宏觀上均勻分散。 [0023] 步驟S30,將上述半固態混合漿料升溫至液態,得到液態 之混•合聚料。 [0024] 將所述半固態混合漿料升溫至鋁基金屬的液相線以上從 而得到液態之混合漿料。通過控制電阻爐之溫度使電阻 爐内的鋁基金屬升溫至液態。升溫過程中,混合漿料中 的奈米顆粒的分散狀況仍保持不變。 [0025] 步驟S4 0,高能超聲處理所述液態之混合漿料。 [0026] 高能超聲處理可使奈米顆粒在混合漿料中微觀程度上均 099110098 表單編號A0101 第8頁/共21頁 0992017825-0 201134949 [0027] Ο [0028] [0029] Ο 勻分散。通過將高能超聲處理儀之變幅桿浸入到合金熔 體中,浸入深度為20毫米至50毫米。高能超聲處理的頻 率的範圍為介於15千赫茲至20千赫茲,最大輸出功率的 範圍為介於1.4千瓦至4千瓦,處理時間的範圍為介於10 分鐘至30分鐘,依據奈米顆粒的加入量而定,加入量多 ,則時間稱長,反之則稍短。 在液態下,混合漿料之黏滯阻力較小,流動性增強,此 時對混合漿料施加超聲作用,聲空化效應及聲流效應較 半固態下強烈。高能超聲分散可將液態的混合漿料中可 能存在的團聚的奈米顆粒分散開從而使奈米顆粒統一均 勻地分散在整個液態的混合漿料中實現微觀上均勻分散 。此時無論係宏觀角度,還係微觀角度,奈米顆粒均在 液態之混合漿料中均勻分散。 步驟S50,冷卻該液態之混合漿料,得到一鋁基複合材料 〇 所述冷卻液態之混合漿料的方法為隨爐冷卻、自然冷卻 或將所述液態之混合漿料澆注至預熱的模具中並冷卻。 所述澆注混合漿料至預熱的模具中並冷卻得到鋁基複合 材料的方法包括以下步驟:S51,升高液態之混合漿料的 溫度至澆注溫度;S52,提供一模具;S53,將所述混合 漿料澆注至模具中;S54,冷卻所述模具及模具中的混合 漿料。 在步驟S51中,洗注溫度即為洗注所述液態之混合漿料的 溫度。所述澆注溫度應高於鋁基金屬的液相線所對應的 099110098 表單編號Α0101 第9頁/共21頁 0992017825-0 [0030] 201134949 溫度。所述澆注溫度的範圍為650 °C至680 °C。當所述混 合漿料中含有較多的奈米顆粒時,混合漿料的黏度增大 ,也可適量的提高混合漿料的澆注溫度,從而增加混合 漿料之流動性,使混合漿料易於洗注。 [0031] 在步驟S52中,所述模具優選為金屬模具。所述模具可預 先進行預熱,所述模具的預熱溫度為200 °C至300 °C。所 述模具的預熱溫度可影響鋁基複合材料的性能。若模具 的預熱溫度太低,則液態之混合漿料不能完全充滿所述 模具,不能實現同步固化,容易有縮孔產生。若模具的 預熱溫度太高,則鋁基複合材料的晶粒粗大,晶粒組織 粗大進而使鋁基複合材料的性能下降。 [0032] 舉以下實施例詳細說明本發明。 [0033] 實施例一,製取SiC顆粒的重量百分比為0. 5%的SiC/ ADC12鋁基複合材料,其包括以下步驟: [0034] 提供ADC12鋁合金3千克;加熱該鋁合金至650 °C使其完 全熔化;降低鋁合金的溫度至550 °C,保溫30分鐘使之成 為半固態的鋁合金;對該半固態的鋁合金施加機械攪拌 ,攪拌速度為200轉/分至300轉/分,邊攪拌邊加入預熱 至300 °C的平均粒徑為40奈米的SiC顆粒得到半固態的混 合漿料,加入時間為1分鐘;升高混合漿料的溫度至620 ° C得到液態之混合漿料;對該液態之混合漿料進行高能超 聲處理,高能超聲處理的頻率為20千赫茲,最大輸出功 率為1. 4千瓦,超聲處理時間為10分鐘;升高混合漿料的 溫度至650 °C,將所述混合漿料澆注到210° C的金屬模具 099110098 表單蝙號A0101 第10頁/共21頁 0992017825-0 201134949 中,並冷卻製取0. 5wt. %的SiC/ADC12鋁基複合材料。 請參閱圖2,由圖中可看出,铭基複合材料中分散有少量 的SK顆粒,且SiC顆粒分散均勻沒有團聚。相比於 ADC12, 0.5wt.%的Sic/ADC12鋁基複合材料的抗拉強度 提高9.45%,彈性模量提高2124%,韌性提高4〇%,硬度 提南2· 96%。 [0〇35]實施例二,製取1. Owt. %的SiC/ADC12鋁基複合材料, 其包括以下步驟: 〇 [0036]提供ADC12鋁合金3千克,在加熱爐中加熱該鋁合金至 650°C ;降低該鋁合金的溫度至55〇」c,並保溫3〇分鐘得 到半固態之銘合金;對該半固態之紹合金施加機械授拌 ,攪拌速度為200轉/分至3〇〇轉/分,邊攪拌邊加入預熱 至300 °C的奈米SiC顆粒得到半固態之混合漿料,加入時 間為2分鐘;升溫至62(TC得到液態之混合漿料;進行高 能超聲處理15分鐘;升高混合舉料之溫度至66(rc,將所 述混合漿料澆注到的金屬模具中,並冷卻得到 〇 0wt·%的SiC/ADC12鋁基複合材料。與ADC12鋁合金相 比,l.Owt.%的SiC/ADC12鋁基複合材料的抗拉強度提 局12% ’彈性模置提而21.98%,勃性提高49%,硬度提高 4.83%。 [0037] 實施例三,製取1. 5wt. %的SiC/ADC12鋁基複合材料, 其包括以下步驟: [0038] 提供ADC12鋁合金3千克;加熱該鋁合金至65ITC ;降低 銘合金的溫度至580 C,保溫30分鐘使之成為半固態之銘 0992017825-0 099110098 表單編號A0101 第11頁/共21頁 201134949 合金;對該鋁合金施加機械攪拌,攪拌速度為300轉/分 至500轉/分,邊攪拌邊加入預熱至300 °C的奈米SiC顆粒 ,加入時間為3分鐘,得到半固態之混合漿料;升高混合 漿料的溫度至620 °C得到液態之混合漿料,並進行高能超 聲處理,高能超聲處理的頻率為20千赫茲,最大輸出功 率為1. 4千瓦,超聲處理時間為1 5分鐘;升高混合漿料之 溫度至670 °C,將所述混合漿料澆注到210°C的金屬模具 中,並冷卻得到1. 5wt. %的SiC/ADC12鋁基複合材料。 請參閱圖3,由圖中可看出,SiC顆粒在鋁基複合材料中 均勻分散且沒有團聚。與ADC12鋁合金相比,1. 5wt. %的 SiC/ADC12鋁基複合材料的抗拉強度提高14. 33%,彈性 模量提高32. 45%,韌性提高98. 04%,硬度提高6. 10%。 [0039] 實施例四,製取2. Owt. %的SiC/ADC12鋁基複合材料, 其包括以下步驟: [0040] 提供ADC12鋁合金3千克;在氬氣做為保護氣體下加熱該 鋁合金至650 °C ;降低鋁合金的溫度至550 °C,保溫30分 鐘使之成為半固態之鋁合金;對該半固態鋁合金施加機 械攪拌,攪拌速度為300轉/分至500轉/分,邊攪拌邊加 入預熱至300 °C的奈米SiC顆粒,加入時間為5分鐘,得 到半固態混合漿料;升高混合漿料之溫度至620 ° C得到液 態之混合漿料,並進行高能超聲處理,高能超聲處理的 頻率為20千赫茲,最大輸出功率為1. 4千瓦,超聲處理時 間為15分鐘;升高混合漿料的溫度至680 °C,將所述混合 漿料澆注到210°C的金屬模具中,並冷卻得到2. Owt. °/〇的 SiC/ADC12鋁基複合材料。請參閱圖4,由圖中可看出, 099110098 表單編號A0101 第12頁/共21頁 0992017825-0 201134949 [0041] Ο [0042] Ο [0043] [0044] [0045] [0046]201134949 VI. Description of the Invention: [Technical Field] The present invention relates to a method for preparing a metal matrix composite material, and more particularly to a method for preparing an aluminum matrix composite material. [Prior Art] [0002] ❹ [0003] 〇 [0004] 099110098 Metal matrix composites have excellent physical properties and mechanical properties such as light weight, high specific strength, high specific stiffness and good wear resistance, and will be used in aviation Ruitian. The military, automotive and automotive industries are becoming more widely used. Among them, the particle reinforced metal matrix composite material has the characteristics of low cost and simple preparation process, and has gradually become a research field in the field of metal matrix composite materials. The heavy aluminum matrix composite material has high specific strength, specific stiffness, specific elastic modulus, and It has good wear resistance and high temperature resistance, so it has received extensive attention. The commonly used particle reinforced aluminum matrix composite preparation techniques are powder metallurgy and casting. However, the process equipment of the powder metallurgy method is complicated and costly, and it is difficult to prepare parts with large volume and complicated shape. Moreover, there is a danger of powder burning and explosion during the production process. The casting process is simple and easy to operate. It can produce large hoarding composite materials (up to 500kg), and the equipment investment is low. The production cost is low, which is suitable for large-scale production. The properties of particle reinforced aluminum matrix composites are closely related to the size of the reinforced particles. The widely used granules are mostly between 3 and 30/zm. Studies have shown that the smaller the reinforced particle size, the better the reinforcement effect. Because small particles not only have structural defects on their own, but also have higher thermal mismatching site error density around them. Nanoparticles exhibit a good strengthening effect on aluminum-based metals, but they are enhanced by the ease of agglomeration of fine particles. Form No. A0101 Page 1 of 21 0992017825-0 201134949 The effect is greatly reduced. Therefore, solving the problem of nano-dispersion of composite materials has become the focus of research on aluminum-based composite materials. [0007] [0007] [0008] 099110098 High-energy ultrasonic method - an effective method for the recording of na[beta] particles in a dispersed domain. The principle of high-energy ultrasonic method is to use the ultrasonic cavitation effect generated by the ultrasonic wave in the aluminum alloy melt and the mechanical effects caused by the acoustic flow effect to stir, disperse, degas, etc. to promote the mixing of the Naiqi particles into the aluminum alloy melt, improve The wettability between the nanoparticle and the secret body forces the nanoparticle to be uniformly dispersed in the aluminum alloy melt. The high-energy ultrasonic method is a preparation method of a particle-reinforced aluminum-based composite material with simple process and low cost. However, the high-energy ultrasonic method is a kind of dispersion method of Wei, so in the dispersion process, the particles are easily floated on the surface of the Shao alloy, and are not easily dispersed evenly throughout the aluminum 5 gold. In the finally obtained aluminum-based composite material, the cerium carbide particles are unevenly distributed on the whole body. The density of the cerium carbide particles in the partial region is large, and the density of the cerium carbide particles in the partial region is small, and it is difficult to achieve a macroscopic uniform dispersion. SUMMARY OF THE INVENTION In view of the above, it is necessary to provide a method for preparing a nano-composite material which is uniformly divided into layers. The invention provides a method for preparing an aluminum-based composite material, comprising the steps of: providing a semi-solid aluminum-based metal; stirring the semi-solid aluminum-based metal, and adding the nano-particles to obtain a semi-solid mixed slurry; The mixed slurry is heated to a liquid state to obtain a liquid mixed slurry; the liquid mixed slurry is ultrasonically treated by high energy; and the liquid mixed slurry is cooled to obtain an aluminum-based composite material. Compared with the prior art, the preparation method of the aluminum-based composite material provided by the present invention is edited by A0101, page 4/21, 201134949. The method is to add nano particles to a semi-solid aluminum alloy and stir the semi-solid aluminum alloy, aluminum alloy. In the semi-solid state, the viscosity is large, and the vortex generated by the stirring is used to bring the nano particles into the whole semi-solid aluminum alloy to obtain the aluminum-based composite material, and then the high-energy ultrasonic treatment is applied to the aluminum-based composite material in the liquid state, thereby The nanoparticles are uniformly and uniformly dispersed throughout the aluminum matrix composite. Embodiments [0009] Referring to FIG. 1, the present invention provides a method for preparing an aluminum-based composite material, which comprises the following steps: [0010] Step S10, providing a semi-solid aluminum-based metal. [0011] The material of the aluminum-based metal may be pure aluminum or an aluminum alloy. The aluminum alloy is composed of aluminum and other metals. The other metal may be one or more of elements such as copper, bismuth, magnesium, rhenium, manganese, nickel, iron, titanium, chromium, and lithium. [0012] The preparation method of the semi-solid aluminum-based metal may be A method for heating a solid aluminum-based metal, which specifically comprises two methods, the first method, heating the solid aluminum-based metal to a semi-solid to obtain a semi-solid aluminum-based metal, and the second method, first heating the solid aluminum-based metal to The liquid is then cooled to a semi-solid state to obtain a semi-solid aluminum-based metal. The method for preparing the semi-solid aluminum-based metal in the first method comprises the following steps: [0013] Step S1 01, providing a solid aluminum-based metal. The aluminum-based metal may be pure aluminum particles, aluminum alloy particles or aluminum alloy ingots. The aluminum-based metal can be placed in a graphite clay or stainless steel container. [0014] Step S102, heating the aluminum-based metal to the liquidus and solid phase of the aluminum-based metal 099110098 Form No. A0101 Page 5 / Total 21 Pages 0992017825-0 201134949 [0015] [0017] 099110098 t The temperature thus gives the semi-solid metal of the base. The method of heating is to use a resistance furnace to heat. The resistance furnace may be a p resistance furnace. Optionally, the inscription is heated under the action of a shielding gas or the Schottky metal is heated under vacuum to mitigate oxidation of the Schottky metal. The shielding gas may be argon. If a shielding gas is used, the protective carcass can be passed on in the subsequent steps until the inscription in the lake is cooled. The liquidus and solidus are defined as: when an alloy (generally referred to as any alloy) is cooled from a liquid state, solid crystals (mostly liquids) are formed at a certain temperature, along with the alloy composition. The change in temperature also changes, thus forming a liquidus that changes in composition relative to the alloy. When it continues to cool, it will completely become a solid at a lower temperature. As the composition of the alloy changes, the temperature will also change, thus forming a curve that changes with respect to the composition of the alloy, which is a solidus line. In step S103, the aluminum-based metal is kept in a semi-solid state for a period of time. Insulation allows the aluminum-based metal to be completely semi-solid and avoids the fact that the aluminum-based metal is in a semi-solid interior. The incubation time is from 10 minutes to 60 minutes. The method 2 specifically includes the steps of: providing an aluminum-based metal; heating the aluminum-based metal to a liquidus higher than the liquidus of the aluminum-based metal by 5 (the temperature above rc is completely melted; and reducing the temperature of the aluminum-based metal to the aluminum-based metal The liquidus and: between the phase lines, thereby obtaining a semi-solid aluminum-based metal. By heating the aluminum-based metal to a liquidus higher than the liquidus of the aluminum-based metal by 5 (the temperature above rc allows the aluminum-based metal to be completely in a liquid state, After reducing the temperature of the aluminum-based metal, the aluminum-based metal is all in a semi-solid state and the aluminum-based metal is prevented from being a semi-solid bear. Form No. A0101 Page 6 / 21 pages 0992017825-0 201134949 [0018] [0019] Ο [0020 ο The inside is solid. In step S20, the semi-solid aluminum-based metal is stirred and the nano-particles are added to obtain a semi-solid mixed slurry. The method of stirring the semi-solid aluminum-based metal is vigorous stirring. The nanoparticle is uniformly dispersed macroscopically in the aluminum-based metal. The method of vigorously stirring may be a mechanical stirring method or an electromagnetic stirring method, and the electromagnetic stirring method may be performed by a magnetic stirrer. Mechanical agitation can be carried out using a device with a stirring paddle, which can be a two- or three-layer blade type. The speed of the agitating paddle ranges from 200 rpm to 500 rpm (r/min). The scavenging time is from 1 minute to 5 minutes. The nano particles may be nano ceramic particles and nano carbon tubes, and the nano ceramic particles include nano cerium carbide (SiC) particles and nano alumina ( Ai2〇3) one or more of the particles and the nanocarbonized collar (b4c) particles. The particle size of the nanoparticle is from 1.0 nm to 100 nm, wherein the outer diameter of the carbon nanotube is 10 nm. 5%至5. 0%。 Less than the addition of nanoparticles to avoid the agglomeration of nanoparticles in aluminum-based metals to 50 nm, the length is from 0.1 μm to 50 μm. 5%至2. 0%。 In order to increase the wettability between the nanoparticle and the aluminum-based metal, before adding the nanoparticle to the aluminum-based metal, the weight percentage of the nanoparticle is preferably 0.5% to 2.0%. The nano particles can be preheated to 300 ° C to 350 ° C to remove moisture adsorbed on the surface of the nano particles. The nano particles are added to the semi-solid The timing of the base metal is during the stirring process. The manner in which the nanoparticles are added is preferably slowly added in a small amount in a continuous manner, which is advantageous for the dispersion of the nanoparticles, avoiding a large amount of nano particles 099110098 Form No. A0101 Page 7 / Total 21 pages 0992017825-0 [0021] 201134949 The simultaneous addition of aluminum-based metal causes agglomeration of nano particles. In this embodiment, the nano particles are added by a feeding tube, which may be a steel tube. The funnel of the nanoparticle, or a sieve having a plurality of fine pores, is used to place the nanoparticle in the sieve, and the nanoparticle is leaked from the pores of the sieve to add the nanoparticle to the semi-solid aluminum-based metal. Thus, the nanoparticles can be slowly added to the aluminum-based metal in a small amount continuously, and the addition speed of the nanoparticles can be made uniform, which contributes to the uniform dispersion of the nanoparticles in the aluminum-based metal. [0022] The semi-solid aluminum-based metal has a certain degree of softness, and the nano-particles are added to the aluminum alloy in a semi-solid state to avoid damage to the nano-particles. In addition, since the viscous resistance of the aluminum-based metal in the semi-solid state is relatively large, after the nano-particles are dispersed into the aluminum-based metal, the nano-particles are entangled in the aluminum-based metal, which is difficult to rise or sink, and is formed by stirring. The vortex is driven to disperse the nanoparticles into the entire aluminum-based metal. Since the mechanical stirring method or the electromagnetic stirring method is a macroscopic dispersion method, after the end of step S20, the nanoparticles are uniformly dispersed macroscopically in the aluminum-based composite material. [0023] In step S30, the semi-solid mixed slurry is heated to a liquid state to obtain a liquid mixed/polymerized material. [0024] The semi-solid mixed slurry is heated to a liquidus of the aluminum-based metal to obtain a liquid mixed slurry. The aluminum-based metal in the electric resistance furnace is heated to a liquid state by controlling the temperature of the electric resistance furnace. During the heating process, the dispersion of the nanoparticles in the mixed slurry remained unchanged. [0025] Step S40, high energy ultrasonic treatment of the liquid mixed slurry. [0026] High-energy sonication allows the nanoparticle to be microscopically in the mixed slurry. 099110098 Form No. A0101 Page 8 of 21 0992017825-0 201134949 [0027] [0029] Ο Disperse evenly. The immersion depth is 20 mm to 50 mm by immersing the horn of the high energy sonicator into the alloy melt. High-energy sonication ranges from 15 kHz to 20 kHz, maximum output power ranges from 1.4 kW to 4 kW, and processing times range from 10 minutes to 30 minutes, depending on the nanoparticle Depending on the amount added, if the amount is too large, the time is called long, and vice versa. In the liquid state, the viscous resistance of the mixed slurry is small and the fluidity is enhanced. At this time, ultrasonic action is applied to the mixed slurry, and the acoustic cavitation effect and the acoustic flow effect are stronger than those in the semi-solid state. The high-energy ultrasonic dispersion can disperse the agglomerated nano particles which may be present in the liquid mixed slurry to uniformly and uniformly disperse the nano particles in the entire liquid mixed slurry to achieve microscopic uniform dispersion. At this time, regardless of the macroscopic angle and the microscopic angle, the nanoparticles are uniformly dispersed in the liquid mixed slurry. Step S50, cooling the liquid mixed slurry to obtain an aluminum-based composite material, the method of cooling the liquid mixed slurry by cooling with a furnace, naturally cooling, or pouring the liquid mixed slurry to a preheated mold. Medium and cool. The method for casting the mixed slurry into the preheated mold and cooling to obtain the aluminum-based composite material comprises the following steps: S51, raising the temperature of the liquid mixed slurry to the pouring temperature; S52, providing a mold; S53, The mixed slurry is poured into the mold; S54, the mixed slurry in the mold and the mold is cooled. In step S51, the washing temperature is the temperature at which the liquid mixed slurry is washed. The pouring temperature should be higher than the liquidus of the aluminum-based metal. 099110098 Form No. 1010101 Page 9 of 21 0992017825-0 [0030] 201134949 Temperature. The casting temperature ranges from 650 °C to 680 °C. When the mixed slurry contains more nano particles, the viscosity of the mixed slurry is increased, and the pouring temperature of the mixed slurry can be increased in an appropriate amount, thereby increasing the fluidity of the mixed slurry and making the mixed slurry easy. Wash. [0031] In step S52, the mold is preferably a metal mold. The mold may be preheated in advance, and the mold has a preheating temperature of 200 ° C to 300 ° C. The preheating temperature of the mold can affect the properties of the aluminum matrix composite. If the preheating temperature of the mold is too low, the liquid mixed slurry cannot completely fill the mold, and simultaneous solidification cannot be achieved, and shrinkage cavities are easily generated. If the preheating temperature of the mold is too high, the crystal grains of the aluminum-based composite material are coarse, and the grain structure is coarsened to deteriorate the performance of the aluminum-based composite material. The invention is illustrated in detail by the following examples. [0033] The first embodiment, the SiC particles are 0.5% by weight of the SiC / ADC12 aluminum-based composite material, comprising the following steps: [0034] providing ADC12 aluminum alloy 3 kg; heating the aluminum alloy to 650 ° C to completely melt; reduce the temperature of the aluminum alloy to 550 ° C, keep it for 30 minutes to make it a semi-solid aluminum alloy; apply mechanical agitation to the semi-solid aluminum alloy, the stirring speed is 200 rpm to 300 rpm / And adding SiC particles with an average particle diameter of 40 nm preheated to 300 ° C with stirring to obtain a semi-solid mixed slurry for a period of 1 minute; raising the temperature of the mixed slurry to 620 ° C to obtain a liquid state The mixed slurry; the liquid mixed slurry is subjected to high-energy sonication, the high-energy ultrasonic treatment frequency is 20 kHz, the maximum output power is 1.4 kW, the sonication time is 10 minutes; and the temperature of the mixed slurry is raised. The SiC/ADC12 is cooled to a temperature of 650 ° C. The mold is poured into a 210 ° C metal mold 099110098 form bat number A0101 page 10 / total 21 page 0992017825-0 201134949, and cooled to obtain 0. 5wt. % SiC / ADC12 Aluminum matrix composites. Referring to Figure 2, it can be seen that a small amount of SK particles are dispersed in the Ming matrix composite, and the SiC particles are uniformly dispersed without agglomeration. Compared with ADC12, the tensile strength of 0.5wt.% Sic/ADC12 aluminum matrix composite increased by 9.45%, the elastic modulus increased by 2124%, the toughness increased by 4〇%, and the hardness increased by 2.96%. [0〇35] The second embodiment, the preparation of 1. Owt.% SiC / ADC12 aluminum-based composite material, comprising the following steps: 〇 [0036] provides ADC12 aluminum alloy 3 kg, heating the aluminum alloy in a heating furnace to 650 ° C; reduce the temperature of the aluminum alloy to 55 〇" c, and keep it for 3 〇 minutes to obtain a semi-solid alloy; apply mechanical mixing to the semi-solid alloy, stirring speed of 200 rev / min to 3 〇 〇 / / min, while stirring, add nano SiC particles preheated to 300 ° C to obtain a semi-solid mixed slurry, the addition time is 2 minutes; the temperature is raised to 62 (TC to obtain a liquid mixed slurry; high energy ultrasonic treatment 15 minutes; raise the temperature of the mixed material to 66 (rc, cast the mixed slurry into the metal mold, and cool to obtain 〇0wt·% SiC/ADC12 aluminum-based composite material. Compared with ADC12 aluminum alloy , l.Owt.% SiC / ADC12 aluminum-based composite material tensile strength improvement 12% 'elastic mold lifted up 21.98%, boeriness increased by 49%, hardness increased by 4.83%. [0037] Example three, system Taking 1.5 wt.% of SiC/ADC12 aluminum-based composite material, which comprises the following steps: [0038] Providing ADC12 aluminum alloy 3 kg Heat the aluminum alloy to 65ITC; lower the temperature of the alloy to 580 C, keep it for 30 minutes to make it semi-solid. 0992017825-0 099110098 Form No. A0101 Page 11 of 21 201134949 Alloy; apply mechanical agitation to the aluminum alloy a stirring speed of 300 rpm to 500 rpm, and adding nano SiC particles preheated to 300 ° C with stirring for 3 minutes to obtain a semi-solid mixed slurry; The liquid is mixed to a temperature of 620 ° C and subjected to high-energy sonication. The frequency of high-energy sonication is 20 kHz, the maximum output power is 1.4 kW, and the sonication time is 15 minutes. The SiC/ADC12 aluminum-based composite material is 1. 5wt. % of the SiC/ADC12 aluminum-based composite material. See Figure 3, which can be seen from the figure. The temperature is up to 670 °C. The tensile strength of the SiC/ADC12 aluminum-based composite material is increased by 14.33%, and the modulus of elasticity is improved, as compared with the aluminum alloy-based composite material. 32. 45%, toughness increased by 98.04%, hardness [0039] Example 4, preparing 2. Owt.% of SiC / ADC12 aluminum-based composite material, comprising the following steps: [0040] providing ADC12 aluminum alloy 3 kg; protected by argon The aluminum alloy is heated to 650 ° C under gas; the temperature of the aluminum alloy is lowered to 550 ° C, and the aluminum alloy is kept for 30 minutes to make it a semi-solid aluminum alloy; mechanical stirring is applied to the semi-solid aluminum alloy, and the stirring speed is 300 rpm. To 500 rpm, add nano SiC particles preheated to 300 °C with stirring for 5 minutes to obtain a semi-solid mixed slurry; increase the temperature of the mixed slurry to 620 ° C to obtain a liquid mixture. Slurry and high-energy sonication, high-energy sonication at a frequency of 20 kHz, maximum output power of 1.4 kW, sonication time of 15 minutes; raising the temperature of the mixed slurry to 680 °C, The mixed slurry was poured into a metal mold at 210 ° C, and cooled to obtain a SiC/ADC12 aluminum-based composite material of 2. Owt. ° / 〇. Please refer to FIG. 4, as can be seen from the figure, 099110098 Form No. A0101 Page 12 / Total 21 Pages 0992017825-0 201134949 [0041] Ο [0044] [0044] [0046]

Si C顆粒在鋁基複合材料中均勻分散且沒有團聚◊與 ADC12銘合金相比’ 2. 〇wt. %的SiC/ADC12鋁基複合材料 的抗拉強度提高22. 87%,彈性模量提高43. 1%,韌性提 高155. 88% ’硬度提高7. 38%。 本發明提供的鋁基複合材料的製備方法中將奈米顆粒加 入半固%銘合金,並授掉半固態紹合金,紹合金在半固 態下黏度較大,利用攪拌作用產生的旋渦將奈米顆粒帶 入到整個半固態鋁合金得到鋁基複合材料,然後在液態 下對鋁基複合材料施加高能超聲處理,以此將奈米顆粒 均勻統一地分散到整個鋁基複合材料中。 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專射請。惟’以上所述者僅為本發明之較佳實施例 ’自不能以此限制本案之申請專利範固。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1係本發明提供的銘基複合材料的製備方法的流程圖。 圖2係本發明提供的重量百分比為0.5%的SiC/ADC12銘基 複合材料的掃描電鏡圖片。 圖3係本發明提供的重量百八& , c n/ 置白刀比為1. 5%的SiC/ADC12鋁基 複合材料的透射電鏡圖片。 圖係本發明提供的重量百分比為2.⑽的Sic/ADci2銘基 複合材料的掃描電鏡圖片。 【主要元件符號說明】 099110098 表單編號A0101 第13頁/共21頁 0992017825-0 201134949[0047]無 i. 099110098 表單編號A0101 第14頁/共21頁 0992017825-0The Si C particles are uniformly dispersed in the aluminum matrix composite and have no agglomerated tantalum compared with the ADC12 alloy. ' 2. 〇wt. % of the SiC/ADC12 aluminum matrix composite has a tensile strength increase of 22.87%, and the modulus of elasticity is improved. 43%。 The hardness increased by 155. 88% 'hardness increased by 7. 38%. In the preparation method of the aluminum-based composite material provided by the invention, the nano-particles are added to the semi-solid alloy, and the semi-solid alloy is given, and the viscosity of the alloy is larger in the semi-solid state, and the vortex generated by the stirring is used to turn the nanometer. The particles are brought into the entire semi-solid aluminum alloy to obtain an aluminum-based composite material, and then the high-energy ultrasonic treatment is applied to the aluminum-based composite material in a liquid state, thereby uniformly dispersing the nano-particles into the entire aluminum-based composite material. In summary, the present invention has indeed met the requirements of the invention patent, and the special shot is requested according to law. However, the above description is only a preferred embodiment of the present invention, which does not limit the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art to the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a flow chart showing a method of preparing a Ming base composite material provided by the present invention. Figure 2 is a scanning electron micrograph of a 0.5% by weight SiC/ADC12 Ming-based composite provided by the present invention. Figure 3 is a transmission electron micrograph of a SiC/ADC12 aluminum-based composite material having a weight ratio of 8.5/cm, and a white knife ratio of 1.5%. The figure is a scanning electron micrograph of a Sic/ADci2 Ming base composite material having a weight percentage of 2. (10) provided by the present invention. [Main component symbol description] 099110098 Form No. A0101 Page 13 of 21 0992017825-0 201134949[0047]None i. 099110098 Form No. A0101 Page 14 of 21 0992017825-0

Claims (1)

201134949 七、申請專利範圍: 1 . 一種鋁基複合材料的製備方法,其包括以下步驟: 提供一半固態之鋁基金屬; 攪拌上述半固態鋁基金屬,並加入奈米顆粒,得到半固態 混合漿料; 將上述半固態混合漿料升溫至液態得到液態之混合漿料; 高能超聲處理該液態之混合漿料; 冷卻該液態之混合漿料,得到一鋁基複合材料。 2 .如申請專利範圍第1項所述之鋁基複合材料的製備方 ζ) 法,其中,所述半固態鋁基金屬的製備方法為:提供一鋁 基金屬;加熱鋁基金屬至鋁基金屬的液相線和固相線之間 的溫度從而得到半固態的鋁基金屬;將所述鋁基金屬在半 固態下保溫一段時間。 3 .如申請專利範圍第2項所述之鋁基複合材料的製備方 法,其中,所述加熱鋁基金屬得到半固態的鋁基金屬的方 法具體包括:將鋁基金屬加熱至比鋁基金屬的液相線高 5 0 ° C以上的溫度使銘基金屬..完全熔化;降低銘基金屬的 〇 溫度至鋁基金屬的液相線和固相線之間,從而得到半固態 的銘基金屬。 4 .如申請專利範圍第2項所述之鋁基複合材料的製備方 法,其中,所述加熱鋁基金屬的過程為在保護氣體作用下 進行或者在真空下進行,所述保護氣體為惰性氣體。 5 .如申請專利範圍第1項所述之鋁基複合材料的製備方 法,其中,所述奈米顆粒包括奈米碳化矽顆粒、奈米氧化 鋁顆粒、奈米碳化硼顆粒及奈米碳管中的一種或幾種。 099110098 表單編號Α0101 第15頁/共21頁 0992017825-0 201134949 b •如申請專利範圍第5項所述之鋁基複合材料的製備方 ^ 其中,所述奈米·官的外從為10奈米至50奈米,手 度為〇. 1微米至50微米。 7 ·如申請專利範圍第1項所述之鋁基複合材料的製備方 法’其中,所述奈米顆粒的粒徑為1. 〇奈米至100奈米。 8 *如申請專利範圍第i項所述之鋁基複合材料的製備方 法’其中,奈米顆粒的重量百分比為0.5%至2.0%。 9 ·如申請專利範圍第1項所述之鋁基複合材料的製備方 法’其中,所述攪拌半固態鋁基金屬的方法包括機械搜拌 方法或電磁攪拌方法。 10 .如申請專利範圍第1項所述之鋁基複合材料的製備方 法’其中,所述高能超聲處理的頻率係15千赫茲至20千 赫兹。 11 ·如申請專利範圍第1項所述之鋁基複合材料的製備方 法’其中’所述高能超聲處理的最大輸出功率為i . 4千瓦 至4千瓦。 12 .如申請專利範圍第1項所述之銘暴,複'.合_材料的製備方 法,其中,所述高能超聲*理的處蝗時間為10分鐘至 3 0分鐘。 13 .如申請專利範圍第1項所述之鋁基複合材料的製備方 法,其中’所述冷卻該液態的混合漿料的方法具體為將所 述液態的混合漿料注入一模具中並冷卻,所述將液態的混 合漿料注入一模具中並冷卻的方法具體包括以下步驟:升 高液態的混合漿料的溫度至洗注溫度;提供一模具;將所 述混合漿料澆注至模具中;冷卻所述模具及模具中的混合 漿料。 099110098 表單編號A0101 第16頁/共21頁 0992017825-0 201134949 14 .如申請專利範圍第13項所述之鋁基複合材料的製備方 法,其中,所述模具在使用之前進行預熱,所述模具的預 熱溫度為200 °C至300 °C。 15 .如申請專利範圍第13項所述之鋁基複合材料的製備方 法,其中,所述澆注溫度的範圍為650 °C至680 °C。 16 .如申請專利範圍第1項所述之鋁基複合材料的製備方 法,其中,所述加入奈米顆粒的方法為連續加入,且加入 速度一致。 ❹ 099110098 表單編號 A0101 第 17 頁/共 21 頁 0992017825-0201134949 VII. Patent application scope: 1. A method for preparing an aluminum-based composite material, comprising the steps of: providing a semi-solid aluminum-based metal; stirring the semi-solid aluminum-based metal, and adding nano particles to obtain a semi-solid mixed slurry The above semi-solid mixed slurry is heated to a liquid state to obtain a liquid mixed slurry; the liquid mixed slurry is ultrasonically treated by high energy; and the liquid mixed slurry is cooled to obtain an aluminum-based composite material. 2. The method for preparing an aluminum-based composite material according to claim 1, wherein the semi-solid aluminum-based metal is prepared by: providing an aluminum-based metal; heating the aluminum-based metal to the aluminum-based The temperature between the liquidus and the solidus of the metal thereby results in a semi-solid aluminum-based metal; the aluminum-based metal is held in a semi-solid state for a period of time. 3. The method for preparing an aluminum-based composite material according to claim 2, wherein the method for heating the aluminum-based metal to obtain a semi-solid aluminum-based metal comprises: heating the aluminum-based metal to a specific aluminum-based metal The liquidus height above 50 ° C makes the Mingji metal completely melted; reduces the 〇 temperature of the Ming metal to the liquidus and solidus of the aluminum-based metal, thus obtaining a semi-solid Mingji metal. 4. The method for preparing an aluminum-based composite material according to claim 2, wherein the process of heating the aluminum-based metal is performed under a protective gas or under a vacuum, and the protective gas is an inert gas. . 5. The method for preparing an aluminum-based composite material according to claim 1, wherein the nano particles comprise nano-sized cerium carbide particles, nano-alumina particles, nano-carbonized boron particles, and carbon nanotubes. One or several of them. 099110098 Form No. 1010101 Page 15 of 21 0992017825-0 201134949 b • Preparation of the aluminum-based composite material as described in claim 5 of the patent application ^ wherein the external appearance of the nanoman is 10 nm To 50 nm, the hand is 〇. 1 micron to 50 microns. The method of preparing the aluminum-based composite material according to the first aspect of the invention, wherein the nanoparticle has a particle diameter of from 1. nanometer to 100 nanometers. 8 * A method of preparing an aluminum-based composite material according to the invention of claim i wherein the weight percentage of the nanoparticles is from 0.5% to 2.0%. 9. The method of preparing an aluminum-based composite material according to claim 1, wherein the method of agitating the semi-solid aluminum-based metal comprises a mechanical search method or an electromagnetic stirring method. 10. The method of preparing an aluminum-based composite material according to claim 1, wherein the high-energy sonication frequency is from 15 kHz to 20 kHz. 11. The method of preparing an aluminum-based composite material according to claim 1, wherein the high-energy sonication has a maximum output power of from 1.0 kW to 4 kW. 12. The invention as claimed in claim 1, wherein the high energy ultrasonic treatment time is from 10 minutes to 30 minutes. The method for preparing an aluminum-based composite material according to claim 1, wherein the method for cooling the liquid mixed slurry is specifically: injecting the liquid mixed slurry into a mold and cooling, The method for injecting a liquid mixed slurry into a mold and cooling comprises the steps of: raising a temperature of the liquid mixed slurry to a washing temperature; providing a mold; pouring the mixed slurry into the mold; The mixed slurry in the mold and the mold is cooled. The method for preparing an aluminum-based composite material according to claim 13, wherein the mold is preheated prior to use, the mold number is A0101, and the mold is preheated before use. The preheating temperature is 200 °C to 300 °C. The method of producing an aluminum-based composite material according to claim 13, wherein the pouring temperature ranges from 650 ° C to 680 ° C. The method for producing an aluminum-based composite material according to claim 1, wherein the method of adding the nanoparticles is continuous addition, and the joining speed is uniform. ❹ 099110098 Form number A0101 Page 17 of 21 0992017825-0
TW99110098A 2010-04-01 2010-04-01 Method for making aluminium-based metal matrix composites TWI414610B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99110098A TWI414610B (en) 2010-04-01 2010-04-01 Method for making aluminium-based metal matrix composites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99110098A TWI414610B (en) 2010-04-01 2010-04-01 Method for making aluminium-based metal matrix composites

Publications (2)

Publication Number Publication Date
TW201134949A true TW201134949A (en) 2011-10-16
TWI414610B TWI414610B (en) 2013-11-11

Family

ID=46751655

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99110098A TWI414610B (en) 2010-04-01 2010-04-01 Method for making aluminium-based metal matrix composites

Country Status (1)

Country Link
TW (1) TWI414610B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104046825A (en) * 2014-07-04 2014-09-17 江苏大学 Preparation method of in-situ particle reinforced aluminum-based composite material
US9034073B2 (en) 2011-10-21 2015-05-19 Tsinghua University Method for making metal-based nano-composite material
CN115058619A (en) * 2022-07-14 2022-09-16 河南工程学院 Nano titanium carbide reinforced 2024 aluminum-based composite material and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW581817B (en) * 2000-08-21 2004-04-01 Ching-Bin Lin Method for producing sub-micron granular aluminum-based composite material
TWI452075B (en) * 2007-12-14 2014-09-11 Hon Hai Prec Ind Co Ltd Method of making light metal matrix nanocomposites

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9034073B2 (en) 2011-10-21 2015-05-19 Tsinghua University Method for making metal-based nano-composite material
TWI503190B (en) * 2011-10-21 2015-10-11 Hon Hai Prec Ind Co Ltd Method for making matel based composite material
CN104046825A (en) * 2014-07-04 2014-09-17 江苏大学 Preparation method of in-situ particle reinforced aluminum-based composite material
CN104046825B (en) * 2014-07-04 2016-05-25 江苏大学 A kind of aluminum based composite material enhanced by granules in situ preparation method
CN115058619A (en) * 2022-07-14 2022-09-16 河南工程学院 Nano titanium carbide reinforced 2024 aluminum-based composite material and preparation method thereof

Also Published As

Publication number Publication date
TWI414610B (en) 2013-11-11

Similar Documents

Publication Publication Date Title
CN102108455B (en) Preparation method of aluminum-base composite material
TWI503190B (en) Method for making matel based composite material
Yuan et al. Development of high strength and toughness nano-SiCp/A356 composites with ultrasonic vibration and squeeze casting
TWI437100B (en) Method for making magnesium-based metal matrix composites
Li et al. Effects of ultrasonic vibration on microstructure and mechanical properties of nano-sized SiC particles reinforced Al-5Cu composites
JP5608519B2 (en) Method for producing magnesium-based composite material
Liu et al. Fabrication of carbon nanotubes reinforced AZ91D composites by ultrasonic processing
Xuan et al. The role of ultrasonic cavitation in refining the microstructure of aluminum based nanocomposites during the solidification process
CN110205527B (en) Al-Mg-Si alloy wire for additive manufacturing and preparation method thereof
Kun et al. Effects of nano-SiCp content on microstructure and mechanical properties of SiCp/A356 composites assisted with ultrasonic treatment
Li et al. Variation of microstructure and mechanical properties of hybrid particulates reinforced Al-alloy matrix composites with ultrasonic treatment
Qin et al. Effect of reaction temperature on the microstructures and mechanical properties of high-intensity ultrasonic assisted in-situ Al3Ti/2024 Al composites
JP2012237061A (en) Aluminum alloy excellent in rigidity and manufacturing method therefor
Pramanik et al. Fabrication of nano-particle reinforced metal matrix composites
Fattahi et al. Applying the ultrasonic vibration during TIG welding as a promising approach for the development of nanoparticle dispersion strengthened aluminum weldments
CN114749679A (en) Porous frame structure reinforced magnesium-based composite material and preparation method thereof
Hadad et al. Investigation and comparison of the effect of graphene nanoplates and carbon nanotubes on the improvement of mechanical properties in the stir casting process of aluminum matrix nanocomposites
TWI414610B (en) Method for making aluminium-based metal matrix composites
CN110964933A (en) Preparation method of graphene/aluminum and aluminum alloy composite material
CN104532032A (en) Method for preparing nano-alumina reinforced aluminum-based composite semi-solid slurry based on composite vibration technology
CN109182817A (en) A kind of preparation method of graphene enhancing cobalt-based composite material
Li et al. Untrasonic-assisted fabrication of SiC nanoparticles reinforced aluminum matrix composites
Dirisenapu et al. The influence of B4C and BN nanoparticles on Al 7010 hybrid metal matrix nanocomposites
Jayalakshmi et al. Synthesis of light metal nanocomposites: challenges and opportunities
Kandemir et al. Production of aluminium matrix nanocomposite feedstock for thixoforming by an ultrasonic method