201134784 六、發明說明: 【發明所屬之技術領域】 本發明關於一種水泥及其製造方法,尤指一種環保 水泥及其製造方法。 【先前技術】 石灰石污泥(limestone sludge)係石灰製造薇的水洗程 序所 >儿殿產生之污泥,估計每月的產量為12〇〇〜1400公 °镇左右。電石潰(calcium carbide slag)為使用電石水解法製 • 造乙炔時所產生的廢棄物。舉凡乙炔製造廠或其他相關 行業,只要是使用電石法製造乙炔者,皆會產生廢電石 渣,舉例來說,以電石乙炔法生產聚氯乙烯的聚氯乙烯 製造廠’通常生產1噸的產品需耗費1.8噸的電石,並 產生1.5噸之含固量為12%的電石渣漿,若再加上電石 泥渣的雜質,整體電石渣約到2噸左右。目前估計台灣 地區每年約產生100噸以上的廢電石渣。 口 目前石灰石污泥和廢電石渣的處理上,由於缺乏再 利用官道,仍以掩埋為主要的處理方式,另有部分廠商 則暫存於廠區或回填至窪地。然而,這些處理方式並不 完善,不但花費極大社會成本且降低產業競爭力同時 也可能污染環境》因此在環保議題越來越被重視的今 天,迫切的需要更為妥善的方式以回收利用石灰石污泥 和廢電石渣。 【發明内容】 si ㈣本發明之主要目的為提供一種水泥生料及利 =料製得之水泥,其係以石灰石污泥和廢電石 ’一’’、、要材料,而達到回收利用石灰石污泥和廢電石 3 201134784 渣的目的。 本發明之另一目的為提供一種水泥的製造方法,其 係以石灰石污泥和廢電石渣作為該水泥之生料的主要 材料,而達到回收利用石灰石污泥和廢電石渣的目的。 為達到上述目的,本發明提供一種水泥生料,其係 包含:石灰石污泥及廢電石渣。 較佳地,前述石灰石污泥及前述廢電石渣共佔整體 前述水泥生料的60〜80 wt%。 較佳地,前述水泥生料係包含:60〜70 wt%之石灰 石污泥及0.1〜10 wt%之廢電石〉查。 較佳地,前述水泥生料進一步包含淨水污泥,其係 佔整體前述水泥生料的10〜20 wt%。 較佳地,前述水泥生料進一步包含石材污泥,其係 佔整體前述水泥生料的0.1〜10 wt%。 較佳地,前述水泥生料進一步包含廢水玻璃砂,其 係佔整體前述水泥生料的0.1〜5 wt%。 較佳地,前述水泥生料進一步包含煤灰礦泥拌合 料,其係佔整體前述水泥生料的0.1〜5 wt%。 本發明再提供一種水泥的製造方法,其係包含以下 步驟:(a)提供一如前述之水泥生料;(b)熱處理前述水泥 生料以製成一水泥熟料;(c)粗碎前述水泥熟料;及(d) 研磨經前述步驟(c)處理過之水泥熟料以得前述水泥。 較佳地,前述水泥生料進一步包含淨水污泥、石材 污泥、廢水玻璃砂、煤灰礦泥拌合料或其組合。 較佳地,前述步驟(a)包含調整前述水泥生料之配 比。 較佳地,前述步驟(a)包含均勻混合前述水泥生料。 較佳地,前述步驟(b)係於電窯、瓦斯窯或材窯進行 201134784 前述熱處理。 較佳地,前述熱處理係於供氧或無氧狀態。 較佳地,前述熱處理的最高溫度為130〇〜14〇(rc。 較佳地,前述最高溫度的持溫時間為〇 5〜6小時。 較佳地,前述熱處理的加熱速率係5〜20。〇/min。 較佳地,前述步驟(c)包含於粉碎前述水泥熟料後, 加入一缓凝劑與前述水泥熟料岣句混合。 較佳地,前述缓凝劑為石膏。 較佳地,前述水泥的細度為330〜350 m2/Kg。 # 本發明又^供一種水泥,其係包含石灰石污泥及廢 電石渣;其中前述水泥係由前述方法所製成。 較佳地,前述水泥進一步包含淨水污泥、石材污 泥、廢水玻璃砂、煤灰礦泥拌合料、緩凝劑或其組合。 綜上所述,本發明係關於一種水泥生料,以及使用 該水泥生料以製備水泥的方法。該水泥生料係以石灰石 污泥及廢電石漬作為主要材料,並可進一步包含淨水污 泥、石材污泥、廢水玻璃砂、煤灰礦泥拌合料或其組合。 於適當調整該水泥生料的配比後’所製得的水泥符合習 • 用水泥標準,並達到回收再利用廢棄物的目的。 【實施方式】 水泥是一種歷史悠久的建築材料,其基礎原理是藉 著和水分子發生水合反應而形成剛性的連鎖結構,這個 過程稱為水泥固化。隨著水泥的廣泛運用和改良,而發 展出不同成分配方的水泥’如卜特蘭水泥(OPC,ordinary Portland cement) ’即所謂的現代水泥’該種水泥中含有 相當比例的石夕含量,而提高了水泥的強度與耐用度;及 尚在呂水泥’其係一種固化時間非常短的水泥,有助於辦 201134784 短建物的建造時私’但存在著耐用度不南的缺點。 本發明所述「水泥生料(cement raw material)」係指 用以製作水泥之材料·’更精確地,無論是否已完成配比 或混合步驟,在未進行熱處理之前的材料’皆稱為水泥 生料。 本發明所述「水泥熟料(cement clinker)」係指將前 述水泥生料經熱處理之後(例如:燒結)所得之產物。 本發明所述「水泥(cement)」係指將前述水泥熟料 經研磨及/或加工後所得之產物,其中加工包含添加緩凝 劑;研磨係為了增加水泥顆粒的細度,以提升水泥的抗 壓強度。 ~ 本發明係以石灰石污泥和廢電石做為水泥生料中 的主要成分。本發明所用的石灰石污泥係採用石灰製、告 廠的水洗程序所沉殺產生的污泥,其來源無需加以^ 制;本發明所用的廢電石渣係採用使用電石法製造乙^ 者所產生的廢電石渣,其來源無需加以限制。較佳'、 本發明之水泥生料進一步包含淨水污泥、石材污 ^ 水玻璃砂、煤灰礦泥拌合料或其組合。 彳曆 較佳地,石灰石污泥和廢電石渣共佔水 6广t%’更明確的’石灰石污泥佔水 4的 ,’而廢電石渣佔水泥生料的G1〜1G赠。。二土6〜 二述淨水污泥的含量佔水泥生料的1()〜2 3 ’ 材污泥的含量佔水泥生料 ;^刚述石 砂的含量佔水泥生料的2廢水玻壤 的含量佔錢域的o.uwg。’ 4煤灰礦泥拌合 人本毛月亦提供一水泥的製造方法,較佳地甘 含以下步驟:首I摆徂义n v 平乂佳地,其係包 201134784 地’進一步包含淨水污泥、石材污泥、廢水玻璃砂、 煤灰礦泥拌合料或其組合。 二…將前述生料均勻混合後,將前述生料進行熱處理。 =述熱處理係使用所屬領域習知的高溫處理方式,而無 限^^如:電窯、瓦斯窯或材窯。前述熱處理可於 厂氧無氧狀態下進行。前述熱處理的最高溫度為_〜剛 C ’亚維持〇.5〜6小時,且加熱速率為5〜2〇 。前述熱 處理之參數無需加以限制,只要能妥善將前述生料燒結為適用 之水泥祕’所屬領域具通常知識者當可視航破熱處理之 參數。水泥生料的熱處理過程中,會發生許多化學和物理變 化,如游離水的蒸發和碳酸詞分解成氧化鈣等,其中會產生四 種主要的化合物:矽酸三鈣(QS)、矽酸二鈣(C2S)、鋁酸三鈣 (qA)和鋁鐵酸四鈣(CF)。前述矽酸三鈣(c3s)和前述矽酸二 飼(CJ)與水分子反應會形成約-發_水化物(又稱c_s_h膠體)和 氫氧化約(Ca(OH)2),該鈣-石夕-水化物係提供水泥強度的主要物 質。更明確地’前述矽酸三鈣(QS)係負責早期的水合硬化反 應,而碎酸二妈(C2S)則較持續地產生水合硬化反應。 接著’將前述水泥熟料粗碎,並於前述粗碎之水泥 熟料中添加3〜5 wt%的緩凝劑,以控制水泥凝固的時 間。初凝時間(Initial Setting)和終凝時間(Final Setdng) 為水泥凝固的兩項重要指標’製成之水泥於授拌槽移到 建築地點所需的時間必須小於初凝時間,因此中國國家 標準CNS 61於初凝時間設有標準之下限,即,初凝時 間應大於45分鐘;終凝時間為水泥所有成分完成固化 反應的時間’終凝時間過長會導致水泥的早期強度發展 過慢,因此中國國家標準CNS 61於終凝時間設$桿準 之上限,即’終凝時間應小於375分鐘。前述緩凝^包 括,但不限於:石貧。石膏不僅可避免水泥快凝,更昇、 201134784 有提高水泥強度、降低水泥於空氣中的收縮率和提高水 泥抗凍性、抗化學性和安定性的特性。 曰一最後,將添加有緩凝劑的水泥熟料進行研磨。由於 提高水泥的細度可提升水泥的強度,因此,較佳地,水 j的細度應控制在經㈣公厘之方孔_過_後的筛餘 量=大於10%’或控制細度在300 m2/Kg左右(CNS61的 規範值規>^細度應大於160 m2/Kg)。前述研磨可採用習知的 研磨方式,而不需加以限制,較佳為球磨:較佳地,於前 迷研磨的過針加人助磨劑,崎低水泥蘭齡間吸附水的 ^面張力、降低水泥熟料顆粒間的吸附力並減少顆粒在研磨過 程2中產生凝聚現象。最後,將水泥的細度控制在%㈡% m /Kg之間;所屬領域具有通常知識者當可咖合適的方式以 達到前述細度控制的目的,如:過_ ;較佳地,使用合適的球 磨機即可達到前述細度控制的目的,而無需過篩。所屬領域具 ,常知識者當可視其需求選用助磨劑,而無須關其種類。ς 前述研磨及過_之程序後,即完成本發_水泥製造方法。 以下實施例係用於進一步了解本發明之優點,並非 用於限制本發明之申請專利範圍。 實施例一:本發明水泥生料之成分分析 取得製備本發明之水泥生料所需之石灰石污泥、廢 電石渣、淨水污泥、石材污泥、廢水玻璃砂和煤灰礦泥 ,合料,並以X-ray螢光分析儀(x_ray Flu〇rescenee201134784 VI. Description of the Invention: [Technical Field] The present invention relates to a cement and a method of manufacturing the same, and more particularly to an environmentally friendly cement and a method of manufacturing the same. [Prior Art] Limestone sludge is a water washing process for lime. The sludge produced by the children's house is estimated to have a monthly output of about 12 to 1400 ang. Calcium carbide slag is waste produced by the use of calcium carbide hydrolysis to produce acetylene. In the acetylene manufacturing plant or other related industries, as long as the use of calcium carbide method to manufacture acetylene, will produce waste carbide slag, for example, polyvinyl chloride production plant that produces polyvinyl chloride by calcium carbide acetylene method usually produces 1 ton of products. It takes 1.8 tons of calcium carbide and produces 1.5 tons of calcium carbide slurry with a solid content of 12%. If the impurities of calcium carbide sludge are added, the total calcium carbide slag is about 2 tons. It is currently estimated that approximately 100 tons of waste carbide slag is produced each year in Taiwan. At present, in the treatment of limestone sludge and waste carbide slag, due to the lack of re-use of official roads, burial is still the main treatment method, and some manufacturers are temporarily stored in the plant area or backfilled to the depression. However, these treatment methods are not perfect, not only cost a lot of social costs and reduce industrial competitiveness but also may pollute the environment. Therefore, today, as environmental protection issues are increasingly valued, there is an urgent need for a more appropriate way to recycle limestone. Mud and waste carbide slag. [Summary of the Invention] si (IV) The main object of the present invention is to provide a cement raw material and a cement prepared by the use of limestone sludge and waste calcium carbide 'one', and materials to achieve recovery of limestone sludge. And the purpose of waste carbide 3 201134784 slag. Another object of the present invention is to provide a method for producing cement which uses limestone sludge and waste carbide slag as main materials of the raw material of the cement to achieve the purpose of recycling limestone sludge and waste carbide slag. In order to achieve the above object, the present invention provides a cement raw meal comprising: limestone sludge and waste carbide slag. Preferably, the limestone sludge and the waste calcium carbide slag together comprise 60 to 80% by weight of the total cement raw meal. Preferably, the cement raw meal comprises: 60 to 70 wt% of limestone sludge and 0.1 to 10 wt% of waste calcium carbide. Preferably, the cement raw meal further comprises purified water sludge, which accounts for 10 to 20% by weight of the entire cement raw meal. Preferably, the cement raw meal further comprises stone sludge, which accounts for 0.1 to 10% by weight of the entire cement raw meal. Preferably, the cement raw meal further comprises waste water glass sand, which accounts for 0.1 to 5 wt% of the entire cement raw meal. Preferably, the cement raw meal further comprises a coal ash ore slurry mixture, which accounts for 0.1 to 5 wt% of the entire cement raw meal. The present invention further provides a method for producing cement comprising the steps of: (a) providing a cement raw material as described above; (b) heat treating the cement raw material to form a cement clinker; (c) coarsely crushing the foregoing Cement clinker; and (d) grinding the cement clinker treated by the aforementioned step (c) to obtain the aforementioned cement. Preferably, the cement raw meal further comprises purified water sludge, stone sludge, wastewater glass sand, coal ash ore slurry or a combination thereof. Preferably, the aforementioned step (a) comprises adjusting the ratio of the aforementioned cement raw meal. Preferably, the aforementioned step (a) comprises uniformly mixing the aforementioned cement raw meal. Preferably, the foregoing step (b) is carried out in an electric kiln, a gas kiln or a material kiln for the aforementioned heat treatment of 201134784. Preferably, the aforementioned heat treatment is in an oxygen supply or an oxygen-free state. Preferably, the maximum temperature of the heat treatment is 130 〇 14 14 〇. rc. Preferably, the temperature holding time of the highest temperature is 〇5 to 6 hours. Preferably, the heating rate of the foregoing heat treatment is 5-20. Preferably, the foregoing step (c) comprises adding a retarder to the cement clinker after the grinding of the cement clinker. Preferably, the retarder is gypsum. The cement has a fineness of 330 to 350 m2/Kg. The present invention further provides a cement comprising limestone sludge and waste carbide slag; wherein the cement is produced by the foregoing method. Preferably, the foregoing The cement further comprises purified water sludge, stone sludge, wastewater glass sand, coal ash ore slurry, retarder or a combination thereof. In summary, the present invention relates to a cement raw material and the use of the cement The method for preparing cement. The cement raw material is mainly composed of limestone sludge and waste rock stain, and further comprises purified water sludge, stone sludge, wastewater glass sand, coal ash ore mixture or Combination. Adjust the cement raw material appropriately After the ratio is matched, the cement produced meets the standards of cement and meets the purpose of recycling and recycling waste. [Embodiment] Cement is a long-established building material whose basic principle is to hydrate with water molecules. The reaction forms a rigid interlocking structure, which is called cement solidification. With the extensive use and improvement of cement, cements with different composition formulas such as OPC (Ordinary Portland Cement) are known as modern Cement's cement contains a considerable proportion of Shishi content, which improves the strength and durability of the cement; and Lu's cement is a kind of cement with a very short curing time, which helps to build the short-term construction of 201134784. "There is a disadvantage of not being durable. The "cement raw material" as used in the present invention means the material used to make the cement. 'More precisely, whether or not the proportioning or mixing step has been completed, The material before the heat treatment is referred to as cement raw material. The term "cement clinker" as used in the present invention means the cement mentioned above. The product obtained by heat treatment (for example, sintering) of the raw material. The term "cement" as used in the present invention refers to a product obtained by grinding and/or processing the aforementioned cement clinker, wherein the processing comprises adding a retarder; The grinding system is used to increase the compressive strength of the cement in order to increase the fineness of the cement particles. ~ The present invention uses limestone sludge and waste calcium carbide as the main components in the cement raw meal. The limestone sludge used in the present invention is made of lime. The sludge produced by the washing process of the factory is not required to be used for the sludge; the waste calcium carbide slag used in the present invention is a waste calcium carbide slag produced by using a calcium carbide method, and the source thereof is not limited. Preferably, the cement raw material of the present invention further comprises purified water sludge, stone sewage water glass sand, coal ash ore mud mixture or a combination thereof. Preferably, the limestone sludge and the waste calcium carbide slag together account for a total of 6% of the water's more clearly 'the limestone sludge accounts for the water 4', and the waste carbide slag accounts for the G1~1G of the cement raw meal. . The content of sludge from the soil of the two soils 6 to 2 accounts for 1 () ~ 2 3 ' of the raw material of the cement as a raw material of the cement; ^ the content of the sand and sand as the raw material of the cement raw material 2 The content accounts for o.uwg of the money domain. '4 coal ash and minerals mixing people also provide a cement manufacturing method, preferably with the following steps: the first I 徂 徂 n nv flat 乂 good land, its package 201134784 'further contains water pollution Mud, stone sludge, wastewater glass sand, coal ash ore mix or a combination thereof. Second, after the raw materials are uniformly mixed, the raw material is heat-treated. = The heat treatment is carried out using a high temperature treatment method known in the art, and is not limited to, for example, an electric kiln, a gas kiln or a material kiln. The foregoing heat treatment can be carried out in a factory under an oxygen-free state. The maximum temperature of the aforementioned heat treatment is _~ just C ′ sub-maintaining 〇 5 to 6 hours, and the heating rate is 5 〜 2 〇 . The parameters of the aforementioned heat treatment need not be limited as long as the raw material can be properly sintered into a suitable cement. During the heat treatment of cement raw materials, many chemical and physical changes occur, such as evaporation of free water and decomposition of carbonated words into calcium oxide, among which four main compounds are produced: tricalcium citrate (QS) and tannic acid Calcium (C2S), tricalcium aluminate (qA) and tetracalcium aluminate (CF). The aforementioned tricalcium citrate (c3s) and the aforementioned bismuth diacid (CJ) react with water molecules to form about-hair hydrate (also known as c_s_h colloid) and hydroxide (Ca(OH)2), the calcium- The Shixi-Hydrate system provides the main material for cement strength. More specifically, the aforementioned tricalcium citrate (QS) system is responsible for the early hydration hardening reaction, while the crushed acid dam (C2S) produces a hydration hardening reaction more continuously. Next, the cement clinker is coarsely crushed, and 3 to 5 wt% of a retarder is added to the above-mentioned coarsely chopped cement clinker to control the time during which the cement is solidified. Initial setting and final set time (Final Setdng) are two important indicators of cement solidification. The time required for the cement to be moved to the construction site must be less than the initial setting time. Therefore, the Chinese national standard CNS 61 has a lower limit of the standard at the initial setting time, that is, the initial setting time should be greater than 45 minutes; the final setting time is the time for all the components of the cement to complete the curing reaction. The excessive setting time of the final setting will cause the early strength of the cement to develop too slowly. Therefore, the Chinese national standard CNS 61 sets the upper limit of the threshold for the final setting time, that is, the final setting time should be less than 375 minutes. The aforementioned retardation includes, but is not limited to, stone lean. Gypsum not only avoids rapid cement setting, but also increases the strength of cement, reduces the shrinkage of cement in air and improves the freeze resistance, chemical resistance and stability of cement. Finally, the cement clinker to which the retarder is added is ground. Since the fineness of the cement can be increased to increase the strength of the cement, preferably, the fineness of the water j should be controlled by the amount of sieve remaining after the hole of the (four) mm hole _ over_= more than 10%' or control fineness At around 300 m2/Kg (the specification of CNS61 > fineness should be greater than 160 m2/Kg). The foregoing grinding method can be carried out by a conventional grinding method without limitation, and is preferably ball milling: preferably, the pre-grinding over-needle-adding grinding aid is used to suppress the surface tension of the adsorbed water between the cement ages. The adsorption between the cement clinker particles is reduced and the agglomeration of the particles in the grinding process 2 is reduced. Finally, the fineness of the cement is controlled between %(b)%m/Kg; the person skilled in the art has a suitable way to achieve the aforementioned fineness control, such as: _; preferably, suitable The ball mill can achieve the aforementioned fineness control without sieving. In the field, those who are knowledgeable can choose the grinding aid according to their needs without having to choose the type.本 After the above grinding and passing procedures, the present invention is completed. The following examples are intended to further understand the advantages of the present invention and are not intended to limit the scope of the invention. Example 1: Component Analysis of Cement Raw Material of the Invention The limestone sludge, waste calcium carbide slag, purified water sludge, stone sludge, waste water glass sand and coal ash slime required for preparing the cement raw material of the present invention are obtained. Material and X-ray fluorescence analyzer (x_ray Flu〇rescenee
Spectr〇meter,XRF)分析其化學成分,其結果如下表一 201134784 表一:本發明水泥生料成分之XRF化學成分(wt%)分析結果 成分 石灰石污 泥 廢電石渣 淨水污泥 石材污泥 廢水玻璃 石少 煤灰礦泥 拌合料 Si02 3.65 7.74 59.42 66.73 91.42 13.97 ai2o3 0.31 3.78 25.2 14.15 0 7.36 Fe203 0.37 0.16 7.21 3.8 2.49 50.23 CaO 51.59 54.36 0.72 2.31 0.61 13.69 MgO 0.7 0 1.57 1.32 0.9 2.28 S03 0 0 0.76 0.9 0.89 1.41 k2o 0.04 0 3.37 3.79 0 0 φ 由表一中的分析結果可知,石灰石污泥的化學成分 主要以碳酸躬(CaO)和二乳化砍(Si〇2)為主,廢電石)查的 化學成分則主要以碳酸鈣(CaO)、二氧化矽(Si02)和三氧 化二鋁(ai2o3)為主,因此石灰石污泥和廢電石渣可取代 習用水泥中石灰石的使用,而做為水泥中的主要成分。 淨水污泥、石材污泥、廢水玻璃砂則含有大量的二氧化 矽(Si02),因此可提供水泥良好的強度和耐用度。煤灰 礦泥拌合料的化學成分則主要以三氧化二鐵(Fe203)為 主,其可取代習用水泥中鐵渣的使用。 實施例二:本發明之水泥的製備 請參第一圖為本發明之水泥製造方法的示意圖。首 先,取得本實施例所需之原料,包含:石灰石污泥、廢 電石渣、淨水污泥、石材污泥、廢水玻璃砂和煤灰礦泥 拌合料後,依據下表二所列之配比製備本發明水泥生料 之樣本A〜D : 201134784 表二:本實施例樣本A〜D的成分配比(wt%) 樣本 A B C D 石灰石污泥 78.71 76.71 74.71 70.71 廢電石渣 0.00 2.00 4.00 8.00 淨水污泥 14.33 14.33 14.33 14.33 石材污泥 2.50 2.50 2.50 2.50 廢水玻璃砂 1.97 1.97 1.97 1.97 煤灰礦泥拌合料 2.49 2.49 2.49 2.49 以 X-ray 榮 光分 析儀 (X-ray FluorescenceSpectr〇meter, XRF) analysis of its chemical composition, the results are as follows Table 1 201134784 Table 1: XRF chemical composition (wt%) analysis results of the cement raw material composition of the present invention composition limestone sludge waste carbide residue water purification sludge stone sludge Waste water glass stone less coal ash ore mud mixture Si02 3.65 7.74 59.42 66.73 91.42 13.97 ai2o3 0.31 3.78 25.2 14.15 0 7.36 Fe203 0.37 0.16 7.21 3.8 2.49 50.23 CaO 51.59 54.36 0.72 2.31 0.61 13.69 MgO 0.7 0 1.57 1.32 0.9 2.28 S03 0 0 0.76 0.9 0.89 1.41 k2o 0.04 0 3.37 3.79 0 0 φ It can be seen from the analysis results in Table 1 that the chemical composition of limestone sludge is mainly strontium carbonate (CaO) and secondary emulsification (Si〇2), and waste calcium carbide is investigated. The chemical composition is mainly calcium carbonate (CaO), cerium oxide (SiO2) and aluminum oxide (ai2o3). Therefore, limestone sludge and waste carbide slag can replace the use of limestone in conventional cement, and as cement. The main ingredient. Clean water sludge, stone sludge, and wastewater glass sand contain a large amount of cerium oxide (SiO 2 ), which provides good strength and durability of cement. The chemical composition of coal ash ore slurry is mainly based on ferric oxide (Fe203), which can replace the use of iron slag in conventional cement. Embodiment 2: Preparation of Cement of the Present Invention Referring to the first figure, a schematic view of a cement manufacturing method of the present invention. First, the raw materials required for the present embodiment are obtained, including: limestone sludge, waste carbide slag, purified water sludge, stone sludge, wastewater glass sand and coal ash ore mixture, according to the following Table 2. Formulation Preparation of Samples of Cement Raw Material of the Present Invention A to D: 201134784 Table 2: Distribution Ratio (wt%) of Samples A to D of this Example Sample ABCD Limestone Sludge 78.71 76.71 74.71 70.71 Waste Carbide Spent 0.00 2.00 4.00 8.00 Net Water Sludge 14.33 14.33 14.33 14.33 Stone Sludge 2.50 2.50 2.50 2.50 Waste Glass Sand 1.97 1.97 1.97 1.97 Coal Ash Mixture 2.49 2.49 2.49 2.49 X-ray Fluorescence Analyzer (X-ray Fluorescence)
Spectrometer,XRF)分析前述樣本A〜D的化學成分組 成,並依據化學成分組成計算出樣本A〜D的水泥係數, 其係包括石灰飽和度(L.S.F.)、水硬係數(H.M.)、矽氧係 數(S.M.)和鋁鐵係數(I.M.)。結果如下表三所列: 表三:實施例一樣本A〜D的化學成分和水泥係數 成分(wt%)/樣本 A B C D Si02 15.20 15.29 15.37 15.53 ai2o3 4.39 4.46 4.53 4.67 Fe203 2.72 2.72 2.71 2.70 CaO 41.12 41.18 41.23 41.34 MgO 0.88 0.87 0.86 0.83 S〇3 0.18 0.18 0.18 0.18 k2o 0.61 0.61 0.61 0.61 水泥係數(%)/樣本 A B C D 石灰飽和度 0.83 0.82 0.82 0.81 水硬係數 1.84 1.83 1.82 1.80 矽氧係數 2.14 2.13 2.12 2.11 銘鐵係數 1.62 1.64 1.67 1.73 接著,將前述水泥生料樣本A〜D充分混合後,置入 201134784 電窯中,以1400 °c燒結1小時,以獲得前述樣本A〜D 的水泥熟料,其中,升溫速率為5 °C/min。 然後’將如述水泥熟料粗’並添加3.5 wt%的石 膏(緩凝劑)與前述經粗碎之水泥熟料混合。接著將前述 水泥熟料以球磨機研磨後,水泥的細度為330 m2/Kg, 無須過篩,即製得以本發明水泥生料所製成之水泥。 實施例三:以本發明水泥生料所製得之水泥的特性分析 首先,以XRF分析前述樣本A〜D所製得之水泥的 φ 化學成分,並計算其水泥係數(石灰飽和度、水硬係數、 矽氧係數和鋁鐵係數),結果如下表四所示: 表四:樣本A〜D之水泥的化學成分與水泥係數 成分(Wt%)/樣本 A B C D OPC Si02 21.47 21.45 21.28 21.37 21.60 ai2o3 6.57 6.61 6.64 6.52 4.62 Fe203 3.63 3.61 3.63 3.53 3.58 CaO 65.70 65.73 65.91 66.12 64.99 MgO 1.48 1.47 1.43 1.39 3.67 S03 0.04 0.04 0.04 0.02 0.25 k2o 0.48 0.48 0.45 0.41 0.65 水泥係數(%)/樣本 A B C D 規範值 石灰飽和度 0.93 0.93 0.94 0.95 0.80 〜0.95 水硬係數 2.07 2.08 2.09 2.10 1.7 〜2.3 矽氧係數 2.10 2.10 2.07 2.13 1.9 〜3.2 鋁鐵係數 1.81 1.83 1.83 1.85 1.5 〜2.5 由表四中的數據可知,本發明水泥中的化學成分組 成和市售水泥的化學成分組成相去不遠。此外,本發明 水泥的水泥係數也都符合規範值,顯示本發明水泥具有 201134784 水準之上的品質。 接著以X-ray繞射分析儀(XRD)分析前述樣本A〜D 所製成之水泥的礦物組成。請參第二圖,其中波峰1代 表矽酸三鈣(C3S),波峰2代表矽酸二鈣(C2S)波峰3代 表鋁酸三鈣(C3A)以及波峰4代表鋁鐵酸四鈣(C4AF)。實 驗結果顯示,本發明之樣本A〜D所製得的水泥和市售水 泥的XRD圖譜具有相似的形態,皆主要包含矽酸三鈣 和矽酸二鈣,此結果與下表五所得之結果一致,除了具 有較高的石夕酸三約含量以外,本發明之水泥和市售水泥 的礦物組成並無顯著差別。 表五:樣本A〜D之水泥以及市售水泥(OPC)的礦物組成 礦物組成/樣本 A B C D OPC c3s 54.92 54.96 56.75 57.87 64.21 C2S 20.12 20.04 18.20 17.61 13.48 c3a 11.27 11.41 11.45 11.31 6.19 c4af 11.05 10.99 11.05 10.74 10.89 最後,請參下表六,顯示實施例二所製得之水泥的 各項特性分析: 籲 表六:本發明之水泥的特性分析 物化性質 A B C D OPC 規範值 比重 3 3 3.3 3 >3 細度(m2/kg) 324 329 325 325 330 >160 燒失量(%) 3 3 2 3 <3 PH 12.25 12.28 12.36 12.3 12 f-CaO(%) 0.7 0.6 0.8 0.8 <1 <1 初凝時間(min) 138 120 99 90 >45 終凝時間(min) 233 228 225 210 <375 12 201134784 由表中數據可知,實施例二所製成之水泥的各項特 性都與市售水泥相去不遠,其中燒失量為3%左右,符 合CNS 61的規範。此外,游離石灰含量(free-CaO,即 f-CaO)的多寡為判斷水泥燒結反應是否完全的重要指 標。當燒結不完全時,生料中的游離石灰無法完全與其 他元素反應生成單礦物,而單獨存在於熟料之中。由於 游離石灰的水硬反應十分緩慢,在水泥固化的後期才會 生成氫氧化鈣,會導致水泥體積膨脹,不僅造成結構破 壞,更會影響水泥強度。表六的結果顯示實施例二所製 φ 得之水泥的游離石灰含量符合規範值,並小於市售水 泥。 此外,由上表六可知,實施例二所製得之水泥的初 凝時間在90〜130分鐘之間,高於CNS 61所規範之初凝 時間的下限值;並且,實施例二所製得之水泥的終凝時 間在210〜233分鐘之間,亦符合CNS 61所規範之終凝 時間的上限值。 最後測試實施例二所得之水泥固化後的抗壓強 度,請參第三圖,由圖中數據可知,水泥的強度會隨著 • 廢電石渣的含量提高而降低。此外,市售水泥(0PC)在 水泥固化的初期強度發展較實施例二所得之水泥迅 速,但大抵而言,實施例二所得之水泥與市售水泥的強 度相去不遠,且符合CNS 61於7天和28天養護齡期 (curing time)之抗壓強度的規範。 所屬領域之技術人員當可了解,在不違背本發明精 神下,依據本案實施態樣所能進行的各種變化。因此, 顯見所列之實施態樣並非用以限制本發明,而是企圖在 所附申請專利範圍的定義下,涵蓋於本發明的精神與緣s 13 201134784 疇中所做的修改。 【圖式簡單說明】 第一圖係示意本發明實施例二所述之水泥製造方 法的流程圖。 第二圖係顯示本發明實施例二所得之水泥熟料的 XRD圖譜。 第三圖係顯示本發明實施例二所得之水泥的抗壓 強度。 【主要元件符號說明】Spectrometer, XRF) analyzes the chemical composition of the above samples A to D, and calculates the cement coefficients of samples A to D based on the chemical composition, including lime saturation (LSF), hydraulic coefficient (HM), and oxygen coefficient. (SM) and aluminum iron coefficient (IM). The results are listed in Table 3 below: Table 3: The chemical composition and cement coefficient of the materials of this A to D (wt%) / sample ABCD SiO 2 15.20 15.29 15.37 15.53 ai2o3 4.39 4.46 4.53 4.67 Fe203 2.72 2.72 2.71 2.70 CaO 41.12 41.18 41.23 41.34 MgO 0.88 0.87 0.86 0.83 S〇3 0.18 0.18 0.18 0.18 k2o 0.61 0.61 0.61 0.61 Cement coefficient (%) / sample ABCD Lime saturation 0.83 0.82 0.82 0.81 Hydraulic coefficient 1.84 1.83 1.82 1.80 Oxygen coefficient 2.14 2.13 2.12 2.11 Ming iron coefficient 1.62 1.64 1.67 1.73 Next, the cement raw materials samples A to D were thoroughly mixed, placed in a 201134784 electric kiln, and sintered at 1400 ° C for 1 hour to obtain the cement clinker of the aforementioned samples A to D, wherein the heating rate was increased. It is 5 °C/min. Then, a cement clinker as described above was coarsened and 3.5 wt% of a stone paste (retarder) was mixed with the aforementioned coarsely chopped cement clinker. Then, after the cement clinker is ground in a ball mill, the fineness of the cement is 330 m 2 /Kg, and the cement made of the cement raw material of the present invention can be produced without sieving. Example 3: Analysis of the characteristics of the cement prepared by the cement raw material of the present invention First, the chemical composition of the φ of the cement prepared by the aforementioned samples A to D was analyzed by XRF, and the cement coefficient (calcium saturation, hydraulic hardness) was calculated. The coefficient, the enthalpy coefficient and the aluminum iron coefficient) are shown in Table 4 below: Table 4: Chemical composition and cement coefficient of cement of samples A to D (Wt%) / sample ABCD OPC Si02 21.47 21.45 21.28 21.37 21.60 ai2o3 6.57 6.61 6.64 6.52 4.62 Fe203 3.63 3.61 3.63 3.53 3.58 CaO 65.70 65.73 65.91 66.12 64.99 MgO 1.48 1.47 1.43 1.39 3.67 S03 0.04 0.04 0.04 0.02 0.25 k2o 0.48 0.48 0.45 0.41 0.65 Cement coefficient (%) / sample ABCD Specification value Lime saturation 0.93 0.93 0.94 0.95 0.80 to 0.95 Hydraulic coefficient 2.07 2.08 2.09 2.10 1.7 ~2.3 Oxygen coefficient 2.10 2.10 2.07 2.13 1.9 ~3.2 Aluminum iron coefficient 1.81 1.83 1.83 1.85 1.5 ~2.5 From the data in Table 4, the chemical composition of the cement in the present invention It is not far from the chemical composition of commercially available cement. Further, the cement coefficients of the cement of the present invention all conform to the specification values, indicating that the cement of the present invention has a quality above the level of 201134784. Next, the mineral composition of the cement prepared in the aforementioned samples A to D was analyzed by an X-ray diffraction analyzer (XRD). Please refer to the second figure, where peak 1 represents tricalcium citrate (C3S), peak 2 represents dicalcium citrate (C2S) peak 3 represents tricalcium aluminate (C3A) and peak 4 represents tetracalcium aluminate (C4AF). . The experimental results show that the XRD patterns of the cement prepared by samples A to D of the present invention and the commercially available cement have similar morphology, and mainly include tricalcium citrate and dicalcium citrate, and the results are the results obtained in Table 5 below. Consistently, there is no significant difference in the mineral composition of the cement of the present invention and the commercially available cement, except that it has a high triterpenoid content. Table 5: Mineral composition of samples A to D and commercially available cement (OPC) Mineral composition / sample ABCD OPC c3s 54.92 54.96 56.75 57.87 64.21 C2S 20.12 20.04 18.20 17.61 13.48 c3a 11.27 11.41 11.45 11.31 6.19 c4af 11.05 10.99 11.05 10.74 10.89 Last Please refer to Table 6 below to show the analysis of various characteristics of the cement prepared in Example 2: Call Table 6: Characteristics of the cement of the present invention Analytical physical and chemical properties ABCD OPC Specification value specific gravity 3 3 3.3 3 > 3 Fineness ( M2/kg) 324 329 325 325 330 >160 Loss on ignition (%) 3 3 2 3 <3 PH 12.25 12.28 12.36 12.3 12 f-CaO(%) 0.7 0.6 0.8 0.8 <1 <1 Initial setting time (min) 138 120 99 90 >45 Final setting time (min) 233 228 225 210 <375 12 201134784 It can be seen from the data in the table that the properties of the cement produced in the second embodiment are not related to the commercially available cement. Far, where the loss on ignition is about 3%, in line with the CNS 61 specification. In addition, the amount of free lime (free-CaO, i.e., f-CaO) is an important indicator for judging whether or not the cement sintering reaction is complete. When the sintering is incomplete, the free lime in the raw meal cannot completely react with other elements to form a single mineral, but is present separately in the clinker. Since the hydraulic reaction of free lime is very slow, calcium hydroxide is formed in the later stage of solidification of the cement, which causes the volume of the cement to expand, which not only causes structural damage, but also affects the strength of the cement. The results in Table 6 show that the free lime content of the cement obtained in Example 2 is in compliance with the specification and is less than that of commercially available cement. In addition, as can be seen from the above Table 6, the initial setting time of the cement prepared in the second embodiment is between 90 and 130 minutes, which is higher than the lower limit of the initial setting time specified by CNS 61; The final setting time of the obtained cement is between 210 and 233 minutes, which also meets the upper limit of the final setting time specified in CNS 61. Finally, the compressive strength after solidification of the cement obtained in Example 2 is tested. Please refer to the third figure. From the data in the figure, the strength of the cement will decrease as the content of the waste carbide slag increases. In addition, the initial strength development of the commercially available cement (0PC) in the cement curing is faster than that obtained in the second embodiment, but in general, the cement obtained in the second embodiment is not far from the strength of the commercially available cement, and is in compliance with CNS 61. Specification of the compressive strength of the curing time of 7 days and 28 days. It will be apparent to those skilled in the art that various changes can be made in accordance with the embodiments of the present invention without departing from the spirit of the invention. Therefore, it is to be understood that the present invention is not intended to limit the invention, but is intended to cover the modifications of the spirit and scope of the invention in the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS The first drawing is a flow chart showing a cement manufacturing method according to a second embodiment of the present invention. The second figure shows the XRD pattern of the cement clinker obtained in Example 2 of the present invention. The third graph shows the compressive strength of the cement obtained in Example 2 of the present invention. [Main component symbol description]