TW201134134A - Mobile communication system, base station, mobile station, and radio communication method - Google Patents

Mobile communication system, base station, mobile station, and radio communication method Download PDF

Info

Publication number
TW201134134A
TW201134134A TW99104697A TW99104697A TW201134134A TW 201134134 A TW201134134 A TW 201134134A TW 99104697 A TW99104697 A TW 99104697A TW 99104697 A TW99104697 A TW 99104697A TW 201134134 A TW201134134 A TW 201134134A
Authority
TW
Taiwan
Prior art keywords
base station
mobile station
mbsfn
notification information
mobile
Prior art date
Application number
TW99104697A
Other languages
Chinese (zh)
Other versions
TWI393379B (en
Inventor
Takayoshi Ode
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to TW99104697A priority Critical patent/TWI393379B/en
Publication of TW201134134A publication Critical patent/TW201134134A/en
Application granted granted Critical
Publication of TWI393379B publication Critical patent/TWI393379B/en

Links

Abstract

To realize more efficient utilization of radio resources in the case where a plurality of base stations transmit data of the same contents at the same time. A base station (1) includes a generator (1a) and a transmitter (1b). The generator (1a) generates broadcast information indicating a frequency band which is one of a plurality of frequency bands available for wireless communications and is to be used for transmitting data of the same contents and at the same time as a base station 2. The transmitter (1b) wirelessly transmits the broadcast information. A mobile station (3) includes a receiver (3a) and a controller (3b). The receiver (3a) receives the broadcast information from the base station (1). The controller (3b) controls, based on the broadcast information, a process of receiving the data of the same contents which was transmitted at the same time from the base stations (1 and 2).

Description

201134134 六、發明說明: 【發明戶斤屬之技術領域3 發明領域 本發明關於行動通訊系統、基地台、行動台、及無線 通訊方法。201134134 VI. Description of the Invention: [Technical Field of Invention] 3 Field of the Invention The present invention relates to a mobile communication system, a base station, a mobile station, and a wireless communication method.

t mT J 發明背景 目前’行動電話系統與無線MAN(Metropolitan Area Network)等行動通訊系統被廣為利用著。又,為了達到行 動通訊之更高速化與大容量化,對於次世代之行動通訊技 術現正持續進行活躍的議論。 例如,提出了在標準化團體之一的3GPP(3rdt mT J Background of the Invention At present, mobile communication systems such as the mobile phone system and the wireless MAN (Metropolitan Area Network) are widely used. In addition, in order to achieve higher speed and larger capacity of mobile communication, active communication is being continued for the next generation of mobile communication technology. For example, 3GPP (3rd) proposed in one of the standardization groups

Generation Partnership Project)中,可利用最大為20MHz的 頻帶進行通訊之稱為LTE(Long Term Evolution)的通訊規格 (例如參照非專利文獻1、2)。而且,提出了可利用最大為 20MHz的頻帶5個(即,100MHz的頻帶)進行通訊之稱為 LTE-A(LTE-Advanced)的通訊規格(例如參照非專利文獻3) 來作為LTE之次世代的通訊規格。 又’如此的通訊規格中,已有檢討採用所謂 MBSFN(Multimedia Broadcast Multicast Service Single Frequency Network)資料發送方法(例如參照非專利文獻 3)。若是MBSFN ’則複數基地台以同一時序且使用同一頻 率且同一調變方式來發送同一内容的資料。以MBSF發送的 資料有稱為MBMS(Multimedia Broadcast Multicast Service) 201134134 資料。行動台將來自於複數基地台的接受信號予以合成而 能提升接收品質。 又,關於MBMS資料的發送,已提出有使用者裝置在 MBMS資料不符合預定品質時,將回饋資訊發送至基地台 裝置,基地台裝置依據回饋資訊來判定是否進行適應調變 的方法(例如參照非專利文獻3)。又,已提出有基地台將關 聯MBSFN之MBSFN參照信號發送至行動台,及,將使用於 MBSFN發送之副訊框(MBSFN副訊框)與非MBSFN副訊框 區別的内容(例如參照非專利文獻2之第[0095]、[0096]段)。 先行技術文獻 專利文獻 專利文獻1 :特開2008-278339號公報 專利文獻2 :特開2009-253614號公報 非專利文獻 非專利文獻 1: 3GPP(3rd Generation Partnership Project), “Evolved Universal Treeestrial Radio Access (E-UTRA) and Evolved Universal Treeestrial Radio Access Network (E-UTRAN); Overall description,’,3GPP TS 36.300 V9.1.0, 2009-09. 非專利文獻2: 3GPP(3rd Generation Partnership Project), “Evolved Universal Treeestrial Radio Access (E-UTRA) Radio Resource Control (RRC); Protocol specification”, 3GPP TS 36.331 V9.0.0, 2009-09. 非專利文獻3: 3GPP(3rd Generation Partnership Project), 201134134 “Feasibility study for Further Advancements for E-UTRA (LTE-Advanced)”,3GPP TR 36.912 V9.0.0, 2009-09. 【發明内容】 發明概要 發明欲解決之課題 如LTE-A系統,考量於可使用複數頻帶之行動通訊系 統中,複數基地台能以同一時序將同一内容的資料發送至 行動台。但是’如此的行動通訊系統中,要如何有效率地 利用複數頻帶之無線資源乃構成問題。 例如’MBSFN副訊框的構造與非MBSFN副訊框不同, 因此’可考量到無法一併收gMBMS資料以外種類之使用 者資料的可能性。又,MBSFN發送能藉由行動台對基地台 發送要求而開始。所以,行動台要求以任意的頻帶進行 MBSFN發送,當基地台依照來自於行動台的要求而欲以該 任意頻帶開始MBSFN發送時,無法收容其他種類之使用者 資料的MBSFN訊框則為分散顯現。如此一來,會有無線資 源之利用效率變低之虞。 本發明係鑑於如此問題點而完成的發明,其目的在於 提权可k升複數基地台以同—時序發送同一内容的資料時 之無線資源的利用效率的行動通訊系統 、基地台、行動台、 及無線通訊方法。 用以欲解決課題之手段 為了解決上述課題,乃提供包含有基地台與行動台之 行動通訊系統。基地台包含有產生部與發送部。產生部產 201134134 生通知資訊,診 帶中,可顯示鱗軌可則 資料二::其—―内ί: 含右垃^利用無線來通知通知資訊。行動“ :制部。接收部接收基地台所通知=ί 工依據通知資訊來控制兑貝 台以同一時序已發送之同—内容的資料。*其他基地 二^動ί 了解決上述課題,乃提供包含有第1及第2基地 行動通訊系統的無線通訊方法。此無線通訊 … 帛基地台產生通知資訊,該通知資訊可顯示無線 通況可使用之複數解中’使詩與第2基地台關-時序 來&送同θ各之資料的頻帶。第1基地台利用無線來通知 通头資。fl行動台接收第丨基地台所通知的通知資訊。行動 台依據已接收之通知資訊來接收由第1及第2基地台以同一 時序發送之同一内容的資料。 發明效果 依據上述行動通訊系統、基地台、行動台、及無線通 5孔方法,能提升複數基地台以同一時序發送同一内容的資 料時之無線資源的利用率。 由與表示本發明例子之較佳實施形態之圖式相關聯之 以下的說明可清楚瞭解本發明之上述及其他目的、特徵及 優點。 圖式簡單說明 第1圖係顯示第1實施形態之行動通訊系統的圖式。 第2圖係顯示第2實施形態之行動通訊系統的圖式。 201134134 第3圖係顯示載波成分之設定例的圖式。 第4圖係顯示載波聚集之第1例的圖式。 第5圖係顯示載波聚集之第2例的圖式。 第6圖係顯示頻譜聚集之例的圖式。 第7圖係顯示無線訊框之構造例的圖式。 第8圖係顯示擴充實體通知頻道之第1分配例的圖式。 第9圖係顯示擴充實體通知頻道之第2分配例的圖式。 第10圖係顯示擴充實體通知頻道之第3分配例的圖式。 第11圖係顯示符號之構造例的圖式。 第12圖係顯示第2實施形態之基地台的方塊圖。 第13圖係顯示第2實施形態之行動台的方塊圖。 第14圖係顯示第2實施形態之行動台處理的流程圖。 第15圖係顯示第2實施形態之MBSFN控制例的順序圖。 第16圖係顯示MBSFN用副訊框之分配例的圖式。 第17圖係顯示MBSFN之合成數的算出模式的圖式。 第18圖係顯示第3實施形態之基地台的方塊圖。 第19圖係顯示第3實施形態之行動台的方塊圖。 第20圖係顯示第3實施形態之行動台處理的流程圖。 第21圖係顯示第3實施形態之MB SFN控制例的順序圖。 第22圖係顯示第3實施形態之其他MBSFN控制例的順 序圖。 第23圖係顯示第4實施形態之行動通訊系統的圖式。 第24圖係顯示第4實施形態之第1MBSFN控制例的順 序圖。 8 201134134 第25圖係顯示第4實施形態之第2MBSFN控制例的順 序圖。 第26圖係顯示第4實施形態之第3MBSFN控制例的順 序圖。 第2 7圖係顯示第4實施形態之行動通訊系統之變形例 的圖式。 用以實施發明之形態 以下參照圖式詳細說明本實施形態。 [第1實施形態] 第1圖顯示第1實施形態之行動通訊系統。第1實施形態 之行動通訊系統包含有基地台1、2及行動台3。 基地台1、2分別為能與行動台3無線通訊的無線通訊裝 置。基地台1與基地台2直接或藉由上位網路而連接著。基 地台1使用複數頻帶於無線通訊。基地台2也同樣可使用複 數頻帶。行動台3係與基地台1、2連接而進行無線通訊的無 線通訊裝置,例如為行動電話或行動資訊終端裝置等終端 裝置。行動台3使用上述複數頻帶中的一或其以上的頻帶來 進行無線通訊。 基地台1包含有產生部U及發送部沁^產生部la產生通 知資訊,該通知資訊可顯示在複數頻帶中,使用於與其他 基地台(例如,基地台2)以同一時序來發送同一内容之資料 的頰帶。該頻帶也可設定成在基地台丨與基地台2為同_。 又,也可將適用於該資料發送的調變方式在基地台丨與基地 201134134 台2 5免定為同__ 。發送部lb以無線來發送(廣播)產生部la所 產生之通知資— 胃成。基地台2亦可與基地台1同樣建構成通知 顯示要使_帶的通知資訊。 于動D 3包含有接收部3a及控制部3b。接收部3a接收基 口發送的通知資訊《控制部3b依據已接收之通知資訊而 工接收由基地台1及其他基地台(例如,基地台2)以同—時 序發送之同—内容資料的處理。行動台3例如將來自於基地 〇 1之彳5旒與來自於基地台2之信號予以合成並進行解調及 解碼而&升接收品質。行動台3也可合成來自3個以上基地 台的信號。 在此,基地台1也可將產生部13產生的通知資訊利用通 知頻道來發送。此通知頻道也可與用於發送行動台3連接基 地台1所使用之資訊的通知頻道同一頻道,也可為不同頻 道。後者的情形係將發送用以連接基地台1之資訊的頻道 (第1通知頻道)設為第1及第2種類的行動台共通參照的頻 道,也可將發送產生部la產生之通知資訊的頻道(第2通知 資訊)設為第1種類的行動台不參照,但是第2種類的行動台 參照的頻道。又,基地台1也可利用控制頻道來發送(通知) 產生部la產生的通知資訊。 又,基地台1也可將複數頻帶中最低的頻帶使用於複數 基地台以同一時序發送同一内容資料。又,基地台1也可對 複數頻帶分別賦與識別資訊。此識別資訊可於通知資訊中 使用於用以顯示要使用的頻帶。可使用例如分區(cell)ID或 同一分區内唯一的號碼等作為識別資訊。使用分區ID作為 201134134 識別資訊時,1個分區分配有複數分區ID。 又,行動台3也可於已接收之通知資訊所示的頻帶與行 動口 3與基地台1之連接所使用之頻帶不同時,進行要使用 頻帶的切換。此情形下,行動台3也可於切換後使用與切換 後之頻帶對應的無線資源,而對基地台i要求以同一時序發 送同一内容的資料。或是於進行切換前使用與切換前之頻 帶對應的無線資源,而對基地台1要求。又,不僅連接目的 地之基地台的切換’頻帶的切換也稱為交遞。 此行動通訊系統可作為例如LTE-A來實現。此情形 下’可分別將複數頻帶分別稱為成分載波(CC: Component Carrier)或載波成分(cc: Carrier Component)。又,可將上述 第1種類的行動台設為與LTE對應的行動台,而將上述第2 種類的行動台設為與LTE-A對應的行動台來實現。又,可將 第1通知頻道設為在LTE與LTE-A共通定義的通知頻道,而將 第2通知頻道設為未在LTE定義的擴充通知頻道來實現。 如此的第1實施形態的行動通訊系統中,以基地台1產 生通知資訊,該通知資訊可顯示在可使用於無線通訊之複 數頻帶中,使用於與基地台2以同一時序來發送同一内容之 >料的頻帶。所產生的通知資訊以無線來通知。又,以行 動台3接收基地台1的通知資訊。依據所接收之通知資訊來 接收基地台1、2以同一時序發送的同一内容的資料。 即,用於複數基地台以同一時序發送同一内容的資料 所使用之無線資源將行動台誘導至特定的頻帶以使複數頻 帶全體不分散。藉此,能使複數基地台以同一時序發送同 201134134 一内容的資料時之無線資源的利用效率。特別是顯示要使 用頻帶的資訊被通知,因此行動台3能於開始接收處理前選 擇適切的頻帶。又,複數頻帶中使用低頻帶時’電波的到 達範圍變廣,而使行動台3能接收並合成來自於更遠的基地 台的信號。所以,能使行動台3的接收品質進一步提升。 以下的第2〜第4實施形態中,考量將第1實施形態之無 線通訊方法適用於LTE-A系統的情形。但是,上述無線通 訊方法當然也可適用於其他種類的無線通訊系統。 [第2實施形態] 第2圖顯示第2實施形態之無線通訊系統。第2實施形態 之無線通訊系統包含有基地台100、200、行動台300及核心 網路 40。核心網路 40 設有 MME(Mobility Management Entity)410、MBMS 閘道器 420 及 SAE(System Architecture Evolution)閘道器430。此無線通訊系統係可與LTE-A通訊規 格對應的系統。 基地台100、200係可與行動台300無線通訊的無線通訊 裝置。基地台100連接有線網路,即,連接核心網路4〇,並 於行動台300與核心網路40之間轉送資料。基地台1〇〇、2〇〇 在無線通訊上使用5個載波成分(以下稱CC)。又,基地台 100、200能進行MBSFN發送’即,以同一時序使用同一頻 率發送同一内容的MBMS資料。 又,基地台100、200進行控制MBSFN發送之 MCE(Multi-cell/multicast Coordination Entity)的動作。即, 在基地台100、200中,行動台300連接的基地台特定要進行 12 201134134 MBSFN發送的複數基地台,且將使用於MBSFN發送之無線 資源予以排程。以下的說明中,考量基地台1〇〇主導地控制 對行動台300的MBSFN發送。 行動台300係在與基地台100、2〇〇之間進行無線通訊的 無線終端裝置’例如為行動電話或行動資訊終端等。行動 台300於下行鏈路(由基地台10〇、200朝行動台3〇〇的無線鏈 路)中,最大能同時使用5個CC接收資料。又,上行鏈路(由 行動台300朝基地台1〇〇、200的無線鏈路)中,最大能同時 使用2個CC接收資料。行動台3〇〇可使用的CC數係由基地台 100、200控制。 又,行動台300接收基地台1()0、200進行MBSFN發送 的MBMS資料。即,行動台300對已連接的基地台進行 MBSFN要求。從基地台1〇〇、2〇〇接收包含以同一時序使用 同一頻率發送之同一内容之MBMS資料的信號,並將接收 信號予以合成後進行解調或解碼。又,MBSFN發送可設為 僅使用1個CC來進行,也可設為同時使用複數cc來進行。 以下的說明中考量僅使用1個CC進行MBSFN發送的情形。 MME410係進行行動台3〇〇之行動性管理的裝置。 MME410與基地台100、200進行通信,並管理行動台300之 所在分區。MBMS閘道器420係處理行動台接收之MBMS資 料的裝置。MBMS閘道器420對基地台100、200轉送以行動 台300為目的地的MBMS資料。SAE閘道器430係處理行動 台300發送接收之使用者資料(MBMS資料除外)的裝置。 SAE閘道器430對基地台200轉送以行動台300為目的地的 13 201134134 使用者資料。 又,第2實施形態中,將不彙集使用複數CC之行動台 稱為LTE行動台。將可彙集使用複數CC之行動台稱為 LTE-A行動台。行動台300為LTE-A行動台。LTE-A行動台 與LTE行動台雙方可連接基地台100、200。於3GPP中,LTE 的通訊規格以Release 9的規格書來定義,LTE-A的通訊規格 以Release 10的規格書來定義。 第3圖係顯示載波成分之設定例的圖式。基地台1〇〇、 200如第3圖所示使用5個CC。用以雙方通訊而使用雙重頻 率分割(FDD: Frequency Division Duplex)時,對於下行鏈路 (DL: DownLink)及上行鏈路(UL: UpLink)分別可確保CC# 1〜#5的頻帶。以下的說明中僅稱CC#1〜#5時,乃指DL 之頻帶與UL之頻帶的組。DL及UL各CC的頻寬均為In the "Generation Partnership Project", a communication standard called LTE (Long Term Evolution) which can communicate using a frequency band of up to 20 MHz (see, for example, Non-Patent Documents 1 and 2). Furthermore, a communication standard called LTE-A (LTE-Advanced) that can communicate using five bands (ie, a band of 100 MHz) of up to 20 MHz (for example, refer to Non-Patent Document 3) has been proposed as the next generation of LTE. Communication specifications. Further, in such a communication standard, a so-called MBSFN (Multimedia Broadcast Multicast Service Single Frequency Network) data transmission method has been used for review (see, for example, Non-Patent Document 3). In the case of MBSFN ', the plurality of base stations transmit the same content at the same timing and using the same frequency and the same modulation method. The data sent by MBSF is called MBMS (Multimedia Broadcast Multicast Service) 201134134. The mobile station combines the received signals from the multiple base stations to improve reception quality. Further, regarding the transmission of the MBMS data, it has been proposed that the user device transmits the feedback information to the base station device when the MBMS data does not meet the predetermined quality, and the base station device determines whether to perform the adaptive modulation according to the feedback information (for example, refer to Non-patent document 3). Further, it has been proposed that the base station transmits the MBSFN reference signal associated with the MBSFN to the mobile station, and distinguishes the subframe used for the MBSFN transmission (MBSFN subframe) from the non-MBSFN subframe (for example, refer to the non-patent). [0095], [0096] of Document 2). CITATION LIST Patent Literature Patent Literature 1: JP-A-2008-278339, JP-A-2009-253614, Non-Patent Document Non-Patent Document 1: 3GPP (3rd Generation Partnership Project), "Evolved Universal Treeestrial Radio Access ( E-UTRA) and Evolved Universal Treeestrial Radio Access Network (E-UTRAN); Overall description, ', 3GPP TS 36.300 V9.1.0, 2009-09. Non-Patent Document 2: 3GPP (3rd Generation Partnership Project), "Evolved Universal Treeestrial Radio Access (E-UTRA) Radio Resource Control (RRC); Protocol specification", 3GPP TS 36.331 V9.0.0, 2009-09. Non-Patent Document 3: 3GPP (3rd Generation Partnership Project), 201134134 "Feasibility study for Further Advancements for E-UTRA (LTE-Advanced)", 3GPP TR 36.912 V9.0.0, 2009-09. SUMMARY OF THE INVENTION PROBLEMS TO BE SOLVED BY THE INVENTION The LTE-A system is considered in a mobile communication system in which a plurality of frequency bands can be used. Multiple base stations can send the same content data to the mobile station at the same timing. But 'this kind of mobile communication In the system, how to efficiently use the wireless resources of the multi-band is a problem. For example, the structure of the MBSFN sub-frame is different from that of the non-MBSFN sub-frame, so it can be considered that users who cannot receive gMBMS data can be collected together. The possibility of data. Furthermore, the MBSFN transmission can be started by the mobile station transmitting a request to the base station. Therefore, the mobile station requires MBSFN transmission in an arbitrary frequency band, and the base station wants to use the random station according to the requirements from the mobile station. When the frequency band starts MBSFN transmission, the MBSFN frame in which other types of user data cannot be stored is dispersed. Thus, the utilization efficiency of radio resources is lowered. The present invention is an invention completed in view of such a problem. The purpose is to provide a mobile communication system, a base station, a mobile station, and a wireless communication method that can increase the utilization efficiency of wireless resources when the same base data is transmitted in the same time sequence. Means to solve the problem In order to solve the above problems, a mobile communication system including a base station and a mobile station is provided. The base station includes a generating unit and a transmitting unit. Produce the Ministry of Health 201134134 Health notification information, in the belt, can display the scales can be data 2:: - - inside ί: With the right to use the wireless to notify the notification information. Action ": Department. The receiving department receives notification from the base station = 工 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 * * * * There is a wireless communication method for the first and second base mobile communication systems. This wireless communication... The base station generates notification information, which can display the complex solution that can be used by the wireless communication condition to make the poem and the second base station off- The timing is to send the frequency band of the data of the same θ. The first base station uses the wireless to notify the header. The mobile station receives the notification information notified by the second base station. The mobile station receives the notification information according to the received notification information. 1 and the second base station transmits the same content data at the same time sequence. According to the mobile communication system, the base station, the mobile station, and the wireless communication 5-hole method, the plurality of base stations can transmit the same content at the same timing. The utilization of the wireless resources at the time. The present invention will be clearly understood from the following description in connection with the drawings showing the preferred embodiments of the examples of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing a mobile communication system according to a first embodiment. Fig. 2 is a view showing a mobile communication system according to a second embodiment. The figure shows a diagram of a setting example of a carrier component. Fig. 4 is a diagram showing a first example of carrier aggregation. Fig. 5 is a diagram showing a second example of carrier aggregation. Fig. 6 shows a spectrum aggregation. Fig. 7 is a diagram showing a configuration example of a radio frame. Fig. 8 is a diagram showing a first allocation example of an extended entity notification channel. Fig. 9 is a second showing an extended entity notification channel. Fig. 10 is a diagram showing a third distribution example of an extended entity notification channel. Fig. 11 is a diagram showing a structural example of a symbol. Fig. 12 is a diagram showing a base station of the second embodiment. Fig. 13 is a block diagram showing a mobile station according to a second embodiment. Fig. 14 is a flowchart showing a mobile station process according to a second embodiment. Fig. 15 is a view showing an example of MBSFN control according to the second embodiment. Sequence diagram. Figure 16 shows the use of MBSFN Fig. 17 is a block diagram showing a calculation mode of the number of combinations of MBSFN. Fig. 18 is a block diagram showing a base station of the third embodiment. Fig. 19 is a view showing a third embodiment. Figure 20 is a block diagram showing the processing of the mobile station in the third embodiment. Fig. 21 is a sequence diagram showing an example of the MB SFN control in the third embodiment. Fig. 22 shows the third embodiment. Fig. 23 is a view showing a mobile communication system according to a fourth embodiment. Fig. 24 is a sequence diagram showing a first MBSFN control example in the fourth embodiment. 8 201134134 Fig. 25 A sequence diagram showing a second MBSFN control example in the fourth embodiment is shown. Fig. 26 is a sequence diagram showing a third MBSFN control example of the fourth embodiment. Fig. 27 is a view showing a modification of the mobile communication system according to the fourth embodiment. Mode for Carrying Out the Invention Hereinafter, the present embodiment will be described in detail with reference to the drawings. [First Embodiment] Fig. 1 shows a mobile communication system according to a first embodiment. The mobile communication system according to the first embodiment includes base stations 1, 2 and a mobile station 3. The base stations 1 and 2 are respectively wireless communication devices capable of wirelessly communicating with the mobile station 3. The base station 1 and the base station 2 are connected directly or through a host network. The base station 1 uses a plurality of frequency bands for wireless communication. The base station 2 can also use the complex frequency band. The mobile station 3 is a wireless communication device that is connected to the base stations 1 and 2 to perform wireless communication, and is, for example, a terminal device such as a mobile phone or a mobile information terminal device. The mobile station 3 uses the frequency band of one or more of the above complex frequency bands for wireless communication. The base station 1 includes a generating unit U and a transmitting unit generating unit la for generating notification information, which can be displayed in a plurality of frequency bands and used to transmit the same content at the same timing as other base stations (for example, the base station 2). The cheek band of the information. The frequency band can also be set to be the same as the base station 2 in the base station. In addition, the modulation method applicable to the transmission of the data may be exempted from the base __ at the base station and the base 201134134. The transmitting unit 1b wirelessly transmits (broadcasts) the notification resource generated by the generating unit 1a. The base station 2 can also be constructed in the same manner as the base station 1 to display notification information for the _ band to be displayed. The motion D 3 includes a receiving unit 3a and a control unit 3b. The receiving unit 3a receives the notification information transmitted by the base port. The control unit 3b receives the same content data transmitted by the base station 1 and other base stations (for example, the base station 2) in the same time sequence based on the received notification information. . The mobile station 3 synthesizes, demodulates, and decodes signals from the base station 2 and the base station 2, for example, and performs the reception quality. The mobile station 3 can also synthesize signals from more than three base stations. Here, the base station 1 may transmit the notification information generated by the generating unit 13 using the notification channel. The notification channel can also be the same channel as the notification channel for transmitting the information used by the mobile station 3 to the base station 1, or can be a different channel. In the latter case, the channel (the first notification channel) for transmitting the information for connecting the base station 1 is a channel that is commonly referred to by the first and second types of mobile stations, and the notification information generated by the transmission generating unit la may be used. The channel (second notification information) is a channel that is referred to by the mobile station of the first type, but is not referred to by the mobile station of the second type. Further, the base station 1 can also transmit (notify) the notification information generated by the generating unit 1a using the control channel. Further, the base station 1 can also use the lowest frequency band of the plurality of frequency bands for the plurality of base stations to transmit the same content data at the same timing. Further, the base station 1 can also assign identification information to the plurality of frequency bands. This identification information can be used in the notification message to display the frequency band to be used. For example, a cell ID or a unique number in the same partition or the like can be used as the identification information. When using the partition ID as the 201134134 identification information, one partition is assigned a plural partition ID. Further, the mobile station 3 may switch the frequency band to be used when the frequency band indicated by the received notification information is different from the frequency band used for the connection between the mobile terminal 3 and the base station 1. In this case, the mobile station 3 may also use the radio resource corresponding to the switched frequency band after the handover, and request the base station i to transmit the same content data at the same timing. Or, the radio resource corresponding to the band before the handover is used before the handover, and the base station 1 is required. Further, not only the switching of the switching band of the base station to which the destination is connected is also referred to as handover. This mobile communication system can be implemented as, for example, LTE-A. In this case, the plural frequency bands may be referred to as a component carrier (CC: Component Carrier) or a carrier component (cc: Carrier Component), respectively. Further, the first type of mobile station can be implemented as a mobile station corresponding to LTE, and the second type of mobile station can be implemented as a mobile station corresponding to LTE-A. Further, the first notification channel can be implemented as a notification channel defined by LTE and LTE-A, and the second notification channel can be realized as an extension notification channel not defined in LTE. In the mobile communication system according to the first embodiment, the base station 1 generates notification information that can be displayed in a plurality of frequency bands that can be used for wireless communication, and is used to transmit the same content at the same timing as the base station 2. > The frequency band of the material. The generated notification information is notified by wireless. Further, the notification information of the base station 1 is received by the mobile station 3. The data of the same content transmitted by the base stations 1 and 2 at the same time sequence is received according to the received notification information. That is, the radio resources used for the plurality of base stations transmitting the same content at the same time sequence induce the mobile station to a specific frequency band so that the entire frequency band is not dispersed. Thereby, the utilization efficiency of the radio resources when the plurality of base stations transmit the data of the same content as the 201134134 can be transmitted at the same timing. In particular, information indicating that the frequency band to be used is notified, so the mobile station 3 can select an appropriate frequency band before starting the reception processing. Further, when the low frequency band is used in the complex frequency band, the reach of the radio wave becomes wider, and the mobile station 3 can receive and synthesize signals from the farther base station. Therefore, the reception quality of the mobile station 3 can be further improved. In the following second to fourth embodiments, the case where the wireless communication method according to the first embodiment is applied to the LTE-A system will be considered. However, the above wireless communication method can of course be applied to other kinds of wireless communication systems. [Second Embodiment] Fig. 2 shows a wireless communication system according to a second embodiment. The wireless communication system of the second embodiment includes base stations 100 and 200, a mobile station 300, and a core network 40. The core network 40 is provided with an MME (Mobility Management Entity) 410, an MBMS gateway 420, and a SAE (System Architecture Evolution) gateway 430. This wireless communication system is a system that can correspond to the LTE-A communication specification. The base stations 100 and 200 are wireless communication devices that can wirelessly communicate with the mobile station 300. The base station 100 is connected to the wired network, i.e., is connected to the core network 4, and transfers data between the mobile station 300 and the core network 40. Base station 1〇〇, 2〇〇 Use 5 carrier components (hereinafter referred to as CC) for wireless communication. Further, the base stations 100 and 200 can perform MBSFN transmission, i.e., transmit MBMS data of the same content at the same frequency using the same frequency. Further, the base stations 100 and 200 perform an operation of MCE (Multi-cell/multicast Coordination Entity) for controlling MBSFN transmission. That is, in the base stations 100 and 200, the base station to which the mobile station 300 is connected specifies a plurality of base stations to be transmitted by 12 201134134 MBSFN, and the radio resources used for MBSFN transmission are scheduled. In the following description, the base station 1 is considered to control the MBSFN transmission to the mobile station 300. The mobile station 300 is a wireless terminal device that performs wireless communication with the base stations 100 and 2, for example, a mobile phone or a mobile information terminal. In the downlink (the wireless link from the base station 10〇, 200 to the mobile station 3), the mobile station 300 can simultaneously use up to five CCs to receive data. Further, in the uplink (the radio link from the mobile station 300 to the base stations 1 and 200), it is possible to simultaneously use two CCs to receive data. The number of CCs that can be used by the mobile station is controlled by the base stations 100 and 200. Further, the mobile station 300 receives the MBMS data transmitted by the base station 1 () 0, 200 for MBSFN transmission. That is, the mobile station 300 performs an MBSFN request on the connected base station. A signal including MBMS data of the same content transmitted at the same frequency using the same frequency is received from the base station 1 and 2, and the received signals are combined and demodulated or decoded. Further, the MBSFN transmission may be performed using only one CC, or may be performed using a plurality of ccs at the same time. In the following description, the case where MBSFN transmission is performed using only one CC is considered. The MME 410 is a device that performs mobility management of the mobile station. The MME 410 communicates with the base stations 100, 200 and manages the partition in which the mobile station 300 is located. The MBMS gateway 420 is a device that processes the MBMS data received by the mobile station. The MBMS gateway 420 transfers the MBMS data destined for the mobile station 300 to the base stations 100, 200. The SAE gateway 430 is a device that processes the user data (excluding MBMS data) that the mobile station 300 transmits. The SAE gateway 430 forwards the base station 200 to the 13 201134134 user profile destined for the mobile station 300. Further, in the second embodiment, a mobile station that does not use a plurality of CCs is referred to as an LTE mobile station. A mobile station that can use a plurality of CCs is called an LTE-A mobile station. The mobile station 300 is an LTE-A mobile station. Both the LTE-A mobile station and the LTE mobile station can be connected to the base stations 100 and 200. In 3GPP, the communication specifications of LTE are defined in the specification of Release 9, and the communication specifications of LTE-A are defined in the specification of Release 10. Fig. 3 is a diagram showing a setting example of a carrier component. Base stations 1 and 200 use 5 CCs as shown in Fig. 3. When dual-frequency division (FDD: Frequency Division Duplex) is used for communication between the two parties, the frequency bands of CC#1 to #5 can be secured for the downlink (DL: DownLink) and the uplink (UL: UpLink), respectively. In the following description, when only CC#1 to #5 are referred to, it means a group of a frequency band of DL and a frequency band of UL. The bandwidth of each DL and UL CC is

20MHz,全體的頻寬為100MHz。基地台100、200分別對CC # 1〜#5進行無線資源的分配(排程)。 又,第3圖的例子中,藉由FDD實現雙向通訊,然而, 也可藉由雙向時間分割(TDD: Time Division Duplex)來實 現。此情形下’在頻率軸上不區別见與沉而設置5個CC。 又’第3圖的例子中,將所有的cc頻寬度設定於20MHz, 然而,也可設定於其他頻寬(例如,5MHz、i〇MHz、15MHz 等)。又,也可不將所有的CC頻帶寬度設定成同一。 又,第3圖的例子中,將ul無線資源設於低頻率側, 而將DL無線資源設於高頻率側。頻率低者的信號傳送損失 變小’因此以將UL無線資源設於低頻率側的狀態下,能將 14 201134134 行動台300之發送電力抑制得低。但是,也可將ul無線資 源與DL無線資源的配置設成相反。 如上所述’行動台300聚集CC#1〜#5中的複數CC, 而能進行已使用較1個CC頻寬(例如,20MHz)更寬廣的頻寬 (例如,40MHz、60MHz、80MHz、100MHz等)的資料發送 接收。 在此,CC# 1〜#5可全部設於800MHz帶、2.5GHz帶、 3.5GHz帶等頻帶之其中一個,也可分散設於不同複數頻 帶。將聚集屬於同一頻帶之複數連續或不連續的CC的情形 稱為載波聚集(Carrier Aggregation)。相對於此,將聚集屬 於不同頻率頻帶之CC的情形稱為頻譜聚集(Spectrum Aggregation) ° 第4圖係顯示載波聚集之第1例的圖式。第4圖的例子 中,對於3.5GHz帶準備有4個不連續之5MHz寬度之頻帶及3 個不連續的20MHz寬度之頻帶作為可使用於無線通訊的頻 帶。以聚集4個5MHz之頻帶而形成20MHz寬度的CC# 2。 又,1個20MHz寬度的頻帶定義成CC#3。 行動台300藉由載波聚集而可將例如CC#2、#3作為 40MHz(邏輯上為1個頻帶)之頻帶來使用。此情形下,實際 上行動台300使用屬於3.5GHz帶之4個5MHz寬度的頻帶與1 個20MHz寬度之頻帶。又,第4圖舉出了屬於3.5GHz帶之頻 帶的例子,然而,對於800MHz帶等其他頻帶也可聚集較 20MHz小頻寬之頻帶來利用。 第5圖係顯示載波聚集之第2例的圖式。第5圖的例子 15 201134134 中’對於3.5GHz帶準備連續的80MHz寬度之頻帶作為可使 用於無線通訊的頻帶。此80MHz寬度的頻帶分割為4個,分 別定義為20MHz寬度的CC# 2〜# 5。 行動台300將例如CC#2、#3予以載波聚集而能作為 40MHz之頻帶(理論上為1個頻帶)。此情形下,實際上行動 台300使用屬於3.5GHz帶之連續80MHz寬度之頻帶中的一 部分。 第6圖係顯示頻譜聚集之例子的圖式。第6圖的例子 中’對於800MHz帶準備連續的20MHz寬度之頻帶作為可使 用於無線通訊的頻帶。又’對於3.5GHz帶準備連續的80MHz 寬度之頻帶作為可使用於無線通訊的頻帶。800MHz帶之 20MHz寬度的頻帶定義為CC#1,且3.5GHz帶之80MHz寬 度的頻帶分割為4個,分別定義為20MHz寬度的CC#2〜# 5 ° 行動台300藉由頻譜聚集可將例如cc # 1〜# 5作為 100MHz之頻帶(理論上的1個頻帶)使用。此情形下,實際上 行動台300使用屬於800MHz帶之20MHz寬度的頻帶與屬於 3.5GHz之連續的80MHz寬度之頻帶。又’如第4圖所示,也 可聚集屬於800MHz帶之頻寬較20MHz小的複數頻帶以形 成CC#1° 800MHz帶之電波到達距離較3_5GHz帶還長,可構成更 穩定的無線通訊。因此,對於分離一距離之基地台與行動 台之間的資料發送接收或重要資料的發送接收等,可考量 優先使用屬於800MHz帶的CC#1。此情形下也可將cc#l 16 201134134 稱為錨點cc。 第7圖係顯示無線通訊之構造側的圖式。於各個CC# 1 〜#5,第7圖所示之無線訊框在基地台100、200與行動台 300之間被發送接收。但是,第7圖的構造為一例,無線訊 框的構造不限定於此。 此例子中,於l〇ms周期的無線訊框包含有lms寬度的 10個副訊框。各副訊框包含有〇.5ms寬度的2個槽。即,於 10ms周期的無線訊框包含有20個槽(槽# 0〜# 19)。 在DL無線訊框,於槽#0、#10可分配用以發送同步 信號的主要同步頻道(P-SCH: Primary Synchronization CHannel)及次要同步頻道(S-SCH: Secondary Synchronization CHannel)。又,於槽#1可分配用以發送(通 知)通知資訊的實體通知頻道(PBCH: Physical Broadcast CHannel)及擴充實體通知頻道(E-PBCH: Extended Physical Broadcast CHannel)。 無線訊框内的無線資源被朝向時間方向及頻率方向細 分化管理。於DL訊樞使用 〇FDMA(Orthogonal Frequency Division Multiple Access),而於 UL 訊框使用 SC-FDMA(Signal-Carrier Frequency Division Multiple Access)。時間x頻率之領域的無線資源分配於各種頻道。 針對時間方向,槽包含有7個或6個符號。於符號插入 有所謂CP(Cyclic Prefix)的間隔信號。於CP存在有所謂通常 CP(正規CP)與擴充CP之長度不同的兩種類CP。使用通常Cp 時,一槽包含有七符號,使用擴充CP時,一槽包含有六符 17 201134134 號。針對頻率方向,cc包含有複數副載波。 第8圖係顯示擴充實體通知頻道之第丨分配例的圖式。 於第8圖中’縱向為時間軸,橫向為頻率軸。又,第8圖的 例子顯示使用通常CP作為CP的情形,即,顯示一槽包含有 七槽的情形。 於DL訊框中’槽#〇之第1符號可分配PCFICH(Pysical20MHz, the overall bandwidth is 100MHz. The base stations 100 and 200 perform radio resource allocation (scheduling) to CC #1 to #5, respectively. Further, in the example of Fig. 3, bidirectional communication is realized by FDD, but it can also be realized by two-dimensional time division (TDD: Time Division Duplex). In this case, '5 CCs are set without distinction on the frequency axis. Further, in the example of Fig. 3, all the cc frequency widths are set to 20 MHz, but they may be set to other bandwidths (for example, 5 MHz, i 〇 MHz, 15 MHz, etc.). Further, all CC band widths may not be set to be the same. Further, in the example of Fig. 3, the ul radio resource is set on the low frequency side, and the DL radio resource is set on the high frequency side. The signal transmission loss of the lower frequency is reduced. Therefore, in the state where the UL radio resource is set to the low frequency side, the transmission power of the 14201134134 mobile station 300 can be suppressed low. However, the configuration of the ul radio resource and the DL radio resource can also be reversed. As described above, the mobile station 300 aggregates the complex CCs in CC#1 to #5, and can perform wider bandwidths than the one CC bandwidth (for example, 20 MHz) (for example, 40 MHz, 60 MHz, 80 MHz, 100 MHz). Etc.) Send and receive data. Here, CC# 1 to #5 may be all set in one of the 800 MHz band, the 2.5 GHz band, the 3.5 GHz band, or the like, or may be dispersed in different complex bands. The case of aggregating a plurality of consecutive or discontinuous CCs belonging to the same frequency band is referred to as Carrier Aggregation. On the other hand, the case of accumulating CCs belonging to different frequency bands is called Spectrum Aggregation. Fig. 4 is a diagram showing the first example of carrier aggregation. In the example of Fig. 4, four discontinuous 5 MHz wide frequency bands and three discontinuous 20 MHz wide frequency bands are prepared for the 3.5 GHz band as a frequency band that can be used for wireless communication. CC# 2 of 20 MHz width is formed by aggregating four 5 MHz bands. Also, one band of 20 MHz width is defined as CC#3. The mobile station 300 can use, for example, CC#2 and #3 as a frequency band of 40 MHz (logically one frequency band) by carrier aggregation. In this case, the actual mobile station 300 uses four frequency bands of 5 MHz width belonging to the 3.5 GHz band and one frequency band of 20 MHz width. Further, Fig. 4 shows an example of a frequency band belonging to the 3.5 GHz band. However, for other frequency bands such as the 800 MHz band, a frequency band smaller than 20 MHz can be used for use. Fig. 5 is a diagram showing a second example of carrier aggregation. Example of Fig. 5 15 In 201134134, a frequency band of 80 MHz width is prepared for the 3.5 GHz band as a frequency band that can be used for wireless communication. This 80 MHz wide frequency band is divided into four, which are defined as CC# 2 to #5 of 20 MHz width, respectively. The mobile station 300 aggregates carriers such as CC#2 and #3, and can serve as a frequency band of 40 MHz (theoretical is one frequency band). In this case, the mobile station 300 actually uses a portion of the frequency band that is a continuous 80 MHz width of the 3.5 GHz band. Figure 6 is a diagram showing an example of spectrum aggregation. In the example of Fig. 6, a band of 20 MHz width is prepared for the 800 MHz band as a frequency band that can be used for wireless communication. Further, a frequency band of 80 MHz width is prepared for the 3.5 GHz band as a frequency band that can be used for wireless communication. The band of 20MHz width of the 800MHz band is defined as CC#1, and the band of 80MHz width of the 3.5GHz band is divided into four, which are respectively defined as CC#2~#5° of 20MHz width. The mobile station 300 can be, for example, by spectrum aggregation. Cc #1 to #5 are used as a frequency band of 100 MHz (the theoretical one band). In this case, the mobile station 300 actually uses a frequency band of 20 MHz width belonging to the 800 MHz band and a frequency band of 80 MHz width belonging to 3.5 GHz. Further, as shown in Fig. 4, a plurality of frequency bands having a bandwidth of less than 20 MHz belonging to the 800 MHz band may be aggregated to form a CC#1° 800 MHz band having a longer reach than the 3_5 GHz band, which may constitute a more stable wireless communication. Therefore, CC#1 belonging to the 800MHz band can be preferentially used for transmitting and receiving data or receiving and receiving important data between the base station and the mobile station separated by one distance. In this case, cc#l 16 201134134 can also be referred to as anchor point cc. Figure 7 is a diagram showing the construction side of wireless communication. In each of CC# 1 to #5, the radio frame shown in Fig. 7 is transmitted and received between the base stations 100 and 200 and the mobile station 300. However, the structure of Fig. 7 is an example, and the structure of the radio frame is not limited to this. In this example, the radio frame in the l〇ms period contains 10 sub-frames of lms width. Each sub-frame contains 2 slots with a width of .5ms. That is, the radio frame in the 10ms period includes 20 slots (slots #0~#19). In the DL radio frame, slots #0 and #10 can be allocated a primary synchronization channel (P-SCH: Primary Synchronization CHannel) and a secondary synchronization channel (S-SCH: Secondary Synchronization CHannel) for transmitting a synchronization signal. Further, the slot #1 may allocate an entity notification channel (PBCH: Physical Broadcast CHannel) and an extended physical broadcast channel (E-PBCH: Extended Physical Broadcast CHannel) for transmitting (notifying) the notification information. The radio resources in the radio frame are managed in a differentiated manner in the time direction and the frequency direction. 〇FDMA (Orthogonal Frequency Division Multiple Access) is used for the DL message, and SC-FDMA (Signal-Carrier Frequency Division Multiple Access) is used for the UL frame. Radio resources in the field of time x frequency are allocated to various channels. For the time direction, the slot contains 7 or 6 symbols. The symbol insertion has a so-called CP (Cyclic Prefix) interval signal. There are two types of CPs in the CP that have different lengths of the normal CP (regular CP) and the extended CP. When using normal Cp, one slot contains seven symbols, and when using extended CP, one slot contains six symbols 17 201134134. For the frequency direction, cc contains multiple subcarriers. Figure 8 is a diagram showing a third allocation example of an extended entity notification channel. In Fig. 8, 'the longitudinal direction is the time axis and the lateral direction is the frequency axis. Further, the example of Fig. 8 shows a case where a normal CP is used as the CP, that is, a case where one slot contains seven slots is displayed. The first symbol of the 'slot #〇 in the DL frame can be assigned PCFICH (Pysical

Control Format Indicator CHannel)及PHICH(Pysical Hybrid automatic repeat request Indicator CHannel)。PCFICH係用以 通知可分配下行鏈路實體控制頻道(PDCCH: PhysicalControl Format Indicator CHannel) and PHICH (Pysical Hybrid Automatic Repeat Request Indicator CHannel). PCFICH is used to notify the assignable downlink entity control channel (PDCCH: Physical

Downlink Control CHannel)之符號數的頻道。PHICH係用以 回覆對資料接收之ACK(ACKnowled gement)應答或 NACK(Negative ACKnowled gement)應答的頻道。PHICH也 有分配於第3符號的情形。 又,槽#0之第1符號可分配上述PDCCH。PDCCH係用 以發送Ll/L2(Layer 1/Layer 2)之控制資訊的頻道。PDCCH 也有分配於第2符號及第3符號。PDCCH的符號數在1個〜3 個之間可變。 又,槽#0之第6符號可分配前述S-SCH »第7符號可分 配前述P-SCH。P-SCH係可發送預定數(例如3個)主要同步 信號系列中的其中1個的頻道。S-SCH係可發送預定數(例如 168個)io2要同步信號系列中的其中1個的頻道。Ρ-SCH系列 與S-SCH系列的組合(例如3個X168個=504種組合)與分區 ID對應著。 又’槽#0之第1〜第4符號可分配前述PBCH,第5〜第 18 201134134 7符號可分配前述Ε-PBCH。在無線資源領域上,e-PBCH與 PBCH於時間方向鄰接著。PBCH係以LTE及LTE-A共通定義 的通知頻道。E-PBCH係以LTE-A追加的通知頻道。即, LET-A行動台’即,行動台3〇〇可檢測出PBCH與E-PBCH雙 方。相對於此,LTE行動台可檢測出PBCH,但是,無法檢 測出 E-PBCH。 以PBCH發送之通知資訊包含行動台3〇〇用以連接設有 該PBCH之CC的資訊。例如,PBCH之通知資訊包含顯示頻 寬(例如 ’ 5MHz、10MHz、15MHz、20MHz)的資訊。此乃 因LTE及LTE-A為頻寬可變之故。 以E-PBCH發送之通知資訊(擴充通知資訊)可包含關於 設有複數CC的資訊。例如’可考量基地台1〇〇、200限制使 用於MBSFN之CC以能有效地進行排程。此情形下,可考量 將顯示CC# 1〜#5之中可使用於MBSFN發送之CC的資訊 包含於擴充通知資訊來發送。藉此,行動台300能於對基地 台100進行MBSFN要求之前得知可使用的CC。又,擴充通 知資訊也可利用預先分配於CC# 1〜# 5的ID,而顯現可使 用於MBSFN發送的CC。 S-SCH、P-SCH、PBCH及E-PBCH如第8圖所示非分配 於1個CC的頻率(副載波)全體,可僅分配於一部分頻率(副 載波)。例如,設成分配於CC之中央附近的頻率。非CC之 交界附近而係分配於中央附近的頻率的理由乃為了容易達 到以行動台300進行的頻道檢測。分配於E-PBCH的頻率可 與分配於PBCH的頻率相同,也可為不同。 19 201134134 又,DL訊框利用上述頻道所使用之無線資源以外之資 源的一部分,發送已知的引示信號(pilot signal),即,參照 信號(RS: Reference Signal)。行動台300利用參照信號可測 定接收品質。 第9圖係顯示擴充實體通知頻道之第2分配例的圖式。 第9圖的分配例除了 E-PBCH的設定位置以外,與第8圖所示 的例子相同。第9圖的例子中,槽#〇之第4〜第5符號可分 配E-PBCH。在無線資源領域上,E-PBCH與S-SCH於時間 方向鄰接著。分配於E-PBCH的頻率可與分配於S-SCH之頻 率相同,也可不同。 第10圖係顯示擴充實體通知頻道之第3分配例的圖 式。第10圖的分配例除了 E-PBCH的設定位置以外,與第8、 9圖所示的例子相同。第10圖的例子中,槽#〇之第4〜第5 符號與槽# 1之第5〜第7符號雙方可分配E-PBCH。在無線 資源領域上,E-PBCH與S-SCH及PBCH於時間方向鄰接 著。分配於E-PBCH的頻率可與分配於S-SCH及PBCH之頻 率相同,也可不同。 如上所述,以增加分配於E-PBCH之無線資源的量,能 發送更多的擴充通知資訊。也可對應要發送的擴充通知資 訊而將分配於E-PBCH之無線資源設為可變。又,如第8圖 〜第10圖所示,以使E-PBCH與同步頻道及PBCH之至少一 者於時間方向鄰接,而可容易達到以行動台3〇〇來檢測 E-PBCH。但是,也可非時間方向而設定成於頻率方向鄰 接。又,也可設定成不將E-PBCH與同步頻道及pBch之其 20 201134134 中任一者鄰接。又’ Ε-PBCH可設於所有的cc,也可僅設 於一部分CC。 又,第8圖〜第10圖舉出了使用通常cp作為cp時(1槽包 含7符號的情形)作為例子,然而,使用擴充Cp作為Cp時y 槽包含6符號的情形)也能以同樣的考量方式來設定 Ε-PBCH。此情形下’例如第8圖的方法係於槽# 1之第5〜 第6符號分配Ε-PBCH,第9圖的方法係於槽#〇之第4符號分 配Ε-PBCH,第1〇圖的方法係於槽# 〇之第4符號及槽# 第5〜第6符號分配Ε-PBCH。 第11圖係顯示符號之構造例的圖式。如以上所述,cp 的種類存在有通常CP與擴充CP。如第Π圖所示,於資料部 分,即,於某有效符號前插入cp。cp係已複製有效符號之 末尾部分之信號者。通常CP的時間長度為4 69μ秒,擴充cp 的時間長度為16.67μ秒。1個符號的有效符號長度在通常cp 的情形與擴充CP的情形相同。 擴充cp例如在MBSFN副訊框(使用於MBSFN發送之副 訊框)使用。此情形下’ MBSFN副訊框具有6個包含有效符 號與的符號。通常CP例如在非MBSFN副訊框(不使用於 MBSFN發送之副訊框)使用。此情形下,非MBSFN副訊框 具有7個符號。 第12圖係顯示第2實施形態之基地台的方塊圖。基地台 100包含有發送接收天線111、無線接收部112、解調解碼部 1U、品質資訊產生部114、MBSFN要求抽出部115 '排程器 116、通知資訊產生部117、MBSFN通知資訊產生部118、 21 201134134 mbsfn控制資訊產生部119、RS產生部m、對映部⑵、 編碼調變部122及無線發送部⑵。又,基地台也能藉由 與基地台100同樣的模組構成來實現。 發送接收天線m純行動㈣崎送的無線信號並輸 出至無線接收部112。X,發送接收天線ιη無線輸出由益 線發送部123取得的發㈣號。又,也可从發送接收兼用 的天線,而將發送用天線與接收用天線個職於基地台 100又,也可使用複數發送接收天線來進行分集發送。 無線接收部112將由發送接收天線lu取得的信號予以 無線信號處理,而進行由高頻率的無線信號變換至低頻率 的基頻信號(降頻變頻)。無線接收部112為了無線信號處 理,例如,包含有低雜訊放大器(LNA: LOW N()ise Amplifier)、頻率變換器、帶通濾波器(BpF: Band passDownlink Control CHannel) The number of symbols. PHICH is used to reply to the channel of ACK (ACKnowled gement) response or NACK (Negative ACKnowled gement) response. The PHICH is also assigned to the third symbol. Further, the first symbol of the slot #0 can allocate the PDCCH described above. The PDCCH is a channel for transmitting control information of L1/L2 (Layer 1/Layer 2). The PDCCH is also assigned to the second symbol and the third symbol. The number of symbols of the PDCCH is variable from one to three. Further, the sixth symbol of slot #0 can be assigned the aforementioned S-SCH » seventh symbol to assign the aforementioned P-SCH. The P-SCH system can transmit a channel of one of a predetermined number (e.g., three) of main synchronizing signal series. The S-SCH system can transmit a predetermined number (e.g., 168) of io2 channels of one of the series of signals to be synchronized. The combination of the Ρ-SCH series and the S-SCH series (for example, three X168 = 504 combinations) corresponds to the partition ID. Further, the first to fourth symbols of the slot #0 can be assigned to the PBCH, and the fifth to eighteenth 201134134 7 symbols can be assigned to the aforementioned Ε-PBCH. In the field of radio resources, e-PBCH and PBCH are adjacent in the time direction. The PBCH is a notification channel defined by LTE and LTE-A in common. E-PBCH is a notification channel added by LTE-A. That is, the LET-A mobile station', i.e., the mobile station 3, can detect both the PBCH and the E-PBCH. On the other hand, the LTE mobile station can detect the PBCH, but the E-PBCH cannot be detected. The notification information transmitted by the PBCH includes information for the mobile station 3 to connect to the CC having the PBCH. For example, the notification information of the PBCH includes information of display bandwidth (e.g., '5MHz, 10MHz, 15MHz, 20MHz). This is due to the variable bandwidth of LTE and LTE-A. The notification information (extension notification information) sent by the E-PBCH may contain information about the plural CC. For example, the base station can be used to limit the use of CCs for MBSFN to enable efficient scheduling. In this case, it is considered that the information indicating the CC for MBSFN transmission among the CC# 1 to #5 is included in the extension notification information to be transmitted. Thereby, the mobile station 300 can know the available CCs before performing the MBSFN request to the base station 100. Further, the extended notification information can also be used to display the CCs that can be used for MBSFN transmission by using the IDs assigned in advance to CC# 1 to #5. As shown in Fig. 8, the S-SCH, P-SCH, PBCH, and E-PBCH are all allocated to a single frequency (subcarrier) of one CC, and may be allocated only to a part of frequencies (subcarriers). For example, it is set to a frequency assigned to the vicinity of the center of the CC. The reason for the frequency allocated near the center near the boundary of the non-CC is to facilitate channel detection by the mobile station 300. The frequency assigned to the E-PBCH may be the same as or different from the frequency assigned to the PBCH. 19 201134134 Further, the DL frame transmits a known pilot signal, that is, a reference signal (RS: Reference Signal), using a part of the resources other than the radio resources used by the channel. The mobile station 300 can measure the reception quality using the reference signal. Fig. 9 is a diagram showing a second allocation example of the extended entity notification channel. The assignment example of Fig. 9 is the same as the example shown in Fig. 8 except for the setting position of the E-PBCH. In the example of Fig. 9, the fourth to fifth symbols of the slot #〇 can be assigned to the E-PBCH. In the field of radio resources, the E-PBCH and the S-SCH are adjacent in the time direction. The frequency allocated to the E-PBCH may be the same as or different from the frequency assigned to the S-SCH. Fig. 10 is a view showing a third allocation example of the extended entity notification channel. The assignment example of Fig. 10 is the same as the example shown in Figs. 8 and 9 except for the setting position of the E-PBCH. In the example of Fig. 10, the fourth to fifth symbols of the slot #〇 and the fifth to seventh symbols of the slot #1 can be assigned E-PBCH. In the field of radio resources, E-PBCH is adjacent to S-SCH and PBCH in the time direction. The frequency allocated to the E-PBCH may be the same as or different from the frequency allocated to the S-SCH and the PBCH. As described above, more extended notification information can be transmitted by increasing the amount of radio resources allocated to the E-PBCH. The radio resource allocated to the E-PBCH may also be made variable in accordance with the extension notification information to be transmitted. Further, as shown in Figs. 8 to 10, the E-PBCH can be easily detected by the mobile station 3 by making the E-PBCH adjacent to at least one of the synchronization channel and the PBCH in the time direction. However, it may be set to be adjacent to the frequency direction other than the time direction. Alternatively, it may be set such that the E-PBCH is not adjacent to any of the synchronization channel and the pBch 20 201134134. Further, the Ε-PBCH can be provided in all ccs or only in a part of CCs. Further, Fig. 8 to Fig. 10 exemplify the case where the normal cp is used as the cp (the case where one slot contains 7 symbols), but the case where the y slot contains 6 symbols when the extended Cp is used as Cp can also be used. The way to consider is to set Ε-PBCH. In this case, for example, the method of Fig. 8 is based on the fifth to sixth symbol assignment Ε-PBCH of slot #1, and the method of Fig. 9 is based on the fourth symbol assignment 槽-PBCH of slot #〇, the first diagram. The method is based on the fourth symbol of the slot #〇 and the slot #5th to sixth symbols are assigned Ε-PBCH. Fig. 11 is a diagram showing a structural example of a symbol. As mentioned above, there are normal CPs and extended CPs for the types of cp. As shown in the figure, insert the cp in the data section, that is, before a valid symbol. Cp is the signal that has copied the end of the valid symbol. Usually, the length of the CP is 4 69 μsec, and the length of the extended cp is 16.67 μsec. The effective symbol length of one symbol is the same as in the case of the extended CP in the case of the normal cp. The extended cp is used, for example, in the MBSFN sub-frame (used in the subframe for MBSFN transmission). In this case, the 'MBSFN sub-frame has 6 symbols containing valid symbols and . Usually, the CP is used, for example, in a non-MBSFN sub-frame (not used in the subframe for MBSFN transmission). In this case, the non-MBSFN sub-frame has 7 symbols. Fig. 12 is a block diagram showing a base station of the second embodiment. The base station 100 includes a transmission/reception antenna 111, a radio reception unit 112, a demodulation and decoding unit 1U, a quality information generation unit 114, an MBSFN request extraction unit 115, a scheduler 116, a notification information generation unit 117, and an MBSFN notification information generation unit 118. 21 201134134 mbsfn control information generation unit 119, RS generation unit m, mapping unit (2), code modulation unit 122, and wireless transmission unit (2). Further, the base station can also be realized by the same module configuration as the base station 100. The wireless signal transmitted by the receiving antenna m (4) is transmitted to the wireless receiving unit 112. X, the transmission/reception antenna ιη wirelessly outputs the transmission (four) number obtained by the benefit transmission unit 123. Further, the transmitting antenna and the receiving antenna may be used in the base station 100, and the plurality of transmitting and receiving antennas may be used for diversity transmission. The radio reception unit 112 performs radio signal processing on the signal obtained by the transmission/reception antenna lu, and performs conversion of a high-frequency radio signal to a low-frequency baseband signal (down-conversion frequency conversion). The wireless receiving unit 112 includes, for example, a low noise amplifier (LNA: LOW N()ise Amplifier), a frequency converter, and a band pass filter (BpF: Band pass) for wireless signal processing.

Filter)、A/D(Analog t0 Digital)變換器等。接收對象之頻帶 由排程器116指示。 解調解碼部113將由無線接收部112取得之基頻信號予 以解調及錯誤更正解碼,並輸出所獲得的資料(包含使用者 資料與控制資訊)。解調及解碼係利用與預定的調變編碼方 式(MCS: Modulation and Coding Scheme)或由排程器 116所 指示之調變編碼方式對應的方法來進行。調變方式之候選 包含 QPSK(Quadrature Phase Shift Keying)或 16QAM(Quadrature Amplitude Modulation)等數位調變方 式。編碼方式之候選包含渦輪碼(Turbo code)與低密度同合 檢查(LDPC: Low Density Parity Check)碼。業經抽出之使用 22 201134134 者資料被轉送至SAE閘道器430。 品質資訊產生部114抽出行動台300所發送之控制資訊 之一 ’即,無線品質之測定報告(Measurement Report)。品 質資訊產生部114將業經抽出的測定報告輸出至排程器 116。 MBSFN要求抽出部115抽出行動台300所送出的 MBSFN要求(顯示MBSFN發送之要求的控制資訊)。MBSFN 要求係利用已設於UL無線訊框之上行鏈路實體共有頻道 (PUSCH: Physical Uplink Shared CHannel)發送。MBSFN要 求抽出部115將已抽出的MBSFN要求輸出至用以實現已設 於基地台100内之MCE之控制機能的模組(未以圖式顯示)。 排程器116依據由品質資訊產生部114取得之測定報告 而進行對行動台3 00之無線資源的分配。如此一來,將無線 資源的分配狀況通知無線接收部112、解調解碼部113、對 映部121、編碼調變部122及無線發送部123。又,排程器ιΐ6 依據測定報告而適應地選擇調變編碼方式。如此一來,將 已選擇之調Μ碼以通知解調解碼部113及編碼調變部 122。 通知資訊產生部117於每-CC產生以pBCH發送(通知) 的通知資訊。此通知資訊包含顯示該⑺之頻寬的資料。 MBSFN通知資訊產生部118產生可顯示cc#i〜#5之中使 用於MBSFN發送之CC的資訊。此通知資訊例如以E_pBcH 來發送。MBSFN控制資訊產生部U9產生關於順ρΝ的控 制資訊。此控㈣訊包含MBMSf料之調變編碼方式與顯 23 201134134 示發送時序的資訊等。此控制資訊利用設於DL無線訊框之 實體多播頻道(PMCH: Physical Multicast CHannel)來發 送。RS產生部120產生已知信號,即,參照信號。 又,也可將以MBSFN通知資訊產生部118產生之通知 資訊,利用E-PBCH以外的頻道來通知。例如,可考量以 PBCH通知的方法。又,也可考量使用可發送MBSFN之控 制資訊的頻道(PMCH)來通知的方法。 對映部121將由MBMS閘道器420接收之MBMS資料與 由SAE閘道器430接收之使用者資料對映至DL無線訊框。 又,將通知資訊產生部117、MBSFN通知資訊產生部118、 MBSFN控制資訊產生部119及RS產生部120產生的控制資 訊/控制信號對映至DL無線訊框。如此一來,依序將對映後 的資料輸出至編碼調變部122。 編碼調變部122將由對映部121取得之資料予以錯誤更 正編碼及調變,產生作為發送信號之基頻信號並輸出至無 線發送部123。編碼及調變係使用預定的調變編碼方式或由 排程器116指示之調變編碼方式。調變方式之候選包含 QPSK或16QAM等數位調變方式。編碼方式之候選包含渦 輪碼或LDPC碼。 無線發送部123將由編碼調變部122取得之發送信號予 以無線信號處理,而進行由低頻率之基頻信號朝高頻率之 無線信號變換(增頻變頻)。無線發送部123為了無線信號處 理’包含有例如D/A(Digital to Analog)變換器、頻率變換 器、帶通濾波器、電力放大器等。發送對象之頻帶由排程 24 201134134 益116指示。 第13圖係顯示第2實施形態之行動台的方塊圖。行動台 300包含有發送接收天線311、無線接收部312、解調解碼部 313、通知資訊抽出部314、終端控制部3l5、MBSFN控制 貢訊抽出部316、MBSFN控制部317、MBSFN通知資訊抽出 部318、MBSFN要求產生部319、RS抽出部320、品質測定 部32卜品質資訊產生部322、編碼調變部323及無線發送部 324。 發送接收天線311接收基地台100、2〇〇發送之無線信號 而輸出至無線接收部312。又,發送接收天線3丨丨無線輸出 由無線發送部324取得的發送信號。又,也可不是發送接收 兼用的天線,而將發送用天線與接收用天線個別設於行動 台300。又,也可使用複數發送接收天線來進行分集發送。 無線接收部312將由發送接收天線3丨丨取得的信號予以 無線信號處理,而進行由高頻率的無線信號變換至低頻率 的基頻信號(降頻變頻)。無線接收部312為了無線信號處 理,例如,包含有低雜訊放大器、頻率變換器、帶通濾波 器、A/D變換器等。接收對象之頻帶由終端控制部ms指示。 解調解碼部313將由無線接收部312取得之基頻信號予 以解調及錯誤更正解碼,並輸出所獲得的資料(包含使用者 資料與控制資訊)。解調及解碼係利用與預定的調變編碼方 式或由終端控制部315所指示之調變編碼方式對應的方法 來進行。 在此’基地台100, 200進行MBSFN發送時,於接收信 25 201134134 號中,基地台1GG發送的信號與基地台期發送的信號重疊 著。兩者的信號為同—内容,然而,依據到達行動台3〇〇之 傳送距離’會有-方較另_方延遲的情形。即在行動台 3〇〇可見直接波與延遲波重疊著。此情形下,無線接收部312 右疋延遲時間在CP長度以下,也能抽出相當於延遲波的信 號。解調解碼部313對於合成了來自於如此抽出之各基地台 的仏號歧彳了_及解碼。藉此,於行動台可提升接收 品質。 通知資讯抽出部314於每一 CC抽出基地台100、200以 PBCH通知的通知資訊。此通知資訊包含顯示已發送該通知 資訊之cc之頻寬的資訊等。通知資訊抽出部314將已抽出 之通知資訊輸出至終端控制部315。 終端控制部315參照以通知資訊抽出部3丨4所抽出之通 知資訊,而控制對基地台100的連接。又,終端控制部315 對基地台100要求MBSFN發送前,依據由MBSFN通知資訊 抽出部318取得之通知資訊而判斷可使用kMBSFN發送的 CC。又,依據從MBSFN控制部317通知的資訊而特定適用 於MBMS資料之調變編碼方式與接收時序。如此一來,終 端控制部315控制無線接收部312、解調解碼部313、編碼調 變部323及無線發送部324的動作。 MBSFN控制資訊抽出部316抽出關於基地台以pmCH 發送之MBSFN的控制資訊。此控制資訊包含適用於mbmS 資料之調變編碼方式與顯示發送時序的資訊等。MBSFN控 制資訊抽出部316將已抽出之控制資訊輸出至MBSFN控制 26 201134134 部 317。 MBSFN控制部317控制MBSFN之接收處理。具體上, MBSFN控制部317開始MBSFN之接收處理時,指示MBSFN 要求產生部319以發送MBSFN要求。又,將MBSFN控制資 訊柚出部316所柚出之控制資訊的内容通知終端控制部 315。 MBSFN通知資訊抽出部318抽出基地台100以E-PBCH 通知的擴充通知資訊。此擴充通知資訊包含顯示CC# 1〜 # 5之中可使用於MBSFN發送之CC的資訊。MBSFN通知資 訊抽出部318將已抽出之擴充通知資訊輸出至終端控制部 315。又,以E-PBCH以外的頻道(例如,PBCH或PMCH)通 知顯示可使用之CC的資訊時,MBSFN通知資訊抽出部318 由該頻道抽出通知資訊。 MBSFN要求產生部319依據來自於MBSFN控制部317 的指示而產生MBSFN要求,即,產生可顯示開始要求 MBSFN發送之控制資訊。所產生之MBSFN要求透過編碼調 變部323及無線發送部324,而以例如設於MBSFN所使用之 CC的PUSCH來發送。 RS抽出部320抽出基地台1 〇〇、200發送的參照信號。如 此一來,將已抽出的參照信號輸出至品質測定部321。 品質測定部321使用以RS抽出部320抽出的參照信號而 測定各個CC#1〜#5的接收品質。如此一來,品質測定部 321將測定結果通知品質資訊產生部322。例如能使用 SIRN(SignaI to Interference and Noise Ratio)作為顯示接收 27 201134134 品質的指標。 品質資訊產生部322產生可顯示以品質測定部321測定 之接收品質的控制資訊(測定報告)。例如可使用以離散值表示 接收品質的CQI(Channel Quality Indication)作為測定報告。 編碼調變部323將對基地台1 〇〇、2〇〇發送之使用者資 料 '以MBSFN要求產生部319產生之MBSFN要求、及以品 質資訊產生部322產生的測定報告,予以錯誤更正編碼及調 變’且對應至分配於行動台300之UL無線資源。編碼及調 變係使用預定的調變編碼方式或由終端控制部315指示之 調變編碼方式。如此一來,將作為發送信號的基頻信號輸 出至無線發送部324。 無線發送部324將由編碼調變部323取得之發送信號予 以無線信號處理,而進行由低頻率之基頻信號朝高頻率之 無線信號變換(增頻變頻)。無線發送部324為了無線信號處 理’包含有例如D/A變換器、頻率變換器、帶通濾波器、電 力放大器等。發送對象之頻帶由終端控制部315指示。 第14圖係顯示第2實施形態之行動台處理的流程圖。在 此,考量行動台300對基地台100進行MBSFN要求的情形。 MBSFN要求係於例如行動台300利用伴隨著MBSFN發送的 服務時(確立服務流程時)進行。可考量例如動畫配送服務等 作為伴隨著MBSFN發送的服務。 (步驟S11)行動台300接收基地台100以CC# 1〜#5分 別的PBCH通知的通知資訊。此通知資訊包含行動台300用 以連接各CC的資訊 28 201134134 (步驟S12)行動台300接收基地台loo以至少1個cc的 E-PBCH(或是pBCH或PMCH等其他頻道)通知之關於 MBSFN的通知資訊。此通知資訊包含可顯示cc # 1〜# 5 中可使用於MBSFN發送之CC的資訊。 (步驟S13)行動台300參照在步驟S12已接收之關於 MBSFN的通知資訊’並選擇使用於MBSFN發送的CC。即, 當可使用於MBSFN發送時,選擇以基地台1〇〇指定之cc中 的1個。也可於已指定複數可使用的CC時,參照行動台300 之接收品質而選擇1個CC。 (步驟S14)行動台300利用在步驟S13所選擇之CC的 PUSCH對基地台1〇〇發送MBSFN要求。但是,也可不是在 步驟S13選擇的CC,而係利用行動台300現在使用的CC來發 送MBSFN要求。 (步驟S15)行動台300在以步驟S13所選擇之CC的 PMCH ’接收基地台1〇〇發送的MBSFN的控制資訊。此控制 資訊包含顯示適用於MBSFN發送之調變編碼方式與發送 時序等的資訊。又,該控制資訊係包含於邏輯頻道,即, 包含於MCCH(MBMS point-to-multipoint Control CHannel) 及MSCH(MBMS point-to-multipoint Scheduling CHannel)的 資訊。 (步驟S16)行動台300在以步驟S13選擇之CC的 PMCH,參照在步驟S13所接收之控制資訊而接收MBMS資 料。即,接收基地台100、200以同一時序且同一頻率發送 之同一内容的信號,而合成信號並抽出MBMS資料。又, 29 201134134 MBMS資料係包含於邏輯頻道,即,包含於MTCH(MBMS point-to-multipoint Traffic CHannel)的資料。 如此一來,行動台300以參照基地台1 〇〇通知的資訊而 能得知可使用於MBSFN發送的CC。所以,行動台300能有 效地進行MBSFN發送之開始時的程序。 第15圖係顯示第2實施形態之MBSFN控制例的順序 圖。第15圖所示之順序例顯示基地台100主導而與基地台 200 —同進行MBSFN發送的情形。 (步驟S21)基地台100以PBCH發送通知資訊。又,以 E-PBCH(或其他預定的頻道)發送關於MBSFN的通知資 訊。行動台300檢測PBCH及E-PBCH(或其他預定的頻道)並 抽出基地台100已發送的通知資訊。 (步驟S22)行動台300依據關於MBSFN的通知資訊而 特定CC# 1〜#5之中可使用於MBSFN發送的CC。如此一 來,行動台300選擇用以接收MBMS資料的CC。 (步驟S23)行動台300以已選擇的CC(或行動台300現 在使用的CC)的PUSCH對基地台發送MBSFN要求。基地台 100抽出行動台300所發送的MBSFN要求。 (步驟S24)基地台100接受來自於行動台300的MBSFN 要求而實行作為MCE的控制。即,基地台100進行排程而決 定要進行MBSFN發送之基地台的範圍、適用於MBSFN資料 的調變編碼方式、發送時序等。 (步驟S25)基地台100以使用於MBSFN之CC的PMCH 對行動台300發送關於MBSFN的控制資訊。此控制資訊包 30 201134134 含可顯示調變編碼方式與發送時序的資訊。行動台300檢測 PMCH並抽出基地台已送出的控制資訊。又,基地台!〇〇將 與該控制資訊同樣的内容通知基地台2〇〇。 (步驟S26)行動台300依據由基地台1〇〇接收之關於 MBSFN的控制資訊’進行行動台3〇〇的設定以使能接收來 自於基地台100、200的MBMS資料。 (步驟S27)基地台100、200依照基地台100的排程結 果,以PMCH將已由SAE閘道器430接收之MBMS資料發送 至行動台300。行動台300合成來自於基地台100、200的接 收信號而抽出MBMS資料。 如此一來,行動台300於伴隨著MBSFN發送之服務開 始時,對基地台100要求MBSFN發送。此時,行動台300由 通知資訊判斷可使用於MBSFN發送的CC,例如以已判斷的 CC發送MBSFN要求。基地台100以作為MCE機能來進行 MBSFN的排程。如此一來,基地台1〇〇與基地台200協調而 對行動台300發送MBMS資料。藉此提升於行動台300的接 收品質。 又,行動台300可於服務開始時,時示欲藉由MBSFN 接收MBMS資料的主旨,也可不明示。即,行動台300發送 的「MBSFN要求」可為明示地要求MBSFN發送的控制資 訊,也可為要求僅欲開始某種類服務的主旨。後者的情形 為基地台100判斷行動台300所要求的服務是否為伴隨著 MBSFN發送的服務。 第16圖係顯示MBSFN用副訊框之分配例的圖式。基地 31 201134134 台100例如第16圖所示進行無線資源的排程。 此例子中,設有屬於800MHz之CC#1與屬於3.5GHz之 CC#2〜#5。CC# 1〜#5之中,CC# 1被指定為可使用於 MBSFN發送的CC。即,在以E-PBCH(或其他預定的頻道) 通知的通知資訊包含有顯示CC# 1的資訊(例如CC# 1之 ID)。 又,在CC#1之DL無線訊框中,副訊框#8被指定為 MBSFN副訊框。CC # 1之副訊框# 8使用擴充CP,並以外 的副訊框使用通常CP。又,MBSFN副訊框之數與位置可依 據連接基地台10 〇之行動台的通訊狀況而動態地變更。 在此,非MBSFN副訊框可收容10個行動台,又,考量 在無線訊框所包含之10個副訊框中,將1個指定為MBSFN 副訊框。又,設成5個行動台利用MBSFN。此情形下,於 CC # 2〜# 5分別可收容不利用MBSFN之行動台最大為 10x10=100個。又’於CC#1可收容不利用MBSFN之行動 台最大為9x10 = 90個,可收容利用MBSFN之行動台5個。 即,第16圖之例子中,CC#1〜#5全體最大可收容495個行 動台。 另一方面’基地台100不限定可使用於MBSFN發送的 CC,而設成係5個行動台能以任意的CC利用MBSFN。特別 是’考量最差的情形為CC# 1〜#5分別一個一個地收容利 用MBSFN之行動台的情形。此情形下,MBSFN副訊框無法 收容不利用MBSFN發送的行動台,因此,CC # 1〜# 5分別 可收容不利用MBSFN發送的行動台最大為9x10 = 90個。 32 201134134 即,CC#1〜#5全體最大可收容455個行動台。 以上的具體事例中,以限定可使用於MBSFN發送之CC 的狀態與不限定的情形比較,改善了(495-455)+455xl00 = 約8.8%無線資源的利用效率。如此一來,以限定可使用於 MBSFN發送之CC的收態下,能使無線資源的利用效率改 善。又,以利用頻率最低的CC進行MBSFN發送的狀態,包 含MBMS資料之無線信號可傳送到更遠。即,行動台300可 從更多的基地台接收包含MBMS資料之無線信號,而以合 成更多的接收信號的狀態下可進一步提升接收品質。 第17圖係顯示MBSFN之合成數的算出模式的圖式。在 此,行動通訊系統設有37個分區(分區# 1〜#37),行動台 300處於分區# 1。又,設成以3_5GHz帶進行通訊時,無線 信號傳送1個分區份量的距離。 此情形下,當以3_5GHz帶進行通訊時,行動台300能接 收所在地之分區# 1的無線信號與鄰接於分區# 1之6個分 區(分區#2〜#7)的無線信號。相對於此,當以8〇〇MHz帶 進行通訊時’無線信號可傳送以3.5GHz帶進行通訊時的3 倍程度(exp(4—3.5)=約3.14)的距離。即,當以800MHz帶進 行通訊時,行動台300能接收所在地之分區# 1的無線信號 與從分區# 1起3個分區份量距離以内的36個分區(分區# 2 〜# 37)的無線信號。 即’以上的具體事例中,當行動台3〇〇使用3.5GHz帶之 無線資源而利用MBSFN時,最大可合成7個基地台發送的 #號並抽出MBMS資料。相對於此,當使用8〇〇MHz帶之無 33 201134134 線資源而利用MBSFN時,最大可合成37個基地台發送的信 號並抽出MBMS資料。如此一來’以使用低頻率的無線資 源來接收MBMS資料的狀態下,能使行動台之接收品質進 一步提升。 依據如此的第2實施形態之行動通訊系統,基地台100 能限定可使用於MBSFN發送的CC以使利用於MBSFN發送 之無線資源不分散於CC#1〜#5。藉此,可提升在通常的 資料發送與MBSFN發送混雜存在的通訊環境中無線資源 的利用效率。 又’藉由基地台100通知可顯示能使用於MBSFN發送 之CC的資訊,因此,行動台3〇〇以參照通知資訊而能有效 率地進行伴隨著MBSFN發送之服務的開始處理。又,基地 台100以在CC# 1〜#5之中使用頻率最低的CC# 1來進行 MBSFN發送的狀態下,能使行動台300之接收品質進一步 提升。 又’如前述情形,顯示可使用於MBSFN發送之CC的資 訊例如能利用擴充通知頻道來通知。擴充通知頻道不僅可 使用於關於MBSFN的資訊,且能使用於對LTE-A行動台發 送用以通知的各種資訊。如此的「擴充通知頻道」也可稱 為其他名稱。例如,可將以LTE定義之習知通知頻道與擴充 通知頻道之其中一者稱為第1通知頻道,而將另一者稱為第 2通知頻道。 [第3實施形態] 其次參照圖式來說明第3實施形態。說明係以與前述第 34 201134134 2實施形態的差異為中心,對於與第2實施形態同樣的事項 則省略說明。第3實施形態之行動通訊系統在行動台現在使 用的CC與可使用於MBSFN發送的CC不同的情形下,切換 要使用的CC。以下的說明中,「交遞」(HO : Hand Over)係 包含屬於不同頻帶之CC間的切換與屬於同一頻帶之CC間 的切換者。 第3實施形態之行動通訊系統藉由與第2圖所示第2實 施形態之行動通訊系統同樣的系統構成來實現。但是,第3 實施形態中,使用以下說明的基地台100及行動台300來取 代第2實施形態之基地台100及行動台300。 第18圖係顯示第3實施形態之基地台的方塊圖。基地台 100a不僅具有第12圖所示基地台1〇〇所具有的模組,更具有 HO要求抽出部124、HO控制部125及HO控制資訊產生部 126。 HO要求抽出部124抽出行動台300a發送的交遞要求 (HO要求),即,抽出可顯示CC切換要求的控制資訊。如此 一來’將已抽出之HO要求輸出至HO控制部125。 HO控制部125接受以HO要求抽出部124抽出的HO要 求,並進行行動台300a要使用之CC的切換控制。又,HO 指示控制資訊產生部126發送相對於HO要求的應答。 HO控制資訊產生部126依據來自於HO控制部125的指 示,產生作為相對於HO要求之應答的交遞控制資訊(HO控 制資訊)。如此一來,將已產生之HO控制資訊輸出至對映部 121。HO控制資訊以對映部121對映至無線資源。 35 201134134 第19圖係顯示第3實施形態之行動台的方塊圖。行動台 300a不僅具有第13圖所示行動台300所具有的模組,更具有 HO控制資訊抽出部325、HO控制部326及Η◦要求產生部 327。 ΗΟ控制資訊抽出部325抽出基地台1 〇〇a發送的ΗΟ控制 資訊,即,行動台300a抽出作為相對於發送至基地台100a 之HO要求之應答的控制資訊。如此一來,將己抽出的HO 控制資訊輸出至HO控制部326。 HO控制部326控制CC間之交遞的程序。具體上,HO 控制部326開始伴隨著MBSFN發送之服務時,參照以 MBSFN通知資訊抽出部318抽出的通知資訊,判斷是否進 行CC間的交遞。行動台300a在現在使用於與基地台l〇〇a連 接的CC與可使用於MBSFN發送之CC不同的情形下,判斷 為交遞至可使用的CC。進行交遞時,指示HO要求產生部327 發送HO要求。 又,HO控制部326依據以HO控制資訊抽出部325抽出 的HO控制資訊,實行交遞的程序。而且,指示終端控制部 315以切換無線信號處理之對象的頻帶。又,cC間的交遞 可在對基地台100a發送MBSFN要求前進行,也可於發送後 進行。 HO要求產生部327依據來自於HO控制部326的指示, 產生可顯示交遞要求之控制資訊,即,產生H〇要求。如此 一來,將已產生的HO要求輸出至編碼調變部323 ^藉此, 可對基地台100a發送HO要求。 36 201134134 第20圖係顯示第3實施形態之行動台處理的流程圖。在 此考畺行動台對基地台l〇〇a發送MBSFN要求的情 形°與第14圖所示之第2實施形態的行動台處理的不同點係 在步驟S13與步驟S14之間實行以下說明的步驟sni〜 S133 〇 (步驟S131)行動台300a判斷在步驟S13所選擇之cx是 否與現在使用於朝向基地台100a連接的cc不同。不同時將 處理朝步驟S132前進。相同時將處理朝步驟si4前進。 (步驟S132)行動台300a以現在使用的CC將顯示朝向 在步驟S13所選擇之CC切換的HO要求發送至基地台100a。 (步驟S133)行動台300a—旦從基地台l〇〇a接收HO控 制資訊作為相對於HO要求的應答,則進行由現在使用的cc 朝向以步驟S13所選擇之CC的交遞。之後與基地台l〇〇a的 通信係使用交遞後的CC來進行。 如此一來,行動台300a以參照基地台100a通知的通知 資訊而能得知可使用於MBSFN發送的CC。如此一來,於現 在使用的CC與可使用的CC不同時,實行CC間的交遞。藉 此,行動台300a能圓滑順利地開始件隨著MBSFN發送的服 務。又,第20圖的例子中,實行交遞之後發送MBSFN要求, 然而,如前述情形,也可在實行交遞之前發送MBSFN要求。 第21圖係顯示第3實施形態之MBSFN控制例的順序 圖。第21圖之順序例顯示實行交遞之後發送MBSFN要求的 情形。與第15圖所示之第2實施形態之順序例的不同點係在 步驟S22與步驟S23之間實行以下說明的步驟S221〜S223。 37 201134134 (步驟S221)行動台3〇〇a以現在使用的cC對基地台 1 〇〇a發送可顯示對以步驟S22所選擇之切換的要求。 (步驟S222)基地台1〇〇a以現在使用的cC對行動台 300a發送作為相對於Η〇要求之應答的η⑽制資訊。 (步驟S223)在基地台1〇〇&與行動台3〇〇a之間實行交 遞。即’要使用的CC能被切換成以步驟S22選擇的CC。之 後’以交遞後的CC來傳送MBSFN要求與MBSFN控制資訊。 第22圖係顯示第3實施形態之其他MBSFN控制例的順 序圖。第22圖之順序例顯示實行交遞前發送MBSFN要求的 情形。與第15圖所示之第2實施形態之順序例的不同點係在 步驟S23與步驟S24之間實行以下說明的步驟S231〜S233。 步驟S231〜S233的處理内容與前述步驟S221〜S223的 處理内容同樣。又,第22圖之順序例中,由行動台300a朝 基地台100a的MBSFN要求係以交遞前的CC來傳送,由基地 台100a朝行動台300a的MBSFN控制資訊係以交遞後的CC 來傳送。 依據如此的第3實施形態之行動通訊系統,可獲得與第 2實施形態同樣的效果。而且,第3實施形態中’行動台300a 參照通知資訊而判斷是否進行CC間的交遞,因此,即使不 能以現在使用的CC進行MBSFN發送的情形下,也能圓滑順 利地開始伴隨著MBSFN發送的服務。 [第4實施形態] 其次參照圖式來說明第4實施形態。以與前述第2及第3 實施形態的差異為中心進行說明’對於與第2及第3實施形 38 201134134 態同樣的事項省略說明。第4實施形態之行動通訊系統中, 不是基地台具備MCE機能(控制MBSFN發送的機能),而係 MME具備MCE機能。 第23圖係顯示第4實施形態之行動通訊系統的圖式。第 4實施形態之行動通訊系統包含有基地台100b、200b、行動 台300及核心網路40a。核心網路40a設有MME410a、MBMS 閘道器420及SAE閘道器430。 基地台100b、200b與第2實施形態之基地台1〇〇、200對 應。但是,基地台100b、200b不具有MCE機能。即,基地 台100b、200b將從行動台300接收的MBSFN要求轉送至 MME410a。又,從MME410a接收關於MBSFN的控制資訊。 基地台100b、200b關於不具有MCE機能之點以外,能藉由 與第12圖所示基地台100同樣的構成來實現。 MME410a與第2實施形態之MME410對應。但是, MME410a更具有MCE的機能。即,MME410a由基地台 100b、200b接收MBSFN要求而進行MBSFN發送的排程。如 此一來,將關於MBSFN要求的控制資訊發送至基地台 100b 、 200b 。 第24圖係顯示第4實施形態之第1MBSFN控制例的順 序圖。第24圖所示之順序例顯示MME410a使基地台100b、 200b實行的MBSFN發送的情形。 (步驟S31)基地台100b以PBCH發送通知資訊。又,以 E-PBCH(或其他預定的頻道)發送關於MBSFN的通知資 訊。行動台300檢測PBCH及E-PBCH(或其他預定的頻道), 39 201134134 抽出基地台100b發送的通知資訊。 (步驟S32)行動台300依據關於MBSFN的通知資訊而 於CC# 1〜#5中特定可使用於MBSFN發送的CC。如此一 來,行動台300選擇用以接收MBMS資料的CC。 (步驟S33)行動台300以業經選擇的CC(或行動台300 現在使用的CC)的PUSCH對基地台100b發送MBSFN要求。 基地台100b抽出行動台300發送的MBSFN要求而轉送至 MME410a。MME410a接收基地台100b轉送的MBSFN要求。 (步驟S34) MME410a接收行動台300發送的MBSFN要 求而實行作為MCE的控制。即,MME410a進行排程而決定 進行MBSFN發送之基地台的範圍、適用於MBMS資料的調 變編碼方式、發送時序等。在此,設成使基地台l〇〇b、200b 進行MBSFN發送。 (步驟S35) MME410a將關於MBSFN的控制資訊發送至 基地台100b、200b。行動台300現在連接的基地台100b以使 用於MBSFN發送之CC的PMCH發送關於MBSFN的控制資 訊。行動台300檢測PMCH並抽出基地台100b發送的控制資訊。 (步驟S36)行動台300依據由基地台接收之關於 MBSFN的控制資訊,進行行動台300的設定以達到能接收 來自於基地台100b、200b的MBMS資料。 (步驟S37)基地台100b、200b依據由MME410a所接收 的控制資訊,而以PMCH將由SAE閘道器430所接收的 MBMS資料發送至行動台300。行動台300合成來自於基地 台100b、200b的接收信號並抽出MBMS資料。 40 201134134Filter), A/D (Analog t0 Digital) converter, and the like. The frequency band of the receiving object is indicated by the scheduler 116. The demodulation and decoding unit 113 decodes the baseband signal obtained by the radio reception unit 112 by demodulation and error correction, and outputs the obtained data (including user data and control information). The demodulation and decoding are performed by a method corresponding to a predetermined modulation and coding scheme (MCS: Modulation and Coding Scheme) or a modulation coding scheme indicated by the scheduler 116. Candidates for modulation methods include digital modulation methods such as QPSK (Quadrature Phase Shift Keying) or 16QAM (Quadrature Amplitude Modulation). The coding mode candidates include a Turbo code and a Low Density Parity Check (LDPC) code. The use of the extracted 22 201134134 data is forwarded to the SAE gateway 430. The quality information generating unit 114 extracts one of the control information transmitted by the mobile station 300, that is, a wireless quality measurement report (Measurement Report). The quality information generating unit 114 outputs the extracted measurement report to the scheduler 116. The MBSFN request extraction unit 115 extracts the MBSFN request (display control information for requesting MBSFN transmission) sent from the mobile station 300. The MBSFN request is transmitted using the PUSCH (Physical Uplink Shared CHannel) already set in the UL radio frame. The MBSFN requires the extracting unit 115 to output the extracted MBSFN request to a module (not shown) for realizing the control function of the MCE already provided in the base station 100. The scheduler 116 performs allocation of the radio resources of the mobile station 300 based on the measurement report acquired by the quality information generating unit 114. In this manner, the wireless receiving unit 112, the demodulation and decoding unit 113, the mapping unit 121, the code modulation unit 122, and the wireless transmission unit 123 are notified of the allocation of the radio resources. Further, the scheduler ιΐ6 adaptively selects the modulation coding method according to the measurement report. In this way, the selected tuning code is notified to the demodulation decoding unit 113 and the code modulation unit 122. The notification information generating unit 117 generates notification information that is transmitted (notified) by the pBCH every CC. This notification information contains information showing the bandwidth of the (7). The MBSFN notification information generating unit 118 generates information capable of displaying CCs used for MBSFN transmission among cc#i to #5. This notification information is sent, for example, as E_pBcH. The MBSFN control information generating unit U9 generates control information about the ΝρΝ. This control (4) contains the modulation coding method of MBMSf material and the information of the transmission timing of 201134134. This control information is transmitted using a physical multicast channel (PMCH: Physical Multicast CHannel) set in the DL radio frame. The RS generating section 120 generates a known signal, that is, a reference signal. Further, the notification information generated by the MBSFN notification information generating unit 118 may be notified by a channel other than the E-PBCH. For example, a method of notification by PBCH can be considered. Further, a method of notifying by using a channel (PMCH) that can transmit control information of the MBSFN can also be considered. The mapping unit 121 maps the MBMS data received by the MBMS gateway 420 to the user data received by the SAE gateway 430 to the DL radio frame. Further, the control information/control signals generated by the notification information generating unit 117, the MBSFN notification information generating unit 118, the MBSFN control information generating unit 119, and the RS generating unit 120 are mapped to the DL radio frame. In this way, the mapped data is sequentially output to the code modulation unit 122. The code modulation unit 122 erroneously corrects and modulates the data acquired by the mapping unit 121, generates a fundamental frequency signal as a transmission signal, and outputs it to the wireless transmission unit 123. The coding and modulation are performed using a predetermined modulation coding scheme or a modulation coding scheme indicated by the scheduler 116. Candidates for modulation methods include digital modulation methods such as QPSK or 16QAM. The candidate for the coding mode includes a turbo code or an LDPC code. The radio transmitting unit 123 performs the radio signal processing on the transmission signal obtained by the code modulation unit 122, and performs conversion (up-conversion) of the low-frequency baseband signal to the high-frequency radio signal. The radio transmitting unit 123 includes, for example, a D/A (Digital to Analog) converter, a frequency converter, a band pass filter, a power amplifier, and the like for the radio signal processing. The frequency band of the transmitting object is indicated by the schedule 24 201134134 benefit 116. Fig. 13 is a block diagram showing a mobile station according to the second embodiment. The mobile station 300 includes a transmission/reception antenna 311, a radio reception unit 312, a demodulation decoding unit 313, a notification information extraction unit 314, a terminal control unit 315, an MBSFN control semaphore extraction unit 316, an MBSFN control unit 317, and an MBSFN notification information extraction unit. 318. The MBSFN request generation unit 319, the RS extraction unit 320, the quality measurement unit 32, the quality information generation unit 322, the code modulation unit 323, and the wireless transmission unit 324. The transmitting/receiving antenna 311 receives the wireless signals transmitted from the base stations 100 and 2, and outputs them to the wireless receiving unit 312. Further, the transmitting/receiving antenna 3 丨丨 wirelessly outputs a transmission signal obtained by the wireless transmitting unit 324. Further, the transmitting antenna and the receiving antenna may be separately provided to the mobile station 300 instead of the antenna for transmitting and receiving. Alternatively, diversity transmission and reception antennas may be used for diversity transmission. The radio reception unit 312 performs radio signal processing on the signal obtained by the transmission/reception antenna 3, and converts the high-frequency radio signal to a low-frequency baseband signal (down-conversion). The radio receiving unit 312 includes, for example, a low noise amplifier, a frequency converter, a band pass filter, an A/D converter, and the like for wireless signal processing. The frequency band of the reception target is indicated by the terminal control unit ms. The demodulation decoding unit 313 decodes the baseband signal obtained by the radio reception unit 312 by demodulation and error correction, and outputs the obtained data (including user data and control information). The demodulation and decoding are performed by a method corresponding to a predetermined modulation coding method or a modulation coding method instructed by the terminal control unit 315. When the base station 100, 200 performs MBSFN transmission, the signal transmitted by the base station 1GG overlaps with the signal transmitted by the base station in the reception signal 25 201134134. The signals of the two are the same-content, however, depending on the transmission distance to the mobile station 3, there is a case where the - side is delayed compared to the other side. That is, in the mobile station 3, the visible direct wave overlaps with the delayed wave. In this case, the right receiving delay time of the radio receiving unit 312 is equal to or less than the CP length, and a signal corresponding to the delayed wave can be extracted. The demodulation and decoding unit 313 discriminates and decodes the apostrophes from the base stations thus extracted. In this way, the reception quality can be improved on the mobile station. The notification information extracting unit 314 extracts the notification information notified by the PBCH from the base station 100 and 200 at each CC. This notification information includes information showing the bandwidth of the cc that has sent the notification information. The notification information extracting unit 314 outputs the extracted notification information to the terminal control unit 315. The terminal control unit 315 controls the connection to the base station 100 by referring to the notification information extracted by the notification information extracting unit 3丨4. Further, before the base station 100 requests the MBSFN transmission, the terminal control unit 315 determines the CC that can be transmitted using the kMBSFN based on the notification information acquired by the MBSFN notification information extracting unit 318. Further, the modulation coding method and the reception timing applied to the MBMS data are specified based on the information notified from the MBSFN control unit 317. In this manner, the terminal control unit 315 controls the operations of the radio reception unit 312, the demodulation decoding unit 313, the code modulation unit 323, and the radio transmission unit 324. The MBSFN control information extracting unit 316 extracts control information about the MBSFN transmitted by the base station in pmCH. This control information includes the modulation coding method for the mbmS data and the information showing the transmission timing. The MBSFN control information extracting unit 316 outputs the extracted control information to the MBSFN control 26 201134134 section 317. The MBSFN control unit 317 controls the reception processing of the MBSFN. Specifically, when the MBSFN control unit 317 starts the MBSFN reception process, the MBSFN request generation unit 319 is instructed to transmit the MBSFN request. Further, the content of the control information populated by the MBSFN control information pomelo output unit 316 is notified to the terminal control unit 315. The MBSFN notification information extracting unit 318 extracts the extended notification information notified by the base station 100 by the E-PBCH. This extended notification information includes information showing CCs that can be used for MBSFN transmission among CC# 1 to #5. The MBSFN notification resource extracting unit 318 outputs the extracted extension notification information to the terminal control unit 315. Further, when a channel other than the E-PBCH (e.g., PBCH or PMCH) is notified to display the information of the usable CC, the MBSFN notification information extracting unit 318 extracts the notification information from the channel. The MBSFN request generation unit 319 generates an MBSFN request based on an instruction from the MBSFN control unit 317, that is, generates control information indicating that the MBSFN transmission is required to be started. The generated MBSFN request is transmitted through the code change unit 323 and the radio transmission unit 324, for example, on the PUSCH of the CC used in the MBSFN. The RS extracting unit 320 extracts the reference signals transmitted from the base stations 1 and 200. As a result, the extracted reference signal is output to the quality measuring unit 321. The quality measuring unit 321 measures the reception quality of each of CC#1 to #5 using the reference signal extracted by the RS extracting unit 320. In this way, the quality measuring unit 321 notifies the quality information generating unit 322 of the measurement result. For example, SIRN (SignaI to Interference and Noise Ratio) can be used as an indicator for displaying the quality of the reception. The quality information generating unit 322 generates control information (measurement report) that can display the reception quality measured by the quality measuring unit 321. For example, a CQI (Channel Quality Indication) indicating the reception quality with a discrete value can be used as the measurement report. The code modulation unit 323 corrects the MBSFN request generated by the MBSFN request generation unit 319 and the measurement report generated by the quality information generation unit 322 by the user data transmitted to the base stations 1 and 2, and the error correction code and Modulating 'and corresponding to the UL radio resources allocated to the mobile station 300. The coding and modulation system uses a predetermined modulation coding method or a modulation coding method instructed by the terminal control unit 315. In this way, the baseband signal as the transmission signal is output to the wireless transmission unit 324. The radio transmitting unit 324 performs the radio signal processing on the transmission signal obtained by the code modulation unit 323, and performs conversion (up-conversion) of the low-frequency base-frequency signal to the high-frequency radio signal. The radio transmitting unit 324 includes, for example, a D/A converter, a frequency converter, a band pass filter, a power amplifier, and the like for the radio signal processing. The frequency band of the transmission target is instructed by the terminal control unit 315. Fig. 14 is a flow chart showing the processing of the mobile station in the second embodiment. Here, the case where the mobile station 300 performs the MBSFN request to the base station 100 is considered. The MBSFN request is performed, for example, when the mobile station 300 utilizes the service transmitted with the MBSFN (when the service flow is established). For example, an animation delivery service or the like can be considered as a service that is transmitted along with MBSFN. (Step S11) The mobile station 300 receives the notification information of the PBCH notification by the base station 100 in CC# 1 to #5. The notification information includes information for the mobile station 300 to connect to each CC. 28 201134134 (Step S12) The mobile station 300 receives the base station loo with at least one cc E-PBCH (or other channel such as pBCH or PMCH) to notify about the MBSFN. Notification information. This notification information includes information showing the CCs that can be used for MBSFN transmission in cc #1~#5. (Step S13) The mobile station 300 refers to the notification information about MBSFN received in step S12 and selects the CC used for MBSFN transmission. That is, when it is possible to use for MBSFN transmission, one of the ccs designated by the base station 1 is selected. It is also possible to select one CC with reference to the reception quality of the mobile station 300 when a plurality of usable CCs have been designated. (Step S14) The mobile station 300 transmits an MBSFN request to the base station 1 using the PUSCH of the CC selected in step S13. However, instead of the CC selected in step S13, the MBSFN request is transmitted using the CC currently used by the mobile station 300. (Step S15) The mobile station 300 receives the control information of the MBSFN transmitted by the base station 1 at the PMCH' of the CC selected in step S13. This control information includes information showing the modulation coding method and transmission timing applicable to MBSFN transmission. Further, the control information is included in the logical channel, that is, information included in the MCCH (MBMS point-to-multipoint control CHannel) and the MSCH (MBMS point-to-multipoint Scheduling CHannel). (Step S16) The mobile station 300 receives the MBMS data by referring to the control information received in step S13 on the PMCH of the CC selected in step S13. That is, the receiving base station 100, 200 synthesizes the signals of the same content transmitted at the same timing and at the same frequency, and extracts the MBMS data. Also, 29 201134134 MBMS data is included in the logical channel, that is, the data contained in the MTCH (MBMS point-to-multipoint Traffic CHannel). In this way, the mobile station 300 can know the CC that can be used for MBSFN transmission by referring to the information notified by the base station 1 . Therefore, the mobile station 300 can efficiently perform the procedure at the start of the MBSFN transmission. Fig. 15 is a sequence diagram showing an example of MBSFN control in the second embodiment. The sequence example shown in Fig. 15 shows a case where the base station 100 dominates and performs MBSFN transmission with the base station 200. (Step S21) The base station 100 transmits the notification information on the PBCH. Also, the notification information about the MBSFN is transmitted in E-PBCH (or other predetermined channel). The mobile station 300 detects the PBCH and the E-PBCH (or other predetermined channel) and extracts the notification information that the base station 100 has transmitted. (Step S22) The mobile station 300 specifies the CCs that can be used for MBSFN transmission among the CC# 1 to #5 in accordance with the notification information on the MBSFN. In this manner, the mobile station 300 selects the CC to receive the MBMS data. (Step S23) The mobile station 300 transmits an MBSFN request to the base station on the PUSCH of the selected CC (or the CC currently used by the mobile station 300). The base station 100 extracts the MBSFN request sent by the mobile station 300. (Step S24) The base station 100 receives the MBSFN request from the mobile station 300 and performs control as an MCE. That is, the base station 100 performs scheduling to determine the range of the base station to which MBSFN transmission is to be performed, the modulation coding method applied to the MBSFN data, the transmission timing, and the like. (Step S25) The base station 100 transmits control information about the MBSFN to the mobile station 300 using the PMCH of the CC used for the MBSFN. This control pack 30 201134134 contains information that shows the modulation coding method and transmission timing. The mobile station 300 detects the PMCH and extracts control information that has been sent by the base station. Also, the base station!通知 The base station 2 will be notified of the same content as the control information. (Step S26) The mobile station 300 performs the setting of the mobile station 3 based on the control information regarding the MBSFN received by the base station 1 to enable reception of the MBMS data from the base stations 100 and 200. (Step S27) The base station 100, 200 transmits the MBMS data that has been received by the SAE gateway 430 to the mobile station 300 in accordance with the scheduling result of the base station 100. The mobile station 300 synthesizes the received signals from the base stations 100 and 200 to extract the MBMS data. As a result, the mobile station 300 requests the base station 100 to transmit MBSFN when the service with the MBSFN transmission starts. At this time, the mobile station 300 judges from the notification information that the CC for MBSFN transmission can be transmitted, for example, the MBSFN request is transmitted in the determined CC. The base station 100 performs MBSFN scheduling as an MCE function. In this way, the base station 1 coordinates with the base station 200 to transmit MBMS data to the mobile station 300. Thereby, the reception quality of the mobile station 300 is improved. Further, the mobile station 300 may indicate that the MBMS data is to be received by the MBSFN at the start of the service, or may not be explicitly stated. In other words, the "MBSFN request" transmitted by the mobile station 300 may be a control information for explicitly requesting the MBSFN transmission, or may be a request for starting only a certain type of service. In the latter case, the base station 100 determines whether the service required by the mobile station 300 is a service transmitted along with the MBSFN. Fig. 16 is a view showing an example of allocation of a sub-frame for MBSFN. Base 31 201134134 The station 100 performs scheduling of radio resources as shown in FIG. In this example, CC#1 belonging to 800MHz and CC#2~#5 belonging to 3.5GHz are provided. Among CC# 1 to #5, CC# 1 is designated as a CC that can be used for MBSFN transmission. That is, the notification information notified by the E-PBCH (or other predetermined channel) includes information showing CC#1 (for example, the ID of CC#1). Also, in the DL radio frame of CC#1, the sub-frame #8 is designated as the MBSFN sub-frame. The sub-frame #8 of CC #1 uses the extended CP, and the other sub-frame uses the normal CP. Moreover, the number and location of the MBSFN sub-frames can be dynamically changed depending on the communication status of the mobile station connected to the base station 10. Here, the non-MBSFN sub-frame can accommodate 10 mobile stations, and one of the 10 sub-frames included in the radio frame is designated as an MBSFN sub-frame. In addition, it is assumed that five mobile stations use MBSFN. In this case, the maximum number of mobile stations that can accommodate MBSFN in CC # 2 to # 5 is 10x10=100. In addition, the CC#1 can accommodate up to 9x10 = 90 mobile stations that do not use MBSFN, and can accommodate five mobile stations using MBSFN. That is, in the example of Fig. 16, CC#1 to #5 can accommodate up to 495 operating stations. On the other hand, the base station 100 is not limited to a CC that can be used for MBSFN transmission, and is designed such that five mobile stations can utilize the MBSFN with an arbitrary CC. In particular, the case where the worst consideration is the case where CC# 1 to #5 are used to accommodate the mobile station using MBSFN one by one. In this case, the MBSFN sub-frame cannot accommodate the mobile station that is not transmitted by the MBSFN. Therefore, CC #1 to #5 can accommodate up to 9x10 = 90 mobile stations that are not transmitted by MBSFN. 32 201134134 That is, CC#1~#5 can accommodate up to 455 mobile stations. In the above specific case, the utilization efficiency of (495-455) + 455xl00 = about 8.8% of radio resources is improved by limiting the state of the CC for MBSFN transmission with the case of no limitation. In this way, the utilization efficiency of the radio resources can be improved by limiting the state of the CC that can be used for MBSFN transmission. Further, in the state where the MBSFN transmission is performed using the CC having the lowest frequency, the wireless signal including the MBMS data can be transmitted further. That is, the mobile station 300 can receive wireless signals including MBMS data from more base stations, and can further improve reception quality in a state in which more received signals are synthesized. Fig. 17 is a diagram showing a calculation mode of the number of synthesis of MBSFN. Here, the mobile communication system has 37 partitions (partitions #1 to #37), and the mobile station 300 is located in partition #1. Further, when communication is performed in the 3_5 GHz band, the wireless signal transmits the distance of one partition. In this case, when communicating in the 3_5 GHz band, the mobile station 300 can receive the wireless signal of the partition #1 in the local area and the wireless signals adjacent to the six partitions (partitions #2 to #7) of the partition #1. On the other hand, when communicating in the 8 〇〇 MHz band, the wireless signal can transmit a distance three times (exp (4 - 3.5) = about 3.14) when communicating with the 3.5 GHz band. That is, when communicating with the 800 MHz band, the mobile station 300 can receive the wireless signal of the local area #1 and the 36 partitions (partition #2 to #37) within three partition distances from the partition #1. . That is, in the above specific case, when the mobile station 3 uses the MB resources of the 3.5 GHz band and utilizes the MBSFN, the # number transmitted by the seven base stations can be synthesized up to the MBMS data. On the other hand, when the MBSFN is used using the 8〇〇MHz band without the 2011 2011134134 line resource, the signals transmitted by the 37 base stations can be synthesized and the MBMS data can be extracted. In this way, the reception quality of the mobile station can be further improved by using the low-frequency wireless resources to receive the MBMS data. According to the mobile communication system of the second embodiment, the base station 100 can limit the CCs that can be used for MBSFN transmission so that the radio resources used for MBSFN transmission are not dispersed in CC #1 to #5. Thereby, the utilization efficiency of the radio resources in the communication environment in which the normal data transmission and the MBSFN transmission are mixed can be improved. Further, the base station 100 notifies that the information for the CC for the MBSFN transmission can be displayed. Therefore, the mobile station 3 can efficiently perform the start processing of the service associated with the MBSFN transmission by referring to the notification information. Further, the base station 100 can further improve the reception quality of the mobile station 300 in a state where MBSFN transmission is performed using CC#1 having the lowest frequency among CC#1 to #5. Further, as in the foregoing case, it is displayed that the information of the CC for MBSFN transmission can be notified by, for example, the extension notification channel. The extended notification channel can be used not only for information about the MBSFN, but also for transmitting various information for notification to the LTE-A mobile station. Such an "extended notification channel" can also be called another name. For example, one of the conventional notification channel and the extended notification channel defined by LTE may be referred to as a first notification channel, and the other as a second notification channel. [Third Embodiment] Next, a third embodiment will be described with reference to the drawings. The description is based on the difference from the embodiment of the above-mentioned 34 201134134 2, and the description of the same matters as those of the second embodiment will be omitted. The mobile communication system according to the third embodiment switches the CC to be used when the CC currently used by the mobile station is different from the CC that can be used for MBSFN transmission. In the following description, "HO: Hand Over" includes a switch between CCs belonging to different frequency bands and a switch between CCs belonging to the same frequency band. The mobile communication system according to the third embodiment is realized by the same system configuration as the mobile communication system according to the second embodiment shown in Fig. 2. However, in the third embodiment, the base station 100 and the mobile station 300 according to the second embodiment are replaced by the base station 100 and the mobile station 300 described below. Fig. 18 is a block diagram showing a base station of the third embodiment. The base station 100a has not only the modules of the base station 1 shown in Fig. 12 but also the HO request extraction unit 124, the HO control unit 125, and the HO control information generation unit 126. The HO request extracting unit 124 extracts the delivery request (HO request) transmitted from the mobile station 300a, that is, extracts control information indicating that the CC switching request is displayed. In this way, the extracted HO request is output to the HO control unit 125. The HO control unit 125 receives the HO request extracted by the HO request extraction unit 124, and performs switching control of the CC to be used by the mobile station 300a. Further, the HO instruction control information generation unit 126 transmits a response to the HO request. The HO control information generating unit 126 generates handover control information (HO control information) as a response to the HO request based on the instruction from the HO control unit 125. In this way, the generated HO control information is output to the mapping unit 121. The HO control information is mapped to the radio resource by the mapping unit 121. 35 201134134 Fig. 19 is a block diagram showing a mobile station according to the third embodiment. The mobile station 300a includes not only the modules included in the mobile station 300 shown in Fig. 13, but also the HO control information extracting unit 325, the HO control unit 326, and the defect request generating unit 327. The UI control information extracting unit 325 extracts the UI control information transmitted from the base station 1a, i.e., the mobile station 300a extracts control information as a response to the HO request transmitted to the base station 100a. In this way, the extracted HO control information is output to the HO control unit 326. The HO control unit 326 controls the procedure of handover between CCs. Specifically, when the HO control unit 326 starts the service transmitted by the MBSFN, the HO control unit 326 refers to the notification information extracted by the MBSFN notification information extracting unit 318, and determines whether or not the handover between the CCs is performed. The mobile station 300a determines that the CC is currently handed over to the usable CC when the CC currently used for connection to the base station 10a is different from the CC that can be used for MBSFN transmission. When the handover is made, the HO request generation unit 327 is instructed to transmit the HO request. Further, the HO control unit 326 executes the handover procedure based on the HO control information extracted by the HO control information extracting unit 325. Further, the terminal control unit 315 is instructed to switch the frequency band of the target of the wireless signal processing. Further, the handover between cCs may be performed before the base station 100a transmits the MBSFN request, or may be performed after the transmission. The HO request generating unit 327 generates control information capable of displaying the delivery request based on the instruction from the HO control unit 326, that is, generates an H〇 request. In this way, the generated HO request is output to the code modulation unit 323. Thereby, the HO request can be transmitted to the base station 100a. 36 201134134 Fig. 20 is a flow chart showing the processing of the mobile station in the third embodiment. In the case where the mobile station transmits the MBSFN request to the base station 10a, the difference between the mobile station processing and the mobile station processing of the second embodiment shown in FIG. 14 is performed between step S13 and step S14. Steps sni to S133 〇 (Step S131) The mobile station 300a determines whether or not the cx selected in step S13 is different from the cc currently used for connection to the base station 100a. At the same time, the process proceeds to step S132. When the same is the case, the process proceeds to step si4. (Step S132) The mobile station 300a transmits the HO request for switching to the CC selected in step S13 to the base station 100a with the currently used CC. (Step S133) The mobile station 300a receives the HO control information from the base station 10a as a response to the HO request, and performs the handover from the currently used cc to the CC selected in step S13. Then, the communication system with the base station l〇〇a is performed using the CC after handover. In this manner, the mobile station 300a can know the CC that can be used for MBSFN transmission by referring to the notification information notified by the base station 100a. As a result, the handover between CCs is performed when the CC currently in use is different from the CC that can be used. By this, the mobile station 300a can smoothly and smoothly start the service transmitted by the MBSFN. Further, in the example of Fig. 20, the MBSFN request is transmitted after the handover is performed, however, as in the foregoing case, the MBSFN request may be transmitted before the handover is performed. Fig. 21 is a sequence diagram showing an example of MBSFN control in the third embodiment. The sequence example of Fig. 21 shows the case where the MBSFN request is transmitted after the handover is performed. The difference from the sequence example of the second embodiment shown in Fig. 15 is that steps S221 to S223 described below are executed between step S22 and step S23. 37 201134134 (Step S221) The mobile station 3A transmits a request to the base station 1 〇〇a to use the currently used cC to display the handover selected in step S22. (Step S222) The base station 1A transmits the η(10) system information as a response to the request to the mobile station 300a with the currently used cC. (Step S223) Handover is performed between the base station 1& and the mobile station 3A. That is, the CC to be used can be switched to the CC selected in step S22. Thereafter, the MBSFN request and the MBSFN control information are transmitted by the CC after handover. Fig. 22 is a sequence diagram showing another example of MBSFN control in the third embodiment. The sequence example of Fig. 22 shows the case where the MBSFN request is transmitted before the handover is performed. The difference from the sequence example of the second embodiment shown in Fig. 15 is that steps S231 to S233 described below are executed between step S23 and step S24. The processing contents of steps S231 to S233 are the same as those of the above-described steps S221 to S223. Further, in the sequence example of Fig. 22, the MBSFN request from the mobile station 300a to the base station 100a is transmitted by the CC before handover, and the MBSFN control information transmitted from the base station 100a to the mobile station 300a is the CC after handover. To transfer. According to the mobile communication system of the third embodiment, the same effects as those of the second embodiment can be obtained. In the third embodiment, the mobile station 300a determines whether or not to perform handover between CCs by referring to the notification information. Therefore, even if the MBSFN transmission cannot be performed by the currently used CC, the mobile station 300a can smoothly and smoothly start the transmission with the MBSFN. Service. [Fourth embodiment] Next, a fourth embodiment will be described with reference to the drawings. The description will be made focusing on the differences from the second and third embodiments. The description of the same matters as the second and third embodiments 38 201134134 will be omitted. In the mobile communication system according to the fourth embodiment, the base station does not have the MCE function (the function of controlling the MBSFN transmission), and the MME has the MCE function. Fig. 23 is a view showing the mobile communication system of the fourth embodiment. The mobile communication system according to the fourth embodiment includes base stations 100b and 200b, a mobile station 300, and a core network 40a. The core network 40a is provided with an MME 410a, an MBMS gateway 420, and an SAE gateway 430. The base stations 100b and 200b correspond to the base stations 1 and 200 of the second embodiment. However, the base stations 100b, 200b do not have MCE functions. That is, the base stations 100b and 200b transfer the MBSFN request received from the mobile station 300 to the MME 410a. Further, control information about the MBSFN is received from the MME 410a. The base stations 100b and 200b can be realized by the same configuration as the base station 100 shown in Fig. 12 except that the MCE function is not provided. The MME 410a corresponds to the MME 410 of the second embodiment. However, the MME 410a has more functions of MCE. That is, the MME 410a receives the MBSFN request from the base stations 100b and 200b and schedules the MBSFN transmission. As a result, control information regarding the MBSFN request is transmitted to the base stations 100b, 200b. Fig. 24 is a sequence diagram showing an example of the first MBSFN control in the fourth embodiment. The sequence example shown in Fig. 24 shows a case where the MME 410a transmits the MBSFN performed by the base stations 100b and 200b. (Step S31) The base station 100b transmits the notification information on the PBCH. Also, the notification information about the MBSFN is transmitted in E-PBCH (or other predetermined channel). The mobile station 300 detects the PBCH and the E-PBCH (or other predetermined channel), 39 201134134 extracts the notification information sent by the base station 100b. (Step S32) The mobile station 300 specifies a CC that can be used for MBSFN transmission in CC #1 to #5 in accordance with the notification information on the MBSFN. In this manner, the mobile station 300 selects the CC to receive the MBMS data. (Step S33) The mobile station 300 transmits an MBSFN request to the base station 100b with the PUSCH of the selected CC (or the CC currently used by the mobile station 300). The base station 100b extracts the MBSFN request transmitted from the mobile station 300 and transfers it to the MME 410a. The MME 410a receives the MBSFN request forwarded by the base station 100b. (Step S34) The MME 410a receives the MBSFN request transmitted from the mobile station 300 and performs control as an MCE. That is, the MME 410a performs scheduling to determine the range of the base station for performing MBSFN transmission, the modulation coding method applied to the MBMS data, the transmission timing, and the like. Here, it is assumed that the base stations 10b, 200b perform MBSFN transmission. (Step S35) The MME 410a transmits control information about the MBSFN to the base stations 100b and 200b. The base station 100b to which the mobile station 300 is now connected transmits control information about the MBSFN to the PMCH of the CC for MBSFN transmission. The mobile station 300 detects the PMCH and extracts control information transmitted from the base station 100b. (Step S36) The mobile station 300 sets the mobile station 300 based on the control information about the MBSFN received by the base station so as to be able to receive the MBMS data from the base stations 100b and 200b. (Step S37) The base stations 100b and 200b transmit the MBMS data received by the SAE gateway 430 to the mobile station 300 in the PMCH based on the control information received by the MME 410a. The mobile station 300 synthesizes the received signals from the base stations 100b, 200b and extracts the MBMS data. 40 201134134

如此一來,當行動台300發送MBSFN要求時,MBSFN 要求被轉送至MME410a。ME410a接收MBSFN要求並進行 MBSFN發送的排程,而使基地台i〇〇b、200b實行MBSFN 發送。 在此,第24圖之順序例顯示與第2實施形態同樣不進行 CC間之交遞的情形。相對於此,如第3實施形態,現在使 用的CC與可使用於MBSFN發送之CC不同時,可進行CC間 的交遞。以下,第3實施形態所說明之行動台300a說明對基 地台100b發送MBSFN要求時的順序例。此情形下,基地台 l〇〇b、200b可藉由與第18圖所示之基地台l〇〇a同樣的構成 來實現。 第25圖係顯示第4實施形態之第2MBSFN控制例的順 序圖。第25圖之順序例顯示實行交遞後發送MBSFN要求的 情形。與第24圖所示之順序例之不同點在於步驟32與步驟 S33之間實行以下說明的步驟S321〜S323。 (步驟S321)行動台300a以現在使用的CC對基地台 100b發送可顯示朝向以步驟32所選擇之CC切換的HO要求。 (步驟S322)基地台l〇〇b以現在使用的CC對行動台 300a發送作為相對於HO要求之應答的HO控制資訊。 (步驟S323)基地台100b與行動台300a之間實行交遞。 即,要使用的CC被切換為以步驟S32所選擇的CC。之後, 在基地台100b與行動台300a之間以交遞後的CC來傳送 MBSFN要求與MBSFN控制資訊。 第26圖係顯示第4實施形態之第3MBSFN控制例的順 41 201134134 序圖。第26圖之順序例顯示實行交遞前發送MBSFN要求的 情形。與第24圖所示之順序例的不同點係在步驟S33與步驟 S34之間實行以下說明的步驟S331〜S333。 步驟S331〜S333的處理内容與前述步驟S321〜S323的 處理内容同樣。又,第26圖之順序例中,由行動台300a朝 基地台100b的MBSFN要求係以交遞前的CC來傳送,基地台 100b也於實行交遞前可將己接收之MBSFN要求轉送至 MME410a。由基地台1 〇〇b朝行動台300a的MBSFN控制資訊 係以交遞後的CC來傳送。 依據如此的第4實施形態之行動通訊系統,可獲得與第 2或第3實施形態同樣的效果。而且,第3實施形態中,各基 地台可不安裝MCE機能,而能在核心網路40a側總括進行 MBSFN發送的控制。 又,第4實施形態之上述說明係於MME410a安裝有 MCE機能,然而,也可於核心網路40a内之其他裝置安裝 MCE機能。又,也可將具有MCE機能之獨立的裝置設於核 心網路40a内部或外部。此情形下,基地台100a、200b於進 行MBSFN發送時與該獨立的裝置進行通信。 第2 7圖係顯示第4實施形態之行動通訊系統之變形例 的圖式。此行動通訊系統包含有基地台l〇〇b、200b、行動 台300及核心網路40b。核心網路40b設有MME410、MBMS 閘道器420、SAE閘道器430及MCE440。 MCE440係控制MBSFN發送之獨立的裝置。MCE440 由基地台100b、200b接收MBSFN要求而進行MBSFN發送的 42 201134134 排程。如此一來,將關於MBSFN之控制資訊發送至基地台 100b、200b。如此的行動通訊系統中,取代第24圖〜第26 圖所示順序例中MME410a實行的處理而由MCE440實行。 如此一來,能將具有MCE機能之獨立的裝置設於行動通訊 系統。 又’以上第2〜第4實施形態中說明了 MBSFN發送,然 而,第2〜第4實施形態之行動通訊系統可進一步進行 MBMS發送。MBMS發送與MBSFN發送同樣係將MBMS資 料予以廣播/多播的發送方法。MBSFN發送與MBMS發送的 差異如以下所述。 MBSFN發送上,以同一時序且使用同一頻率及同一調 變方式來發送MBMS資料。使用於MBSFN發送之副訊框為 與通常副訊框不同MBSFN副訊框,無法使通常資料與 MBMS資料混雜存在於同一副訊框。又,進行MBSFN發送 之複數基地台可適用同一排程結果。行動台由複數基地台 並列地接收MBMS資料。 相對於此,MBMS發送上,各基地台個別地設定發送 MBMS資料的時序與要使用的頻率及調變方式。各個基地 台進行MBMS發送的排程。MBMS發送上能使用通常副訊 框’能使通常資料與MBMS資料混雜存在於同一副訊框。 行動台由單一的基地台接收MBMS資料。 如此一來,MBMS發送時,基地台能以通常資料與 MBMS資料混雜存在的狀態進行排程。即,能將傳送通常 資料之傳輸頻道’即,下行共有頻道(£)]^8(::印,與傳送 43 201134134 MBMS資料之傳輪頻道,即,多播頻道(mch) 一併對映至 下行共有實體頻道(PDSCH)。藉由利用mbms發送而能容 易地提供麵雜咖的麟⑽如,配難Μ所之 的資訊)。 又’ MBMS發送上,由於在同—副訊框能收容 料與副卿料雙方,因此,即使以複數CC並列地進行 MBMS發送時,也能排程成為不會降低無線資源的利用效率。 以上記述僅係表示本發明的原理。對於業者能作更多 數的變形 '變更,本發明非限定於以上記述所示、說明之 正破的構成及應用例者,對應的所有的變形例及可視 為附加的申請專利範圍及其均等物 【圖式簡單說明】^之本發明的範圍。 第1圖係顯示第1實施形態之行動通訊系_圖式。 第2圖係顯示第2實施形態之行動通訊系統的圖式。 第3圖係顯示載波成分之設定例的圖式。 》 第4圖係顯示載波聚集之第丨例的圖式。 第5圖係顯示載波聚集之第2例的圖式。 第6圖係顯示頻譜聚集之例的圖式。 第7圖係顯示無線訊框之構造例的圖式。 第8圖係顯示擴充實體通知頻道之第1分配例的圖式。 第9圖係顯示擴充實體通知頻道之第2分配例的圖^ 第10圖係顯示擴充實體通知頻道之第3分配例的圖式。 第11圖係顯示符號之構造例的圖式。 第12圖係顯示第2實施形態之基地台的方塊圖。 44 201134134 第13圖係顯示第2實施形態之行動台的方塊圖。 第14圖係顯示第2實施形態之行動台處理的流程圖。 第15圖係顯示第2實施形態之MB SFN控制例的順序圖。 第16圖係顯示MBSFN用副訊框之分配例的圖式。 第17圖係顯示MBSFN之合成數的算出模式的圖式。 第18圖係顯示第3實施形態之基地台的方塊圖。 第19圖係顯示第3實施形態之行動台的方塊圖。 第20圖係顯示第3實施形態之行動台處理的流程圖。 第21圖係顯示第3實施形態之MB SFN控制例的順序圖。 第22圖係顯示第3實施形態之其他MB SFN控制例的順 序圖。 第23圖係顯示第4實施形態之行動通訊系統的圖式。 第24圖係顯示第4實施形態之第1MBSFN控制例的順 序圖。 第25圖係顯示第4實施形態之第2MBSFN控制例的順 序圖。 第26圖係顯示第4實施形態之第3MBSFN控制例的順 序圖。 第2 7圖係顯示第4實施形態之行動通訊系統之變形例 的圖式。 【主要元件符號說明】 1、2...基地台 la. ..產生部 lb. ..發送部 45 201134134 3.. .行動台 3a...接收部 3b...控制部 40、40a、40b...核心網路 100、200...基地台 100a、100b、200a、200b.··基地台 111.. .發送接收天線 112.. .無線接收部 113.. .解調解碼部 114…品質資訊產生部 115.. .MBSFN要求抽出部 116.. .排程器 117.. .通知資訊產生部 118.. .MBSFN通知資訊產生部 119.. .MBSFN控制資訊產生部 120.. . RS 產生部 120 121.. .對映部121 122.. .編碼調變部 123.. .無線發送部 124.. .HO要求抽出部 125.. .HO控制部 126.. .HO控制資訊產生部 300、300a...行動台 311.. .發送接收天線 312…無線接收部 46 201134134 313.. .解調解碼部 314.. .通知資訊抽出部 315.. .終端控制部 316.. .MBSFN控制資訊抽出部 317.. .MBSFN 控制部 318.. .MBSFN通知資訊抽出部 319.. .MBSFN要求產生部 320.. .RS抽出部 321.. .品質測定部 322.. .品質資訊產生部 323.. .編碼調變部 324.. .無線發送部 325 ...HO控制資訊抽出部 326.. .HO控制部As such, when the mobile station 300 transmits an MBSFN request, the MBSFN request is forwarded to the MME 410a. The ME 410a receives the MBSFN request and schedules the MBSFN transmission, and causes the base stations i〇〇b and 200b to perform MBSFN transmission. Here, the sequence example of Fig. 24 shows a case where the handover between CCs is not performed as in the second embodiment. On the other hand, in the third embodiment, when the CC currently used is different from the CC that can be used for MBSFN transmission, handover between CCs can be performed. Hereinafter, the mobile station 300a described in the third embodiment will be described as an example of a procedure when the MBSFN request is transmitted to the base station 100b. In this case, the base stations l〇〇b and 200b can be realized by the same configuration as the base station l〇〇a shown in Fig. 18. Fig. 25 is a sequence diagram showing a second MBSFN control example of the fourth embodiment. The sequence example of Fig. 25 shows the case where the MBSFN request is transmitted after the handover is performed. The difference from the sequence example shown in Fig. 24 is that steps S321 to S323 described below are carried out between step 32 and step S33. (Step S321) The mobile station 300a transmits to the base station 100b the currently used CC to display the HO request for the CC handover selected in step 32. (Step S322) The base station 100b transmits the HO control information as a response to the HO request to the mobile station 300a with the currently used CC. (Step S323) The handover is performed between the base station 100b and the mobile station 300a. That is, the CC to be used is switched to the CC selected in step S32. Thereafter, the MBSFN request and the MBSFN control information are transmitted between the base station 100b and the mobile station 300a by the delivered CC. Fig. 26 is a sequence diagram showing the fourth MBSFN control example of the fourth embodiment, cf 41 201134134. The sequence example of Fig. 26 shows the case where the MBSFN request is transmitted before the handover is performed. The difference from the sequence example shown in Fig. 24 is that steps S331 to S333 described below are executed between step S33 and step S34. The processing contents of steps S331 to S333 are the same as those of the above-described steps S321 to S323. Further, in the sequence example of Fig. 26, the MBSFN request from the mobile station 300a to the base station 100b is transmitted by the CC before handover, and the base station 100b can also forward the received MBSFN request to the MME 410a before the handover is performed. . The MBSFN control information from the base station 1 〇〇b to the mobile station 300a is transmitted by the CC after handover. According to the mobile communication system of the fourth embodiment, the same effects as those of the second or third embodiment can be obtained. Further, in the third embodiment, the base station can perform the control of MBSFN transmission on the core network 40a side without installing the MCE function. Further, in the above description of the fourth embodiment, the MCE function is installed in the MME 410a. However, the MCE function may be installed in other devices in the core network 40a. Further, an independent device having MCE function can be provided inside or outside the core network 40a. In this case, the base stations 100a, 200b communicate with the independent device when performing MBSFN transmission. Fig. 27 is a view showing a modification of the mobile communication system according to the fourth embodiment. The mobile communication system includes a base station l〇〇b, 200b, a mobile station 300, and a core network 40b. The core network 40b is provided with an MME 410, an MBMS gateway 420, an SAE gateway 430, and an MCE 440. The MCE 440 is a separate device that controls the transmission of MBSFN. The MCE 440 receives the MBSFN request from the base stations 100b and 200b and performs the scheduling of the MBSFN transmission 42 201134134. In this way, control information about the MBSFN is transmitted to the base stations 100b, 200b. In such a mobile communication system, the processing performed by the MME 410a in the sequence example shown in Figs. 24 to 26 is executed by the MCE 440. In this way, a separate device with MCE function can be set in the mobile communication system. Further, in the second to fourth embodiments described above, the MBSFN transmission is described. However, the mobile communication systems of the second to fourth embodiments can further perform MBMS transmission. The MBMS transmission is a transmission method in which MBMS data is broadcast/multicast in the same manner as MBSFN transmission. The difference between MBSFN transmission and MBMS transmission is as follows. MBSFN transmits MBMS data at the same timing and using the same frequency and the same modulation method. The sub-frame used for MBSFN transmission is a different MBSFN sub-frame than the normal sub-frame, and the normal data and the MBMS data cannot be mixed in the same sub-frame. Also, the same schedule result can be applied to the plurality of base stations that perform MBSFN transmission. The mobile station receives MBMS data side by side from multiple base stations. On the other hand, in the MBMS transmission, each base station individually sets the timing of transmitting the MBMS data, the frequency to be used, and the modulation method. The scheduling of MBMS transmission is performed by each base station. The normal sub-frame can be used on the MBMS transmission to enable the normal data to be mixed with the MBMS data in the same sub-frame. The mobile station receives MBMS data from a single base station. In this way, when the MBMS is transmitted, the base station can schedule the state in which the normal data and the MBMS data are mixed. That is, the transmission channel that transmits the normal data 'that is, the downlink shared channel (£)]^8 (::, and the transmission channel of the 201134134 MBMS data, that is, the multicast channel (mch) can be displayed. The downlink shared physical channel (PDSCH) can be easily provided by using mbms to transmit the information (10), such as the information. Further, in the MBMS transmission, since both the secondary and the secondary frames can accommodate both the secondary material and the secondary material, even if the MBMS transmission is performed in parallel with the plurality of CCs, the scheduling can be performed without reducing the utilization efficiency of the wireless resources. The above description is merely illustrative of the principles of the invention. The present invention is not limited to the configuration and application examples described and illustrated in the above description, and all the corresponding modifications and the additional patent scope and the equivalent thereof can be regarded as an additional patent application scope. [Simplified description of the drawings] ^ The scope of the invention. Fig. 1 is a diagram showing the mobile communication system of the first embodiment. Fig. 2 is a view showing the mobile communication system of the second embodiment. Fig. 3 is a diagram showing a setting example of a carrier component. Figure 4 shows the diagram of the third example of carrier aggregation. Fig. 5 is a diagram showing a second example of carrier aggregation. Figure 6 is a diagram showing an example of spectrum aggregation. Fig. 7 is a view showing a configuration example of a radio frame. Fig. 8 is a diagram showing a first allocation example of the extended entity notification channel. Fig. 9 is a diagram showing a second allocation example of the extended entity notification channel. Fig. 10 is a diagram showing a third allocation example of the extended entity notification channel. Fig. 11 is a diagram showing a structural example of a symbol. Fig. 12 is a block diagram showing a base station of the second embodiment. 44 201134134 Fig. 13 is a block diagram showing a mobile station according to the second embodiment. Fig. 14 is a flow chart showing the processing of the mobile station in the second embodiment. Fig. 15 is a sequence diagram showing an example of MB SFN control in the second embodiment. Fig. 16 is a view showing an example of allocation of a sub-frame for MBSFN. Fig. 17 is a diagram showing a calculation mode of the number of synthesis of MBSFN. Fig. 18 is a block diagram showing a base station of the third embodiment. Fig. 19 is a block diagram showing a mobile station according to the third embodiment. Fig. 20 is a flow chart showing the processing of the mobile station in the third embodiment. Fig. 21 is a sequence diagram showing an example of MB SFN control in the third embodiment. Fig. 22 is a sequence diagram showing another example of MB SFN control in the third embodiment. Fig. 23 is a view showing the mobile communication system of the fourth embodiment. Fig. 24 is a sequence diagram showing an example of the first MBSFN control in the fourth embodiment. Fig. 25 is a sequence diagram showing a second MBSFN control example of the fourth embodiment. Fig. 26 is a sequence diagram showing a third MBSFN control example of the fourth embodiment. Fig. 27 is a view showing a modification of the mobile communication system according to the fourth embodiment. [Description of main component symbols] 1, 2... base station la.. generation unit lb. .. transmission unit 45 201134134 3.. mobile station 3a... reception unit 3b... control unit 40, 40a, 40b...core network 100,200...base station 100a, 100b, 200a,200b.. base station 111.. transmit/receive antenna 112.. radio receiving unit 113.. demodulation and decoding unit 114 ...Quality information generation unit 115.. MBSFN request extraction unit 116.. Scheduler 117.. Notification information generation unit 118.. MBSFN notification information generation unit 119.. MBSFN control information generation unit 120.. . RS generation unit 120 121.. . Mapping unit 121 122.. Code modulation unit 123.. Wireless transmission unit 124.. HO request extraction unit 125.. HO control unit 126.. . HO control information generation Part 300, 300a... Mobile station 311.. Transmit/receive antenna 312... Radio receiving unit 46 201134134 313.. Demodulation and decoding unit 314.. Notification information extracting unit 315.. Terminal control unit 316.. MBSFN control information extracting unit 317..MBSFN control unit 318..MBSFN notification information extracting unit 319..MBSFN request generating unit 320..RS extracting unit 321.. Quality measuring unit 322.. Quality information generation Department 323.. . .. modulation unit 324 radio transmission unit 325 ... HO control information extracting unit 326 .. .HO control unit

327.. . HO要求產生部 410'410a...MME 420.. .MBMS閘道器 430.. .5.E閘道器327.. . HO request generation unit 410'410a...MME 420.. .MBMS gateway 430.. .5.E gateway

440.. .MCE CC#1〜CC#5...載波成分 P-SCH...主要同步頻道 S-SCH...次要同步頻道 PBCH...實體通知頻道 E-PBCH...擴充實體通知頻道 PDCCH…下行鏈路實體控制頻道 47 201134134 S11 〜S16, S21 〜S27, S31 〜S37, S131 〜S133, S221 〜S223, S231 〜S233, S321 〜S323, S331 〜S333...步驟 48440.. .MCE CC#1~CC#5...carrier component P-SCH...main synchronization channel S-SCH...secondary synchronization channel PBCH... entity notification channel E-PBCH...expansion Entity notification channel PDCCH... Downlink entity control channel 47 201134134 S11 ~ S16, S21 ~ S27, S31 ~ S37, S131 ~ S133, S221 ~ S223, S231 ~ S233, S321 ~ S323, S331 ~ S333... Step 48

Claims (1)

201134134 七、申請專利範圍: 1. 一種行動通訊系統,其特徵在於包含有: 基地台,係包含有產生部與發生部者;前述產生 部,係產生通知資訊,且該通知資訊可顯示無線通訊可 使用之複數頻帶中,使用於與其他基地台以同一時序發 送同一内容之資料的頻帶者;前述發送部,係利用無線 來通知前述通知資訊者;及 行動台,係包含有接收部與控制部者:前述接收 部,係接收前述基地台所通知的通知資訊者;前述控制 部,係依據前述通知資訊,控制接收由前述基地台及前 述其他基地台以同一時序發送之同一内容之資料的處 理者。 2. 如申請專利範圍第1項之行動通訊系統,其中前述控制 部於前述通知資訊所顯示之頻帶與前述行動台用於和 前述基地台連接之頻帶不同時,進行要使用頻帶的切 換。 3. 如申請專利範圍第2項之行動通訊系統,其中前述控制 部於進行前述切換後,利用與切換後之頻帶對應的無線 資源,對前述基地台要求以同一時序發送同一内容之資 料的處理。 4. 如申請專利範圍第2項之行動通訊系統,其中前述控制 部利用與切換前之頻帶對應的無線資源,對前述基地台 要求以同一時序發送同一内容之資料的處理,之後,進 行前述切換。 49 201134134 5. 如申請專利範圍第1項之行動通訊系統,其中前述發送 部以第1通知頻道發送前述行動台用以與前述基地台連 接而使用的資訊,以與前述第1通知頻道不同的第2通知 頻道發送前述通知資訊。 6. 如申請專利範圍第5項之行動通訊系統,其中前述第1通 知頻道係第1及第2種類的行動台接收的頻道,前述第2 通知頻道係第2種類的行動台接收的頻道,前述行動台 係前述第2種類的行動台。 7. 如申請專利範圍第1項之行動通訊系統,其中前述發送 部利用發送控制資訊的控制頻道發送前述通知資訊,而 該控制資訊係使用於前述行動台用以接收以同一時序 發送之同一内容之資料的處理者。 8. 如申請專利範圍第1項之行動通訊系統,其中前述複數 頻帶之中至少最低的頻帶使用於與前述其他基地台以 同一時序發送同一内容之資料。 9. 一種基地台,係與可接收複數基地台以同一時序發送之 同一内容之資料的行動台進行無線通信者,其特徵在於 包含有: 產生部,係產生通知資訊,且該通知資訊可顯示無 線通訊可使用之複數頻帶中,使用於與其他基地台以同 一時序發送同一内容之資料的頻帶者;及 發送部,係以無線來通知前述產生部所產生之前述 通知資訊。 10. —種行動台,係與第1及第2基地台進行無線通信者,其 50 201134134 特徵在於包含有: 接收部,係由前述第1基地台接收通知資訊,且該 通知資訊可顯示無線通訊可使用之複數頻帶中,使用於 與前述第2基地台以同一時序發送同一内容之資料的頻 帶者;及 控制部,係依據前述接收部所接收之前述通知資 訊,控制接收由前述第1及前述第2基地台以同一時序發 送之同一内容之資料的處理者。 11. 一種無線通訊方法,係包含第1及第2基地台與行動台之 行動通訊系統之無線通訊方法,其特徵在於包含以下步 驟: 前述第1基地台產生通知資訊,該通知資訊可顯示 無線通訊可使用之複數頻帶中,使用於與前述第2基地 台以同一時序發送同一内容之資料的頻帶; 前述第1基地台以無線來通知前述通知資訊; 前述行動台接收前述第1基地台所通知的前述通知 資訊;及 前述行動台依據已接收之前述通知資訊,接收由前 述第1及前述第2基地台以同一時序發送之同一内容的 資料。 51201134134 VII. Patent application scope: 1. A mobile communication system, comprising: a base station comprising a generating part and a generating part; the generating part generating notification information, and the notification information can display wireless communication The plurality of usable frequency bands are used for transmitting the same content of data to other base stations at the same time; the transmitting unit notifies the notification information by wireless; and the mobile station includes the receiving unit and the control The receiving unit receives the notification information notified by the base station; and the control unit controls, based on the notification information, a process of receiving data of the same content transmitted by the base station and the other base stations at the same timing. By. 2. The mobile communication system according to claim 1, wherein the control unit performs switching of the frequency band to be used when the frequency band indicated by the notification information is different from the frequency band used by the mobile station for connection with the base station. 3. The mobile communication system according to claim 2, wherein the control unit requests the base station to transmit data of the same content at the same timing by using the radio resource corresponding to the switched frequency band after performing the handover. . 4. The mobile communication system according to claim 2, wherein the control unit requests the base station to transmit data of the same content at the same timing by using a radio resource corresponding to the frequency band before the handover, and then performs the handover. . The mobile communication system of claim 1, wherein the transmitting unit transmits, by the first notification channel, information used by the mobile station to be connected to the base station, which is different from the first notification channel. The second notification channel transmits the aforementioned notification information. 6. The mobile communication system of claim 5, wherein the first notification channel is a channel received by the first and second types of mobile stations, and the second notification channel is a channel received by the second type of mobile station. The mobile station is the second type of mobile station. 7. The mobile communication system of claim 1, wherein the transmitting unit transmits the notification information by using a control channel that transmits control information, and the control information is used by the mobile station to receive the same content sent at the same time sequence. The processor of the data. 8. The mobile communication system of claim 1, wherein at least the lowest frequency band of said plurality of frequency bands is used for transmitting the same content at the same timing as said other base stations. A base station for wirelessly communicating with a mobile station that can receive data of the same content transmitted by a plurality of base stations at the same time sequence, comprising: a generating unit that generates notification information, and the notification information can be displayed In the plurality of frequency bands that can be used for wireless communication, the frequency band is used to transmit data of the same content at the same timing as other base stations; and the transmitting unit wirelessly notifies the notification information generated by the generating unit. 10. A mobile station that performs wireless communication with the first and second base stations, wherein the 50 201134134 includes: a receiving unit that receives notification information by the first base station, and the notification information can display wireless In the plurality of frequency bands that can be used for communication, the frequency band used to transmit the same content data to the second base station at the same timing; and the control unit controls the reception by the first information based on the notification information received by the receiving unit And a processor that transmits the same content of the second base station at the same timing. A wireless communication method, comprising a wireless communication method of a mobile communication system between a first base station and a second base station, and comprising the following steps: the first base station generates notification information, and the notification information can display wireless information. a plurality of frequency bands usable for communication, a frequency band for transmitting data of the same content at the same timing as the second base station; the first base station wirelessly notifying the notification information; and the mobile station receiving the notification by the first base station The notification information; and the mobile station receives the same content information transmitted by the first base station and the second base station at the same time sequence based on the received notification information. 51
TW99104697A 2010-02-12 2010-02-12 Mobile communication system, base station, mobile station, and radio communication method TWI393379B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99104697A TWI393379B (en) 2010-02-12 2010-02-12 Mobile communication system, base station, mobile station, and radio communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99104697A TWI393379B (en) 2010-02-12 2010-02-12 Mobile communication system, base station, mobile station, and radio communication method

Publications (2)

Publication Number Publication Date
TW201134134A true TW201134134A (en) 2011-10-01
TWI393379B TWI393379B (en) 2013-04-11

Family

ID=46751385

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99104697A TWI393379B (en) 2010-02-12 2010-02-12 Mobile communication system, base station, mobile station, and radio communication method

Country Status (1)

Country Link
TW (1) TWI393379B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4522753B2 (en) * 2004-06-11 2010-08-11 株式会社エヌ・ティ・ティ・ドコモ Frequency selection device, radio communication system, and radio control channel setting method
JP4823756B2 (en) * 2006-04-27 2011-11-24 京セラ株式会社 Mobile communication system, base station apparatus, and frequency allocation method for mobile communication system
US8005471B2 (en) * 2006-07-31 2011-08-23 Alcatel Lucent Access network broadcast control-signaling channel
CN103648166B (en) * 2007-12-17 2017-01-18 Tcl通讯科技控股有限公司 Mobile communication system
KR20100007452A (en) * 2008-07-14 2010-01-22 삼성전자주식회사 Apparatus and method for searching service band in mobile communication terminal

Also Published As

Publication number Publication date
TWI393379B (en) 2013-04-11

Similar Documents

Publication Publication Date Title
JP7016422B2 (en) Capability structure size-optimized coding for multi-carrier systems
KR20200113164A (en) Method and apparatus of handling device-to-device feedback transmission in a wireless communication system
EP2665199B1 (en) Channel estimation method and apparatus for cooperative communication in a cellular mobile communication system
RU2494577C2 (en) Multi-carrier scheme for control and procedures comprising generation of carrier pairs
TW201836423A (en) Ultra-reliable low-latency communication indication channelization designs
TW201836313A (en) Narrowband time-division duplex frame structure for narrowband communications
US9084251B2 (en) Communication units, integrated circuits and methods for supporting a virtual carrier
US20130308586A1 (en) Mobile communication system, mobile station apparatus base station apparatus, method for managing mobile station apparatus, method for managing base station apparatus and processing section
US9673873B2 (en) Mobile communications system, base station, mobile station, and wireless communication method
CN103339875A (en) Method and apparatus for providing multimedia broadcast and multicast service (MBMS) in wireless communication system
US9401797B2 (en) Radio communication system, communication controller, and base station
TW201832599A (en) Resource allocation for narrowband communications using an expanded bandwidth
JP2009188612A (en) Mobile communication system
KR20230084130A (en) Enhanced PUCCH transmission for repetition or frequency hopping
CN117616836A (en) RS availability indication through paging PDCCH and PEI
CN115699933A (en) Periodic resource reservation for serving aperiodic traffic through sidelink
CN108307467A (en) Communication means, base station and terminal
CN104521158B (en) The method for sending instruction in a wireless communication system
US20230254887A1 (en) Phy-layer handling of multiple relayed transport blocks by an af/df-relay ue in sidelink
US20220232591A1 (en) Uplink skipping and uplink control information multiplexing for wireless communication
TWI393379B (en) Mobile communication system, base station, mobile station, and radio communication method
EP2696640B1 (en) Communication units, integrated circuits and methods for supporting a virtual carrier
TWI532349B (en) Radio communication system, communication control apparatus, base station and radio communication method
TW202333476A (en) Fast bwp switch based on ue feedback
EP4189886A1 (en) Activating sidelink relay mac-ce

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees