TW201133965A - Thermoelectric device, electrode materials and method for fabricating thereof - Google Patents

Thermoelectric device, electrode materials and method for fabricating thereof Download PDF

Info

Publication number
TW201133965A
TW201133965A TW99108991A TW99108991A TW201133965A TW 201133965 A TW201133965 A TW 201133965A TW 99108991 A TW99108991 A TW 99108991A TW 99108991 A TW99108991 A TW 99108991A TW 201133965 A TW201133965 A TW 201133965A
Authority
TW
Taiwan
Prior art keywords
group
electrode
thermoelectric
layer
metal
Prior art date
Application number
TW99108991A
Other languages
Chinese (zh)
Inventor
li-dong Chen
Monika Backhaus Ricoult
He Lin
xiao-ya Li
xu-gui Xia
de-gang Zhao
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Priority to TW99108991A priority Critical patent/TW201133965A/en
Publication of TW201133965A publication Critical patent/TW201133965A/en

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

A thermoelectric device, a method for fabricating a thermoelectric device and electrode materials applied to the thermoelectric device are provided according to the present invention. The present invention is characterized in arranging thermoelectric material power, interlayer materials and electrode materials in advance according to the structure of thermoelectric device; adopting one-step sintering method to make a process of forming bulked thermoelectric materials and a process of combining with electrodes on the devices to be completed simultaneously; and obtaining a n shape thermoelectric device finally. Electrode materials related to the present invention comprise binary or ternary alloys or composite materials, which comprise at least a first metal selected from Cu, Ag, Al or Au, and a second metal selected from Mo, W, Zr, Ta, Cr, Nb, V or Ti. The present invention simplifies fabricating procedures, reduces the cost and avoids adverse impacts due to exposing related elements to heat and pressure for a second time.

Description

201133965 六、發明說明: 【發明所屬之技術領域】 本發明提供了一種熱電器件及其製造方法以及用於該 熱電器件的電極材料,其屬於熱電轉換技術領域。 【先前技術】 熱電發電是一種利用半導體材料賽貝克(Seebeck)效 應實現熱能和電能直接轉換的技術,其具有長壽命,高度可 靠性及環境安全等特點,在太陽能光電_熱電複合發電及工 業餘廢熱熱電發電等方面有著廣闊的應用前景和潛在的社 會及經濟效益。提高熱電發電能量轉換效率的關鍵是提高 熱電材料的性能優越,因此熱電轉換領域大部分研究工作 集中在開騎型高性能熱電㈣方面,然而,另—方面研製 開發新型鱗材料ϋ件對於提高熱f發魏量轉換效率也 具有同樣重要的作用。 熱電器件主要由P型,n型兩種熱電轉航件組成,單 個熱電元件的電壓很低,通㈣電極將大量的P型,n型熱電 ^按導電串聯,導熱並聯連接起來構成熱電發電模組以、、 獲知較咼的電壓,便於使用。 峨性能中: 熱電材枓具有良㈣顧。填元雄魅件低 =接借用坤化紹器件焊接技術—選用銅作電極材料,採) 、=技術焊接,對於填充方錯礦器件高溫端電極的焊接」 作方法看,選擇的電極材料有Cu,Mqh , 金屬的合金,不銹鋼⑽0051821)及Ag,Ag_Au, 201133965 -Cu,Fe(US67595661)和 Nb(US6563039),採用的電極與方鈷 礦材料的結合方法有銅焊(US6005182,US2〇〇2/〇〇24154 cn 101114692 等),銀焊(US6759586, US2008/0023057 等),燒結 (US2006/0017170, US6563039, JP11195817 等)等。’ ° 表1列舉了填充方始礦材料和一些金屬材料的熱膨脹 係數,電導率和熱導率。可以看到,除了 Ti,Fe,Ni的熱膨服 係數與填充方鈷礦接近,其他單質金屬的熱膨脹係數與填 充方鈷礦相差較大,而Ti,Fe,Ni的電導率和熱導率比Cu,齙 等小很多。獨鋼是-種主要由Fe,Ni等元素组成的合 金,其熱膨脹係數與填充方銘礦材料最接近。此外還可以 觀察到Mo的熱顧餘比綠雜料小,而⑶的熱膨 脹係數比填充方㈣A,二者組成合金可以通過調整相對/ 比例,使賊雜絲與填無紐赌·接近,同時又能 保持Cu’Mo良好的電導率和熱導率邋仏也是如此。犯 當前普遍採用的熱電器件的製作方法(例如中國發明 專利申請第20_044771. 〇號所記载的熱電器件的製造方 法)的主要特點是:首先在模具中製造。燒結,熱電材料的 塊體’然後在該塊體上進行高溫端電辩接,接著用焊料將 陶絲板進行焊接,最後通過切割等步驟獲得η型 讀。但是目前的方法不僅步驟複雜,而且還不可避 免地對熱電材料(諸如填充方細再次加熱,加壓,劣化熱 電材料的性能。因此’迫切需要開發新的器件製作方法以 簡化熱電ϋ件的製作步驟,齡對鱗_的不利影響。 201133965 表1材料的熱膨脹係數,電導率及熱導率 材料 CTE(xl〇-6K'') ________(RT-875K) 電導率(xlO^m·1) 熱導率 (W/mK) CoSb3 基 10 〜11 P:0.062〜0.073, P:2.1~2.6, 4在古石廣 ---1. 一 Ν:0·11 〜〇.23(RT〜850K) N:2.2~3.0(RT~850K) Mo 5.6 〜6.2 18.1 138 Cu 18 59.6 334 W 4.5~4.6(RT~100) 18.9 138 Ti 8.4 〜8.6(RT〜100) 1.9 21 Ni 13 (RT〜100) 16 82 8 Fe 12〜13 (RT〜100) 〜4 37 Ag 19 (RT〜100) 62.9 429 Ta 6.5 (RT〜100) 8.03 57 5 Nb 7.2 〜7.3(RT〜100) 8 53 7 不銹鋼 10~13(RT〜100) 1.5-2.5 14-16 M〇5〇CU5〇 10.5-9.5 37.1 910—970 M〇7〇CU3〇 8.9-8.5 22.3 monn WCu alloy 9.0 54.3 220〜230 【發明内容】 本發明的目的在於提供一種相對比較簡單的熱電器件 的製作方法,即以-次燒結步騎熱電材料與電極連^從 而簡化製造擁,降低成本並表面熱電材料因二次高壓燒 根據本發明的-個方面,提供了—種形成熱電器件的 方法,妨法包括以下步歡戦具有财_第一電極. 在所述第-雜_表面城積第—中闕材料;形成基 201133965 ί 所述第—電極的頂表面的分隔層,該分隔層將所 = 間層材料上的空間分成多個部份;在所述多個部 =的一些中並在所述第—中間層材料的第-頂表面上 "L·積第熱電材料的粉末,並在所述多個部分中的另一些 :並在所述第—中間騎料的第二頂表面上沉積第二熱電 料的私末以形成疊加層;燒結所述粉末以由所述第一和 第二熱電材料形成第一和第二熱電元件,將所述第一電極 電,接到所述第—和第二熱電桃並形成—整體元件;以 及攸所述整體兀件巾絲所述分隔層以軸所述熱電器件 在上述實施例中,所述熱電器件在一模具中形成。 才據本^㈣另—方面,上述方法還包括預處理所述 -電極’第-中間層材料和分隔層中的至少—個,所述預 處理包括增加絲_度和從暴絲面上去除金屬氧化物 在上述實施例中,所述第一電極包括一板或箱,且該 -電極包括二元或三元金屬合金,或者複合材料,其至少 包括選自銅’銀,紹或金的第一金屬以及選自如錮,鶴鍅 鈕,絡,銳,飢或鈦的第二金屬。 , 優先地,所述第—電極包括金屬合金或複合材料,選自 具有通式AI的合金,其中χ(重量%)為糊;“ 選自翻,鶴,錯’组,鉻,銳,飢或鈦中的至少一種,’ ^ 鋼,銀,銘或全中的至少一種。 、 在上述實施例中,沉積所述第—中間層材料包括沉積 私末,且沉積方法還可以採用等離子體喷塗,火 弧噴塗或電鍍工藝。 ’電 fr* 201133965 較佳地,所述第-中間層材料包括:與所述第一電極接 觸的增強結合層以及疊加於所述增強結合層上方的阻撞層 、。所述增強結合層包括選自錄,銀,銅,鈦,铭的金屬或包二 這些金屬巾的兩種或更多種的合金,且所述峨層包括欽 或鋁或者這些金屬的合金。 較佳地,所述第-熱電材料包括選自n_c〇Sb3基,填充 和/ 或摻雜 n-CoSb3 基,n-PbTe 基,摻雜 n-PbTe 基,η_ζη4%3 基,摻雜η-ΖηΛ基之中至少一種的n型熱電材料或其中至 少一種成份為η型複合熱電材料。 以及所述第二熱電材料包括選自p_c〇Sb3基,填充和/ 或摻雜 p-CoSba 基,p-PbTe 基,摻雜 p-pbTe 基,p—ZmSb3 基, 摻雜p-ZmSb基之中的至少一種的p型熱電材料或至少一 種成份為p型複合熱電材料。 較佳地,所述分隔層包括包括氧化紹,氧化紹,氮化在呂 ,氧化石夕,玻璃,石墨,鎳,銅,鐵和不錢鋼中的一個或多個。 在上述實施例中,所述燒結包括火花等離子體燒結,並 可包括施加20-100Mpa的壓力以及以500-750°C的燒結溫度 加熱。 根據一個實施例,上述方法還可包括在燒結前,在所述 第一和第二熱電材料的各自頂表面上沉積第二中間層材料 ,以及在每個第二中間層材料上形成第二電極以形成疊加 層。此外,根據另一實施例,上述方法還可進一步包括預處 理所述第二電極和所述第二中間層材料中的至少一個,所 述預處理包括增加表面粗糙度和從暴露表面上去除金屬氧 201133965 化物中的至少一種。 二電嫩—蝴。她地,所述第 減自銅1—^三元销合金,或者複合材料,其至少包 r钮戈鈦㈣呂或金的弟一金屬和選自翻,鎢,錯,组,鉻, ^叙或鈦的第二金屬。更優先地,所述第二電極包括 &金或複合材料,選自具有通式AI的合金,其中χ(重旦 %)為20Sx$9〇;a包括選自、 里 竭,錯,起,鉻,銳,釩或鈦中 的至〆一種,B包括選自銅,銀,紹或金中的至少一種。 於末在ϋΤΓΓ,沉積所料二㈣層㈣包括沉積 1末,a射法射_轉子體魅,火 喷塗或電鍍工藝。 、孟,%狐 較佳地,戶斤述第二中間層材料包括形成於所述第一和 Ϊίί電^件上的阻播層;以及與所述阻擔層接觸的增強 結合層。201133965 VI. Description of the Invention: [Technical Field] The present invention provides a thermoelectric device, a method of manufacturing the same, and an electrode material for the thermoelectric device, which belong to the field of thermoelectric conversion technology. [Prior Art] Thermoelectric power generation is a technology that uses the semiconductor material Seebeck effect to realize direct conversion of thermal energy and electric energy. It has long life, high reliability and environmental safety. It is in solar photovoltaic_thermoelectric combined power generation and industrial surplus. Waste heat and heat power generation has broad application prospects and potential social and economic benefits. The key to improving the energy conversion efficiency of thermoelectric power generation is to improve the performance of thermoelectric materials. Therefore, most of the research work in the field of thermoelectric conversion is focused on the high-performance thermoelectricity of the ride-on type. However, the development of new scale materials for the other is to improve the heat. The conversion efficiency of f is also of equal importance. The thermoelectric device is mainly composed of two types of P-type and n-type thermoelectric transfer parts. The voltage of a single thermoelectric element is very low. The (four) electrode will have a large number of P-type, n-type thermoelectrics connected in series, and the heat conduction will be connected in parallel to form a thermoelectric generator. The group uses , , to know the relatively high voltage, easy to use.峨 Performance: Thermoelectric materials have good (four) Gu. Filling the element of the male element is low = borrowing with Kunhuashao device welding technology - using copper as the electrode material, mining), = technical welding, for the welding of the high-temperature end electrode of the filling of the ore-mining device" method, the selected electrode material has Cu, Mqh, alloy of metal, stainless steel (10)0051821) and Ag, Ag_Au, 201133965 -Cu, Fe (US67595661) and Nb (US6563039), the combination of the electrode and the skutterudite material is brazed (US6005182, US2〇〇) 2/〇〇24154 cn 101114692, etc., silver welding (US6759586, US2008/0023057, etc.), sintering (US2006/0017170, US6563039, JP11195817, etc.) and the like. ¡ ° Table 1 lists the thermal expansion coefficient, conductivity and thermal conductivity of the filled ore material and some metallic materials. It can be seen that the thermal expansion coefficient of Ti, Fe and Ni is close to that of filled skutterudite. The thermal expansion coefficient of other elemental metals is quite different from that of filled skutterudite, while the electrical conductivity and thermal conductivity of Ti, Fe and Ni are different. It is much smaller than Cu, 龅 and so on. Uni-steel is an alloy consisting mainly of elements such as Fe and Ni, and its thermal expansion coefficient is closest to that of the filled square mineral material. In addition, it can be observed that the heat of Mo is smaller than that of green materials, and the coefficient of thermal expansion of (3) is higher than that of the filling side (four) A. The alloys can be adjusted by adjusting the relative/proportion so that the thief is not close to the filling. It also maintains the good electrical conductivity and thermal conductivity of Cu'Mo. The main features of the currently used thermoelectric devices (for example, the method of manufacturing the thermoelectric device described in the Chinese Patent Application No. 20_044771. The nickname) are: first manufactured in a mold. The sintered, bulk of the thermoelectric material is then electrically grounded on the block at a high temperature end, followed by soldering the ceramic board with solder, and finally obtaining an n-type read by cutting or the like. However, the current method is not only complicated in steps, but also inevitably reheats, pressurizes, and degrades the performance of thermoelectric materials for thermoelectric materials. Therefore, it is urgent to develop new device fabrication methods to simplify the fabrication of thermoelectric components. Steps, the adverse effect of age on scales. 201133965 Table 1 Thermal expansion coefficient, conductivity and thermal conductivity of materials CTE (xl〇-6K'') ________(RT-875K) Conductivity (xlO^m·1) Heat Conductivity (W/mK) CoSb3 base 10 〜11 P: 0.062~0.073, P: 2.1~2.6, 4 in ancient stone wide---1. One Ν: 0·11 〜〇.23 (RT~850K) N: 2.2~3.0(RT~850K) Mo 5.6 ~6.2 18.1 138 Cu 18 59.6 334 W 4.5~4.6(RT~100) 18.9 138 Ti 8.4 ~8.6(RT~100) 1.9 21 Ni 13 (RT~100) 16 82 8 Fe 12~13 (RT~100) ~4 37 Ag 19 (RT~100) 62.9 429 Ta 6.5 (RT~100) 8.03 57 5 Nb 7.2 ~7.3 (RT~100) 8 53 7 Stainless steel 10~13 (RT~ 100) 1.5-2.5 14-16 M〇5〇CU5〇10.5-9.5 37.1 910-970 M〇7〇CU3〇8.9-8.5 22.3 monn WCu alloy 9.0 54.3 220~230 [Invention] It is an object of the present invention to provide a compare to A simple method for fabricating a thermoelectric device, that is, riding a thermoelectric material with an electrode in a sub-sintering step to simplify manufacturing, reducing cost, and providing a high-temperature burning of the surface thermoelectric material according to the aspect of the present invention. The method of the thermoelectric device, the method comprising the following steps: having the first electrode. In the first-hetero-surface city-first material, the base layer of the top surface of the first electrode is formed by the base 201133965 ί The partition layer divides the space on the material of the interlayer into a plurality of portions; in some of the plurality of portions = and on the first top surface of the material of the first intermediate layer "L·product a powder of thermoelectric material, and in some of the plurality of portions: and depositing a smatter of the second thermoelectric material on the second top surface of the first intermediate ride to form an overlying layer; sintering the powder to Forming first and second thermoelectric elements from the first and second thermoelectric materials, electrically connecting the first electrode to the first and second thermoelectric peaches and forming an integral element; and 攸the overall 兀The towel layer of the separator is a thermoelectric device In the above embodiment, the thermoelectric device is formed in a mold. According to the fourth aspect, the method further includes pretreating at least one of the -electrode 'intermediate layer material and the separation layer, the pretreatment comprising increasing the filament _ degree and removing from the surface of the blast Metal Oxide In the above embodiments, the first electrode comprises a plate or a box, and the - electrode comprises a binary or ternary metal alloy, or a composite material comprising at least one selected from the group consisting of copper 'silver, Shao or gold. The first metal and the second metal selected from the group consisting of ruthenium, ruthenium, ruthenium, ruthenium or titanium. Preferably, the first electrode comprises a metal alloy or a composite material selected from the group consisting of alloys of the general formula AI, wherein bismuth (% by weight) is a paste; "selected from the group of turning, crane, wrong', chrome, sharp, hungry Or at least one of titanium, ' ^ steel, silver, inscription or all of the above. In the above embodiments, depositing the first interlayer material includes depositing a private, and the deposition method may also employ a plasma spray Coating, arc spraying or electroplating process. 'Electric fr* 201133965 Preferably, the first-interlayer material comprises: a reinforcing bonding layer in contact with the first electrode and a blocking layer superimposed on the reinforcing bonding layer The reinforcing bonding layer comprises two or more alloys selected from the group consisting of silver, copper, titanium, metal or two metal towels, and the enamel layer comprises chin or aluminum or these metals Preferably, the first thermoelectric material comprises a group selected from the group consisting of n_c〇Sb3, filled and/or doped n-CoSb3 groups, n-PbTe groups, doped n-PbTe groups, η_ζη4%3 groups, doped An n-type thermoelectric material of at least one of η-ΖηΛ groups or at least The composition is an n-type composite thermoelectric material. And the second thermoelectric material comprises a base selected from the group consisting of p_c〇Sb3, filled and/or doped p-CoSba, p-PbTe, doped p-pbTe, p-ZmSb3 The p-type thermoelectric material or at least one component of the at least one of the doped p-ZmSb groups is a p-type composite thermoelectric material. Preferably, the separation layer comprises oxidized, oxidized, and nitrided. One or more of oxidized oxide, glass, graphite, nickel, copper, iron, and iron. In the above embodiments, the sintering includes spark plasma sintering, and may include applying a pressure of 20-100 MPa and Heating at a sintering temperature of 500 to 750 ° C. According to an embodiment, the method may further include depositing a second intermediate layer material on respective top surfaces of the first and second thermoelectric materials, and at each before sintering Forming a second electrode on the second interlayer material to form an overlying layer. Further, according to another embodiment, the method may further include pre-treating at least one of the second electrode and the second interlayer material, Preprocessing package Increasing the surface roughness and removing at least one of the metal oxides 201133965 from the exposed surface. The second, the first reduction from the copper 1-^ ternary pin alloy, or the composite material, at least r Button metal (4) Lu or gold, a metal and a second metal selected from the group consisting of tumbling, tungsten, erroneous, group, chrome, or titanium. More preferably, the second electrode comprises & gold or composite material, It is selected from the group consisting of alloys of the general formula AI, wherein χ (heavy denier %) is 20Sx$9 〇; a includes one selected from the group consisting of, exhausted, wrong, chrome, sharp, vanadium or titanium, and B is selected from the group consisting of At least one of copper, silver, Shao or gold. At the end of the sputum, the deposition of the second (four) layer (four) includes the deposition of 1 end, a shot method _ rotor body charm, fire spraying or electroplating process. Preferably, the second intermediate layer material comprises a blocking layer formed on the first and second members; and a reinforcing bonding layer in contact with the resist layer.

較佳地,所述熱電元件和電極賴辆 於 10%〇 J 根據-個實施例,所述第—t極包括多轉一電極元 件;以及所述第4極包括多㈣二電極元件,其中所述第 -電極的每個電極元件通騎述熱電元件㈣地與所述第 二電極的-對電極树鏈結,以使—種摻雜類型的一修 電元件被電連制所述第—電極的電極元件的—個端部並 電連接到所述第二電極的電極元件的—個端部,同時不同 摻雜類型的另-熱電元件被電連接到所述第—電極的所述 熱電元件的另-端部並電連接到所述第二電極的另一電極 201133965 元件的一個端部。 根據本發明的另一方面,本發明提供了一種熱電器件, 其特徵在於包括:第一電極;第一和第二熱電元件,各自與所 述第一電極電接觸:以及中間層,設置於所述第一電極及所 述第一和第二熱電元件之間並與它們接合,其中所述第一電 極包括二元或三元金屬合金,或者複合材料,其至少包括選 自銅,銀,鋁或金的第一金屬以及選自鉬,鎢,鍅,鈕,鉻,釩, 或欽的第二金屬。 較佳地,所述第一電極包括金屬合金,選自具有通式Preferably, the thermoelectric element and the electrode are at 10% 根据J. According to an embodiment, the first-t pole comprises a multi-turn one-electrode element; and the fourth pole comprises a multi-(four) two-electrode element, wherein Each of the electrode elements of the first electrode is coupled to the counter electrode of the second electrode via a thermoelectric element (four) so that a trimming element of the doping type is electrically connected - one end of the electrode element of the electrode and electrically connected to the end of the electrode element of the second electrode, while the other thermoelectric element of different doping type is electrically connected to the said first electrode The other end of the thermoelectric element is electrically connected to one end of the other electrode 201133965 element of the second electrode. According to another aspect of the present invention, there is provided a thermoelectric device characterized by comprising: a first electrode; first and second thermoelectric elements each in electrical contact with the first electrode: and an intermediate layer disposed at the And between the first electrode and the first and second thermoelectric elements, wherein the first electrode comprises a binary or ternary metal alloy, or a composite material comprising at least one selected from the group consisting of copper, silver, and aluminum Or a first metal of gold and a second metal selected from the group consisting of molybdenum, tungsten, niobium, button, chromium, vanadium, or chin. Preferably, the first electrode comprises a metal alloy selected from the group consisting of

AxBhc的合金,其中x(重量«為2OSxS90;A包括選自鉬, 鎢,鍅,鈕,鉻,鈮,釩或鈇中的至少一種,B包括選自銅,銀, 在呂或金中的至少一種。 較佳地,所述第一熱電材料包括選自n_c〇Sb3基;填充 和/或摻雜 n-CoSb3 基;n-PbTe 基;摻雜 n-PbTe 基;n-ZmSb3 基’摻雜n-ZmSb3基之中的至少一種的n型熱電材料或其中 至少一種成份為n型複合熱電材料; 〇以及所述第二熱電材料包括選自ρ-CoSb3基;填充和/ 或摻雜 p—CoSb3基;Ρ—PbTe 基;摻雜 p-PbTe 基;p-Zn4Sb3 基; 摻雜p-ZmSba基之中的至少一種的p型熱電材料或以其中 至少一種成份為P型複合熱電材料。 ,根據-個實施例,上述熱電器件還可包括:第二中間層 ’形成於所述第-和第二熱料件的各自頂表面上方;以^ 第二電極,形成於每個第二中間層上方。 較佳地,所述第二電極包括二元式三元金屬合金,或者 201133965 複合材料,其至少包括選自銅,銀鋁或金的第一金屬和選 自鉬’鶴,結,組,鉻,銳,釩或鈦的第二金屬。 更優先地,所述第二電極包括金屬合金或複合材料,選 自具有通式AxBhc的合金,其中χ(重量%)為2〇gxg9〇;A包 括選自鉬,鎢,鍅,鈕,鉻,鈮,釩或鈦中的至少一種,B包括選 自銅,銀,鋁或金中的至少一種。 、 本發明的優點在於,一次燒結即可獲得n型元件,可以 簡化現有技術獲得n型元件的複雜步驟,還可以避免現有技 術一-人加熱,加壓對填充熱電材料元件性能的不利影響。 應當理解,本發明以上的-般性描述和以下的詳細描 述都是示例性和說明性的,並且旨在為如申請專利範圍所 述的本發明提供進一步的解釋。 【實施方式】 t克服現有技術中的諸多不足,發明人提出了 一種新 穎的问效,间可罪地填充方铦礦熱電發電器件的製作方法 方法的主要特點是依次竹預處理後的熱端電極,增強 。層牙阻擋層置於模具中,然後填入叫Η填充方錯礦粉末 ’再依人放入阻播層和增強結合層,冷端電極;進行放電等 ^接獲4 Η ^元件,織將11 ^元件焊接陶究基板 上,獲付填充方鈷礦器件。 、現在將詳細參考關贿本發_實關。請注意, :述實施辦均以相礦作為熱電材料予以财,但本領 2技術人貝可⑽解,其他已知的熱電材料均可替代下 ’*·施例巾的才鑽礦而實縣發明。因此,發明並不限於 201133965 下述實關切記載的任何特定材料。An alloy of AxBhc, wherein x (weight « is 2OSxS90; A includes at least one selected from the group consisting of molybdenum, tungsten, niobium, knob, chromium, niobium, vanadium or niobium, and B includes one selected from the group consisting of copper, silver, and ruthenium or gold. Preferably, the first thermoelectric material comprises a group selected from the group consisting of n_c〇Sb3; filled and/or doped n-CoSb3 groups; n-PbTe groups; doped n-PbTe groups; n-ZmSb3 groups 'doped An n-type thermoelectric material of at least one of the hetero-n-ZmSb3 groups or at least one of which is an n-type composite thermoelectric material; 〇 and the second thermoelectric material comprise a group selected from the group consisting of ρ-CoSb3; filling and/or doping p —CoSb3 group; Ρ—PbTe group; doped p-PbTe group; p-Zn4Sb3 group; p-type thermoelectric material doped with at least one of p-ZmSba groups or at least one of which is a P-type composite thermoelectric material. According to an embodiment, the above thermoelectric device may further include: a second intermediate layer 'formed over respective top surfaces of the first and second hot material members; and a second electrode formed in each second intermediate portion Above the layer. Preferably, the second electrode comprises a binary ternary metal alloy, or 201133965 composite material, which comprises at least a first metal selected from the group consisting of copper, silver aluminum or gold and a second metal selected from the group consisting of molybdenum, crane, knot, group, chromium, sharp, vanadium or titanium. More preferably, the second electrode comprises a metal alloy or a composite a material selected from the group consisting of alloys having the general formula AxBhc, wherein χ (% by weight) is 2〇gxg9〇; A includes at least one selected from the group consisting of molybdenum, tungsten, rhenium, knob, chromium, ruthenium, vanadium or titanium, B includes At least one of copper, silver, aluminum or gold. The invention has the advantages that an n-type component can be obtained by one sintering, which can simplify the complicated steps of obtaining the n-type component in the prior art, and can also avoid the prior art-person heating. The above-described general description of the invention and the following detailed description are exemplary and illustrative, and are intended to be The invention provides a further explanation. [Embodiment] To overcome many shortcomings in the prior art, the inventors have proposed a novel effect, and the main feature of the method for making the sinister filling of the stellite pyroelectric power generation device is The hot-end electrode after bamboo pretreatment is reinforced. The layer barrier layer is placed in the mold, and then filled with the sputum-filled squared ore powder, which is then placed in the blocking layer and the reinforced bonding layer, and the cold-end electrode; Wait for ^ to receive 4 Η ^ components, weave 11 ^ components on the ceramic substrate, and get the filling of the skutterite device. Now, we will refer to the bribery _ _ 实 实 实 实 实 实 实 实 实 实 实 实 实 实 实 实 实 实 实 实 实 实Phase ore is used as a thermoelectric material, but the other 2 technicians can be replaced by other known thermoelectric materials. The invention is not limited to 201133965. Any specific material described in the actual concerns below.

如llla-ld所示,對阻擋層丨As shown by llla-ld, the barrier layer

局純度石英砂;超音波清洗的時間5-15分鐘。 其次,進行裝料及燒結(參見圖2)。 將熱端電極41,增強結合層2和阻擋層丨依次設置 具中。對增強結合層2和_層丨的設置可以是簡單放置、 ,可以採用諸如等離子體喷塗,火焰噴塗,電弧噴塗或電鍍 等衣,田然本發明對於具體的放置方式並無具體限制,任 何本領域已知的放置方柄可以祕實現本發明。然後, 垂^地將隔板3插到熱端電極41的上表面,將模具的内部空 間分成兩部分,以便在這兩部分巾分別填人卩麵電材料和工 η型熱電材料’例如根據一優先實施例沉積—填充方錯礦 粉^。再依次在熱電材料上放入阻播層(,增強結合層2和 冷端電極42。當然,本領域技術人員也能通過合理的手段 將上达内郇空間分成更多的部分。通過上壓頭Μ和下壓頭 22對所形成的層疊結構進行預壓。接著,對模具進行燒結, 例如在圖2所示的實施例中將模具置於放電等離子燒結設 備中選行燒結,從關時實現p/n填充方鈷礦粉末的塊體化 及其與電極的結合以形成電連接並形成一整體元件。 201133965 根據本發明的-個方面,電極材料的選擇及其與熱電 元件的結合是熱電器件製作的關鍵。日前,低溫碲=基 器件已經商業化,通常以銅作電極,咖傳_焊技術焊接 。電極材料的選擇至少需要考慮以下幾方面要求其熱 膨脹係數與熱電材料匹配,以盡可能降器件在製作及使用 過程中的熱應力,避免因熱應力過大導致電極焊接失敗或 者器件在使用過程中失效;2)要水電極材料具有良好的電 導率和熱導率,以降低電極所帶來的電阻和熱阻對器件能 量轉換效料性能的不鄉響;财要求電極材料具備^ 好的耐熱性;且4)具有相對簡便的製造和加工技術以便於 形成於熱電材料上。 在上述實施例中,無論是熱端電極還是冷端電極均優 先與要所選用的熱電材料的熱膨脹係數相匹配,且電導率 ’熱導率均良好的金屬材料,比如由熱膨脹係數比填充方鈷 礦材料小的金屬(Mo, W,Zr,Ta,Cr,Nb,Ti等)與熱膨脹係數 比填充方鈷礦材料大的且電導率,熱導率良好的Cu,Ag,A1, Au專構成一元或者二元合金或者金屬複合材料,其製造方 法是熔煉或者燒結後再軋製。優先的電極厚度為〇. 5_h 5 mm。更優先地,上述熱端電極和冷端電極可以是選自具有 通式AxBhc的合金,其中x(重量%)為2〇$χ$90,α包括選自 銷,鶴,錯’組,鉻,銳,釩或鈦中的至少一種,B包括選自銅 銀,紹或金中的至少一種。 對於基於CoSb的熱電材料,MoxCuy合金是較佳的電極 材料。如圖4所示,MosoCusg與基於CoSb的熱電材料的失 201133965 配最小。另外,圖5a-5c所示,MosoCu5。與M〇7£u3()可以在 燒結前保持無_,且在經5⑽度的熱老化小時後,M〇心。 仍可保持無裂縫,而M〇7〇Cu3。會出現裂縫,如圖6a_6b所示 。因此,對於基於c〇Sb3的熱電材料來說,M〇7£u3。是最優 先的電極材料。 此外,上述隔板4優先足氧化鉛,氧化鋁,氮化鋁,氧化 矽,玻璃,石墨,錄,銅,鐵和不錄鋼中的一個或多個。隔板4 的厚度優先為0.2-1. 〇mm。 作為上述11型熱電材料的示例,可以採用選自n-C〇Sb3 基;填充和/或摻雜n-CoS_;n_PbTe基;摻雜η.基π ZmSb3基;摻雜n_Zn4Sb3基中的至少一種的η型熱電材料或 其中至少一種成份為η型複合熱電材料。 作為上述ρ型熱電材料的示例,可以採用p_c伽基填 =或摻雜P-⑽3基;?猶e基;摻雜卩他基,pi% ^雜p-Zn4Sb3基中的至少一種的p型熱電材料或其中至 >一種成份為P型複合熱電材料。 執電== 的姆概要是考細減少處於熱端處的 :電材料和電極的熱膨脹系散之間的失配以及提高教電器 :=’。因此相比於單種金屬,合金更適合作為熱端處 擴散通能惡化的 =以上的_巾_骑辆者,但=姆因需此要雖 ,儿積阻擋層和增強結合射個作為電極與熱電材 13 201133965 ,之間的中間層。此外,上述增強結合層2和賴層ι優先 疋Ag合金焊片,cu合金焊片或者Au_Cu合金焊片加^羯。焊 片的厚度優先為80-15微米,Ti搐的厚度優先為3〇一1〇〇微米 。增強結合層2和阻擔層1也可以是Ti粉,其純度不小於· ’粒度100-500微米,Ti粉無需處理,裝料時直接撒在電極上, 厚度優先為20-100微米。特別是,也可以提供單個中間層 起到增強結合層/阻擔層的作用,在這種情況中該單個中間 層的材料可以是Ti粉,A1粉或者這兩者的混合粉末式合金 粉末。 較佳地’上述麵峨力為2_3嶋,燒結倾為:真空 度〇. 5-20Pa,燒結壓力20_1〇〇Mpa,升溫速度為2〇_細。c/分 ,燒結溫度為500-750。(:,保溫時間2-2〇分鐘。 上述冷端電極優先是與填充方銘礦材料熱膨脹係數相 匹配且電導率,鮮率良好的金屬或者金屬複合材料,而且 與焊錫潤濕良好以利於焊錫層製造。 再次’除去隔板。錢結完畢後去除上述隔板3。 較佳地,用線_將隔板絲,即獲得η型熱電器件。 圖3a和3b分別示出去除隔板前後的η型熱電器件。當然,可 以理解,也可以採用任何其他合適的切割方法而不背離本 發明的原理。 根據本發明的-個優先實施例,特別是為了提高效率, a又相燒結松具可以同時燒結若干枚η型熱電器件,如圖如 所示。亦即,在以上插人隔板3的步驟巾可轉整個模具的 空間分成多個部分,例如圖⑼所示的實施例中分成了 8個部 201133965 刀“刀別在逆多個部分中的—些内沉積p型熱電材料,同時 在另二中/儿積η型熱電材料。在這種情況下,本領域的技 術人員可以理解,經過類似的處理步驟就能—次燒結出若 干η型熱電器件。 最後’可將若干η型熱電雜蟬接在覆綱聽板上。 具體地’焊接之前,在η型熱電器件的冷端電極上製造 焊錫層,紐與上錫的覆銅陶錄板焊接。 實施例2: 相比貫施例 ,^ ,只以的王要區別在於省去了實施例 熱電材料上在冷端處放置崎層丨,職結合層和放置 ^端電極的步驟。因此,以下描述中省去了與實施例i相序 的那些步驟的描述。 ^ 根據實施例2,在實施例!中的裝料過程中,在裝 ^方_絲之後,也可以不再次放人阻财丨,增強結』 無二端電極二n型元件 Ο ' 對於所獲得的沒有燒結冷端電極的n 在將其焊制覆_錄板上之前在冷端擇 強結合層和焊錫層,再與覆銅喊 曰 ,上__離子喷塗方法^^ 旱度_微米;上述增強結合 : =屬上N;,方法可以是等離子喷塗,火焰喷塗S 電鍍,上鱗闕的厚度為l〇G-5(X)微米製造方一 浸錫或者電鑛。 ’ &方法可以是 201133965 個顯著特點是:熱電材 電=1^電_結合同時完成,避免現有技 缺接熱電讀熱___ 所帶來的不郷響。 π—人加熱,加堡 本領域技術人員可顯見,可對本發明的上述示例性實 施例進行各種修改和變化而獨離本發明 料概财料效技術 方案範圍内的對本發明的修改和變化。 【附圖簡單說明】 錄ift:,提供對本發明進—步的理解,它們被收 錄並構成本申知的-部分。附圖示出了本發明的實施例, 並與本說明書-起轉本發明驗的作用。 圖la-ld分別示出了正進行預處理的阻擋層,增強結合 層,隔板和電極。 圖2足根據本發明一個實施例的放電等離子 電器件的示意圖。 圖3a示出了去除隔板前的n型熱電器件的示意圖。 圖3b不出了去除隔板後的單個n型熱電器件的示意圖。 圖4不出了電極與⑽3材料的鱗祕數對溫度的依 賴關係。 *圖5a-5c示出了在熱老化前c〇Sb3/Ti/電極接合結構的 掃瞄電子顯纖(SEM)拍攝的顯微照#,其巾圖5a是c〇Sb3/ Τι/Μο接合結構,圖5b走⑴如/丁邊7“3❶接合結構,圖& 是 CoSba/Ti/MosDCusti 接合結構。 16 201133965 圖6a-6b示出了在熱測試後的CoSb3/Ti/Mo-Cu接合結 構的掃瞄電子顯微鏡(SEM)拍攝的顯微照片,其中圖6a是 CoSb3/Ti/M〇7〇Cu3〇接合結構。圖 6b *CoSb3/Ti/M〇5〇Cu5〇 接合結構。 【主要元件符號說明】 阻擋層1;增強結合層2;隔板3;電極4;預先處理步驟5; 上壓頭21;下壓頭22;電極41;電極42。Bureau purity quartz sand; ultrasonic cleaning time 5-15 minutes. Next, charging and sintering are carried out (see Figure 2). The hot end electrode 41, the reinforcing bonding layer 2 and the barrier layer are sequentially disposed. The arrangement of the reinforcing bonding layer 2 and the layer 丨 can be simply placed, and the coating such as plasma spraying, flame spraying, arc spraying or electroplating can be used. The invention is not specifically limited to the specific placement manner, and any The placement of square handles known in the art can be used to implement the invention. Then, the separator 3 is inserted into the upper surface of the hot end electrode 41, and the inner space of the mold is divided into two parts, so that the two parts are respectively filled with the electric material and the n-type thermoelectric material. A preferred embodiment deposits - fills the square mineral powder. Then, a blocking layer (the reinforcing bonding layer 2 and the cold-end electrode 42) is placed on the thermoelectric material in sequence. Of course, those skilled in the art can also divide the upper inward space into more parts by reasonable means. The head sill and the lower ram 22 pre-compress the formed laminated structure. Next, the mold is sintered, for example, in the embodiment shown in Fig. 2, the mold is placed in a discharge plasma sintering apparatus for sintering, from the time of closing The bulking of the p/n-filled skutterudite powder and its bonding with the electrodes are effected to form an electrical connection and form a unitary component. 201133965 In accordance with aspects of the invention, the choice of electrode material and its combination with the thermoelectric element is The key to the fabrication of thermoelectric devices. Recently, low-temperature 碲=base devices have been commercialized, usually with copper as the electrode, and soldering technology. The choice of electrode materials requires at least the following aspects to be required to match the thermal expansion coefficient with the thermoelectric material. Minimize the thermal stress of the device during fabrication and use, avoid failure of electrode soldering due to excessive thermal stress or failure of the device during use; 2) Hydropower The polar material has good electrical conductivity and thermal conductivity to reduce the resistance of the electrode and the thermal resistance to the performance of the energy conversion effect of the device; the financial requirement electrode material has good heat resistance; and 4) has Relatively simple manufacturing and processing techniques facilitate formation on thermoelectric materials. In the above embodiments, both the hot end electrode and the cold end electrode are preferentially matched with the thermal expansion coefficient of the thermoelectric material to be selected, and the metal material having good electrical conductivity 'thermal conductivity, such as a coefficient of thermal expansion ratio is filled. Metals with small cobalt ore materials (Mo, W, Zr, Ta, Cr, Nb, Ti, etc.) and Cu, Ag, A1, Au with higher thermal expansion coefficient than those filled with skutterudite materials and good electrical conductivity and thermal conductivity A mono- or binary alloy or a metal composite is formed, which is produced by melting or sintering and then rolling. The preferred electrode thickness is 〇. 5_h 5 mm. More preferably, the hot end electrode and the cold end electrode may be selected from an alloy having the general formula AxBhc, wherein x (% by weight) is 2〇$χ$90, and α includes a group selected from the group consisting of a pin, a crane, a fault group, and a chromium. At least one of sharp, vanadium or titanium, B comprises at least one selected from the group consisting of copper silver, sulphur or gold. For CoSb-based thermoelectric materials, MoxCuy alloys are preferred electrode materials. As shown in Figure 4, MosoCusg is the smallest with the loss of CoSb-based thermoelectric materials. In addition, as shown in Figures 5a-5c, MosoCu5. With M〇7£u3(), it can be kept _ before sintering, and after 5 (10) degrees of heat aging, M 〇. It can still be kept free of cracks, while M〇7〇Cu3. Cracks will appear, as shown in Figure 6a-6b. Therefore, for a thermoelectric material based on c〇Sb3, M〇7£u3. It is the best electrode material. Further, the above separator 4 is preferably one or more of lead oxide, aluminum oxide, aluminum nitride, cerium oxide, glass, graphite, copper, iron, and unrecorded steel. The thickness of the separator 4 is preferably 0.2-1. 〇mm. As an example of the above-described type 11 thermoelectric material, η selected from nC〇Sb3 group; filled and/or doped n-CoS_; n_PbTe group; doped n. group π ZmSb3 group; doped n_Zn4Sb3 group; The type of thermoelectric material or at least one of the components is an n-type composite thermoelectric material. As an example of the above p-type thermoelectric material, p_c gamma filling = or doping P-(10) 3 group can be used; A p-type thermoelectric material containing at least one of decyl, pi%, hetero-p-Zn4Sb3 groups or a component thereof is a P-type composite thermoelectric material. The summary of the power == is a reduction in the hot end: the mismatch between the electrical material and the thermal expansion of the electrode and the improvement of the electrical appliance: ='. Therefore, compared with a single metal, the alloy is more suitable as the above-mentioned _ _ _ rider as the diffusion end energy at the hot end is deteriorated, but the dam is required to be used, and the barrier layer and the reinforced bond are used as the electrodes. The intermediate layer between the thermoelectric material 13 201133965. Further, the above-mentioned reinforcing bonding layer 2 and the laminating layer ip are preferably 疋Ag alloy soldering sheets, cu alloy soldering sheets or Au_Cu alloy soldering sheets. The thickness of the solder pad is preferably 80-15 μm, and the thickness of the Ti搐 is preferably 3〇1 μm. The reinforcing bonding layer 2 and the resistive layer 1 may also be a Ti powder having a purity of not less than Å-100-500 μm. The Ti powder is not treated, and is directly sprinkled on the electrode during charging, and the thickness is preferably 20-100 μm. In particular, it is also possible to provide a single intermediate layer to function as a reinforcing bonding layer/resistive layer, in which case the material of the single intermediate layer may be Ti powder, A1 powder or a mixed powder type alloy powder of the two. Preferably, the above surface force is 2_3 嶋, and the sintering is inclined to a vacuum of 5 5-20 Pa, a sintering pressure of 20 〇〇 Mpa, and a heating rate of 2 〇 _ fine. c / min, sintering temperature is 500-750. (:, holding time 2-2 〇 minutes. The above-mentioned cold-end electrode is preferentially a metal or metal composite material which matches the thermal expansion coefficient of the filling mineral material and has good electrical conductivity and fresh rate, and is well wetted with the solder to facilitate soldering. Layer manufacturing. Again 'removal of the separator. After the completion of the carbonation, the separator 3 is removed. Preferably, the separator wire is used to obtain the n-type thermoelectric device. Figures 3a and 3b show the front and rear of the separator, respectively. Η-type thermoelectric device. Of course, it will be understood that any other suitable cutting method may be employed without departing from the principles of the invention. In accordance with a preferred embodiment of the present invention, particularly for improved efficiency, a phase-sintered looser may Simultaneously sintering a plurality of n-type thermoelectric devices, as shown in the figure, that is, in the above step of inserting the separator 3, the space of the entire mold can be divided into a plurality of portions, for example, the embodiment shown in FIG. 8 parts 201133965 The knife "cuts the p-type thermoelectric material in some of the reverse parts, while the n-type thermoelectric material is in the other two. In this case, the person skilled in the art It is understood that a number of n-type thermoelectric devices can be sintered by a similar processing step. Finally, a number of n-type thermoelectric hybrids can be attached to the cover panel. Specifically before soldering, in the n-type thermoelectric device The solder layer is fabricated on the cold-end electrode, and the copper-on-ceramic board of the tin is soldered. Example 2: Compared with the example, ^, the only difference is that the embodiment of the thermoelectric material is omitted at the cold end. The steps of placing the layer, the bonding layer, and the electrode are placed. Therefore, the description of those steps in the phase sequence of the embodiment i is omitted in the following description. ^ According to the embodiment 2, in the embodiment! In the process of feeding, after the wire is installed, it is also possible to prevent the bank from being blocked again, and to strengthen the knot. There is no two-terminal electrode and two n-type components Ο ' For the obtained n without the cold-end electrode, weld it. Before the _ recording board, select the strong bonding layer and the solder layer on the cold end, and then scream with the copper, __ ion spray method ^^ drought degree _ micron; the above enhanced combination: = genus N;, method It can be plasma spray, flame spray S plating, and the thickness of the upper scale is l〇G-5(X) micro The rice manufacturing method is a immersion tin or an electric mine. '& method can be 201133965. The salient features are: thermoelectric material electricity = 1 ^ electricity _ combined at the same time, to avoid the current technology, lack of heat and electricity reading ___ π-Human heating, Kaobao, it will be apparent to those skilled in the art that various modifications and changes can be made to the above-described exemplary embodiments of the present invention, and modifications of the present invention are possible within the scope of the present invention. [Brief Description of the Drawings] ift: provides an understanding of the present invention, which is incorporated and constitutes a part of the present disclosure. The accompanying drawings illustrate embodiments of the present invention and The effect of the invention is examined. Figures la-ld show the barrier layer being pretreated, the reinforcing bonding layer, the separator and the electrode, respectively. Figure 2 is a schematic illustration of a discharge plasma electrical device in accordance with one embodiment of the present invention. Figure 3a shows a schematic view of an n-type thermoelectric device before the separator is removed. Figure 3b shows a schematic of a single n-type thermoelectric device after removal of the separator. Figure 4 shows the temperature dependence of the electrode and (10)3 material. * Figures 5a-5c show a microscopic photograph taken by scanning electron microscopy (SEM) of a c〇Sb3/Ti/electrode bonded structure prior to heat aging, the towel of Fig. 5a being a joint of c〇Sb3/ Τι/Μο Structure, Figure 5b walks (1) such as / butyl 7 "3 ❶ joint structure, Fig. & is CoSba / Ti / MosDCusti joint structure. 16 201133965 Figure 6a-6b shows CoSb3 / Ti / Mo-Cu joint after thermal test A micrograph of the structure was taken by a scanning electron microscope (SEM), in which Fig. 6a is a CoSb3/Ti/M〇7〇Cu3〇 joint structure. Fig. 6b *CoSb3/Ti/M〇5〇Cu5〇 joint structure. DESCRIPTION OF SYMBOLS] Barrier layer 1; Reinforcement bonding layer 2; Separator 3; Electrode 4; Pretreatment step 5; Upper indenter 21; Lower indenter 22; Electrode 41; Electrode 42.

Claims (1)

201133965 七、申请專利範圍 :^器件的方法,該方法包括以下步驟. Φ成具有頂表面的第—電極; 在所述第-電極的頂表面上沉積第—中間層材料. ==述第一中間層材料的第二頂表面上 /積第一熱電材料的粉末,以形成疊加層. 第n獅㈣卿—㈣:_材_成第-和 =熱電耕,將所述第—電極電連接到所述第一和第二 ‘,,、電元件,並形成一整體元件;以及 =斤述整體树中絲所述分隔層以形成所述熱電 =請:利,丨項所述的方法,其特徵在於所述熱電 益件在一模具中形成 3南如申請專利細第丨項所義方法,其特徵在於還包括預 处理所述第-雜n間層材料和分隔層中的至少一 個,所述預處理包括增加表面粗糖度和從暴露表面上去除 金屬氧化物。 4·如申請專利範圍第1項所述的方法,其特徵在於所述第一 電極包括一板或箔。 5.如申請專利範圍第1顧述的方法,其特徵在於所述第一 電極包括二元或三元金屬合金,或者複合材料,其至少包括 18 201133965 選自銅’銀,銘或金的第一金屬 錕,飢或鈦的第二金屬。 ,嫣’鍅’纽,鉻, 6第或Γ所述的方法,其特徵在於所述 人m屬 材料,選自具有通式心的 i2(重量%1)為〇SX$9Q;A包括選自翻,鶴,結,姐, ^ ’Γ 至少一種』包括選自銅,銀,銘或金中的 jE- j/ ~~ 〇 範圍第1項所述的方法,其特徵在於沉積所述 第中間層材料包括沉積粉末。 *間的::其特徵在_第-工藝。 嘴塗,火焰喷塗,電弧喷塗或電鍍 ::::=圍第1項所述的方法,其特—^ ==;圍第1所述的方法,其特徵在於所述第- 與所述第一電極接觸的增強結合層,以及 疊加於所述增強結合層上方的阻擒層。 Ϊ人如爲申^專利範圍9項所述的才法,其特徵在於所述增強 一層包括選自鎳,銀,鈦,_金屬或包括這些金屬 =或更多種的合金,且所述阻擋層包括鈦或銘或者這些 金屬的合金。 — 11.如申請專利範圍第1項所述的方法,其特徵在於 一熱電材料包括選自心%基;填姊/或_ ϋ 19 201133965 ;n-PbTe 基;摻雜 n-PbTe 基;n-zn4Sb3 基;摻雜 n-zmsb3 基中 之至少-種的η型熱電材料或其中至少—種成份為n型複合 熱電材料;以及 所述第二熱電材料包括選自P—C〇Sb3基;填充和/或摻雜 .Cc)Sb3 基;p_PbTe 基;摻雜 P-PbTe 基;p—Zn4Sb3 基;摻雜 p_ZmSb .基_至少-_?型熱電材料或以其中至少—種成份 複合熱電材料。 12. 如申請專利範圍第!項所述的方法,其特徵在於所述分 隔層包括氧化錯氟化链,氮化紹,氧化石夕,玻璃,石墨,銅,鐵 和不錄鋼中的一個或多個。 13. 如申請專利範圍第i項所述的方法,其概在於所述燒 結包括火花等離子體燒結。 H申請專利範圍第丨項所述的方法,其特徵在於所述燒 ^括施加2(H⑽pa _力如靴的燒結溫度加 在細:中嶋料上形成第 =·如申請專利範圍第15項所述的方法,其特徵在於還包括 处所述第二電極和所述第二中間層、 π如申請專概®第15 _義枝,其魏在於所述第 20 201133965 一電極包括一板或箔。 18·如申請專利範圍第15項所述的方法,其特徵在於所述第 二電極包括二元或三元金屬合金,或者複合材料,其至少包 括選自銅,銀,鋁或金的第一金屬和選自銦,鎢,錯,钽,鉻, 鈮,釩或鈦的第二金屬。 19.如申請專概圍第15項所述的方法,其特徵在於所述第 二電極的金屬合錢複合材料,選自具有通式的合 金’其中X(重量%1)為齡包括選自錮,鎮,錯,口组,鉻 ,錕,飢或鈦中的至少一種,B包括選自銅,銀,|g或金中的至 ^ 種。 20. 如申^專利範圍第15項所述的方法,其特徵在於沉積所 述第一中間層材料包括沉積粉末。 21. 如第15項所述的方法,其特徵在於沉積所 ==層材料包括等離子體喷塗,火峨,電弧喷塗 151 讓的方法,其特徵在於所述第 ,成於所述第—和第二熱電秘上的阻播層;以及 /、所述ΠΜ#層接_增強結合層。 如申請專利範圍第15項所述 極的熱膨脹係_變化小於⑽。 ’,、、電轉和電 利範圍第1項所述的方法,其特徵在於 電極包括多個第一電極元件;以及 述第—電極包括多個第二電極元件, 201133965 替元件通過所述熱電元件交 類型的:峨元峨物 的個端部並電連接到所述第二電極的 丰疋 部,同時不同摻雜類型的另—埶 I極二件的一個端 一電極的所_電元件的另讀贿連制所述第 極的另-電極树的-個並電連接到所述第二電 25. —種熱電器件,其特徵在於包括: 第一電極; 二熱電元件,各自與所述第-電極電接觸;以及 件中間層’設置於所述第—電極及所述第-和第二轨電元 並與它們接合,其中所述第_電極包括二元或三元 第複合材料,其至少包括選自銅銀,銘或金的 26 自銷,鶴,錯,麵,絡,銳,叙或鈦的第二金屬。 所述的熱電器件,其特徵在二 ^金,其中x(重则為包括 中的至少—種,B包括選自銅,銀,心’ 广述的熱電器件,其特徵在於所 中之至少-種的„型熱電材斗基 合熱電材料;以及 姑中至夕種成份為η型複 22 201133965 所述第二熱電材料包括選自p_coSb3基;填充和/或換 CoSb 基;p-PbTe 基;摻雜 p_PbTe 基;p_ZmSb3 基;換雜= 基中至少-種的p型熱電材料或以其中至少—種成份型’ 複合熱電材料。 28.如申請專利25所述的熱電时,其特徵在於還 第-中間層,形成於所述第一和第二熱電元件的各 表面上方;以及 第二電極,形成於每個第二中間層上方。 29. 如申請專利範圍28所述的熱電器件,其特徵在於 二電極包括二域三元金屬合金,或者複合材料,其至少勺 括選自銅,銀,喊金的第一金屬和選自翻,鎮,錄,纽, 銳,飢或鈦的第二金屬。 ’ 30. 如申請專利範圍28所述的熱電器件,其特徵在於所述 二電極包括金屬合金或複合材料,選自具有通式ΑκΒι_χ的 ίt其中Χ(重量%1)為0把9〇;Α包括選自銦,鶴,錯,纽 至小^或鈦中的至少一種,β包括選自銅銀,紹或金中的 23201133965 VII. Patent application scope: The method of device, the method comprises the following steps: Φ into a first electrode having a top surface; depositing a first intermediate layer material on a top surface of the first electrode. a powder of the first thermoelectric material is formed on the second top surface of the intermediate layer material to form a superposed layer. The nth lion (four) qing - (four): _ material _ into the first - and = thermoelectric tillage, the first electrode is electrically connected To the first and second ',, electrical components, and to form an integral component; and = the core of the overall tree in the separation layer to form the thermoelectric = please: the method described, The method is characterized in that the thermoelectric benefit piece is formed in a mold according to the method of claim 3, which further comprises pre-treating at least one of the first-hetero-n-layer material and the separation layer. The pretreatment includes increasing surface roughness and removing metal oxides from the exposed surface. 4. The method of claim 1, wherein the first electrode comprises a plate or foil. 5. The method of claim 1, wherein the first electrode comprises a binary or ternary metal alloy, or a composite material comprising at least 18 201133965 selected from the group consisting of copper 'silver, Ming or gold. A metal, hunger or titanium second metal. , 嫣 '鍅' New Zealand, chrome, 6 or Γ, characterized in that the human m genus material is selected from i2 (% by weight) having a general formula of 〇SX$9Q; A includes Self-turning, crane, knot, sister, ^ 'Γ at least one type, including the method described in item 1 of the range JE-j/~~ 铜, which is selected from the group consisting of copper, silver, ming or gold, characterized in that the said The interlayer material includes a deposited powder. *Between:: Its characteristics are in the _th-process. Mouth coating, flame spraying, arc spraying or electroplating::::= The method described in the first item, which is characterized by -^ ==; the method of the first aspect, characterized in that the first and the An enhanced bonding layer contacting the first electrode, and a barrier layer superposed on the reinforcing bonding layer. The method of claim 9, wherein the reinforcing layer comprises an alloy selected from the group consisting of nickel, silver, titanium, metal, or an alloy including the metal= or more, and the blocking The layers include titanium or ingot or alloys of these metals. 11. The method of claim 1, wherein a thermoelectric material comprises a core selected from the group consisting of a core; a filling/or _ ϋ 19 201133965; an n-PbTe group; a doped n-PbTe group; a -zn4Sb3 group; at least one of the n-zmsb3 group-doped n-type thermoelectric materials or at least one of the components is an n-type composite thermoelectric material; and the second thermoelectric material comprises a P-C〇Sb3 group; Filled and/or doped with .Cc)Sb3 group; p_PbTe group; doped P-PbTe group; p-Zn4Sb3 group; doped p_ZmSb. group_at least-_? type thermoelectric material or composite thermoelectric material with at least one of them . 12. If you apply for a patent scope! The method of the invention, characterized in that the partition layer comprises one or more of oxidized fluorinated chains, nitriding, oxidized stone, glass, graphite, copper, iron and unrecorded steel. 13. The method of claim i, wherein the sintering comprises spark plasma sintering. The method of claim 2, wherein the method comprises applying 2 (H(10)pa _ force such as the sintering temperature of the shoe to the fine: the middle of the material to form the first=· as claimed in claim 15 The method further characterized by further comprising: said second electrode and said second intermediate layer, π as claimed in the application of the 15th _ a branch, which is in the said 20201133965 an electrode comprising a plate or foil. The method of claim 15, wherein the second electrode comprises a binary or ternary metal alloy, or a composite material comprising at least a first selected from the group consisting of copper, silver, aluminum or gold. a metal and a second metal selected from the group consisting of indium, tungsten, erbium, niobium, chromium, niobium, vanadium or titanium. The method of claim 15, wherein the second electrode is metal-bonded. The money composite material is selected from the group consisting of alloys having the general formula 'where X (% by weight) is aged, including at least one selected from the group consisting of bismuth, town, erroneous, oral group, chromium, cerium, hunger or titanium, and B includes copper selected from the group consisting of copper , silver, |g or gold to the ^ species. 20. If the application of patent scope 15 The method of depositing the first intermediate layer material comprises depositing a powder. 21. The method of item 15, wherein the depositing == layer material comprises plasma spraying, fire blasting, arc spraying a method of 151, characterized in that said first, a blocking layer formed on said first and second thermoelectric secrets; and/or said ΠΜ# 接接_reinforced bonding layer. The method of the thermal expansion of the pole is less than (10). The method of claim 1, wherein the electrode comprises a plurality of first electrode elements; and wherein the first electrode comprises a plurality of second Electrode element, 201133965, through which the element is of the type of the thermoelectric element: one end of the element of the element and is electrically connected to the abundance of the second electrode, and two pieces of the other doping type The other end of the electrode is electrically connected to the second electrode of the second electrode. The thermoelectric device is characterized by: One electrode; two thermoelectric elements, each Electrically contacting the first electrode; and an intermediate layer ' disposed on and coupled to the first electrode and the first and second rail cells, wherein the first electrode includes a binary or ternary a composite material comprising at least a second metal selected from the group consisting of copper silver, Ming or gold, self-selling, crane, wrong, surface, complex, sharp, or titanium. The thermoelectric device is characterized by two gold, Wherein x (respect is at least one of the inclusions, B comprises a thermoelectric device selected from the group consisting of copper, silver, and heart', characterized by at least one of the types of thermoelectric material-based thermoelectric materials; The composition of the genus is η-type complex 22 201133965 The second thermoelectric material comprises a base selected from the group consisting of p_coSb3; a filled and/or replaced CoSb group; a p-PbTe group; a doped p_PbTe group; a p_ZmSb3 group; At least one type of p-type thermoelectric material or at least one of the constituent 'composite thermoelectric materials. 28. The thermoelectric according to claim 25, wherein a first-intermediate layer is formed over each surface of the first and second thermoelectric elements; and a second electrode is formed in each of the second intermediate layers Above. 29. The thermoelectric device according to claim 28, wherein the two electrodes comprise a two-domain ternary metal alloy, or a composite material, which at least includes a first metal selected from the group consisting of copper, silver, and gold, and is selected from the group consisting of , town, record, New, sharp, hungry or titanium second metal. 30. The thermoelectric device according to claim 28, wherein the two electrodes comprise a metal alloy or a composite material selected from the group consisting of ΑκΒι_χ, wherein Χ (% by weight) is 0 〇 9 〇; Including at least one selected from the group consisting of indium, crane, fault, nucleus, or titanium, and β includes 23 selected from copper, silver, or gold.
TW99108991A 2010-03-25 2010-03-25 Thermoelectric device, electrode materials and method for fabricating thereof TW201133965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99108991A TW201133965A (en) 2010-03-25 2010-03-25 Thermoelectric device, electrode materials and method for fabricating thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99108991A TW201133965A (en) 2010-03-25 2010-03-25 Thermoelectric device, electrode materials and method for fabricating thereof

Publications (1)

Publication Number Publication Date
TW201133965A true TW201133965A (en) 2011-10-01

Family

ID=46751325

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99108991A TW201133965A (en) 2010-03-25 2010-03-25 Thermoelectric device, electrode materials and method for fabricating thereof

Country Status (1)

Country Link
TW (1) TW201133965A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI607588B (en) * 2014-11-05 2017-12-01 創新Iq有限責任公司 Thermoelectric device
US11380832B2 (en) 2017-06-29 2022-07-05 Mitsubishi Materials Corporation Thermoelectric conversion module and method for producing thermoelectric conversion module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI607588B (en) * 2014-11-05 2017-12-01 創新Iq有限責任公司 Thermoelectric device
US11380832B2 (en) 2017-06-29 2022-07-05 Mitsubishi Materials Corporation Thermoelectric conversion module and method for producing thermoelectric conversion module

Similar Documents

Publication Publication Date Title
CN101447548B (en) Manufacturing method of thermo-electric device
US9012760B2 (en) Thermoelectric device, electrode materials and method for fabricating thereof
JP5212937B2 (en) Thermoelectric conversion element, thermoelectric module including the thermoelectric conversion element, and method for manufacturing thermoelectric conversion element
JP7437805B2 (en) Method for manufacturing thermoelectric conversion element, thermoelectric conversion element, and thermoelectric conversion module
JP5386239B2 (en) Thermoelectric conversion module
CN100583478C (en) Pi type CoSb3 based thermoelectric converting device and method for producing the same
KR20170102300A (en) Electrical and thermal contacts for bulk tetra headlight materials and methods for making the same
US20150311419A1 (en) Mg-Si SYSTEM THERMOELECTRIC CONVERSION MATERIAL, METHOD FOR PRODUCING SAME, SINTERED BODY FOR THERMOELECTRIC CONVERSION, THERMOELECTRIC CONVERSION ELEMENT, AND THERMOELECTRIC CONVERSION MODULE
NO20141357A1 (en) Process for Pre-Processing Semiconducting Thermoelectric Materials for Metallization, Interconnection and Bonding
TW201101512A (en) Semiconductor device and manufacturing method thereof
CN107146650A (en) A kind of Ag MXene contact materials and preparation method and purposes
TW201133965A (en) Thermoelectric device, electrode materials and method for fabricating thereof
JP2020510990A (en) Thermoelectric module
TW201234688A (en) Thermoelectric conversion element and thermoelectric conversion module
CN105252217B (en) A kind of preparation method of tungsten-copper alloy/stainless steel integral material
JPH07202274A (en) Thermoelectric device and its manufacture
Chen et al. Design of diffusion barrier and buffer layers for β-Zn4Sb3 mid-temperature thermoelectric modules
CN103746070B (en) A kind of preparation method of annular-structure thermo-electric device
CN106252500B (en) A kind of cobalt antimonides-based thermal electrical part and preparation method thereof
CN207529976U (en) Thermo-electric device and its electrode
KR102198279B1 (en) Metalizing structure for skutterudite thermoelectric material including ito layer
JP4584034B2 (en) Thermoelectric module
JPH11229057A (en) Laminated composite material and its production
CN205542755U (en) Highly reliable power device eutectic silicon back metallization structure
WO2024122324A1 (en) Thermoelectric conversion element, thermoelectric conversion module, thermoelectric conversion system, electric power generation method, and method for producing thermoelectric conversion element