TW201133713A - Gas sensor manufacturing method and structure thereof (1) - Google Patents

Gas sensor manufacturing method and structure thereof (1) Download PDF

Info

Publication number
TW201133713A
TW201133713A TW99108733A TW99108733A TW201133713A TW 201133713 A TW201133713 A TW 201133713A TW 99108733 A TW99108733 A TW 99108733A TW 99108733 A TW99108733 A TW 99108733A TW 201133713 A TW201133713 A TW 201133713A
Authority
TW
Taiwan
Prior art keywords
sulfide
gas
gas sensor
positive
substrate
Prior art date
Application number
TW99108733A
Other languages
Chinese (zh)
Other versions
TWI433270B (en
Inventor
ren-bin Shi
Ya-Ting Lin
Original Assignee
Univ Feng Chia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Feng Chia filed Critical Univ Feng Chia
Priority to TW99108733A priority Critical patent/TWI433270B/en
Publication of TW201133713A publication Critical patent/TW201133713A/en
Application granted granted Critical
Publication of TWI433270B publication Critical patent/TWI433270B/en

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

Disclosed is a gas sensor manufacturing method and the structure thereof (1), which mainly grows a gas sensing unit on a substrate, where the gas sensing unit includes a plurality of nano-lines of oxide or sulfide, a positive conductive electrode and a negative conductive electrode. The positive and negative conductive electrodes are grown above or under the nano-lines of oxide or sulfide; meanwhile, through the nano-lines of oxide or sulfide connecting with nano-particles, the surface area for gas reaction and the gas adsorptive ability are effectively enhanced. Therefore the gas sensor has the advantages of increasing the gas sensing sensitivity and decreasing reaction time.

Description

201133713 六、發明說明: 【發明所屬之技術領域】 法與ίίΓ轉氣體制11有關,特職指—魏誠測11之製造方 【先前技術】 改^^在半_面的氣體的吸附反應 改交载子流夏,即利用電阻變化作為檢測201133713 VI. Description of the invention: [Technical field to which the invention belongs] The law is related to the ίίΓ gas system 11, and the special job refers to the manufacturer of Wei Cheng test 11 [prior art] Change the adsorption reaction of the gas in the half-face Carrying sub-stream summer, that is, using resistance change as detection

==環,害氣體等檢測如功、汽機車排放ς氣等檢驗,但S m %感顧生能惡化,穩定度變差,靈敏度下降,壽命 、因5二ΓΓ 桃τ及時躺氣體,還有—定的瓶頸需待克服, 有極胃_表面積’可大大提高對氣體感測的反應表 只庙*右力入奈米粒子’更可提高氣體感測材料對氣體之敏感度及 反應㈣,然而目前在學術研究上大多利用奈米碳管(cnt)作場 曰曰體型氣體_n,但其步雜雜、成本昂貴及恢辦間較慢, 目前仍非常戦奈米找體感職,如,f知氣 以改善之空間。 【發明内容】 本發明主要目的係在提供一種氣體感測器之製造方法與其結構 L )’使可有效提滅體反絲面積及氣體魏能力,且使其具有提 高氣體感測之敏感度及減少反應時間之優點。 本發明氣體制n之製造方法,其主要係於—基板上成長一氣體 感測單元,且該氣體感測私係包含有多數個奈米線、—正導電· 及負導電電極,而該等奈米線與該正、負導電電極係相連接,藉此, 以整體形成該氣體感測器。 201133713 單元之結構,其主要係於-基板上設有-氣體感測 #莫㈣Γ讀感測早70係包含有多數個奈米線、—正導電電極及一 極,而該等奈米線係與該正、負導電電極相連接。 藉此,更可藉由該等奈米線結合奈米粒子, 附能力,且使其具有提高氣體感測之敏感二‘ 【實施方式】 塊圖先參閱第i所示,為本發明第—實施例之製造流程方 轉_係包含有—奈树塗佈步驟& —微影曝光步驟S2、一 導電電極沉積步驟S3。 請同時參Μ二及第三圖所示,而執行上述步驟之詳細過程 所迷· 枝先提供基板1〇,而當該基板10之電阻低於100 ΜΩ時, 上長成一絕緣層20,且該基板10之材質係可為硬質材 =或軟質材料’該硬質材·包含切(Si)、氧蝴雜)以及玻璃 (Glass)’而該軟質材料則係包含有薄塑膠片、金屬薄片以及可彎曲之 =,於本發明實施例中該基板1〇之材質係為石夕⑸),而該絕緣層之 材質則係為二氧化石夕(Si〇2),同時,再於該絕緣層2〇上長成一氣體感 測單元30 ’且該氣體感測單元3〇係包含有多數個奈米線j、一正^ 電電,32及-負導電電極33(如第七圖所示),而於本發明實施例中成 長該氣體_單元3G之方法係先於該絕緣層2()上 3卜而該等奈米線31表關側上係結合吸附有多數個奈綠子4〇, 又,於本發明較佳實施例中’該奈米線31可為氧化物奈米線或硫化物 奈米線,其中,該氧化物奈米線係可由一或兩個金屬元素結合氧元素 所t成且該金屬元素係選自於鋅(Zn)、錫(sn)'銦(ιη)'鐵扣)、始(c〇)、 錄(Ni)、銅(Cu)、鎵(Ga)、銻(Sb)、錳_、鈦(Ti)、銀(Ag)、鎢(w)⑶ 4 201133713 釩(V)、鉍(Bi)、矽(Si)、硼(B)、磷(P)或鋁(A1)所構成材料組群中之至 少一種材料,而該氧化物奈米線之種類亦可選自於氧化銦(Iri2〇3、== ring, harmful gas detection, such as work, steam locomotive emissions, etc., but S m % feels worse, the stability is worse, the sensitivity is reduced, the life, due to 5 ΓΓ peach τ, lying in time, still There is a certain bottleneck to be overcome, there is a very stomach _ surface area can greatly improve the response to gas sensing. Only the temple * right force into the nanoparticle' can improve the sensitivity and reaction of the gas sensing material to the gas (4) However, in the current academic research, most of the carbon nanotubes (cnt) are used as the field gas _n, but the steps are complicated, the cost is high, and the recovery is slow. Currently, it is still very good for looking for a body. For example, f knows the gas to improve the space. SUMMARY OF THE INVENTION The main object of the present invention is to provide a method for manufacturing a gas sensor and a structure thereof, which can effectively improve the body anti-wire area and gas power, and have the sensitivity of improving gas sensing and Reduce the advantages of reaction time. The manufacturing method of the gas system of the present invention mainly comprises: growing a gas sensing unit on the substrate, and the gas sensing private system comprises a plurality of nanowires, a positive conductive electrode and a negative conductive electrode, and the like The nanowire is connected to the positive and negative conductive electrode systems, whereby the gas sensor is integrally formed. 201133713 The structure of the unit, which is mainly provided on the substrate - gas sensing #莫(四) reading and sensing, the early 70 series contains a plurality of nanowires, a positive conductive electrode and a pole, and the nanowires Connected to the positive and negative conductive electrodes. Thereby, the nano-particles can be combined with the nano-particles, and the ability is added, and the sensitivity of the gas sensing is improved. [Embodiment] The block diagram is first shown in the first embodiment, which is the first embodiment of the present invention. The manufacturing process of the embodiment includes a step of coating a navel coating & a lithography exposure step S2 and a step of depositing a conductive electrode S3. Please refer to the second and third figures at the same time, and the detailed process of performing the above steps first provides the substrate 1 〇, and when the resistance of the substrate 10 is less than 100 Μ Ω, the upper layer is formed into an insulating layer 20, and The material of the substrate 10 may be a hard material = or a soft material 'the hard material · including cut (Si), oxygen oxide) and glass (Glass) and the soft material contains a thin plastic sheet, a metal foil, and Bendable =, in the embodiment of the present invention, the material of the substrate 1 is Shi Xi (5)), and the material of the insulating layer is SiO 2 (Si〇2), and at the same time, the insulating layer 2, the gas sensing unit 30' is grown, and the gas sensing unit 3 includes a plurality of nanowires j, a positive electric current, 32 and a negative conductive electrode 33 (as shown in the seventh figure). In the embodiment of the present invention, the method of growing the gas_unit 3G is preceded by the insulating layer 2(), and the nanowires 31 are attached to the surface of the nanowire 31 to adsorb a plurality of nano-greens. Moreover, in the preferred embodiment of the present invention, the nanowire 31 may be an oxide nanowire or a sulfide nanowire, wherein the oxidation The nanowire system may be formed by one or two metal elements combined with an oxygen element selected from the group consisting of zinc (Zn), tin (sn) 'indium (ιη) 'iron buckle), and beginning (c〇). (Ni), copper (Cu), gallium (Ga), antimony (Sb), manganese _, titanium (Ti), silver (Ag), tungsten (w) (3) 4 201133713 vanadium (V), bismuth (Bi) At least one material selected from the group consisting of bismuth (Si), boron (B), phosphorus (P) or aluminum (A1), and the type of the oxide nanowire may also be selected from indium oxide (Iri2〇) 3,

InO)、氧化錫(Sn02、SnO)、氧化辞(ZnO)、氧化鈷(C〇304、Co2〇3、CoO)、 氧化鐵(Fe304、Fe203、FeO)、氧化鎳(NiO)' 氧化銅(Qj2〇、CuO)、氧 化鐘(Mn304、Mn2〇3、Mn〇2、MnO)、氧化鈦(Ti203、Ti02、TiO)、氧 化鎢(W03、W02)、氧化釩(V205、V203、V〇2、VO)、氧化矽(Si〇2、 SiO)、氧化銦錫(ITO)、氧化銦鋅(IZO)、氧化鋁鋅(AZO)及氧化鋅錫(ZT0) 所組成之組群其中之一,另,該硫化物奈米線係可由一或兩個金屬元 φ素沉積結合硫元素所形成,且該金屬元素係選自於鋅(Zn)、鉻(Cd)、錫 (Sn)、銦⑽、鐵(Fe)、鈷(Co)、鎳(Ni)、銅(cu)、鈦(Ti)、銀(Ag)、鋁(A1)、 M(Bi)、矽(Si)、錳(Μη)、鎢(W)、釩(V)以及鉛(Pb)所構成材料組群中 之至少一種材料’同時,該硫元素係選自於硫化物、硫片(Sulfide,s)、 硫化虱(Hydrogen Sulfide ’ H2S)、硫代硫酸鈉(Sodium thiosulfate, Na^O3. 5ΗζΟ)、硫化納(Sodium sulfide,Na2S)以及硫尿(Thidiazuron) 所組成之組群其中之一,而該硫化物奈米秦之種類亦可選自於硫化銦 你而、InS)、硫化錫(SnS2、SnS)、硫化鋅(ZnS)、硫化始(CoS2、CoS)、 鲁硫化鐵(FeS2、FeS)、硫化鎳(NiS2、NiS)、硫化鈦(TiS2)、硫化鉛(PbS)、 硫化銀(BiA)、硫化石夕(SiSJ、硫化猛(MnS)、硫化鎢(WS2)、硫化飢(V2S3) 及硫化銅(CuzS、CuS)其中之一;該奈米粒子4〇之種類係選自於鈀 (Pd)、鉑(Pt)、金(Au)、銀(Ag)其中之一。 請再同時參閱第四及第五圖所示,係於該等奈米線31上成長一光 阻層50,且再藉由一光罩60進行微影曝光,並經顯影及硬烤以形成 留下一部分光阻層51,而相對於該部份光阻層51兩側則係形成二鏤 空空間52。 再請同時參閱第六及第七圖所示,係於該等鏤空空間52上對應成 長該正、負導電電極32、33,且再將該部份光阻層51舉離,而使 5 201133713 等奈米線31上可形成二間隔設置之正、A導電输32、33,同時, 該正、負導電電極32、33上更分別連接—導線7G,並可分別供正負 電連接,另,該正、負導雷雷搞审·丨 、 鑛或雜録形成電極2、33更可_林_鍍、電 再1時,閱第八圖所示,本實施例於上述第一實施例大體皆 為相同,而,、主要差異處係在於,該正、負導電電極幻、%係為指叉 式設置,且該正、負導電電極32、33係分別包含—連接段32i、331 及多數個由該連接段32卜331垂直延伸而出之延伸段322、332,同InO), tin oxide (Sn02, SnO), oxidized (ZnO), cobalt oxide (C〇304, Co2〇3, CoO), iron oxide (Fe304, Fe203, FeO), nickel oxide (NiO)' copper oxide ( Qj2〇, CuO), oxidation clock (Mn304, Mn2〇3, Mn〇2, MnO), titanium oxide (Ti203, TiO2, TiO), tungsten oxide (W03, W02), vanadium oxide (V205, V203, V〇2) , VO), yttrium oxide (Si〇2, SiO), indium tin oxide (ITO), indium zinc oxide (IZO), aluminum zinc oxide (AZO), and zinc tin oxide (ZT0). In addition, the sulfide nanowire system may be formed by depositing one or two metal elements, and the metal element is selected from the group consisting of zinc (Zn), chromium (Cd), tin (Sn), and indium (10). , iron (Fe), cobalt (Co), nickel (Ni), copper (cu), titanium (Ti), silver (Ag), aluminum (A1), M (Bi), bismuth (Si), manganese (Μη) At least one material selected from the group consisting of tungsten (W), vanadium (V), and lead (Pb). Meanwhile, the sulfur element is selected from the group consisting of sulfide, sulfur (Sulfide, s), and strontium sulfide (Hydrogen) Sulfide ' H2S), sodium thiosulfate (Na^O3. 5ΗζΟ), sodium sulfide (Na2S) and thiourea (Thidiazur) On) one of the group consisting of, and the type of the sulfide nano-Qinqin can also be selected from indium sulfide, InS), tin sulfide (SnS2, SnS), zinc sulfide (ZnS), and vulcanization start ( CoS2, CoS), iron sulfide (FeS2, FeS), nickel sulfide (NiS2, NiS), titanium sulfide (TiS2), lead sulfide (PbS), silver sulfide (BiA), sulfide sulfide (SiSJ, sulfur sulfide (MnS) , one of tungsten sulfide (WS2), sulfuric acid hunger (V2S3) and copper sulfide (CuzS, CuS); the type of the nanoparticle 4〇 is selected from palladium (Pd), platinum (Pt), gold (Au) And one of silver (Ag). Please refer to the fourth and fifth figures at the same time, the photoresist layer 50 is grown on the nanowires 31, and the lithography is performed by a mask 60. Exposure, development and hard baking to form a portion of the photoresist layer 51, and two hollow spaces 52 are formed on opposite sides of the portion of the photoresist layer 51. Please also refer to the sixth and seventh figures. The positive and negative conductive electrodes 32 and 33 are correspondingly grown on the hollow spaces 52, and the partial photoresist layer 51 is lifted off, so that the nano-line 31 such as 5 201133713 can be formed at two intervals. Positive, A conductive transmission 32, 33 At the same time, the positive and negative conductive electrodes 32, 33 are respectively connected to the wire 7G, and can be respectively connected to the positive and negative electrical connection. In addition, the positive and negative conductive lightning strikes the sputum, the ore or the magnetic recording electrode 2 33 is more _ Lin _ plating, electricity again, as shown in the eighth figure, this embodiment is generally the same in the first embodiment, and the main difference is that the positive and negative conductive electrodes % is a fork-type arrangement, and the positive and negative conductive electrodes 32, 33 respectively comprise a connecting section 32i, 331 and a plurality of extending sections 322, 332 extending perpendicularly from the connecting section 32 331,

時,該等延伸段322、332係為平行間隔設置,又,該正、負導電電極 32、33係以該等延伸段322、332相互交叉設置,另,該正、負導電 電極32、33分別於最外側之一延伸段322、332係具有較大的面積, 並可供分別連接設有一導線7〇。 凊同時配合參閱第九及第十圖所示,分別為本發明第一實施例結 合加熱感溫層之結構示意圖及另一結構示意圖;本發明第一實施例更 可成長結合有一加熱感溫層80,其一實施例,係將該加熱感溫層8〇 成長於該基板10相對該氣體感測單元3〇另側之表面上,另一實施例, 則係將該加熱感溫層80成長於該基板10及該氣體感測單元3〇間,而 於本發明實施例中該加熱感溫層80係位於該絕緣層20及該氣體感測 單元30間’同時,該加熱感溫層8〇係選自於纪(ρφ、鉑(pt)、多晶矽 (Poly-Silicon)、氧化釕(Ru〇2)、翻⑻-銀(Ag)合金、鎳㈣)_鉻(Cr)合金、 鐵(Fe)-鎳(Ni)合金、鐵(Fe)-絡(Cr)合金、鎳(Ni)-鉻(Cr)-鐵(Fe)合金及碳 化矽(SiC)等所構成材料組群中之其中一種材料,而該加熱感溫層80 係具有加熱及感測溫度之效用。 再請參閱第十一圖所示,為本發明第二實施例之製造流程方塊 圖’其步驟係包含有一微影曝光步驟S4、一導電電極沉積步驟S5、一 奈米線塗佈步驟S6。 6 201133713 -實二第:::所:,本發明第二實施例與上述第 之方法=====:長該紐娜元3〇 二-先軍6。進行微影曝光,並經顯影及硬“形成= 該部份光阻層51兩側則係形成二鏤空空間-: …專鏤工空間52上成長該正、負導電電極32、%,並將 光阻層51舉離,又,再於該正、負導電 0以乃 米線3!’爾綱31表面綠亦結 奸=奈 =連r電極32、33上係分別連接有該= 炎另’再,月參閱第十九圖所示,本實施例於上述第二實施例大體皆 ,相问,而其主要差異處係在於,該正、負導電電極32、33係為指叉 式设置,且該正、負導電電極32、33係分別包含一連接段2卜纽 及多數個由該連接段32卜331垂直延伸而出之延伸段322、332,同 時,該等延伸段3D、332係為平行間隔設置,又,該正 32、33係以該等延伸段322、332相互交又設置,另,該正、負導電 電極32、33分別菸最外側之一延伸段322、332係具有較大的面積, 並可供分別連接設有該導線7〇。 請同時配合參閲第二十圖及第二十一圖所示,分別為本發明第二 實施例結合加熱感溫層之結構示意圖及另一結構示意圖;本發明第二 實施例亦可成長結合有該加熱感溫層8〇,其一實施例,係將該加熱感 溫層80成長於該基板1〇相對該氣體感測單元3〇另側之表面上,另一 實施例,則係將該加熱感溫層80成長於該基板1〇及該氣體感測單元 30間,而於本發明第二實施例中該加熱感溫層8〇係更進一步係位於 該絕緣層20及該氣體感測單元30間,同時,該加熱感溫層8〇之材料 係與上述相同,故不加贅述。 m 7 201133713 請同時配合參閱第二十二圖所示,本發明第三實施例之成長方法 及步驟與上述第-實施㈣為相同,而其主要不同處係在於,當該基 板10之電阻高於1〇〇 ΜΩ時,係於錄板1〇上直接長成該氣體感測 單元30 ’其中’該氣體感測單元30之奈米線31係先塗佈於該基板1〇 上,並再於έ亥等奈米線31上成長該正、負導電電極32、幻,且該等 奈米線31表面周侧上係結合吸附有該等奈米粒子4〇,另,本發明第 二貝把例亦可成長結合有该加熱感溫層8〇,而該力口熱感溫屬8〇係分 別成長於該基板10下方或於該基板10及該氣體感測單元3〇間(如第 九及第十圖所示)。 清再同時配合參閱第二十三圖所示,本發明第四實施例之成長方 法及步驟與上述第二實施例皆為相同,而其主要不同處係在於,當該 基板10之電阻高於100 ΜΩ時,係於該基板1〇上直接長成該氣體感 測單元30,其中,該氣體感測單元3〇之正、負導電電極η、33係先 成長於該基板10上’並再於該正、負導電電極32、33上成長該等奈 米線31 ’且該等奈米線31表面周側上係結合吸附有該等奈米粒子4〇, 另,本發明第四實施例亦可成長結合有該加熱感溫層8〇,而該加熱感 /JDL層80係分別成長於該基板1〇下方或於該基板及該氣體感測單元 30間(如第二十及第二Η—圖所示)。 仍請參閱第七及第八圖所示,本發明氣體感測器之結構係包含有 一基板10 ’該基板10上設有一絕緣層20 ’該絕緣層20上再設有一氣 體感測單元30,而該氣體感測單元30係包含有多數個奈米線31、一 正導電電極32及一負導電電極33,該等奈米線31表面周側係結合吸 附有多數個奈米粒子40,且該正、負導電電極32、33係為間隔設置, 而於本發明第一實施例中該等奈米線31係位於該絕緣層2〇及該正、 負導電電極32、33間,同時,該正、負導電電極32、33更可為指叉 式設置’且該正、負導電電極32、33係包含一連接段321、331及多m 8 201133713 數個由該連接段321、331垂直延伸而出之延伸段322、332,同時, 該等延伸段322、332係為平行間隔設置’又,該正、負導電電極32、 33係以該等延伸段322、332相互交叉設置,另,該正、負導電電極 32、33分別於最外側之一延伸段322、332係具有較大的面積,並可 供分別連接設有一導線70。 另’再請同時參閱第十八及第十九圖所示,本發明第二實施例之 結構與上述第一實施例大體皆為相同,其主要差異係在於,該正、負 導電電極32、33係間隔設於該絕緣層20上,而該正、負導電電極32、The extensions 322 and 332 are disposed in parallel, and the positive and negative conductive electrodes 32 and 33 are disposed to intersect each other with the extensions 322 and 332. The positive and negative conductive electrodes 32 and 33 are disposed. One of the outermost extensions 322, 332 has a larger area, and is respectively provided with a wire 7〇.凊 凊 参阅 参阅 参阅 第九 第九 第九 第九 第九 第九 第九 第九 第九 第九 第九 第九 第九 第九 第九 第九 第九 第九 结合 结合 结合 结合 结合 结合 结合 结合 结合 结合 结合 结合 结合 结合 结合 结合 结合 结合 结合 结合 结合80. In one embodiment, the heating temperature sensing layer 8 is grown on the surface of the substrate 10 opposite to the gas sensing unit 3, and in another embodiment, the heating temperature sensing layer 80 is grown. Between the substrate 10 and the gas sensing unit 3, in the embodiment of the present invention, the heating temperature sensing layer 80 is located between the insulating layer 20 and the gas sensing unit 30. Meanwhile, the heating temperature sensing layer 8 The lanthanide is selected from the group consisting of Yu (ρφ, platinum (pt), poly-Silicon, ruthenium oxide (Ru〇2), turn (8)-silver (Ag) alloy, nickel (tetra))-chromium (Cr) alloy, iron ( Among the constituent materials of Fe)-nickel (Ni) alloy, iron (Fe)-column (Cr) alloy, nickel (Ni)-chromium (Cr)-iron (Fe) alloy and tantalum carbide (SiC) A material, and the heating temperature sensing layer 80 has the effect of heating and sensing temperature. Referring to FIG. 11 again, the manufacturing process block diagram of the second embodiment of the present invention includes a lithography exposure step S4, a conductive electrode deposition step S5, and a nanowire coating step S6. 6 201133713 - Real two::::: The second embodiment of the present invention and the above method =====: The long Nina yuan 3 〇 2 - Xianjun 6. Performing lithography exposure, and developing and hard "forming = forming a two-empty space on both sides of the portion of the photoresist layer 51 - ... the positive and negative conductive electrodes 32, % are grown on the dedicated work space 52, and The photoresist layer 51 is lifted off, and again, the positive and negative conductive 0 is the rice line 3! 'European 31 surface green is also raped = Nai = even r electrodes 32, 33 are respectively connected with the = inflammation 'Further, see the nineteenth figure, this embodiment is generally in the above second embodiment, and the main difference is that the positive and negative conductive electrodes 32, 33 are interdigitated. And the positive and negative conductive electrodes 32, 33 respectively comprise a connecting section 2 and a plurality of extending sections 322, 332 extending perpendicularly from the connecting section 32, and at the same time, the extending sections 3D, 332 In the parallel spacing, the positive 32, 33 are arranged to overlap each other with the extensions 322, 332. In addition, the positive and negative conductive electrodes 32, 33 are respectively the outermost extensions 322, 332 of the smoke. It has a large area and can be connected to the wire 7分别 separately. Please refer to the 20th and 21st drawings at the same time. FIG. 2 is a schematic structural view and another structural schematic diagram of a heating temperature sensing layer according to a second embodiment of the present invention; the second embodiment of the present invention may also be combined with the heating temperature sensing layer 8〇, and an embodiment thereof is the heating The temperature sensing layer 80 is grown on the surface of the substrate 1 opposite to the gas sensing unit 3, and in another embodiment, the heating temperature sensing layer 80 is grown on the substrate 1 and the gas sensing unit. 30, in the second embodiment of the present invention, the heating layer 8 is further located between the insulating layer 20 and the gas sensing unit 30, and the material layer of the heating layer 8 m 7 201133713 Please also refer to the twenty-second figure, the growth method and steps of the third embodiment of the present invention are the same as the above-mentioned first-fourth (four), and the main difference lies in When the resistance of the substrate 10 is higher than 1 〇〇ΜΩ, it is directly formed on the recording board 1 成 into the gas sensing unit 30 'where the nanowire 31 of the gas sensing unit 30 is first applied to The substrate is placed on the top of the substrate, and then formed on the nanowire 31 such as the έhai. The positive and negative conductive electrodes 32 are illusory, and the nanoparticles 4 are bonded to the peripheral surface of the nanowires 31, and the second shell of the present invention can also be grown and combined with the heating feeling. The temperature layer is 8 〇, and the thermal sensible temperature is 8 〇, which is respectively grown under the substrate 10 or between the substrate 10 and the gas sensing unit 3 (as shown in the ninth and tenth figures). Referring to the twenty-third figure, the growth method and the steps of the fourth embodiment of the present invention are the same as those of the second embodiment, and the main difference is that when the resistance of the substrate 10 is higher than 100. Μ Ω, the gas sensing unit 30 is directly grown on the substrate 1 , wherein the positive and negative conductive electrodes η and 33 of the gas sensing unit 3 are grown on the substrate 10 ′′ The nanowires 31' are grown on the positive and negative conductive electrodes 32, 33, and the nanoparticles 4 are bonded to the peripheral side of the surface of the nanowires 31, and the fourth embodiment of the present invention is also The heating temperature sensing layer 8 结合 can be grown, and the heating/JDL layer 80 is grown under the substrate 1 30 to the substrate and the gas-sensing unit (e.g., twenty-second and shown in FIG Η-). Still referring to the seventh and eighth embodiments, the structure of the gas sensor of the present invention comprises a substrate 10'. The substrate 10 is provided with an insulating layer 20'. The insulating layer 20 is further provided with a gas sensing unit 30. The gas sensing unit 30 includes a plurality of nanowires 31, a positive conductive electrode 32, and a negative conductive electrode 33. The peripheral sides of the nanowires 31 are bonded to adsorb a plurality of nano particles 40, and The positive and negative conductive electrodes 32 and 33 are disposed at intervals. In the first embodiment of the present invention, the nanowires 31 are located between the insulating layer 2 and the positive and negative conductive electrodes 32 and 33. The positive and negative conductive electrodes 32, 33 can be arranged in an interdigitated manner, and the positive and negative conductive electrodes 32, 33 comprise a connecting segment 321, 331 and a plurality of m 8 201133713. The plurality of connecting segments 321 and 331 are vertical. The extensions 322, 332 extend out, and at the same time, the extensions 322, 332 are arranged in parallel intervals. Further, the positive and negative conductive electrodes 32, 33 are arranged to cross each other with the extensions 322, 332. The positive and negative conductive electrodes 32, 33 are respectively extended at one of the outermost sides 322, 332 It has a large area and can be provided with a wire 70 for connection. In addition, as shown in the eighteenth and nineteenth aspects, the structure of the second embodiment of the present invention is substantially the same as that of the first embodiment described above, and the main difference is that the positive and negative conductive electrodes 32, 33 lines are disposed on the insulating layer 20, and the positive and negative conductive electrodes 32,

33上再设有該等金屬奈米線31,且該等金屬奈米線31表面周側亦結 合吸附有該等奈米粒子4〇。 請參閱第二十二及第二十三圖所示,本發明第三、第四實施例之 結構與上述第一、第二實施例大體皆為相同,其主要差異係在於,該 基板10上係直接成長該氣體感測單元3〇,其中,於第三實施例中係 於《玄基板10上先成長該等奈米線η,而該等奈米線μ表面周側係結 合吸附有該等奈米粒子4〇,且該等奈米線31上更成長有該正負導 電電極32、33,另,於第四實施例中係於該基板1〇上先成長該正、 負導電電極32、33,而在於該正、負導電電極32、33上塗佈有該等 奈米,31,且該等奈米線31表面周側亦吸附有該等奈米粒子4〇 ^ 茲,再將本發明之特徵及其可達成之預期功效陳述如下: 太米測器之製造方法與其結構係_該魏化或硫化物 ,τ〃、、 、、σσ吸附有該等奈米粒子,而使其可有效提高氣體反庫# 造 °l S 1 综上所述,本發__產品中實有其極佳 此類結構之技術“ 存在在先㈣’本發明實已具備發明專利要件爰依法提出申請 9 201133713 惟,以上所述者,僅係本發明之一較佳可行實施例而已,故舉凡 應用本發明說明書及申請專利範圍所為之等效結構變化,理應包含在 本發明之專利範圍内。 201133713 【圖式簡單說明】 第一圖為本發明第一實施例之製造流程方塊圖。 第二圖為本發明第一實施例成長絕緣層之結構示意圖。 第三圖為本發明第一實施例塗佈奈米線之結構示意圖。 第四圖為本發明第一實施例成長光阻層之結構示意圖。 第五圖為本發明第一實施例光阻層微影曝光之示意圖。 第六圖為本發明第一實施例成長導電電極之結構示意圖。 第蝴為本發明第-實施靖份細層舉離且導電電極連接導線之結 構示意圖。 、、'° 第八圖為本發明第一實施例導電電極之另一結構示意圖。 第九圖為本發明第—實施例結合加熱感溫層之結構示意圖。 =十圖為本發明第—實施例結合加熱感溫層之另_結構示意圖。 弟十一圖為本發明第二實施例之製造流程方塊圖。 第十二®為本發明第二實關成長絕緣層之結構示意圖。 ,十一圖為本發明第二實施例成長光阻層之結構示意圖。 第十四圖為本發明第二實關光阻層微影曝光之示^圖。 ^五圖為本發明第二實施例成長導電電極之結構^意圖。 ^=本發明第二實施例部份光阻層舉離之結構示意圖。 ® :、、本發明第二實關塗佈絲線之結構示意圖。 第==明第二實施例導電電極連接導電之結構示意圖。 第二實施例導電電極之另—結構示意圖。 第月第二實施例結合加熱感溫層之結構示意圖。 ϊ二十-】ίίΓ第二實施例結合加熱感溫層之另-結構示意圖。 =十一圖為本發明第三實施例之結構示意圖。 第二十三圖為本發明第四實施例之結構示意圖。 201133713 【主要元件符號說明】 si 奈米線塗佈步驟 52 微影曝光步驟 53 導電電極沉積步驟 54 微影曝光步驟 55 導電電極沉積步驟 56 奈米線塗佈步驟 10 基板 20 30 31 32 321 322 33 331 332 40 50 51 52 60 70 80Further, the metal nanowires 31 are provided on the surface of the metal nanowires 31, and the surface of the metal nanowires 31 is also bonded to the nanoparticle particles. Referring to the twenty-second and twenty-third figures, the structures of the third and fourth embodiments of the present invention are substantially the same as the first and second embodiments, and the main difference is that the substrate 10 is The gas sensing unit 3A is directly grown, wherein in the third embodiment, the nanowires η are first grown on the meta-substrate 10, and the nano-surfaces of the nano-surfaces are bonded to each other. The nanoparticles are 4〇, and the positive and negative conductive electrodes 32 and 33 are further grown on the nanowires 31. Further, in the fourth embodiment, the positive and negative conductive electrodes 32 are grown on the substrate 1〇. And 33, wherein the positive and negative conductive electrodes 32, 33 are coated with the nano-particles 31, and the nano-particles are also adsorbed on the surface side of the nanowires 31, and then The features of the present invention and the achievable expected efficacy thereof are as follows: The manufacturing method of the meter and its structural system _ the Wei or sulfide, τ〃, ,, σσ adsorbs the nano particles, thereby making Can effectively improve the gas anti-library #造°l S 1 In summary, the hair __ product has its excellent structure The technology "existing in the first (four)" The present invention already has the invention patent requirements, and the application is made according to law. 9 201133713 However, the above description is only one of the preferred embodiments of the present invention, so the application of the present specification and the patent application are applicable. The equivalent structural change of the scope is included in the patent of the present invention. 201133713 [Simplified description of the drawings] The first figure is a block diagram of the manufacturing flow of the first embodiment of the present invention. The second figure is the first embodiment of the present invention. FIG. 3 is a schematic structural view of a coated nanowire according to a first embodiment of the present invention. FIG. 4 is a schematic structural view of a growth photoresist layer according to a first embodiment of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 6 is a schematic view showing the structure of a growth conductive electrode according to a first embodiment of the present invention. The first embodiment of the present invention is a first embodiment of a fine layer lifted off and a conductive electrode connecting wire. FIG. 8 is a schematic view showing another structure of a conductive electrode according to a first embodiment of the present invention. The ninth embodiment is a combination of the first embodiment of the present invention. Schematic diagram of the structure of the thermal sensation layer. Fig. 10 is a schematic view showing the structure of the first embodiment of the present invention in combination with the heating sensible layer. The eleventh figure is a block diagram of the manufacturing process of the second embodiment of the present invention. FIG. 11 is a schematic structural view of a growth resist layer according to a second embodiment of the present invention. FIG. 14 is a schematic view showing the second actual photoresist layer of the present invention. ^图。 The five figures are the structure of the growth conductive electrode according to the second embodiment of the present invention. ^=The second embodiment of the present invention is a schematic diagram of the structure of the partial photoresist layer lifted off. ® :,, the second practical aspect of the present invention Schematic diagram of the structure of the coated wire. The structure of the second embodiment of the conductive electrode is connected to the conductive structure. The second embodiment of the second embodiment is combined with the structure of the heating temperature sensing layer. Ϊ20-] ίίΓ The second embodiment is combined with a further structural schematic of the heating temperature sensing layer. The eleventh diagram is a schematic structural view of a third embodiment of the present invention. A twenty-third figure is a schematic structural view of a fourth embodiment of the present invention. 201133713 [Main component symbol description] si nanowire coating step 52 lithography exposure step 53 conductive electrode deposition step 54 lithography exposure step 55 conductive electrode deposition step 56 nanowire coating step 10 substrate 20 30 31 32 321 322 33 331 332 40 50 51 52 60 70 80

絕緣層 氣體感測單元 奈米線 正導電電極 連接段 延伸段 負導電電極 連接段 延伸段 奈米粒子 光阻層 部分光阻層 鏤空空間 光罩 導線 加熱感溫層 l S1 12Insulation Gas Sensor Unit Nanowire Positive Conductive Electrode Connection Section Extension Section Negative Conduction Electrode Connection Section Extension Section Nanoparticle Photoresist Layer Partial Resistive Layer Hollow Space Photomask Wire Heating Temperature Sensing Layer l S1 12

Claims (1)

201133713 七 申請專利範圍: L 一種氣體感測器之製造方法,其主要係於—基板上成長一氣體 且該氣體感測單元係包含有多數個奈米線、-正導電電極 以整體形成該氣體感測^ 導㈣轉相連接,错此’ 」、依中請專利範圍第丨項所述之氣體感測器之製造方法,立中, ==阻係低於⑽恤,且該基板與該氣體感測單元間係成長 一 3、依申請專利細第2項所述之氣體感_之製造方法, 該軋體感咐元之奈錄係先__絕騎上 太、 上成長-光_,_,該光阻層係再藉由—鮮 麵影及硬烤以形成留下一部分光阻層,而相 二曝先並 空空間,又,再於該等鏤空空間上成長 極,且再將該部份光阻層舉離。 貝等电4 4、 依申請專利範圍第2項所述之氣體感測器之製造方法, ,亥絕緣層上絲成長-光阻層,且該光阻層係藉由_ %、 光,並經顯影及硬烤以戦留下—部分光阻層,而 曝 層兩側則係形成二鏤空空間,同時,再於料鏤空光阻 負導電電極,ϋ將該部份光阻層舉離,又,再於該正: 方塗佈該等奈米線。 貝導電電極上 5、 依申請專利範圍第2項所述之氣體 該絕緣層之材質係為二氧化梦(Si〇2)。 ° ,、中, 6、 依申請專利範圍第丨項所述之氣體感聰 該基板之電阻係高於100 ΜΩ,且該芙柘 法,其中, 元。 ° 糸直接成長該氣體感測單 依申請專利範圍第6項所述之氣體感·之製造方法,其中 7 13 201133713 該氣it制單元之奈米_先塗佈於該基板上, 成長-光阻層,同時,該光阻層係再藉由 ,二等不未線上 θϊ. β 无罩進订微影曝光,枋歸 ,影及硬烤以形成留下-部分光阻層,而相對於該部份光 則 係形成二鏤空空間,又,再於該等鏤空空間上成長該正 、 且再將該雜光阻層轉。 ' 8、依中請專利範圍第6項所述之氣體感測器之製造方法,其 該基板上係先成長-光阻層,麟触層係藉由—鮮進行微影曝 光’並經娜及硬烤以職訂-部分光阻層,耐目對於該部份光阻201133713 Seven patent application scope: L A method for manufacturing a gas sensor, mainly for growing a gas on a substrate, and the gas sensing unit comprises a plurality of nanowires, a positive conductive electrode to integrally form the gas Sense (4) phase-to-phase connection, the wrong way to manufacture the gas sensor according to the scope of the patent scope, the middle, == resistance is lower than (10), and the substrate and the The gas sensing unit is grown by a third. According to the manufacturing method of the gas sense described in the second paragraph of the patent application, the rolling body is the first to be taken on the __ , _, the photoresist layer is formed by a fresh shadow and hard baking to form a part of the photoresist layer, and the second exposure first space, and then grow on the hollow space, and then The partial photoresist layer is lifted off. Bell et al. 4 4, according to the manufacturing method of the gas sensor described in claim 2, the wire growth-resist layer on the insulating layer, and the photoresist layer is by _%, light, and After development and hard baking, a portion of the photoresist layer is left behind, and two open spaces are formed on both sides of the exposed layer, and at the same time, the negative conductive electrode is removed from the photoresist, and the portion of the photoresist layer is lifted off. Moreover, the nanowires are coated on the positive: square. On the conductive electrode of the shell 5. The gas according to item 2 of the patent application scope is made of the dioxide dioxide (Si〇2). ° , , , , 6, according to the scope of the patent application, the gas resistance of the substrate is higher than 100 Μ Ω, and the Fu 柘 method, where, yuan. ° 糸 Direct growth of the gas sensing method according to the method of manufacturing the gas sense according to item 6 of the patent application, wherein 7 13 201133713 The nanometer of the gas-based unit is first coated on the substrate, growing-light The resist layer, at the same time, the photoresist layer is further etched by the second-order θ ϊ. β without mask lithography exposure, 枋 ,, shadow and hard baked to form a residual-partial photoresist layer, The part of the light forms a two-empty space, and then the positive growth is performed on the hollow spaces, and the hetero-resistive layer is further rotated. 8. The method for manufacturing a gas sensor according to the sixth aspect of the patent, wherein the substrate is first grown-photoresist layer, and the lining layer is exposed by lithography and crystallization And hard-baked to order - part of the photoresist layer, for the part of the photoresist 層兩側則係形成二鏤空空間,同時,再於該等鏤空空間上成長該正、 負導電電極’並將該部份光阻層舉離,又,再於該正、負導電電極上 方塗佈該等奈米線。 、 9、 依申請專利範圍第1項所述之氣體感洌器之製造方法,其中, 該等奈米線表面更結合吸附有多數個奈米粒子。 10、 依申請專利範圍第9項所述之氣體感測器之製造方法,其中, 該奈米粒子之種類係選自独_、歸t)、金(Au)或銀(Ag)所構成材 料組群中之至少一種材料。 11、 依申請專利範圍第1項所述之氣體感測器之製造方法,其中, 該正、負¥電電極係為分離設置,且該正、負導電電極係分別連接有 一導線,並可分別供正負電連接。 12、 依申請專利範圍第i項所述之氣體感測器之製造方法,其中, 該基板之材質係為硬質材料。 13、 依申請專利範圍第12項所述之氣體感測器之製造方法,其 中’該基板係選自於(Si)、氧化紹(Al2〇3)以及玻璃(Glass)其中之一。 14、 依申請專利範圍第1項所述之氣體感測器之製造方法,其中, 該基板之材質係為軟質材料。 15、 依申請專利範圍第14項所述之氣體感測器之製造方法,其w 201133713 中’該基板係選自於薄塑膠片、金屬薄片以及可彎曲之板材其中之一。 16、 依申請專利範圍第1項所述之氣體感測器之製造方法,其中, 遠奈米線更可由至少—金屬元纽積結合氧元素以形成—氧化物奈米 線。 17、 依申請專利範圍第16項所述之氣體感測器之製造方法,其 中,該金屬元素係選自於鋅(Zn)、錫(sn)、銦(in)、鐵(Fe)、鈷(c〇)、鎳 (Ni)、銅(Cu)、鎵(Ga)、錄(Sb)、猛(Μη)、鈦(Ti)、銀(Ag)、鎢(W)、鈒 (V)、鉍(Bi)、矽(Si)、硼(B)、磷(P)或鋁(A1)所構成材料組群中之至少 一種材料。 18、 依申請專利範圍第16項所述之氣體感測器之製造方法,其 中’該氧化物奈米線之種類係選自於氧化銦(ΙΠ2〇3、In〇)、氧化錫 (Sn02、SnO)、氧化鋅(ZnO)、氧化鈷(Co304、Co203、CoO)、氧化鐵 (Fe304、Fe203、FeO)、氧化鎳(NiO)、氧化銅(Cu20、CuO)、氧化錳 (Mn304、Mn203、Mn02、MnO)、氧化鈦(Ti2〇3、Ti02、TiO)、氧化鎢 (wo3、W02)、氧化釩(V205、V203、vo2、VO)、氧化石夕(Si〇2、SiO)、 氧化銦錫(ITO)、氧化銦鋅(izo)、氧化紹鋅(AZO)及氧化鋅錫(ZT0)所 組成之組群其中之一。 19、 依申請專利範圍第1項所述之氣體感測器之製造方法,其中, 該奈米線更可由至少一金屬元素沉積結合硫元素以形成一硫化物奈米 線。 20、 依申請專利範圍第19項所述之氣體感測器之製造方法,其 中,該金屬元素係選自於辞(Zn)、鉻(Cd)、錫(Sn)、銦(in)、鐵(Fe)、銘 (Co)、鎳(Ni)、銅(Cu)、鈦(Ti)、銀(Ag)、鋁(A1)、鉍(Bi)、矽(Si)、錳(Μη)、 鎢(W)、釩(V)以及鉛(Pb)所構成材料組群中之至少一種材料。 21、 依申請專利範圍第19項所述之氣體感測器之製造方法,其 中,該硫元素係選自於硫化物、硫片(Sulfide,S)、硫化氫(Hydrogepu 15 201133713 Sulfide ’ H2S)、硫代硫酸鈉(Sodium thiosulfate,Na2S2〇3 . 5H20)、疏 化鈉(Sodium sulfide,Na2S)以及硫尿(Thidiazuron)所組成之組群其中之 ——ο 22、 依申請專利範圍第19項所述之氣體感測器之製造方法,其 中,該硫化物奈米線之種類係選自於硫化銦(In2S3、InS)、硫化錫(SnS2、 SnS)、硫化鋅(ZnS)、硫化鈷(CoS2、CoS)、硫化鐵(FeS2、FeS)、硫化 鎳(NiS2、NiS)、硫化鈦(TiS〗)、硫化鉛(PbS)、硫化絲(Bi2S3)、硫化石夕 (SiS2) '硫化錳(MnS)、硫化鎢(WS2)、硫化釩(V2S3)及硫化銅(Cu2S、 CuS)其中之一。 23、 依申請專利範圍第丨項所述之氣體感測器之製造方法,其中, 該基板於相對該氣體感測單元之另側係更成長有一加熱感溫層。 24、 依申請專利範圍第1項所述之氣體感測器之製造方法,其中, 该基板及該氣體感測單元間係更成長有一加熱感溫層。 25 種氣體感測器之結構,其主要係於一基板上設有一氣體感 /貝J單元,且该氣體感測單元係包含有多數個奈米線、一正導電電極及 一負導電電極,而該等奈米線係與該正、負導電電極相連接。 26、 依申請專利範圍第25項所述之氣體感測器之結構,其中,該 等奈米線表面係更設有多數個奈米粒子。 27、 依申請專利範圍第25項所述之氣體感測器之結構,其中,該 等奈米線係位於該基板及該正、負導電電極間。 * 28、依申請專利範圍第25項所述之氣體感測器之結構,其中,該 等奈米線係位於該正、負導電電極上,且對應位於該基板的另側。Λ 29、依申請專利範圍第25項所述之氣體感測器之結構,,哕 基板與該氣體感測單元間係設有一絕緣層。 " 正、第25項所述之氣體編之結構,其中,該 負導電電極係為刀離设置,而該正、負導電電極係分別包含有U 201133713 連接段及多數個由該連接段延伸而出之延伸段,又,該等 間隔設置,同時,該正、負導電電極係以該等延伸段相互交錯^置, 另,該正、負導電電極係分別於其中一延伸段上連接設有一 31、 依申請專利範圍第25項所述之氣體感測器之結構,其中,更 包含有一加熱感溫層,而該加熱感溫層係設於該基板上,且於相對兮 氣體感測單元之另側。 ^ 32、 依申請專利範圍第25項所述之氣體感測器之結構,其中,更 包含有一加熱感溫層,而該加熱感溫層係設於该基板及該氣體感測單 | 元間6Two hollow spaces are formed on both sides of the layer, and at the same time, the positive and negative conductive electrodes are grown on the hollow spaces, and the partial photoresist layer is lifted off, and then coated on the positive and negative conductive electrodes. Cloth the nanowires. 9. The method of manufacturing a gas sensor according to claim 1, wherein the surface of the nanowires is more bound to adsorb a plurality of nano particles. 10. The method of manufacturing a gas sensor according to claim 9, wherein the type of the nanoparticle is selected from the group consisting of a single material, a gold material (Au) or a silver (Ag) material. At least one material in the group. 11. The method of manufacturing a gas sensor according to claim 1, wherein the positive and negative electric electrodes are separately disposed, and the positive and negative conductive electrodes are respectively connected with a wire, and respectively For positive and negative connection. 12. The method of manufacturing a gas sensor according to claim i, wherein the material of the substrate is a hard material. The method of manufacturing a gas sensor according to claim 12, wherein the substrate is selected from the group consisting of (Si), oxidized (Al2〇3), and glass (Glass). 14. The method of manufacturing a gas sensor according to claim 1, wherein the material of the substrate is a soft material. 15. The method of manufacturing a gas sensor according to claim 14, wherein the substrate is selected from the group consisting of a thin plastic sheet, a metal foil, and a bendable sheet. The method of manufacturing a gas sensor according to claim 1, wherein the nanowire is further characterized by at least a metal element combined with oxygen to form an oxide nanowire. The method of manufacturing a gas sensor according to claim 16, wherein the metal element is selected from the group consisting of zinc (Zn), tin (sn), indium (in), iron (Fe), and cobalt. (c〇), nickel (Ni), copper (Cu), gallium (Ga), recorded (Sb), 猛 (Μη), titanium (Ti), silver (Ag), tungsten (W), 鈒 (V), At least one of a material group composed of bismuth (Bi), bismuth (Si), boron (B), phosphorus (P), or aluminum (A1). 18. The method of manufacturing a gas sensor according to claim 16, wherein the type of the oxide nanowire is selected from the group consisting of indium oxide (ΙΠ2〇3, In〇), tin oxide (Sn02, SnO), zinc oxide (ZnO), cobalt oxide (Co304, Co203, CoO), iron oxide (Fe304, Fe203, FeO), nickel oxide (NiO), copper oxide (Cu20, CuO), manganese oxide (Mn304, Mn203, MnO2, MnO), titanium oxide (Ti2〇3, TiO2, TiO), tungsten oxide (wo3, W02), vanadium oxide (V205, V203, vo2, VO), oxidized stone (Si〇2, SiO), indium oxide One of a group consisting of tin (ITO), indium zinc oxide (izo), zinc oxide (AZO), and zinc tin oxide (ZT0). The method of manufacturing a gas sensor according to claim 1, wherein the nanowire is further deposited by bonding at least one metal element to form a sulfide nanowire. 20. The method of manufacturing a gas sensor according to claim 19, wherein the metal element is selected from the group consisting of: (Zn), chromium (Cd), tin (Sn), indium (in), and iron. (Fe), Ming (Co), nickel (Ni), copper (Cu), titanium (Ti), silver (Ag), aluminum (A1), bismuth (Bi), bismuth (Si), manganese (Μη), tungsten At least one of the material groups of (W), vanadium (V), and lead (Pb). The method of manufacturing a gas sensor according to claim 19, wherein the sulfur element is selected from the group consisting of sulfide, sulfur (Sulfide, S), and hydrogen sulfide (Hydrogepu 15 201133713 Sulfide 'H2S) , sodium thiosulfate (Na2S2 〇 3. 5H20), sodium (Sodium sulfide, Na2S) and thiourea (Thidiazuron) group of them - ο 22, according to the scope of patent application No. 19 In the method for producing a gas sensor, the type of the sulfide nanowire is selected from the group consisting of indium sulfide (In2S3, InS), tin sulfide (SnS2, SnS), zinc sulfide (ZnS), and cobalt sulfide ( CoS2, CoS), iron sulfide (FeS2, FeS), nickel sulfide (NiS2, NiS), titanium sulfide (TiS), lead sulfide (PbS), sulfide (Bi2S3), sulfide (XS2) 'manganese sulfide ( One of MnS), tungsten sulfide (WS2), vanadium sulfide (V2S3), and copper sulfide (Cu2S, CuS). The method of manufacturing a gas sensor according to the invention of claim 2, wherein the substrate further has a heating temperature sensing layer on the other side of the gas sensing unit. The method of manufacturing a gas sensor according to claim 1, wherein the substrate and the gas sensing unit further have a heating temperature sensing layer. The structure of the 25 gas sensors is mainly provided with a gas sensing/shell J unit on a substrate, and the gas sensing unit comprises a plurality of nanowires, a positive conductive electrode and a negative conductive electrode. The nanowires are connected to the positive and negative conductive electrodes. 26. The structure of a gas sensor according to claim 25, wherein the surface of the nanowires is further provided with a plurality of nano particles. 27. The structure of a gas sensor according to claim 25, wherein the nanowires are located between the substrate and the positive and negative conductive electrodes. The structure of the gas sensor according to claim 25, wherein the nanowires are located on the positive and negative conductive electrodes and are located on the other side of the substrate. Λ 29. According to the structure of the gas sensor described in claim 25, an insulating layer is disposed between the substrate and the gas sensing unit. " The structure of the gas according to Item 25, wherein the negative conductive electrode is a knife-disconnecting arrangement, and the positive and negative conductive electrodes respectively comprise a U 201133713 connecting section and a plurality of extensions are extended by the connecting section And the extensions are further arranged at the same time. At the same time, the positive and negative conductive electrodes are interdigitated with each other, and the positive and negative conductive electrodes are respectively connected to one of the extensions. The structure of the gas sensor according to claim 25, further comprising a heating temperature sensing layer, wherein the heating temperature sensing layer is disposed on the substrate and is opposite to the helium gas sensing The other side of the unit. The structure of the gas sensor according to claim 25, further comprising a heating temperature sensing layer disposed between the substrate and the gas sensing unit | 6
TW99108733A 2010-03-24 2010-03-24 Gas sensor manufacturing method and its structure (a) TWI433270B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99108733A TWI433270B (en) 2010-03-24 2010-03-24 Gas sensor manufacturing method and its structure (a)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99108733A TWI433270B (en) 2010-03-24 2010-03-24 Gas sensor manufacturing method and its structure (a)

Publications (2)

Publication Number Publication Date
TW201133713A true TW201133713A (en) 2011-10-01
TWI433270B TWI433270B (en) 2014-04-01

Family

ID=46751289

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99108733A TWI433270B (en) 2010-03-24 2010-03-24 Gas sensor manufacturing method and its structure (a)

Country Status (1)

Country Link
TW (1) TWI433270B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI467168B (en) * 2012-12-24 2015-01-01 Nat Univ Tsing Hua Hybrid nanomaterial electrode and preparation thereof
TWI566409B (en) * 2014-08-26 2017-01-11 元太科技工業股份有限公司 Transistor and manufacturing method thereof
CN113466297A (en) * 2021-08-23 2021-10-01 安徽砺剑防务科技有限公司 Toxic gas detection sensing structure, sensor and application
TWI838806B (en) * 2022-08-01 2024-04-11 崑山科技大學 Manufacturing method of hydrogen sensor and use thereof for detecting complete combustion of hydrogen power generation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI706571B (en) * 2017-09-14 2020-10-01 財團法人國家實驗研究院 Miniature gas sensor structure
US10768135B2 (en) 2017-12-27 2020-09-08 Industrial Technology Research Institute Oxidizing gas detection method and apparatus thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI467168B (en) * 2012-12-24 2015-01-01 Nat Univ Tsing Hua Hybrid nanomaterial electrode and preparation thereof
TWI566409B (en) * 2014-08-26 2017-01-11 元太科技工業股份有限公司 Transistor and manufacturing method thereof
CN113466297A (en) * 2021-08-23 2021-10-01 安徽砺剑防务科技有限公司 Toxic gas detection sensing structure, sensor and application
CN113466297B (en) * 2021-08-23 2023-11-24 安徽砺剑防务科技有限公司 Toxic gas detection sensing structure, sensor and application
TWI838806B (en) * 2022-08-01 2024-04-11 崑山科技大學 Manufacturing method of hydrogen sensor and use thereof for detecting complete combustion of hydrogen power generation

Also Published As

Publication number Publication date
TWI433270B (en) 2014-04-01

Similar Documents

Publication Publication Date Title
TW201133713A (en) Gas sensor manufacturing method and structure thereof (1)
Seekaew et al. Ultrahigh selective room-temperature ammonia gas sensor based on tin–titanium dioxide/reduced graphene/carbon nanotube nanocomposites by the solvothermal method
CN104569061B (en) Metal-oxide semiconductor (MOS) gas sensor and preparation method thereof
Zhang et al. Gas sensors based on ytterbium ferrites nanocrystalline powders for detecting acetone with low concentrations
CN101467030B (en) Hydrogen sensor
CN106198631B (en) A kind of semiconductor hydrogen gas sensor and preparation method thereof
KR101767886B1 (en) Multi-layer ceramic/metal type gas sensor and manufacturing method of the same
JP2010133926A (en) Capacitance type environmental harmful gas sensor and manufacturing method thereof
CN103781723B (en) 3D nanoparticle collecting structure body and use its gas sensor
JP2009500919A5 (en)
KR101500671B1 (en) Flexible transparent chemical sensors based on graphene oxide and method for preparing the same
JP2009218260A (en) Variable resistance element
KR101201896B1 (en) Capacitive Type Gas Sensors and Method for Fabricating the Same
Dutta et al. Road Map of Semiconductor Metal-Oxide-Based Sensors: A Review
TW201606814A (en) Voltage nonlinear resistive element and method for manufacturing the same
CN101241101A (en) Micro- machining gas sensor and method for making same
Qiu et al. Ultrasensitive gas sensor developed from SnS/TiO2-based memristor for dilute methanol detection at room temperature
dos Santos et al. Perovskite/spinel based graphene derivatives electrochemical and biosensors
JP2008112562A5 (en)
Jiang et al. An in situ electrospinning route to fabricate NiO–SnO2 based detectors for fast H2S sensing
Shin et al. Formation of nanograined Ag-Co3O4 core@ shell structure to achieve enhanced xylene sensing characteristics
Ma et al. Enhanced electrocatalytic activity of a polyoxometalates-based film decorated by gold nanoparticles
Si et al. One-pot hydrothermal synthesis of nano-sheet assembled NiO/ZnO microspheres for efficient sulfur dioxide detection
TWI360228B (en)
CN109906489A (en) Flexible electrode and its manufacturing method