TW201132367A - A process for producing inorganic interconnected 3D open-cell bone substitutes - Google Patents

A process for producing inorganic interconnected 3D open-cell bone substitutes Download PDF

Info

Publication number
TW201132367A
TW201132367A TW99107666A TW99107666A TW201132367A TW 201132367 A TW201132367 A TW 201132367A TW 99107666 A TW99107666 A TW 99107666A TW 99107666 A TW99107666 A TW 99107666A TW 201132367 A TW201132367 A TW 201132367A
Authority
TW
Taiwan
Prior art keywords
hours
bone
temperature
heating
mixture
Prior art date
Application number
TW99107666A
Other languages
Chinese (zh)
Other versions
TWI466692B (en
Inventor
Jen-Chang Yang
Sheng-Yang Lee
Tsui-Min Tsai
Hong-Da Wu
Hsin-Tai Hu
Yan-Cheng Yang
Chen-Feng Ma
Original Assignee
Univ Taipei Medical
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Taipei Medical filed Critical Univ Taipei Medical
Priority to TW99107666A priority Critical patent/TWI466692B/en
Publication of TW201132367A publication Critical patent/TW201132367A/en
Application granted granted Critical
Publication of TWI466692B publication Critical patent/TWI466692B/en

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

The present invention relates to a process of using a heat responsive mixture to produce inorganic interconnected 3D open-cell bone substitutes which can be applied in the orthopedic or dental field for treatment of bone damage. The invention provides a simple and easily-controlled process of preparing porous inorganic bone substitute materials.

Description

201132367 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種使用感溫型混合物製造無機三度空間 連通孔洞骨取代物的方法,並應用於骨科及牙科領域。特 定言之,本發明方法中所用之感溫型混合物包含聚電解質 錯合體及生醫陶瓷粉末。 【先前技術】 骨缺損通常是腫瘤切除或骨骼外傷所造成。在美國,每 年約有50萬例的骨移植手術。骨移植手術通常會植入移植 骨取代物以促進骨組織之癒合,移植骨可分為:自體移植 骨 '異體移植骨及異種移植骨。雖然移植骨通常具有較好 功效’但自體、異體及異種移植骨分別具有來源不足、疾 病傳染及免疫排斥的問題’因而限制了其相關之應用。近 年來因骨組織工程之發展,合成之骨取代材可作為暫時的 細胞生長支架’隨著材料的降解與骨組織之再生,植入的 材料會逐漸被新骨所取代。合成骨取代材具有生物相容性 、骨傳導以及疾病傳播風險低的優點,因此為較佳的材料 目刖市售合成無機骨取代材主要由經基填灰石(Ha,201132367 VI. Description of the Invention: [Technical Field] The present invention relates to a method for producing an inorganic three-dimensional space-connected porous bone substitute using a temperature-sensitive mixture, and is applied to the field of orthopedics and dentistry. Specifically, the temperature sensitive mixture used in the method of the present invention comprises a polyelectrolyte complex and a biomedical ceramic powder. [Prior Art] Bone defects are usually caused by tumor resection or bone trauma. In the United States, there are approximately 500,000 bone grafts per year. Bone grafting usually involves implanting bone substitutes to promote healing of bone tissue. Autografts can be divided into autologous bone grafts and allograft bones. Although graft bones usually have better efficacy, 'autologous, allogeneic, and xenograft bones have problems of insufficient source, disease infection, and immune rejection, respectively, thus limiting their related applications. In recent years, due to the development of bone tissue engineering, synthetic bone substitutes can be used as temporary cell growth scaffolds. With the degradation of materials and the regeneration of bone tissue, the implanted materials will gradually be replaced by new bone. Synthetic bone substitutes have the advantages of biocompatibility, bone conduction, and low risk of disease transmission, and are therefore preferred materials. Commercially available synthetic inorganic bone substitutes are mainly composed of base-filled limestone (Ha,

Ca丨。(P04)6(〇H)2)、β_磷酸三鈣(p_Tcp,p_Ca3(p〇4)2)及硫 酸鈣(CS,CaS〇4)並藉由不同形式(諸如粉末、顆粒、球粒 、泥漿或塊材)所構成,以利應用於各種不同的骨缺損病 狀。然而,此等材料並無細胞及血管向内生長所需之連通 多孔結構。 生物支架之連通多孔結構在組織工程中,對骨性細胞及 139374.doc 201132367 新生血管的長入是十分重要的,適當的孔洞構形除了可讓 新生骨組織長入而利於骨細胞增殖及分化。一般來說,生 物支架的孔徑結構對於骨傳導的性質影響很大。如果孔徑 小於1 00 μηι,骨組織僅會蓄積在骨取代材的表面。移植後 ,多孔結構可分類為開孔型或封閉型。三度空間連通孔洞 為開孔型,其結構設計為模擬體内細胞外基質之三度空間 孔洞環境以促進骨性細胞及新生血管向内生長,骨移植材 在植入之後,骨移植物會逐漸降解並被接受者之自體新生 骨取代。 目前,已開發許多連通多孔之骨取代物之製造方法,並 將彼等概述於表1。大多數市售骨取代物為顆粒型及多孔 塊型。某些類型之三度空間連通多孔骨取代塊材,係藉由 冗長且繁複的程序合成並製造,或由之動物骨骼或珊瑚所 加工製成。天然動物骨路其組成固定,通常由經基構灰石 或碳酸鈣所構成。羥基磷灰石之降解時間太長,而碳酸鈣 降解太短。因此,皆無法藉由成份之調控提供適合降解時 間,以滿足不同臨床應用之需求。 表1 產品名稱 _(製造商,工廠) Healos(Depuy Spine) ProOsteon(Interpore Int., USA) Collagraft(Zimmer Inc, USA) MBCP(Biomatlante) Triosite(Zimmer Europe Ltd, UK) 組成(含量)Ca丨. (P04)6(〇H)2), β_tricalcium phosphate (p_Tcp, p_Ca3(p〇4)2) and calcium sulfate (CS, CaS〇4) and by different forms (such as powder, granule, pellet) , mud or block) to facilitate the application of a variety of different bone defects. However, these materials do not have the interconnected porous structure required for cell and blood vessel ingrowth. The connected porous structure of biological scaffolds is important in tissue engineering for the growth of bone cells and neovascularization of 139374.doc 201132367. Appropriate pore configuration can promote the proliferation and differentiation of bone cells in addition to the growth of new bone tissue. . In general, the pore structure of the bioscaffold has a great influence on the nature of bone conduction. If the pore size is less than 100 μηι, bone tissue will only accumulate on the surface of the bone substitute. After transplantation, the porous structure can be classified into an open cell type or a closed type. The three-dimensional spatial communication hole is open-celled, and its structure is designed to simulate the three-dimensional spatial cavity environment of the extracellular matrix in the body to promote the ingrowth of bone cells and new blood vessels. After the bone graft is implanted, the bone graft will be It gradually degraded and was replaced by the recipient's autologous new bone. At present, a number of manufacturing methods for interconnecting porous bone substitutes have been developed and are summarized in Table 1. Most commercially available bone substitutes are in the form of particles and porous blocks. Some types of three-dimensional space-connected porous bone replace blocks that are synthesized and manufactured by lengthy and cumbersome procedures, or processed from animal bones or corals. The natural animal bone path is fixed in composition and usually consists of basal limestone or calcium carbonate. The degradation time of hydroxyapatite is too long, and the degradation of calcium carbonate is too short. Therefore, it is impossible to provide suitable degradation time by adjusting the components to meet the needs of different clinical applications. Table 1 Product Name _ (manufacturer, factory) Healos (Depuy Spine) ProOsteon (Interpore Int., USA) Collagraft (Zimmer Inc, USA) MBCP (Biomatlante) Triosite (Zimmer Europe Ltd, UK) Composition (content)

濱珊瑚(碳酸鈣) 塗有70%第I型牛膠原蛋白之HA 60% HA > 40% TCP 60% HA ' 40% TCP BCP(Bioland)Shore coral (calcium carbonate) HA coated with 70% type I bovine collagen 60% HA > 40% TCP 60% HA ' 40% TCP BCP (Bioland)

60% HA ' 40% TCP60% HA ' 40% TCP

Ostilit(Stryker Howmedica Osteonics, UK) 20%HA、80% TCP,無巨孔 BoneSave(Stryker Howmedica Osteonics, UK) 20%HA ' 80% TCP > 139374.doc 201132367Ostilit (Stryker Howmedica Osteonics, UK) 20% HA, 80% TCP, no macropores BoneSave (Stryker Howmedica Osteonics, UK) 20% HA ' 80% TCP > 139374.doc 201132367

Cerasorb ORTHO(curasan) Vitoss™ Scaffold(curasan) Conduit™ TCP 顆粒(DePuy Spine)Cerasorb ORTHO(curasan) VitossTM Scaffold(curasan) ConduitTM TCP Particles (DePuy Spine)

CellpleXTMTCP 合成疏鬆骨(Wright)CellpleXTMTCP Synthetic Loose Bone (Wright)

Ceros 82Ceros 82

Synthes(U S A)chronOS™(Synthes) Calciresorb(Ceraver Osteal, France) Synthograf(Milter, USA) Augmen(Milter, USA) Skelite™(Millenium Biologix) Norian Skeletal Repair System(SRS) 孔徑:400-600 μιη 純β-TCP, 微孔· < 80 μπι β-TCP,微孔:< 1-1000 μιη > 99%(p-TCP)Ca3(P04)2 · 孔洞大小:1-600 μιη β-TCP製得之多孔填酸釣,孔徑:ι〇〇_ 400 μιηSynthes (USA) chronOSTM (Synthes) Calciresorb (Ceraver Osteal, France) Synthograf (Milter, USA) Augmen (Milter, USA) SkeliteTM (Millenium Biologix) Norian Skeletal Repair System (SRS) Aperture: 400-600 μιη Pure β- TCP, micropore · < 80 μπι β-TCP, microporous: < 1-1000 μιη > 99% (p-TCP) Ca3(P04)2 · Hole size: 1-600 μιη β-TCP Porous padding, pore size: ι〇〇_ 400 μιη

β-TCP ’利用調控孔隙率變化調節吸收 速率,吸收時間介於6-12個月之間 β-TCP孔控:100-500 μιη 多孔β-TCP 小尺寸緻密之TCP 大尺寸緻密之TCP 多相、多孔磷酸飼 磷酸鈣骨水泥 在先前技術中,目前製作多孔骨取代材之方法可分為若 干類別: 1.溶洗法 WO 2006/099332A2揭示製造人造多孔骨移植材之方法 。該方法包.含使用鹽粒作為造孔劑’將其與麟酸妈材料混 合,藉由擠壓使該混合物成塑再進行燒結,最後將鹽粒溶 洗出以形成多孔結構。然而,此方法具有步驟複雜之缺點 且形成之孔洞缺乏連通性。因此燒結後之溶解步驟無法有 效洗出留於其内之鹽粒。 2.氣化 WO 04/098457A1提供一種包含使用有機顆粒作為造孔 劑之方法。該方法包含混合造孔劑與陶瓷粉末、藉由擠壓 的方式使混合物成形,並藉由燒結之步驟讓有機化合物氣 化,利用有機物氣化後之空間形成連通多孔之結構。儘管 139374.doc 201132367 此法能有效形成連通多孔結構,但所得產品之機械強度不 足。 3. 以連通多孔之聚胺基曱酸酯(PU)海綿作為模型 US 20060198939提供一種作為塗佈有生物降解性聚合物 的連通多孔陶瓷錯合體製造方法。此參考文獻使用高度多 孔聚胺基甲酸酯(PU)海綿作為模板。將pu海綿浸潰於磷酸 在弓漿料中若干次以確保PU之多孔結構皆被碟酸妈泥漿所附 著。在乾燥之後’藉由燒結程序氣化PU海綿,進而獲得具 有連通多孔之鱗酸弼塊材。然而,所得之多孔塊材其機械 強度不足。因此,基板需浸潰於聚己内酯(PCL)溶液並於 室溫下乾燥,藉由PCL之塗佈以增強其機械特性。 4. 發泡 US 200702 1 8098係關於一種製造多孔麟酸妈之發泡方法 。其多孔結構主要藉由加熱碳酸銨所產生的C〇2產生發泡 作用。此外,US 20080069852提供使用超臨界流體之發 泡方法。然而,發泡方法通常不穩定且難以控制其孔徑 大小。 5. 電腦輔助之設計及製造方法 US 69055 1 6提及利用電腦輔助設計製作之特定模具法製 作連通多孔骨取代材。將磷酸鈣骨水泥漿料注入模具中。 待材料固化形成羥基磷灰石後再脫模即可形成連通多孔結 構。然而,模具及相關設計設備通常十分昂貴,且此法十 分耗時且繁複。 儘管許多研究者已對連通多孔骨取代物之生產方法進行 139374.doc 201132367 了各種改良,但目前製備三度空間連通多孔之骨取代物仍 相當複雜。因此我們需要產生一種更快速、簡單、廉價且 可靠的製備方法,去生產具有連通多孔結構及良好機械特 性之骨取代物塊材。 【發明内容】 本發明提供一種使用感溫型混合物來形成無機三度空間 連通孔洞骨取代物之方法,其中該感溫型混合物包含一或 多種聚電解質錯合體及一或多種生醫陶瓷粉末,該方法包 含在25°C至100t範圍内之溫度下加熱該混合物使樣品膨 脹,進一步加熱所得混合物以移除其中所含之聚電解質錯 合體及水分以得到連通多孔結構並同時對生醫陶瓷進行燒 結,接著冷卻該混合物即可得到無機連通孔洞之骨取代 物。 【實施方式】 本發明利用聚電解質錯合體與生醫陶瓷材料以形成感溫 型混合物,在加熱該混合物之後可產生三度空間連通孔洞 骨取代物。三度空間連通多孔骨取代物可應用於骨科或牙 科領域中之骨缺損部位。本發明之感溫型混合物在經由特 殊加熱程序後將形成無機三度空間連通多孔結構,其中三 度空間連通多孔結構主要由體積膨脹、水蒸發及聚電解質 錯合體氣化所產生,其孔徑大小還可藉由加熱速率控制。 藉由加熱本發明之感溫型混合物可容易地製備無機互連三 度空間連通多孔骨取代物,此法簡單且容易控制。 本發明提供一種使用感溫型混合物來形成無機三度空間 139374.doc 201132367 連通多孔骨取代物之方 在’其中該感溫型混合物包含一或 多種聚電解質錯合鹘々 或夕種生醫陶瓷粉末,該方法包 含在25C至1〇0〇C範圍 n 度下加熱該混合物,進一步 加熱所得混合物以移除1 关中所含之水及聚電解質錯合體, 接著冷卻該混合物, I7 了產生無機三度空間連通多孔骨取 代物。 本發明之聚電解質錯合體係藉由一或多種陽離子聚電解 -或夕種陰離子聚電解質之離子交聯來產生,帶相反 電荷之聚合物相互吸引且不可逆地結合在一起。 根據本發明,「聚電解質」係指帶有電性官能基團之可 =聚合物。陽離子聚電解質主要為帶正電荷之聚電解質 门刀子並包含具有淨正電荷之聚電解質;陰離子聚電解 質主要為帶負電荷之聚電解質高分子,並包含具有淨負電 荷之聚電解質。 根據本發明之較佳實施例,陽離子聚電解質可選自由以 下組成之群:幾丁聚醣(chitosan)、聚精胺酸、聚鳥胺酸、 瓊脂糖凝膠(DEAE)、聚凝胺(polybrene)、聚離胺酸、胺基 «截、准素聚伸乙亞胺樹脂(polyethyleneimine resin)及其混 合物。 根據本發明之較佳實施例,陰離子聚電解質可選自由以 下組成之群:乙醯纖維素、γ-聚麩胺酸(y_PGa)、羥丙基 曱基纖維素(HPMC)、羧甲基纖維素(CMC)、聚磷酸鈉、果 膠、玻尿酸、褐藻酸納(alginate)及其混合物。 根據本發明,生醫陶瓷粉末可為以磷酸鈣為主的陶究粉 139374.doc 201132367 末、=硫酸詞為主的陶究粉末、以氧化物為主的 、以氮化物為主的陶咨扒 山 免权末 文叔末、以奴化物為主的陶瓷粉末、 刀政有氧化I呂之氧化供 W“ 乳化鍅或分散有氧化鈦之氧化鋁。陶瓷 材料較佳可為以磷酸病 硫酸鈣或氧化錯為主之材料或:i ,合物。在一個實施例中,以鱗酸約為主的陶E粉末可選 由以下組成之群:經基磷灰石(HA)、β-磷酸三約(卜 TCP)'非晶型磷酸鈣(ACp)及其混合物。 在另-實施例中’以硫酸飼為主的陶竟粉末可選自由以 下組成之群:二水硫gn半水硫㈣及無水硫酸舞。 在另貫施例中,以氧化物為主的陶瓷粉末可選自由氧 化銘、氧化锆及氧化鈦組成之群。 在另貫施例中,以氮化物為主的陶瓷粉末係選自由氮 化石夕、氮化鈦及氮化鋁組成之群。 在另貫施例中,以碳化物為主的陶瓷粉末為碳化矽。 根據本發明,本系統之聚電解質錯合體及生醫陶瓷材料 之重量百分比(聚電解質錯合體或生醫陶瓷材料之乾重/感 溫型混合物之乾重)分別在2%至40%及10%至75%之範圍内 且其餘為水。聚電解質錯合體之重量百分比(乾重)較佳 為2%至40%、2%至30%、及2%至20❶/。。生醫陶瓷材料之重 量百分比(乾重)為10%至75%、20%至75%、30%至75%、 40%至75%、50%至75%、及60〇/〇至75%。更佳地,聚電解 質錯合體之重量百分比(乾重)為2%至20%且生醫陶£材料 之重里百分比(乾重)為15°/。至50。/。’其餘組成為水及相關 生物活性物質。 139374.doc 201132367 根據本發明,多孔結構受陽離子及陰離子聚電解質之濃 度影響。 根據本發明’感溫型混合物之膨脹溫度在25°C至100。〇 之範圍内。熟習此項技術者可視聚電解質錯合體之種類來 選擇適當溫度《加熱溫度較佳在38〇c至l〇〇〇c、55。〇至β-TCP 'Adjusts the absorption rate by regulating the change of porosity, the absorption time is between 6-12 months β-TCP pore control: 100-500 μηη Porous β-TCP Small size dense TCP Large size dense TCP multiphase Porous Phosphate-Fed Calcium Phosphate Cement In the prior art, current methods of making porous bone substitutes can be divided into several categories: 1. Washing method WO 2006/099332 A2 discloses a method of making a man-made porous bone graft. The method comprises the use of a salt particle as a pore former, which is mixed with a linonic acid material, which is plasticized by extrusion and then sintered, and finally the salt particles are eluted to form a porous structure. However, this method has the disadvantage of being complicated in steps and the holes formed are lacking in connectivity. Therefore, the dissolution step after sintering does not effectively wash out the salt particles remaining therein. 2. Gasification WO 04/098457 A1 provides a process comprising the use of organic particles as a pore-forming agent. The method comprises mixing a pore former with a ceramic powder, forming a mixture by extrusion, and vaporizing the organic compound by a sintering step, and forming a porous structure by utilizing a space in which the organic substance is vaporized. Although 139374.doc 201132367 can effectively form a connected porous structure, the mechanical strength of the resulting product is insufficient. 3. Using a porous polyamine phthalate (PU) sponge as a model US 20060198939 provides a method for producing a connected porous ceramic composite body coated with a biodegradable polymer. This reference uses a highly porous polyurethane (PU) sponge as a template. The pu sponge was immersed in phosphoric acid several times in the bow slurry to ensure that the porous structure of the PU was attached to the disc sour slurry. After drying, the PU sponge was vaporized by a sintering procedure to obtain a strontium sulphate block having interconnected pores. However, the resulting porous block has insufficient mechanical strength. Therefore, the substrate needs to be immersed in a polycaprolactone (PCL) solution and dried at room temperature to enhance its mechanical properties by coating with PCL. 4. Foaming US 200702 1 8098 is a method for making a porous linseed mother. Its porous structure mainly produces foaming by heating C?2 produced by ammonium carbonate. Further, US 20080069852 provides a foaming method using a supercritical fluid. However, the foaming process is generally unstable and it is difficult to control its pore size. 5. Computer-Aided Design and Manufacturing Method US 69055 1 6 refers to the use of a computer-aided design of a specific mold method to make a porous bone substitute. The calcium phosphate bone cement slurry is injected into the mold. After the material is solidified to form hydroxyapatite, it is demolded to form a connected porous structure. However, molds and associated design equipment are often very expensive, and this method is time consuming and cumbersome. Although many researchers have made various improvements to the method of producing porous bone substitutes, the preparation of three-dimensionally interconnected porous bone substitutes is still quite complicated. Therefore, we need to produce a faster, simpler, cheaper, and more reliable method of producing bone substitute blocks with interconnected porous structures and good mechanical properties. SUMMARY OF THE INVENTION The present invention provides a method of forming an inorganic three-dimensional spatially connected pore bone substitute using a temperature sensitive mixture, wherein the temperature sensitive mixture comprises one or more polyelectrolyte complexes and one or more biomedical ceramic powders, The method comprises heating the mixture at a temperature ranging from 25 ° C to 100 t to expand the sample, further heating the resulting mixture to remove the polyelectrolyte complex and moisture contained therein to obtain a connected porous structure and simultaneously performing biomedical ceramics Sintering, followed by cooling the mixture provides a bone substitute for the inorganic interconnected pores. [Embodiment] The present invention utilizes a polyelectrolyte complex and a biomedical ceramic material to form a temperature sensitive mixture which, after heating the mixture, produces a three dimensional spatially connected pore bone substitute. The three-dimensional spatially connected porous bone substitute can be applied to the bone defect site in the orthopedic or dental field. The temperature sensitive mixture of the present invention will form an inorganic three-dimensional spatially connected porous structure after a special heating process, wherein the three-dimensional spatially connected porous structure is mainly produced by volume expansion, water evaporation and gasification of polyelectrolyte complex, and the pore size thereof It can also be controlled by heating rate. The inorganic interconnected three-dimensionally interconnected porous bone substitute can be readily prepared by heating the temperature sensitive mixture of the present invention, which is simple and easy to control. The present invention provides a method for forming an inorganic three-dimensional space using a temperature-sensitive mixture 139374.doc 201132367 to connect a porous bone substitute in which the temperature-sensitive mixture comprises one or more polyelectrolyte mismatched or sinister biomedical ceramics a powder comprising heating the mixture at a temperature of from 25 C to 1 〇0 〇C, further heating the resulting mixture to remove water and polyelectrolyte complexes contained in the sulphide, and then cooling the mixture, I7 producing an inorganic three The space is connected to the porous bone substitute. The polyelectrolyte mismatch system of the present invention is produced by ionic crosslinking of one or more cationic polyelectrolytes or cation anionic polyelectrolytes, the oppositely charged polymers being attracted to each other and irreversibly bonded together. According to the invention, "polyelectrolyte" means a polymer with an electrically functional group. The cationic polyelectrolyte is mainly a positively charged polyelectrolyte knives and comprises a polyelectrolyte having a net positive charge; the anionic polyelectrolyte is mainly a negatively charged polyelectrolyte polymer and comprises a polyelectrolyte having a net negative charge. According to a preferred embodiment of the invention, the cationic polyelectrolyte can be selected from the group consisting of chitosan, polyarginine, polyornosine, agarose gel (DEAE), polybrene ( Polybrene), polylysine, amine «polyesterimine resin and mixtures thereof. According to a preferred embodiment of the present invention, the anionic polyelectrolyte may be selected from the group consisting of acetaminophen, γ-poly glutamic acid (y_PGa), hydroxypropyl fluorenyl cellulose (HPMC), carboxymethyl fiber. (CMC), sodium polyphosphate, pectin, hyaluronic acid, alginate and mixtures thereof. According to the present invention, the biomedical ceramic powder can be a calcium phosphate-based ceramic powder 139374.doc 201132367, a sulfuric acid-based ceramic powder, an oxide-based, nitride-based ceramics. Lushan exempts the end of the Wenshu Shuo, the sulphate-based ceramic powder, the knife chemistry has the oxidation of Ilu oxidized for W" emulsified bismuth or alumina dispersed with titanium oxide. The ceramic material is preferably phosphate sulphuric acid Calcium or oxidatively dominated material or: i. In one embodiment, the ceramsite E powder, which is mainly squaric acid, may be selected from the group consisting of: base apatite (HA), β- Phosphate Tris (Bu TCP) 'Amorphous Calcium Phosphate (ACp) and mixtures thereof. In another embodiment, 'Tao sulfur powder based on sulfuric acid feed can be selected from the following group: Dihydrate sulfur gn semi-water Sulfur (4) and anhydrous sulfuric acid dance. In another example, the oxide-based ceramic powder may be selected from the group consisting of oxidized zirconia, zirconia and titania. In other examples, nitride-based The ceramic powder is selected from the group consisting of nitride rock, titanium nitride and aluminum nitride. In another embodiment, The carbide-based ceramic powder is tantalum carbide. According to the present invention, the weight percentage of the polyelectrolyte complex and the biomedical ceramic material of the system (the polyelectrolyte or the dry weight/temperature-sensitive mixture of the biomedical ceramic material) The dry weight is in the range of 2% to 40% and 10% to 75%, respectively, and the balance is water. The weight percentage (dry weight) of the polyelectrolyte complex is preferably 2% to 40%, 2% to 30%, And 2% to 20% /. The weight percentage (dry weight) of biomedical ceramic materials is 10% to 75%, 20% to 75%, 30% to 75%, 40% to 75%, 50% to 75%, And 60 〇 / 〇 to 75%. More preferably, the weight percentage (dry weight) of the polyelectrolyte complex is 2% to 20% and the percentage of the weight of the raw material (dry weight) is 15 ° / to 50 The remaining composition is water and related biologically active substances. 139374.doc 201132367 According to the invention, the porous structure is affected by the concentration of the cationic and anionic polyelectrolytes. According to the invention, the temperature of the temperature sensitive mixture is at 25 ° C to 100. Within the range of 〇. Those skilled in the art can choose the appropriate temperature depending on the type of polyelectrolyte complex. The heating temperature is preferably in 38〇c to l〇〇〇c, to 55.〇

l〇〇°C、55。(:至 85°C、55〇C 至 8(TC、或 55。(:至 75。(:之範圍内 。加熱溫度更佳在55。(:至10(TC、55°C至85°C、55°C至8(TC 、或55 C至75°C之範圍内。在加熱本發明之感溫型混合物 後’混合物將膨脹且形成三度空間連通孔洞結構。 在一個實施例中,在升高溫度之後,該方法進一步包含 0.25至1〇小時之溫度保持階段;較佳溫度保持階段為1至8 小時、1至6小時、2至8小時、2至6小時、3至8小時、及3 至6小時;0.25至4小時;0.5至3小時;.0.5至2或0.5至1小時 。較佳溫度保持階段為1小時。 加熱速率為 〇.1 至 2〇°C/min、0.3 至 15°C/min、0.3 至 l〇C/min、〇.3 至 5t:/min、〇 3 至 rc/min或 〇 3 至 2〇c/min。 更佳加熱速率為 1.67°C/niiii、〇.63t:/min及 0.42°C/min。 進一步加熱’對已膨脹之混合物以進行乾燥,以便使其 中所含之水蒸發且形成三度空間連通多孔骨取代物。根據 本發明之一個實施例,可藉由高溫加熱以氣化聚電解質錯 α物並對生醫陶兗進行燒結。在另一實施例中,在進一步 加熱過程可在一或多個階段中完成。 在一個實施例中,進一步加熱步驟中所用之溫度為85t 至1 50〇。〇。視所選加熱階段而定,溫度較佳係選自一或多 139374.doc -10- 201132367 個以下溫度範圍:85°C至30(TC、100°C至250。(:、100°C至 200°C 或 100°C 至 150°C、300°C 至 1400°C、300。(:至 1300。(:、 300°C 至 1200°C、30(TC 至 1150°C、300°C 至 1100°C、30(TC 至 1000°C、500°C 至 1400°C、500°C 至 1300°C、及 500°C 至 1200°C。更佳範圍為 1〇〇。〇至 250°C、l〇〇t:至 200°C、或 100°C 至 150°C、300。(:至 13000°C、或 300°C 至 1150°C。 在另一實施例中’加熱速率為0.1至2〇°C/min、0.3至 15°C/min、0.3 至 l〇°C/min、0.3 至 5°C/min、0.3 至 3°C/min或 0·3 至 2°C/min。更佳加熱速率為 ι.ππ/πήη、0.63°C/min及 0.42°C/min。 在另一實施例中’在升高溫度之後,該方法進一步包含 0.25至10小時之溫度保持階段;較佳溫度保持階段為丨至8 小時、1至6小時、2至8小時、2至6小時、3至8小時、及3 至6小時;0.25至4小時;0.5至3小時;0.5至2或0.5至1小時 。較佳溫度保持階段為1小時。 在另一實施例中,燒結溫度範圍通常300°C至l,5〇(rc。 較佳燒結溫度範圍為300°C至1400°C、300°C至1300。(:、 300°C 至 1200°C、3〇吨至 1150°C、300。(:至 1100°C、300°C 至 1000°C、500°C 至 1400°C、500°C 至 1300°C、及 500。(:至 1200°C。更佳範圍為300°C 至 1150°C 及 300°C 至 1300°C。燒 結之加熱速率範圍為〇. 1至20°C /min。較佳燒結加熱速率為 0.5 至 15°C/min、0.5 至 l〇t/min、0.5 至 5°C/min、1 至 15°C/min、1 至 l〇°C/min、1 至 5°C/min、3 至 15°C/min、3 至 10°C/min、及3至5°C/min。更佳範圍為3.5°C/min。燒結步 139374.doc 11 201132367 驟包含1至1 〇小時之、、田 /Jtt度保持階段;較佳溫度保持階段為1 至8小時、1至6小時、2 $ 8 I 0大 2至8小時、2至ό小時、3至8小時及3 至6小時。較佳階段為5小時。 本發月一度空間連通多孔骨取代物之孔徑可藉由 …速率來控制。孔隨加熱速率增加而變小。 根據本發明之*士 | ° 精由本發明形成之骨取代材料具有 〇·05至5毫米、〇.05至3毫米、〇.〇5至2毫米、0.05L毫米' 毫米0.1至3毫米或〇 3至〇 5毫米之巨孔孔徑範圍, 且具有G.1至30微米、G1至職米、q丨至職米或〇⑴ 微米之微孔孔徑範圍。骨取代材料之孔隙率為50%至95%。 根據本發明之★士果,士 n θ 〇果本發明之方法進一步包含藉由塗佈 或添加之方法使聚合物或生物活性物質附著於本發 明月取代材料的步驟。根據本發明,該物質係選自由以下 組成之群:去礦質化骨基質、生長因+、骨形態發生蛋白 、抗生素劑、維生素、膠原蛋白、間葉幹細胞、抗瘤劑、 細胞附者劑、免疫抑制劑、凝血活化劑、富含血小板血漿 、富含血小板之纖維蛋白膠,及絲蛋白質。 本發明之方法可由以下流程圖例示。 139374.doc •12- 201132367 g声辛琴電解質I.::, ..···: V: :· ·粉末.:::, ::感渴型瀑合物 ·····-· - .·- -、·.. f ..... . ... . 膨脹/和熱 • : ..... .: · ....... .. t |$:呑皮耷啤离通声礼▲架 本电月之方法不需要使用成孔劑或孔洞模板。該方法僅 需要將生醫陶瓷混合於聚電解質錯合體中以形成感溫型混 合物°混合物較佳呈膠體形式。聚電解質錯合體與生物陶 瓷之三度空間(3D)網狀結構是經由物理交聯機制所形成, 此結構係由纟溶液中兩料相&電荷《聚電解質產生離子 交聯所形成。 在加熱期間,可對混合物之膨脹比、水蒸發速率及聚 物,體之氣化速率進行控制,藉此形成不同孔徑、孔隙 之多孔結構°製程中可選擇不同之無機材料及燒結條件 即可製備具有不同組成、物理特性或結晶度之骨取代物 本I程可依^特定臨床應用及不时部分需求製 同吸收時間之骨;F 可作H聚電解質錯合體在燒結日 Q ’’其可顯著增強陶t樣品燒結後之機械完3 性。本發㈣供_種以促料再生之^㈣連通多 1 139374.doc •13· 201132367 之骨取代塊材。 實例 實例1本發明之熱反應性混合物的膨脹 將陽離子聚電解質(10% chitosan)溶液與陰離子聚電解 質(2% HPMC)溶液混合以形成聚電解質錯合體 (polyelectrolyte complex,PEC),且接著將生醫陶瓷粉末 (HA:P-TCP = 1:9)添加至錯合體中以藉由使用混合器來形 成混合物,系統中PEC、生醫陶瓷粉末及水之重量百分比 分別為6%、25%及69%。混合物體積自約55°C之溫度膨脹 。在加熱所得混合物至75°C之後,混合物體積膨脹至25t 下混合物體積之3.3倍(圖1,(C)及(D))。 比較實例1聚電解質錯合體之膨脹 將陽離子聚電解質(l〇%chit〇san)溶液與陰離子聚電解質 (2% HPMC)溶液混合以形成聚電解質錯合體。在加熱錯合 體至75 C之後,其體積與25。(:下之錯合體體積相比並未顯 著變化(圖1,(A)及(B))。 實例2製造三度空間開放單元骨取代物 以1:1(W/W,乾重)比率混合陽離子聚電解質(chitosan)與 陰離子聚電解質(HPMC),接著混合生f陶竞粉末。系統 中PEC、生醫陶瓷粉末及水之重量百分比分別為6%、25% 及69%。將混合之材料置於氧化鍅坩鍋中並置於高溫爐中 加:。加熱過程可分為三個階段。在第一階段中,將溫度 自室/皿升冋至100 C且接著保持J小時。第二階段之加熱係 67 C/min之速率自1〇〇。〇升高至3〇〇。〇,在3〇〇它下保持 139374.doc -14 - 201132367 1小時,且接著對於第三階段以S fc/min之速率自3〇〇。〇升 高至1150°C,且在115〇t下保持5小時。燒結後,在爐中自 然冷卻產物。 圖2顯示chitosan/HPMC聚電解質錯合體(比較實例1}及 chit〇san/HPMC聚電解質錯合體與生醫陶瓷粉末之感溫型 混合物之體積與溫度之間的關係。如圖3中所示,用SEM 觀察所得產物之多孔結構。使用ImageJ j 37c之影像處理 軟體(National Institutes 〇f Health (NIH),Bethesda,MD, USA ;來自http://rsb.inf0.nih.gov/ij之免費軟體)來計算孔 徑,經由計算得之樣品具有9 ± 7 μιη之微孔孔徑,及± 220 μχη之巨孔孔徑。藉由阿基米德測量法得知,所得產物 具有91.9%之孔隙率。 實例2至12及實例2至12與比較實例之間的比較資料 用類似於實例2之步驟,可獲得其他實例。較佳實例及 比較實例之參數列於表2至表6中。 據表2’顯示所有實例均具有優心較實例之多孔結構 。在固定其他參數的情況下,示使㈣離子聚電解 質與陰離子聚電解質的確可彳旱丨夕7, ^ # J夕孔結構的無機骨填補材 。當在比較實例2至4中僅使用嗒拙:7 β 使用%離子聚電解質或僅使用陰 離子聚電解質時,無法得到1右玄 亏q八有多孔結構之樣品。另外, 可在貫例2至5中藉由使用不同^ 个離子聚電解質來改變孔 徑〇 139374.doc 15 201132367 表2 實例2實例3實例4實例5比,實比較實例比較實例4 —___________ini__3__ 陽離子t電解質 chitosan chitosan chitosan chitosan chitosan (重量%) 10 l〇 l〇 l〇 l〇 " " (重量%) 2 2 2 2 " 2 " β- β- TCP:HA TCP:HA β· TCP:HA p-TCP:HA (9:1) β- β-TCP:HA TCP:HA P-TCP:HA (9:1) (9:1) (9:1) (9:1) (9:1) (9:1) 6%、 25% ' 69% 6% ' 25% 6% ' 25% 6% ' 25% 、69% 、69% ' 69% 3%、 25%、 72% 3% ' 25% ' 72% 無 無 無 無 無 無 NaCl(50°/〇 ) 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1 1 1 1 1 1 1 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1 1 1 1 1 1 1 3.5 3.5 3.5 3.5 3.5 3.5 3.5 5 5 5 5 5 5 5 431 ± 220 1,538 士 634 1,151 土 661 552 ±146 N.D. N.D. N.D. 9士7 15 ± 10 9±8 30 ±20 N.D. N.D. N.D.L〇〇°C, 55. (: to 85 ° C, 55 ° C to 8 (TC, or 55. (: to 75. (: within the range. Heating temperature is better at 55. (: to 10 (TC, 55 ° C to 85 ° C , in the range of 55 ° C to 8 (TC, or 55 C to 75 ° C. After heating the temperature sensitive mixture of the invention, the mixture will expand and form a three dimensional spatially connected pore structure. In one embodiment, After raising the temperature, the method further comprises a temperature maintaining phase of 0.25 to 1 hour; the preferred temperature maintaining phase is 1 to 8 hours, 1 to 6 hours, 2 to 8 hours, 2 to 6 hours, 3 to 8 hours, And 3 to 6 hours; 0.25 to 4 hours; 0.5 to 3 hours; 0.5 to 2 or 0.5 to 1 hour. The preferred temperature retention period is 1 hour. The heating rate is 〇.1 to 2〇 °C/min, 0.3 To 15 ° C / min, 0.3 to l 〇 C / min, 〇 .3 to 5 t: / min, 〇 3 to rc / min or 〇 3 to 2 〇 c / min. The better heating rate is 1.67 ° C / niiii 〇.63t: /min and 0.42 ° C / min. Further heating 'the expanded mixture for drying to evaporate the water contained therein and form a three-dimensional space-connected porous bone substitute. According to one of the present invention For example, the polyelectrolyte malogen can be gasified by high temperature heating and the biomedical ceramics can be sintered. In another embodiment, the further heating process can be completed in one or more stages. The temperature used in the further heating step is from 85t to 150%. Depending on the selected heating stage, the temperature is preferably selected from one or more 139374.doc -10- 201132367 or less temperature range: 85 ° C To 30 (TC, 100 ° C to 250 ° (:, 100 ° C to 200 ° C or 100 ° C to 150 ° C, 300 ° C to 1400 ° C, 300. (: to 1300. (:, 300 ° C to 1200 ° C, 30 (TC to 1150 ° C, 300 ° C to 1100 ° C, 30 (TC to 1000 ° C, 500 ° C to 1400 ° C, 500 ° C to 1300 ° C, and 500 ° C To 1200 ° C. More preferably in the range of 1 〇〇 〇 to 250 ° C, l 〇〇 t: to 200 ° C, or 100 ° C to 150 ° C, 300. (: to 13000 ° C, or 300 ° C to 1150 ° C. In another embodiment, the heating rate is 0.1 to 2 ° C / min, 0.3 to 15 ° C / min, 0.3 to 10 ° C / min, 0.3 to 5 ° C / min, 0.3 to 3 ° C / min or 0 · 3 to 2 ° C / min. Better heating rate is ι.ππ / π ή η, 0.6 3 ° C / min and 0.42 ° C / min. In another embodiment, the method further comprises a temperature holding phase of 0.25 to 10 hours after raising the temperature; a preferred temperature maintaining phase is 丨 to 8 hours, 1 to 6 hours, 2 to 8 hours, 2 to 6 Hours, 3 to 8 hours, and 3 to 6 hours; 0.25 to 4 hours; 0.5 to 3 hours; 0.5 to 2 or 0.5 to 1 hour. The preferred temperature maintenance period is 1 hour. In another embodiment, the sintering temperature ranges from 300 ° C to 1,5 〇 (rc. The preferred sintering temperature ranges from 300 ° C to 1400 ° C, 300 ° C to 1300. (:, 300 ° C to 1200 °C, 3 ton to 1150 ° C, 300. (: to 1100 ° C, 300 ° C to 1000 ° C, 500 ° C to 1400 ° C, 500 ° C to 1300 ° C, and 500. (: to 1200 ° C. More preferably in the range of 300 ° C to 1150 ° C and 300 ° C to 1300 ° C. The heating rate of sintering ranges from 〇 1 to 20 ° C / min. The preferred sintering heating rate is 0.5 to 15 ° C/min, 0.5 to l〇t/min, 0.5 to 5 °C/min, 1 to 15 °C/min, 1 to l〇°C/min, 1 to 5 °C/min, 3 to 15 °C /min, 3 to 10 ° C / min, and 3 to 5 ° C / min. More preferably, the range is 3.5 ° C / min. Sintering step 139374.doc 11 201132367 The step contains 1 to 1 hour, Tian / Jtt Degree of maintenance; preferred temperature maintenance period is 1 to 8 hours, 1 to 6 hours, 2 $ 8 I 0 is 2 to 8 hours, 2 to ό hours, 3 to 8 hours, and 3 to 6 hours. 5 hours. The pore size of the space-connected porous bone substitute in this month can be controlled by the rate of .... The pore becomes smaller as the heating rate increases. According to the present invention, the bone-replacement material formed by the present invention has 〇·05 to 5 mm, 〇.05 to 3 mm, 〇.〇5 to 2 mm, 0.05 L mm 'mm 0.1 to 3 mm or 〇 a pore size range of 3 to 〇5 mm and having a pore size range of G.1 to 30 μm, G1 to MM, q丨 to job or 〇(1) micron. The porosity of the bone substitute material is 50% to 95%. According to the present invention, the method of the present invention further comprises the step of attaching a polymer or a biologically active substance to the monthly replacement material of the present invention by coating or addition. According to the present invention The substance is selected from the group consisting of demineralized bone matrix, growth factor +, bone morphogenetic protein, antibiotic agent, vitamin, collagen, mesenchymal stem cell, antitumor agent, cell attachment agent, immunosuppressant , coagulation activators, platelet-rich plasma, platelet-rich fibrin glue, and silk proteins. The method of the present invention can be exemplified by the following flow chart. 139374.doc •12- 201132367 g-sound xinqin electrolyte I.::, . .···: V: :· · Powder .:::,::Thirsty thirsty waterfalls········.·- -,·.. f ..... . . . expansion/heating: : .... . . . . . . . . . t | $: 呑 耷 耷 离 ▲ ▲ ▲ ▲ 架 架 架 架 架 架 架 架 架 架 架 本 本 本 本 本 本 本 本 本 本 本The method only requires mixing the biomedical ceramics into the polyelectrolyte complex to form a temperature sensitive mixture. The mixture is preferably in a colloidal form. The three-dimensional (3D) network structure of the polyelectrolyte complex and the bioceramic is formed by a physical crosslinking mechanism which is formed by the ionic crosslinking of the two phases & charge "polyelectrolyte" in the hydrazine solution. During the heating, the expansion ratio of the mixture, the evaporation rate of the water, and the vaporization rate of the polymer and the body can be controlled, thereby forming a porous structure with different pore sizes and pores. The inorganic materials and sintering conditions can be selected in the process. Preparation of bone substitutes with different compositions, physical properties or crystallinity. This procedure can be based on specific clinical applications and occasional partial requirements for the same absorption time of the bone; F can be used as a H polyelectrolyte complex in the sintering day Q '' Significantly enhance the mechanical properties of the ceramic samples after sintering. This issue (4) is for the _ species to promote the regeneration of the ^ (four) connected more than 1 139374.doc • 13 · 201132367 bone to replace the block. EXAMPLES Example 1 Expansion of the Thermally Reactive Mixture of the Invention A cationic polyelectrolyte (10% chitosan) solution was mixed with an anionic polyelectrolyte (2% HPMC) solution to form a polyelectrolyte complex (PEC), and then Medical ceramic powder (HA: P-TCP = 1:9) was added to the mixed body to form a mixture by using a mixer, and the weight percentages of PEC, biomedical ceramic powder and water in the system were 6% and 25%, respectively. 69%. The volume of the mixture expands from a temperature of about 55 °C. After heating the resulting mixture to 75 ° C, the volume of the mixture was expanded to 3.3 times the volume of the mixture at 25 t (Fig. 1, (C) and (D)). Comparative Example 1 Expansion of polyelectrolyte complex A cationic polyelectrolyte (1% chit〇san) solution was mixed with an anionic polyelectrolyte (2% HPMC) solution to form a polyelectrolyte complex. After heating the miscellaneous body to 75 C, its volume is 25. (The next difference in volume of the combined body did not change significantly (Figure 1, (A) and (B)). Example 2 produced a three-dimensional open cell unit substitute with a 1:1 (W/W, dry weight) ratio Mixing a cationic polyelectrolyte (chitosan) with an anionic polyelectrolyte (HPMC), followed by mixing the raw f Taobao powder. The weight percentages of PEC, biomedical ceramic powder and water in the system are 6%, 25% and 69%, respectively. The material is placed in a simmering pot and placed in a high temperature furnace. The heating process can be divided into three stages. In the first stage, the temperature is ramped from chamber/dish to 100 C and then held for J hours. The heating rate is 67 C/min from 1 〇〇. 〇 is increased to 3 〇〇. 〇, under 3 〇〇 it is maintained at 139374.doc -14 - 201132367 for 1 hour, and then for the third stage with S fc The rate of /min is from 3 〇〇. The enthalpy is raised to 1150 ° C and maintained at 115 〇t for 5 hours. After sintering, the product is naturally cooled in the furnace. Figure 2 shows chitosan / HPMC polyelectrolyte complex (comparative example) Volume and temperature of 1} and chit〇san/HPMC polyelectrolyte complex and thermophilic mixture of biomedical ceramic powder The relationship between the obtained products was observed by SEM as shown in Fig. 3. ImageJ j 37c image processing software (National Institutes 〇f Health (NIH), Bethesda, MD, USA; from http://rsb The free software of .inf0.nih.gov/ij) is used to calculate the pore size. The calculated sample has a pore diameter of 9 ± 7 μηη and a pore size of ± 220 μχη. It is known by Archimedes measurement. The obtained product has a porosity of 91.9%. Comparative data between Examples 2 to 12 and Examples 2 to 12 and comparative examples Other examples are obtained by using steps similar to those of Example 2. The parameters of the preferred examples and comparative examples are listed in Table 2 to Table 6. According to Table 2', all the examples have a porous structure which is superior to the example. In the case of fixing other parameters, it is indeed possible to show that the (tetra) ionic polyelectrolyte and the anionic polyelectrolyte can be arid. ^ #J 夕 hole structure of inorganic bone filler. When using only 嗒拙:7 β in Comparative Examples 2 to 4, using % ion polyelectrolyte or using only anionic polyelectrolyte, it is impossible to obtain 1 right 玄 q q 八 有 porous A sample of the structure. In addition, the aperture 〇 can be changed by using different ionic polyelectrolytes in Examples 2 to 5. 15 374 374 374 374 374 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 Electrolyte chitosan chitosan chitosan chitosan chitosan (% by weight) 10 l〇l〇l〇l〇"" (% by weight) 2 2 2 2 " 2 " β-β-TCP: HA TCP: HA β· TCP: HA p-TCP: HA (9:1) β-β-TCP: HA TCP: HA P-TCP: HA (9:1) (9:1) (9:1) (9:1) (9:1) (9:1) 6%, 25% '69% 6% ' 25% 6% ' 25% 6% ' 25% , 69% , 69% ' 69% 3% , 25% , 72 % 3% ' 25 % ' 72% No No No No NaCl (50°/〇) 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1 1 1 1 1 1 1 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1 1 1 1 1 1 1 3.5 3.5 3.5 3.5 3.5 3.5 3.5 5 5 5 5 5 5 5 431 ± 220 1,538 ± 634 1,151 661 552 ± 146 NDNDND 9 士 7 15 ± 10 9 ± 8 30 ± 20 NDNDND

陰雖子 t電解質 HPMC γ-PGA CMC alginate HPMC 材生醫陶瓷之組成 料(重量比) 混合物之組成 (PEC、生醫陶 瓷及水)(重量%) 造扎劑 第自25°C至100°C 一之加熱速率 加(°C/min) 熱 階保持時間(小時) 段 第自 100°c 至300°C 二之加熱速率 加(°C/min) G在300°C下之保 1持時間(小時) 第自300°C至 二l,15〇C之加熱 加速率(°C/min) g在1,150°C下之 段保持時間(小時) 結 巨? 構微孔(μηι) 根據表3,顯示多孔結構可用加熱過程之加熱速率來控 制。在固定其他參數的情況下,孔徑隨加熱速率降低而增 大。圖4及圖5中分別展示實例6及7之SEM照片。 139374.doc -16- 201132367 表3 實例2 實例6 實例7 chitosan chitosan chitosan 10 10 10 HPMC HPMC HPMC 2 2 2 P-TCP:HA p-TCP:HA p-TCP:HA (9:1) (9:1) (9:1) 6% ' 25% ' 69% 6% ' 25% ' 69% 6% ' 25% ' 69% (A) 陽離子聚電解質(重 量%) (B) 陰離子聚電解質(重 量%) 材料 (C) 生醫陶瓷之組成(重 量比) 混合物之組成(PEC 、生醫陶瓷及水X重 量%) 造孔劑 無 無 無 第一加熱 階段 自25°C至100t之加 熱速率(°C/min) 保持時間(小時) 自 100°C 至300°c 之 1.67 1 1.67 0.63 1 1.67 0.42 1 1.67 第二加熱 加熱速率(°C/min) 階段 在300°C下之保持時 1 1 間(小時) 1 1 1 自 300°C 至 1,150°C 之 3.5 3.5 3.5 第三加熱 加熱速率(°C/min) 階段 在1,150°C下之保持 r C 時段(小時) J J J 結構 巨孔ίμπι) 431 ±220 1,033±278 2,320 ± 778 微孔(μηι) 9±7 9±7 14± 13 表4顯示多孔結構受陽離子及陰離子.聚電解質之濃度影 響。在實例8中,用15%chitosan及3% HPMC,最終產物具 有514 土 178 μπι之巨孔孔徑及7 ± 4 μιη之微孔孔徑。在實 例9中,用200/〇chitosan及4% HPMC ’最終產物具有367 土 117 μιη之巨孔孔徑及6 ± 4 μηι之微孔孔徑。另外,可在實 例2、8及9中藉由使用不同陰離子聚電解質來改變孔徑。 圖6中展示實例9之SEM照片。 139374.doc -17- 201132367 表4 實例2 實例8 實例9 材料 第一加熱 階段 第二加熱 階段 第三加熱 階段 結構 ㈧ 陽離子聚電解質(重 量%) (B) 陰離子聚電解質(重 量%) (C) 生醫陶瓷之組成(重 量比) 混合物之組成(PEC 、生醫陶瓷及水)(重 量%) 造孔劑 自25°C至l〇〇°C之加 熱速率(°C/min) 保持時間(小時) 自 100°C 至300°C 之 加熱速率(°C/min) 在300°C下之保持時 段(小時) 自 300°C 至 1,150°C 之 加熱速率(°C/min) 在1,150°C下之保持 時間(小時) 巨孑L〇im) 微孔〇m) chitosan 10 chitosan 15 chitosan 20 HPMC 2 HPMC 3 HPMC 4 p-TCP:HA (9:1) p-TCP:HA (9:1) p-TCP:HA (9:1) 6% ' 25% ' 69% 9% ' 25% > 66% 12% ' 25% ' 63% 無 無 無 1.67 1.67 1.67 1 1 1 1.67 1.67 1.67 1 1 1 3.5 3.5 3.5 5 5 5 431 ±220 9±7 514± 178 7±4 367±117 6±4 表5顯示多孔結構受基於磷酸鈣材料之比率影響。在實 例1 0中,增加生醫陶瓷材料含量使比率增加為1:1:0.93, 由結果得之其產物具有390 土 314 μιη之巨孔孔徑及10 士 9 μηι之微孔孔徑。 139374.doc 18- 201132367 表5 實例2 實例10 ㈧ chitosan chitosan 陽離子聚電解質(重量%) 10 10 (Β) HPMC HPMC 材料 陰離子聚電解質(重量%) 2 2 (C) P-TCP:HA p-TCP:HA 生醫陶瓷組成(重量比) (9:1) (9:1) 混合物之組成(PEC、生醫 6% > 25% ' 69% 6%、32%、62% 陶瓷及水)(重量%) 第一加熱階 15- 自25°C至100°C之加熱速率 (°C/min) 1.67 1.67 保持時間(小時) 1 1 自100°C至300°c之加熱速 1.67 1.67 第二加熱階 率(。C/min) 段 在300°C下之保持時間(小 1 1 時) 1 1 自300°C至1,150°C之加熱速 3.5 3.5 第三加熱階 率(。C/min) 段 在1150°C下之保持時間(小 C 時) J 結構 巨孑ΐΧμιη) 431 ±220 390 ±314 微孔(μηι) 9±7 10±9 表6顯示以各種生醫陶瓷組合物製備樣品。在實例11中 使用β-TCP及CaS04之混合物作為生醫陶瓷,產物具有656 ± 407 μιη之巨孔孔徑及13 ± 12 μιη之微孔孔徑。此外,在 實例12中將Zr02用作陶瓷材料且其產物具有285 ± 259 μηι 之巨孔孔徑。 139374.doc 19- 201132367 表6 實例9 實例11 實例12 (A) 陽離子聚電解質(重 chitosan 20 chitosan 20 chitosan 20 量%) 材料 (B) 陰離子聚電解質(重 量°/〇) (C) 生醫陶瓷之組成(重 量比) HPMC 4 HPMC 4 HPMC 4 p-TCP:HA (9:1) p-TCP:CaS04 (1:1) Zr02 混合物之組成(PEC 、生醫陶瓷及水)(12%、25%、63% 12%、25%、63% 12%、25%、63% 重量%) 第一加熱階 段 自25°C至1〇〇。(:之加 熱速率(°C/min) 1.67 1.67 1.67 第二加熱階 保持時間(小時) 自 loot:至30(TC之 1 1 1 加熱速率fC/min) 1.67 1.67 1.67 段 在30(Tc下之保持時 間(小時) 1 1 1 第三加熱階 加熱速率fC/min) 3.5 3.5 3.5 段 (300-1,150°C) (300-1,150°C) (300-1,400°C) 保持時段(°c) 1,150(5 小時) 1,150(5小時) 1,400(5 小時) 結構 巨孔(μηι) 367±117 656 ± 407 285 ± 259 — 微孔(μιη) 6±4 13± 12 N.D. 本發明並不上述實施例限制,該等實施例僅以實例形式 呈現但可在由隨附專利申請專利範圍界定之保護範疇内以 多種方式加以修改。 【圖式簡單說明】 圖1顯示在chit〇san/HPMC聚電解質錯合體,與 ehUGsan/HPMc聚電解質錯合體與生醫陶瓷粉末之感溫型 混合物(HA:P-TCP = 1:9)之間的體積變化比較。(A)在251 下之聚電解質錯合體;在75〇c下之聚電解質錯合體; (C)在25°C下之感溫型混合物;及(D)在75它下之感溫型混 139374.doc •20- 201132367 合物。 圖2顯示在chitosan/HPMC聚電解質錯合體(比較實例1)及 chitosan/HPMC聚電解質錯合體與生醫陶瓷粉末之感溫型 混合物(HA$-TCP = 1:9)(實例1 )·其體積與溫度之間的關係。 圖3顯示藉由SEM觀察到的本發明之骨取代材料之多孔 結構(實例2);其中(A)係指試樣之光學照片;(B)係指試樣 之SEM照片(20X);及(C)係指試樣之SEM照片(1,000X)。 圖4顯示藉由SEM觀察到的本發明之骨取代材料之多孔 結構(實例6);其中(A)係指試樣之光學照片;(B)係指試樣 之SEM照片(20X),及(C)係指試樣之SEM照片(1,000X)。 圖5顯示藉由SEM觀察到的本發明之骨取代材料之多孔 結構C實例7)_ ; ·其中· (_A>係-指試樣之光學照片;(B)係指試樣 之SEM照片(20X),及(C)係指試樣之SEM照片(1,000X)。 圖6顯示藉由SEM觀察到的本發明之骨取代材料之多孔 結構(實例9);其中(Α)係指試樣之光學照片;(Β)係指試樣 之SEM照片(20Χ),及(C)係指試樣之SEM照片(1,000Χ)。 139374.doc -21 -阴 though t electrolyte HPMC γ-PGA CMC alginate HPMC medicinal ceramic composition (weight ratio) mixture composition (PEC, biomedical ceramics and water) (% by weight) ligating agent from 25 ° C to 100 ° C. Heating rate plus (°C/min) Heat step retention time (hours) Segment from 100°c to 300°C. Heating rate plus (°C/min) G at 300°C Time (hours) From 300 ° C to two l, 15 ° C heating rate ( ° C / min) g at 1,150 ° C period of holding time (hours) knot giant? Micropores (μηι) According to Table 3, it is shown that the porous structure can be controlled by the heating rate of the heating process. With other parameters fixed, the pore size increases as the heating rate decreases. SEM photographs of Examples 6 and 7 are shown in Figures 4 and 5, respectively. 139374.doc -16- 201132367 Table 3 Example 2 Example 6 Example 7 chitosan chitosan chitosan 10 10 10 HPMC HPMC HPMC 2 2 2 P-TCP: HA p-TCP: HA p-TCP: HA (9:1) (9: 1) (9:1) 6% ' 25% ' 69% 6% ' 25% ' 69% 6% ' 25% ' 69% (A) Cationic polyelectrolyte (% by weight) (B) Anionic polyelectrolyte (% by weight ) Material (C) Composition of biomedical ceramics (weight ratio) Composition of the mixture (PEC, biomedical ceramics and water X% by weight) Pore-forming agent without or without heating rate from 25 ° C to 100 t in the first heating stage (° C/min) Hold time (hours) 1.67 from 100 °C to 300 °C 1 1.67 0.63 1 1.67 0.42 1 1.67 Second heating rate (°C/min) Stage 1 at 300 °C (hours) 1 1 1 3.5 3.5 from 300 ° C to 1,150 ° C 3.5 Third heating heating rate ( ° C / min) Stage at 1,150 ° C to maintain r C period (hours) JJJ structure giant孔ίμπι) 431 ± 220 1,033±278 2,320 ± 778 micropores (μηι) 9±7 9±7 14± 13 Table 4 shows that the porous structure is affected by the concentration of cations and anions. In Example 8, with 15% chitosan and 3% HPMC, the final product had a macropore pore size of 514 178 μm and a pore diameter of 7 ± 4 μm. In Example 9, the final product of 200/〇chitosan and 4% HPMC' had a pore diameter of 367 117 μηη and a pore diameter of 6 ± 4 μηι. Alternatively, the pore size can be varied in Examples 2, 8 and 9 by using different anionic polyelectrolytes. An SEM photograph of Example 9 is shown in FIG. 139374.doc -17- 201132367 Table 4 Example 2 Example 8 Example 9 Material First Heating Stage Second Heating Stage Third Heating Stage Structure (VIII) Cationic Polyelectrolyte (% by Weight) (B) Anionic Polyelectrolyte (% by Weight) (C) Composition of biomedical ceramics (weight ratio) Composition of the mixture (PEC, biomedical ceramics and water) (% by weight) Heating rate of pore former from 25 ° C to l ° ° C (°C / min) retention time ( Hour) Heating rate from 100°C to 300°C (°C/min) Holding period at 300°C (hours) Heating rate from 300°C to 1,150°C (°C/min) Hold time at 1,150 °C (hours) Giant 孑L〇im) Microporous 〇m) chitosan 10 chitosan 15 chitosan 20 HPMC 2 HPMC 3 HPMC 4 p-TCP:HA (9:1) p-TCP:HA (9:1) p-TCP:HA (9:1) 6% ' 25% ' 69% 9% ' 25% > 66% 12% ' 25% ' 63% No No No 1.67 1.67 1.67 1 1 1 1.67 1.67 1.67 1 1 1 3.5 3.5 3.5 5 5 5 431 ±220 9±7 514± 178 7±4 367±117 6±4 Table 5 shows that the porous structure is affected by the ratio of the calcium phosphate-based material. In Example 10, the content of the biomedical ceramic material was increased to increase the ratio to 1:1:0.93, and as a result, the product had a pore diameter of 390 mound 314 μηη and a pore diameter of 10 ± 9 μηι. 139374.doc 18- 201132367 Table 5 Example 2 Example 10 (eight) chitosan chitosan cationic polyelectrolyte (% by weight) 10 10 (Β) HPMC HPMC material anionic polyelectrolyte (% by weight) 2 2 (C) P-TCP: HA p-TCP :HA Biomedical ceramic composition (weight ratio) (9:1) (9:1) Composition of the mixture (PEC, biomedical 6% > 25% '69% 6%, 32%, 62% ceramics and water) ( Weight %) First heating step 15 - Heating rate from 25 ° C to 100 ° C (°C / min) 1.67 1.67 Holding time (hours) 1 1 Heating rate from 100 ° C to 300 ° C 1.67 1.67 Second Heating rate (.C/min) The holding time of the section at 300 °C (small 1 1) 1 1 Heating rate from 300 °C to 1,150 °C 3.5 3.5 Third heating rate (.C/min) The retention time of the segment at 1150 ° C (small C) J structure giant 孑ΐΧ μιη) 431 ± 220 390 ± 314 micropores (μηι) 9 ± 7 10 ± 9 Table 6 shows the preparation of samples with various biomedical ceramic compositions. In Example 11, a mixture of β-TCP and CaS04 was used as the biomedical ceramic, and the product had a pore diameter of 656 ± 407 μηη and a pore diameter of 13 ± 12 μηη. Further, ZrO 2 was used as a ceramic material in Example 12 and its product had a macropore diameter of 285 ± 259 μη. 139374.doc 19- 201132367 Table 6 Example 9 Example 11 Example 12 (A) Cationic polyelectrolyte (weight chitosan 20 chitosan 20 chitosan 20% by weight) Material (B) Anionic polyelectrolyte (weight ° / 〇) (C) Biomedical ceramics Composition (weight ratio) HPMC 4 HPMC 4 HPMC 4 p-TCP: HA (9:1) p-TCP: CaS04 (1:1) Composition of Zr02 mixture (PEC, biomedical ceramics and water) (12%, 25 %, 63% 12%, 25%, 63% 12%, 25%, 63% by weight) The first heating stage is from 25 ° C to 1 Torr. (: heating rate (°C/min) 1.67 1.67 1.67 second heating step holding time (hours) from loot: to 30 (TC 1 1 1 heating rate fC/min) 1.67 1.67 1.67 segment at 30 (Tc Hold time (hours) 1 1 1 Third heating step heating rate fC/min) 3.5 3.5 3.5 segments (300-1,150°C) (300-1,150°C) (300-1,400°C) Hold period (°c ) 1,150 (5 hours) 1,150 (5 hours) 1,400 (5 hours) Structure macropores (μηι) 367±117 656 ± 407 285 ± 259 — micropores (μιη) 6±4 13± 12 ND The present invention does not The above-described embodiments are limited by the examples, which are presented by way of example only, but may be modified in various ways within the scope of protection defined by the scope of the appended patent application. [Simplified illustration of the drawings] Figure 1 shows the chit〇san/HPMC Comparison of volume change between polyelectrolyte complex and ehUGsan/HPMc polyelectrolyte complex and thermophilic mixture of biomedical ceramic powder (HA: P-TCP = 1:9). (A) Polyelectrolyte at 251 Mismatched; polyelectrolyte complex at 75 °c; (C) temperature-sensitive mixture at 25 ° C; and (D) at 75 Figure 129 shows the composition of the Chitosan/HPMC polyelectrolyte complex (Comparative Example 1) and the chitosan/HPMC polyelectrolyte complex and the biomedical ceramic powder (HA$- TCP = 1:9) (Example 1) · Relationship between volume and temperature. Figure 3 shows the porous structure of the bone-substituted material of the present invention observed by SEM (Example 2); wherein (A) refers to the test (B) refers to the SEM photograph (20X) of the sample; and (C) refers to the SEM photograph (1,000X) of the sample. Figure 4 shows the bone replacement of the present invention observed by SEM The porous structure of the material (Example 6); wherein (A) refers to the optical photograph of the sample; (B) refers to the SEM photograph (20X) of the sample, and (C) refers to the SEM photograph of the sample (1,000X) Figure 5 shows the porous structure C of the bone-substituting material of the present invention observed by SEM. Example 7) _; · where (_A>-- refers to the optical photograph of the sample; (B) refers to the SEM of the sample Photographs (20X), and (C) refer to SEM photographs (1,000X) of the sample. Figure 6 shows the porous structure of the bone-substituting material of the present invention observed by SEM (Example 9); ([Alpha]) refers to an optical photograph of the sample; (Beta) mean SEM photograph of a sample (20Χ), and (C) means a SEM photograph of a sample (1,000Χ). 139374.doc -21 -

Claims (1)

201132367 七、申請專利範圍: 1, 一種使用感溫型混合物來形成無機三度空間連通多孔骨 取代物之方法,其中該感溫型混合物包含一或多種聚電 解質錯合體及一或多種生醫陶瓷粉末,該方法包含在 25 C至100°C範圍内之溫度下加熱該混合物,進一步加熱 該所得混合物以移除其中所含之水及聚電解質錯合體並 進行生醫陶瓷之燒結,及接著冷卻該混合物,產生無機 二度空間連通多孔骨取代物。 2.如請求項1之方法,其中該陽離子聚電解質係選自由以 下組成之群.幾丁聚醣、聚精胺酸、聚鳥胺酸、瓊脂糖 凝膠(DEAE)、聚凝胺(polybrene)、聚離胺酸、胺基纖維 素來伸乙亞胺树脂(polyethyleneimine resin)及其混合 物。 3 ·如响求項丨之方法,其中該陰離子聚電解質係選自由以 下、·且成之群:乙醯纖維素、γ_聚麩胺酸(γ_ρ(5Α)、羥丙基 曱基纖維素(HPMC)、羧甲基纖維素(CMC)、聚磷酸鈉、 透月質酸、果膠、褐藻酸鈉及其混合物。 4.如凊求項1之方法,其中該生醫陶粉末係選自由以下 組成之群:以魏辦為主的陶莞粉末、以硫酸約為主的 陶究伞刀末、以氧化物為主的陶究粉末、以氮化物為主的 陶兗粉末、以碳化物為主的陶£粉末、分散有氧化铭之 氧化釔、分散有氧化鈦之氧化鋁,及其混合物。 5 · ga&quot; jj?工1g λ 之方法’其中該以構酸辦為主的陶曼粉末可 選自由-I- Λ J·、 下,.且成之群:羥基磷灰石(HA)、β-磷酸三鈣(β_ 139374.doc 201132367 、非晶 土 π畈鈣(ACP)及其混合物。 6. 如請求項4 &gt; 士、j_ ,^ 其中該以硫酸鈣為主的陶f f 選自由以下έ日士_ ^间£如末可 、、成之群:二水硫酸鈣、半 硫酸鈣。 爪馼鈣及無水201132367 VII. Patent Application Range: 1. A method for forming an inorganic three-dimensional space-connected porous bone substitute using a temperature-sensitive mixture, wherein the temperature-sensitive mixture comprises one or more polyelectrolyte complexes and one or more biomedical ceramics a powder comprising heating the mixture at a temperature ranging from 25 C to 100 ° C, further heating the resulting mixture to remove water and polyelectrolyte complexes therein and sintering the biomedical ceramic, and then cooling The mixture produces an inorganic second degree space interconnected porous bone substitute. 2. The method of claim 1, wherein the cationic polyelectrolyte is selected from the group consisting of chitosan, polyarginine, polyornosine, agarose gel (DEAE), polybrene (polybrene) ), polyaminic acid, amino cellulose to extend ethyleneimine resin and mixtures thereof. 3. The method according to the item, wherein the anionic polyelectrolyte is selected from the group consisting of: acetaminophen, γ-polyglutamic acid (γ_ρ(5Α), hydroxypropyl fluorenyl cellulose (HPMC), carboxymethyl cellulose (CMC), sodium polyphosphate, hyaluronic acid, pectin, sodium alginate and mixtures thereof. 4. The method of claim 1, wherein the raw ceramic powder is selected Free group consisting of: Weiguan powder based on Wei office, ceramics knife with sulfuric acid as the main ingredient, ceramic powder based on oxide, ceramic powder based on nitride, carbonized The main material is the Tao powder, the oxidized cerium oxide, the titanium oxide dispersed in the titanium oxide, and the mixture thereof. 5 · ga&quot; jj? 1g λ method 'In which the acid-based pottery Man powder can be selected freely -I- Λ J·, lower, and into groups: hydroxyapatite (HA), β-tricalcium phosphate (β_ 139374.doc 201132367, amorphous π 畈 calcium (ACP) and The mixture. 6. If the request item 4 &gt; 士, j_ , ^ which is mainly based on calcium sulphate ff, choose the following έ 日 _ ^ between ,, into the group: calcium sulfate dihydrate, calcium sulfate half-jaws and anhydrous calcium Wen 8. 9. 如凊求項4之方法, 自由以下組成之群: 如請求項4之方法, 選自由以下組成之群 如凊求項4之方法, 碳化石夕。 其中以氧化物為主的陶瓷粉末可選 氧化鋁、氧化鍅及氧化鈦。 其中該以氮化物為主的陶瓷粉末係 :氮化矽、氮化鈦及氮化鋁。 其中該以碳化物為主的陶瓷粉末為 10. ::請求:i之方法,其中聚電解質複合體及生醫陶竞材 料之重里百分比(w/w,乾重)分別在2%至40。/❶及至 75°/0之範圍内,其餘組成為水。 11. 如明求項1之方法,其中該聚電解質錯合體之該重量百 刀比以乾重計為2%至4〇〇/0、2〇/〇至3〇〇/0、及2%至20%。 12. 如凊求項1之方法,其中生醫陶瓷材料之該重量百分比 以乾重计為 10%至 75。/。、20%至 75。/。、30°/。至 75%、40%至 75%、5〇〇/❶至 75%、及 6〇%至 75〇/〇。 13. 如明求項丨之方法’其中加熱該熱反應性混合物之該溫 度在 38 C 至 100°C、55°C 至 1〇〇。(:、55°C 至 85°C、55。(:至 8〇°C、或55°C至75°C之範圍内。 14. 如請求項丨之方法,其中該進一步加熱步驟中所用之該 溫度為85。(:至1 50CTC且該加熱可用一個以上階段完成。 15. 如請求項1之方法,其中該進一步加熱步驟中所用之該 139374.doc 201132367 溫度係選自一或多個以下溫度:85°C至300°C、100°C至 250°C、100°C 至 200°C、或 l〇〇°C 至 150°C、300°C 至 1400°C 、300°C 至 1300°C、300°C 至 12〇〇°C、300°C 至 1150°C、 300°C 至 1100°C、300°C 至 1000°C、500°C 至 1400°C、500°C 至 1300°C、及 500°C 至 1200°C。 16.如請求項1之方法,其中該進一步加熱步驟中所用之該 溫度係選自一或多個以下溫度:100。(:至250°C、100°C至 200°C、或 100°C 至 150°C、300°C 至 1150°C、及 300°C 至 1300〇C。 17. 如請求項1之方法,其中該加熱及該進一步 用一個以上階段完成。 18. 如請求項1之方法,其中各段加熱速率可為〇丨至 2〇C/min、0.3 至 15°C/min、0.3 至 l(Tc/min、〇.3 至 5 C/min、0.3 至 3°C/min、或 0_3 至 2°C/min。 19. 如請求項1之方法,其在該加熱及該進.一步加熱步驟之 後,分別進一步包含〇.25至1〇小時之溫度保持階段。 20. 如請求項18之方法,該加熱及該進一步加熱步驟該溫度 保持階段可分別為1至8小時、1至6小時、之至㈠、時、2 至6小時、3至8小時、及3至6小時;〇25至4小時;至 3小時;0.5至2或(^至丨小時。 21. 如請求項1之方法,其中該骨取代材料具有0.05毫米至5 毫米、〇.〇5至3毫米、〇.〇5至2亳米、〇〇5u毫米、〇」至 5毫米、0.1至3毫米或〇3至〇5毫米之巨孔孔徑範圍,且 具有〇.1至30微米、H2〇微米、〇1至1〇微米或〇⑴ 139374.doc 201132367 微米之微孔孔徑範圍。 22.如請求項1之方法,其中該骨取代材料之孔隙率為50%至 95%。 23 ·如請求項1之方法,其進〆步包含使聚合物或生物活性 物質附著於該骨取代材料之該等孔的步驟。 24.如請求項22之方法,其中該藥劑係選自由以下組成之群 :去礦質化骨基質、生長因子、骨形態發生蛋白、抗生 素劑、維生素、膠原蛋白、間葉幹細胞、抗瘤劑、細胞 附著劑、免疫抑制劑、凝血活化劑及富含血小板血漿 (PRP)、富含血小板之纖維蛋白膠(PRF),及絲蛋白質。 139374.doc8. 9. For the method of claim 4, freely consist of the following group: If the method of claim 4 is selected, the group consisting of the following components, such as the method of claim 4, carbon carbide. Among them, oxide-based ceramic powders are available in aluminum oxide, cerium oxide and titanium oxide. Among them, the nitride-based ceramic powders are tantalum nitride, titanium nitride, and aluminum nitride. Among them, the carbide-based ceramic powder is a method of 10.::request: i, wherein the polyelectrolyte complex and the percentage of the raw material of the biomedical pottery material (w/w, dry weight) are respectively 2% to 40%. /❶ and to the range of 75 ° / 0, the rest of the composition is water. 11. The method of claim 1, wherein the polyelectrolyte complex has a weight ratio of 2% to 4〇〇/0, 2〇/〇 to 3〇〇/0, and 2% by dry weight. Up to 20%. 12. The method of claim 1, wherein the weight percentage of the biomedical ceramic material is from 10% to 75 on a dry weight basis. /. 20% to 75. /. , 30°/. Up to 75%, 40% to 75%, 5〇〇/❶ to 75%, and 6〇% to 75〇/〇. 13. The method of claim </ RTI> wherein the temperature of the thermally reactive mixture is between 38 C and 100 ° C, 55 ° C to 1 Torr. (:, 55 ° C to 85 ° C, 55. (: to 8 ° ° C, or 55 ° C to 75 ° C. 14. The method of claim ,, where the further heating step is used The temperature is 85. (: to 150 CTC and the heating can be accomplished in more than one stage. 15. The method of claim 1, wherein the 139374.doc 201132367 temperature used in the further heating step is selected from one or more of the following Temperature: 85 ° C to 300 ° C, 100 ° C to 250 ° C, 100 ° C to 200 ° C, or l ° ° C to 150 ° C, 300 ° C to 1400 ° C, 300 ° C to 1300 °C, 300°C to 12〇〇°C, 300°C to 1150°C, 300°C to 1100°C, 300°C to 1000°C, 500°C to 1400°C, 500°C to 1300 And C. The method of claim 1, wherein the temperature used in the further heating step is selected from one or more of the following temperatures: 100. (: to 250 ° C, 100 ° C to 200 ° C, or 100 ° C to 150 ° C, 300 ° C to 1150 ° C, and 300 ° C to 1300 ° C. 17. The method of claim 1, wherein the heating and the further use One or more stages are completed. 18. If request item 1 The method wherein the heating rate of each section can be 〇丨 to 2〇C/min, 0.3 to 15 ° C/min, 0.3 to 1 (Tc/min, 〇.3 to 5 C/min, 0.3 to 3 ° C/min Or 0_3 to 2 ° C / min. 19. The method of claim 1, further comprising a temperature maintaining phase of 〇25 to 1 hour after the heating and the step of heating. The method of claim 18, wherein the heating and the further heating step are performed in the temperature maintaining phase of 1 to 8 hours, 1 to 6 hours, to (1), hour, 2 to 6 hours, 3 to 8 hours, and 3 to 6 respectively. Hours; 〇25 to 4 hours; to 3 hours; 0.5 to 2 or (^ to 丨 hours. 21. The method of claim 1, wherein the bone-replacement material has 0.05 mm to 5 mm, 〇.〇5 to 3 mm 〇.〇5 to 2 亳m, 〇〇5u mm, 〇" to 5 mm, 0.1 to 3 mm or 〇3 to 〇5 mm of the macropore pore size range, and have 〇1 to 30 μm, H2 〇 micron 〇 1 to 1 〇 micron or 〇 (1) 139374.doc 201132367 micron pore size range 22. The method of claim 1, wherein the bone replacement material has a porosity of 50% to 95%. The method of the requested item 1, which further comprises a polymer into 〆 or biologically active substance is attached to the bone of a porous material such substitution step. 24. The method of claim 22, wherein the agent is selected from the group consisting of demineralized bone matrix, growth factors, bone morphogenetic proteins, antibiotic agents, vitamins, collagen, mesenchymal stem cells, antineoplastic agents, Cell adhesion agents, immunosuppressants, coagulation activators and platelet-rich plasma (PRP), platelet-rich fibrin glue (PRF), and silk proteins. 139374.doc
TW99107666A 2010-03-16 2010-03-16 A process for producing inorganic interconnected 3d open -cell bone substitutes TWI466692B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99107666A TWI466692B (en) 2010-03-16 2010-03-16 A process for producing inorganic interconnected 3d open -cell bone substitutes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99107666A TWI466692B (en) 2010-03-16 2010-03-16 A process for producing inorganic interconnected 3d open -cell bone substitutes

Publications (2)

Publication Number Publication Date
TW201132367A true TW201132367A (en) 2011-10-01
TWI466692B TWI466692B (en) 2015-01-01

Family

ID=46750753

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99107666A TWI466692B (en) 2010-03-16 2010-03-16 A process for producing inorganic interconnected 3d open -cell bone substitutes

Country Status (1)

Country Link
TW (1) TWI466692B (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04361757A (en) * 1991-06-06 1992-12-15 Hideki Aoki Bone filler
JP3679570B2 (en) * 1997-03-14 2005-08-03 ペンタックス株式会社 Bone prosthetic material and manufacturing method thereof
CN1486753A (en) * 2003-08-11 2004-04-07 天津大学 Prepn of injectable bone-repairing hydrochlorinated chitosan/calcium phosphate material
CN1302821C (en) * 2005-08-26 2007-03-07 清华大学 Preparation method of calcium orthophosphate bone cement degradable to pore in human body
US20080281431A1 (en) * 2007-05-10 2008-11-13 Biomet Manufacturing Corp. Resorbable bone graft materials
JP2008284301A (en) * 2007-05-21 2008-11-27 Olympus Terumo Biomaterials Corp Cementitious composition, and bone prosthetic material
RU2376019C2 (en) * 2007-12-26 2009-12-20 Учреждение Российской академии наук Институт металлургии и материаловедения им. А.А. Байкова РАН (ИМЕТ РАН) Porous composite materials based on chitosan for filling of bone defects
CN101366971A (en) * 2008-10-15 2009-02-18 苗军 Injectable water-proof calcium phosphate bone cement

Also Published As

Publication number Publication date
TWI466692B (en) 2015-01-01

Similar Documents

Publication Publication Date Title
Sopyan et al. Porous hydroxyapatite for artificial bone applications
JP5154729B2 (en) Porous artificial bone graft and method for producing the same
TWI394597B (en) Biodegradable scaffold bone graft for orthopaedic use
Zeng et al. Indirect selective laser sintering-printed microporous biphasic calcium phosphate scaffold promotes endogenous bone regeneration via activation of ERK1/2 signaling
US8613876B2 (en) Foamed ceramics
US8940203B2 (en) Method for preparing composition comprising porous ceramic with thermo-response hydrogel
WO2019153794A1 (en) Hollow porous spherical particle artificial bone, preparation method therefor and use thereof
Weng et al. Review of zirconia-based biomimetic scaffolds for bone tissue engineering
US20190000603A1 (en) Scaffold with cortical wall
Abdurrahim et al. Recent progress on the development of porous bioactive calcium phosphate for biomedical applications
WO2010021559A1 (en) Hydroxyapatite and bioglass-based pellets, production process and applications of thereof
US8465582B2 (en) Process for producing inorganic interconnected 3D open cell bone substitutes
EP2933241B1 (en) Method for producing a porous calcium polyphosphate structure
ES2939266T3 (en) Collagen matrix or granulated mixture of bone substitute material
US11357891B2 (en) Collagen matrix or granulate blend of bone substitute material
Swain Processing of porous hydroxyapatite scaffold
Yang et al. Fabrication of β-TCP scaffold with pre-designed internal pore architecture by rapid prototyping of mask projection stereolithography
US20060110422A1 (en) Conversion of calcite powders into macro- and microporous calcium phosphate scaffolds for medical applications
TW201132367A (en) A process for producing inorganic interconnected 3D open-cell bone substitutes
Galić et al. Processing of gelatine coated composite scaffolds based on magnesium and strontium doped hydroxyapatite and yttria-stabilized zirconium oxide
Ioku et al. Porous granules of β-tricalcium phosphate composed of rod-shaped particles
KR20120050698A (en) Porous hydroxyapatite spheres and bone graft comprising the same
Stone et al. Preparation and Characterization of Polylactide-co-glycolide/Carbonate Apatite (PLGA/CHA) Composite Scaffolds
RO128210A2 (en) Process for preparing microporous calcium phosphate ceramic granules

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees