TW201132332A - System and method for evaluating physiological signal - Google Patents

System and method for evaluating physiological signal Download PDF

Info

Publication number
TW201132332A
TW201132332A TW99109517A TW99109517A TW201132332A TW 201132332 A TW201132332 A TW 201132332A TW 99109517 A TW99109517 A TW 99109517A TW 99109517 A TW99109517 A TW 99109517A TW 201132332 A TW201132332 A TW 201132332A
Authority
TW
Taiwan
Prior art keywords
signal
entropy
physiological
physiological signal
signal evaluation
Prior art date
Application number
TW99109517A
Other languages
Chinese (zh)
Inventor
Yung-Hung Wang
Sheng-Fu Liang
Yu-Hsiang Pan
Original Assignee
Ancad Inc
Sheng-Fu Liang
Yu-Hsiang Pan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ancad Inc, Sheng-Fu Liang, Yu-Hsiang Pan filed Critical Ancad Inc
Priority to TW99109517A priority Critical patent/TW201132332A/en
Publication of TW201132332A publication Critical patent/TW201132332A/en

Links

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

The invention discloses a system and a method for evaluating physiological signal. The physiological signal evaluating system comprises a filter module, a signal splitting module, a processor, and a classifier. The filter module filters a time-series signal within a frequency range and outputs a filtered time-series signal. The signal splitting module, receiving the filtered time-series signal, splits the filtered time-series signal by a time interval and generates a plurality of signal sections accordingly. The processor, receiving the signal sections, calculates a plurality of entropies from each signal section. The classifier, having an entropy table, receives the entropies and compares the entropies to the entropy table for generating a physiological signal evaluating factor accordingly.

Description

201132332 六、發明說明: 【發明所屬之技術領域】 本發關於-種生理信號評㈣統及方法並 =關於-種應好尺賴演算法以評估睡眠 理 仏號評估系統及方法。 、 里 【先前技術】 在"平估受測者的身心狀況時,通常會測量並 中醫師更往往藉由解讀測量出來的生理信號進生行^ 來說’睡眠品f的評估f要仰賴醫師解讀^的、^ 理“號才能做準確的判斷。 刃玍 一般來說,睡眠在人們一天的時間中約占了 1/3,苴 ί ίϊίίί完全靜止不動的,相反地,大腦會進行一i串不 问认的活動’且在不同的階段會產生—些不同㈣的 ,如’大腦在不同階段所進行的一些活動經研究發^1 學^或 疋疾病有關。因此,侧睡眠品質可以反映 動,使醫師更能夠掌握受測者的身心狀況。個人的大歸 傳統的睡眠品質評估方法中,需要長時間的測量受測者的 理數據’例如.測1眼電圖(electr〇_〇cul〇gram,E〇g)或是腦 電圖(electro-encephalogram ’ EEG) ’再藉由人工判斷受測者每 ,階段地睡眠狀況。舉例來說,請參見圖一 A以及圖一 B,圖 一 A係繪示一受測者之眼電圖的原始信號。圖一 B係繪示圖 一A之眼電圖由人工判讀之結果。如圖所示,圖一A繪示了 數萬秒的眼電圖信號,於傳統的睡眠品質評估過程中,藉由人201132332 VI. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a physiological signal evaluation (four) system and method and relates to an evaluation system and method for evaluating sleep slogans. [Previous technique] When assessing the physical and mental condition of the subject, it is usually measured and the Chinese doctor often uses the physiological signals measured by the interpretation to enter the living line. ^ The evaluation of the sleep product f depends on Physicians can interpret ^'s and ^'s numbers to make accurate judgments. In general, sleep accounts for about 1/3 of people's time in a day, 苴ί ίϊίίί is completely still, and instead, the brain will carry out a i string of unrecognized activities 'and will produce at different stages - some different (four), such as 'the brain's activities in different stages of research are related to the disease or 疋 disease. Therefore, the quality of side sleep can be Reflecting the movement, the doctor is more able to grasp the physical and mental condition of the subject. In the traditional method of assessing the quality of sleep, it takes a long time to measure the data of the subject. For example, measuring 1 electro-oculogram (electr〇_ 〇cul〇gram, E〇g) or electro-encephalogram 'EEG' can be used to manually judge the sleep state of the subject at each stage. For example, see Figure 1A and Figure 1B. Figure 1A shows a The original signal of the electro-oculogram of the subject. Figure 1B shows the result of manual interpretation of the electro-oculogram of Figure A. As shown in the figure, Figure 1A shows the electro-oculogram signal of tens of thousands of seconds. In the traditional sleep quality assessment process, by people

工分析眼電圖的原始信號,並將判斷結果逐一標示在在^一 B 中。然而,使用人工判斷將非常耗時費力,除了需要判讀長達 數小時地睡眠資料之外,更可能因為反覆且冗長的作業而產生 錯誤的判斷。 201132332 古J — ί 理信號十分地複雜,若使用普通的判斷 配儀器進行判斷,雖然可以有效縮短判斷時間,^並= ΐ:方法難以訂立一套精確的判斷標準,故判斷的準確“ 综上所述,在評估生理信號時,需要一套更 方法的祕,來輔助判斷受測者的生理狀態,進ίΐ 醬師更能夠更準確的診斷並予以相對應的治療。 【發明内容】The original signal of the electro-oculogram is analyzed, and the judgment results are marked one by one in ^B. However, the use of manual judgments can be very time consuming and laborious. In addition to the need to interpret sleep data for up to several hours, it is more likely to make erroneous judgments due to repeated and lengthy assignments. 201132332 Ancient J — The signal is very complicated. If you use ordinary judgment equipment to judge, although it can effectively shorten the judgment time, ^ and = ΐ: the method is difficult to establish a set of accurate judgment criteria, so the judgment is accurate. In the evaluation of physiological signals, a set of secrets of a more method is needed to assist in judging the physiological state of the subject, and the surgeon can more accurately diagnose and respond to the corresponding treatment.

本發明之-麟在於-種生理信號評估系統,運用多尺 度熵(multi-scale entropy ’ MSE)的演算法進行生理信號的評 估,除了可以快速評估受測者的生理狀況之外, 準確的判斷結果。 依據本發明之-具體實施例,本發明之所述生理信號 評估系統包含紐模組、信號分割模組、處職以及分類哭。 其^滤波模組以-頻率範圍過據時序信號並輸出滤波後之時 序佗號。彳s號分割模組輕接濾波模組,接收滅 號,並以-時脈間隔分誠波後之時序信號, ,三處理器耦接信號分割模組’接收所述多個信號片段,並運 算每-信號片段之多個熵值。分類H祕處理器,具有烟值對 照表,分類ϋ接收每—信號片段之所述多個熵值,並將所述多 個熵值比對熵值對照表,據以產生生理信號評估參數。 於實際應用中,生理信號評估系統更包含取樣模組, 所述取樣模組耦接濾波模組,以一預設頻率取樣原始信 號,據以產生時序信號。此外,滤波模組可包含帶通遽波器 (bandpass filter)。再者,每一熵值為多尺度熵演算法中,以多 個運算尺度其巾之-進行運算之結果。另外,分·可藉由 201132332 預先輸入多個標準熵值,建立熵值對照表。其中,熵值對 照表包含多個熵值區間,每一熵值區間至少包含所述多個 標準熵值其中之一。 本發明之一範疇在於一種生理信號評估方法,運用多 十度熵的演鼻法進行生理信號的評估,除了可以快速評估 受測者的生理狀況之外,可產生更準確的判斷結果。 依據本發明之一具體實施例,本發明之生理信號評估 方法包含下列步驟:以—頻率範圍過料序信號,據以產 ,濾波後之時序信號;以一時脈間隔分割濾波後之時序信 號:據以產生多個信號片段;運算每一信號片段之多個滴 严,將所述多個熵值比對熵值對照表,據以產生生理信號 評估參數。 於實際應用中,每-熵值為一多尺度熵演算法中,以 =運算尺度其中之一進行運算之結果。此外,所述生理 ΐϊΐΐ古方法更包含下列步驟:預先輸人多個標準熵值,建 2值對照表。其中熵值對照表包含多個熵值關,每-熵 值區間至少包含所述多個標準熵值其中之一。 綜上所述,本發明之生理信號評估系統及方法,運用多尺 算法進订生理錢的評估,由於多尺賴演算法中, 2 的運算ί度可進行多維度的分析,因此本發明可比 值尺度運异出來的多侧值,而不健是依照單一熵 斷。减,本發明之生理域評料、統及方法除了可 速评估受測者的生理狀況之外,可大幅提升判斷結果的準 關於本發明之優點與精神可 所附圖式得到進-步的瞭解β τ’ W述及 201132332 【實施方式】 請參見圖二’圖二雜示本發明之—具體實施例之生理信 號評估系統的方塊圖。如圖二所示,生理信號評估系統i包含 滤波模組ίο、信號分割模組12、處理器14、分類器16以及 取樣模組18。其中’遽波模組1〇電性連接於信號分割模組12 以及取樣模組18之間,處理器14電性連接於信號分割模組 12以及分類器16之間。 遽波模組10以-頻率範圍過據時序信號並輸出濾波後之 • 時序信號。於實務中,濾波模組10可包含或可為-種帶通遽 波器,並且所述頻率範圍為〇·5Ηζ至3〇Hz。也就是說,遽波 模組10可過濾掉不需要的信號,而僅留下頻率範圍在 0.5Hz^3GHz之中的信號。另—方面,絲_之生理信號頻 率較南,濾波模組10可依據欲偵測之生理信號的頻率進行設 汁,因此濾波模組1〇並不限定僅能留下頻率範圍在 0·5Ηζ〜30Hz之中的信號。 信號分割模組12接收經濾波模組1〇輸出的濾波後之時序 鲁信號,並以一時脈間隔分割濾波後之時序信號,產生多個信號 片段。於實務中,信號分割模組12用以將信號分成多段,以 便將分段後的信號做進一步的處理,而所述時脈間隔在此並不 加以限制,舉例來說,時脈間隔可為3〇秒。 處理器14接收所述多個信號片段,並運算每一信號片段 之多個熵值。於實務中,每一熵值為多尺度熵(MSE)演算法 中,以多個運算尺度其中之一進行運算之結果。舉例來說,處 理器14可使用20個運算尺度以進行所述多尺度熵演算法,而 透過所述多尺度熵演算法,每一個(第1〜2〇個)運算尺度可分 201132332 t 別產生各自(第1〜20個)的熵值,輸出至分類器16。在此,本The invention is based on a physiological signal evaluation system, and uses a multi-scale entropy 'MSE algorithm to perform physiological signal evaluation, in addition to quickly assessing the physiological condition of the subject, and accurately determining result. According to a specific embodiment of the present invention, the physiological signal evaluation system of the present invention comprises a button module, a signal segmentation module, a service, and a classification cry. The filter module passes the timing signal in the -frequency range and outputs the filtered time apostrophe. The 彳s segmentation module is connected to the filter module to receive the extinction signal, and the time-series signal is separated by the clock interval, and the three processors are coupled to the signal segmentation module to receive the plurality of signal segments, and Calculate multiple entropy values for each-signal segment. The classification H secret processor has a smoke value comparison table, classifies, receives the plurality of entropy values of each signal segment, and compares the plurality of entropy values with an entropy value table to generate a physiological signal evaluation parameter. In a practical application, the physiological signal evaluation system further includes a sampling module, and the sampling module is coupled to the filtering module to sample the original signal at a preset frequency to generate a timing signal. In addition, the filter module can include a bandpass filter. Furthermore, each entropy is the result of a multi-scale entropy algorithm that performs operations on multiple scales. In addition, the entropy value comparison table can be established by inputting a plurality of standard entropy values in advance by 201132332. The entropy value comparison table includes a plurality of entropy value intervals, and each entropy value interval includes at least one of the plurality of standard entropy values. One aspect of the present invention resides in a physiological signal evaluation method, which uses a ten-degree entropy-based nasal method for physiological signal evaluation, which can produce a more accurate judgment result in addition to rapidly assessing the physiological condition of the subject. According to an embodiment of the present invention, the physiological signal evaluation method of the present invention comprises the steps of: over-sequencing the signal in the frequency range, and generating the filtered timing signal; and dividing the filtered timing signal by a clock interval: To generate a plurality of signal segments; calculate a plurality of drip of each signal segment, and compare the plurality of entropy values to an entropy value table to generate a physiological signal evaluation parameter. In practical applications, the per-entropy value is the result of one of the = arithmetic scales in a multi-scale entropy algorithm. In addition, the physiological method further comprises the steps of: inputting a plurality of standard entropy values in advance, and constructing a 2-value comparison table. The entropy value comparison table includes a plurality of entropy values, and each entropy interval includes at least one of the plurality of standard entropy values. In summary, the physiological signal evaluation system and method of the present invention uses a multi-scale algorithm to evaluate the evaluation of physiological money. Since the multi-dimensional calculus algorithm can perform multi-dimensional analysis, the present invention can be The multi-lateral value of the ratio scale is different, and the non-health is broken according to a single entropy. In addition to the rapid evaluation of the physiological condition of the subject, the physiological domain assessment, system and method of the present invention can greatly improve the judgment result. The advantages and spirit of the present invention can be further improved. Understanding β τ' W and 201132332 [Embodiment] Referring to Figure 2, there is shown a block diagram of a physiological signal evaluation system of the present invention. As shown in FIG. 2, the physiological signal evaluation system i includes a filter module ίο, a signal splitting module 12, a processor 14, a classifier 16, and a sampling module 18. The processor 15 is electrically connected between the signal splitting module 12 and the sampling module 18, and the processor 14 is electrically connected between the signal splitting module 12 and the classifier 16. The chopper module 10 passes the timing signal in the -frequency range and outputs the filtered timing signal. In practice, the filter module 10 can include or can be a bandpass chopper, and the frequency range is 〇·5Ηζ to 3〇Hz. That is to say, the chopper module 10 can filter out unwanted signals, leaving only signals in the frequency range of 0.5 Hz^3 GHz. On the other hand, the physiological signal frequency of the silk_ is relatively south, and the filter module 10 can set the juice according to the frequency of the physiological signal to be detected. Therefore, the filter module 1〇 is not limited to only leaving the frequency range at 0·5Ηζ. Signals in ~30Hz. The signal dividing module 12 receives the filtered timing signal outputted by the filtering module 1〇, and divides the filtered timing signal by a clock interval to generate a plurality of signal segments. In practice, the signal segmentation module 12 is configured to divide the signal into a plurality of segments to further process the segmented signal, and the clock interval is not limited herein. For example, the clock interval may be 3 leap seconds. Processor 14 receives the plurality of signal segments and operates a plurality of entropy values for each of the signal segments. In practice, each entropy is the result of computing in one of multiple operational scales in a multi-scale entropy (MSE) algorithm. For example, the processor 14 can use 20 operational scales to perform the multi-scale entropy algorithm, and through the multi-scale entropy algorithm, each (1st to 2nd) operational scale can be divided into 201132332 t The respective entropy values (1st to 20th) are generated and output to the classifier 16. Here, this

發明並不限制運算尺度之數量’技術人員可自行選擇適當的運 算尺度之數量。 W 值得注意的是,本發明不對其運算方式加以限制,其原因 在於’所述多尺度熵演算法係所述技術領域具有通常知識者皆 能明瞭的一種演算法,雖然可運用若干不同的方式進行多尺^ 熵的運算,但只要是進行多尺度熵的運算且每一個運算尺度$The invention does not limit the number of operational scales. Technicians can choose the appropriate number of operational scales. W It is worth noting that the present invention does not limit its operation mode because the multi-scale entropy algorithm is an algorithm that can be understood by those skilled in the art, although several different methods can be used. Perform multi-footwise entropy operations, but as long as it is performing multi-scale entropy operations and each operation scale $

分別產生各自的熵值,即屬於本發明之範疇,技術人員可 決定其運算方式。 灯 分類器16具有一熵值對照表,且分類器16接收每一信號 片段之所述多個熵值’並將所述多個熵值比對熵值對照表, 以產生生理信號評估參數。於實務中,分_ ^可為一 性或非線性之分類ϋ。並且,分麵16可預先輸人多卿準 熵值’據以建立麵對照表。其中,熵值對照表包含多個^ 區間,每一熵值區間至少包含所述多個標準熵值立中之一。兴 例來說,在使用生理信號評估系統i進行生理信號的評估二 1先透過輸人若干鮮值或由專業人貞先行調校所述網值 對A、、表’使得分_ 16能_確分酿處難14輪人的網值。 另外,所述多個熵值區間分別對應多個運算尺度 =個運算尺度所運算出來的熵值,可分別由第㈣個爛^ ==數Si每:Γ值區間應包含用以指示不同生 ⑽雜採用哪個 =外,由於纽域不如機械產生的錢有 性’舉例來說,生理信號可能因為受測者的姿勢、情緒或^ 201132332 他外在因素而有些許變化,故在調校所述熵值對照表時,通常 會設置多個熵值區間分別對應多個標準熵值,提高生理信號的 容錯率,使得生理信號的判斷可以免於受到一些不理想因素的 干擾。The respective entropy values are generated, respectively, which fall within the scope of the invention, and the skilled person can determine the mode of operation. The lamp classifier 16 has an entropy value comparison table, and the classifier 16 receives the plurality of entropy values of each signal segment and compares the plurality of entropy values to an entropy value table to generate physiological signal evaluation parameters. In practice, the _ ^ can be a categorical or non-linear ϋ. Moreover, the facet 16 can be pre-inputted with multiple entropy values to establish a face comparison table. The entropy value comparison table includes a plurality of ^ intervals, and each entropy interval includes at least one of the plurality of standard entropy values. For example, the physiological signal evaluation system i is used to evaluate the physiological signal. The first step is to first adjust the net value to A, and the table to make the score _ 16 can be obtained by inputting some fresh value or by a professional person. It is true that the net value of 14 rounds is difficult. In addition, the plurality of entropy value intervals respectively correspond to the entropy values calculated by the plurality of operation scales=the operation scales, and may be respectively determined by the (fourth) rotten ^==number Si: the threshold interval should be included to indicate different births (10) Which one is used instead of the other, because the New Zealand is not as good as the money generated by the machinery. For example, the physiological signal may change slightly due to the posture, mood, or external factors of the subject. When the entropy value comparison table is described, a plurality of entropy interval intervals are respectively set corresponding to a plurality of standard entropy values, thereby improving the fault tolerance rate of the physiological signal, so that the judgment of the physiological signal can be protected from some undesired factors.

取樣模組18以一預設頻率取樣原始信號,據以產生時序 信號。於實務中,由偵測生理狀態產生的原始信號往往是一個 長,間的仏號,若從原始信號進行信號的分析及處理,將會過 分消耗運算資源。因此,為了減少運算量,使得進入濾波模組 1〇的彳5號> 料量能有效地被縮小,取樣模組丨8可從原始信號 中降低彳§號頻率,舉例來說,預設頻率可預設為256ίίζ。 以下搭配本發明之生理信號評估方法及圖式,作更 說明。 、 =參見圖二及圖三,圖三係繪示本發明之一具體實施例之 ^理號评估方法的流程圖。如圖所示,於步驟S20中,取樣 模組18以一預設頻率取樣一原始信號,據以產生一時序俨 且取樣模組18可進一步傳送時序信號至濾波模組1〇。^ =中’取樣模組18可選擇其他的取樣條件進行原始信號之 二牛例來說’取樣模組18也可肋排除振幅過大或過小 藉以減少進入濾波模組1〇之信號的運算量。 痒位=著祕於步驟幻2 *,遽波模、组1〇以一頻率範圍過渡時 以產生滤波後之時序信號。於實務中,以睡眠品質 麵她驗·輯,所猶序㈣通常選用眼電 n协:號或疋腦電圖(EEG)信號’由於E0G信號與咖 務上存在可判讀之意義的頻率範圍約在 z ’故可預先將驗模組1Q⑽波頻率範圍設定在 201132332 0·5Ηζ〜30Hz 附近。 接著,於步驟S24中,信號分割模組12自濾波模組ι〇 接收濾波後之時序信號,並以一時脈間隔分割濾波後之時序信 號’據以產生多個信號片段。於實務中,以睡眠品質之評估為 例’其睡眠狀態隨著大腦的活動而改變,故選擇適當的時脈間 隔可以在簡化運算之情況下,不影響判斷的準確度。舉例來 說’在評估睡眠品質時’信號分割模組12以30秒做一個分割 (epoch) ’也就是每30秒為一單位進行後續的運算,換句話說,The sampling module 18 samples the original signal at a predetermined frequency to generate a timing signal. In practice, the original signal generated by the detected physiological state is often a long and nickname. If the signal is analyzed and processed from the original signal, the computing resources will be excessively consumed. Therefore, in order to reduce the amount of calculation, the amount of 彳5> into the filter module 1 can be effectively reduced, and the sampling module 丨8 can reduce the frequency of the 彳§ from the original signal, for example, preset The frequency can be preset to 256 ίίζ. The following is a description of the physiological signal evaluation method and the drawing of the present invention. Referring to FIG. 2 and FIG. 3, FIG. 3 is a flow chart showing a method for evaluating the number of a specific embodiment of the present invention. As shown in the figure, in step S20, the sampling module 18 samples an original signal at a predetermined frequency to generate a timing, and the sampling module 18 can further transmit the timing signal to the filtering module 1 . The ^=middle sampling module 18 can select other sampling conditions for the original signal. The sampling module 18 can also eliminate the excessive or too small amplitude of the ribs to reduce the amount of computation of the signal entering the filtering module 1〇. The itch position = the secret step 2 *, the chopping mode, the group 1 〇 in a frequency range transition to generate the filtered timing signal. In practice, she is tested in terms of sleep quality, and the order (4) is usually selected from the eye-electric n-label: or the EEG signal (EEG) because of the frequency range in which the E0G signal and the coffee service can be interpreted. The frequency range of the 1Q(10) wave of the test module can be set in the vicinity of 201132332 0·5Ηζ~30Hz in advance. Next, in step S24, the signal splitting module 12 receives the filtered timing signal from the filtering module ι, and divides the filtered timing signal by a clock interval to generate a plurality of signal segments. In practice, the evaluation of sleep quality is taken as an example. The sleep state changes with the activity of the brain, so choosing the appropriate clock interval can simplify the calculation without affecting the accuracy of the judgment. For example, when evaluating sleep quality, the signal segmentation module 12 performs an epoch in 30 seconds, that is, a subsequent operation every 30 seconds, in other words,

評估睡眠品質較適當的時脈間隔約為30秒,但本發明不應以 此為限。 接著,於步驟S26中,處理器14接收多個信號片段並以 多尺度熵演算法運算每一信號片段之多個熵值。於實務中,處 理14使用多尺度熵演算法,並以多個運算尺度運算每一個 信號片段,據以對應產生多個熵值。 接著,於步驟S28中,分類器16將多個熵值比對熵值到 *、、、表據以產生生理彳§號評估參數。舉例來說,處理器14接 ^-信號片段’接著以20個運算尺度透過多尺度趣算法 叶算出所述信㈣段的2G侧值,接著將所述2()彳_值輸入 2器16。舉例來說,當帛1個運算尺度所運算出來的熵值落 1個熵值_的第―個範圍内,則分娜16輸出第一生 Z號評估參數;當所賴值落在第丨侧值區間的第二 圍内’則分類器16輸出第二生理信號評估參數。 可以是若時序信號較長,生理信號評估系統1更 :===驟二可 鞛此了侍到一連串的生理信號評估參 201132332 數以判別受測者於每個時間點的生理狀態。 綜上_ ’本發狀生理錢槪祕及 度熵的演算法進行生理信號的評估。 ^夕尺 評估系統及方法可廣泛的應用於久錄斗…本《月之生理信號 尺度.磁巾,可依據不同的運算尺度可 = 析’因此本㈣之不健是依照單—雜 的刀 生理m = 除了可_速贿受測者的The appropriate clock interval for assessing sleep quality is approximately 30 seconds, but the invention should not be limited thereto. Next, in step S26, the processor 14 receives the plurality of signal segments and operates a plurality of entropy values for each of the signal segments in a multi-scale entropy algorithm. In practice, the process 14 uses a multi-scale entropy algorithm and operates each of the signal segments on multiple operational scales to correspondingly generate a plurality of entropy values. Next, in step S28, the classifier 16 compares the plurality of entropy values to the entropy value to *, , and the data to generate a physiological parameter. For example, the processor 14 then calculates the 2G side value of the (4) segment through the multi-scale algorithm leaf by 20 arithmetic scales, and then inputs the 2() 彳_ value into the device 16 . For example, when the entropy value calculated by 1 arithmetic scale falls within the first range of 1 entropy value _, then the sub-16 outputs the first raw Z evaluation parameter; when the value falls on the third Within the second circumference of the side value interval, the classifier 16 outputs a second physiological signal evaluation parameter. It may be that if the time series signal is long, the physiological signal evaluation system 1 can further determine the physiological state of the subject at each time point by waiting for a series of physiological signal evaluation parameters. In summary, _ 'the hair growth of the hair and the degree of entropy algorithm to evaluate the physiological signal. The oxime evaluation system and method can be widely applied to the long-term recording... This is the physiological signal scale of the month. The magnetic towel can be analyzed according to different calculation scales. Therefore, the (4) is not based on the single-missing knife. Physiological m = except for the _ quick bribe testee

:明之分類器更可預先由專業人員 := 發明之評储果更树可靠。 ^斷·’使本 藉由以上較佳具體實施例之 描述本發明之特徵盘精神 係希望月b更加楚 希體二:==露= 之專利範圍的範_内 。' =月 【圖式簡單說明】 圖一八係繪示—受測者之眼電圖的原始信號。 圖- B係繪示圖一 A之眼電圖由人工判讀之結果。 圖二係繪示本發明之一 .^ 的方塊圖。 $體實施例之生理信號評估系統 圖三係繪示本發明之— 的流程圖。 之騎實關U理健評估方法 【主要元件符號說明】 10 :濾波模組 1 :生理信號評估系統 201132332 12 :信號分割模組 14 :處理器 16:分類器 18 :取樣模組 S20〜S28 :步驟流程: Ming classifier can be pre-required by professionals: = The evaluation of the invention is more reliable. The feature disc of the present invention, which is described by the above preferred embodiments, is intended to be more versatile than the patent range of =====. ' = month [Simple diagram description] Figure VIII shows the original signal of the subject's electro-oculogram. Fig. B shows the result of manual interpretation of the electrooculogram of Figure A. Figure 2 is a block diagram showing one of the present inventions. Physiological Signal Evaluation System of the Body Embodiment FIG. 3 is a flow chart showing the present invention. The ride of the actual U-health evaluation method [main component symbol description] 10: filter module 1: physiological signal evaluation system 201132332 12: signal split module 14: processor 16: classifier 18: sampling module S20 ~ S28: Step flow

1212

Claims (1)

201132332 七、申凊專利範圍: 1、 種生理信號評估系統,包含: 一 信ϊτ頻率範圍過滤-時序信號並輸出-據波 一 ίΠΐ組^接該遽波模組,接收該攄波後之時序 ,理器,耦接該信號分割模組,該處理器接 片段:運算每—該信削段之多個熵值;以ί等㈣ 一 理器,具有—熵值對照表,該分類器 接收母一該仏唬片段之該等熵值,並將該等熵值比 熵值對照表,據以產生一生理信號評估參數。6χ 2、 如二請專利严圍第!項所述之生理信號評估系統,更包含: 一^樣模組,_域波模組’以—預設辭取樣一原始 4吕號,據以產生該時序信號。 3、 ΐ1項所述之生理信餅估系統,其中該遽波 模組包含一帶通濾波器。 4、 如申請專利範圍第1項所述之生理信號評估系統,其中每一該 熵值為一多尺度熵演算法中,以多個運算尺度其中之一進= 運算之結果。 〃 如申請專利範圍第1項所述之生理信號評估系統,其中該分類 器藉由預先輸入多個標準熵值,建立該熵值對照表'。、 6、 如申請專利範圍第5項所述之生理信號評估系統,其中該熵值 對照表包含多個熵值區間,每一該嫡值區間至少包含該等根 準熵值其中之一。 示 如申請專利範圍第1項所述之生理信號評估系統,其中該分類 器係一線性分類器或一非線性分類器。 ' Ρ m 13 7、 201132332 第1項所述之生理信號評估系統,其中該時序 镉唬係一眼電圖信號或一腦電圖信號。 斤 9、 種生理k號評估方法,包含下列步驟: 以ίΪ率範圍過濾—時序信號’據以產生—滤波後之時序 以j脈間隔分割該舰後之時序信號,據以產生多個信 號片段,201132332 VII. Application scope of Shenyi: 1. A physiological signal evaluation system, including: a signal ϊ τ frequency range filtering - timing signal and output - according to the wave Πΐ Πΐ group ^ connected to the chopper module, receiving the chopper after the timing And the processor is coupled to the signal segmentation module, and the processor is connected to the segment: computing each entropy value of the segmentation segment; and using a processor to have an entropy value comparison table, the classifier receives The parent is the isentropic value of the segment, and the isentropic value is compared with the entropy value to generate a physiological signal evaluation parameter. 6χ 2. The physiological signal evaluation system described in the second paragraph of the patent, the second section of the patent, includes: a sample module, _ domain wave module, with a preset word sampling, an original 4 Lu number, according to which The timing signal. 3. The physiological letter estimation system according to item 1, wherein the chopping module comprises a band pass filter. 4. The physiological signal evaluation system according to claim 1, wherein each of the entropy values is a multi-scale entropy algorithm, and the result of the operation is one of a plurality of operational scales.生理 The physiological signal evaluation system according to claim 1, wherein the classifier establishes the entropy value comparison table by inputting a plurality of standard entropy values in advance. 6. The physiological signal evaluation system of claim 5, wherein the entropy value comparison table comprises a plurality of entropy interval intervals, each of the threshold intervals including at least one of the root entropy values. The physiological signal evaluation system of claim 1, wherein the classifier is a linear classifier or a nonlinear classifier. ' Ρ m 13 7, 201132332 The physiological signal evaluation system according to item 1, wherein the time series cadmium telluride is an electrooculogram signal or an EEG signal.斤9, physiological physiology k evaluation method, comprising the following steps: filtering by the range of — — — 时序 时序 时序 时序 时序 时序 时序 时序 时序 时序 时序 时序 时序 时序 时序 时序 时序 时序 时序 时序 时序 时序 时序 时序 时序 时序 时序 时序 时序 时序 滤波 滤波 滤波 滤波 滤波 滤波, 運算每一該信號片段之多個熵值;以及 U熵值比對一熵值對照表,據以產生-生理信號評估 10、 ^申請專利範圍第9項所述之生理信號評估方法,更包含下列 步驟. 以一預設頻率取樣-原始信號,據以產生該時序信號。 11、 如申請專利範圍第9項所述之生理信號評估方法 ,為:多尺度熵演算法中’以多個運算尺度其;之一進行 建异之結果。 12、 請專利範圍第9項所述之生理信號評估方法,更包含下列 預先輸入多個標準摘值,建立該燏值對照表。 13、 ^中請專利範圍第12項所述之生理錢評估方法中該摘 值區間,每—該熵值區間至少包含該等 14、 ^申請專利範圍第9項所述之生理信號評估方法, k旒係一眼電圖信號或一腦電圖信號。 〜" 14Calculating a plurality of entropy values of each of the signal segments; and a U-entropy value comparison-entropy value comparison table, according to which the physiological signal evaluation method according to claim 9 is generated, and the physiological signal evaluation method described in claim 9 is further included The following steps: sampling at a preset frequency - the original signal, according to which the timing signal is generated. 11. The physiological signal evaluation method according to item 9 of the patent application scope is as follows: in a multi-scale entropy algorithm, the result is constructed by a plurality of operation scales; 12. Please refer to the physiological signal evaluation method described in item 9 of the patent scope, and further include the following pre-input of multiple standard values to establish the threshold comparison table. 13. The value range of the physiological money evaluation method described in item 12 of the patent scope, each of the entropy interval includes at least the physiological signal evaluation method described in item 9 of the patent application scope, k旒 is an electrocardiogram signal or an EEG signal. ~" 14
TW99109517A 2010-03-30 2010-03-30 System and method for evaluating physiological signal TW201132332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99109517A TW201132332A (en) 2010-03-30 2010-03-30 System and method for evaluating physiological signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99109517A TW201132332A (en) 2010-03-30 2010-03-30 System and method for evaluating physiological signal

Publications (1)

Publication Number Publication Date
TW201132332A true TW201132332A (en) 2011-10-01

Family

ID=46750735

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99109517A TW201132332A (en) 2010-03-30 2010-03-30 System and method for evaluating physiological signal

Country Status (1)

Country Link
TW (1) TW201132332A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI487503B (en) * 2012-02-01 2015-06-11 Univ Nat Cheng Kung Automatic sleep-stage scoring apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI487503B (en) * 2012-02-01 2015-06-11 Univ Nat Cheng Kung Automatic sleep-stage scoring apparatus

Similar Documents

Publication Publication Date Title
JP7367099B2 (en) System for screening for the presence of encephalopathy in delirium patients
CN107028603B (en) Apparatus and method for detecting diabetes in a human body using pulse palpation signals
Ahammad et al. Detection of epileptic seizure event and onset using EEG
WO2015161688A1 (en) Blood pressure measurement method and embedded device for implementing same
CN107874750B (en) Pulse rate variability and sleep quality fused psychological pressure monitoring method and device
US20110257556A1 (en) Systems and methods for quantitatively characterizing slow wave activities and states in sleep
KR102482796B1 (en) Device and method for non-contact hrv analysis using remote ppg
Ghosh et al. Detection of essential hypertension with physiological signals from wearable devices
KR101554381B1 (en) Method and apparatus for performing fetal health
JP2009201653A (en) Intellectual activity evaluation system, its learning method and label imparting method
TW201132332A (en) System and method for evaluating physiological signal
Gonzalez-Landaeta et al. Estimation of systolic blood pressure by Random Forest using heart sounds and a ballistocardiogram
US11416996B2 (en) Method to derive a person's vital signs from an adjusted parameter
CN106361327B (en) Method and system for detecting waking state in sleep state analysis
Chen et al. Predicting arterial stiffness from single-channel photoplethysmography signal: a feature interaction-based approach
TWI565448B (en) A method of brainwave analysis
Fani et al. Automatic epilepsy detection using the instantaneous frequency and sub-band energies of the EEG signals
CN117257303B (en) Anxiety detection method and device, electronic equipment and storage medium
KR101994788B1 (en) Analysis method and apparatus of cerebrovascular disease and stenosis using PPG
CN116942102B (en) Sleep stage method and device based on pulse wave
JP7507984B1 (en) Physical condition detection device, physical condition detection system, physical condition detection method, and physical condition detection program
Mohi ud Din et al. Detection of autism spectrum disorder by feature extraction of eeg signals and machine learning classifiers
US20230293089A1 (en) Brain function determination apparatus, brain function determination method, and computer-readable medium
JP7130228B2 (en) typology discriminator
Kafantaris Design and application of dispersion entropy algorithms for physiological time-series analysis