TW201132175A - Over-the-air overload indicator - Google Patents

Over-the-air overload indicator Download PDF

Info

Publication number
TW201132175A
TW201132175A TW099113340A TW99113340A TW201132175A TW 201132175 A TW201132175 A TW 201132175A TW 099113340 A TW099113340 A TW 099113340A TW 99113340 A TW99113340 A TW 99113340A TW 201132175 A TW201132175 A TW 201132175A
Authority
TW
Taiwan
Prior art keywords
overload
adjustments
adjustment
airborne
base station
Prior art date
Application number
TW099113340A
Other languages
Chinese (zh)
Inventor
Aamod D Khandekar
Ravi Palanki
Mohammad J Borran
Kapil Bhattad
xi-liang Luo
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/722,433 external-priority patent/US8660600B2/en
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of TW201132175A publication Critical patent/TW201132175A/en

Links

Classifications

    • Y02B60/50

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

Methods, systems, apparatus and computer program products are provided to facilitate power control in wireless communication systems. A cell that is experiencing excessive interference conditions may generate an over-the-air overload indicator indicative of interference conditions at the cell. The over-the-air overload indicator is received by one or more user equipment in a neighboring cell. In response, the user equipment determines adjustments to its transmit power that reduce and/or eliminate the interference. This determination may be carried out by the user equipment, by the serving base station, or through cooperation between the user equipment and the serving base station. This Abstract is provided for the sole purpose of complying with the Abstract requirement rules that allow a reader to quickly ascertain the disclosed subject matter. Therefore, it is to be understood that it should not be used to interpret or limit the scope or the meaning of the claims.

Description

201132175 六、發明說明: 相關申請的交又引用 本專利申請案請求於2009年3月12曰提出申請的、標 題名稱為「Over the Air 0verload Indicat〇r」的美國臨時專 利申請案第61"59,6〇7號的優先權,以?丨用方式將上述臨 時申請案的全部内容併入本文。 【發明所屬之技術領域】 本案大體而言係關於無線通訊領域。更特定古之,本案 係關於促進無線通訊網路中的功率管理和控制。 【先前技術】 本部分意欲提供所揭示的實施例的背景或環境。本文的 描述可包括可以被實行的概念,但是此等概念不—定是先 前已被想到或已被實行的概念。因此,除非本文另有指 不,否則在本部纟中描述的内容不是本案的說明書和請求 項的先前技並且不㈣為是包括在本部I中的先前技 術。. 無線通訊系、統已被冑泛部署以提供各種類型的通訊内 容,諸如語音、資料等。此等系統可以是能夠藉由共享可 用系統資源(例如’頻寬和發射功率)來支援與多個使用 者的通訊的多工存取系,统。此等多工存取系統的實例包括 刀瑪多工存取(CDMA )系統分時多工存取(Tdma ) 系統、分頻多工存取(FDMA)系統、3Gpp長期進化(lte) 系統以及正交分頻多工存取(〇FDMA )系統。 201132175 無線通訊系統的效能有時受限於無線網路中發生的各 .種傳輸之間的干擾。例如,LTE系統效能可能受限於細胞 服務區間干擾,特別是在細胞服務區邊緣區域附近,其中 去往/來自鄰近細胞服務區中設備的傳輸可能干擾當前細 胞服務區中設備的操作。為了降低及/或控制細胞服務區間 干擾,LTE系統可以使用諸如細胞服務區間干擾協調 (ICIC )的上行鏈路功率控制機制.,以改良上行鏈路通道 中的信號干擾比。超載指示符是用於促進上行鏈路細胞服 務區間協調的一種機制。在網路的基地台(或進化節點B〕 之間交換超載指示符,並且超載指示符提供關於在細胞服 務區頻寬的一或多個部分中經歷的上行鏈路干擾位準的 資訊。接收到超載指示符的細胞服務區可以藉由例如調整 傳輸排程策略來降低在一些資源區塊上產生的干擾,且藉 此改良發出該或該等超載指示符的細胞服務區所經歷的 干擾。 •止 LTE標準規範的發行版本8 (release 8)包含有針對經由 回載X2介面向鄰近進化節點B發送超載指示符的條款。 超載指示符由上行鏈路上的每資源區塊(RB )之—個值構 成。超載指示符可以進一步被量化成三個位準,其指示特 定資源區塊上的鄰近進化節點B所經歷的干擾位準。根據 LTE標準規範的發行版本8,超載指示符必須每2〇 ms最 對超載指示符的上 的X2連接。然而, 述利用要求所有鄰近進化節點B之間 在諸多情況下,此類連接可能是不河〕 5 201132175 用及/或不可行的。詳言之’在LTE系統的最初部署令, 可能不存在進化節點B之間的χ2連接。另外,即使X2 連接是可划,與接收來自鄰近細胞服務區的超載指示符 以及進行隨後的排程及/或功率調整相 志太長。同樣很可能的是,諸如家庭進化 關的等待時間亦可 印點B(或HeNBs) 的特定進化節點B不會具有與其鄰近細胞服務區的幻連 接。事實上,在密集的HeNB部署中,支援巨集進化節點 B與該巨集進化節點B的覆蓋範圍内所有HeNB之間的X2 連接可能是很複雜的H由於使用者裝備不能總是連 接到其最佳服務細胞服務區,故HeNB部署可能引起特別 嚴重的干擾狀況。 與當前超载指示機制相關的另一個缺點在於,進化節點 B對超载指示符的回應不是標準化的。因此,與不同供應 商相關的鄰近進化節點B之間的干擾控制也許是不可能 的,或者也許是無效的。此類情況报可能發生在中, HeNB中很可能具有來自不同供應商的㈣㈣㈣卜 另外基於回载的超載指示符訊令要求進化節點B知曉 干,’以便於實施對接收的超載指示符的適當回應。 詳=,接收超載指示符的進化節點B必須知曉對在鄰近 :化節點B處經歷的過高干擾起作用的特定(若有)。 當無線通道環境在進化節點B所接收的連續的量測報告之 間經歷實質性改變時,也 ^ ^ 矸不能充分地建立此類知曉。 【發明内容】 201132175 所揭示的實施例係關於促進無線通訊系統中的上行鏈 路功率控制的系統、方法、裝置和電腦程式產品。為此, 根據各種實施例,正在經歷過高干擾狀況的細胞服務區可' 以直接向一或多個鄰近細胞服務區中的一或多個使用者 裝備提供空中(over-the-air)超載指示符,回應於該超載 指示符,該一或多個使用者裝備可以調整其發射功率。 所揭示的實施例的一個態樣係關於一種方法,該方法用 於回應於接收的空中超載指示符來決定對使用者裝備的 發射功率的調整。根據該方法,空中超載指示符包括指示 一或多個細胞服務區處的干擾狀況的資訊。該方法進一步 包括根據上述調整來實現發射功率控制。在一個實斜中, 對發射功率的調整進一#包括#率位準調1、發射排程調 整或發射頻率調整中的至少一個。 根據一個實施例,該方法進一步包括向使用者裝備的服 務基地台報告該等調整。在—個實施例中,根據機率函數 來決定該等調整,而在一不同實施例中 夥伴計劃(糊長期進化⑽子訊框中的 資源區塊的一部分來接收空中超載指示符。在又一個實施 例中,根據提供了發射功率整形的該等調整來實現發射功 率控制。根據另—個實施例,根據差分路徑損耗和訊雜比 令的至y個來決定該等調整。例如,可以將該等調整決 定為根據最大訊雜比、最小訊雜比、在服務基地台獲得的 訊雜比以及差分路徑損耗的機率值。 在另-個實施例中,接收-個以上的空中超載指示符^ 7 201132175 並且藉*以下步驟來決定該等調整:回應於每個空中超載 指示符來決定對發射功率的獨立調整;及根據此等獨立調 整來決定該等調整。在一個實例中,該等調整對應於具有 最大值的獨立調整。在另—棚普说/丨丄 隹另個實施例中,從複數個細胞服 務區接收-個以上的空中超載指示符,並且藉由評估接收 的空中超載指示符的子集來決定該等調整。在-個實例 令,從複數個細胞服務區接收—個以上的空中超载指示 符,並且藉由評估接收的空中超載指示符的一部分來決定 該等調整。在-種變體中,用與該部分成反比的因數來修 改該等調整的幅度。例如,當評估接收的空中超載指示符 令的-半時,對發射功率的調整可以是當評估所有接收的 空中超載指示符時的兩倍。 根據另一個實施你卜在肖定週期内沒有接收到任何其他 空中超載指示符,在該狀況下,該等調整對應於使用者裝 備:發射功率位準的提高。例如,若發射功率位準未超過 預定閣值,則提高使用者裝備的發射功率位準。在又一個 實施例中,該方法進-步包括在實現發射功率控制之前向 服務基地台報告該等調整。在該情況下,該方法亦包括接 收該等調整,其中接收的調整是修改後的調整。 在一個實施例中,空中超載指示符包括與第三代合作夥 伴計劃長期進化網路中的多個載波有關的資訊。在一個實 例中,在單個下行鏈路載波上接收超載指示符,並且在該 下行鏈路載波内的獨立資源區塊中攜帶與多個載波的每 一個有關的資訊。在另-個實施例中,$中超載指示她】 201132175 括指示共通道干擾狀況的資訊。在該實施例中,空中超載 指示符可用於控制相鄰載波洩漏比。 所揭示的實施例的另一個態樣係關於—種方法,該方法 包括向使用者裝備的服務基地台報告空中超載指示符,i 中該空中超載指示符包括指示一或多個細胞服務區處: 干擾狀況的資訊。該方法進一步包括接收對使用者裝備的 發射功率的調整,並且根據該等調整來實現發射功率控 制。 : 在所揭示的實施例的另一個態樣中,描述了一種方法, 該方法包括在基地台處產生一或多個空中超載指示符,其 中該-或多個空中超載指示符包括指示基地台所服務的 細胞服務區處的干擾狀況的資訊。該方法進一步包括直接 向一或多個鄰近細胞服務區中的一或多個使用者裝備發 送該一或多個超載指示符。 所揭示的實施例的另一個態樣係關於處理器以及包括 處理器可執行代碼的記憶體。當由該處理器執行時,該處 理器可執行代碼將裝置配置為:回應於接收的空中超載指 不符來決定對裝置的發射功率的調整,其中該空中超載指 不符包括指示一或多個細胞服務區處的干擾狀況的資 訊。當由該處理器執行時,該處理器可執行代碼亦將裝置 配置為根據該等調整來實現發射功率控制。 所揭不的實施例的另一個態樣亦關於一種裝置,其包括 器以及包括處理器可執行代碼的記憶體。然而,當由 該處理器執行時,該處理器可執行代碼將該裝置配置為 9 201132175 • 向該裝置的服務基地台報告空中超载指示符,其中該空中 、 肖載指不符包括指示-或多個細胞服-務區處的干擾狀況 的資訊。當由該處理器執行時,該處理器可執行代碼亦將 該裝置配置為.接收對該裝置的發射功率的調整;及根據 該等調整來實現發射功率控制。 根據所揭示的實施例的又一個態樣,一種裝置包括處理 器以及包括處理器可執行代碼的記憶體。當由該處理器執 行時,該處理器可執行代瑪將該裝置配置為 個空中超載指示符,其中該一或多個空中超載指示符包括 指示基地台所服務的細胞服務區處的干擾狀況的資訊。當 由該處理器執行時,該處理器可執行代碼亦將該裝置配置 為:直接向一或多個鄰近細胞服務區中的一或多個使用者 裝備發送該一或多個空中超載指示符。 各種所揭示的實施例亦可以被實施為電腦程式產品。在 本案的-個態樣中,提供了一種在電腦可讀取媒體上實施 的電腦程式產品。該電腦程式產品包括:用於回應於接收 的空中超載指示符來決定對使用者裝備的發射功率的調 整的程式碼,其中該空中超載指示符包括指示一或多個細 胞服務區處的干擾狀況的資訊。該電腦程式產品進一步包 括··用於根據該等調整來實現發射功率控制的程式碼。 所揭示的實施例的另一個態樣亦關於一種在電腦可讀 媒體上實施的電腦程式產品。然而,該電腦程式產品包 括用於向使用者裝備的服務基地台報告空中超載指示符 的程式碼’其中該超載指示符包括指示—或多個細胞轉] 201132175 區處的干擾狀況的資訊。該電腦程式產品亦包括:用於接 收對該使用者裝備的發射功率的調整的程式碼;及用於根 據該等調整來實現發射功率控制的程式碼。 在所揭示的實施例的另一個態樣中,提供了一種在電腦 可讀取媒體上實施的電腦程式產品。該電腦程式產品包 括.用於在基地台處產生一或多個空中超載指示符的程式 碼,其中該-或多個空中超載指示符包括指示該基地台所 服務的細胞服務區處的干擾狀況的資訊。該電腦程式產品 進一步包括.用於直接向一或多個鄰近細胞服務區中的一 或多個使用者裝備發送該一或多個超載指示符的程式碼。 根據所提供實施例的另一個態樣,一種裝置包括:用於 回應於接收的空中超載指示符來決定對該裝置的發射功 率的調整的構件,其中該空中超載指示符包括指示一或多 個細胞服務區處的干擾狀況的資訊。該裝置進—步包括: 用於根據該等調整來實現發射功率控制的構件。 所提供實施例的另一個態樣係關於一種裝置,其包括: 用於向該裝置的服務基地台報告空中超載指示符的構 件,其中該空中超載指示符包括指示一或多個細胞服務區 處的干擾狀況的資訊。該裝置進一步包括:用於接收對使 用者裝備的發射功率的調整的構件;及用於根據該等調整 來實現發射功率控制的構件》 所揭不的實施例的另一個態樣與另一種裝置杻關,該裝 置包括.用於在基地台處產生一或多個空中超载指示符的 構件,其中該一或多個空中超載指示符包括指示細胞服蔬) 201132175 區處的干擾狀況的資訊》該裝置進一步包括:用於直接向 一或多個鄰近細胞服務區中的一或多個使用者裝備發送 該一或多個超載指示符的構件。 根據與附圖結合的以下詳細描述,各種實施例的此等和 其他優點及特徵以及此等實施例的操作的組織和方式將 變得顯而易見’在附圖中,相同的元件符號始終用於代表 相同的部分。 【實施方式】 在ス下描述中,為了闡釋而非限制’闡述了細節和描 述,以便於提供對各種所揭示的實施例的透徹理解。然 而對於本領域技藝人士而言很明顯的是,可以在脫離此 等細節和描述的其他實施例中實施各種實施例。 在本文中所使用,術语「部件」、「模組」、「系統」等 意欲代表電腦相關的實體’其可以是硬體、韌體、硬體與 軟體的組合、軟體,或者可以是執行中的軟體。例如,部 件可以是’但並不限於:處理器上執行的過程、處理器、 :件:可執行檔案、執行的線程、程式及/或電腦。舉例而 +算叹備上執行的應用程式和該計算設備皆可以是部 内料以常駐於執行中的—個過程及/或線程 m—雷部件可以位於—台電腦上及/或分佈於兩台或 兩口以上電腦之間。另外, 各種電腦儲存有各種資料結構的 諸如根據J此等部件。此等部件可以藉由 有—或多個資料封包(例如,來自-個部件的 12 201132175 資料,該部件與本端系統中、分散式系統中的另一個部件 進行互動,及/或在諸如網際網路的網路上以信號的形式與 〃他系統進行互動)的彳§號的本端及/或遠端過程進行通 訊0 另外,本文結合使用者裝備來描述特定的實施例。使用 者袭備亦可以被稱為使用者終端,並且可以包含系統、用 :單元、用戶站、行動站、行動台、無線終端、行動設備、 節點、設備、遠端站、遠端終端、終端、無線通訊設備' 無線通訊裝置或使用者代理的一些或全部功能性。使用者 裝備可以是缘巢式電話、無線電話、對話啟動協定⑽) 電話智慧型電話、無線區域迴路()站、個人數位 j理(PDA)'膝上型電腦 '掌上型通訊設備、掌上型計算 没傷、衛星無線電臺、盔錄盔 ^ …、、數據機卡及/或用於經由無線系 现進行通訊的另一處理势供 n ㈣认備。此外,本文結合基地台來描 吨各種態樣。基地台可用於命& & a ;與,,,、線終端進行通訊,並且亦 可以被稱為存取點、節點、 即點B、進化節點B ( eNB ) 我—些其他網路實體並可 推/ 匕3存取點、節點、節點B、 能性卽::jeNB)或—些其他網路實體的-些或全部功 以“ 由空中介面與無線終端進行通訊。通訊可 轉換來進行°藉由將接㈣空中介面訊框 轉換成IP封包,基地台可 部分之間的路由器,兮存…線,、端與存取網路的其他 網路。基地… 取網路可包括網際網路協定(IP) 工中"面的屬性的管理,並且亦 作為有線網路與無線網路之間的閑道。 … 13 201132175 將根據可包括右干設備、部件、模組等的系統來呈現各 種態樣'實施例或特徵。應當理解和瞭解,各種系統可以 包括額外的設備、部件、模組等及/或可以不完全包括結合 圖所論述的所有設備、部件、模組等。亦可以使用此等方 法的組合。 示 另外’在本發明描述中,用語「示例性」用於意謂用作 例、實例或說明。本文中被描述為「示例性」的任何實 施例或设§十方案不必被解釋為 比其他實施例或設計方案 更較佳或更具優勢。相反,用語「示例性」的使用意欲以 具體的方式呈現概念。 各種所揭示的實施例可以被併入到通訊系統中。在一個 實例中’該通訊系統利用正交分頻多工(〇fdm ),其將整 個系統頻寬有效地分成多個(Nf個)次載波,此等次載波 亦可以被稱為頻率子通道、音調(t〇ne)或頻段(Μη)。 對於OFDM系、、统,首先用特定的編碼方案對待發送的資料 (亦即,資訊位元)進行編碼以產生編碼位元,並且編碼 位元被進-步分類成多位元符號,該等多位元符號隨後被 映射成調制符號。每個調制符號對應於用於資料傳輸的特 定調制方案(例如’ M-PSK < M_QAM)所定義的信號群 集中的一點。在可能取決於每個頻率次載波的頻寬的每個 時間間隔上,可以在NF個頻率次載波中的每個頻率次載 波上發送調制符號。因此,〇FDM可用於對抗由頻率選擇 性衰落引起的符號間干擾(ISI),頻率選擇性衰落的特徵 在於系統頻寬上的不同的衰減量。 r c ί 14 201132175 線線端㈣1無線多工存取通㈣統可間時支援多個無 線、-、端的通訊。每個終端 輸與一或多個基地^ 向鍵路上的傳 代表從基^ 13 或下行鏈路) 口到終端的通訊鏈路,且反向鏈路 =代級终端到基地台的通訊鍵路。此通訊鍵路: 早輸入早輸出系统、吝 出系統或多輸入多輸出 (ΜΙΜΟ )系統建立。 _系統使用多個(Ν “固)發射天線和多個(Nr個) 接收天線來傳輪資料。由Ντ個發射天線和NR個接收天線 形成的ΜΙΜΟ通i首可w八初& χΤ , 逋道了以分解為Ns個獨立通道,該等獨立 通道亦可稱為空間通道,其中“ min{〜,馬}鳴個獨 立通道中的每_個皆對應於一個維度。若使用由多個發送 天線和接收天線建立的額外給痒 ΧίΓΤ1ι 的顆外維度,則ΜΙΜΟ系統則可以提 供改良的效能(例如,更大的吞吐量及/或更高的可靠性)。 JVQMO系統亦支援分時雙工(TDD)和分頻雙工(觸) 系統。在TDD系統中’前向鏈路傳輸和反向鍵路傳輸在同 -頻率區域上’從而使得相互性原理允許根據反向鏈路通 道估計前向鏈路通道。此使得當基地台有多個可用天線 時,基地台能夠提取前向鏈路上的發射波束成形增益。 圖1圖不可在其中實施各種所揭示的實施例的無線通訊 系統。基地台100可包括多個天線群組,並且每個天線群 組可包括-或多個天線。例如’若基地台100包括六個天 線,則一個天線群組可包括第一天線104和第二天線106, 另一個天線群組可包括第三天線108和第四天線110,ίΓί5] 15 201132175 !::天:群組可包括第五天線⑴和第六天· 114。廣 :思’雖然上述天線群組中的每-個皆被_為具以 天線。 母個天線群組中亦可以利用更多或更少的 返回參照圖卜第-使用者裝備116被圖示為與例如第 五天線112和第六天線114進行通訊,以實現經由第1 向鏈路m向第一使用者裝# 116發射資訊以及經由第— 反向鏈路m從第一使用者裝備116接收資訊。圖、亦圖 不第二使用者裝備122,其與例如第三天冑1〇8和第四天 線110進行通訊,以實現經由第二前向鏈路126向第二使 用者裝備122發射資訊以及經由第二反向鏈路124從第二 使用者裝# 122接收資訊。在分頻雙工(FDD)系統中, 圖1所圖示的通訊鏈路118、120、124、126可以使用不同 的通訊頻率。例如’第一前向鏈路120可能使用與第一反 向鏈路118所使用的頻率不同的頻率。 在一些實施例中,每個天線群組及/或其被設計為在其中 進行通訊的區域常常被稱作基地台的扇區。例如,圖1中 圖不的不同的天線群組可以被設計為與基地台1〇〇的扇區 中的使用者裝備進行通訊。在經由前向鏈路120和前向鏈 路126的通訊中,基地台1〇〇的發射天線利甩波束成形, 以便於為不同的使用者裝備116和使用者裝備122改良前 向鍵路的訊雜比。另外’使用波束成形向隨機散佈於其覆 蓋區域各處的使用者裝備進行發射的基地台對鄰近細胞 服務區中的使用者裝備造成的干擾小於經由單個天線恣] 16 201132175 方位地向其全部使用者裝備進行發射的基地台對鄰近細 胞服務區中的使用者裝備造成的干擾。 可以實現各種所揭示的實施例的通訊網路可包括邏輯 通道,邏輯通道被分類成控制通道和訊務通道。邏輯控制 通道可包括:廣播控制通道(BCCH ),其為用於廣播系統 控制資訊的下行鏈路通道;傳呼控制通道(PCCH ),其為 傳送傳呼資訊的下行鏈路通道;多播控制通道(MCCH), 其為點對多點下行鏈路通道,用於傳輸用於一個或幾個多 播訊務通道(MTCH)的多媒體廣播與多播服務(MBMS) 排程和控制資訊。大體而言’在建立無線電資源控制(RRC ) 連接之後,MCCH僅由接收MBMS的使用者裝備使用。專 用控制通道(DCCH )是另一種邏輯控制通道,其為傳輸 專用控制資訊(諸如,具有RRC連接的使用者裝備所使用 的使用者專用控制資訊)的點對點雙向通道β共用控制通 道(CCCH)亦為一種邏輯控制通道,其可用於隨機存取 資訊。邏輯訊務通道可包括:專用訊務通道(DTCH),其 為專用於一値使用者裝備的點對點雙向通道,用於傳送使 用者資訊。另外,可以將多播訊務通道(MTCH)用於訊 務資料的點對多點下行鏈路傳輸。 可實現各種實施例的通訊網路可額外包括邏輯傳輸通 道’邏輯傳輸通道被分為下行鏈路(DL)和上行鏈路 (UL)。DL傳輸通.道可包括:廣播通道(BCH)、下行鏈 路共享資料通道(DL-SDCH)、多播通道(MCH)和傳呼 通道(PCH)。UL傳輸通道可包括:隨機存取通道(raCH〇S} 17 201132175 請求通道(REQCH)、上行鍵路共享資料通道(UL-SDCH) 和複數個實體通道。實體通道亦可包括一組下行鍵路通道 和上行鏈路通道。 在一呰所揭示的實施例中,下行鏈路實體通道可包括以 下通道中的至少一種:共用弓丨導頻通道(CPICH)、同步通 道(SCH)、共用控制通道(CCCH)、共享下行鏈路控制通 道(SDCCH)、多播控制通道(MCCH)、共享上行鏈路指 派通道(SUACH)、確認通道(ACKCH)、下行鏈路實體共 享資料通道(DL-PSDCH )、上行鏈路功率控制通道 (UPC CH )、傳呼指示符通道(PICH )、負載指示符通道 (LICH)、實體廣播通道(PBCH)、實體控制格式指示符 通道(PCFICH)、實禮下行鍵路控制通道(PDCCH)、實 禮混合ARQ指示符通道(PHICH)'實體下行鍵路共享通 、 -多播通道(PMCH)。上行鏈路實體 道(PDSCH)以及實雜夕艰、 七的至少一種·實體隨機存取通道 通道可包括以下通道中 冰指示符通道(CQICH )、確認通道 (PRACH )、通道品質权 β示符通道(ASICH)、共享請求通 (ACKCH)、天線子集扣^付通 办f體丘皐資料通道(UL_PSDCH)、 道(SREQCH)、上行键絡方 " «τΓΗ )、實體上行鏈路控制通道 %頻引導頻通道(; 鏈路兵享通道(PUSCH)。 (PUCCH)以及實體上打201132175 VI. INSTRUCTIONS: The application for this application also refers to the US Provisional Patent Application No. 61 "59, titled "Over the Air 0verload Indicat〇r", filed on March 12, 2009. The priority of No. 6〇7 is to incorporate the entire contents of the above-mentioned provisional application in this article. [Technical Field to Which the Invention Is Applicable] The present invention relates generally to the field of wireless communication. More specifically, this case is about promoting power management and control in wireless communication networks. [Prior Art] This section is intended to provide a background or context of the disclosed embodiments. The description herein may include concepts that can be implemented, but such concepts are not intended to be concepts that have been previously conceived or implemented. Therefore, unless otherwise stated herein, what is described in this section is not the prior art of the specification and claims of the present invention and is not (s) intended to be the prior art included in this section. Wireless communication systems have been widely deployed to provide various types of communication content such as voice, data, and more. Such systems may be multiplexed access systems capable of supporting communication with multiple users by sharing available system resources (e.g., 'bandwidth and transmit power'). Examples of such multiplex access systems include the Martha Multiplex Access (CDMA) system time division multiplex access (Tdma) system, a frequency division multiplex access (FDMA) system, a 3Gpp long term evolution (LTE) system, and Orthogonal Frequency Division Multiple Access (〇FDMA) system. The performance of the 201132175 wireless communication system is sometimes limited by the interference between the various transmissions that occur in the wireless network. For example, LTE system performance may be limited by cell service interval interference, particularly near the edge regions of the cell service area, where transmissions to/from devices in adjacent cell service areas may interfere with the operation of devices in the current cell service area. To reduce and/or control cell service interval interference, the LTE system may use an uplink power control mechanism such as Cell Service Interval Interference Coordination (ICIC) to improve the signal to interference ratio in the uplink channel. The overload indicator is a mechanism for facilitating coordination of the uplink cell service interval. An overload indicator is exchanged between the base stations (or evolved Node Bs) of the network, and the overload indicator provides information about the level of uplink interference experienced in one or more portions of the cell service area bandwidth. The cell service area to the overload indicator can reduce interference generated on some of the resource blocks by, for example, adjusting the transmission scheduling policy, and thereby improving the interference experienced by the cell service area that issued the or the overload indicator. • Release 8 of the LTE standard specification contains provisions for sending an overload indicator to neighboring evolved Node B via the backhaul X2. The overload indicator is made up of every resource block (RB) on the uplink— The value is constructed. The overload indicator can be further quantized into three levels indicating the level of interference experienced by neighboring evolved Node Bs on a particular resource block. According to Release 8 of the LTE standard specification, the overload indicator must be per 2〇ms is the most X2 connection on the overload indicator. However, the use of all neighboring evolution nodes B requires that in many cases, such connections may 5 201132175 Used and / or not feasible. In detail 'In the initial deployment of the LTE system, there may be no χ 2 connection between the evolved Node B. In addition, even if the X2 connection is slashable, and receiving from the proximity The overload indicator of the cell service area and the subsequent scheduling and/or power adjustment are too long. It is also very likely that waiting times such as family evolution can also be printed on the specific evolution node B of B (or HeNBs). There will be a magical connection to its neighboring cell service area. In fact, in a dense HeNB deployment, the X2 connection between the supporting macro evolution node B and all HeNBs within the coverage of the macro evolution node B may be complicated. H HeNB deployment may cause particularly severe interference conditions because user equipment cannot always be connected to its best serving cell service area. Another disadvantage associated with the current overload indication mechanism is that evolved Node B responds to the overload indicator. It is not standardized. Therefore, interference control between neighboring evolved Node Bs associated with different vendors may be impossible or may be ineffective. Such a situation report may occur in the HeNB, which is likely to have (4) (4) (4) from different vendors. In addition, the overload-based indicator command based on the loadback requires the evolved Node B to know, 'in order to implement the appropriate overload indicator for the receiver. In response, the evolved Node B receiving the overload indicator must be aware of the specific (if any) effect on the excessive interference experienced at the neighboring Node B. When the wireless channel environment is continuously received at the evolved Node B When a substantial change is made between measurement reports, such knowledge is not sufficiently established. [Invention] The embodiment disclosed in 201132175 relates to a system and method for facilitating uplink power control in a wireless communication system. , devices and computer program products. To this end, according to various embodiments, a cell service area that is experiencing a high interference condition may 'provide an over-the-air overload directly to one or more user equipment in one or more adjacent cell service areas. An indicator responsive to the overload indicator, the one or more user equipments can adjust their transmit power. One aspect of the disclosed embodiment is directed to a method for determining an adjustment to the transmit power of a user equipment in response to a received airborne overload indicator. According to the method, the airborne overload indicator includes information indicative of interference conditions at one or more of the cell service areas. The method further includes implementing transmit power control in accordance with the adjustments described above. In a real oblique direction, the adjustment of the transmission power is performed to include at least one of a rate level adjustment 1, a transmission schedule adjustment, or a transmission frequency adjustment. According to an embodiment, the method further comprises reporting the adjustments to a service base station equipped by the user. In an embodiment, the adjustments are determined according to a probability function, and in a different embodiment the partner plans (a part of the resource block in the long-term evolution (10) subframe to receive the air overload indicator. In an embodiment, the transmit power control is implemented according to the adjustments that provide transmit power shaping. According to another embodiment, the adjustments are determined according to the difference path loss and the odd-to-noise ratio of y. For example, the The adjustment is determined according to the maximum signal-to-noise ratio, the minimum signal-to-noise ratio, the signal-to-noise ratio obtained at the serving base station, and the probability value of the differential path loss. In another embodiment, more than one air overload indicator is received^ 7 201132175 and by the following steps to determine the adjustment: in response to each air overload indicator to determine the independent adjustment of the transmission power; and based on these independent adjustments to determine the adjustment. In one example, the adjustment Corresponding to an independent adjustment with a maximum value. In another embodiment, more than one empty is received from a plurality of cell service areas. Medium overload indicator and determining the adjustment by evaluating a subset of the received air overload indicators. In an instance order, more than one air overload indicator is received from a plurality of cell service areas, and by evaluation A portion of the received airborne overload indicator determines the adjustment. In the variant, the magnitude of the adjustment is modified by a factor inversely proportional to the portion. For example, when evaluating the received airborne overload indicator order - At half time, the adjustment of the transmit power may be twice as high as when evaluating all received air overload indicators. According to another implementation, you have not received any other air overload indicator during the ambiguous period, in which case, The adjustments correspond to user equipment: an increase in the transmit power level. For example, if the transmit power level does not exceed a predetermined threshold, the transmit power level of the user equipment is increased. In yet another embodiment, the method proceeds. The step includes reporting the adjustments to the serving base station prior to implementing the transmit power control. In this case, the method also includes receiving the adjustments, The received adjustment is a modified adjustment. In one embodiment, the airborne overload indicator includes information related to multiple carriers in a third generation partnership plan long term evolution network. In one example, on a single downlink An overload indicator is received on the carrier, and information related to each of the plurality of carriers is carried in an independent resource block within the downlink carrier. In another embodiment, the overload in $ indicates her] 201132175 Information on the common channel interference condition. In this embodiment, the airborne overload indicator can be used to control the adjacent carrier leakage ratio. Another aspect of the disclosed embodiment relates to a method comprising: equipping a user The serving base station reports an airborne overload indicator, wherein the airborne overload indicator includes information indicative of one or more cellular service areas: interference conditions. The method further includes receiving an adjustment to the transmit power of the user equipment, and Adjust to achieve transmit power control. In another aspect of the disclosed embodiment, a method is described that includes generating one or more airborne overload indicators at a base station, wherein the one or more airborne overload indicators include an indication of a base station Information on the interference status at the cell service area of the service. The method further includes transmitting the one or more overload indicators directly to one or more user equipment in one or more adjacent cell service areas. Another aspect of the disclosed embodiments pertains to a processor and memory including processor executable code. When executed by the processor, the processor executable code configures the apparatus to: determine an adjustment to a transmit power of the device in response to the received airborne overload indication, wherein the airborne overload indication comprises indicating one or more cells Information on the interference status at the service area. The processor executable code, when executed by the processor, also configures the device to implement transmit power control in accordance with the adjustments. Another aspect of the disclosed embodiment is also directed to an apparatus comprising a memory and a memory comprising processor executable code. However, when executed by the processor, the processor executable code configures the device to 9 201132175 • reports an airborne overload indicator to the service base station of the device, wherein the airborne, mismatched indication includes an indication - or more Information on the interference status at the cell service-business area. The processor executable code, when executed by the processor, also configures the apparatus to receive an adjustment to the transmit power of the apparatus; and to implement transmit power control based on the adjustments. In accordance with yet another aspect of the disclosed embodiments, an apparatus includes a processor and a memory including processor executable code. When executed by the processor, the processor can execute the device to configure the device as an airborne overload indicator, wherein the one or more airborne overload indicators include an indication of interference conditions at a cell service area served by the base station. News. The processor executable code, when executed by the processor, also configures the apparatus to transmit the one or more airborne overload indicators directly to one or more user equipment in one or more adjacent cell service areas . The various disclosed embodiments can also be implemented as a computer program product. In one aspect of the present invention, a computer program product implemented on a computer readable medium is provided. The computer program product includes: a code for determining an adjustment to a transmit power of a user equipment in response to the received airborne overload indicator, wherein the airborne overload indicator includes an indication of an interference condition at one or more of the cell service areas Information. The computer program product further includes code for implementing transmit power control based on the adjustments. Another aspect of the disclosed embodiment is also directed to a computer program product embodied on a computer readable medium. However, the computer program product includes a code for reporting an airborne overload indicator to a service base station equipped to the user' wherein the overload indicator includes information indicative of an interference condition at the 201132175 zone. The computer program product also includes: a code for receiving an adjustment of the transmission power of the user equipment; and a code for implementing transmission power control based on the adjustments. In another aspect of the disclosed embodiment, a computer program product embodied on a computer readable medium is provided. The computer program product includes code for generating one or more airborne overload indicators at a base station, wherein the one or more airborne overload indicators include an indication of interference conditions at a cell service area served by the base station. News. The computer program product further includes code for transmitting the one or more overload indicators directly to one or more user equipment in one or more adjacent cell service areas. In accordance with another aspect of the provided embodiment, an apparatus includes means for determining an adjustment of a transmit power of a device in response to a received airborne overload indicator, wherein the airborne overload indicator includes one or more indications Information on the interference status at the cell service area. The apparatus further includes: means for implementing transmit power control in accordance with the adjustments. Another aspect of the provided embodiment relates to an apparatus comprising: means for reporting an airborne overload indicator to a serving base station of the apparatus, wherein the airborne overload indicator comprises an indication of one or more cell service areas Information on the interference status. The apparatus further includes: means for receiving an adjustment to the transmit power of the user equipment; and another aspect of the embodiment disclosed by the means for implementing transmit power control in accordance with the adjustments Preferably, the apparatus includes means for generating one or more airborne overload indicators at the base station, wherein the one or more airborne overload indicators include information indicative of interference conditions at the area of the 201132175 area. The apparatus further includes means for transmitting the one or more overload indicators directly to one or more user equipment in one or more adjacent cell service areas. These and other advantages and features of the various embodiments, as well as the organization and manner of operation of the embodiments, will be apparent from the Detailed Description of the Drawings. The same part. The Detailed Description of the Invention The present invention is to be considered as illustrative and not restrictive. It will be apparent to those skilled in the art that various embodiments may be practiced in other embodiments. As used herein, the terms "component", "module", "system" and the like are intended to mean a computer-related entity 'which may be a combination of hardware, firmware, hardware and software, software, or may be executed. Software in the middle. For example, a component can be, but is not limited to, a process executed on a processor, a processor, a component: an executable file, a thread of execution, a program, and/or a computer. For example, the application executed on the sigh and the computing device may be part of the process to be resident in the process - and/or the thread m - the lightning component may be located on the computer and / or distributed on the two Or between two or more computers. In addition, various computers store various data structures such as those according to J. Such components may be interspersed with one or more data packets (eg, 12 201132175 from a component that interacts with another component in the local system, in a decentralized system, and/or in, for example, the Internet Communication with the local and/or remote processes of the 彳 § on the network of the network in the form of signals. In addition, the specific embodiments are described herein in connection with user equipment. User attacks can also be referred to as user terminals, and can include systems, units: user stations, mobile stations, mobile stations, wireless terminals, mobile devices, nodes, devices, remote stations, remote terminals, terminals. Some or all of the functionality of a wireless communication device' wireless communication device or user agent. User equipment can be edge-type telephone, wireless telephone, dialogue initiation protocol (10)) telephone smart phone, wireless area loop () station, personal digital PDA (PDA) 'laptop' handheld communication device, palm type Computational innocence, satellite radio station, helmet recording helmet, ..., data card and/or another processing for communication via wireless system for n (four) recognition. In addition, this article combines base stations to describe various aspects. The base station can be used to communicate with &&a; and,,,, line terminals, and can also be referred to as access points, nodes, point B, evolved node B (eNB), and other network entities. And can push / 匕 3 access points, nodes, nodes B, energy 卽::jeNB) or - some or all of the other network entities to "communicate with the wireless terminal by the empty intermediary. Communication can be converted By converting the (4) empty intermediaries frame into IP packets, the base station can partially connect the routers, save the ... lines, and the other networks that access the network. The base... The network can include the Internet. Network Protocol (IP) Management of the attributes of the "face", and also as a freeway between the wired network and the wireless network. ... 13 201132175 will be based on systems that can include right-hand devices, components, modules, etc. Various embodiments of the embodiments or features are presented. It should be understood and appreciated that the various systems may include additional devices, components, modules, etc. and/or may not fully include all of the devices, components, modules, etc. discussed in connection with the drawings. Groups that can also use these methods . Also shown 'in the description of the present invention, the term "exemplary" as used mean embodiments, instance, or illustration. Any embodiment or § ten embodiment described herein as "exemplary" is not necessarily to be construed as preferred or advantageous over other embodiments or designs. Instead, the use of the term "exemplary" is intended to present concepts in a specific manner. Various disclosed embodiments can be incorporated into a communication system. In one example, the communication system utilizes orthogonal frequency division multiplexing (〇fdm), which effectively divides the overall system bandwidth into multiple (Nf) secondary carriers, which may also be referred to as frequency subchannels. , tone (t〇ne) or frequency band (Μη). For OFDM systems, the data to be transmitted (ie, information bits) is first encoded with a specific coding scheme to generate coded bits, and the coded bits are further classified into multi-bit symbols, such The multi-bit symbols are then mapped into modulation symbols. Each modulation symbol corresponds to a point in the set of signals defined by a particular modulation scheme for data transmission (e.g., 'M-PSK < M_QAM'). Modulation symbols may be transmitted on each of the NF frequency subcarriers at each time interval that may depend on the bandwidth of each frequency subcarrier. Therefore, 〇FDM can be used to combat inter-symbol interference (ISI) caused by frequency selective fading, which is characterized by different amounts of attenuation in the system bandwidth. r c ί 14 201132175 Line end (4) 1 wireless multiplex access (4) can support multiple wireless, -, and end communication. Each terminal transmits a communication link with one or more base switches on the way from the base to the terminal, and the reverse link = the communication link of the generation terminal to the base station . This communication key: Early input early output system, output system or multi-input multi-output (ΜΙΜΟ) system setup. The system uses multiple (Ν "solid" transmit antennas and multiple (Nr) receive antennas to transmit data. The 形成 个 transmit and NR receive antennas are formed by Ν i i & & & & & & & & & χΤ χΤ It is decomposed into Ns independent channels, which can also be called spatial channels, where "min{~, horse} each of the independent channels corresponds to one dimension. The system can provide improved performance (eg, greater throughput and/or higher reliability) if the extra dimensions of the itch Χ ΓΤ ΓΤ ΓΤ ι are established using multiple transmit and receive antennas. The JVQMO system also supports time division duplex (TDD) and crossover duplex (touch) systems. In the TDD system, 'forward link transmission and reverse link transmission are on the same frequency region' such that the principle of reciprocity allows the forward link channel to be estimated from the reverse link channel. This allows the base station to extract the transmit beamforming gain on the forward link when the base station has multiple antennas available. 1 illustrates a wireless communication system in which various disclosed embodiments may not be implemented. The base station 100 can include multiple antenna groups, and each antenna group can include - or multiple antennas. For example, if base station 100 includes six antennas, one antenna group may include first antenna 104 and second antenna 106, and another antenna group may include third antenna 108 and fourth antenna 110, ίΓί5] 15 201132175 !::Day: The group can include the fifth antenna (1) and the sixth day · 114. Wide: thinks that although each of the above antenna groups is _ is an antenna. More or fewer return references may also be utilized in the parent antenna group. The user equipment 116 is illustrated as being in communication with, for example, the fifth antenna 112 and the sixth antenna 114 to achieve via the first direction chain. The way m transmits information to the first user #116 and receives information from the first user equipment 116 via the first reverse link m. The second user equipment 122 communicates with, for example, the third day 胄1〇8 and the fourth antenna 110 to enable transmission of information to the second user equipment 122 via the second forward link 126 and Information is received from the second user device # 122 via the second reverse link 124. In a frequency division duplex (FDD) system, the communication links 118, 120, 124, 126 illustrated in Figure 1 can use different communication frequencies. For example, the first forward link 120 may use a different frequency than that used by the first reverse link 118. In some embodiments, each antenna group and/or the area in which it is designed to communicate is often referred to as a sector of a base station. For example, the different antenna groups shown in Figure 1 can be designed to communicate with user equipment in the sector of the base station. In communication via forward link 120 and forward link 126, the base station's transmit antennas are beamformed to facilitate improved forward routing for different user equipment 116 and user equipment 122. Signal ratio. In addition, the use of beamforming to transmit to a user equipment that is randomly distributed throughout the coverage area of the coverage area causes less interference to user equipment in the adjacent cell service area than to a full antenna via a single antenna. The equipment is equipped with a base station that transmits to interfere with user equipment in the adjacent cell service area. Communication networks that can implement the various disclosed embodiments can include logic channels that are classified into control channels and traffic channels. The logical control channel may include: a Broadcast Control Channel (BCCH), which is a downlink channel for broadcasting system control information; a Paging Control Channel (PCCH), which is a downlink channel for transmitting paging information; and a multicast control channel ( MCCH), which is a point-to-multipoint downlink channel for transmitting Multimedia Broadcast and Multicast Service (MBMS) scheduling and control information for one or several Multicast Traffic Channels (MTCH). In general, after establishing a Radio Resource Control (RRC) connection, the MCCH is only used by user equipment that receives the MBMS. The Dedicated Control Channel (DCCH) is another logical control channel that is a point-to-point bidirectional channel beta shared control channel (CCCH) that transmits dedicated control information, such as user-specific control information used by RRC-connected user equipment. It is a logical control channel that can be used to access information randomly. The logical traffic channel can include a dedicated traffic channel (DTCH), which is a point-to-point bidirectional channel dedicated to a user's equipment for transmitting user information. In addition, a Multicast Traffic Channel (MTCH) can be used for point-to-multipoint downlink transmission of traffic data. Communication networks in which various embodiments may be implemented may additionally include logical transmission channels. The logical transmission channels are divided into a downlink (DL) and an uplink (UL). The DL transmission channel may include: a broadcast channel (BCH), a downlink shared data channel (DL-SDCH), a multicast channel (MCH), and a paging channel (PCH). The UL transmission channel may include: a random access channel (raCH〇S} 17 201132175 request channel (REQCH), an uplink key shared data channel (UL-SDCH), and a plurality of physical channels. The physical channel may also include a set of downlink keys. Channel and uplink channel. In one disclosed embodiment, the downlink physical channel can include at least one of the following channels: a shared bow pilot channel (CPICH), a synchronous channel (SCH), a shared control channel (CCCH), Shared Downlink Control Channel (SDCCH), Multicast Control Channel (MCCH), Shared Uplink Assignment Channel (SUACH), Acknowledgement Channel (ACKCH), Downlink Entity Shared Data Channel (DL-PSDCH) , uplink power control channel (UPC CH ), paging indicator channel (PICH), load indicator channel (LICH), physical broadcast channel (PBCH), entity control format indicator channel (PCFICH), actual downlink line Control channel (PDCCH), live hybrid ARQ indicator channel (PHICH) 'physical downlink key sharing pass, - multicast channel (PMCH). Uplink physical track (PDSCH) and real hardship, seven At least one entity access channel channel may include the following channel ice indicator channel (CQICH), acknowledge channel (PRACH), channel quality right beta indicator channel (ASICH), shared request channel (ACKCH), antenna subset buckle ^Pay to do f body 皋 皋 data channel (UL_PSDCH), track (SREQCH), uplink link side " «τΓΗ", physical uplink control channel% frequency pilot channel (; link soldier channel (PUSCH) (PUCCH) and physical play

Jr邀:可用於描述各種所揭不的實施 另外,以下術語和特微用 例: 3G第三代 3GPP第三代合作夥择計劃 18 201132175 ACLR相鄰通道洩漏比 ACPR相鄰通道功率比 ACS相鄰通道選擇性 A D S面級設計系統 AMC可適性調制和編碼 A-MPR額外最大功率降低 ARQ自動重傳請求 BCCH廣播控制通道 BTS基地台收發站 CDD循環延遲分集 CCDF互補累積分佈函數 CDMA分碼多工存取 CFI控制格式指示符 Co-MIMO 協作 ΜΙΜΟ CP循環字首 CPICH共用引導頻通道 CPRI共用公共無線電介面 CQI通道品質指示符 CRC循環冗餘檢查 DCI下行鏈路控制指示符 DFT離散傅立葉變換 DFT-SOFDM離散傅立葉變換展開OFDM DL下行鏈路(基地台到用戶的傳輸) DL-SCH下行鏈路共享通道 19 201132175 D-PHY500 Mbps 實體層 DSP數位信號處理 DT開發工具箱 DVSA數位向量信號分析 EDA電子設計自動化 E-DCH增強型專用通道 E-UTRAN進化型UMTS地面無線電存取網路 eMBMS進化型多媒體廣播多.播服務Jr invites: can be used to describe various implementations. In addition, the following terms and special use cases: 3G third generation 3GPP third generation partnership plan 18 201132175 ACLR adjacent channel leakage ratio ACPR adjacent channel power adjacent to ACS Channel selective ADS surface level design system AMC adaptive modulation and coding A-MPR extra maximum power reduction ARQ automatic retransmission request BCCH broadcast control channel BTS base station transceiver station CDD cyclic delay diversity CCDF complementary cumulative distribution function CDMA code division multiplexing Take CFI control format indicator Co-MIMO cooperation ΜΙΜΟ CP cycle prefix CPICH shared pilot channel CPRI shared common radio interface CQI channel quality indicator CRC cyclic redundancy check DCI downlink control indicator DFT discrete Fourier transform DFT-SOFDM discrete Fourier Transform Expands OFDM DL Downlink (Base-to-User Transmission) DL-SCH Downlink Shared Channel 19 201132175 D-PHY500 Mbps Physical Layer DSP Digital Signal Processing DT Development Toolbox DVSA Digital Vector Signal Analysis EDA Electronic Design Automation E -DCH Enhanced Dedicated Channel E-UTRAN Evolutionary UMTS Terrestrial Radio Access Network eM BMS evolutionary multimedia broadcast multi-cast service

eNB進化節點B EPC進化封包核心 EPRE每資源元素的能量 ETSI歐洲電信標準協會eNB Evolution Node B EPC Evolution Packet Core EPRE Energy per Resource Element ETSI European Telecommunications Standards Association

E-UTRA 進化型 UTRAE-UTRA Evolution UTRA

E-UTRAN 進 4匕型 UTRAN EVM誤差向量幅度 FDD分頻雙工 FFT快速傅立葉變換 FRC固定參考通道 FS1訊框結構類型1 FS2訊框結構類型2 GSM行動通訊全球系統 HARQ混合自動重傳請求 HDL硬體描述語言 r c λ HIHARQ指示符 20 201132175 HSDPA高速下行鏈路封包存取 HSPA高速封包存取 HSUPA高速上行鏈路封包存取E-UTRAN into 4 匕 UTRAN EVM error vector amplitude FDD frequency division duplex FFT fast Fourier transform FRC fixed reference channel FS1 frame structure type 1 FS2 frame structure type 2 GSM mobile communication global system HARQ hybrid automatic retransmission request HDL hard Body description language rc λ HIHARQ indicator 20 201132175 HSDPA high speed downlink packet access HSPA high speed packet access HSUPA high speed uplink packet access

IFFT 反 FFT IOT互操作性測試 IP網際網路協定 LO本機振盪器 LTE長期進化 MAC媒體存取控制 MBMS多媒體廣播多播服務 MBSFN單頻網路上的多播/廣播 MCH多播通道 ΜΙΜΟ多輸入多輸出 MISO多輸入單輸出 ΜΜΕ行動性管理實體 MOP最大輸出功率 MPR最大功率降低 MU-MIMO多使用者ΜΙΜΟ NAS非存取層 OBSAI開放基地台架構介面 OFDM正交分頻多工 OFDMA正交分頻多工存取 PAPR峰值對平均功率比 PAR峰值對平均比 [S1 21 201132175 PBCH實體廣播通道 P-CCPCH主要共用控制實體通道 PCFICH實體控制格式指示符通道 PCH傳呼通道 PDCCH實體下行鏈路控制通道 PDCP封包資料聚合協定 PDSCH實體下行鏈路共享通道 PHICH實體混合ARQ指示符通道 PHY實體層 PRACH實體隨機存取通道 PMCH實體多播通道 PMI預編碼矩陣指示符 P-SCH主同步通道 PUCCH實體上行鏈路控制通道 PUSCH實體上行鏈路共享通道 圖2圖示可實現各種實施例的示例性通訊系統的方塊 圖。圖2中圖示的ΜΙΜΟ通訊系統200包括ΜΙΜΟ通訊系 統200中的發射機系統210 (例如,基地台或存取點)和 接收機系統250 (例如,存取終端或使用者裝備)。本領域 一般技藝人士將瞭解,即使如圖所示基地台代表發射機系 統21 0並且使用者裝備代表接收機系統250,此等系統的 實施例亦能夠進行雙向通訊。就此而言,術語「發射機系 統2 10」和「接收機系統250」不應用來暗示從任一個系 統進行單向通訊。亦應當注意,圖2的發射機系統210[积] 22 201132175 接收機系統25〇各自能夠.與圖2中未明確圖示的複數個其 他接收機系統和發射機系統進行通訊。在發射機系統21〇 處’從資料源212向發射(TX)資料處理器214提供若干 資料串流的訊務資料。可以經由各別發射機系統來發射每 個資料串流。基於為每個資料串流選擇的特定的編碼方 案’ TX資料處理器214對每個資料串流的訊務資料進行 格式化、編碼和交錯’以提供編碼資料。 可以使用例如OFDM技術來多工每個資料串流的編碼資 料與引導頻資料。引導頻資料通常是已知的資料型樣,其 用已知的方式處理並可以在接收機系統處用來估計通道 回應。隨後,基於為每個資料串流選定的特定調制方案(例 =,BPSK、QPSK、财队或M_QAM)’對該資料串流的 多工引導頻和編碼資料進行調制(符號映射),以提供調 制符號。每個資㈣流的資料速率、編碼和調制可以由發 射機系統210的處理器23〇執行的指令來決定。 、在圖2的示例性方塊圖中,所有資料串流的調制符號可 u被提供給TXMim〇處理器22〇,其可以進一步處理該等 調制符號(例如,用於〇FDM)。隨後,τχ μιμ〇處理器 220向W個發射機系統收發器(TMTR) 222a到222t提供 /個調制符號串流。在一個實例中,τχ MW。處理器22〇 :以進-步向資料串流的符號以及向正在發射符號的天 線應用波束成形權重。 符:t發射機系统收發器222&到222t接收並處理各別的 J ” X提供一或多個類比信號,並進一步調節該等[類] 23 201132175 比信號以提供適於在ΜΙΜΟ通道上傳輸的調制信號。在一 些實施例中,該調節可包括但不限於諸如放大、滤波、升 頻轉換之類的操作。隨後’㈣2所示的發射機系統天線 224a到224t發射由發射機系統收發器^。到Μ。產生的 調制信號。 在接收機系統250處,可由接收機系統天線25。到252r 接收發射的調制信號,並且來自每個接收機系統天線 到252Γ的接收信號被提供給各別的接收機系統收發器 (RCVR) 254a到254r。每個接從機系統收發器25心到 254r調節各別接收的信號,數位化調節後的信號以提供取 樣’並可進一步處理取樣以提供相應的「接收的」符號串 流。在一些實施例中’該調節可包括但不限於諸如放大、 遽波、降頻轉換之類的操作。 隨後,RX資料處理器260接收來自接收機系統收發器 254a到254γ的符號串流,並基於特定的接收機處理技術 對該等符號串流進行處理,以提供複數個「偵測的」符號 串流。在一個實例中,每個偵測的符號串流可包括符號, ^等符號疋對為相應的資料串流發送的符號的估計。隨 後,RX資料處理器260至少部分地對每個偵測的符號事 仇進仃解調、解交錯和解碼,以恢復相應的資料串流的訊 務資料。RX資料處理器26〇所進行的處理可與發射機系 統21〇處的τχ ΜΙΜΟ處理器220和TX資料處理器214 所執行的處理相反。RX資料處理器260可以額外向資料 槽264提供處理過的資料串流。 ^ ρ 24 201132175 在些實施例中,RX資料處理器260所產生的通道回 應估计可用於執行接收機系統250處的空間/時間處理、調 整功率位準、改變調制速率或方案、及/或其他適當的動 作另外,Rx資料處理器260可以進一步估計通道特徵, 諸如,摘測符號串流的訊雜比(SNR)和信號干擾比(SIR )。 隨後’ RX資料處理器26()可以向處理器27〇提供估計的 通道特徵。在一個實例中,接收機系統25〇的Rx資料處 理器260及/或處理器27〇可以進一步導出系統的「操作」 SNR的估計。接收機系統250的處理器270亦可提供通道 狀態資訊(CSI) ’其可包括關於通訊鏈路及/或接收資料串 l的 > 訊發射機系統2 1 0 (例如,基地台或進化節點b ) 可以使用該資訊(其可包含例如操作SNR和其他通道資 訊)來作出關於例如使用者裝備排程、MIM〇設定、調制 及編碼選擇等的適當決定。在接收機系統25〇處,處理器 270所產生的CSI由TX資料處理器238處理、由調制器 280調制、由接收機系統收發器25栳到25扣調節、並且 被發送回發射機系統210。另外,接收機系統25〇處的資 料源236可以提供由TX資料處理器238來處理的額外資 料。 在些實施例中,接收機系統250處的處理器27〇亦可 以週期性地決定使用哪個預編碼矩陣。處理器27〇公式化 包括矩陣索引部分和秩值部分的反向鏈路訊息。反向鏈路 訊息可以包括關於通訊鏈路及/或接收的資料串流的各種 類型的資訊。h後,接收機系統250處的丁X資料處理[器】 25 201132175 亦可以接 隨後,處 23 8處理反向鏈路訊息,該τχ資料處理器 收來自資料源236的若干資料串流的訊務資料。 理後的資訊由調制器280調制、由一或多個接收機系統收 發器254a到2541•調節、並被發送回到發射機系統21〇。 在ΜΙΜΟ通訊系統200的一些實施例中,接收機系統 能夠接收和處理空間多工信號。在此等系統中,藉由在發 射機系統天線224a到224t上多工和發射不同的資料串 流,在發射機系統210處發生空間多工。此與發射分集方 案的使用相反’在發射分集方案中,從多個發射機系統天 線224a至,M24t發送相肖的資料串流。在能夠接收和處理 空間多工信號的ΜΙΜΟ通訊系統200中,通常在發射機系 統210處使用預編碼矩陣,以確保從發射機系統天線η钝 到224t中的每一個發射的信號彼此充分地解相關。此解相 關確保:能夠接收到達任何特定接收機系統天線252&到 252r的複合信號;及在存在來自於其他發射機系統天線 224a到224t的攜帶其他資料串流的信號的情況下,能夠 決定個別資料串流。 由於垓境可以影響串流之間的互相關性的量,故對於接 收機系統250而言_的是,將關於接收信號的資訊反饋 給發射機系統210。在此等系統中,發射機系统21〇和接 收機系統250皆包含具有若干預編碼矩陣的編碼薄。此等 預編碼矩陣中的每__個皆可能在某些情況下與接收信號 中經歷的互相關性量有關。由於有利的情況是發送特定矩 陣的索引而非矩陣中的值,故從接收機系統25〇向發射機 26 201132175 系統210發送的反饋控制信號通常包含特定預編碼矩陣的 索引在某些情況下’反饋控制信號亦包括秩索引(rank index )’其指示發射機系統2丨〇將在空間多工中使用多少 個獨立資料串流。 ΜΙΜΟ通訊系統200.的其他實施例被配置為利用發射分 集方案來代替上述空間多工方案。在此等實施例中,在發 射機系統天線224a到224t上發射相同的資料串流。在此 等實施例中,向接收機系統25〇傳遞的資料速率通常低於 空間多工ΜΪΜΟ通訊系統200。此等實施例在通訊通道的 健王}•生和可靠性方面有優勢。在發射分集系統中,從發射 機系統天線224a到224t發射的每一個信號皆將經歷不同 的干擾裱境(衰落、反射、多徑相移)。在此等實施例中, 在接收機系統天線252a到2521•處接收的不同的信號特徵 可用於決定適當的資料串流。在此等實施例中,秩指示符 通常被設定為1,從而告知發射機系統21〇不使用空間多 工 ° 其他實施例可以利用空間多工和發射分集的組合。例 如在使用四個發射機系統天線224a到224t的ΜΙΜΟ通 訊系統200中,可以在發射機系統天線224a到224t中的 兩個天線上發射第一資料串济l,並且可以在.發射機系統天 線224a至,J 224t中剩下的兩個天線上發射第二資料串流。 在此等實施例中,秩索引被^定為低於預編碼矩陣之全秩 的整數’從而指示發射機系統21〇使用空間多工和發射分 27 201132175 在發射機系統210,來自技必磁么“ Λ 丁 % 木目接收機系統25〇的調制信號由 發射機系統天線⑽到224t接收、由發射機系統收發器 222a到222t調節、由發射機系統解調器解調、並且 由U資料處理器242處理,以提取由接收㈣統25〇發 射的反向鏈路訊息。在一些實施例中,發射機系統21〇的 處理器230隨後決定將哪個預編碼矩陣㈣將來的前向鍵 路傳輸,且隨後處理上述提取的訊息。在其他實施例中, 處理器23 0使用接收的信號來調整用於將來前向鏈路傳輸 的波束成形權重。 在其他實施例中,報告的CSI可以被提供給發射機系統 210的處理器230,並被用來決定例如用於一或多個資料 串流的資料速率以及編碼和調制方案。隨後,決定的編碼 和調制方案可以被提供給發射機系統21〇處的一或多個發 射機系統收發器222&到222t,以用於量化及/或用於稍後 向接收機系統250的發射。另外及/或替代地,發射機系統 21〇的處理器230可以使用報告的CSI來產生對τχ資料 處理器214和τχ ΜΙΜΟ處理器22〇的各種控制。在一個 實例中’發射機系統210的RX資料處理器242所處理的 CSI及/或其他資訊可以被提供給資料槽244。 在一些實施例中,發射機系統210處的處理器23〇和接 收機系統250處的處理器270可以指示其各別系統的操 作。另外,發射機系統210處的記憶體232和接收機系統 25〇處的記憶體272可以分別提供對發射機系統處理器 23〇和接收機系統處理器270所使用的程式碼和資料你傅1 28 201132175 存。另外,在接收機系統250處’可用各種處理技術來處 理NR個接收信號’以偵測Ντ個發射的符號串流。此等接 收機處理技術可包括:空間和空間-時間接收機處理技術, 其可包括均衡技術,「連續調零/均衡和干擾消除」接收機 處理技術;及/或「連續干擾消除」或「連續消除」接收機 處理_技術。 圖3圖示可在其中實施各種所揭示的實施例的無線網路 300。該示例性無線通訊系統300包括多個細胞服務區, 該等細胞服務區包括細胞服務區302、細胞服務區3〇4和 細胞服務區306。通訊網路300的細胞服務區3〇2、細胞 服務區304和細胞服務區306可包括基地台,基地台包括 多個扇區。該多個扇區可由天線群組形成,其中每個天線 負貴與細胞服務區的一部分中的一或多個使用者裝備進 行通訊。例如,在細胞服務區3〇2中,天線群組312、Η# 和316可各自對應於不同的扇區。在細胞服務區3〇4中’ 天線群組318、320和322各自對應於不同的扇區。在細 胞服務區306中,天線群組324、326和328各自對應於 不同的扇區。通訊網路3〇〇的細胞服務區3〇2、細胞服務 區304和細胞服務區3〇6可包括若干無線通訊設備,例 如’使肖者裝備’其可以與通訊網路3〇〇中的每個細胞服 務區302、細胞服務區3〇4或細胞服務區3〇6的一或多個 扇區進行通訊。例如,❹者裝備330和使用者|備_332 可以與基地台342進行通訊,使用者裝備334和使用者裝 備336可以與基地台344進行通訊,並且使用者裝備3灸8 29 201132175 和使用者裝備340可以與基地台346進行通訊。圖3亦圖 :與通訊網路_的一或多個基地台進行通訊的系統控制 1§ 3 3 0。 如上所述,在諸如圖3中圖示的無線通訊網路則的通 訊網路中,基地台可以經由Χ2回載介面向鄰近細胞服務 區的基地台發送超载指示符’以便於提供關於在細胞服務 區頻寬的-或多個部分中經歷的上行鏈路干擾的資訊。接 收該超載指示符的細胞服務區(下文中的「接收細胞服務 D、的〜回應不是標準化的’並且因此由基地台的實施者 自仃決定。然%,在典型的回應情況中,接收細胞服務區 β ’藉由例如調整對使用者裝備之發射的排程策略、降低 及/或重新分配使用者裝備的發射功率或者其組合來降低 在一些資源區塊上產生的干擾。功率控制的限度可以基於 例如使用者|備所引起的干擾的程度。為了評估干擾的程 度2量,接收細胞服務區可以依賴差分路徑損耗量測,其 通吊疋從使用者裝備所發送的量測報告中計算得到的。 例如’ LTE網路中的超載指示符使網路能夠將在每個進 化即點Β處經歷的干擾維持在所要值處或者在所要值以 下經常相對於進化節點Β處的熱雜訊位準(心順1 l^el ) 來量測干擾位準,並且將其稱為干擾與熱雜訊比(ι〇Τ)。 & 嚴格控制具有若干益處。例如,可預測的ι〇τ 位準使網路能夠執行在諸如pusCH的資料通道中的準確 的速率預測。此舉亦與諸如pucCH的不能依賴於混合自 重傳喷求(HARQ )重傳的控制通道有關。在沒有嚴[格】 30 201132175 ι〇τ控制的情況下,可能必須以很保守的功率位準來發送 在此等通道上傳輸的資訊’很保守的功率位準進而可以導 致對其他進化節點Β的過渡干擾。應當注意,雖然在一些 實施中PUCCH主要容易受到「控制對控制 (control-〇n-control)」干擾的影響,但是除了鄰近進化節 點B中的不同的PUCCH區域範圍的干擾以外,控制資訊 亦常常歸因於PUSCH上的傳輸而經歷來自資料通道的干 擾。 在進化節點B處觀察到的高干擾位準可以進一步影響該 進化節點B所服務的使用者裝備的鏈路預算,該鏈路預算 影響可以導致:資料中斷’例如,歸因於基於ip的語音 (VoIP )封包的吾失而引起的資料中斷;以及控制中斷, 其可包括通道品質資訊(CQI)報告和ACK/NACK資訊的 丢失。 接收細胞服務區處的超載指示符可以進一步被用於使 用功率控制演算法來實現功率整形,該等功率控制演算法 利用使用者裝備的差分路徑損耗資訊。詳言之,在此類方 案中’位置接近細胞服務區邊緣的使用者裝備可以以相對 低的功率譜密度來進行發射(由於其是主要干擾者),而 位置不接近細胞服務區邊緣的使用者裝備可以以較高的 功率譜密度來進行發射(由於其導致相對較低的干擾)。 該類型的功率整形可以幫助增加網路容量。應當注意,術 语「功率譜密度」可以代表用頻寬來正規化的功率值(例 如,一個常數乘以每個資源區塊上的功率)。例如,傳既 31 201132175 者裝備的發射功率可以與分配給該使用者裝備的資源區 塊的數目乘以每個資源區塊上的功率而得到的數成正 比因此,藉由控制功率譜密度,可以實現對使用者裝備 的發射功率的控制’藉由該控制功率譜密度可以實現對每 個資源區塊上的發射功率的控制。 然而,同樣如上所述,由於各種原因,經由χ2介面發 送超载私示符、以及接收細胞服務區用於實現功率控制的 後續動作可能是不可行的。例如,各種基地台之間的 連接性可能是不可用的。另外,即使χ2彳面是可用的, 與此等通訊相關的等待時間亦可能太長。另外,若通道干 擾狀況在連續的量測報告之間是變化的,則由基地台進行 的功率控制/調整也許不能適當地緩解此等通道干擾狀況。 各種所揭示的實施例提供了能夠實現空中超載指示符 的傳輸以促進無線通訊系統中的上行鏈路功率控制的系 統、方法、裝置和電腦程式產品。圖4圖示根據示例性實 施例的系統400,其在無線網路41 〇中使用超載指示符部 件440。系統400包括一或多個基地台42〇 (亦稱為節點、 進化節點B ( eNB )、服務eNB、目標eNB、毫微微站、微 微站、中繼基地台等),其可以是能夠在無線網路41〇上 與一或多個設備430進行通訊的實體。例如,每個設備43〇 了以疋使用者裝備(亦稱為終端、存取终端、行動性管理 實體(MME)、行動設備等)。基地台42〇可包括超載指示 符部件440,其經配置為產生及/或處理無線網路41〇上的 超載指不符。基地台420處的超載指示符部件44〇的马如 32 201132175 一部分亦可以配置為產生及/ 路設備(諸如η栽人 域理了從其他網路及/或網 裝備1= 連接)接收的超載指示符。使用者 線網路41。上載指示符部件45°,其經配置為處理無 線,周路410上的超載指示 被户定Α相截托 子應*庄意’雖然圖4圖示了 被才曰疋為超載指示符部件的兩個部件42〇_43〇,但是在 網路410上亦可使用兩 ^ -T v * ^ . 上的°P件,其中此等額外的部 件亦可以配置為執行各種 作本文中所述的不同的信 號處理操作。如圖4所矛,^ 、基地σ 420經由下行鏈路460 向設備43 0進行僂谈_ ;,並且經由上行鏈路47〇接收資 料。由於設備4 3 0亦可以姆士 丁 — — °,由下仃鏈路發送資料並經由上 行鏈路接收資料,钕諸1 上订鏈路和下行鏈路的此類指定 是任意的。 在一些實施例中,空中超载指示符可以由正在經歷高干 擾位準的進化節點B來發送,並且由無線通訊網路中…戈 多個設備直接接收。例如,參照圖4,超載指示符可由基 地台420的超载指示符部件楊產生,並被直接發送給一 或多個使用者裝借Iky , 基地σ 420可以與通訊網路410 中的-細胞服務區相„,並且該一或多個設備43〇可以 於或夕個鄰近細胞服務區中。隨後,使用者裝備 所接收的空中超載指示符可以由設備430的超載指示符部 件450來處理,以促進功率控制。 在某二實施例中’除了使用諸如從設備㈣的服務基地 口接收的功率控制命令的其他資訊以外,設備亦使用 ㈣如鄰近細胞服務區接收的空中超載指示符,以決定职 33 201132175 實施其發射功率。另外,設備43()亦可以向其服務基地台 報口接收的工中超載指示符資訊,從而使得該服務基地台 知曉鄰近細胞服務區正經歷的干擾。藉由利用上述方法, 即使在沒有Χ2連接的情況下,亦可以在基地台之間實現 干擾控制。另外,由於設備43〇直接接收超載指示符,並 且完全指定了設備430對超載指示符的回應,故亦可以成 功地進行來自不同供應商的基地台之間的干擾控制。此 外,設備430在準備對空中超載指示符的適當回應時可以 利用其無線電頻率(RF)環境的最新量測。 圖5是圖示示例性實施例的方塊圖。方法5〇〇開始於 502,此時使用者裝備從一或多個鄰近細胞服務區接收一 或多個空中超載指示符。回應於接收該一或多個空中超載 指示符,使用者裝備在504處決定對使用者裝備的發射功 率的調整,以便於降低或消除干擾。在一些實施例中,舉 例而言(但並非限制)’此類調整可包括修改發射功率值、 進行對發射排程的調整及/或重新分配用於使用者裝備之 發射的頻率。可由基地台來進行至少一些上述調整,例 如,對發射排程及/或頻寬的特定改變。因此,使用者裝備 可以請求基地台實現此等調整。在5〇6處,使用者裝備可 以可選地向其服務基地台報告上述調整。最後,在5〇8處, 使用者裝備可以基於此等調整來實現功率控制。應當注 思’上述方塊和操作是用於示例性目的。所揭示的實施例 不限於示例性方塊,並且可以用更少或更多的方塊和操作 來實施。例如,雖然圖5的示例性方塊圖圖示用於決定[調) 34 201132175 整和實現功率控制的獨立 町万塊,但疋完全有可能將此等 操作組合到一個步驟中 7驟中例如在504中執行該步驟。 根據另一個實施例,保_ a,λ 叹備43〇可以首先基於接收的空t 超載指示符計算功率譜密 卉τ汉備430應當以該功率 谱祖度進打發射n計算出的功率譜密度可以被發送 給服務基地台,該服務基地台亦被給予機會來對計算出的 發射功率密度進行修改。例如,服務基地台可能需要修改 發^功率’讀於允許特定的高優選權訊務在特定的延時 預算内通過。應當注意’根據該實施例,在沒有使用Χ2 "面的if况下’超載指示符被傳送給設備43q及其服務基 地台。然而,由於設備43〇及其服務基地台皆參與決定發 射功率’故額外的等待時間以及上行鏈路資料管理負擔可 以影響功率控制操作。 圖6是圖示包括使用者裳備與其服務基地台之間的一些 互動的示例性實施例的方塊圓。該方.法_開始於6〇2, 此時使用者裝備從一或多個鄰近細胞服務區接收空中超 載“不符。回應於接收該—或多個空中超載指示符,使用 者裝備在604處什算對發射功率的調整,以便於降低或消 除干擾。在606冑’使用者裝備向其服務基地台報告計算 出的發射功率調整。在6〇8冑,使用者裝備可以從服務基 地台接收修改的發射功率,調整。從服務基地台接收的修改 的調整可包括··新的發射功率調整及/或實現此類調整所必 需的命令、或沒有必要對先前計算出的發射功率調整進行 任何改變的指不。若沒有必要對使用者裝備所計算出玲勒 35 201132175 整進行任彳可改變’則替代地’在608處,使用者裝備可以 僅在例如預定週期内接收不到任何額外資訊。最後,在6 i 〇 處,使用者裝備可以基於更新的發射功率調整及/或命令來 實現功率控制。 在另一個實施例中,設備430可以接收一或多個空中超 載指示符,並隨後向其服務基地台報告該接收的資訊。隨 後,服務基地台可以基於接收的超載指示符以及其他資訊 (諸如,由無線網路410中的一或多個使用者裝備發送的 I測報告)來計算適當的發射功率調整。隨後,可以從服 務基地台向設備430發送功率控制調整/命令,以實現設備 430處的發射功率控制。根據該實施例,雖然在不需要 "面的情況下仍可以進行超載指示符資訊的交換,但服務 基地台所產生的功率控制調整/命令可能容易受到與尺?環 境有關的過期資訊的影響。另外,若基地台對接收的超载 指示符的回應不是指定的或不是標準化協定的一部分,則 一些基地台可能不對該等超載指示符作出回應。因此,可 能失去在多供應商部署中控制干擾的能力。 圖7是圖示與基於從服務基地台接收的調整/命令進行 的功率控制有關的另一個示例性實施例的方塊圖。方法 700開始# 702,此時使用者裝備從一或多個鄰近細胞服 務區接收-或多個空中超載指示符。響應於接收該一或多 個空中超載指示符,使用者裝備在7〇4處向其服務基地台 報告超載指示符資訊,在該服務基地台中計算適當的功率 控制調整。在7〇64 ’錢者装備從其服務基地台接收[發】 36 201132175 射功率調整。從基地台接收的發射功率調整可包括新的發 射功率調整及/或實現此類調整所必需的命令。最後,在 處,使用者裝備基於接收的調整來實現發射功率控制。 由以上描述可明顯看出,根據圖5和圖6所圖示的實施 例而進行的計算主要是在使用者裝傷處執行的,而根據圖 7所描述實施例的用於決定發射功率位準的計算主要是在 基T台處進行的。另外,結合圖7所圖示的實施例,可以 不指定用於在基地台處決定功率控制命令的確切演算法。 圖8是圖示根據另一個實施例的、可執行以用於產生空 超載指示符的操作的方塊圖。方法8〇〇開始於㈣,其 經歷過高位準的干擾的細胞服務區處產生超載指 =貝訊。超载指示符資訊的内容可以與被產生以經由回 的内介面)向其他基地台發送的現有超載指示符 :目同。或者’空中超載指示符的内容可包括一般超 方二符所包含資訊的子集及/或壓縮版本。在又一個替代 符所勺^中超载指示符的内容可包括除了 一般超載指示 内^含資訊以外的資訊。在一個實例中,超載指示符的 外,二;進位值’其指示存在或不存在超载/干擾狀況。另 相μ 符可以提供關於與特定的時間及/或頻率資源 相關聯的超載條件的資訊。 飞料負源 化。舉例:::;在804處,對超载指示符資訊進行格式 操作可 並非限制),在-些實施例中,格式化 交錯、二源編碼、通道編碼、調制編碼、誤差校正編碼、 在、及/或為準備用於發送的超載指示符資訊_ 37 201132175 需的其他#料格式化和調節操作。在806處,超載指示符 ' X送、’°或多個使用者裝備。該一或多個使用者裝備可 位於一或多個鄰近細胞服務區中。 在接收到空中超載指示符之後,使用者裝#可以藉由啟 .動力率控制操作來做出回應。用於實現發射功率控制的一 :方法可以基於用類似於「下降的或(⑽。“㈣η。」演 的/寅算法#算出的發射功率調整。根據「下降的或」 肩f法,當使用者裝備從複數個基地台中的任何一個接收 下降j ( DOWN)請求時,該使用者裝備可以降低其發 力率然而,僅當使用者裝備從所有基地台皆接收到「上 升」(UP) If求時’該使用者裝備才增加其發射功率。類 〇地在些所提供的實施例中,當使用者裝備從任何鄰 近、田胞服務區接㈣空巾超載指示符時,該使用者裝備可 以將其發射功率降低固定步長〜。”。另外,只有當使用者 裝備在拍定的時間週期内未能接收到任何超載指示符 時’該制者裝備才可以將其發射功率位準提高固定步長 可以在例如媒體存取控制(MAC)層實施上述功率控 制演算法。 為了對最大和最小發射功率位準提供有意義的界限,可 以為在服務基地台處得到的SNR建立兩個訊雜比祖_ 和SNRmin。上限隱_確保使用者裝備*以比獲得峰值 頻譜效率所需的功率位準更大的功率位準來進行發射。類 似地,下限贿min確保每個使用者裝備能夠獲得特定的最 小讀。此類演算法允許網路控制在每個基地台處觀獅 38 201132175 的Ι〇Τ。然而,由於網路中的所有使用者裝備皆以相似的 方式對超載指示符作出反應’故經由該演算法不能獲得功 率整形增益。 為了獲得功率整形增益’使用者裝備的回應可以基於正 由該使用者裝備導致的干擾的量。因此,在一些實施例 中 了以使用差分路徑損耗Apl來提供功率整形增益,該 差分路徑損耗Δρ£代表使用者裝備所導致的干擾。路捏損 耗通常代表由傳播導致的信號強度的損耗。對於基地台.和 使用者裝備的給定的配置,差分路徑損耗可以被決定 為 PLeNB - PLeNB,serv。此處,PLeNB以dB尺度表示使用 者裝備與正在經歷過高干擾位準的基地台之間的路徑損 耗且PLeNB,serv以dB尺度表示使用者裝備與其服務基地 台之間的路徑損耗。在一些實施例中,可以結合機率使用 差为路徑損耗來決定適當的發射功率調整,並隨後在 無線網路中的—或多個使用者裝備處實現發射功率控制。 β在一個實例中,在接收到超載指示符之後,使用者装備 17 、根據機率pd()wn(ApL,SNR)將其發射功率位準降低固定 步長△…在該實例中,機率pd_是根據在服務基地台 處獲得的SNR和差分路徑損耗^而定的。大體而言,不 進行任何動作的機率是卜pd_。類似地,當沒有接收到任 何超載指示符時,使用者裝備可以以機率Pupcpl,snr)將 其發射功率位準提高固^步長在該實例中,機率Pup-亦,根據在服務基地台處獲得的獄和^分路徑損耗〜 而疋的。當沒有接收到任何超载指示符並且僅存在一個[離] 39 201132175 近基地台時,可以計算相對於該鄰近基地台的差分路徑損 耗若存在多個鄰近基地台,則上述機率值可以是根 據為多個鄰近細胞服務區決定的多個差分路㈣耗‘值 而定的。應當注意,即使沒有接收到超载指示符,亦可以 量測對於鄰近基地台的路徑損耗。在—些示例性實施例 中’機率函數Pup(apl,Snr)可以被選擇成使得當差分路徑 損耗APL低時及/或當SNR高時該機率函數Pup低,而機率 函數P6Wa(APL,SNR)可以被選擇成使得其以相反的方式來 表現。例如,藉由以下函數來滿足此等屬性: Pup(ApL,SNR)==a(l-b);IFFT Inverse FFT IOT Interoperability Test IP Internet Protocol LO Local Oscillator LTE Long-Term Evolution MAC Media Access Control MBMS Multimedia Broadcast Multicast Service MBSFN Multicast/Broadcast MCH Multicast Channel on Single Frequency Network Multiple Inputs Output MISO multi-input single-output ΜΜΕ mobility management entity MOP maximum output power MPR maximum power reduction MU-MIMO multi-user ΜΙΜΟ NAS non-access layer OBSAI open base station architecture interface OFDM orthogonal frequency division multiplexing OFDMA orthogonal frequency division Worker access PAPR peak-to-average power ratio PAR peak-to-average ratio [S1 21 201132175 PBCH physical broadcast channel P-CCPCH primary shared control entity channel PCFICH entity control format indicator channel PCH paging channel PDCCH entity downlink control channel PDCP packet data Aggregation Protocol PDSCH Entity Downlink Shared Channel PHICH Entity Hybrid ARQ Indicator Channel PHY Physical Layer PRACH Entity Random Access Channel PMCH Entity Multicast Channel PMI Precoding Matrix Indicator P-SCH Primary Synchronization Channel PUCCH Entity Uplink Control Channel PUSCH Physical Uplink Shared Channel FIG. 2 illustrates an embodiment in which various embodiments may be implemented Block diagram of the communication system. The UI communication system 200 illustrated in Figure 2 includes a transmitter system 210 (e.g., a base station or access point) and a receiver system 250 (e.g., access terminal or user equipment) in the communication system 200. One of ordinary skill in the art will appreciate that even if the base station represents the transmitter system 210 and the user equipment represents the receiver system 250 as shown, embodiments of such systems are capable of two-way communication. In this regard, the terms "transmitter system 2 10" and "receiver system 250" should not be used to imply one-way communication from either system. It should also be noted that the transmitter system 210 [product] 22 201132175 receiver system 25 of Figure 2 is each capable of communicating with a plurality of other receiver systems and transmitter systems not explicitly illustrated in FIG. A plurality of data streams of traffic data are provided from the data source 212 to the transmit (TX) data processor 214 at the transmitter system 21'. Each data stream can be transmitted via a separate transmitter system. The TX data processor 214 formats, codes, and interleaves the traffic data for each data stream based on a particular encoding scheme selected for each data stream to provide encoded data. The encoding data and pilot data of each data stream can be multiplexed using, for example, OFDM techniques. The pilot data is typically a known data pattern that is processed in a known manner and can be used at the receiver system to estimate channel response. Then, modulating (symbol mapping) the multiplexed pilot and encoded data of the data stream based on a particular modulation scheme (eg, BPSK, QPSK, finance, or M_QAM) selected for each data stream to provide Modulation symbol. The data rate, coding and modulation for each of the streams may be determined by instructions executed by the processor 23 of the transmitter system 210. In the exemplary block diagram of Figure 2, the modulation symbols for all data streams can be provided to the TXMim processor 22, which can further process the modulation symbols (e.g., for 〇FDM). The τχ μιμ〇 processor 220 then provides / modulation symbol streams to the W Transmitter System Transceivers (TMTR) 222a through 222t. In one example, τ χ MW. Processor 22: applies beamforming weights to the symbols of the data stream and to the antenna that is transmitting the symbols. Symbol: t transmitter system transceivers 222 & 222t receive and process the respective J" X to provide one or more analog signals, and further adjust the [class] 23 201132175 ratio signals to provide suitable transmission on the ΜΙΜΟ channel Modulation signal. In some embodiments, the adjustment may include, but is not limited to, operations such as amplification, filtering, upconversion, etc. The transmitter system antennas 224a through 224t shown in '(4) 2 are then transmitted by the transmitter system transceiver The resulting modulated signal is received at the receiver system 250. The transmitted modulated signal can be received by the receiver system antennas 25 through 252r, and the received signals from each receiver system antenna to 252 被 are provided to the respective signals. Receiver System Transceivers (RCVR) 254a through 254r. Each slave system transceiver 25 core 254r adjusts the respective received signals, digitizes the conditioned signals to provide samples' and can further process the samples to provide corresponding The "received" symbol stream. In some embodiments, the adjustments may include, but are not limited to, operations such as amplification, chopping, down conversion, and the like. RX data processor 260 then receives the symbol streams from receiver system transceivers 254a through 254[gamma] and processes the symbol streams based on a particular receiver processing technique to provide a plurality of "detected" symbol strings. flow. In one example, each detected symbol stream can include a symbol, ^, etc., an estimate of the symbol transmitted for the corresponding data stream. The RX data processor 260 then at least partially demodulates, deinterleaves, and decodes each detected symbol to recover the corresponding data stream of the data stream. The processing performed by the RX data processor 26 can be reversed from the processing performed by the τ χ processor 220 and the TX data processor 214 at the transmitter system 21 。. The RX data processor 260 can additionally provide the processed data stream to the data slot 264. ^ ρ 24 201132175 In some embodiments, the channel response estimates generated by RX data processor 260 can be used to perform spatial/temporal processing at receiver system 250, adjust power levels, change modulation rates or schemes, and/or other Appropriate Actions In addition, Rx data processor 260 can further estimate channel characteristics, such as the signal-to-noise ratio (SNR) and signal-to-interference ratio (SIR) of the extracted symbol stream. The ' RX data processor 26() can then provide the estimated channel characteristics to the processor 27. In one example, Rx data processor 260 and/or processor 27A of receiver system 25A may further derive an estimate of the "operating" SNR of the system. Processor 270 of receiver system 250 may also provide channel status information (CSI) 'which may include information about the communication link and/or receive data string 1 transmitter system 2 1 0 (eg, base station or evolved node) b) This information (which may include, for example, operational SNR and other channel information) may be used to make appropriate decisions regarding, for example, user equipment scheduling, MIM settings, modulation and coding selection, and the like. At the receiver system 25A, the CSI generated by the processor 270 is processed by the TX data processor 238, modulated by the modulator 280, adjusted by the receiver system transceiver 25, and sent back to the transmitter system 210. . In addition, the data source 236 at the receiver system 25 can provide additional information that is processed by the TX data processor 238. In some embodiments, the processor 27 at the receiver system 250 can also periodically decide which precoding matrix to use. The processor 27 formulates a reverse link message including a matrix index portion and a rank value portion. The reverse link message may include various types of information about the communication link and/or the received data stream. After h, the data processing at the receiver system 250 can be followed by the processing of the reverse link message, which receives the data stream from the data source 236. Information. The resulting information is modulated by modulator 280, regulated by one or more receiver system transceivers 254a through 2541, and sent back to transmitter system 21A. In some embodiments of the communication system 200, the receiver system is capable of receiving and processing spatial multiplex signals. In such systems, spatial multiplexing occurs at the transmitter system 210 by multiplexing and transmitting different data streams on the transmitter system antennas 224a through 224t. This is in contrast to the use of the transmit diversity scheme. In the transmit diversity scheme, phased data streams are transmitted from multiple transmitter system antennas 224a through M24t. In a chirp communication system 200 capable of receiving and processing spatial multiplex signals, a precoding matrix is typically used at the transmitter system 210 to ensure that signals transmitted from each of the transmitter system antennas η blunt to 224t are sufficiently resolved from each other. Related. This decorrelation ensures that it is capable of receiving composite signals arriving at any particular receiver system antenna 252 &252r; and in the presence of signals carrying other data streams from other transmitter system antennas 224a through 224t, it is possible to determine individual Data stream. Since the dilemma can affect the amount of cross-correlation between streams, it is common for the receiver system 250 to feed back information about the received signals to the transmitter system 210. In such systems, both transmitter system 21 and receiver system 250 include codebooks having a number of precoding matrices. Each __ in these precoding matrices may in some cases be related to the amount of cross-correlation experienced in the received signal. Since the advantageous case is to transmit the index of the particular matrix rather than the value in the matrix, the feedback control signal sent from the receiver system 25 to the transmitter 26 201132175 system 210 typically contains an index of the particular precoding matrix in some cases' The feedback control signal also includes a rank index 'which indicates how many independent streams of data the transmitter system 2 will use in spatial multiplexing. Other embodiments of the communication system 200. are configured to utilize a transmit diversity scheme in place of the spatial multiplex scheme described above. In these embodiments, the same data stream is transmitted on the transmitter system antennas 224a through 224t. In these embodiments, the data rate to the receiver system 25 is typically lower than the spatial multiplex communication system 200. These embodiments have advantages in terms of health and reliability of the communication channel. In a transmit diversity system, each of the signals transmitted from the transmitter system antennas 224a through 224t will experience different interference dips (fading, reflection, multipath phase shift). In such embodiments, different signal characteristics received at receiver system antennas 252a through 2521 can be used to determine the appropriate data stream. In such embodiments, the rank indicator is typically set to 1 to inform the transmitter system 21 that no spatial multiplexing is used. Other embodiments may utilize a combination of spatial multiplexing and transmit diversity. For example, in a wireless communication system 200 using four transmitter system antennas 224a through 224t, a first data link can be transmitted on two of the transmitter system antennas 224a through 224t, and the transmitter system antenna can be used. A second data stream is transmitted on the remaining two antennas of 224a through J 224t. In such embodiments, the rank index is determined to be an integer 'below the full rank of the precoding matrix' thereby indicating that the transmitter system 21 is using spatial multiplexing and transmit scores 27 201132175 at the transmitter system 210, from the technical flux The modulation signal of the %%% Mumu receiver system 25〇 is received by the transmitter system antennas (10) to 224t, regulated by the transmitter system transceivers 222a to 222t, demodulated by the transmitter system demodulator, and processed by the U data. The processor 242 processes to extract the reverse link message transmitted by the receiving system. In some embodiments, the processor 230 of the transmitter system 21 then determines which precoding matrix (4) to forward the forward link. And subsequently processing the extracted information. In other embodiments, processor 230 uses the received signal to adjust beamforming weights for future forward link transmissions. In other embodiments, the reported CSI may be provided. The processor 230 of the transmitter system 210 is used to determine, for example, the data rate and coding and modulation scheme for one or more data streams. Subsequently, the determined coding and The scheme may be provided to one or more transmitter system transceivers 222 & 222t at the transmitter system 21 for quantization and/or for later transmission to the receiver system 250. Additionally and/or Alternatively, the processor 230 of the transmitter system 21A can use the reported CSI to generate various controls for the τχ data processor 214 and the τχ ΜΙΜΟ processor 22〇. In one example, the RX data processor of the transmitter system 210 The CSI and/or other information processed by 242 may be provided to data slot 244. In some embodiments, processor 23 at transmitter system 210 and processor 270 at receiver system 250 may indicate their respective systems. In addition, the memory 232 at the transmitter system 210 and the memory 272 at the receiver system 25 can provide code and data for the transmitter system processor 23 and the receiver system processor 270, respectively. In addition, at the receiver system 250, 'NR received signals can be processed by various processing techniques' to detect Ντ transmitted symbol streams. These receiver processing techniques These may include: spatial and spatial-temporal receiver processing techniques, which may include equalization techniques, "continuous zeroing/equalization and interference cancellation" receiver processing techniques; and/or "continuous interference cancellation" or "continuous cancellation" receiver processing _technology. FIG. 3 illustrates a wireless network 300 in which various disclosed embodiments may be implemented. The exemplary wireless communication system 300 includes a plurality of cell service areas including a cell service area 302, a cell service area 3〇4, and a cell service area 306. The cell service area 3, 2, cell service area 304 and cell service area 306 of the communication network 300 can include a base station that includes a plurality of sectors. The plurality of sectors may be formed by groups of antennas, wherein each antenna is in negative communication with one or more user equipment in a portion of the cell service area. For example, in the cell service area 3〇2, the antenna groups 312, Η#, and 316 may each correspond to different sectors. In the cell service area 3'4 antenna groups 318, 320 and 322 each correspond to a different sector. In cell service area 306, antenna groups 324, 326, and 328 each correspond to a different sector. The cellular service area 3〇2, the cell service area 304, and the cell service area 3〇6 of the communication network may include a number of wireless communication devices, such as 'to enable the device to be equipped' with each of the communication networks 3 One or more sectors of the cell service area 302, the cell service area 3〇4, or the cell service area 3〇6 communicate. For example, the squatter equipment 330 and the user _ 332 can communicate with the base station 342, the user equipment 334 and the user equipment 336 can communicate with the base station 344, and the user equipment 3 moxibustion 8 29 201132175 and the user Equipment 340 can communicate with base station 346. Figure 3 is also a diagram: System control for communication with one or more base stations of the communication network _ 1 3 3 0. As described above, in a communication network such as the wireless communication network illustrated in FIG. 3, the base station can transmit an overload indicator via the Χ2 back to the base station of the adjacent cell service area to facilitate provisioning in the cell service area. Information on the uplink interference experienced in the bandwidth - or multiple parts. The cell service area receiving the overload indicator (hereinafter "Receiving Cell Service D, the response is not standardized" and is therefore determined by the implementer of the base station. However, in a typical response case, the receiving cell The service area β' reduces the interference generated on some resource blocks by, for example, adjusting the scheduling strategy for the transmission of the user equipment, reducing and/or reallocating the transmission power of the user equipment, or a combination thereof. The degree of interference caused by, for example, user equipment may be based. To assess the degree of interference 2, the receiving cell service area may rely on differential path loss measurements, which are calculated from the measurement reports sent by the user equipment. For example, the overload indicator in the LTE network enables the network to maintain the interference experienced at each evolution point, at the desired value or below the desired value, often with respect to the thermal noise of the evolution node. The level (heart 1 l^el) is used to measure the interference level and is called the interference and thermal noise ratio (ι〇Τ). & Strict control has several For example, the predictable ι〇τ level enables the network to perform accurate rate prediction in data channels such as pusCH. This is also inconsistent with hybrid self-repetitive spray (HARQ) retransmissions such as pucCH. Related to the control channel. In the absence of strict [G] 30 201132175 ι〇τ control, it may be necessary to send the information transmitted on these channels with very conservative power levels. A very conservative power level can lead to Transitional interference to other evolutionary nodes. It should be noted that although in some implementations PUCCH is primarily susceptible to "control-〇n-control" interference, in addition to different PUCCH regions in neighboring evolved Node B In addition to the range of interference, control information is often subject to interference from the data channel due to transmissions on the PUSCH. The high interference level observed at the evolved Node B can further affect the user equipment served by the evolved Node B. Link budget, the link budget impact can lead to: data interruption 'for example, caused by my loss of ip-based voice (VoIP) packets Data interruption; and control interrupts, which may include loss of channel quality information (CQI) reports and ACK/NACK information. The overload indicator at the receiving cell service area may be further used to implement power shaping using a power control algorithm, These power control algorithms utilize differential path loss information from the user equipment. In particular, in such schemes, user equipment located near the edge of the cell service area can transmit at a relatively low power spectral density (due to its It is the primary interferer), and user equipment that is not located near the edge of the cell service area can transmit at a higher power spectral density (because it results in relatively lower interference). This type of power shaping can help increase the network. capacity. It should be noted that the term "power spectral density" can refer to a power value normalized by the bandwidth (e.g., a constant multiplied by the power on each resource block). For example, the transmit power of a device that transmits 31 201132175 can be proportional to the number of resource blocks allocated to the user equipment multiplied by the power on each resource block. Therefore, by controlling the power spectral density, Control of the transmit power of the user equipment can be achieved 'by controlling the power spectral density, the control of the transmit power on each resource block can be achieved. However, as also noted above, for various reasons, it may not be feasible to transmit an overloaded private indicator via the χ2 interface and to receive subsequent actions of the cell service area for power control. For example, connectivity between various base stations may not be available. In addition, even if χ2彳 is available, the waiting time associated with such communications may be too long. In addition, if the channel interference condition varies between successive measurement reports, the power control/adjustment by the base station may not adequately mitigate such channel interference conditions. Various disclosed embodiments provide systems, methods, apparatus, and computer program products that enable transmission of an over-the-air indicator to facilitate uplink power control in a wireless communication system. FIG. 4 illustrates a system 400 that uses an overload indicator component 440 in a wireless network 41 根据, in accordance with an exemplary embodiment. System 400 includes one or more base stations 42 (also referred to as nodes, evolved Node B (eNB), serving eNB, target eNB, femto station, pico station, relay base station, etc.), which may be capable of being wireless The network 41 is an entity that communicates with one or more devices 430. For example, each device 43 is equipped with a user (also referred to as a terminal, an access terminal, an active management entity (MME), a mobile device, etc.). The base station 42A can include an overload indicator component 440 that is configured to generate and/or handle overload indications on the wireless network 41. A portion of the overload indicator component 44 at the base station 420 may also be configured to generate an overload of the device and the device (such as η _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ indicator. User line network 41. The upload indicator component is 45°, which is configured to handle wireless, and the overload indication on the peripheral path 410 is determined to be "small". Although Figure 4 illustrates the overloaded indicator component. The two components 42〇_43〇, but the °P pieces on the two ^-T v * ^ . may also be used on the network 410, wherein such additional components may also be configured to perform various operations as described herein. Different signal processing operations. As shown in Fig. 4, the base σ 420 makes a talk to the device 430 via the downlink 460, and receives the data via the uplink 47 。. Since the device 430 can also transmit data from the lower link and receive data via the uplink, such designation of the subscribed link and the downlink is arbitrary. In some embodiments, the airborne overload indicator can be transmitted by the evolved Node B that is experiencing a high interference level and received directly by the multiple devices in the wireless communication network. For example, referring to FIG. 4, the overload indicator may be generated by the overload indicator component of the base station 420 and sent directly to one or more users to borrow Iky, and the base σ 420 may be associated with the cell service area in the communication network 410. And the one or more devices 43 may be in a neighboring cell service area. Subsequently, the airborne overload indicator received by the user equipment may be processed by the overload indicator component 450 of the device 430 to facilitate Power Control. In a second embodiment, in addition to using other information such as power control commands received from the service base port of the device (four), the device also uses (iv) an air overload indicator received from a neighboring cell service area to determine the position 33. The transmit power is implemented in 201132175. In addition, the device 43() can also receive the overload indicator information received by the service base station, so that the service base station knows the interference that the adjacent cell service area is experiencing. The method can realize interference control between the base stations even in the absence of the Χ2 connection. In addition, since the device 43〇 The overload indicator is directly received and the response of the device 430 to the overload indicator is fully specified, so that interference control between base stations from different vendors can also be successfully performed. Furthermore, the device 430 is ready to overload the indicator with the air. The latest measurements of its radio frequency (RF) environment can be utilized when responding appropriately. Figure 5 is a block diagram illustrating an exemplary embodiment. Method 5 begins at 502 when the user is equipped from one or more neighboring cells The service area receives one or more airborne overload indicators. In response to receiving the one or more airborne overload indicators, the user equipment determines at 504 an adjustment to the transmit power of the user equipment to facilitate reducing or eliminating interference. In some embodiments, by way of example, but not limitation, such adjustments may include modifying the transmit power value, making adjustments to the transmit schedule, and/or redistributing the frequency for transmission of the user equipment. Performing at least some of the above adjustments, for example, specific changes to the transmission schedule and/or bandwidth. Therefore, the user equipment can request the base station These adjustments are now made. At 5〇6, the user equipment can optionally report the above adjustments to its service base station. Finally, at 5〇8, the user equipment can implement power control based on these adjustments. The above blocks and operations are for illustrative purposes. The disclosed embodiments are not limited to the exemplary blocks and may be implemented with fewer or more blocks and operations. For example, although the exemplary block diagram of FIG. The independent 10,000 blocks that are used to determine the power control, but it is entirely possible to combine these operations into one step, for example, in step 504. According to another embodiment , _ a, λ sigh 43 〇 can first calculate the power spectrum based on the received empty t overload indicator. The power spectrum density that can be transmitted by the power spectrum ancestor n can be sent to The service base station, which is also given the opportunity to modify the calculated transmit power density. For example, the service base station may need to modify the power to read to allow certain high priority traffic to pass within a particular delay budget. It should be noted that according to this embodiment, the overload indicator is transmitted to the device 43q and its service base station without using the Χ2 " However, since both the device 43 and its serving base stations are involved in determining the transmit power', additional latency and uplink data management burden can affect the power control operation. Figure 6 is a block diagram illustrating an exemplary embodiment including some interaction between a user's sitter and its serving base station. The method begins at 6〇2, at which point the user equipment receives an airborne overload from one or more adjacent cell service areas. “In response to receiving the—or multiple airborne overload indicators, the user equipment is at 604. The adjustment of the transmit power is used to reduce or eliminate the interference. The user equipment reports the calculated transmit power adjustment to its service base station at 606胄. At 6〇8胄, the user equipment can receive from the service base station. Modified transmit power, adjustment. Modified adjustments received from the serving base station may include new transmit power adjustments and/or commands necessary to implement such adjustments, or no need to perform any previously calculated transmit power adjustments The change is not. If it is not necessary to calculate the Lingler 35 201132175 for the user equipment, the change can be changed 'alternatively' at 608, the user equipment can receive no additional information only for example within a predetermined period. Finally, at 6 i ,, the user equipment can implement power control based on updated transmit power adjustments and/or commands. In another embodiment Device 430 can receive one or more airborne overload indicators and then report the received information to its serving base station. The service base station can then be based on the received overload indicator and other information (such as by wireless network 410). One or more user equipment sends an I test report) to calculate an appropriate transmit power adjustment. Subsequently, a power control adjustment/command can be sent from the serving base station to device 430 to effect transmit power control at device 430. In this embodiment, although the overload indicator information exchange can be performed without the need for a face, the power control adjustment/command generated by the service base station may be susceptible to the expiration information related to the rule environment. If the base station's response to the received overload indicator is not specified or is not part of a standardized agreement, some base stations may not respond to these overload indicators. Therefore, the ability to control interference in multi-vendor deployments may be lost. Figure 7 is a diagram illustrating an adjustment/command based on receipt from a serving base station. The rate control is a block diagram of another exemplary embodiment. Method 700 begins #702, at which point the user equipment receives one or more airborne overload indicators from one or more neighboring cell service areas. In response to receiving the one or With multiple airborne overload indicators, the user equipment reports overload indicator information to its service base station at 7.4, and calculates appropriate power control adjustments in the service base station. At 7〇64 'money equipment from its service base Station reception [transmit] 36 201132175 Radio power adjustment. The transmit power adjustment received from the base station may include new transmit power adjustments and/or commands necessary to achieve such adjustments. Finally, where the user equipment is based on the received adjustments The transmission power control is implemented. It will be apparent from the above description that the calculations performed according to the embodiments illustrated in Figures 5 and 6 are performed primarily at the user's injury, while the embodiment according to the embodiment depicted in Figure 7 The calculation used to determine the transmit power level is primarily performed at the base station. Additionally, in conjunction with the embodiment illustrated in Figure 7, the exact algorithm used to determine the power control commands at the base station may not be specified. Figure 8 is a block diagram illustrating operations that may be performed for generating an empty overload indicator, in accordance with another embodiment. Method 8 begins with (iv), where an overloaded finger = Beixun is produced at a cell service area that has experienced high levels of interference. The content of the overload indicator information may be the same as the existing overload indicator sent to other base stations via the internal interface of the back: the same. Or the content of the 'over-the-air overload indicator' may include a subset and/or a compressed version of the information contained in the general super binary. The content of the overload indicator in the further substitute can include information other than the information contained in the general overload indication. In one example, the overload indicator is outside the second; the carry value ' indicates the presence or absence of an overload/interference condition. The other phase can provide information about the overload conditions associated with a particular time and/or frequency resource. The fly material is negatively sourced. Example:::; At 804, the format operation of the overload indicator information may not be limited. In some embodiments, format interleaving, two-source encoding, channel encoding, modulation encoding, error correction encoding, and / or overload indicator information ready for transmission _ 37 201132175 Other # material formatting and adjustment operations. At 806, the overload indicator 'X sends,' or multiple user equipment. The one or more user equipment can be located in one or more adjacent cell service areas. After receiving the air overload indicator, the user device # can respond by the power rate control operation. A method for implementing transmit power control: the method can be based on a transmit power adjustment calculated using a "falling or ((10)." (four) η)" / 寅 algorithm #. According to the "declined or" shoulder f method, when used When the device receives a drop j (DOWN) request from any of a plurality of base stations, the user equipment can reduce its power rate. However, only when the user equipment receives "up" (UP) from all base stations. The user equipment increases its transmit power. In some embodiments, the user equipment is equipped when the user equipment is connected from any adjacent, field service area (4) empty towel overload indicator. The transmit power can be reduced by a fixed step size ~. In addition, the user equipment can increase its transmit power level only when the user equipment fails to receive any overload indicator within the time period of the beat. The fixed step size can implement the above power control algorithm at, for example, the Medium Access Control (MAC) layer. In order to provide meaningful limits on the maximum and minimum transmit power levels, it can be served The SNR obtained at the base station establishes two signal ratios _ and SNRmin. The upper limit implicit_ ensures that the user equipment* transmits at a power level greater than the power level required to obtain peak spectral efficiency. Similarly, The lower limit bribe ensures that each user's equipment is able to obtain a specific minimum read. This algorithm allows the network to control the 狮 38 201132175 at each base station. However, due to all user equipment in the network All respond to the overload indicator in a similar manner 'so the power shaping gain cannot be obtained via this algorithm. To obtain the power shaping gain' the response of the user equipment can be based on the amount of interference being caused by the user equipment. In some embodiments, the power shaping gain is provided using a differential path loss Apl, which represents the interference caused by the user equipment. The pinch loss typically represents the loss of signal strength caused by propagation. With a given configuration of the user equipment, the differential path loss can be determined as PLeNB - PLeNB, serv. Here, PLeNB The dB scale represents the path loss between the user equipment and the base station that is experiencing high interference levels and the PLeNB, serv represents the path loss between the user equipment and its serving base station in dB scale. In some embodiments, Combining the probability of use is the path loss to determine the appropriate transmit power adjustment, and then implementing transmit power control at - or multiple user equipment in the wireless network. In one example, after receiving the overload indicator, The user equipment 17 reduces its transmit power level by a fixed step size Δ according to the probability pd() wn(ApL, SNR). In this example, the probability pd_ is based on the SNR and differential path loss obtained at the serving base station. ^Depending on the general, the probability of not doing any action is the pd_. Similarly, when no overload indicator is received, the user equipment can increase its transmit power level by the probability Pupcpl, snr) in the example, the probability Pup- also, according to the service base station Get the prison and ^ points path loss ~ and oh. When no overload indicator is received and there is only one [off] 39 201132175 near-base station, the differential path loss relative to the neighboring base station can be calculated. If there are multiple neighboring base stations, the probability value may be based on A plurality of differential paths (four) determined by a plurality of adjacent cell service areas depend on the value. It should be noted that the path loss for neighboring base stations can be measured even if no overload indicator is received. In some exemplary embodiments, the 'probability function Pup(apl, Snr) may be selected such that when the differential path loss APL is low and/or when the SNR is high, the probability function Pup is low, and the probability function P6Wa (APL, SNR) ) can be chosen such that it behaves in the opposite way. For example, these attributes are satisfied by the following function: Pup(ApL, SNR)==a(l-b);

Pd〇wn(ApL,SNR)=(l-a)b ; b=(SNR-SNRmin)/(SNRmax_SNRmin)。 在上述實例中,W dB尺度來進行計算 . ^PL,min 和 PL,max代表為差分路徑損耗△ 定^ PL心戰的上限和下限,其例 如可以是固定的狀值。制者㈣對超載指示符的上述 機率性回應的優點亦在於:其降低且/或消除了網路中潛在 的振盛行為。當大量使用者裝備同時提高或降低其發射功 率時,可能產生此類振盪行為。 在上述實施例的一種變體中,當接 油^ 一 田^收到來自多個細胞服 務區的夕個超載指示符時,使用者 言裝備的回應可包括:掛 於接收的超載指示符中的每一個 母個决定相關聯的功率調整 值及/或機率PdQwn值;及選擇特定 杜、 力旱調整值及/或特定 的機率Pd own值,以用於降低借用丰肤1 卬低使用者裝備的發射功率。[傅 201132175 如,可以選擇最大的功率調整值。在另一個變體中,當在 指定的時間週期内沒有接收到任何超載指示符時,可以決 定-或多個功率調整值及/或機率Pup值,並且可以選擇功 率調整值及/或特定的Pup值,以用於提高使用者裝備的發 射功率。在一個實例中,可以選擇與最接近的非服務基地 台對應的功率調整值。 根據所揭示的實施例,以使得複數個鄰近細胞服務區中 的複數個使用者裝傷能夠接收和解調空中㈣指示符的 方式來發送該工中超载指示符。因此,該空中超載指示符 必須是在低SNR下可被解碼的。在一個示例性實施例中, 空中超載指示符的穿透(penetrati〇n)至少類似於主同步 碼(PSC)和輔同步碼(ssc)的穿透。psc卩ssc通道 的效邊要求規A ’使用者I備應當能夠在有限的榻取時間 内榻取具有-6dB SNR的基地台。以類似於psc和ssc的 穿透位準提供空中超載指示冑’料了由不同的使用者裳 備對超載指示符進行適當的接收和解調。然而,在更低的 SNR值下該空中超載指示符亦可以是可伯測的,此是因為 可以允許使用者襄傷花更多時間來揭取該信號。另外,雖 然經常在很低的SNR下接收超載指示符,但是超載指示符 或許能夠容忍比其他控制通道更大的抹除速率咖“ rate )。 各種所揭示的實施例亦使得能夠在對使用者裝傷施加 _小的額外計算複雜性的情況下解調空中超載指示符。在 一個特定實施例中’可以在LTE網路中的基地台下行鍵[路] 201132175 傳輸頻寬的中央六個資源區塊上發送空中超載指示符。使 用者裝備通常監測來自鄰近細胞服務區的該頻寬,以偵測 新基地台以及追蹤已偵測到的基地台。因此,對在相同頻 寬上發送的額外超載指示符值進行解調,將對使用者裝備 實施造成相對小的改變。 谷種所揭示的實施例 士 ,丨〜,丨·· q衣两的電 池哥命影響最小的情況下解調空中超衡指示符。在咖系 統中’使用者裝備可處於不連續接收(drx) _式下以保 護使用者裝備的電池壽命。雖然在聰模式下操作的使用 者裝備的至少—部分可以在延長㈣間週期中斷電,^ ,用者裝備不定期地監測下行鏈路及/或上行鏈路。另外, 右來自服務基地台的信號品f降級,則使用者裝備可 播鄰近基地台。在一此眘& 掃 發送成空中超載指示符可以被 ,成:仔可以在使用者裝備執行鄰點追縱時谓測該空 框如,由於使用者裝備已經對LTE訊框的子訊 子隸上:行監測以用於鄰點追蹤,故可以在此等 δ才上發送空中超載指示 被用來發送空中赶好^ 個實例中,子訊框5 具有更^田 與子訊框0相比,子訊框5 〇於容納超載指示符的資源,因為子氘框〇 e 包含實體廣播通道(PBCH)z 目為子訊框〇已 例超载指示符傳輸週期被設定為大於或等於 塊⑽叫則可以迴避在子訊框上傳輸系統資訊區 ^1)。母隔20 ms在子訊栢s μ + 「子訊框5…改 隹于訊框5上(亦即,在交替的 發送咖。因此,若超载指示符週斯被] 42 201132175 選擇為20 ms或更大,則可以为 ,.^ ]了以在不用於SIB1傳輸的子訊框 5上發送該超載指示符。SIm 你士 通*包含··與細胞服務區存 取有關的資訊(諸如公用昧卜― 放土上订動網路(PLMN)、細胞服 務區身份等)、以及用於細胞 ^ 用於,田胞服務區選擇的資訊、排程資 訊和其他系統資訊。 另:卜,可以允許DRX模式下的使用者裝備監測空中超載 傳輸的—子集,以進—步保護其電池壽命。例如, =了獲得與經由回载傳送的LTE超載指示符相同的報告 ’使用者裝備可以每帛20 ms監測—個空中超載指示 符。應當注意’亦可以選擇不同於2〇邮的監測週期。另 外地或替代地1網路配置不允許使用者裝備在上行鍵路 上發送資料的同時在DRX模式下操作,則使用者裝備可以 在上行鍵路傳輸期間忽略超載指示符傳輸。在該情況下, 服,基地台可以為在長磁週期之後發生的上行鏈路傳 輸指派保守的初始功率值(例如,基於開放迴路計劃(open loop projection))。 木根據另-個實施例’可以在子訊框的六個中央資源區塊 虽中的一個以上的資源區塊中傳輸空中超載指示符。例 如,可以使用兩個資源區塊來傳輸空中超載指示符。另 外,超載指示符可以在其傳輸之前被通道編碼成例如假性 隨機序列。 根據另—個示例性實施例,SSC可用作用於解調空中超 載&不符的相位參考。例如,可以使用BPSK調制和用於 ssc的波束來發送一位元的超載指示符,亦即空中超載〖指Λ 43 201132175 示符可以使用與ssc相同的相位或不同的相位、以及相同 的波束方向(在多個發射天線的狀況下)。當使用SSC作 為相位參考時,與使用共用參考符號(RS )相反,即使細 胞服務區具有一個以上的發射天線,亦僅要求使用者裝借 獲取單個通道估計。另外’中央六個資源區塊中的ssc的 密度大於共用RS的密度。因此,通道估計損失得以最小 化。在另一個實施例中,可以將空中超載指示符作為Rs #號組合與S S C之間的相位來發送。亦應當注意,使用者 裝備可以使用簡化的偵測演算法。例如,在可選的適當減 波之後,可以使用ssc與具有超載指示符符號的專用Rs 符號之間的時間或頻率相關。為了降低硬體複雜度,使用 者裝備可以使用已實施為LTE搜尋器及/或量測報告引擎 的一部分的部件,諸如與新扇區的時間校準、搜尋器偵 測、FFT引擎等。 另外,為了改良通道估計效能,可將額外的引導頻符费 用於卫中超載指示符傳輸的資源區塊中。圖9圖示4 3普通循環字首碼的示例性單天線LTE子訊框中插入萄 頻丄導頻符號。圖9左侧的子訊框圖示將mc用作引導 子而沒有額外插入引導頻符號的情況。圖9右側纪 的:框圖示根據示例性實施例已插入的額外引導頻符號 置。圖1〇圖示另一個示例性實施例,其類似於圖9, 目的'/擴展循環字首編碼以外,此從每個時槽中符號數 圖亦#’用六個符號代替了七個符號)可以看出。 丁不例性效能曲線(亦即,差錯率與snr的[躇 44 201132175 係)’該效能曲線與使用具有或不具有額外引導頻符號的 單個資源區塊來發送的空中超載指示符相關聯。圖11亦圖 不分別基於每小時3 Krn的移動使用者裝備速度的效能和 基於每小時6〇 Km的移動使用者裝備速度的效能之間的差 異°從圖11可以看出’即使當將單個資源區塊用於傳輸空 中超載指示符時’亦可以在_ i 0 dB SNR處獲得約6%的差 錯率°當使用額外引導頻符號時,_丨〇 dB SNR處的該差錯 率改良到約2%。圖12圖示對於將兩個資源區塊用於傳輸 空中超載指示符的情況的類似效能曲線。圖12進一步圖 示由於使用額外資源區塊而導致的差錯率改良。 在某些實施例中,若使用者裝備監測來自具有相似但可 忐不同步時序的多個細胞服務區的複數個空中指示符,則 該使用者裝備可以選擇對從不同細胞服務區接收的超載 指示符進行子取樣。隨後,使用者裝備可以應用額外的步 長(亦即,發射功率調整,〜_和〜),以對經子取樣的 超載指示符作出回應ϋ如,若使用者裝備在—半的普通 速率下監測超載指示符,則發射功率調整的大小可以加 倍另外地或替代地,細胞服務區可以選擇在無線電訊框 内的其位置隨時間變化的子訊框中發送空中超载指示 ^。’從而防止重複的超載指示符在使用者裝備處發:衝 執狄上的超載指示符可 :對應於-個載波或多個載波。另夕卜,可以在相同的下行 鏈路載波上發送涵蓋不同载波的多個超载指示符。根據⑷ 45 201132175 個實施例,當在一個下行鏈路載波上發送多個超載指示符 時,可以使用不同的資源區塊來發送與不同载波相關聯的 超載指示符。在另一個示例性實施例中,亦可以使用超載 指示符來控制由相鄰載波洩漏比(ACLR)產生的干擾。 ACLR常常與在載波丨上進行發送的使用者裝備對載波2 的發送造成干擾的情況相關聯。根據另一個示例性實施 例,可以使用相同或不同的超載指示符來控制共通道干擾 和 ACLR。 根據各種所揭示的實施例,空中超載指示符的使用改良 了干擾與熱雜訊比(ι〇τ)累積密度函數(CDF),並允許 對在每個基地台處觀察到的IGT位準的嚴格控制。此類改 良對於較小的細胞服務區特別明顯。對IOT位準的嚴格控 制確保了:針對資料通道以及在例如實體上行鏈路共享通 道(PUSCH)上發送(例如’ t在相同的子訊框中發送 PUCCH和PUSCH時)的控制通道,能夠保持適#的鍵路 預算。另外,對IoT的控制改良了子訊框中的SNR可預測 性’此導致了對資料速率的更準喊預測,並且更重要地, 確保了在PUSCH資源上發送控制通道的狀況下進行可靠 的控制接收。 另外根據各種所揭示的實施例,當實現功率整形時, 空中超載指示符的使用顯著地改良了細胞服務區邊緣處 的使用者裝備的效能。若沒有使用功率整形,則由使用超 載^示符造成的公平性改良可能伴隨著總細胞服務區吞 吐量的損失。根據所揭示的實施例,功率整形的使用改良] 46 201132175 了總細胞服務區吞吐量’同時保持了對邊緣使用者裝備效 能的改良。詳言之,根據所揭示的實施例,功率整形的使 用允許將細胞服務區吞吐量維持在幾乎等同於沒有任何 超載指示符時的細胞服務區吞吐量的位準。 圖13圖示可以在其中實施各種所揭示實施例的裝置 1300。詳言之,圖13所圖示的裝置13〇〇可包括:基地台 的至少一部分或使用者裝備的至少-部分(諸如,圖4所 圖示的基地台420和使用者裝備43〇),及/或發射機系統 或接收機系統的至少一部分(諸如,目2所圖示的發射機 系統210和接收機系統25〇)β圖13所圖示的裝置13〇〇可 常駐於無線網路中’並經由例如-或多個接收機及/或適當 的接收和解碼電路(例力,天線、收發器、解調器等)來 接收輸人的資料。圖13所圖示的裳置i则亦可以經由例 如一或多個發射機及/或適當的編碼和發射電路(例如,天 線、收發器、解調器等)來發射輸出的資料。另外地或替 代地,圖13所圖示的裝置13〇〇可以常駐於有線網路中。 圖13進一步圖不裝置13〇〇可包括記憶體該記憶 體1302可以保存用於執行諸如信號調節、分析之類的一 或多個操作的指令。另外,圖13的裝置1300可包括處理 =1304’該處理器13〇4可以執行儲存在記憶體13〇2中的 指令及/或從另一個設備接收的指令。該等指令可以涉及, 例如,對裝置13〇〇或相關的通訊裝置進行配置或者操作。 應虽注意’雖然圖13所圖示的記憶體13〇2被圖示為單個 方塊,但該記憶體可包括構成獨立的實體單元及/或邏輯[單 47 201132175 元的兩個或兩個以上獨立的記憶體。另外,在通訊地連接 於處理器1304的同時,記憶體可以完全地或部分地常駐 於圖13所圖示的裝置13〇〇外部。亦應當理解,諸如圖* 所圖示的超載指示符部件44〇和超載指示符部件45〇的一 或多個部件可以存在於記憶體13〇2内部。 將瞭解,結合所揭示實施例描述的記憶體可以是揮發性 記憶體或非揮發性記憶體,或者可以包括揮發性記憶體和 非揮發性記憶體兩者。舉例而言(但並非限制),非揮發 性記憶體可包括:唯讀記憶體(ROM )、可程式rom (PROM)、電子可程式R〇M(EpR〇M)、電子可抹除r〇m (EEPROM )或快閃記憶體。揮發性記憶體可包括隨機存 取記憶體(RAM),其用作外部快取記憶體。舉例而言(但 並非限制),RAM可以有多種形式,諸如,同步ram (SRAM )、動態 RAM ( dram )、同步 DRAM ( sdr鹰)、 雙倍資料速率SDRAM (DDR SDRAM)、增強型SDRAM (esdram)、同步鏈路 dram(sldram)和直接 RAM ( DRRAM) 〇 亦應當注意,可以與使用者裝備或行動設備一起使用圖 13的系統1300,並且該系統13〇〇可以是例如模組諸如 D卡網路卡、無線網路卡、電腦(包括膝上型電腦、桌 ^型電腦、個人數位助理PDA)、行動電話、智慧型電話、 或可用於存取網路的任何其他適合的終端。使用者裝備經 由存取部件(未圖示)來存取網路。纟—個實例中,使用 者裝備與存取部件之間的連接可以實際上是無線的,其[辱】 48 201132175 存取部件可以是基地台,幻吏用者裝備是無線終端。例 如、’·'端和基地台可以經由任何適合的無線協定來進行通 訊’此等無線協定包括但不限於:分時多工存取(tdma)、 刀碼以存取(CDMA)、分頻多工存取⑽慰)、正交分 頻夕(〇FDM )、FLASH 〇FDM、正交分頻多工存取 (OFDMA )、或任何其他適合的協定。 μ存取部件可以是與有線網路或無線網路相關聯的存取 節 為此存取部件可以是例如路由器、開關等。存取 部件可包括-或多個介面(例如,通訊模組),以用於與 其他,周路節點進行通訊。另外,存取部件可以是蜂.巢型網 路中的基地台(或無線存取點),其中基地台(或無線存 ‘-)破用來向複數個使用者提供無線覆蓋區域。此類基 地台(或無線存取點)可經佈置以為一或多個蜂巢式電話 及/或其他無線終端提供連續的覆蓋區域。 應田理解,可以用硬體、軟體、物體或其任何組合來實 =文所描述的實施例和特徵。根據可以在電腦程式產品 』Τ貫施的方法或過程的一般上下文來插述 本文所描述的各種實施例,在 行的電腦可執行指令(諸如程^ 讀中的電腦所執 奢姑" (諸如程式码)$電腦可讀取媒體中 實施此等方法或過程。如上所述,記憶體及/或電腦可讀取 媒體可包括可移昤知尤叮你八 电脚」肩取 於一 可移除的儲存設備,其包括但不限 :二續記憶體(職)、隨機存取記 光碟(CDS)、數位多功能光碟(物)等。當用軟體= 施時,此等功能可以柞主田用取體果實 ,·η或多個指令或代碼在電腦可[讀]. 49 201132175 取媒體上進行儲存或傳送。電腦可讀取媒體既包括電腦儲 存媒體,亦包括通訊媒體,該通訊媒體包括有助於從一個 地方向另一個地方傳送電腦程式的任何媒體。儲存媒體可 以疋此夠由通用或專用電腦存取的任何可用媒體^舉例而 言(但並非限制),此類電腦可讀取媒體可以包括ram、 ⑽Μ、EEPROM、CD_R0M或其他光碟儲存器、磁碟儲存 器或其他磁性儲存設備、或任何其他媒體,此等媒體可用 於攜帶或儲存指令或資料結構形式的所要程式碼構件,並 且可由通用或專用電腦、或者通用或專用處理器來存取。 _此外,將任何連接適當地稱作電腦可讀取媒體。例如, 若軟體是使用同軸電纜、光纖電纜、雙絞線、數位用戶線 路(DSL)或者諸如紅外線、無線電和微波之類的無線技 術從詞站、伺服器或其他遠端源傳輪的,則同抽電纔、光 纖電繞、雙絞線、DSL或者諸如紅外線、無線電和微波之 類的無線㈣包括在該媒體的定義中。如本文所使用的磁 碟(disk)和光碟(dise)包㈣縮光碟(cd)、雷射光碟、 光碟、數位多功能光碟(DVD)、軟碟和藍光光碟,1中 磁碟通常以磁性的方式再現資料,而光碟則用雷射來以光 學的方式再現資料。以上内容的組合亦應當包括在電腦可 讀取媒體的範嘴之内。 大體而言’程式模組可包括執行特定任務或實施特定抽 '物件、部件、資料結構等。電 腦可執行指令、相關"結構和程相組表㈣於執行本 文中所揭示方法的步驟的程式碼的實例。此類可執行撺令 50 201132175 或相關資料結構的特定序列表示用⑨實施在該等步驟或 過程中描述的功能的相應動作的實例。 被設計為執行本案所描述功能的通用處理器、數位信號 處理器(DSP)、特定應用積體電《(ASIC)、現場可程式 閘陣列(FPGA)或其他可程式邏輯設備、個別閘門或者電 晶體邏輯裝置、個別硬體部件或者其任何組合,可以實施 或執行、·Ό β本文所揭示的態樣而描述的各種說明性的邏 輯、邏輯區塊、模組和電路。通用處理器可以是微處理器, ,是替代地,該處理器可以是任何一般的處理器、控制 器、微控制U者狀態機。處理器亦可能實施為計算設備 的組合,例如,DSP和微處理器的組合、複數個微處理器、 與DSP核心結合的—或多個微處理器,或者任何其他此類 配置。另外’至少一個處理器可包括可操作以執行上述的 一或多個步驟及/或動作的一或多個模組。 對於軟體實施,本文中描述的技術可以使用執行本文所 描述功能的模組(例如,程序、函數等)來實施。此等軟 體代碼可以儲存在記憶體單元中,並由處理器.執行。記憶 體單元可以實施在處理器内及/或在處理器外,在後一種狀 況下,其可經由本技術領域已知的各種構件可通訊地耦合 到處理器。此外’至少-個處理器可包括可操作以執行本 文中描述的功能的一或多個模組。 種無線通訊系統,諸如 和其他系統。 本文中描述的技術可以用於各 CDMA、TDMA、FDMA、OFDMA、 術語系、統」和「網路」經常互換使用。CDMA系統可浪 51 201132175 實施諸如通用陸地無線電存取(UTRA )、CDMA2000等的 無線電技術。UTRA包括寬頻CDMA( W-CDMA)和CDMA 的其他變體。另外,CDMA2000涵蓋IS-2000、IS-95和 IS-856標準。TDMA系統可以實施諸如行動通訊全球系統 (GSM )的無線電技術。OFDMA系統可以實施諸如進化 型 UTRA ( E-UTRA)、超行動寬頻(UMB)、IEEE 802.1 1 (Wi-Fi )、IEEE 802.16 ( WiMAX )、IEEE 802.20、Pd〇wn(ApL, SNR)=(l-a)b; b=(SNR-SNRmin)/(SNRmax_SNRmin). In the above example, the W dB scale is used for calculation. ^PL,min and PL,max represents the upper and lower limits of the differential path loss Δ ^ PL , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The above-mentioned probabilistic response of the controller (4) to the overload indicator also has the advantage that it reduces and/or eliminates potential vibrating behavior in the network. Such oscillatory behavior may occur when a large number of user equipment simultaneously increases or decreases their transmission power. In a variation of the above embodiment, when the oil receiving device receives an evening overload indicator from the plurality of cell service areas, the user's response to the equipment may include: hanging in the received overload indicator Each parent decides the associated power adjustment value and/or probability PdQwn value; and selects a specific Du, Li Gan adjustment value and/or a specific probability Pd own value to reduce borrowing of the skin 1 degrading user The transmit power of the equipment. [傅 201132175 For example, you can choose the maximum power adjustment value. In another variation, when no overload indicator is received within a specified time period, one or more power adjustment values and/or probability Pup values may be determined, and the power adjustment value and/or the particular one may be selected. Pup value for increasing the transmit power of the user equipment. In one example, the power adjustment value corresponding to the closest non-serving base station can be selected. In accordance with the disclosed embodiments, the mid-ship overload indicator is transmitted in a manner that enables a plurality of user salvage in a plurality of adjacent cell service areas to receive and demodulate an air (four) indicator. Therefore, the airborne overload indicator must be decodable at low SNR. In an exemplary embodiment, the penetration of the airborne overload indicator is at least similar to the penetration of the primary synchronization code (PSC) and the secondary synchronization code (ssc). The edge of the psc卩ssc channel requires that the user's equipment should be able to take a base station with -6dB SNR for a limited period of time. The aerial overload indication is provided at a penetration level similar to psc and ssc, and it is expected that the overload indicator will be properly received and demodulated by different user devices. However, the air overload indicator can also be measurable at lower SNR values because it allows the user to spend more time to debunk the signal. In addition, although the overload indicator is often received at very low SNR, the overload indicator may be able to tolerate a larger erase rate "rate" than other control channels. Various disclosed embodiments also enable the user to The airborne overload indicator is demodulated with the additional computational complexity of the smear. In a particular embodiment, the base station downlink key can be used in the LTE network [Road] 201132175 The central six of the transmission bandwidth An air overload indicator is sent on the resource block. The user equipment typically monitors the bandwidth from the neighboring cell service area to detect the new base station and track the detected base station. Therefore, the pair is transmitted on the same bandwidth. The extra overload indicator value is demodulated, which will cause a relatively small change to the user equipment implementation. The embodiment disclosed by the grain type, 丨~, 丨·· q clothing two battery life impact minimal solution Adjust the air over-balance indicator. In the coffee system, 'user equipment can be in discontinuous reception (drx) _ type to protect the battery life of the user equipment. Although in the Cong mode At least part of the user equipment may be interrupted during the extended (four) period, and the user equipment occasionally monitors the downlink and/or uplink. In addition, the signal product f from the serving base station is degraded, The user equipment can broadcast the neighboring base station. In this case, the caution & sweep can be sent to the air overload indicator, so that the user can perform the neighboring point tracking when the user equipment performs the neighboring point tracking, for example, because the user The equipment has been sub-sourced to the LTE frame: line monitoring for neighbor tracking, so the airborne overload indication can be sent on this δ to be used to send the air to catch up. ^ Instance 5 Compared with the subframe 0, the subframe 5 is adjacent to the resource that accommodates the overload indicator, because the subframe 〇e contains the physical broadcast channel (PBCH), the target is the subframe, and the overload indicator is already used. If the transmission period is set to be greater than or equal to the block (10), the system information area ^1) can be avoided on the subframe. The parent interval is 20 ms in the sub-frame s μ + "sub-frame 5... change to frame 5 On (that is, in alternating sending coffee. Therefore, if overloaded The indicator Zhou Si is 42 201132175 selected as 20 ms or more, then it can be , . . . ] to send the overload indicator on the subframe 5 not used for SIB1 transmission. SIm Yourstone* contains · Information related to cell service area access (such as public information - PLMN, cell service area identity, etc.), and information for cell use, field service area selection, row Program information and other system information. Another: Bu, can allow users in DRX mode to monitor the subset of airborne overload transmissions to further protect their battery life. For example, = get and LTE via backhaul transmission The report with the same overload indicator 'user equipment can be monitored every 20 ms—an air overload indicator. It should be noted that it is also possible to choose a monitoring cycle that is different from the 2-mail post. Alternatively or alternatively, the network configuration does not allow the user equipment to operate in the DRX mode while transmitting data on the uplink, the user equipment can ignore the overload indicator transmission during the uplink transmission. In this case, the base station can assign a conservative initial power value (e.g., based on an open loop projection) for uplink transmissions that occur after a long magnetic period. According to another embodiment, an air overload indicator may be transmitted in more than one of the six central resource blocks of the subframe. For example, two resource blocks can be used to transmit an airborne overload indicator. In addition, the overload indicator can be channel encoded into, for example, a pseudo-random sequence prior to its transmission. According to another exemplary embodiment, the SSC can be used as a phase reference for demodulating airborne & For example, BPSK modulation and a beam for ssc can be used to transmit a one-bit overload indicator, that is, an air overload. Fingerprint 43 201132175 The indicator can use the same phase or different phase as ssc, and the same beam direction. (in the case of multiple transmit antennas). When using SSC as a phase reference, as opposed to using a common reference symbol (RS), even if the cell service area has more than one transmit antenna, only the user is required to borrow to obtain a single channel estimate. In addition, the density of ssc in the central six resource blocks is greater than the density of the shared RS. Therefore, channel estimation losses are minimized. In another embodiment, the airborne overload indicator can be transmitted as the phase between the Rs #number combination and the S S C . It should also be noted that user equipment can use a simplified detection algorithm. For example, after an optional appropriate subtraction, the time or frequency correlation between ssc and a dedicated Rs symbol with an overload indicator symbol can be used. To reduce hardware complexity, the user equipment can use components that have been implemented as part of the LTE search engine and/or measurement reporting engine, such as time alignment with new sectors, search engine detection, FFT engine, and the like. In addition, in order to improve the channel estimation performance, an additional pilot frequency fee can be used in the resource block for the transmission of the overload indicator. Figure 9 illustrates the insertion of a frequency 丄 pilot symbol in an exemplary single antenna LTE subframe of the 4 3 normal cyclic word first code. The sub-frame illustration on the left side of Figure 9 shows the case where mc is used as a pilot without additional pilot symbols. The right side of Figure 9: block illustrates additional pilot frequency symbols that have been inserted in accordance with an exemplary embodiment. FIG. 1A illustrates another exemplary embodiment, which is similar to FIG. 9, except for the destination '/extended cyclic prefix encoding, which replaces seven symbols with six symbols from each time slot. )As can be seen. An exemplary performance curve (i.e., error rate vs. snr [躇 44 201132175]) is associated with an air overload indicator transmitted using a single resource block with or without additional pilot symbols. Figure 11 also shows the difference between the performance of the mobile user equipment speed based on 3 Krn per hour and the performance of the mobile user equipment speed based on 6 Km per hour. From Figure 11, it can be seen that 'even when a single When the resource block is used to transmit the airborne overload indicator, it can also obtain an error rate of about 6% at _i 0 dB SNR. When the extra pilot symbol is used, the error rate at _丨〇dB SNR is improved to about 2%. Figure 12 illustrates a similar performance curve for the case where two resource blocks are used to transmit an airborne overload indicator. Figure 12 further illustrates the error rate improvement due to the use of additional resource blocks. In some embodiments, if the user equipment monitors a plurality of air indicators from a plurality of cell service areas having similar but de-synchronized timings, the user equipment can select overloads received from different cell service areas. The indicator is subsampled. Subsequently, the user equipment can apply additional steps (ie, transmit power adjustments, ~_ and ~) to respond to the subsampled overload indicator, for example, if the user is equipped at a half-normal rate Monitoring the overload indicator, the size of the transmit power adjustment can be doubled. Alternatively or alternatively, the cell service area can choose to send an air overload indication ^ in a subframe within its location that changes over time within the radio frame. Thus preventing duplicate overload indicators from being sent at the user equipment: the overload indicator on the rush can correspond to: - carrier or carriers. In addition, multiple overload indicators covering different carriers can be transmitted on the same downlink carrier. According to (4) 45 201132175 embodiments, when multiple overload indicators are transmitted on one downlink carrier, different resource blocks may be used to transmit overload indicators associated with different carriers. In another exemplary embodiment, an overload indicator can also be used to control interference caused by adjacent carrier leakage ratio (ACLR). ACLR is often associated with situations where user equipment transmitting on the carrier 造成 interferes with the transmission of carrier 2. According to another exemplary embodiment, the same or different overload indicators can be used to control co-channel interference and ACLR. According to various disclosed embodiments, the use of an airborne overload indicator improves the interference to thermal noise ratio (ι〇τ) cumulative density function (CDF) and allows for the IGT level observed at each base station. strict control. Such improvements are particularly evident for smaller cell service areas. Strict control of the IOT level ensures that the control channel for the data channel and for transmission on, for example, the Physical Uplink Shared Channel (PUSCH) (eg, when transmitting PUCCH and PUSCH in the same subframe) can be maintained Fit #'s key budget. In addition, the control of the IoT improves the SNR predictability in the subframes. This leads to more accurate prediction of the data rate and, more importantly, ensures reliable transmission of the control channel on the PUSCH resources. Control reception. In addition, in accordance with various disclosed embodiments, the use of an airborne overload indicator significantly improves the performance of user equipment at the edge of the cell service area when power shaping is achieved. If power shaping is not used, the fairness improvement caused by the use of the overload indicator may be accompanied by a loss of throughput in the total cell service area. In accordance with the disclosed embodiments, the use of power shaping has improved] 46 201132175 total cell service area throughput' while maintaining improved edge device performance. In particular, in accordance with the disclosed embodiments, the use of power shaping allows the cell service area throughput to be maintained at a level that is nearly identical to the cell service area throughput without any overload indicator. Figure 13 illustrates an apparatus 1300 in which various disclosed embodiments may be implemented. In particular, the device 13 illustrated in FIG. 13 may include at least a portion of the base station or at least a portion of the user equipment (such as the base station 420 and user equipment 43 图示 illustrated in FIG. 4), And/or at least a portion of the transmitter system or receiver system (such as the transmitter system 210 and the receiver system 25A illustrated in FIG. 2). The device 13 illustrated in FIG. 13 can reside in the wireless network. The input data is received by, for example, a plurality of receivers and/or appropriate receiving and decoding circuits (such as antennas, transceivers, demodulators, etc.). The skirt i illustrated in Figure 13 can also transmit the output data via, for example, one or more transmitters and/or appropriate encoding and transmission circuitry (e.g., antennas, transceivers, demodulators, etc.). Additionally or alternatively, the device 13 illustrated in Figure 13 may reside in a wired network. Figure 13 further illustrates that device 13 may include memory. The memory 1302 may retain instructions for performing one or more operations, such as signal conditioning, analysis, and the like. Additionally, apparatus 1300 of Figure 13 can include processing =1304' that processor 13〇4 can execute instructions stored in memory 13〇2 and/or instructions received from another device. Such instructions may involve, for example, configuring or operating a device 13 or associated communication device. It should be noted that although the memory 13〇2 illustrated in FIG. 13 is illustrated as a single block, the memory may include two or more entities that constitute separate physical units and/or logic [single 47 201132175 yuan Independent memory. Additionally, while communicatively coupled to processor 1304, the memory may reside entirely or partially external to device 13 illustrated in FIG. It should also be understood that one or more components such as overload indicator component 44A and overload indicator component 45A illustrated in Figure * may be present within memory 13A2. It will be appreciated that the memory described in connection with the disclosed embodiments can be a volatile memory or a non-volatile memory, or can include both volatile and non-volatile memory. By way of example and not limitation, non-volatile memory may include: read only memory (ROM), programmable rom (PROM), electronically programmable R〇M (EpR〇M), electronically erasable r〇 m (EEPROM) or flash memory. Volatile memory can include random access memory (RAM), which is used as external cache memory. For example (but not by way of limitation), RAM can take many forms, such as synchronous ram (SRAM), dynamic RAM (dram), synchronous DRAM (sdr eagle), double data rate SDRAM (DDR SDRAM), enhanced SDRAM ( Esdram), synchronous link dram (sldram) and direct RAM (DRRAM) 〇 It should also be noted that the system 1300 of Figure 13 can be used with user equipment or mobile devices, and the system 13 can be, for example, a module such as D Card network card, wireless network card, computer (including laptop, desk computer, personal digital assistant PDA), mobile phone, smart phone, or any other suitable terminal that can be used to access the network. The user equipment accesses the network via an access component (not shown). In one example, the connection between the user equipment and the access component may be wireless, its [disgrace] 48 201132175 access component may be a base station, and the illusion user equipment is a wireless terminal. For example, the '·' and base stations can communicate via any suitable wireless protocol. These wireless protocols include, but are not limited to, time-sharing multiplex access (tdma), knife code access (CDMA), frequency division. Multiplex access (10), orthogonal frequency division (〇FDM), FLASH 〇 FDM, orthogonal frequency division multiplexing access (OFDMA), or any other suitable protocol. The μ access component can be an access node associated with a wired or wireless network. The access component can be, for example, a router, a switch, or the like. The access component can include - or multiple interfaces (e.g., communication modules) for communicating with other, peripheral nodes. Alternatively, the access component can be a base station (or wireless access point) in a bee-nested network, where the base station (or wireless memory '-) is used to provide wireless coverage to a plurality of users. Such a base station (or wireless access point) can be arranged to provide a continuous coverage area for one or more cellular telephones and/or other wireless terminals. It is understood that the embodiments and features described in the text can be implemented in hardware, software, objects or any combination thereof. The various embodiments described herein can be interspersed according to the general context of a method or process that can be implemented in a computer program product, such as a computer executable instruction (such as a computer executed by a computer). Such methods or processes can be implemented in a computer readable medium such as a code. As described above, the memory and/or computer readable media can include removable and versatile. The storage device to be removed includes but not limited to: two consecutive memory (job), random access optical disc (CDS), digital versatile disc (object), etc. When using software = Shi, these functions can be The main field uses the fruit, η or multiple instructions or codes can be read on the computer. [Read]. 49 201132175 The media is stored or transmitted. The computer readable media includes both computer storage media and communication media. The media includes any medium that facilitates the transfer of computer programs from one place to another. The storage medium may be any available media accessible by a general purpose or special purpose computer, for example (but not limited), such The brain readable medium can include ram, (10) Μ, EEPROM, CD_ROM or other optical disk storage, disk storage or other magnetic storage device, or any other medium that can be used to carry or store instructions or data structures in a desired form. The code component is accessible by a general purpose or special purpose computer, or a general purpose or special purpose processor. _ In addition, any connection is appropriately referred to as a computer readable medium. For example, if the software is a coaxial cable, a fiber optic cable, or a dual Twisted lines, digital subscriber lines (DSL), or wireless technologies such as infrared, radio, and microwaves from the word station, server, or other remote source, are pumped, fiber-optic, twisted-pair, DSL or wireless (four) such as infrared, radio and microwave are included in the definition of the medium. As used herein, a disk and a dish package (4) a compact disc (cd), a laser disc, a disc, Digital versatile discs (DVDs), floppy discs, and Blu-ray discs. One disc usually reproduces data magnetically, while discs use lasers to optically reproduce The combination of the above should also be included in the scope of the computer readable media. In general, the 'programming module can include the implementation of specific tasks or the implementation of specific pumping objects, components, data structures, etc. Computer executable Instruction, Correlation"Structure and Process Group Table (4) Examples of code for performing the steps of the methods disclosed herein. Such executable instructions 50 201132175 or a specific sequence representation of a related material structure is implemented at 9 steps An example of a corresponding action of a function described in the process. A general purpose processor, digital signal processor (DSP), application specific integrated circuit (ASIC), field programmable gate array (FPGA) designed to perform the functions described in this application. Or other programmable logic devices, individual gate or transistor logic devices, individual hardware components, or any combination thereof, may implement or perform various illustrative logic, logic regions as described in the aspects disclosed herein. Blocks, modules and circuits. The general purpose processor may be a microprocessor, and in the alternative, the processor may be any general processor, controller, or micro-control U-state machine. The processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, in conjunction with a DSP core, or a plurality of microprocessors, or any other such configuration. Additionally, at least one processor can comprise one or more modules operable to perform one or more of the steps and/or actions described above. For software implementations, the techniques described herein can be implemented using modules (e.g., programs, functions, etc.) that perform the functions described herein. These software codes can be stored in the memory unit and executed by the processor. The memory unit can be implemented within the processor and/or external to the processor, and in the latter case, can be communicatively coupled to the processor via various components known in the art. Moreover, at least one processor can include one or more modules operable to perform the functions described herein. Wireless communication systems, such as and other systems. The techniques described herein can be used interchangeably with CDMA, TDMA, FDMA, OFDMA, terminology, and "network". CDMA systems can be used to implement radio technologies such as Universal Terrestrial Radio Access (UTRA), CDMA2000, and the like. UTRA includes Wideband CDMA (W-CDMA) and other variants of CDMA. In addition, CDMA2000 covers the IS-2000, IS-95, and IS-856 standards. A TDMA system can implement a radio technology such as the Global System for Mobile Communications (GSM). An OFDMA system can be implemented such as evolved UTRA (E-UTRA), Ultra Mobile Broadband (UMB), IEEE 802.1 1 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20,

Flash-OFDM®等的無線電技術。UTRA和E-UTRA是通用 行動電訊系統(UMTS )的一部分。3GPP長期進化(LTE) 是UMTS的使用E-UTRA的發行版本,E-UTRA在下行鏈 路上使用OFDMA而在上行鏈路上使用SC-FDMA。在來自 名為「第三代合作夥伴計劃」(3GPP )的組織的文件中描 述了 UTRA、E-UTRA、UMTS、LTE 和 GSM。另外,在來 自名為「第三代合作夥伴計劃2」(3GPP2 )的組織的文件 中描述了 CDMA2000和UMB。另外,此類無線通訊系統 可以額外包括同級間(例如,使用者裝備對使用者裝備) 特定網路系統,其通常使用未配對未許可的頻譜、802.XX 無線LAN、藍芽和任何其他短距離或者長距離無線通訊技 術。 使用單載波調制和頻域均衡的單載波分頻多工存取 (SC-FDMA )是可以與所揭示實施例一起使用的技術。 SC-FDMA具有與OFDMA系統類似的效能和基本相同的整 體複雜度。SC-FDMA信號因為其固有的單載波結構而具 有較低的峰值對平均功率比(PAPR)。SC-FDMA可用於[上] 52 201132175 可在發射功率效率方面對 圖8的508、圖7的7〇2)Radio technology such as Flash-OFDM®. UTRA and E-UTRA are part of the Universal Mobile Telecommunications System (UMTS). 3GPP Long Term Evolution (LTE) is a release version of UMTS that uses E-UTRA, which uses OFDMA on the downlink and SC-FDMA on the uplink. UTRA, E-UTRA, UMTS, LTE, and GSM are described in documents from an organization called the 3rd Generation Partnership Project (3GPP). In addition, CDMA2000 and UMB are described in documents from an organization named "3rd Generation Partnership Project 2" (3GPP2). In addition, such wireless communication systems may additionally include peer-to-peer (eg, user equipment-to-user equipment) specific network systems that typically use unpaired unlicensed spectrum, 802.XX wireless LAN, Bluetooth, and any other short Distance or long distance wireless communication technology. Single carrier frequency division multiplexing access (SC-FDMA) using single carrier modulation and frequency domain equalization is a technique that can be used with the disclosed embodiments. SC-FDMA has similar performance and substantially the same overall complexity as an OFDMA system. The SC-FDMA signal has a lower peak to average power ratio (PAPR) due to its inherent single carrier structure. SC-FDMA can be used for [on] 52 201132175. In terms of transmission power efficiency, 508 of Fig. 8 and 7〇2 of Fig. 7)

行鍵路通訊’其中較低的PApR 使用者裝備(例如,圖3的3〇8、 有利。 此外,可以使用標準程式編寫及/或工程技術將本 描述的各種態樣或特徵實施為方法 '裝置或製品。如本文 中使用的術語「製品」意欲涵蓋可從任何電腦可讀取設 備、載體或媒體存取的雷腦链4 的冤腦&式。例如,電腦可讀取媒體 可包括,但不限於:磁性儲存設備(例如,硬碟、軟碟、 磁帶等)’光碟(例如,壓縮光碟(⑶)、數位多功能光碟 (DVD)等),智慧卡和快閃記憶體設備(例如,EPR0M、 記憶卡、記料、鍵切碟等)。此外,本域描述的各 種儲存媒體可表示用於儲存資訊的一或多個設備及/或其 他機器可讀取媒體。術語「機器可讀取媒體」可包括但不 限於能夠儲存、包含及/或攜帶指令及/或資料的無線通道 和各種其他媒體。另外,電腦程式產品可包括具有一或多 個指令或代碼的電腦可讀取媒體,該一或多個指令或代碼 可操作以使電腦執行本文中所描述的功能。 結合本文所揭示的態―樣來描述的方法或演算法的步驟 及/或動作可直接在硬體中、在由處理器執行的軟體模組中 或者在該兩者的組合中實施。軟體模組可以常駐於RAM 記憶體、快閃記憶體、ROM記憶體、EPROM記憶體、 EEPROM記憶體、暫存器、硬碟、.可移除磁碟、cd-ROm、 或本領域已知的任何其他形式的儲存媒體中。示例性儲存 媒體可以輕合到處理器’從而使處理器能夠從該儲存竭辕】 53 201132175 該儲存媒體寫人資訊。或者,儲存媒體 了疋處理器的組成部分。另外,在-些實施例中,處理 器和儲存媒體可以常駐於趨c中。此外,該ASIC 駐於使用者裝借(例如,圖3的308、圖8的5()8、2 广或者’處理器和儲存媒體可以作為個 的而)中。另外,在^ 的5〇8、圖7 帮及/或動^ 例中m寅算法的步 —乍可以以機器可讀取媒體及/或電 上的代碼及/或指令的-個或任何組合或集合的形式= 該等代碼及/或指令的一個或任何組合或 = 電腦程式產品中。 雖然以上揭示論述了說明性的實施例 ::背離如所附請求項定義的所描述實施例二;二 2況下,可以進行各種改變和修改。因此,所描述實施 列意欲涵蓋落入所附請求項的保護範嗨内的所有此類改 =、修改和變化。此外’儘管可以以單數形式來描述或請 未保護所描述實施例的要素,但是複數形式是可預期的, 除非明讀聲明了限於單數形式。另外,任何實施例的全部 或部分可以與任何其他實施例的全部或部分一起使用,除 非另有聲明。 ' =在【實施方式】或請求項中使用術語「&含(inciude)」 而言,該術語旨在以類似於術語「包括(comprising)」的 方式為包容性的,如同「包括」在請求項中用作連接詞時 所解釋-般。此外’如在【實施方式】或請求項中使轉 54 201132175 成」意欲思謂包容性的「或」而非排他性的「或」。 亦即’除非另有說明’或者由上下文可明顯看出,否則用 νσ X使用Α或Β」意欲意謂普通的包容性置換中的任何 個。亦即’以下實例中的任何一個皆滿足用語「X使用 A或B」.X使用Α ; χ使用β ;或χ使用a和β。另外, 本案和所附請求項中使用的冠詞「一(a)」和「一個(an )」 應田通吊被解釋為意謂「一或多個」,除非另有說明或者 由上下文可明顯看出針對單數形式。 請求項並非意欲限於本文中所示的態樣,而是要在整體 上與請求項的語言-致,其中對單數形式元件的提及並非 u欲意明「一個且僅一個」(除非明確地進行了如此聲 明)’而是意謂「一或多個」。除非明確地聲明,否則術語 一些」代表一或多個。提及一列專案中的「至少一個」 的用居代表彼等專案的^何組合,包括單㈣員。例如, 「a、b或c中的至少一個」意欲涵蓋:η;。、和μ a 和 c;b 和 c;及 a、b*c。 在-種配置中,用於無線通訊的裝置包括:用於回廡於 接收的空中超載指示符來线對使㈣裝備的發射_ 的調整的構件,該空中超載指示符包括指示一或 服務區處的干擾狀況的資訊;及用於根據上述調整來實^ 發射功率控制的構件。在一個態樣中,上述構件可p 置為執行上述構件列舉的功能的處理器。在另—個:: 二=可以是配置為執行上述構件列舉的功能_Line-key communication 'where the lower PApR user equipment (eg, Figure 3, Figure 3 is advantageous. In addition, various aspects or features of the description can be implemented as methods using standard programming and/or engineering techniques' A device or article. The term "article of manufacture" as used herein is intended to encompass a camphor & type of thunder brain chain 4 that is accessible from any computer readable device, carrier or media. For example, computer readable media may include , but not limited to: magnetic storage devices (eg, hard drives, floppy disks, tapes, etc.) 'discs (eg, compact discs ((3)), digital versatile discs (DVD), etc.), smart cards and flash memory devices ( For example, EPR0M, memory card, note, key cut, etc.) In addition, the various storage media described in this field may represent one or more devices and/or other machine readable media for storing information. The readable medium may include, but is not limited to, a wireless channel and various other media capable of storing, containing, and/or carrying instructions and/or materials. Additionally, the computer program product may include one or more instructions or The computer readable medium of the code, the one or more instructions or code being operative to cause the computer to perform the functions described herein. The steps and/or actions of the method or algorithm described in connection with the states disclosed herein It can be implemented directly in hardware, in a software module executed by a processor, or in a combination of the two. The software module can be resident in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, scratchpad, hard drive, removable disk, cd-ROm, or any other form of storage medium known in the art. Exemplary storage media can be lighted to the processor' to enable processing The storage device can be exhausted from the storage. 53 201132175 The storage medium writes information. Alternatively, the storage medium is part of the processor. Additionally, in some embodiments, the processor and the storage medium can reside in the trend c. In addition, the ASIC resides in the user's loan (for example, 308 of FIG. 3, 5 (8, 2 or 2 of FIG. 8 or 'the processor and the storage medium can be used as one). 8, Figure 7 help and / or move ^ example The steps of the m寅 algorithm may be in the form of machine-readable media and/or electrical code and/or instructions or any combination or set of instructions = one or any combination of the codes and/or instructions or = computer program product. Although the above disclosure discusses illustrative embodiments: various embodiments and modifications may be made as described in the accompanying claims, and various changes and modifications may be made. All such changes, modifications, and variations are intended to be included within the scope of the appended claims. In addition, although the elements of the described embodiments may be described or not protected in the singular, the plural forms are In the singular, any or all of the embodiments may be used in whole or in part with any other embodiment unless otherwise stated. ' = In the [Implementation] or the use of the term "&inciude" in the request, the term is intended to be inclusive in a manner similar to the term "comprising" as if "included" As explained in the request item as a conjunction. In addition, as in the [Embodiment] or the request, it is intended to mean an inclusive "or" rather than an exclusive "or". That is, 'unless otherwise stated' or as apparent from the context, the use of ν or X with νσ X is intended to mean any of the ordinary inclusive permutations. That is, 'any of the following examples satisfy the term "X uses A or B". X uses Α; χ uses β; or χ uses a and β. In addition, the articles "a (a)" and "an (an)" used in this case and the accompanying claims are interpreted as meaning "one or more" unless otherwise stated or apparent from the context Seen for the singular form. The request is not intended to be limited to the aspects shown herein, but rather to the language of the claim item as a whole, where the reference to the singular form of the element is not intended to mean "one and only one" (unless explicitly This is done "but" means "one or more." Unless otherwise stated, the term "some" represents one or more. Reference is made to the use of "at least one" in a series of projects to represent the combination of their projects, including single (four) members. For example, "at least one of a, b or c" is intended to cover: η;. , and μ a and c; b and c; and a, b*c. In an arrangement, the means for wireless communication includes means for reviewing the received airborne overload indicator to adjust the transmission of the (four) equipment, the airborne overload indicator including the indication one or service area Information on the interference condition at the location; and means for realizing the transmission power control according to the above adjustment. In one aspect, the above components may be placed as a processor that performs the functions recited by the above-described components. In another:: 2 = can be configured to perform the functions listed above.

55 201132175 在一種配置中,用於無線通訊 服務基地台報“中…—…括用於向裝置的 m。工中超载才曰不符的構件,《中該空中㈣ ::該:括指示一或多個細胞服務區處的干擾狀況的資 ^的二置進—步包括:用於接收對使用者裝備的發射功 制的構株的構件;及用於根據該等調整來實現發射功率控 述構株°在"'個態樣中’上述構件可以是配置為執行上 舉的功能的處理器。在另—個態樣中,上述構件 可疋配置為執打上述構件列舉的功能的模組或任何 置。 又 在-種配置中’用於無線通訊的裝置包括用於在基地么 處產生-或多個空中超載指示符的構件,其中該一或多: 空中超载指示符包括指示細胞服務區處的干擾狀況的資 γ “裝置進步包括用於直接向一或多個鄰近細胞服務 區中的-或多個使用者裝備發射該—或多個超载指示符 的構件。在一個態樣中,上述構件可以是配置為執行上述 構=列舉的功能的處理器。在另一個態樣中,上述構件可 以是配置為執行上述構件列舉的功能的模組或任何裝置。 【圖式簡單說明】 參照附圖來描述各種所揭示的實施例,其中·· 圖1圖示無線通訊系統; 圖2圖示通訊系統的方塊圖; 圖3圖示無線網路; 圖4圖示與_指示符的產生和處理相關的網路中的各 56 201132175 種部件; 圖 方法的:::用於接收和利用空中超裁指示符的所揭示的 圖6 疋圖示用於接收和利用空中 示的方法的方塊圖; 載扣不符的另一所揭 一圖7是圖示用於接收和利用空中超載指 示的方法的方塊圖; 圖8是圖示用於產生空中超載指 示符的另一 所揭 方塊圖; 示符的所揭示的方法 的 中各種符號的 圖9圖示當使用普通循環字首碼時子訊框 位置; 中各種符號 圖10圖示當使用擴展循環字首碼時子訊框 的位置; 圖圖示對於使用一個資源區塊發射的空中超載指示 符,差錯率與訊雜比的示例性關係曲線; 圖12圖示對於使用兩個資源區塊發射的空中超載指示 符’差錯率與訊雜比的示例性關係曲線;及 圖13圖示一種裝置,在其中可以實施各種所揭示的實 施例。 【主要元件符號說明】 100 基地台 104 第一天線 106 第二天線 Γ C 1 57 201132175 108 第三天線 110 第四天線 112 第五天線 114 第六天線 116 第一使用者裝備 118 第一反向鏈路/通訊鏈路 120 第一前向鏈路/通訊鏈路 122 第二使用者裝備 124 第二反向鏈路/通訊鏈路 126 第二前向鏈路/通訊鏈路 200 ΜΙΜΟ通訊系統 210 發射機系統 212 資料源 214 發射(ΤΧ)資料處理器 220 ΤΧ ΜΙΜΟ處理器 222a 發射機系統收發器(TMTR) 222t 發射機系統收發器(TMTR) 224a 發射機系統天線 224t 發射機系統天線 230 發射機系統處理器 232 記憶體 236 資料源 238 TX資料處理器 240 發射機系統解調器 58 201132175 242 RX資料處理器 244 資料槽 250 接收機系統 252a 接收機系統天線 252r 接收機系統天線 254a 接收機系統收發器(RCVR) 254r 接收機系統收發器(RCVR) 260 RX資料處理器 264 資料槽 270 接收機系統處理器 272 記憶體 280 調制器 300 無線網路/示例性無線通訊系統/通訊網路/無線通 訊網路 302 細胞服務區 304 細胞服務區 306 細胞服務區 3 1 2 天線群組 314 天線群組 316 天線群組 318 天線群組 320 天線群組 322 天線群組 3 2 4 天線群組 [:ς. 1 59 201132175 326 天線群組 328 天線群組 330 使用者裝備/系統控制器 332 使用者裝備 334 使用者裝備 336 使用者裝備 338 使用者裝備 340 使用者裝備 342 基地台 344 基地台 346 基地台 400 系統 410 無線網路/通訊網路 420 基地台 430 設備/使用者裝備 440 超載指示符部件 450 超載指示符部件 460 下行鏈路 470 上行鏈路 500 方法 502 步驟 504 步驟 506 步驟 508 步驟 60 201132175 600 方法 602 步驟 604 步驟 606 步驟 608 步驟 610 步驟 700 方法 702 步驟 704 步驟 706 步驟 708 步驟 800 方法 802 步驟 804 步驟 806 步驟55 201132175 In one configuration, the wireless communication service base station reported that "..." includes the components used for the device. The overload of the work is not the same as the component. The second step of the interference condition at the plurality of cell service areas includes: means for receiving a structure of the transmission function of the user equipment; and for implementing the transmission power according to the adjustment The above-mentioned components may be a processor configured to perform the functions of the above-mentioned functions. In another aspect, the above-described components may be configured to perform the functions enumerated by the above-described components. Group or any set. In a configuration, the means for wireless communication includes means for generating at the base - or a plurality of airborne overload indicators, wherein the one or more: air overload indicator includes indicator cells The gamma "mechanism advancement at the service area" includes means for transmitting the one or more overload indicators directly to one or more of the one or more adjacent cell service areas. In one aspect, the above-described components may be processors configured to perform the functions described above. In another aspect, the above-described components can be a module or any device configured to perform the functions recited by the above-described components. BRIEF DESCRIPTION OF THE DRAWINGS Various disclosed embodiments are described with reference to the accompanying drawings in which: FIG. 1 illustrates a wireless communication system; FIG. 2 illustrates a block diagram of a communication system; FIG. 3 illustrates a wireless network; Each of the 56 201132175 components in the network associated with the generation and processing of the _indicator; the method of::: the disclosed Figure 6 for receiving and utilizing the over-the-air indicator, for receiving and A block diagram of a method utilizing an aerial display; another unillustrated figure 7 is a block diagram illustrating a method for receiving and utilizing an over-the-air indication; FIG. 8 is a diagram illustrating an airborne overload indicator FIG. 9 of the various symbols in the disclosed method of the present invention illustrates the position of the sub-frame when the normal cyclic word first code is used; the various symbols in FIG. 10 illustrate the use of the extended cyclic word first code. The position of the time sub-frame; the figure illustrates an exemplary relationship between the error rate and the signal-to-noise ratio for the airborne overload indicator transmitted using one resource block; Figure 12 illustrates the airborne overload for the use of two resource blocks indicator' An exemplary plot of error rate and noise ratio; and FIG. 13 illustrates an arrangement in which the various embodiments may be implemented embodiments disclosed. [Main component symbol description] 100 base station 104 first antenna 106 second antenna Γ C 1 57 201132175 108 third antenna 110 fourth antenna 112 fifth antenna 114 sixth antenna 116 first user equipment 118 first reverse Link/communication link 120 first forward link/communication link 122 second user equipment 124 second reverse link/communication link 126 second forward link/communication link 200 ΜΙΜΟ communication system 210 Transmitter System 212 Data Source 214 Transmit (ΤΧ) Data Processor 220 ΤΧ ΜΙΜΟ Processor 222a Transmitter System Transceiver (TMTR) 222t Transmitter System Transceiver (TMTR) 224a Transmitter System Antenna 224t Transmitter System Antenna 230 Transmit Machine System Processor 232 Memory 236 Data Source 238 TX Data Processor 240 Transmitter System Demodulator 58 201132175 242 RX Data Processor 244 Data Slot 250 Receiver System 252a Receiver System Antenna 252r Receiver System Antenna 254a Receiver System Transceiver (RCVR) 254r Receiver System Transceiver (RCVR) 260 RX Data Processor 264 Data Slot 270 Receiver System Processor 272 Memory 2 80 Modulator 300 Wireless Network / Exemplary Wireless Communication System / Communication Network / Wireless Communication Network 302 Cell Service Area 304 Cell Service Area 306 Cell Service Area 3 1 2 Antenna Group 314 Antenna Group 316 Antenna Group 318 Antenna Group 320 Antenna Group 322 Antenna Group 3 2 4 Antenna Group [:ς. 1 59 201132175 326 Antenna Group 328 Antenna Group 330 User Equipment/System Controller 332 User Equipment 334 User Equipment 336 User Equipment 338 User Equipment 340 User Equipment 342 Base Station 344 Base Station 346 Base Station 400 System 410 Wireless Network/Communication Network 420 Base Station 430 Equipment/User Equipment 440 Overload Indicator Component 450 Overload Indicator Component 460 Downlink 470 Upstream Link 500 Method 502 Step 504 Step 506 Step 508 Step 60 201132175 600 Method 602 Step 604 Step 606 Step 608 Step 610 Step 700 Method 702 Step 704 Step 706 Step 708 Step 800 Method 802 Step 804 Step 806 Step

Claims (1)

201132175 七 、申請專利範圍·· κ 一種方法,其包括以下步驟: 回應於一接收的空申超裁 趣戰知不符來決定對一使用 的發射功率的+ 4 襄備 +的調整,該空中超载指示符包括指示 、-胞服務區處的干擾狀況的資訊;及 根據該等調整來實現發射功率控制。 功率 少一 口旁求項1之方法,其中 發射排程調整或一發射 寻調整進一步包括一 位準調整、—路私 個 3. 如請求項]> 士,也 之方法,其進一步包括以下牛锁. 用者梦偌& 下步驟.向該使 、、服務基地台報告該等調整。 4. 如請求項1夕士·、+ L 調整。 法,其中根據一機率函數來決定該等 5. 如請求項;夕士 m 之方法,其中將該空中超載指示符作為一 期進化子訊框中的_或多 個資源 第二代合作夥伴計劃長 區塊的一部分來接收。 6.如 求 1 , ^ 之方法,其中根據提供發射功率整形的該 專調整來實現該發射__。 201132175 7. 如請求項1 >古 之方法’其中根據一差分路徑損耗和一訊 雜比中的至少_伽Λ 個來決定該等調整。 8. 如請求項1π 々 ι万法,其中接收一個以上的空中超载指 示符,並且Μ出,、,丁 μ e由乂下步驟來決定該等調整: 回應於每個空中泰_ 超載“示符來決定對該使用者裳備的發 射功率的獨立調整;及 根據該等獨立裀, 询立調整來決定該等調整。 9.如請求項8 的該獨立調整。 之方法,其中該等調整對應於具有最大值 1 0 ·如請求項1 g 收一個^ 法,其中從複數個鄰近細胞服務區接 的*中赶葡、工中超載指示符’並且藉由評估該等所接收 超载指示符的-部分來決定該等調整。 u.如請求項10之方 來修改該等調整的幅度/、 分成反比的-因數 何其他”超裁指示符,“週期内未接收到任 者裝備的發射功率位準的一提高。該等調整對應於該使用 r C 1 u J 63 201132175 】3.如請求項〗2之方 M ^ /、中若該使用者裝備的該發射功 卞叫千木·超過一預宏 間值,則提高該發射功率位準。 14.如請求項1 . ' ,其進一步包括以下步驟: 在該實現發射功率控 & 整;及 剌之刖向一服務基地台報告該等調 接收該等調整,其中 、等所接收的調整是修改過的調整。 15·如請求項彳_ ' ,,、中該空中超載指示符包括與一 一-厂合作夥伴計劃長期進化網路中的多個載波有關的 16. 如請求項15之方法,其中 在-早個下行鏈路載波上接收該超载指示符;及 在該下行鏈路載波内的一獨立資源區塊中攜帶與該多個 載波的每一個有關的資訊。 17. 如請求項1之方法,其中該空中超載指示符包括指示 共通道干擾狀況的資訊。 18. —種方法,其包括以下步驟: 向一使用者裝備的一服務基地台報告一空中超載指示 符,該二中超載指示符包括指示一或多個細胞服務區處的 干優狀況的資訊; 64 201132175 接收對該使用者裝備的發射功率的調整;及 根據該等調整來實現發射功率控制。 19. 一種裝置’其包括: 一處理器;及 一記憶體,其包括處理器可執行代碼,當由該處理器執行 時,該處理器可執行代碼將該裝置配置為: 回應於一接收的空中超載指示符來決定對該裝置的發射 力率的調整’ 1¾空中超載指示符包括指示一或多個細胞服 務區處的干擾狀況的資訊;及 根據該等調整來實現發射功率控制。 20.如請求項19之裝置,1 位準調整、一择,、中“等調整進-步包括-功 個。發射排程調整或-發射頻率調整中的至少 功率 21.如請求項19之裝置,爱 :器可執行代碼將該裝置配置田為二理器執行時’該處 報告該等調整。 步向一服務基地台 22.如請求項 理器可執行代 該等調整。 之裝置,1由本 一中备由該處理 成脸导《4· w 裝置配置為根據一機率 該處 決定 65 201132175 23·如明求項19之裝置,其中當由該處理器執行時,該 理器可執行代碼將該裝置配置為將該空中超载指示料 2—第三代合作夥伴計劃長期進化子訊框中的—或多個 、資源區塊的一部分來接收。 24.如π求項19之裝置,其中當由該處理器執行時,該處 理器可執行代碼㈣裝置配置為根據提供發射功率整形 的該等調整來實現發射功率控制。 理 其中^該處理11執行時,該處 理器了執行代碼將該裝置配置為根據一差分路徑損耗和 一訊雜比中的至少一個來決定該等調整/ Γ干如符請二項19之裝置,其中在存在-個以上的空中超載 代巧將下,“該處理器執行時’該處理器可執行 代馬將該裝置配置為藉由以下步驟來決定該等調整: 於每個空令超载指示符來決定對該裝置的發射功率 的獨立調整;及 根據該等獨立調整來決定該等調整。 該等調整對應於具有最大值的該 27.如凊求項26之裝置 獨立調整。 28·如請求項 19之裝置,其中在存在— 個以上的空中超鄭 66 201132175 指示符的情況下,當由該處理器執行時,該處 代碼將該裝置配置為藉由評估該等所接收的 :: 示符的一部分來決定該等調整。 芍載指 29.如請求項28之裝置,苴中告 w 八甲田由該處理器執行時,兮產 理器可執行代碼將該裝置配置為用與該: 因數來修改該等調整的幅度。 久比的一 3〇.如請求項19之裝置,其中當由該處理器執行時 理器可執行代碼將該裝置配置為: -處 決定是否接收到任何其他空中超載指示符;及 若在-指定週期内未接收到任何其他空 決定與該裝置的發射功率位準的-提高對應 儿如請求項3〇之裝置,其中#由該處理器 理器可執行代碼將該裝置配置為:若該裝置的發:功^ 超過一預定閣值,則將該發射功率提高—特定值射力率未 :器如可:求項19之裝置’其中當由該處理器執行時,該處 理器了執行代碼將該裝置配置為: 向一服務基地台報告該等調整;及 接收該等調整,其中該等所接收的調整是修改過的調整。 如請求項19之裝置,其中該空中超载指示符包括與。 67 201132175 =代合作夥伴計劃長期進化網路中的多個載波有關的 34.如請求項33之裝置,其中當由 理器可執行代碼將該裝置配置為在1理器執行時’該^ 上接收該超载指示符1中在該下行鏈二:行鏈路= 資源區塊中攜帶與該多個載波中的=内的-獨立 可個有關的資訊。 其中該空中超載指示符包括指示 35.如請求項19之裝置 共通道干擾狀況的資訊 36· —種裝置,其包括: 一處理器;及 -記憶體’其包括處理器可執行代碼,當由該處理器執行 時,該處理器可執行代碼將該裝置配置為: 向該裝置的一服務基地台報告一空中超載指示符,該空中 超載扎不符包括指示一或多個細胞服務區處的干擾狀況 的資訊; 接收對該襞置的發射功率的調整;及 根據該等調整來實現發射功率控制。 3 7. 一種在一電腦可讀取媒體上實施的電腦程式產品,其 包括: 用於回應於一接收的空中超載指示符來決定對一使用[着] 68 201132175 裝備的發射功率的調整的程式碼,該空中超載指示符包括 指示一或多個細胞服務區處的干擾狀況的資訊;及 用於根據該等調整來實現發射功率控制的程式碼。 3 8·如請求項37之電腦程式產品,其進一步包括: 用於在該實現發射功率控制之前向該使用者裝備的一服 務基地台報告該等調整的程式碼;及 用於接收該等調整的程式碼,其中該等所接收的調整是修 改過的調整。 39. —種在一電腦可讀取媒體上實施的電腦程式產品,其 包括: 用於向一使用者裝備的一服務基地台報告一空中超載指 示符的程式碼,該超載指示符包括指示一或多個細胞服^ 區處的干擾狀況的資訊; 用於接收對該使用者裴備的發射功率的調整的程式碼丨及 用於根據該等調整來實現發射功率控制的程式碼。 40. —種裝置,其包括: 用於回應於一接收的空中超載指示符來決定對一使用者 裝備的發射功率的調整的構件,該空中超載指示符包括指 示一或多個細胞服務區處的干擾狀況的資訊;及 用於根據該等調整來實現發射功率控制的構件。 69 201132175 41. 如請求項40之裝置,其進一步包括: 用於在該實現發射功率控制之前向一服務基地台報告該 等調整的構件;及 ;接收該等調整的構件,其中該等所接收的調整是修改 過的調整。 42. 一種裝置,其.包括: 用於向一使用者裝備的一服務基地台報告一空中超載指 八符的構件,該超載指示符包括指示一或多個細胞服務區 處的干擾狀況的資訊; 用於接收對該裝置的發射功率的調整的構件;及 用於根據該等調整來實現發射功率控制的構件。 43 ·種方法’其包括以下步驟: 在基地台處產生一或多個空中超載指示符,該一或多個 二中超载指示符包括指示該基地台所服務的一細胞服務 區處的干擾狀況的資訊; ° 5多個鄰近細胞服務區中的一或多個使用者裝備直 接發送該一或多個超載指示符。 44.—種裝置,其包括: 一處理器;及 把憶體,其包括處理器可執行代碼,當由該處理器執行 時’該處理器可執行代碼將該裝置配置為: 201132175 產生一或多個空中超载指示符,該一或多個空中超載指示 符包括指示該基地台所服務的一細胞服務區處的干擾狀 況的資訊; 向一或多個鄰近細胞服務區中的一或多個使用者裝備直 接發送該一或多個超載指示符。 45. —種在一電腦可讀取媒體上實施的電腦程式產品,其 包括: 用於在一基地台處產生一或多個空中超載指示符的程式 碼’該一或多個空中超載指示符包括指示該基地台所服務 的一細胞服務區處的干擾狀況的資訊; 用於向一或多個鄰近細胞服務區中的一或多個使用者裝 備直接發送該一或多個超載指示符的程式碼。 46. —種裝置,其包括: 用於產生一或多個空中超載指示符的構件,該一或多個空 中超載指示符包栝指示一細胞服務區處的干擾狀況的資 訊; 用於向一或多個鄰近細胞服務區中的一或多個使用者裝 備直接發送該一或多個超載指示符的構件。201132175 VII. Scope of Application for Patent·· κ A method consisting of the following steps: In response to a received vacancy, the decision to determine the transmission power of a +4 ++, the air overload The indicator includes information indicating the interference condition at the cell service area; and implementing transmit power control based on the adjustments. The method of claim 1, wherein the emission schedule adjustment or the one-shot adjustment further includes a quasi-adjustment, a private method, a request, and a method, which further includes the following cattle. Lock. User Nightmare & Next Step. Report the adjustment to the service, service base station. 4. Adjust as requested in item 1 and + L. a method according to a probability function, such as a request item; a method of the evening, wherein the air overload indicator is used as a _ or a plurality of resources second generation partner program in the first evolutionary subframe A portion of the long block is received. 6. The method of claim 1, wherein the transmitting __ is implemented according to the special adjustment that provides transmit power shaping. 201132175 7. The method of claim 1 > ancient method' wherein the adjustment is determined based on a differential path loss and at least _ gamma of a signal ratio. 8. If the request item 1π 々ι 万法, in which more than one air overload indicator is received, and Μ, ,, μ μ e determine the adjustment by the following steps: Respond to each aerial _ overload "show In order to determine the independent adjustment of the transmit power of the user's performance; and to determine the adjustments based on the independent adjustments. 9. The method of the independent adjustment of claim 8 Corresponding to having a maximum value of 1 0 · as claimed in claim 1 g, where a number of neighboring cell service areas are connected to the *, the in-service overload indicator ' and by evaluating the received overload indicator - The part determines the adjustments. u. If the party of claim 10 modifies the magnitude of the adjustments /, the inverse of the - factor and other "over-ruling indicators," the transmission of the equipment is not received within the period. An increase in the power level. These adjustments correspond to the use of r C 1 u J 63 201132175 】 3. If the request item 〖2 square M ^ /, if the user equipment of the launch power is called Qianmu· More than a pre-macro value, then The transmission power level is high. 14. The request item 1 ' further includes the following steps: reporting the adjustment to the serving base station and transmitting the adjustments to the service base station after the implementation of the transmission power control & The adjustment received is the modified adjustment. 15. If the request item 彳 _ ' , , , the air overload indicator includes the multiple carriers in the long-term evolution network of the one-factory partner program 16. The method of claim 15, wherein the overload indicator is received on an early downlink carrier; and an independent resource block within the downlink carrier carries each of the plurality of carriers 17. The method of claim 1, wherein the airborne overload indicator includes information indicative of a common channel interference condition. 18. A method comprising the steps of: reporting a service base station to a user equipment An airborne overload indicator, the second overload indicator including information indicating a dry condition at one or more cell service areas; 64 201132175 receiving transmit work for the user equipment Adjusting; and implementing transmit power control based on the adjustments. 19. A device comprising: a processor; and a memory comprising processor executable code, when executed by the processor The executable code configures the apparatus to: determine an adjustment of a transmission rate of the apparatus in response to a received airborne overload indicator. The airborne overload indicator includes information indicative of an interference condition at one or more of the cell service areas. And according to the adjustment to achieve the transmission power control. 20. As claimed in item 19, the 1-bit adjustment, the selection, the middle, etc. At least the power of the transmission schedule adjustment or the transmission frequency adjustment. 21. The apparatus of claim 19, wherein the apparatus executable code configures the apparatus to perform the adjustments. Step to a service base station 22. If the request handler can perform such adjustments. The device is configured by the device to be a face-to-face device. The device is configured to determine the device according to a probability that the device is determined according to a probability, wherein the device is executed by the processor. The executable code configures the apparatus to receive the airborne overload indicator 2 - a portion of the resource block in the long-term evolution subframe of the third generation partnership program. 24. Apparatus according to π, wherein the processor executable code (4) device is configured to implement transmit power control in accordance with the adjustments that provide transmit power shaping when executed by the processor. When the processing 11 is executed, the processor executes the code to configure the apparatus to determine the adjustment/drying according to at least one of a differential path loss and a signal-to-noise ratio. In the presence of more than one airborne overload, "the processor executes" the processor executable to configure the device to determine the adjustments by the following steps: overloading each empty command An indicator determines an independent adjustment of the transmit power of the device; and determines the adjustments based on the independent adjustments. The adjustments correspond to the 27 having the maximum value. The device of claim 26 is independently adjusted. A device as claimed in claim 19, wherein in the case where there are more than one over-the-air over-the-June 66 201132175 indicators, when executed by the processor, the code at the location configures the device to be received by evaluating: : Part of the indicator to determine the adjustment. 芍 指 29 29. As requested in item 28, 苴中告w 八甲田 is executed by the processor, the processor executable code will be loaded The apparatus is configured to modify the magnitude of the adjustments by a factor of 1. The apparatus of claim 19, wherein the apparatus executable code is configured by the processor to configure the apparatus to: - Deciding whether to receive any other air overload indicator; and if any other null decision is not received within the specified period, the device corresponding to the transmit power level of the device is raised, such as the device of claim 3, where #由The processor executable code configures the device to: if the device's transmitter: power exceeds a predetermined threshold, the transmit power is increased - the specific value of the radiation rate is not: the device can: claim 19 Apparatus [wherein when executed by the processor, the processor executes the code to configure the apparatus to: report the adjustments to a serving base station; and receive the adjustments, wherein the received adjustments are modified The apparatus of claim 19, wherein the airborne overload indicator comprises: 67 201132175 = a plurality of carriers in the long-term evolution network of the partner partnership program 34. The apparatus of claim 33, When the device executable code is configured to be executed by the processor, the overload indicator 1 is received in the downlink 2:link=resource block and carried in the plurality of carriers. Intra-independent-independent information, wherein the airborne overload indicator includes an indication 35. The device of claim 19 has a common channel interference condition. The device includes: a processor; and - a memory 'It includes processor executable code that, when executed by the processor, configures the apparatus to: report an airborne overload indicator to a serving base station of the apparatus, the airborne overload does not include Information indicative of interference conditions at one or more cell service areas; receiving adjustments to the transmit power of the device; and implementing transmit power control based on the adjustments. 3 7. A computer program product embodied on a computer readable medium, comprising: a program for determining an adjustment to a transmit power of a device using a [...] 68 201132175 device in response to a received air overload indicator a code, the airborne overload indicator comprising information indicative of an interference condition at one or more of the cell service areas; and a code for implementing transmit power control in accordance with the adjustments. 3. The computer program product of claim 37, further comprising: operative to report the adjusted code to a service base station of the user equipment prior to the implementing the transmit power control; and for receiving the adjustment The code, where the adjustments received are modified adjustments. 39. A computer program product embodied on a computer readable medium, comprising: a code for reporting an airborne overload indicator to a service base station equipped with a user, the overload indicator comprising an indication Or information of interference conditions at a plurality of cell service areas; a code for receiving an adjustment of the transmission power of the user device; and a code for implementing transmission power control according to the adjustments. 40. An apparatus, comprising: means for determining an adjustment to a transmit power of a user equipment in response to a received airborne overload indicator, the airborne overload indicator comprising an indication of one or more cell service areas Information on the interference condition; and means for implementing transmit power control based on the adjustments. 69. The device of claim 40, further comprising: means for reporting the adjustments to a serving base station prior to the implementing the transmit power control; and receiving the adjusted components, wherein the receiving The adjustment is a modified adjustment. 42. An apparatus, comprising: means for reporting an airborne finger octet to a serving base station equipped with a user, the overload indicator including information indicative of interference conditions at one or more cell service areas Means for receiving an adjustment of a transmit power of the device; and means for implementing transmit power control in accordance with the adjustments. 43. A method comprising the steps of: generating one or more airborne overload indicators at a base station, the one or more secondary overload indicators including an indication of interference conditions at a cell service area served by the base station Information; One or more user equipments in more than 5 adjacent cell service areas directly transmit the one or more overload indicators. 44. An apparatus comprising: a processor; and a memory, comprising processor executable code, when executed by the processor, the processor executable code configured to: 201132175 generate one or a plurality of airborne overload indicators, the one or more airborne overload indicators including information indicative of interference conditions at a cell service area served by the base station; use of one or more of one or more adjacent cell service areas The device is equipped to send the one or more overload indicators directly. 45. A computer program product embodied on a computer readable medium, comprising: code for generating one or more airborne overload indicators at a base station 'the one or more airborne overload indicators Including information indicating an interference condition at a cell service area served by the base station; a program for directly transmitting the one or more overload indicators to one or more user devices in one or more adjacent cell service areas code. 46. An apparatus, comprising: means for generating one or more airborne overload indicators, the one or more airborne overload indicators comprising information indicative of interference conditions at a cell service area; Or one or more user devices in the plurality of adjacent cell service areas are configured to directly transmit the one or more overload indicators. 7171
TW099113340A 2010-03-11 2010-04-27 Over-the-air overload indicator TW201132175A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/722,433 US8660600B2 (en) 2009-03-12 2010-03-11 Over-the-air overload indicator

Publications (1)

Publication Number Publication Date
TW201132175A true TW201132175A (en) 2011-09-16

Family

ID=50180505

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099113340A TW201132175A (en) 2010-03-11 2010-04-27 Over-the-air overload indicator

Country Status (1)

Country Link
TW (1) TW201132175A (en)

Similar Documents

Publication Publication Date Title
US8660600B2 (en) Over-the-air overload indicator
TWI738989B (en) Method for wireless communication, and apparatus and non-transitory computer-readable medium thereof
JP5951816B2 (en) Interaction between cumulative power control and minimum / maximum transmit power in LTE systems
JP5661922B2 (en) Uplink power control in aggregate carrier communication systems
JP5485383B2 (en) Resource block reuse for coordinated multipoint transmission
JP5529294B2 (en) Resource allocation and transmission for coordinated multipoint transmission
US9750030B2 (en) Enhanced downlink rate adaptation for LTE heterogeneous network base stations
JP5680750B2 (en) Interaction between maximum power reduction and power scaling in wireless networks
TWI796436B (en) Modulation and coding scheme and channel quality indicator for high reliability
JP6612461B2 (en) Narrowband ACK / NACK transmission
US20120026940A1 (en) Radio reporting set and backhaul reporting set construction for coordinated multi-point communication
JP2021520681A (en) Scheduling request and ACK / NACK prioritization
KR20200040879A (en) Configuration of repetition factors to transmit feedback data for 5K or other next-generation networks
TW201029340A (en) Downlink interference cancellation methods
TW201208424A (en) User equipment operation mode and channel or carrier prioritization
CN110352572A (en) Report in cordless communication network corresponding to the channel quality indicator of target error rate
KR101521740B1 (en) Downlink flow control using packet dropping to control transmission control protocol (tcp) layer throughput
TW201937873A (en) Beam reporting for active beams
US20210013990A1 (en) Enhancing the robustness of uplink transmission
US11063732B2 (en) Dynamically configurable hybrid automatic repeat request (HARQ) configuration
JP2012501598A (en) Power spectrum density control for wireless communication
Lin et al. Limited Comp Handover Algorithm For LTE‐Advanced
CN115834009A (en) Deriving configured output power for consecutive Transmission Time Intervals (TTIs) in a shortened TTI mode
TW202203679A (en) Channel state information triggering and reporting
TW201132175A (en) Over-the-air overload indicator