TW201131679A - Method for removing deposits - Google Patents

Method for removing deposits Download PDF

Info

Publication number
TW201131679A
TW201131679A TW99137257A TW99137257A TW201131679A TW 201131679 A TW201131679 A TW 201131679A TW 99137257 A TW99137257 A TW 99137257A TW 99137257 A TW99137257 A TW 99137257A TW 201131679 A TW201131679 A TW 201131679A
Authority
TW
Taiwan
Prior art keywords
gas
molecular fluorine
hydride
ruthenium
chamber
Prior art date
Application number
TW99137257A
Other languages
Chinese (zh)
Inventor
Marcello Riva
Stefan Mross
Original Assignee
Solvay Fluor Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solvay Fluor Gmbh filed Critical Solvay Fluor Gmbh
Publication of TW201131679A publication Critical patent/TW201131679A/en

Links

Abstract

A method for removing a silicon hydride from the surface of a solid body which comprises treating the silicon hydride with a gas comprising molecular fluorine or reactive species generated from molecular fluorine.

Description

201131679 六、發明說明: 本專利申請要求於2009年1〇月30日提交的歐洲申請號 09 1 7470 5.5的權益,將其全部內容藉由引用結合到本專利 申請中。 【發明所屬之技術領域】 本發明涉及一種用於去除沉積物的方法,該方法作爲 一種腔室清潔法是特別有用的。 【先前技術】 在半導體和光電產業中使用處理腔室來製造半導體、 平板顯示器、或光伏打元件。該製造一般包括多種操作, 如一基片的蝕刻或化學氣相沉積,在該處理過程中,該基 片典型地位於該處理腔室內部提供的一支持件上。 在該等製造的步驟中,具體是在多個化學氣相沉積的 步驟中,多種材料通常不僅在該基片上沉積而且在該腔室 的如該等腔室壁的多個內部零件和對電極上沉積。爲了防 止在後續的製造運行中的污染問題,適當地將此類材料去 除。 EP-A-1138802揭露了在一處理腔室的內部的多個零件 上沉積的非晶矽可以使用作爲清潔氣的氟來熱致清潔。該 引用檔還傳授了氧化矽或氮化矽不能藉由這種方法去除。 【發明內容】 -5- 201131679 本發明現在使之可以獲得(具體是)一種有效的腔室 清潔法。 因此本發明涉及一種用於從一固態本體的表面去除矽 氫化物的方法,該方法包括用一種含分子氟的氣體處理該 矽氫化物。可替代地,該矽氫化物可以用從分子氟中產生 的反應性種類來處理。 出人意料地,分子氟對於去除矽氫化物是特別有效的 ’因此允許良好的清潔效率以及減少的清潔時間。氟氣體 不具有全球變暖潛能並且是可以使用的,例如與常規使用 的NF3清潔氣體相比伴隨著相對低的能量消耗,同時有效 去除了該等矽氫化物的沉積物。 &quot;矽氫化物”被理解爲具體地表示含矽和氫的一種固 體。該固相中氫原子的含量一般是每莫耳矽小於1莫耳。 這個含量一般是等於或大於0.01莫耳/莫耳矽。經常這個 含量係等於或大於0.1莫耳/莫耳矽。 經常’該矽氫化物中Η的濃度係在0.1與0.35莫耳/莫 耳矽(處於一種非晶相)之間。它典型地是在〇. 〇 3與〇. 1 莫耳/莫耳矽(處於一種微晶相)之間。 “反應性種類”被理解爲具體地表示含電漿或原子氟 的~種氟。 , “從分子氟中產生的”被理解爲具體地表示分子氟( FZ)起初是在用於產生反應性種類的氣體中存在的。 典型地’該矽氫化物藉由化學氣相沉積使用含沉積氣 體的一種矽烷沉積在該固態本體的表面上。典型地該沉積 -6- 201131679 氣體包括一種砂院和氫氣。適合的砂院的實例包括S i Η 4以 及Si2H6。當使用包括一種矽烷和氫的一種沉積氣體時, 該沉積氣體中矽烷的含量總體上是至少5 0 %,經常至少 6 0 %。當使用包括矽烷和氫的一種沉積氣體時,該沉積氣 體中矽烷的含量總體上是最多90%,經常等於或小於80% 〇 EP-A_1138802傳授了它用矽烷和氫進行一電漿CVD過 程以形成一非晶矽層。本發明中去除的該等材料係矽氫化 物類,具體地講如以上定義的。可以進行該澱積過程以便 控制該矽氫化物的氫的含量以及其結晶性。 藉由本發明的方法可以去除的該等矽氫化物總體上是 選自非晶的以及微晶的矽氫化物。在一方面,該等矽氫化 物主要由非晶矽氫化物構成。在另一方面,該等矽氫化物 主要由微晶矽氫化物構成。在又另一方面,該等矽氫化物 包括非晶以及微晶矽氫化物。 在本發明中,分子氟(F2 )被用作該氣體的一種必 要組分。 在一較佳的方面,該氣體由分子氟構成或者主要由其 構成。在另一方面,使用了包括分子氟和例如一惰性氣體 (如氮氣、氬氣、氙氣、或它們的多種混合物,具體是氮 氣、氬氣以及分子氟的多種混合物)的一混合物。在這種 情況下,該混合物中分子氟的含量係典型地等於或小於5 0 莫耳%。較佳的是,該含量係等於或小於20莫耳%。多種 適合的混合物例如在申請人名下的WO 2007/1 1 6033中進 201131679 行了揭露’將其全部內容藉由引用結合在本專利申請中。 —特定的混合物實質上由約! 〇莫耳%氬氣、7〇莫耳%氮氣 '以及20莫耳%F2構成。 在這個方面的一具體的實施方式中,與如上述的一惰 性氣體的混合物中的分子氟的含量係大於5〇莫耳%。較佳 的是’該含量係等於或大於80莫耳%,例如約9〇莫耳%。 在;&lt;&amp;個具體實施方式中,氬氣係—較佳的惰性氣體。更特 別佳的是由約90莫耳%的分子氟和約】0莫耳%的氬氣構成 的一混合物。在這個方面的這個具體的實施方式中,與如 上述的一惰性氣體的混合物中的分子氟的含量係等於或小 於9 5莫耳%。 本發明中使用的分子氟可以例如藉由加熱適合的氟代 金屬酸鹽類(例如氟代鎳酸鹽或四氟化錳)來生產。較佳 的是’該分子氟係藉由一熔融鹽電解質(具體地一種氟化 鉀/氟化氫電解質,最佳的是KF.2HF )的電解來生產的。 較佳的是’在本發明中使用純化的分子氟。適合的獲 得在本發明中使用的純化的分子氟的純化操作包括去除顆 粒(例如藉由過爐或吸收)以及去除起始的材料(具體地 HF )(例如藉由吸收)以及雜質(諸如具體地CF4和〇2 ) 。典型地’在本發明中使用的分子氟中HF含量係小於1〇 ppm莫耳。典型地’在本發明中使用的氟含有至少〇1莫耳 ppm的 HF 〇 在一較佳的實施方式中’本發明中使用的純化的分子 氟係藉由以下的一種方法獲得的: -8 - 201131679 (a) 一種熔融鹽(具體如上述的)的 含HF、顆粒以及可哥隨意的雜 » (b) 相對于粗製分子氟的HF含量來; 操作,該操作包括例如在氟化鈉 佳的是將分子氟中的HF含量減 的値; (Ο 相對于粗製分子氟的顆粒含量來 量的一操作,該操作包括例如將 穿過一固體吸收劑,例如像氟化 該分子氟(具體地如之前上述的生產 可以提供給根據本發明的方法,例如在一 。當氟氣體與具體地如上述的一惰性氣體 據本發明的方法中時,較佳的是這種提供 可替代地,該分子氟可以直接從其製 化中提供給根據本發明的方法,例如藉由 物去除步驟上又連接到氟製造和/或純化 系統。如果根據本發明的方法中使用的氣 或主要由其構成,則該實施方式是特別有 在根據本發明的方法中,該固態本體 電性材料或由其組成,例如像鋁、或鋁^ 鎂合金)、不銹鋼、以及碳化矽。較佳的 在一較佳的實施方式中,該固態本體係半 器、或光伏打元件製造處理腔室的一內部 電解,從而提供 質的粗製分子氟 減少HF含量的一 上的吸附並且較 少至此上所提及 減少該顆粒的含 一含顆粒的氟流 鈉。 的並且氟化的) 可運輸的容器中 的混合物用於根 的方法。 造和可隨意地純 既連接到矽氫化 上的一氣體輸送 體由分子氟構成 利的。 總體上包括一導 会金(具體是鋁/ 是鋁和鋁合金。 導體、平板顯示 的零件。在一特 -9 - 201131679 定的方面’該固態本體係適合於在一CVD過程中產生電場 的一電極’它較佳的是由導電性材料(具體地如上述的) 製成的。 根據本發明的方法特別適合用於清潔在光伏打元件製 造中使用的處理腔室中的矽氫化物沉積物。 在根據本發明的方法的一第一具體實施方式中,該處 理包括從該氣體中產生一電漿。某些電漿產生器係已知的 。產生該電漿的一典型的方法包括將該氣體暴露於一高頻 電場中。 在該第一具體實施方式的一第一方面,該產生的場的 頻率係從10至15 MHz。一典型的頻率係13.56 ΜΗζ» 在該第一具體實施方式的一第二方面,該產生的場的 頻率係從40至1〇〇 MHz’較佳的是從40至80 MHz。一典型 的頻率係選自40 MHz和60 MHz。本發明還涉及一電漿, 該電獎係藉由將如上述的含分子氟的氣體(由分子氟構成 或者主要由其構成)暴露於具有從40至80 MHz的頻率的 高頻電場中獲得的。本發明還涉及此電漿清潔在一半導體 、一平板顯示器、或者一光伏打元件製造過程中使用的一 處理腔室的用途。 在根據本發明的方法的第一具體實施方式中,該氣體 壓力總體上是從0.5至50托,經常從1至1〇托並且較佳的是 等於或小於5托。 在根據本發明的方法的第一具體實施方式中,該氣體 的停留時間總體上是從1至丨8 〇 s,經常從3 0至7 0 s並且較 -10- 201131679 佳的是常從40至60 s。 在根據本發明的方法的第一具體實施方式中,施加以 產生該電漿的功率總體上是從1至1 〇 〇 〇 〇 〇 W,經常從5 0 0 0 至60000 W並且較佳的是常從loooo至40000 W。 應理解該等特定的條件還適合於根據本發明的電漿以 及根據本發明的用途。 在該第一具體實施方式的一方面,該處理藉由遠端電 漿技術進行。在這個實施方式的另一方面,產生了 一原位 電漿。例如,此種原位電漿在一處理腔室的內部產生,該 處理腔室包括適合用於從上述的該等氣體(具體地從純化 的分子氟)中產生電漿的一裝置。適合的裝置包括例如一 對能夠產生高頻電場的電極。 在根據本發明的方法的一第二具體實施方式中,該處 理包括在一升高的溫度下使該矽氫化物與該氣體接觸。該 實施方式中典型的溫度的範圍係從1 00°c至3 00°c。經常, 該溫度係從1 5 0 °C至2 5 0 °C。較佳的是等於或小於2 0 0 °C的溫 度。 在一方面’該溫度係藉由將該固態本體加熱至希望的 溫度來實現的。在另一方面,該氣體可以例如藉由將其穿 過一加熱管來加熱。該加熱的氣體還可以在原位,例如藉 由施加一諸如上述的高頻的場(具體地具有從40至60 MHz的頻率)、在不足以產生一電漿的條件下產生。在一 具體的方面,將該氣體引入該處理步驟中以便產生一種反 應熱,該反應熱有助於將該固態本體的溫度保持在一希望 -11 - 201131679 的値或將其實現。具體地講,當該氣體由分子氟組成或者 主要由其組成時,它引入該處理步驟中較佳的是受控的以 便將該溫度保持在至多3 00°C,較佳的是至多2 5 0°C。 在根據本發明的方法的第二具體實施方式中,該氣體 壓力總體上是從50至500托,經常從75至3 00托並且較佳的 是從100至200托。 在根據本發明的方法的第二具體實施方式中,該氣體 的停留時間總體上是從50至500 s,經常從1〇〇至300 s並且 較佳的是常從150至250 s。 在根據本發明的方法和其具體的該等實施方式中,該 處理總體上進行一段時間,這段時間足以將表面上的矽氫 化物的量相對其起始含量減少至小於1 %,較佳的是小於 0.1%。 本發明還涉及一種用於製造一種產品的方法,其中用 於製造該產品的至少一個處理步驟在一處理腔室中進行, 並且矽氫化物沉積在該處理腔室的內部的多個零件上,例 如在一電極上,這種方法包括藉由根據本發明的方法清潔 該內部零件。典型地,該產品的製造包括至少一個如上述 的在一基片上化學氣相沉積非晶的、多晶的和/或微晶的 矽或矽氫化物的步驟。典型的產品係選自一半導體、一平 板顯示器、以及一光伏打元件如一太陽能電池板。 【實施方式】 以下實例旨在說明本發明而非限制本發明。 -12- 201131679 實例 該等實例中Si-H中氫的濃度在下文中係按照莫耳百分 率來表示的。 實例1 :用分子氟進行遠端電漿清潔 在一太陽能電池板的製造中,進行化學氣相沉積步驟 (使用矽烷氣體和h2以及含ph3的摻雜氣體)以將一含矽 的層沉積在一平面基片上,該平面基片被安裝在一處理腔 室之內的支持件上,該處理腔室具有由鋁合金製成的多個 內壁。取決於沉積條件以及多種試劑的濃度,觀察到在 P E C V D步驟之後,微晶或非晶的s i: Η沉積物在該腔室的該 等內壁上以及在對電極上出現。非晶相下矽氫化物中Η的 含量係在10%與25%之間,而微晶相下它係在3%與10%之 間。在將該平板基片從該腔室中去除之後,藉由一遠端電 漿(RPS )系統(10 kW )在1 00 mb的壓力下將主要由分 子氟構成的一氣體以35 slm引入該腔室中。在3分鐘處理 之後,將該微晶和非晶的Si : Η層從該等腔室壁中並且從 該對電極中基本上去除了。 實例2 :用與惰性氣體的分子氟混合物進行遠端電漿 清潔 在一太陽能電池板的製造中,進行化學氣相沉積步驟 (使用矽烷氣體和Η2以及含ΡΗ3的摻雜氣體)以將一含矽 -13- 201131679 的層沉積在一平面基片上,該平面基片被安裝在—處理腔 室之內的支持件上,該處理腔室具有由鋁合金製成的多個 內壁。取決於沉積條件以及多種試劑的濃度,觀察到在 PECVD步驟之後,微晶和/或非晶的Si: Η沉積物在該腔室 的該等內壁上以及在對電極上出現。非晶相下矽氫化物中 Η的濃度係在10%與25%之間,而微晶相下它係在3%與10% 之間。在將該平板基片從該腔室中去除之後,藉由一RPS 系統(40 kW )在200毫巴的壓力下將由分子氟(20% ) 和氮氣(70% )以及Ar ( 10% )構成的一氣體混合物以35 slm引入該腔室中。在10分鐘處理之後,基本上將該微晶 和非晶的Si: Η層從該等腔室壁中並且從該對電極中去除了 實例3 :用分子氟進行熱清潔 在一太陽能電池板的製造中,進行化學氣相沉積步驟 (使用矽烷氣體和Η2以及含ΡΗ3的摻雜氣體)以將一含矽 的層沉積在一平面基片上,該平面基片被安裝在一處理腔 室之內的支持件上,該處理腔室具有由鋁合金製成的多個 內壁。取決於沉積條件以及多種試劑的濃度,觀察到在 PECVD步驟之後,微晶和/或非晶的Si:H沉積物在該腔室 的該等內壁上以及在對電極上出現。非晶相下矽氫化物中 Η的濃度係在10%與25%之間’而微晶相下它係在3%與10% 之間。在將該平板基片從該腔室中去除之後,將主要由分 子氟構成的一氣體在加熱至200 °C之前,在220毫巴的壓力 -14- 201131679 下以35 slm引入該腔室中。在2分鐘處理之後,基本上將 該微晶和非晶的S i : Η層從該等腔室壁中並且從該對電極 中去除了。 實例4:用分子氟進行原位電漿清潔 在一太陽能電池板的製造中,進行化學氣相沉積步驟 (使用矽烷氣體和Η2以及含ΡΗ3的摻雜氣體)以將一含矽 的層沉積在一平面基片上,該平面基片被安裝在一處理腔 室之內的支持件上,該處理腔室具有由鋁合金製成的多個 內壁。取決於沉積條件以及多種試劑的濃度,觀察到在 PECVD步驟之後,微晶和/或非晶的Si:H沉積物在該腔室 的該等內壁上以及在對電極上出現。非晶相下矽氫化物中 Η的含量係在1 0 %與2 5 %之間,而微晶相下它係在3 %與1 0 % 之間。在將該平板基片從該腔室中去除之後,將主要由分 子氟構成的一氣體在5 mb的壓力下以1 〇 slm引入該腔室中 。將在13.56 MHz源極處操作的原位電漿激活並且獲得了 穩定的電漿。在5分鐘處理之後,將該微晶和非晶的Si : Η 層從該等腔室壁中並且從該對電極中基本上去除了。 實例5 :用與惰性氣體的分子氟混合物進行原位電漿 清潔 在一太陽能電池板的製造中’進行化學氣相沉積步驟 (使用矽烷氣體和Η2以及含ΡΗ3的摻雜氣體)以將一含矽 的層沉積在一平面基片上,該平面基片被安裝在一處理腔 -15- 201131679 室之內的支持件上,該處理腔室具有由鋁合金製成的多個 內壁。取決於沉積條件以及多種試劑的濃度,觀察到在 PECVD步驟之後,微晶和/或非晶的Si:H沉積物在該腔室 的該等內壁上以及在對電極上出現。非晶相下矽氫化物中 Η的濃度係在10%與25%之間,而微晶相下它係在3%與10% 之間。在將該平板基片從該腔室中去除之後,將由分子氟 (2 0% )和氮氣(70% )以及Ar ( 10% )構成的一氣體混 合物在5 mb的壓力下以10 slm引入該腔室中。將原位電漿 源激活並且獲得了 一穩定的電漿。在20分鐘處理之後,將 該微晶和非晶的Si :H層從該等腔室壁中並且從該對電極中 基本上去除了。 實例6:用分子氟進行原位電漿清潔 在一太陽能電池板的製造中,進行化學氣相沉積步驟 (使用矽烷氣體和H2以及含PH3的摻雜氣體)以將一含矽 的層沉積在一平面基片上,該平面基片被安裝在一處理腔 室之內的支持件上,該處理腔室具有由鋁合金製成的多個 內壁。取決於沉積條件以及多種試劑的濃度,觀察到在 PECVD步驟之後,微晶和/或非晶的Si:H沉積物在該腔室 的該等內壁上以及在對電極上出現。非晶相下矽氫化物中 Η的含量係在1 0%與25%之間,而微晶相下它係在3 %與1 0% 之間。在高頻下(40 MHz )的電漿源允許以一改進的速 率和良好均勻性來沉積該活性的aSi:H和pmSi:H »在將該 平板基片從該腔室中去除之後’將主要由分子氟(構成的一 -16- 201131679 氣體在5 mb的壓力下以1 0 slm引入該腔室中。 源激活並且獲得了 一穩定的電漿。在3分鐘處 該微晶和非晶的Si : Η層從該等腔室壁中並且 中基本上去除了。 實例7:用與惰性氣體的分子氟混合物進 清潔 在一太陽能電池板的製造中,進行化學氣 (使用矽烷氣體和Η2以及含ΡΗ3的摻雜氣體) 的層沉積在一平面基片上,該平面基片被安裝 室之內的支持件上,該處理腔室具有由鋁合金 內壁。取決於沉積條件以及多種試劑的濃度 PECVD步驟之後,微晶和/或非晶的Si:H沉積 的該等內壁上以及在對電極上出現。非晶相下 Η的含量係在1 0 %與2 5 %之間,而微晶相下它係 之間。在高頻下(40 MHz )的電漿源允許以 率和良好均勻性來沉積該活性的aSi:H和pmSi 平板基片從該腔室中去除之後,將由分子氟( 氣(70% )以及Ar ( 10% )構成的一氣體混合; 壓力下以10 slm引入該腔室中。將原位電漿源 得了 一穩定的電漿。在15分鐘處理之後,將該 的Si : Η層從該等腔室壁中並且從該對電極中 了。 將原位電漿 理之後,將 從該對電極 行原位電漿 相沉積步驟 以將一含矽 在一處理腔 製成的多個 ,觀察到在 吻在該腔室 矽氫化物中 在3 %與1 0 % 一改進的速 :Η。在將該 2 0 % )和氮 勿在5 mb的 激活並且獲 微晶和非晶 基本上去除 -17- 201131679 實例8 :用與惰性氣體的分子氟混合物進行原位電漿 清潔 在一太陽能電池板的製造中,進行化學氣相沉積步驟 (使用矽烷氣體和H2以及含PH3的摻雜氣體)以將一含矽 的層沉積在一平面基片上,該平面基片被安裝在一處理腔 室之內的支持件上,該處理腔室具有由鋁合金製成的多個 內壁。取決於沉積條件以及多種試劑的濃度,觀察到在 PECVD步驟之後,微晶和/或非晶的Si: Η沉積物在該腔室 的該等內壁上以及在對電極上出現。非晶相下矽氫化物中 Η的含量係在10%與25%之間,而微晶相下它係在3%與10% 之間。在高頻下(60 MHz )的電漿源允許以一改進的速 率和良好均勻性來沉積該活性的aSi:H和pmSi:H。在將該 平板基片從該腔室中去除之後,將主要由分子氟構成的一 氣體在5 mb的壓力下以1〇 slm引入該腔室中。將原位電漿 源激活並且獲得了 一穩定的電漿。在2.5分鐘處理之後, 基本上將該微晶和非晶的Si : Η層從該等腔室壁中並且從 該對電極中去除了。 實例9:用與惰性氣體的分子氟混合物進行原位電漿 清潔 在一太陽能電池板的製造中,進行化學氣相沉積步驟 (使用矽烷氣體和Η2以及含ΡΗ3的摻雜氣體)以將一含矽 的層沉積在一平面基片上,該平面基片被安裝在一處理腔 室之內的支持件上,該處理腔室具有由鋁合金製成的多個 •18- 201131679 內壁。取決於沉積條件以及多種試劑的濃度,觀察到在 P E C V D步驟之後,微晶和/或非晶的s i: Η沉積物在該腔室 的該等內壁上以及在對電極上出現。非晶相下矽氫化物中 Η的含量係在1〇%與25%之間’而微晶相下它係在3%與10% 之間。在高頻下(60 MHz )的電漿源允許以一改進的速 率和良好均勻地沉積該活性的a - S i : Η和μ c - s i: H。在將該 平板基片從該腔室中去除之後’將由分子氟(20%)和氮 氣(7 0 % )以及Ar ( 1 0% )構成的一氣體混合物在5 mb的 壓力下以10 slm引入該腔室中。將原位電漿源激活並且獲 得了 一穩定的電漿。在13分鐘處理之後,基本上將該微晶 和非晶的Si : Η層從該等腔室壁中並且從該對電極中去除 了。 實例1 〇 :用與低惰性氣體成分(1 〇% Ar )的分子氟混 合物進行原位電漿清潔 具有低濃度的惰性氣體的氟混合物係有意義的,因爲 對它們可以大批(管道拖車)運輸,幾乎防止了純氟的高 反應性。 在一太陽能電池板的製造中,進行化學氣相沉積步驟 (使用矽烷氣體和H2以及含PH3的摻雜氣體)以將一含矽 的層沉積在一平面基片上,該平面基片被安裝在一處理腔 室之內的支持件上,該處理腔室具有由鋁合金製成的多個 內壁。取決於沉積條件以及多種試劑的濃度,觀察到在 PECVD步驟之後,微晶和/或非晶的si: Η沉積物在該腔室 -19- 201131679 的該等內壁上以及在對電極上出現。非晶相 Η的含量係在10%與25%之間,而微晶相下它 之間。在高頻下(60 MHz )的電漿源允許 率和良好均句地沉積該活性的a-Si:H和pc-Si 板基片從該腔室中去除之後,將由分子氟( 10%)構成的一氣體混合物在5 mb的壓力下 該腔室中。將原位電漿源激活並且獲得了一 在2.5分鐘處理之後,基本上將該微晶和非 該等腔室壁中並且從該對電極中去除了。在 混合物之間測量蝕刻速率上的任何偏差已經: 下矽氫化物中 係在3 %與1 0 % 以一改進的速 :H。在將該平 9 0%)和 A r ( 以1 0 slm引入 穩定的電漿。 晶的Si:H層從 純氟與上述的 是不可能的。 -20-201131679 VI. INSTRUCTIONS: This patent application claims the benefit of the European Application No. 09 1 7470, filed on Jan. 30, 2009, the entire disclosure of which is incorporated herein by reference. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing deposits, which is particularly useful as a chamber cleaning method. [Prior Art] Processing chambers are used in the semiconductor and optoelectronic industries to fabricate semiconductors, flat panel displays, or photovoltaic devices. The fabrication generally involves a variety of operations, such as etching of a substrate or chemical vapor deposition, during which the substrate is typically located on a support provided within the processing chamber. In the steps of the manufacturing, in particular in the plurality of chemical vapor deposition steps, a plurality of materials are typically deposited not only on the substrate but also a plurality of internal and counter electrodes of the chamber such as the chamber walls. Deposited on. In order to prevent contamination problems in subsequent manufacturing operations, such materials are suitably removed. EP-A-1138802 discloses that amorphous germanium deposited on a plurality of parts inside a processing chamber can be thermally cleaned using fluorine as a cleaning gas. The reference also teaches that yttrium oxide or tantalum nitride cannot be removed by this method. SUMMARY OF THE INVENTION -5- 201131679 The present invention now makes it possible, in particular, to provide an effective chamber cleaning method. The present invention therefore relates to a method for removing ruthenium hydride from the surface of a solid body, the method comprising treating the ruthenium hydride with a gas containing molecular fluorine. Alternatively, the ruthenium hydride can be treated with a reactive species produced from molecular fluorine. Surprisingly, molecular fluorine is particularly effective at removing ruthenium hydrides&apos; thus allowing for good cleaning efficiency and reduced cleaning time. Fluorine gases do not have global warming potential and can be used, for example, with relatively low energy consumption compared to conventionally used NF3 cleaning gases, while effectively removing deposits of such ruthenium hydrides. &quot;矽 hydride is understood to mean specifically a solid containing hydrazine and hydrogen. The content of hydrogen atoms in the solid phase is generally less than 1 mole per mole. This content is generally equal to or greater than 0.01 moles / Mohr. Often this content is equal to or greater than 0.1 mol/mole. Often the concentration of rhodium in the rhodium hydride is between 0.1 and 0.35 mol/mole (in an amorphous phase). It is typically between 〇. 〇3 and 〇. 1 摩尔/莫耳矽 (in a microcrystalline phase). “Reactive species” is understood to mean specifically a fluorochemical containing a plasma or atomic fluorine. "Generation from molecular fluorine" is understood to mean in particular that molecular fluorine (FZ) is initially present in the gas used to generate the reactive species. Typically the ruthenium hydride is used by chemical vapor deposition. A decane containing a deposition gas is deposited on the surface of the solid body. Typically, the deposition -6-201131679 gas includes a sand yard and hydrogen. Examples of suitable sand chambers include S i Η 4 and Si 2 H6. When used, a decane is included. And a deposition gas of hydrogen, The content of decane in the deposition gas is generally at least 50%, often at least 60%. When a deposition gas comprising decane and hydrogen is used, the content of decane in the deposition gas is generally at most 90%, often equal to or less than 80% 〇EP-A_1138802 teaches that it uses a plasma CVD process with decane and hydrogen to form an amorphous ruthenium layer. The materials removed in the present invention are ruthenium hydrides, specifically as defined above. The deposition process is carried out to control the hydrogen content of the ruthenium hydride and its crystallinity. The ruthenium hydrides which can be removed by the process of the invention are generally ruthenium hydrides selected from amorphous and microcrystalline. In one aspect, the ruthenium hydrides are comprised primarily of amorphous ruthenium hydride. In another aspect, the ruthenium hydrides are comprised primarily of microcrystalline hydrides. In yet another aspect, the ruthenium hydrides comprise amorphous And a microcrystalline hydride. In the present invention, molecular fluorine (F2) is used as an essential component of the gas. In a preferred aspect, the gas consists of or consists essentially of molecular fluorine. aspect A mixture comprising molecular fluorine and, for example, an inert gas such as nitrogen, argon, helium, or various mixtures thereof, specifically nitrogen, argon, and various mixtures of molecular fluorine, is used. In this case, the mixture The content of the medium molecular fluorine is typically equal to or less than 50% by mole. Preferably, the content is equal to or less than 20 mol%. A variety of suitable mixtures are for example in WO 2007/1 1 6033 in the name of the applicant. </ RTI> </ RTI> <RTIgt; </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; In a specific embodiment of this aspect, the molecular fluorine content in the mixture with an inert gas as described above is greater than 5 〇 mol%. Preferably, the content is equal to or greater than 80% by mole, such as about 9% by mole. In the embodiment of the &lt;&amp;&gt;, argon is a preferred inert gas. More particularly preferred is a mixture of about 90 mole % of molecular fluorine and about 0 mole % of argon. In this particular embodiment of this aspect, the molecular fluorine content in the mixture with an inert gas as described above is equal to or less than 95 mole %. The molecular fluorine used in the present invention can be produced, for example, by heating a suitable fluorometalate such as fluoronickate or manganese tetrafluoride. Preferably, the molecular fluorine is produced by electrolysis of a molten salt electrolyte (specifically, a potassium fluoride/hydrogen fluoride electrolyte, preferably KF. 2HF). Preferably, purified molecular fluorine is used in the present invention. Suitable purification operations for obtaining purified molecular fluorine for use in the present invention include removal of particles (e.g., by furnace or absorption) and removal of the starting material (particularly HF) (e.g., by absorption) and impurities (such as Ground CF4 and 〇2). Typically, the molecular fluorine used in the present invention has an HF content of less than 1 〇 ppm of moth. Typically, the fluorine used in the present invention contains at least 莫1 mol ppm of HF 〇. In a preferred embodiment, the purified molecular fluorine used in the present invention is obtained by one of the following methods: -8 - 201131679 (a) A fused salt (specifically as described above) containing HF, granules and argon-containing impurities» (b) relative to the HF content of the crude molecular fluorine; operation, which includes, for example, good sodium fluoride Is a reduction in the HF content of the molecular fluorine; (Ο an operation relative to the particle content of the crude molecular fluorine, the operation including, for example, passing through a solid absorbent, such as, for example, fluorinating the molecular fluorine (specific The production as described above may be provided to the method according to the invention, for example in one. When a fluorine gas and, in particular, an inert gas as described above, are according to the method of the invention, it is preferred that such an alternative is provided. The molecular fluorine can be supplied directly from its preparation to the process according to the invention, for example by means of a removal step, in turn to a fluorine production and/or purification system. If the gas used in the process according to the invention is predominant or Illustrated by this, the embodiment is particularly in the method according to the invention, the solid body electrical material or composition thereof, such as, for example, aluminum, or aluminum alloy, stainless steel, and tantalum carbide. In a preferred embodiment, the solid state system half, or the photovoltaic element, manufactures an internal electrolysis of the processing chamber, thereby providing a mass of crude molecular fluorine to reduce the HF content of the upper adsorption and less Reference is made to a method for reducing the particle containing a mixture of particles in a sodium fluoride-containing and fluorinated transportable container for roots. A gas transporter which is optionally and purely connected to the hydrogenation of helium is composed of molecular fluorine. In general, it includes a guide gold (specifically, aluminum/aluminum and aluminum alloy. Conductor, flat panel display parts. In a particular aspect of the -9-201131679' solid-state system is suitable for generating an electric field in a CVD process. An electrode 'it is preferably made of a conductive material, in particular as described above. The method according to the invention is particularly suitable for cleaning germanium hydride deposits in a processing chamber used in the manufacture of photovoltaic elements. In a first embodiment of the method according to the invention, the treatment comprises generating a plasma from the gas. Some plasma generators are known. A typical method of producing the plasma includes The gas is exposed to a high frequency electric field. In a first aspect of the first embodiment, the frequency of the generated field is from 10 to 15 MHz. A typical frequency system is 13.56 ΜΗζ» in the first specific In a second aspect of the embodiment, the frequency of the generated field is from 40 to 1 〇〇 MHz', preferably from 40 to 80 MHz. A typical frequency is selected from 40 MHz and 60 MHz. The invention also relates to a plasma, the electric prize It is obtained by exposing a molecular fluorine-containing gas (constituted or mainly composed of molecular fluorine) as described above to a high-frequency electric field having a frequency of from 40 to 80 MHz. The present invention also relates to the cleaning of the plasma in one The use of a processing chamber for the manufacture of semiconductors, a flat panel display, or a photovoltaic element. In a first embodiment of the method according to the invention, the gas pressure is generally from 0.5 to 50 Torr, often From 1 to 1 Torr and preferably equal to or less than 5 Torr. In a first embodiment of the method according to the invention, the residence time of the gas is generally from 1 to 丨8 〇s, often from 3 0 to 70 s and preferably from -10 to 2011 679 is often from 40 to 60 s. In a first embodiment of the method according to the invention, the power applied to produce the plasma is generally from 1 to 1 〇〇〇〇〇W, often from 50,000 to 60000 W and preferably from loooo to 40,000 W. It should be understood that these particular conditions are also suitable for the plasma according to the invention and the use according to the invention In the first concrete In one aspect of the embodiment, the process is performed by a remote plasma technique. In another aspect of this embodiment, an in situ plasma is produced. For example, such in situ plasma is produced inside a processing chamber. The processing chamber includes a device suitable for generating plasma from the gases described above, in particular from purified molecular fluorine. Suitable devices include, for example, a pair of electrodes capable of generating a high frequency electric field. In a second embodiment of the inventive method, the treatment comprises contacting the ruthenium hydride with the gas at an elevated temperature. Typical temperatures in this embodiment range from 100 ° C to 30,000 °c. Frequently, the temperature is from 150 ° C to 250 ° C. It is preferably a temperature equal to or lower than 200 °C. In one aspect, the temperature is achieved by heating the solid body to a desired temperature. In another aspect, the gas can be heated, for example, by passing it through a heating tube. The heated gas can also be generated in situ, for example by applying a field such as the high frequency described above (specifically having a frequency from 40 to 60 MHz), under conditions insufficient to produce a plasma. In a specific aspect, the gas is introduced into the processing step to produce a reaction heat that helps maintain the temperature of the solid body at a desired -11 - 201131679 or achieves it. In particular, when the gas consists of or consists essentially of molecular fluorine, it is preferably controlled to be introduced into the treatment step to maintain the temperature at up to 300 ° C, preferably at most 2 5 0 ° C. In a second embodiment of the method according to the invention, the gas pressure is generally from 50 to 500 Torr, often from 75 to 300 Torr and preferably from 100 to 200 Torr. In a second embodiment of the method according to the invention, the residence time of the gas is generally from 50 to 500 s, often from 1 to 300 s and preferably from 150 to 250 s. In the method according to the invention and in its particular embodiments, the treatment is generally carried out for a period of time sufficient to reduce the amount of ruthenium hydride on the surface relative to its initial content to less than 1%, preferably It is less than 0.1%. The invention further relates to a method for manufacturing a product, wherein at least one processing step for manufacturing the product is carried out in a processing chamber, and a ruthenium hydride is deposited on a plurality of parts inside the processing chamber, For example on an electrode, the method comprises cleaning the inner part by the method according to the invention. Typically, the manufacture of the product comprises at least one step of chemical vapor deposition of an amorphous, polycrystalline and/or microcrystalline ruthenium or osmium hydride on a substrate as described above. Typical products are selected from the group consisting of a semiconductor, a flat panel display, and a photovoltaic device such as a solar panel. The following examples are intended to illustrate the invention and not to limit it. -12- 201131679 EXAMPLE The concentrations of hydrogen in Si-H in these examples are expressed below in terms of the percentage of moles. Example 1: Remote Plasma Cleaning with Molecular Fluoride In the manufacture of a solar panel, a chemical vapor deposition step (using decane gas and h2 and a dopant gas containing ph3) is performed to deposit a layer containing germanium. On a planar substrate, the planar substrate is mounted on a support within a processing chamber having a plurality of inner walls of aluminum alloy. Depending on the deposition conditions and the concentration of the various reagents, it was observed that after the P E C V D step, microcrystalline or amorphous s i: germanium deposits appeared on the inner walls of the chamber and on the counter electrode. The content of ruthenium in the ruthenium hydride in the amorphous phase is between 10% and 25%, while it is between 3% and 10% in the microcrystalline phase. After the flat substrate is removed from the chamber, a gas mainly composed of molecular fluorine is introduced at 35 slm by a far-end plasma (RPS) system (10 kW) under a pressure of 100 mb. In the chamber. After the 3 minute treatment, the microcrystalline and amorphous Si: germanium layers were substantially removed from the chamber walls and from the pair of electrodes. Example 2: Remote plasma cleaning with a mixture of molecular fluorines of an inert gas In the manufacture of a solar panel, a chemical vapor deposition step (using decane gas and ruthenium 2 and a dopant gas containing ruthenium 3) is used to The layer of 矽-13- 201131679 is deposited on a planar substrate that is mounted on a support within the processing chamber having a plurality of inner walls made of an aluminum alloy. Depending on the deposition conditions and the concentration of the various reagents, it is observed that after the PECVD step, microcrystalline and/or amorphous Si: germanium deposits appear on the inner walls of the chamber and on the counter electrode. The concentration of ruthenium in the ruthenium hydride in the amorphous phase is between 10% and 25%, while it is between 3% and 10% in the microcrystalline phase. After the flat substrate is removed from the chamber, it is composed of molecular fluorine (20%) and nitrogen (70%) and Ar (10%) by an RPS system (40 kW) at a pressure of 200 mbar. A gas mixture was introduced into the chamber at 35 slm. After 10 minutes of treatment, the microcrystalline and amorphous Si: germanium layers were substantially removed from the chamber walls and from the pair of electrodes. Example 3: Thermal cleaning with molecular fluorine on a solar panel In manufacturing, a chemical vapor deposition step (using decane gas and ruthenium 2 and a ruthenium-containing dopant gas) is performed to deposit a ruthenium-containing layer on a planar substrate that is mounted within a processing chamber The support chamber has a plurality of inner walls made of an aluminum alloy. Depending on the deposition conditions and the concentration of the various reagents, it is observed that after the PECVD step, microcrystalline and/or amorphous Si:H deposits appear on the inner walls of the chamber and on the counter electrode. The concentration of ruthenium in the ruthenium hydride in the amorphous phase is between 10% and 25%' and between 3% and 10% in the microcrystalline phase. After the flat substrate is removed from the chamber, a gas mainly composed of molecular fluorine is introduced into the chamber at 35 slm at a pressure of 220 mbar before the temperature is heated to 200 ° C. . After 2 minutes of treatment, the microcrystalline and amorphous S i : germanium layers were substantially removed from the chamber walls and from the pair of electrodes. Example 4: In-situ plasma cleaning with molecular fluorine In the manufacture of a solar panel, a chemical vapor deposition step (using decane gas and ruthenium 2 and a ruthenium-containing dopant gas) was performed to deposit a ruthenium-containing layer. On a planar substrate, the planar substrate is mounted on a support within a processing chamber having a plurality of inner walls of aluminum alloy. Depending on the deposition conditions and the concentration of the various reagents, it is observed that after the PECVD step, microcrystalline and/or amorphous Si:H deposits appear on the inner walls of the chamber and on the counter electrode. The content of ruthenium in the ruthenium hydride in the amorphous phase is between 10% and 25%, while it is between 3% and 10% in the microcrystalline phase. After the flat substrate was removed from the chamber, a gas mainly composed of molecular fluorine was introduced into the chamber at a pressure of 5 mb at 1 〇 slm. The in-situ plasma operating at the source of 13.56 MHz was activated and a stable plasma was obtained. After 5 minutes of treatment, the microcrystalline and amorphous Si: germanium layers were substantially removed from the chamber walls and from the pair of electrodes. Example 5: In-situ plasma cleaning with a mixture of molecular fluorines of an inert gas in the manufacture of a solar panel 'chemical vapor deposition step (using decane gas and cerium 2 and cerium 3 containing dopant gas) to contain one The layer of germanium is deposited on a planar substrate that is mounted on a support within a processing chamber -15-201131679 having a plurality of inner walls of aluminum alloy. Depending on the deposition conditions and the concentration of the various reagents, it is observed that after the PECVD step, microcrystalline and/or amorphous Si:H deposits appear on the inner walls of the chamber and on the counter electrode. The concentration of ruthenium in the ruthenium hydride in the amorphous phase is between 10% and 25%, while it is between 3% and 10% in the microcrystalline phase. After the flat substrate is removed from the chamber, a gas mixture consisting of molecular fluorine (20%) and nitrogen (70%) and Ar (10%) is introduced at 10 slm under a pressure of 5 mb. In the chamber. The in-situ plasma source is activated and a stable plasma is obtained. After 20 minutes of processing, the microcrystalline and amorphous Si:H layers were substantially removed from the chamber walls and from the pair of electrodes. Example 6: In-situ plasma cleaning with molecular fluorine In the manufacture of a solar panel, a chemical vapor deposition step (using decane gas and H2 and a dopant gas containing PH3) was performed to deposit a layer containing germanium. On a planar substrate, the planar substrate is mounted on a support within a processing chamber having a plurality of inner walls of aluminum alloy. Depending on the deposition conditions and the concentration of the various reagents, it is observed that after the PECVD step, microcrystalline and/or amorphous Si:H deposits appear on the inner walls of the chamber and on the counter electrode. The content of ruthenium in the ruthenium hydride in the amorphous phase is between 10% and 25%, while it is between 3% and 10% in the microcrystalline phase. A plasma source at high frequencies (40 MHz) allows the active aSi:H and pmSi:H to be deposited at a modified rate and good uniformity after the flat substrate is removed from the chamber. Mainly composed of molecular fluorine (constituted by a -16-201131679 gas introduced into the chamber at a pressure of 5 mb at 10 slm. The source activates and obtains a stable plasma. The crystallite and amorphous at 3 minutes Si: The ruthenium layer is substantially removed from and in the walls of the chamber. Example 7: Cleaning with a molecular fluorine mixture of an inert gas in the manufacture of a solar panel for chemical gas (using decane gas and hydrazine 2 and A layer of dopant gas containing germanium 3 is deposited on a planar substrate that is mounted on a support within the chamber having an inner wall of the aluminum alloy. Depending on the deposition conditions and the concentration of the various reagents After the PECVD step, the inner walls of the microcrystalline and/or amorphous Si:H deposits appear on the counter electrode. The content of the germanium in the amorphous phase is between 10% and 25%, and The crystal phase is between the lines. The plasma source at high frequencies (40 MHz) allows Rate and good uniformity to deposit the active aSi:H and pmSi flat substrate after removal from the chamber, a gas consisting of molecular fluorine (70% and Ar (10%) is mixed; under pressure 10 slm was introduced into the chamber. A stable plasma was obtained from the in-situ plasma source. After 15 minutes of treatment, the Si: germanium layer was removed from the chamber walls and from the pair of electrodes. After in-situ pulverization, an in-situ plasma phase deposition step from the pair of electrodes is performed to deposit a plurality of ruthenium in a processing chamber, and a kiss is observed in the chamber 矽 hydride at 3% With 10% improved speed: Η. In the 20%) and nitrogen do not activate at 5 mb and obtain microcrystalline and amorphous substantially removed -17- 201131679 Example 8: Using molecular fluorine with inert gas In-situ plasma cleaning of the mixture in the manufacture of a solar panel, performing a chemical vapor deposition step (using decane gas and H2 and a dopant gas containing PH3) to deposit a layer containing germanium on a planar substrate, The planar substrate is mounted on a support within a processing chamber, the processing chamber Having a plurality of inner walls made of an aluminum alloy. Depending on the deposition conditions and the concentration of the various reagents, it is observed that after the PECVD step, the microcrystalline and/or amorphous Si: germanium deposits are within the chamber On the wall and on the counter electrode, the content of bismuth in the yttrium hydride in the amorphous phase is between 10% and 25%, and in the microcrystalline phase it is between 3% and 10%. The (60 MHz) plasma source allows the active aSi:H and pmSi:H to be deposited at a modified rate and good uniformity. After the plate substrate is removed from the chamber, it will be mainly composed of molecular fluorine. A gas was introduced into the chamber at a pressure of 5 mb at 1 〇slm. The in-situ plasma source is activated and a stable plasma is obtained. After the 2.5 minute treatment, the microcrystalline and amorphous Si: germanium layers were substantially removed from the chamber walls and from the pair of electrodes. Example 9: In-situ plasma cleaning with a mixture of molecular fluorines with an inert gas. In the manufacture of a solar panel, a chemical vapor deposition step (using decane gas and cerium 2 and a dopant gas containing cerium 3) is used to The layer of germanium is deposited on a planar substrate that is mounted on a support within a processing chamber having a plurality of inner walls of 18-201131679 made of an aluminum alloy. Depending on the deposition conditions and the concentration of the various reagents, it is observed that after the P E C V D step, microcrystalline and/or amorphous s i: germanium deposits appear on the inner walls of the chamber and on the counter electrode. The content of ruthenium in the ruthenium hydride in the amorphous phase is between 1% and 25%' and in the microcrystalline phase it is between 3% and 10%. A plasma source at high frequencies (60 MHz) allows the active a-S i : Η and μ c - s i: H to be deposited at a modified rate and well uniformly. After removing the flat substrate from the chamber, a gas mixture consisting of molecular fluorine (20%) and nitrogen (70%) and Ar (10%) was introduced at 10 slm under a pressure of 5 mb. In the chamber. The in-situ plasma source was activated and a stable plasma was obtained. After 13 minutes of treatment, the microcrystalline and amorphous Si: germanium layers were substantially removed from the chamber walls and from the pair of electrodes. Example 1 〇: In-situ plasma cleaning with a mixture of molecular fluorines with a low inert gas composition (1 〇 % Ar ) Fluorine mixtures with low concentrations of inert gas are meaningful because they can be transported in bulk (pipeline trailers), The high reactivity of pure fluorine is almost prevented. In the manufacture of a solar panel, a chemical vapor deposition step (using decane gas and H2 and a dopant gas containing PH3) is performed to deposit a layer containing germanium on a planar substrate, the planar substrate being mounted on On a support within the processing chamber, the processing chamber has a plurality of inner walls made of an aluminum alloy. Depending on the deposition conditions and the concentration of the various reagents, it is observed that after the PECVD step, microcrystalline and/or amorphous si: germanium deposits appear on the inner walls of the chamber 19-201131679 and on the counter electrode . The amorphous phase is between 10% and 25%, and the microcrystalline phase is between it. After high frequency (60 MHz) plasma source permitting rate and good uniform deposition of the active a-Si:H and pc-Si plate substrates removed from the chamber, the molecular fluorine (10%) A gas mixture is constructed in the chamber at a pressure of 5 mb. The in-situ plasma source was activated and obtained after substantially 2.5 minutes of treatment, the crystallites and non-equal chamber walls were substantially removed from the pair of electrodes. Any deviation in the measurement of the etch rate between the mixtures has been: 3% and 10% at a reduced rate in the lower hydride: H. In the flat 90%) and A r (in 10 slm, a stable plasma is introduced. It is impossible to crystallize the Si:H layer from pure fluorine with the above. -20-

Claims (1)

201131679 七、申請專利範圍: 1. 一種用於從固態本體的表面去除矽氫化物之方法 ,該方法包括用一種氣體處理該矽氫化物,該氣體包括分 子氟或從分子氟產生的反應性種類。 2 ·如申請專利範圍第1項之方法,其中該5夕氫化物係 選自非晶的以及微晶的矽氫化物。 3如申請專利範圍第1項之方法,其中該砂氫化物藉 由化學氣相沉積使用含矽烷的沉積氣體沉積在該固態本體 的表面上。 4 ·如申請專利範圍第1至3項中任一項之方法,其中 該固態本體係用於半導體、平板顯示器或光伏打元件製造 的處理腔室的內部的零件。 5 .如申請專利範圍第1至3項中的任一項之方法,其 中該氣體主要由分子氟組成。 6 ·如申請專利範圍第1至3項中的任一項之方法,其 中該氣體係分子氟與較佳的是選自氮氣和氬氣的一種惰性 氣體之混合物。 1 如申請專利範圍第6項之方法,其中該氣體中分子 氟的含量係從大於50莫耳%至95莫耳%,較佳的是從80至 90莫耳% ’並且該惰性氣體的含量係從5莫耳%至50莫耳。 ,較佳的是從1〇莫耳%至20莫耳%。 8 '如申5靑專利範圍第7項之方法,其中該氣體由約9 0 莫耳%分子氟和約1 0莫耳%氬氣組成。 9 _如申sra專利軺圍第1至3項中任一項之方法,其中 -21 - 201131679 該處理包括從該氣體中產生電漿。 10. 如申請專利範圍第9項之方法’其中產生該電漿 包括將該氣體暴露於具有從40至80 MHz頻率的高頻電場 中〇 11. 如申請專利範圍第9項之方法,其中該氣體壓力 係從0.5至50托。 1 2 .如申請專利範圍第9項之方法,其中被施加以產 生該電漿的功率係從5000至60000 W,較佳的是從10000 至 40000 W。 1 3 ·如申請專利範圍第1至3項中的任何一項之方法, 其中該處理包括在從100 °C至300 °C的溫度下使該矽氫化物 與該氣體接觸。 1 4 .如申請專利範圍第1 3項之方法,其中該氣體壓力 係從50至5 00托。 15.如申請專利範圍第13項之方法,其中—種加熱的 氣體在原位藉由施加高頻的場(具體地具有從4〇至60 MHz的頻率)、在不足以產生電漿的條件下產生。 1 6.如申請專利範圍第1至3項中的任何—項之方法, 其中該處理進行了一段時間,這段時間足以將在該表面上 的砂氫化物層的量相對其起始量減少至小於1 % ^ 17·如申請專利範圍第1至3項中任一項之方法,其中 該固態本體包括一種材料或由其組成,該材料係選自|呂、 鋁合金、不銹鋼、以及Sic。 1 8 ·如申請專利範圍第1至3項中任一項之方法,該方 -22- 201131679 法進一步包括藉由電解熔融 法中。 19. 一種用於製造一種 產品的至少一個處理步驟在 氫化物沉積在該處理腔室的 由如申請專利範圍第1至3項 零件。 2 0.如申請專利範圍第 自半導體、平板顯示器、以 鹽電解質提供分子氟用在本方 產品之方法,其中用於製造該 一個處理腔室中進行,並且矽 內部零件上,這種方法包括藉 中的任一項之方法清潔該內部 19項之方法,其中該產品係選 及太陽能電池板。 -23- 201131679 四 指定代表圖: (一) 本案指定代表圖為:無 (二) 本代表圖之元件符號簡單說明:無 -3- 201131679 五 本案若有化學式時,請揭示最能顯示發明特徵的化學 式:無201131679 VII. Patent Application Range: 1. A method for removing ruthenium hydride from the surface of a solid body, the method comprising treating the ruthenium hydride with a gas comprising molecular fluorine or a reactive species derived from molecular fluorine . 2. The method of claim 1, wherein the oxime hydride is selected from the group consisting of amorphous and microcrystalline ruthenium hydrides. 3. The method of claim 1, wherein the sand hydride is deposited on the surface of the solid body by chemical vapor deposition using a decane-containing deposition gas. The method of any one of claims 1 to 3, wherein the solid state system is used for a part of a processing chamber of a semiconductor, flat panel display or photovoltaic device. The method of any one of claims 1 to 3, wherein the gas consists essentially of molecular fluorine. The method of any one of claims 1 to 3, wherein the molecular fluorine of the gas system is preferably a mixture of an inert gas selected from the group consisting of nitrogen and argon. 1 The method of claim 6, wherein the content of molecular fluorine in the gas is from more than 50 mol% to 95 mol%, preferably from 80 to 90 mol% and the content of the inert gas It ranges from 5 moles to 50 moles. Preferably, it is from 1% by mole to 20% by mole. The method of claim 7, wherein the gas consists of about 90 mole % of molecular fluorine and about 10 mole % of argon. The method of any one of clauses 1 to 3 of the patent application, wherein -21 - 201131679 the treatment comprises producing a plasma from the gas. 10. The method of claim 9, wherein the generating the plasma comprises exposing the gas to a high frequency electric field having a frequency from 40 to 80 MHz. 11. The method of claim 9, wherein The gas pressure is from 0.5 to 50 Torr. The method of claim 9, wherein the power applied to generate the plasma is from 5,000 to 60,000 W, preferably from 10,000 to 40,000 W. The method of any one of claims 1 to 3, wherein the treatment comprises contacting the ruthenium hydride with the gas at a temperature of from 100 ° C to 300 ° C. 1 4. The method of claim 13, wherein the gas pressure is from 50 to 500 Torr. 15. The method of claim 13, wherein the heated gas is in situ by applying a high frequency field (specifically having a frequency from 4 〇 to 60 MHz), in a condition insufficient to generate plasma Produced below. The method of any one of clauses 1 to 3 wherein the treatment is carried out for a period of time sufficient to reduce the amount of the sand hydride layer on the surface relative to the initial amount thereof. The method according to any one of claims 1 to 3, wherein the solid body comprises or consists of a material selected from the group consisting of |Lu, aluminum alloy, stainless steel, and Sic . The method of any one of claims 1 to 3, wherein the method is further included in the electrolytic melting method. 19. At least one processing step for fabricating a product in which a hydride is deposited in the processing chamber is as claimed in claims 1 to 3. 2 0. The method of claiming a semiconductor, a flat panel display, a method for providing molecular fluorine with a salt electrolyte for use in the product, wherein the method is used for manufacturing the one processing chamber, and the internal part is included, the method includes The method of cleaning the internal item 19 by any one of the methods, wherein the product is selected from a solar panel. -23- 201131679 Four designated representatives: (1) The representative representative of the case is: No (2) The symbol of the representative figure is a simple description: No-3-201131679 If there is a chemical formula in the case, please reveal the characteristics that can best show the invention. Chemical formula: none
TW99137257A 2009-10-30 2010-10-29 Method for removing deposits TW201131679A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09017470 2009-10-30

Publications (1)

Publication Number Publication Date
TW201131679A true TW201131679A (en) 2011-09-16

Family

ID=50180034

Family Applications (2)

Application Number Title Priority Date Filing Date
TW99137257A TW201131679A (en) 2009-10-30 2010-10-29 Method for removing deposits
TW99137258A TW201129722A (en) 2009-10-30 2010-10-29 Method of plasma etching and plasma chamber cleaning using F2 and COF2

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW99137258A TW201129722A (en) 2009-10-30 2010-10-29 Method of plasma etching and plasma chamber cleaning using F2 and COF2

Country Status (1)

Country Link
TW (2) TW201131679A (en)

Also Published As

Publication number Publication date
TW201129722A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
US20120211023A1 (en) Method for Removing Deposits
TW200907122A (en) Film formation apparatus and method for using the same
JP2002047066A (en) FORMED SiC AND ITS MANUFACTURING METHOD
JP3728467B2 (en) Method for forming single crystal diamond film
JP6107198B2 (en) Cleaning gas and cleaning method
CN106409653B (en) Preparation method of silicon nanowire array
Habuka et al. Polycrystalline silicon carbide film deposition using monomethylsilane and hydrogen chloride gases
TW201131679A (en) Method for removing deposits
JP2000265275A (en) Cleaning method
JP2004075493A (en) CVD-SiC COVERED GRAPHITE MATERIAL AND ITS PRODUCTION METHOD
WO2013092770A1 (en) Method for removing deposits performed with varying parameters
SUN et al. Effect of copper pretreatment on growth of graphene films by chemical vapor deposition
Park et al. Remote plasma chemical vapour deposition of silicon films at low temperature with H2 and He plasma gases
JP3836743B2 (en) Carbon nanotube, carbon nanotube film, silicon carbide substrate containing carbon nanotube film, and method of manufacturing carbon nanotube film body
Kim et al. Remote Plasma Enhanced Chemical Vapor Deposition of Silicon Films at Low Temperatures from Si2 H 6‐H 2‐SiF4
TW201341572A (en) Plasma apparatus and a method for cleaning a chamber
JP6400227B2 (en) Cleaning method for semiconductor manufacturing equipment
JP3555737B2 (en) Cleaning gas
TW201341571A (en) Method for removing deposits performed with varying parameters
TW201342466A (en) Method for etching of SiO2 layers on thin wafers
JPH11236561A (en) Cleaning gas
JP2003277933A (en) Method of purifying silicon carbide-coated member
RU2578104C1 (en) Method for gas-phase carbidisation of surface of monocrystalline silicon of orientation (111), (100)
CN116374998A (en) Preparation method for directly growing single-walled carbon nanotube horizontal array by using silicon oxide
JPH04260678A (en) Production of silicon carbide material