TW201131250A - Transreflective in-plane switching liquid crystal display panel and manufacturing method thereof - Google Patents

Transreflective in-plane switching liquid crystal display panel and manufacturing method thereof Download PDF

Info

Publication number
TW201131250A
TW201131250A TW99106796A TW99106796A TW201131250A TW 201131250 A TW201131250 A TW 201131250A TW 99106796 A TW99106796 A TW 99106796A TW 99106796 A TW99106796 A TW 99106796A TW 201131250 A TW201131250 A TW 201131250A
Authority
TW
Taiwan
Prior art keywords
bumps
pattern
reflective
electrode
insulating layer
Prior art date
Application number
TW99106796A
Other languages
Chinese (zh)
Other versions
TWI412827B (en
Inventor
Wen-Chuan Wang
Wen-Che Wang
Wei-Lian Sung
Original Assignee
Chunghwa Picture Tubes Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chunghwa Picture Tubes Ltd filed Critical Chunghwa Picture Tubes Ltd
Priority to TW99106796A priority Critical patent/TWI412827B/en
Publication of TW201131250A publication Critical patent/TW201131250A/en
Application granted granted Critical
Publication of TWI412827B publication Critical patent/TWI412827B/en

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

A transreflective in-plane switching liquid crystal display panel and manufacturing method thereof are described. That characteristic is that a plurality of first bumps, second bumps, third bumps, and fourth bumps are sequentially formed and stacked on a reflecting region. The second bumps are disposed corresponding to the first bumps, and the area of the first bump is larger than the second bump. The third bumps are disposed corresponding to the second bumps, and the area of the second bump is larger than the third bump. The fourth bumps are disposed corresponding to the third bumps, and the fourth bumps are composed of a comb-shaped pixel electrode pattern.

Description

201131250 四、指定代表圖: (一)本案指定代表圖為:第(8b )圖。 (二)本代表圖之元件符號簡單說明 100 基板 • • 110 公共電極圖案 101 薄膜電晶體區 102 反射區 103 穿透區 210 閘極電極 220 電容電極 230 第一凸塊 310 閘絕緣層 320 半導體層圖案 330 第二凸塊 410 源極圖案 420 >及極圖案 430 第三凸塊 510 第一絕緣層圖案 520 電容電極接觸孔 610 反射電極圖案 710 第二絕緣層圖案 720 汲極接觸孔 810 梳狀畫素電極圖案 820 第四凸塊 五、 本案若有化學式時,請揭示最能顯示發明特徵的化學式: 無 > * 六、 發明說明: 【發明所屬之技術領域】 本發明係有關於一種邊緣電場開關型液晶顯示面板及其製造方法,特 別有關於一種用於半穿透半反射之邊緣電場開關型液晶顯示面板及其製造 方法。 【先前技術】 液晶顯示裝置具有低輻射性、體積輕薄短小及耗電低等眾多優點,故 201131250 於使壯日漸廣泛,但同時仍财視角各向祕和視角範陳小的弱點, • ㈣果以偏麵直於齡板法線方峨察時,對比度明顯下降。 為克服這-缺陷,有提出—種平面間轉換模式(Ιη_ρ_ switching mode IPS)之廣視角液晶顯不裝置。該種平面内旋轉型液晶顯示裝置與傳 統之扭曲向列型、超扭曲向列型(SuperTwistedN_tic, 8聊液晶齡裝置區職於:其公共(CQ_n)電極與騎雜係設置於同 一基板上,利用公共電極與像素電極間產生之橫向水平電場使液晶分子於 ·.平面上轉動。該種平面内旋轉型液晶顯示裝置可顯著提高液晶顯示裝置之 視角,但因其公共電極與像素電極設置於同一基板上,其開口率較低,且 對比度及響應時間與傳統之扭曲向列型或超扭曲向列型液晶顯示裝置相比 並無多大改善。 因此有人提出一種邊緣電場開關(Fringe Field Switching,FFS)技術。從 原理來溝’可以看作是在IPS技術基礎上的進一步發展,該種ffs液晶顯 示裝置改進IPS液晶顯示裝置之電極設置方式,其將n>s液晶顯示裝置之不 ® 透明金屬電極改為透明之公共電極並作成板狀以增加透射率,從而可改善 IPS液晶顯示裝置開口率不足之缺陷。此外,FFS液晶顯示裝置之正負電極 不像IPS液晶顯示裳置之間隔排列’而是將正負電極通過絕緣層分離重叠 排列,可大大縮小電極寬度和間距,這種設計使電場分佈更密集。 對光源之利用方式劃分,液晶顯示裝置可分為穿透式(Transmitive)、半 穿透半反射式(Transflective)及反射式(Reflective)三種。半穿透半反射液晶顯 示器係為一種雙重模式顯示器,具有反射模式與穿透模式。在反射模式丁, 亦即當環境光源充足時,半反射半穿透顯示面板不需用到内建光源,而是 201131250 充分利用環境光源s透辭穿透半反射顯示n晝素巾的反概域,將環境 光源的光線反射,以達成省電之效果。而在穿透模式時,則利用内建的背 光光源通過半穿透半反射顯示器晝素中的穿透區來提供影像之顯示。 但是,當穿透區域與反射區域液晶盒間隙(Ce„ gap)之距離相同時,反 射區之光線經過反射所走光徑(Light path)(行過液晶盒間隙兩趟之距離) 即為穿透區之背光光源所走之光徑(行過液晶盒間隙一趟之距離)的兩倍。 ^(Transmittance V.S. Voltage curve, t-v)與反射區域的反射率一電壓曲線(Reflectance vs v〇ltage _e,Rv)不 一致。習知之半穿透半反射液晶顯示器,若使用單液晶盒間隙⑺^^匕cdi gap),則穿透區和反射區使用不同的控制電路,或是穿透區域和反射區域使 用不同的電晶體進行控制,可能增加陣列(Array)的複雜性和困難度,驅動 方式也較複雜。 因此,在製作半穿透半反射之邊緣電場開關型液晶顯示器的製程中, 除了形成邊緣電場開關型液晶顯示器的結構之外,還必須在每一畫素結構 中之反射區域製作-凹凸狀表面之有機層,與穿透區域形成雙液晶盒間隙 (Dual cell gap),達到穿透區域的穿透率一電壓曲線與反射區域的反射率— 電壓曲線一致。例如美國專利US 20060256268於反射區域製作表面起伏的 有機層’藉以定義出雙液晶盒間隙(Dual cell gap),即反射區之液晶層厚度 為穿透區之一半,以達成穿透區的T-V特性曲線與反射區的R_v特性曲線 相同,惟整個製作流程需10道光罩製程,不利於量產。其他改良方式亦有 提出利用半色調網點光罩(Half-tone mask)的技術來製作反射區上的有機 層,藉以減少光罩製程,惟半色調網點光罩的製程仍然所費不貲。因此, 201131250 生產效率不高並且製造成本居高不下。 . 有鑑於此’目前亟需提出一種半穿透半反射之邊緣電場開關型液晶顯 示面板及其製造方法,藉以改善上述之問題。 【發明内容】 本發明之一目的在於提供一種半穿透半反射之邊緣電場開關型液晶顯 不面板之製造方法’其可藉由減少微影製程而簡化製造步驟,藉此減少液 晶顯示器的製作成本。 • 為達上述之目的’本發明提供半穿透半反射之邊緣電場開關型液晶顯 不面板的製造方法,其主要包括下列步驟:首先,(a)形成一公共電極圖案 於一基板上,並在該公共電極圖案上劃分為一反射區以及一穿透區。(b)形 成一閘極電極以及一電容電極,並同時形成複數個第一凸塊於該反射區 上。(C)形成一閘絕緣層連續覆蓋於該閘極電極、該電容電極以及該些第一 凸塊於該基板上。(d)形成一半導體層圖案於該閘絕緣層上且對應該閘極電 極,並同時形成複數個第二凸塊於該閘絕緣層上且對應該些第一凸塊。(e) Φ 形成一源極圖案以及一汲極圖案於該半導體層圖案上,並同時形成複數個 第二凸塊於該些第二凸塊上。(f)形成一第一絕緣層圖案,以覆蓋該半導體 層圖案、該源極圖案、該没極圖案上以及該反射區上的該第二以及該第三 凸塊上,並曝露出一電容電極接觸孔。(g)形成一反射電極圖案以覆蓋於該 反射區上的該保護層圖案’且透過該電容電極接觸孔接觸於該電容電極。(h) 形成-第二絕緣層圖案,以覆蓋該反射電極圖案並曝露出—汲極接觸孔。 最後’(i)形成-梳狀畫素_圖案,以覆蓋該第二絕緣層圖案上並透過該 沒極接觸孔接觸於舰極_,同時覆蓋於穿職,並且形成複數個第四 201131250 凸塊於第二絕緣層圆案上且對應於該些第三凸塊。 其中形成該些第一凸塊之表面積大於該些第二凸塊之表面積,又該些 第二凸塊表面積大於該些第三凸塊之表面積。此外,在上述步驟中,也一 併形成了透光的穿透區域,其步驟包括:在該步驟(b)中又包含同時形成一 閘極緩衝圖龍胁該穿透區上。齡尋)巾又包含制絕緣層覆蓋於該 閘極緩_案上。該步驟(ί)巾又包含將覆蓋賊穿透區之賴絕緣層移 除,曝露出該閘極緩衝圖案。該步驟(g)中又包含將該閘極緩衝圖案移除, 暴露出位於該穿透區的該公共電極圖案。該步驟(h)中又包含該第二絕緣層 圖案同時覆蓋該穿透區的該公共電極圖案。其中移除的方法係微影製程方 法。 因此’根據本發明之半穿透半反射之邊緣電場開關型液晶顯示面板製 造方法,不需額外形成一凹凸狀表面的有機層,在半穿透半反射之邊緣電 場開關型液晶顯示面板的製造步驟中,利用原本所需的光罩製程一併形成 在反射區堆疊的由小到大的凸塊,使該堆疊的凸塊形成表面起伏的反射凸 塊結構。因此使製造過程簡化而提高產能並降低成本。 本發明另提供一種半穿透半反射之邊緣電場開關型液晶顯示面板,包 括:一薄膜電晶體以及一公共電極圖案設置於一基板上,並在該基板上劃分 為一反射區以及一穿透區;一電容電極以及複數個第一凸塊設置於該公共 電極之該反射區上;一閘絕緣層覆蓋於該些第一凸塊以及該公共電極圖案 上;複數個第二凸塊設置於該閘絕緣層上並對應該些第一凸塊;複數個第 三凸塊設置於該些第二凸塊上;一第一絕緣層圖案覆蓋於該些第三凸塊以 及該些第一凸塊上;一反射電極圖案覆蓋於該反射區上的該第―絕緣層圖 201131250 案上’並接觸於該電容電極;一第二絕緣層圖案覆蓋於該反射電極圖案上 以及該公共電極圖案之穿透區上;以及一梳狀晝素電極圖案覆蓋於該第二 絕緣層圖案上並接觸於該薄膜電晶體,同時覆蓋於穿透區,並且形成複數 個第四凸塊於第二絕緣層圖案上且對應於該些第三凸塊。 其中該些第一凸塊之表面積大於該些第二凸塊之表面積,又該些第二 凸塊表面積大於該些第三凸塊之表面積。該反射電極圖案之表面係沿著該 些第二以及第三凸塊起伏。該電容電極、該些第一凸塊,或該反射電極圖 案之材質係為一金屬材質。該公共電極以及該晝素梳狀電極圖案之材質係 為透明導電材質❶該反射電極圖案具有與公共電極相同電性,用以反射光 線以及與反射區之第四凸塊形成電場以驅動反射區上之液晶分子。 該半穿透半反射之邊緣電場開關型液晶顯示面板還包括一彩色濾光片 相對於該基板設置,並相距該穿透區上之該畫素梳狀電極圖案一預設距 離。其中,該彩色濾光片距離該反射區上之該晝素梳狀電極圖案係為該上 述預設距離之一半。 為讓本發明之上述内容能更明顯易懂,下文特舉較佳實施例,並配合 所附圖式’作詳細說明如下。 【實施方式】 本發明之較佳實施例將與所附圖示與下面之說明加以詳細的描述,在 不同圖示中,相同的參考標號表示相同或相似的元件。以下内容所描述的 實施例只是其中的-個例子,因此本發明之綱並不以此為限。 以下將以第1圖至第8圖來逐步說明本發明較佳實施例之半穿透半反 射之邊緣電場開關型液晶顯示面板之製作步驟,其中每一圖代表一道光罩 201131250 製程,其包括了習知的微影(Photolithography)技術’即曝光、顯影及蝕刻等 步驟。圆示中僅繪示單一畫素構造來清楚說明本發明之製作步驟,本領域 之普通技術人員應可以根據本說明來據以實施。 叫參閱第la圖及第lb圖。第la圖係本發明較佳實施例之半穿透半反 射之邊緣電場曜魏晶顯示硫之第—道光罩製程之俯視圖,第lb圖為 第la圖之A™A、斷面圖。為了清楚說明,圖中一基板1〇〇顯示的為單一晝素 區域,並劃分為一薄膜電晶體區1〇丨、一反射區1〇2以及一穿透區1〇3。首 先’利用第-道光罩製程將一公共(c〇mm〇n)電極圖案11〇形成於該基板1〇〇 上。其中該基板100係為透明基板,例如玻璃等;該公共電極圖案材 質係透明電極材質,例如銦錫氧化物^触唧〇xide,。 凊參閱4 2a圖及第2b圖。第2a圖係本發明較佳實施例之半穿透半反 射之邊緣電場開關型液晶顯示面板(第二道光草製程之俯視圖,第2b圖為 第2a圖之A-A'斷面圖。於第-道光罩製程之後,利用第二道光罩製程形成 一閘極(Gate)雜210以及一電容電極220,並同時形成複數個第—凸塊23〇 於該反射區102上。其巾又包含晴形成_赚緩翻案覆蓋於該穿 透區103上。 請參閱第3a圖及第3b圖。第3a圖係本發明較佳實施例之半穿透半反 射之邊緣電場開_液晶齡面板之第三道光罩製程之俯視圖第%圖為 第3a圖之A-A'斷面圖。於第二道光罩製程之後,形成一閘絕緣層31〇.連續 覆蓋於該基板上的該閘極電極21〇、該電容電極22〇、該些第一凸塊以 及該閘極緩衝圖案240。其中形成該閘絕緣層31㈣方法較佳可為沈積法, 又該閘絕緣層310之材質為較佳為氮化矽(SiNx)。 201131250 彻第二道光罩製程將一半導體層圖案320形成於該閘絕緣層31〇 -上,該料體圖案320之位置係對應該間«極210,並同時形成複數個第 二凸塊330於該閘絕緣層上細,該等第二凸塊挪之位置係對應該些第一 凸塊230。其中該半導體層圖㈣〇由一非晶石夕層(__此Si,未圖示)’ 以及-歐姆接觸層(例如n+摻雜非晶石夕層,未圖示)所組成。其中該半導體 層圖案320除了形成在薄膜電晶體區之外,還需在反射區1〇2的第一凸塊 230往上堆疊,以增加位於穿透區⑽驗晶層厚度差異,以利於後續形成 # 雙液晶盒間隙結構。 請參閱第4a圖及第4b圖。第4a圖係本發明較佳實施例之半穿透半反 射之邊緣電場開關型液晶顯示面板之第四道光罩製程之俯視圖,第牝圖為 第4a圖之A-A'斷面圖。於第三道光罩製程之後,利用第四道光罩製程形成 一源極圖案410以及一汲極圖案420於該半導體層圖案32〇上,並同時形 成複數個第三凸塊430於該些第二凸塊330上。其中,該源極圖案41〇、該 汲極圖案420以及該半導體層圖案320係利用金屬材質形成。同樣地,該 • 源極圖案410以及該汲極圖案420除了形成在薄膜電晶體區之外,還需在 反射區102的第二凸塊330往上堆疊’以增加位於穿透區1〇3的液晶層厚 度差異,以利於後續形成雙液晶盒間隙結構。 本發明較佳實施例中’形成該些第一凸塊230之表面積大於該些第二 凸塊330之表面積’又該些第二凸塊330表面積大於該些第三凸塊430之 表面積,如圖4a、4b所示。 請參閱第5a圖及第5b圖。第5a圖係本發明較佳實施例之半穿透半反 射之邊緣電場開關型液晶顯示面板之第五道光罩製程之俯視圓,第5b圖為 201131250 第5a圖之A.,A'斷面圖。於第四道光罩製程之後,利用第五道光罩製程形成 一第一絕緣層圖案510,以覆蓋該半導體層圖案320、該源極圖案41〇、該 汲極圖案420上以及該反射區1〇2上的該第二凸塊330及該第三凸塊43〇 上,並形成一電容電極接觸孔520以暴露出部份電容電極22〇。將覆蓋於該 穿透區103之絕緣層(如該閘絕緣層310)移除,曝露出該閘極緩衝圖案 240。應注意的是,此步驟中該第一絕緣層圖案51〇的形成是先沈積一層如 上述該閘絕緣層310相同之材料,例如氮化矽(SiNx),故圖中未在該笫一絕 緣層圖案510與該閘絕緣層310之間晝出區隔,如第5b圖中所示。然後在 利用第五道光罩製程挖出該電容電極接觸孔520並將該閘絕緣層31〇以及 閘極絕緣層310上的第一絕緣層圖案510移除,露出該閘極緩衝圆案24〇。 其中該閘極緩衝圖案240可保護穿透區1〇3的IT0透明電極在移除該閘絕 緣層310以及閘極絕緣層310上的第一絕緣層圖案51〇之製程中免於破壞。 請參閱第6a圖及第6b圖。第6a圖係本發明較佳實施例之半穿透半反 射之邊緣電場開關型液晶顯示面板之第六道光罩製程之俯視圖,第砧圖為 第6a圖之A-A'斷面圖。於第五道光罩製程之後,利用第六道光罩製程形成 一反射電極案610以覆蓋於該反射區丨〇2中的該第一絕緣層圖案51〇,且 透過該電容電極接觸孔520接觸於該電容電極22〇,使得該反射電極圖案 610與該電容電極220電性連接。 此外,上述製程除了在反射區1〇2形成該反射電極圖案外原本 穿透區103之該共用電極no上方的該間極緩衝圖案24〇也一併祕刻清 除’僅留下穿透區103所需的該共用電極11〇 (例如透明電極IT〇)。在此 道製程中,該反射電極圖案610使用的材料較佳為與該閘極電極21〇相同 201131250 的金屬材質以保有較佳的蝕刻均勻性。 更進步地說’该反射電極圖案61〇透過該電容電極接觸孔汹與該 電谷電極220電性連接,而該電容電極22〇又形成在該公共電極Μ。之上 與之相接觸,因此反射電極圖案610有與該共用電極1Κ)相同電性。 青參閲第7a圖及帛7b ® 〇第%圖係本發明較佳實施例之半穿透半反 射之邊緣電%開卩_液部貞:^面板之帛七道光罩製程之俯視圖,^几圖為 第7a圖之A-A'斷面圖。於第六道光罩製程之後,利用第七道光罩製程形成 第-絕緣層圖案71〇,以覆蓋該反射電極圖案61〇並曝露出一沒極接觸孔 720。其中又包含該第二絕緣層圖案71〇㈤時覆蓋該穿透i 1〇3的該公共電 極圖案110。 明參閱第8a圖、8b及8c圖。第8a圖係本發明較佳實施例之半穿透半 反射之邊緣電場開關塑液晶顯示面板之第八道光罩製程之俯視圖,第肋圖 為第8a圖之A-A斷面圖,第8c圖為梳狀畫素電極圖案之俯視圖。最後, 於第七道光謂程之後,第8道光賴郷成-微畫素電極圖案810。 為清楚說明’單獨將該梳狀晝素電極圖案81〇單獨纷示如第此圖所示其 形成於第8a圖中之虛線區域,用以覆蓋該第二絕緣層圖案71〇上並透過該 汲極接觸孔720接觸該汲極圖案420 ’使得該梳狀晝素電極圖案81〇電性連 接於該汲極圖案420 »該梳狀畫素電極圖案81〇同時覆蓋於反射區1〇2,並 且形成複數個第四凸塊820於第二保護層圖案710上且對應於該些第三凸 塊430。應注意的是,該些第四凸塊82〇係該梳狀晝素電極圖案81〇中之某 些條狀電極覆蓋並跨越該些凸塊所形成之凸起區域,如第8b圖所示。 其中該梳狀畫素電賴案_之圖絲邊緣f場關型n顯示面板 11 201131250 之上電極,在反射區102隔著一層該第二絕緣層圖案71〇透過該反射電極 圖案610當作下電極,其電氣特性與穿透區1〇3之該梳狀畫素電極圖案81〇 相對該公共電極圖案11〇相同。該梳狀畫素電極圖案81〇其圖形可依需要 做設計,本發明並不限於何種圖形。於此時本發明較佳實施例之半穿透半 反射之邊緣電場開關型液晶顯示面板之結構已完成。 综上所述,本發明之較佳實施例使用八道光罩製程,在反射區利用堆 疊方式在基板製作雙液晶盒間隙差異,並在反射區形成具有反射效果的堆 叠式凸狀反射面結構,完成斷面如第8b圖所示。亦即在現有製作邊緣電場 開關型液晶顯示面板的製程中,不需額外製作有機層或使用半色調網點光 罩製程製作出雙液晶盒間隙。利用每一道製程所形成之結構在反射區予以 保留,並在該些堆疊之凸塊上形成一金屬反射面以利於環境光的反射,進 而可製作出半穿透半反射之邊緣電場開關型液晶顯示面板。本發明具有減 少光罩製程與生產成本的效益,解決了習知需多道製程導致成本太高的問 題。 除此之外,本發明另提供一種由上述製作方法製得的半穿透半反射之 邊緣電場開關型液晶顯示面板。請參考第9圖,第9圖為本發明之一較佳 實施例之半穿透半反射之邊緣電場開關型液晶顯示面板之剖視圖。根據本 發明之一較佳實施例之半穿透半反射之邊緣電場開關型液晶顯示面板,包 括:一薄膜電晶體10以及一公共電極圖案110設置於一基板〗00上’並在 該基板100上劃分為一反射區102、一穿透區103以及一薄膜電晶體區1〇1; 一電容電極220以及複數個第一凸塊230設置於該公共電極11()之該反射 區102上;一閘絕緣層31〇覆蓋於該些第一凸塊23〇以及該公共電極圖案 12 201131250 110上;複數個第二凸塊330設置於該閘絕緣層310上並對應該些第一凸塊 . 230;複數個第三凸塊430設置於該些第二凸塊330上;一第一絕緣層圖510 案覆蓋於該些第三凸塊430以及該些第二凸塊上330 ; —反射電極圖案610 覆蓋於該反射區102上的該第一絕緣層圖案510上,並接觸於該電容電極 220 ; 一第二絕緣層圖案710覆蓋於該反射電極圖案610上以及該公共電極 圖案110之穿透區103上;以及一梳狀畫素電極圖案81〇覆蓋於該第二絕 緣層圖案710上並接觸於該薄膜電晶體10,同時覆蓋於該穿透區1〇3,並 • 且形成複數個第四凸塊820於第二保護層圖案710上且對應於該些第三凸 塊 430。 上述薄膜電晶體10還包含:一閘極(Gate)電極210、一半導體層圖案 320、源極圖案41〇、一汲極圖案420、一汲極接觸孔720以及形成畫素電 極的該梳狀畫素電極圖案810。其說明與原理請參考前述之說明,在此不予 贅述。 於一較佳f施例中’該些第-凸塊23〇之表面積大於該些第二凸塊33〇 籲之表面積’又該些第二凸塊330表面積大於該些第三凸塊43〇之表面積。 在此實施例中’該些&塊之表面積(俯視)較佳為_,可參考帛如圖所 不但並不限定為圓形’亦可為矩形或不規則形狀。其中本實施例中第一凸 塊230表面積(圓形)之直徑較佳介於5至20微米之間。此外,該些凸塊 之表面積大小並不需要完全相同,可依絲㈣求設計不同之表面積大小 或形狀。並且’該反射電極圖案61〇順著堆疊在該第一凸塊现及第二凸 塊330的第-絕緣層圖案51〇做凸狀表面起伏,即成為可將環境光源反射 的更均勻之反射面。 13 201131250 於一較佳實施例中,反射區102與穿透區i〇3的面積比例較佳為pi。 該電容電極220以及該些第一凸塊230,與該反射電極圖案61〇之材質較佳 係為同一金屬材質,例如鋁。該公共電極Η0以及該晝素梳狀電極圖案810 之材質係為透明導電材質,例如銦錫氧化物(ΙΤ〇)。 該反射電極圖案610透過該電容電極接觸孔520與該電容電極22〇接 觸,具有與公共電極11〇相同電性’用以反射環境光線以及與反射區1〇2 之第四凸塊820形成FFS之電場以驅動反射區上之液晶分子。 本發明之一較佳實施例之半穿透半反射之邊緣電場開關型液晶顯示面 板還包括一彩色濾光片900用於將從反射區102反射之環境光或從穿透區 103穿透之背光光源轉化成紅藍綠三種不同之顏色。其中還包含一黑色矩陣 (Black matrix,ΒΜ)910用於遮住不透光的部分(薄膜電晶體區1〇1),使增加 對比度。該彩色濾光片900相對於該基板1〇〇設置,並相距該穿透區1〇3 上之該畫素梳狀電極圖案一預設距離2〇 ,此即大約液晶盒間隙之厚度,例 如 4/zm。 更進一步地說,該彩色濾光片900距離該反射區1〇2上之該畫素梳狀 電極圓案810係為該上述預設距離20之一半,例如為2微米以爪。請參照 第10圓,其表示反射區102與穿透區1〇3中各層結構的厚度。於此實施例 中*其中2#m可由該預設距離減掉反射區1〇2較穿透區1〇3多 出之結構之膜厚加總而得出》下列為此實施例中反射區1〇2較穿透區1〇3 多出之結構之膜厚:第一凸塊230膜厚4〇〇 ;閘絕緣層310膜厚4〇〇 ;第二 凸塊330膜厚200 ;第三凸塊430膜厚400;第一絕緣層圖案510膜厚300; 以及反射電極圖案610膜厚300。上述之膜厚單位為奈米(nm),其加總係 201131250 2000一該反射區之液晶盒間隙為該預設距離4"m減掉2〇〇—m 即為2/zm,即為穿透區之液晶盒間隙距離之一半。 由上述可知,本個之-雛實麵之半穿透钮射之邊緣電場開關 型液晶顯示面板,在反射區具有凸狀的堆疊結構,即不需利用有機層,使 得在反射區以及穿透區形成雙液晶盒_差異,翻穿輕域的穿透率— 電屋曲線與反射區域的反射率一電壓曲線一致。並在反射區形成具有反射 效果的凸狀反㈣結構,能触反射歧射的更均自,達雜好的反射效 鲁 果。 雖然本發明已用較佳實施例揭露如上,然其並非用以限定本發明,本 發明所屬技術躺t具有通常知齡,在不雌本發明之精神和範圍内, 备可作各種之更動與潤像’因此本發明之保護範圍當視後附之申請專利範 圍所界定者為準。 【圖式簡單說明】 第la至8a圖係繪示本發明較佳實施例之半穿透半反射之邊緣電場開關 # 型液晶顯示面板之光罩製程俯視圖。 第lb至8b圖係綠示第la至8a圖之A_A'斷面圖。 第8c圖係繪示梳狀畫素電極圖案之俯視圖。 第9圖係繪示本發明之一較佳實施例之半穿透半反射之邊緣電場開關 型液晶顯示面板之剖視圖。 第10圖係表示反射區與穿透區中各層結構的厚度。 【主要元件符號說明】 10 '薄膜電晶體 20 預設距離 15 基板 110 公共電極圖案 薄膜電晶體區 102 反射區 穿透區 210 閘極電極 電容電極 230 第一凸塊 閘極緩衝圆案 310 閘絕緣層 半導體層圆案 330 第二凸塊 源極圖案 420 汲極圖案 第三凸塊 510 第一絕緣層圖案 電容電極接觸孔 610 反射電極圖案 第二絕緣層圖案 720 汲極接觸孔 梳狀畫素電極圖案 820 第四凸塊 彩色濾光片 910 黑色矩陣 16201131250 IV. Designated representative map: (1) The representative representative of the case is: (8b). (2) Element symbol of the representative figure Simple description 100 Substrate • 110 Common electrode pattern 101 Thin film transistor region 102 Reflecting region 103 Penetration region 210 Gate electrode 220 Capacitance electrode 230 First bump 310 Gate insulating layer 320 Semiconductor layer Pattern 330 second bump 410 source pattern 420 > and pole pattern 430 third bump 510 first insulating layer pattern 520 capacitor electrode contact hole 610 reflective electrode pattern 710 second insulating layer pattern 720 drain contact hole 810 comb Pixel electrode pattern 820 Fourth bump 5. In the case of a chemical formula, please disclose the chemical formula that best shows the characteristics of the invention: None > * VI. Description of the invention: [Technical field to which the invention pertains] The present invention relates to an edge The electric field switch type liquid crystal display panel and the manufacturing method thereof are particularly related to a fringe field electric switch type liquid crystal display panel for semi-transparent and semi-reflection and a manufacturing method thereof. [Prior Art] The liquid crystal display device has many advantages such as low radiation, small size and short power consumption, and low power consumption. Therefore, 201131250 is becoming more and more widespread, but at the same time, it still has a weak point of view and a small perspective, and (4) When the face is directly perpendicular to the normal of the age board, the contrast is significantly reduced. In order to overcome this drawback, a wide viewing angle liquid crystal display device has been proposed which is an inter-plane switching mode (IPS). The in-plane rotary liquid crystal display device is disposed on the same substrate as the conventional twisted nematic type, super twisted nematic type (SuperTwisted N_tic, 8th liquid crystal age device area: its common (CQ_n) electrode and riding line system, The horizontal horizontal electric field generated between the common electrode and the pixel electrode causes the liquid crystal molecules to rotate on the plane. The in-plane rotary liquid crystal display device can significantly improve the viewing angle of the liquid crystal display device, but the common electrode and the pixel electrode are disposed on On the same substrate, the aperture ratio is low, and the contrast and response time are not much improved compared with the conventional twisted nematic or super twisted nematic liquid crystal display device. Therefore, a fringe field switch is proposed. FFS) technology. From the principle of ditch' can be seen as a further development based on IPS technology, this kind of ffs liquid crystal display device improves the electrode setting mode of IPS liquid crystal display device, which will be transparent to n>s liquid crystal display device The metal electrode is changed to a transparent common electrode and formed into a plate shape to increase the transmittance, thereby improving the IPS liquid crystal display device In addition, the positive and negative electrodes of the FFS liquid crystal display device are not arranged like the spacing of the IPS liquid crystal display, but the positive and negative electrodes are separated and arranged by the insulating layer, which can greatly reduce the electrode width and the pitch. The electric field distribution is more dense. The liquid crystal display device can be divided into three types: transmitive, transflective and reflective. The transflective liquid crystal display system is divided into three types: transmissive, transflective and reflective. It is a dual-mode display with reflection mode and penetration mode. In the reflection mode, that is, when the ambient light source is sufficient, the semi-reflective semi-transparent display panel does not need to use the built-in light source, but 201131250 makes full use of the ambient light source. The penetrating semi-reflective display shows the inverse of the n-supplement, reflecting the light from the ambient light source to achieve power-saving effects. In the penetrating mode, the built-in backlight source is used to pass the transflective The penetration area in the display element provides display of the image. However, when the penetration area is the same as the distance of the liquid crystal cell gap (Ce„ gap) of the reflection area The light path of the reflection area is reflected by the light path (the distance between the two gaps of the liquid crystal cell) is the light path of the backlight source in the penetration area (the distance between the liquid crystal cell gaps) ^(Transmittance VS Voltage curve, tv) is inconsistent with the reflectance-voltage curve (Reflectance vs v〇ltage _e, Rv) of the reflective region. The conventional transflective liquid crystal display uses a single cell gap (7) ^^匕cdi gap), the penetration area and the reflection area use different control circuits, or the penetration area and the reflection area are controlled by using different transistors, which may increase the complexity and difficulty of the array, and drive The way is also more complicated. Therefore, in the process of fabricating a transflective edge electric field switching type liquid crystal display, in addition to forming the structure of the fringe field switching liquid crystal display, it is necessary to make a concave-convex surface in the reflective region in each pixel structure. The organic layer forms a dual cell gap with the penetrating region, and the transmittance-voltage curve of the penetrating region is consistent with the reflectance-voltage curve of the reflecting region. For example, US Patent No. 20060256268 creates a surface undulating organic layer in the reflective region to define a dual cell gap, that is, the thickness of the liquid crystal layer of the reflective region is one half of the penetrating region to achieve the TV characteristics of the penetrating region. The curve has the same R_v characteristic curve as the reflection zone, but the entire production process requires 10 mask processes, which is not conducive to mass production. Other improvements have also proposed the use of a half-tone mask to create an organic layer on the reflective area, thereby reducing the mask process, but the process of the halftone dot mask is still costly. Therefore, 201131250 is not efficient and the manufacturing costs remain high. In view of the above, there is a need to propose a transflective edge electric field switching type liquid crystal display panel and a method of manufacturing the same, thereby improving the above problems. SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a transflective edge electric field switching type liquid crystal display panel, which can simplify the manufacturing process by reducing the lithography process, thereby reducing the fabrication of the liquid crystal display. cost. The present invention provides a method for manufacturing a transflective edge electric field switching type liquid crystal display panel for the above purposes, which mainly comprises the following steps: first, (a) forming a common electrode pattern on a substrate, and The common electrode pattern is divided into a reflective area and a transmissive area. (b) forming a gate electrode and a capacitor electrode, and simultaneously forming a plurality of first bumps on the reflective region. (C) forming a gate insulating layer continuously covering the gate electrode, the capacitor electrode, and the first bumps on the substrate. (d) forming a semiconductor layer pattern on the gate insulating layer and corresponding to the gate electrode, and simultaneously forming a plurality of second bumps on the gate insulating layer and corresponding to the first bumps. (e) Φ forming a source pattern and a drain pattern on the semiconductor layer pattern, and simultaneously forming a plurality of second bumps on the second bumps. (f) forming a first insulating layer pattern to cover the semiconductor layer pattern, the source pattern, the second-pole pattern, and the second and third bumps on the reflective region, and exposing a capacitor Electrode contact hole. (g) forming a reflective electrode pattern to cover the protective layer pattern ' on the reflective region and contacting the capacitive electrode through the capacitive electrode contact hole. (h) forming a second insulating layer pattern to cover the reflective electrode pattern and exposing the drain contact hole. Finally, '(i) forms a comb-like pattern to cover the second insulating layer pattern and contact the ship's pole through the non-polar contact hole, while covering the wearer, and forming a plurality of fourth 201131250 convex The block is on the second insulating layer and corresponds to the third bumps. The surface area of the first bumps is larger than the surface area of the second bumps, and the surface area of the second bumps is larger than the surface area of the third bumps. In addition, in the above steps, the light-transmitting penetration region is also formed, and the step includes: in the step (b), simultaneously forming a gate buffer pattern on the penetration region. The age-seeking towel also includes an insulating layer covering the gate. The step (ί) towel further includes removing the insulating layer covering the thief penetration area and exposing the gate buffer pattern. The step (g) further includes removing the gate buffer pattern to expose the common electrode pattern located in the penetrating region. The step (h) further includes the second insulating layer pattern covering the common electrode pattern of the penetrating region. The method of removal is a lithography process. Therefore, according to the method for manufacturing a transflective edge electric field switching type liquid crystal display panel according to the present invention, an organic layer having a concave-convex surface is not required to be additionally formed, and the field-switching liquid crystal display panel is manufactured at the edge of the transflective and semi-reflective. In the step, the small to large bumps stacked in the reflective region are formed by using the mask process originally required, so that the stacked bumps form a surface relief reflective bump structure. This simplifies the manufacturing process and increases productivity and costs. The present invention further provides a transflective edge electric field switch type liquid crystal display panel, comprising: a thin film transistor and a common electrode pattern disposed on a substrate, and divided into a reflective area and a through hole on the substrate a capacitor electrode and a plurality of first bumps are disposed on the reflective region of the common electrode; a gate insulating layer covers the first bumps and the common electrode pattern; and the plurality of second bumps are disposed on a plurality of first bumps are disposed on the gate insulating layer; a plurality of third bumps are disposed on the second bumps; a first insulating layer pattern covers the third bumps and the first bumps a reflective electrode pattern overlying the first insulating layer pattern 201131250 on the reflective region and contacting the capacitor electrode; a second insulating layer pattern overlying the reflective electrode pattern and the common electrode pattern And a comb-shaped pixel electrode pattern covering the second insulating layer pattern and contacting the thin film transistor while covering the penetrating region, and forming a plurality of fourth bumps in the second An upper edge and a pattern layer corresponding to the plurality of third bumps. The surface area of the first bumps is larger than the surface area of the second bumps, and the surface area of the second bumps is larger than the surface area of the third bumps. The surface of the reflective electrode pattern undulates along the second and third bumps. The capacitor electrode, the first bumps, or the material of the reflective electrode pattern is made of a metal material. The common electrode and the material of the halogen comb electrode pattern are transparent conductive materials. The reflective electrode pattern has the same electrical property as the common electrode for reflecting light and forming an electric field with the fourth bump of the reflective region to drive the reflective region. Liquid crystal molecules. The transflective edge electric field switch type liquid crystal display panel further includes a color filter disposed relative to the substrate and spaced apart from the pixel comb electrode pattern on the penetrating region by a predetermined distance. The color filter is spaced from the pixel comb electrode pattern on the reflective area by one-half of the predetermined distance. In order to make the above description of the present invention more comprehensible, the preferred embodiments are described below, and are described in detail below with reference to the accompanying drawings. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the accompanying drawings, The embodiments described in the following are merely examples, and thus the scope of the present invention is not limited thereto. Hereinafter, the steps of fabricating the transflective edge electric field switch type liquid crystal display panel according to the preferred embodiment of the present invention will be gradually explained with reference to FIGS. 1 to 8. Each of the figures represents a mask 201131250 process, which includes The conventional photolithography technology is a step of exposure, development and etching. Only a single pixel configuration is shown in the figures to clearly illustrate the fabrication steps of the present invention, and those of ordinary skill in the art should be able to implement it in accordance with the present description. See page 1 and lb. Figure la is a top view of a semi-transparent semi-reflective edge electric field of the preferred embodiment of the present invention. The top view of the process of the first photomask is shown in Fig. 1b, which is an ATMA and a cross-sectional view of the first drawing. For the sake of clarity, a substrate 1 〇〇 shows a single halogen region and is divided into a thin film transistor region 1 , a reflective region 1 〇 2 and a penetrating region 1 〇 3 . First, a common (c〇mm〇n) electrode pattern 11 is formed on the substrate 1 by a first-pass mask process. The substrate 100 is a transparent substrate such as glass or the like; the common electrode pattern material is a transparent electrode material such as indium tin oxide. 4 See 4 2a and 2b. 2a is a transflective edge electric field switch type liquid crystal display panel according to a preferred embodiment of the present invention (a top view of the second light-grain process, and a second cross-sectional view of the A-A' of FIG. 2a. After the first mask process, a gate mask 210 and a capacitor electrode 220 are formed by using a second mask process, and a plurality of first bumps 23 are formed on the reflective region 102 at the same time. The clear formation _ 缓 翻 覆 covering the penetration area 103. Please refer to Figures 3a and 3b. Figure 3a is a semi-transparent and semi-reflective edge electric field of the preferred embodiment of the present invention. The top view of the third mask process is a cross-sectional view taken along line A-A' of Fig. 3a. After the second mask process, a gate insulating layer 31 is formed. The gate electrode continuously covering the substrate 21〇, the capacitor electrode 22〇, the first bumps and the gate buffer pattern 240. The method for forming the gate insulating layer 31 (4) is preferably a deposition method, and the material of the gate insulating layer 310 is preferably Tantalum nitride (SiNx) 201131250 The second mask process will be a semiconductor layer pattern 320 shape On the gate insulating layer 31〇, the material pattern 320 is located at a position corresponding to the “pole 210”, and at the same time, a plurality of second bumps 330 are formed on the gate insulating layer, and the second bumps are moved. The position is corresponding to the first bumps 230. The semiconductor layer (4) is composed of an amorphous layer (__this Si, not shown) and an ohmic contact layer (for example, n+ doped amorphous stone). The semiconductor layer pattern 320 is formed in addition to the thin film transistor region, and is further stacked on the first bump 230 of the reflective region 1〇2 to increase the penetration region. (10) Difference in thickness of the inspection layer to facilitate subsequent formation of the double liquid crystal cell gap structure. Please refer to Figures 4a and 4b. Figure 4a is a semi-transparent and semi-reflective edge electric field switching liquid crystal according to a preferred embodiment of the present invention. The top view of the fourth mask process of the display panel, the second drawing is the A-A' sectional view of Fig. 4a. After the third mask process, a source pattern 410 and a stack are formed by the fourth mask process. a pole pattern 420 on the semiconductor layer pattern 32 , and simultaneously forming a plurality of third bumps 430 The second bumps 330, wherein the source pattern 41, the drain pattern 420, and the semiconductor layer pattern 320 are formed of a metal material. Similarly, the source pattern 410 and the gate pattern 420 are formed. In addition to being formed in the thin film transistor region, it is also required to stack the second bumps 330 of the reflective region 102 to increase the thickness difference of the liquid crystal layer located in the penetrating region 1〇3, so as to facilitate subsequent formation of a double liquid crystal cell gap structure. In the preferred embodiment of the present invention, the surface area of the first bumps 230 is larger than the surface area of the second bumps 330, and the surface area of the second bumps 330 is larger than the surface area of the third bumps 430. As shown in Figures 4a, 4b. Please refer to Figures 5a and 5b. Fig. 5a is a plan view of a fifth mask process of a transflective edge electric field switch type liquid crystal display panel according to a preferred embodiment of the present invention, and Fig. 5b is a view of A., A' section of 201131250, Fig. 5a. Figure. After the fourth mask process, a first insulating layer pattern 510 is formed by using a fifth mask process to cover the semiconductor layer pattern 320, the source pattern 41〇, the drain pattern 420, and the reflective region 1〇. The second bump 330 and the third bump 43 are disposed on the second bump 34 and form a capacitor electrode contact hole 520 to expose a portion of the capacitor electrode 22A. The insulating layer (e.g., the gate insulating layer 310) overlying the penetrating region 103 is removed to expose the gate buffer pattern 240. It should be noted that the first insulating layer pattern 51 is formed in this step by depositing a layer of the same material as the gate insulating layer 310, such as tantalum nitride (SiNx), so that the insulating layer is not insulated in the figure. The layer pattern 510 is separated from the gate insulating layer 310 as shown in FIG. 5b. Then, the capacitor electrode contact hole 520 is dug out by the fifth mask process and the gate insulating layer 31A and the first insulating layer pattern 510 on the gate insulating layer 310 are removed to expose the gate buffer case. . The gate buffer pattern 240 protects the IT0 transparent electrode of the penetrating region 1〇3 from damage during the process of removing the gate insulating layer 310 and the first insulating layer pattern 51 on the gate insulating layer 310. Please refer to Figures 6a and 6b. Fig. 6a is a plan view showing the sixth mask process of the transflective half-reflective edge electric field switch type liquid crystal display panel of the preferred embodiment of the present invention, and the first anvil is a cross-sectional view taken along line A-A' of Fig. 6a. After the fifth mask process, a reflective electrode pattern 610 is formed by the sixth mask process to cover the first insulating layer pattern 51 in the reflective region 丨〇2, and is in contact with the capacitor electrode contact hole 520. The capacitor electrode 22 is electrically connected to the capacitor electrode 220. In addition, in the above process, the interpole buffer pattern 24 上方 above the common electrode no of the original penetration region 103 is removed in the reflective region 1 〇 2 in addition to the reflective electrode pattern. The common electrode 11 所需 (for example, the transparent electrode IT 〇) is required. In this process, the reflective electrode pattern 610 is preferably made of the same material as the gate electrode 21 2011 201131250 to maintain better etch uniformity. More advancedly, the reflective electrode pattern 61 is electrically connected to the electric valley electrode 220 through the capacitor electrode contact hole, and the capacitor electrode 22 is formed in the common electrode. In contact with it, the reflective electrode pattern 610 has the same electrical conductivity as the common electrode. See Figure 7a and Figure 7b ® 〇 Figure 5% of the semi-transparent and semi-reflective edge of the preferred embodiment of the present invention. The top view of the seven-mask process of the panel is ^, ^ The figures are A-A' sections of Figure 7a. After the sixth mask process, the first insulating layer pattern 71 is formed by the seventh mask process to cover the reflective electrode pattern 61 and expose a gate contact hole 720. The common electrode pattern 110 covering the penetration i 1〇3 is covered when the second insulating layer pattern 71 〇 (5) is further included. See Figures 8a, 8b and 8c for details. Figure 8a is a plan view showing the eighth mask process of the transflective edge electric field switch plastic liquid crystal display panel of the preferred embodiment of the present invention, the rib diagram is the AA section of Fig. 8a, Fig. 8c It is a top view of the comb pixel pattern. Finally, after the seventh optical predicate, the eighth light is on the micro-pixel element pattern 810. For the sake of clarity, 'the comb-shaped element electrode pattern 81 单独 is separately formed as shown in the first figure in the dotted line region in FIG. 8a for covering the second insulating layer pattern 71 and transmitting the same The drain contact hole 720 is in contact with the drain pattern 420 ′ such that the comb-shaped pixel electrode pattern 81 is electrically connected to the drain pattern 420 » the comb-like pixel pattern 81 〇 is simultaneously covered in the reflective area 1 〇 2, And forming a plurality of fourth bumps 820 on the second protective layer pattern 710 and corresponding to the third bumps 430. It should be noted that the fourth bumps 82 are covered by some strip electrodes of the comb-shaped pixel electrode pattern 81 and span the raised regions formed by the bumps, as shown in FIG. 8b. . Wherein the comb-like pixel method _the wire edge f field-off type n display panel 11 201131250 upper electrode, in the reflective region 102 through the layer of the second insulating layer pattern 71 〇 through the reflective electrode pattern 610 The lower electrode has the same electrical characteristics as the comb-shaped electrode pattern 81 of the penetration region 1〇3 with respect to the common electrode pattern 11〇. The comb pixel pattern 81 and its pattern can be designed as needed, and the present invention is not limited to which pattern. At this time, the structure of the transflective edge electric field switching type liquid crystal display panel of the preferred embodiment of the present invention has been completed. In summary, the preferred embodiment of the present invention uses an eight-mask process to form a double cell gap difference in a substrate by using a stacking method in a reflective region, and a stacked convex reflecting surface structure having a reflective effect is formed in the reflective region. The completed section is shown in Figure 8b. That is, in the prior art process of fabricating the fringe electric field switch type liquid crystal display panel, it is not necessary to additionally make an organic layer or use a halftone dot mask process to produce a double cell gap. The structure formed by each process is retained in the reflective area, and a metal reflective surface is formed on the stacked bumps to facilitate reflection of ambient light, thereby forming a semi-transflective edge electric field switching liquid crystal. Display panel. The invention has the advantages of reducing the mask manufacturing process and the production cost, and solves the problem that the conventional multi-pass process leads to a high cost. In addition, the present invention further provides a transflective edge electric field switch type liquid crystal display panel produced by the above manufacturing method. Please refer to FIG. 9. FIG. 9 is a cross-sectional view showing a transflective edge electric field switch type liquid crystal display panel according to a preferred embodiment of the present invention. According to a preferred embodiment of the present invention, a transflective edge electric field switch type liquid crystal display panel includes: a thin film transistor 10 and a common electrode pattern 110 disposed on a substrate 00 and on the substrate 100 The upper portion is divided into a reflective region 102, a transmissive region 103 and a thin film transistor region 1〇1; a capacitor electrode 220 and a plurality of first bumps 230 are disposed on the reflective region 102 of the common electrode 11 (); a gate insulating layer 31 〇 covers the first bumps 23 〇 and the common electrode pattern 12 201131250 110; a plurality of second bumps 330 are disposed on the gate insulating layer 310 and corresponding to the first bumps. 230; a plurality of third bumps 430 are disposed on the second bumps 330; a first insulating layer pattern 510 covers the third bumps 430 and the second bumps 330; The pattern 610 is over the first insulating layer pattern 510 on the reflective region 102 and is in contact with the capacitor electrode 220. A second insulating layer pattern 710 is overlaid on the reflective electrode pattern 610 and the common electrode pattern 110 is worn. Through the region 103; and a comb pixel electrode diagram 81〇 covers the second insulating layer pattern 710 and contacts the thin film transistor 10 while covering the penetrating region 1〇3, and forms a plurality of fourth bumps 820 to the second protective layer pattern 710. And corresponding to the third bumps 430. The thin film transistor 10 further includes: a gate electrode 210, a semiconductor layer pattern 320, a source pattern 41A, a drain pattern 420, a drain contact hole 720, and the comb-shaped electrode forming the pixel electrode. The pixel electrode pattern 810. For the description and principle, please refer to the foregoing description, which will not be repeated here. In a preferred embodiment, the surface area of the first bumps 23 is larger than the surface area of the second bumps 33, and the second bumps 330 have a larger surface area than the third bumps 43〇. Surface area. In this embodiment, the surface area (top view) of the & blocks is preferably _, and may be referred to as "not limited to a circle" as shown in the figure, and may be rectangular or irregular. The diameter of the surface area (circular shape) of the first bump 230 in this embodiment is preferably between 5 and 20 microns. In addition, the surface areas of the bumps need not be identical, and different surface area sizes or shapes can be designed according to the wire (4). And the reflective electrode pattern 61 is undulated along the first insulating layer pattern and the second insulating layer pattern 51 of the second bump 330, thereby forming a more uniform reflection of the ambient light source. surface. 13 201131250 In a preferred embodiment, the ratio of the area of the reflective region 102 to the penetrating region i 〇 3 is preferably pi. The capacitor electrode 220 and the first bumps 230 are preferably made of the same metal material as the reflective electrode pattern 61, such as aluminum. The material of the common electrode Η0 and the halogen comb electrode pattern 810 is a transparent conductive material such as indium tin oxide. The reflective electrode pattern 610 is in contact with the capacitor electrode 22 through the capacitor electrode contact hole 520, and has the same electrical property as the common electrode 11 用以 to reflect ambient light and form a FFS with the fourth bump 820 of the reflective region 1 〇 2 The electric field drives the liquid crystal molecules on the reflective region. The transflective edge electric field switching type liquid crystal display panel of a preferred embodiment of the present invention further includes a color filter 900 for transmitting ambient light reflected from the reflective region 102 or from the penetrating region 103. The backlight source is converted into three different colors of red, blue and green. It also includes a black matrix (Black matrix 910) 910 for covering the opaque portion (thin film transistor region 〇1) to increase contrast. The color filter 900 is disposed relative to the substrate 1 at a predetermined distance of 2 相 from the pixel comb electrode pattern on the penetrating region 1〇3, which is approximately the thickness of the cell gap, for example 4/zm. Further, the color filter 900 is spaced from the pixel comb array 810 on the reflective area 1〇2 by one-half of the predetermined distance 20, for example, 2 micrometers. Please refer to the 10th circle, which shows the thickness of each layer structure in the reflection area 102 and the penetration area 1〇3. In this embodiment, wherein 2#m can be obtained by subtracting the film thickness of the structure in which the reflection area 1〇2 is larger than the penetration area 1〇3 by the preset distance, the following is the reflection area in this embodiment. 1〇2 is thicker than the penetrating zone 1〇3 structure: the first bump 230 has a film thickness of 4〇〇; the gate insulating layer 310 has a film thickness of 4〇〇; the second bump 330 has a film thickness of 200; The bump 430 has a film thickness 400; the first insulating layer pattern 510 has a film thickness 300; and the reflective electrode pattern 610 has a film thickness 300. The film thickness unit mentioned above is nanometer (nm), and the total of the cell gap of the reflection zone of 201131250 2000 is the preset distance 4"m minus 2〇〇-m is 2/zm, that is, wearing The cell gap of the through-area is one-half the distance. It can be seen from the above that the edge-electric field switching type liquid crystal display panel of the semi-transparent button of the present invention has a convex stacked structure in the reflection region, that is, the organic layer is not required, so that the reflection region and the penetration are performed. The area forms a double liquid crystal cell _ difference, the penetration rate of the light-transmissive light field - the electric house curve is consistent with the reflectance-voltage curve of the reflective area. And a convex anti-(four) structure with a reflection effect is formed in the reflection area, and the reflection-resonance is more uniform, and the reflection effect is good. Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the present invention, and the technical scope of the present invention has a general age, and it is possible to make various changes within the spirit and scope of the present invention. The scope of the invention is therefore defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1a to 8a are plan views showing a mask process of a transflective edge electric field switch of a preferred embodiment of the present invention. Figures lb to 8b are green cross-sectional views of A_A' of the first to eighth figures. Figure 8c is a plan view showing the comb pixel pattern. Figure 9 is a cross-sectional view showing a transflective edge electric field switch type liquid crystal display panel according to a preferred embodiment of the present invention. Figure 10 shows the thickness of each layer structure in the reflective and penetrating regions. [Main component symbol description] 10 'thin film transistor 20 preset distance 15 substrate 110 common electrode pattern thin film transistor region 102 reflection region penetration region 210 gate electrode capacitor electrode 230 first bump gate buffer circle case 310 gate insulation Layer semiconductor layer case 330 second bump source pattern 420 drain pattern third bump 510 first insulating layer pattern capacitor electrode contact hole 610 reflective electrode pattern second insulating layer pattern 720 drain contact hole comb pixel electrode Pattern 820 fourth bump color filter 910 black matrix 16

Claims (1)

201131250 七、申請專利範圍: 1.半穿透半反射之邊緣電場開關型液晶顯示面板之製造方法,該製造 方法包括下列步驟: ⑻形成-公共電極贿於—級上,並在該基板上齡為—反射區以 及一穿透區; (b)形成-祕電糾及-電容雜,並同時形成複健第—凸塊於該 反射區上, φ (c)形成一閘絕緣層連續覆蓋於該閘極電極、該電容電極以及該些第一 凸塊於該基板上; (d) 形成一半導體層圖案於該閘絕緣層上且對應該閘極電極,並同時形 成複數個第二凸塊於該閘絕緣層上且對應該些第一凸塊; (e) 形成一源極圖案以及一汲極圖案於該半導體層圖案上,並同時形成 複數個第三凸塊於該些第二凸塊上; ⑴形成一第一絕緣層圖案,以覆蓋該半導體層圖案、該源極圖案、該 • 汲極圖案上以及該反射區上的該第二凸塊及該第三凸塊上,並曝露出一電 容電極接觸孔; (g) 形成一反射電極圖案以覆蓋於該反射區上的該第一絕緣層圖案,且 透過該電容電極接觸孔接觸於該電容電極; (h) 形成_第二絕緣職案’崎蓋該反射電極圖案並㈣出一沒極接 觸孔;以及 (1)形成-梳狀晝素電極圖案’以覆蓋該第二絕緣層圖案上並透過該沒 極接觸孔獅減雜_案,啊覆蓋於冑輕,並且形紐數個第四凸 17 201131250 塊於第二絕綠層圆案上且對應於該些第三凸塊。 2.如申請專利翻第1項所述之製造方法,其中形成祕第一凸塊之 表面積大於該些第二凸塊之表面積,又該些第二凸塊表面積大於該些第三 凸塊之表面積。 如申料纖Μ 1撕叙觀方法,射齡卿)巾又包含同 時形成一閘極緩衝圖案覆蓋於該穿透區上。 4. 如申請專利範圍第3項所述之製造方法,其中該步驟⑹中又包含該 閘絕緣層覆蓋於該閘極緩衝圖案上。 5. 如申請專利範圍第4項所述之製造方法,其中該步驟⑺中又包含將 覆蓋於該穿透區之該閘絕緣層移除,曝露出該_緩衝圖案。 6·如申請專利範圍第5項所述之製造方法,其中該步驟(g)中又包含將 該閘極緩衝岡案移除,暴露出位於該穿透區的該公共電極圖案。 7. 如申請專利範圍第6項所述之製造方法,其中該步驟⑻中又包含該 第一絕緣層圆案同時覆蓋該穿透區的該公共電極圖案。 8. 如申請專利範圍第5項或第6項所述之製造方法,其中移除的方法 係微影製程方法。 9. 如申請專利範圍第1‘項所述之製造方法,其中形成該閘極電極、該 電容電極、該些第-凸塊’或該反射電極圖案之材質係為―金屬材質。 10. —種半穿透半反射之邊緣電場開關型液晶顯示面板,包括: 一薄膜電晶體以及一公共電極圖案設置於一基板上,並在該基板上劃 分為一反射區以及一穿透區; 一電容電極以及複數個第一凸塊設置於該公共電極之該反射區上; 201131250 一閘絕緣層覆蓋於該些第一凸塊以及該公共電極圖案上; 複數個第二凸塊設置於該閘絕緣層上並對應該些第一凸塊; 複數個第三凸塊設置於該些第二凸塊上; 一第一絕緣層圖案覆蓋於該些第三凸塊以及該些第二凸塊上; 一反射電極圖案覆蓋於該反射區上的該第一絕緣層圖案上,並接觸於 該電容電極; 一第二絕緣層圖案覆蓋於該反射電極圖案上以及該公共電極圖案之該 穿透區上;以及 -梳狀畫素電極酵覆蓋於該帛二絕緣層随上並翻_細電晶 體同時覆蓋於該穿透區,並且形成複婁欠個第四凸塊於第二絕緣層圖案上 且對應於該些第三凸塊。 11,如申請專利範圍第10項所述之半穿透半反射之邊緣電場開關型液 晶顯示面板,其中該些第__凸塊之表面積大於該些第二凸塊之表面積,又 該些第二凸塊表面積大於該些第三凸塊之表面積。 12.如申請專利範圍第u項所述之半穿透半反射之邊緣電場開關型液 晶顯示面板’其中該反射電極圖案之表面係沿著該些第二以及第三凸塊起 伏。 I3·如申請專利範圍第10項所述之半穿透半反射之邊緣電場開關型液 晶顯示面板,其t該電容電極、該些第—凸塊,或該反射電極圖案之材質 係為一金屬材質。 R如申清專利|a圍第1〇項所述之半穿透半反射之邊緣電場開關型液 曰曰顯不面板射該公共電極以及該畫素梳狀電極圖案之材質係為透明導 19 201131250 電材質。 15. 如申轉利細第10撕述之半穿透半反射之邊緣電場開關型液 晶顯示面板,其中該反射電極圖案具有與公共電極相同電性。 16. 如申明專利範圍第1〇項所述之半穿透半反射之邊緣電場開關型液 晶顯示面板,其中該結構還包括—彩㈣光片相對於絲麟置,並相距 該穿透區上之該畫素梳狀電極圖案一預設距離。 17. 如申請專利範圍第16項所述之半紐半反射之邊緣電場開關型液 晶顯示面板,其中該彩色濾、光肢離該反射區上之該畫素梳狀電極圖案係 為該上述預設距離之一半。201131250 VII. Patent application scope: 1. A method for manufacturing a semi-transparent and semi-reflective edge electric field switch type liquid crystal display panel, the manufacturing method comprising the following steps: (8) forming a public electrode bribe on the level and aging on the substrate a reflective region and a penetrating region; (b) forming a secret-enhanced-capacitor, and simultaneously forming a resurfacing first bump on the reflective region, φ (c) forming a gate insulating layer continuously covering The gate electrode, the capacitor electrode and the first bumps are on the substrate; (d) forming a semiconductor layer pattern on the gate insulating layer and corresponding to the gate electrode, and simultaneously forming a plurality of second bumps And (b) forming a source pattern and a drain pattern on the semiconductor layer pattern, and simultaneously forming a plurality of third bumps on the second bumps (1) forming a first insulating layer pattern to cover the semiconductor layer pattern, the source pattern, the drain pattern, and the second bump and the third bump on the reflective region, and Exposing a capacitor electrode contact hole; g) forming a reflective electrode pattern to cover the first insulating layer pattern on the reflective region, and contacting the capacitive electrode through the capacitive electrode contact hole; (h) forming a second insulating project And the electrode pattern is (4) a immersed contact hole; and (1) forming a comb-like pixel electrode pattern to cover the second insulating layer pattern and passing through the immersed contact hole lion to reduce the impurity _ case, ah covering Light and the number of fourth convex 17 201131250 blocks on the second absolute green circle and correspond to the third bumps. 2. The manufacturing method according to claim 1, wherein the surface area of the first bump is larger than the surface area of the second bumps, and the surface area of the second bumps is larger than the third bumps. Surface area. For example, the method of applying the fiber Μ 1 tearing method, the 龄 卿 ) 巾 巾 巾 巾 巾 巾 巾 巾 巾 巾 巾 巾 巾 巾 巾 巾 巾 巾 巾 巾 巾4. The manufacturing method of claim 3, wherein the step (6) further comprises the gate insulating layer covering the gate buffer pattern. 5. The method of manufacturing of claim 4, wherein the step (7) further comprises removing the gate insulating layer overlying the penetrating region to expose the _ buffer pattern. 6. The manufacturing method of claim 5, wherein the step (g) further comprises removing the gate buffer to expose the common electrode pattern located in the penetrating region. 7. The manufacturing method of claim 6, wherein the step (8) further comprises the first insulating layer round while covering the common electrode pattern of the penetrating region. 8. The method of manufacturing according to claim 5 or 6, wherein the method of removing is a lithography process. 9. The manufacturing method according to claim 1, wherein the gate electrode, the capacitor electrode, the first bumps, or the material of the reflective electrode pattern is made of a metal material. 10. A transflective edge electric field switch type liquid crystal display panel, comprising: a thin film transistor and a common electrode pattern disposed on a substrate, and divided into a reflective area and a transmissive area on the substrate a capacitor electrode and a plurality of first bumps are disposed on the reflective region of the common electrode; 201131250 a gate insulating layer covers the first bumps and the common electrode pattern; and the plurality of second bumps are disposed on a plurality of first bumps are disposed on the gate insulating layer; a plurality of third bumps are disposed on the second bumps; a first insulating layer pattern covers the third bumps and the second bumps a reflective electrode pattern overlying the first insulating layer pattern on the reflective region and contacting the capacitor electrode; a second insulating layer pattern overlying the reflective electrode pattern and the common electrode pattern And a comb-like electrode coating is applied over the second insulating layer, and the fine crystal is simultaneously covered in the penetrating region, and a fourth bump is formed on the second insulating layer. Figure And corresponding to the third bumps. 11. The transflective edge field switching liquid crystal display panel of claim 10, wherein the surface area of the __bump is larger than the surface area of the second bumps, and the The surface area of the two bumps is larger than the surface area of the third bumps. 12. The transflective edge electric field switching type liquid crystal display panel as described in claim 5, wherein the surface of the reflective electrode pattern undulates along the second and third bumps. The transmissive and semi-reflective edge electric field switch type liquid crystal display panel according to claim 10, wherein the capacitor electrode, the first bumps, or the reflective electrode pattern is made of a metal Material. R, such as the Shenqing patent|a surrounding semi-transparent and semi-reflective edge electric field switch type liquid helium display panel, the common electrode and the material of the pixel comb electrode pattern are transparent guides 19 201131250 Electrical material. 15. The semi-transflective edge electric field switching type liquid crystal display panel as recited in claim 10, wherein the reflective electrode pattern has the same electrical properties as the common electrode. 16. The transflective edge electric field switch type liquid crystal display panel according to claim 1, wherein the structure further comprises a color (four) light sheet disposed relative to the silk collar and spaced apart from the penetration region. The pixel comb electrode pattern has a predetermined distance. 17. The edge-field switching liquid crystal display panel according to claim 16, wherein the color filter and the optical limb are separated from the pixel comb electrode pattern on the reflective region. Set the distance by one and a half.
TW99106796A 2010-03-09 2010-03-09 Transreflective in-plane switching liquid crystal display panel and manufacturing method thereof TWI412827B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99106796A TWI412827B (en) 2010-03-09 2010-03-09 Transreflective in-plane switching liquid crystal display panel and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99106796A TWI412827B (en) 2010-03-09 2010-03-09 Transreflective in-plane switching liquid crystal display panel and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201131250A true TW201131250A (en) 2011-09-16
TWI412827B TWI412827B (en) 2013-10-21

Family

ID=49771671

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99106796A TWI412827B (en) 2010-03-09 2010-03-09 Transreflective in-plane switching liquid crystal display panel and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI412827B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4916770B2 (en) * 2006-05-22 2012-04-18 三菱電機株式会社 Liquid crystal display device and manufacturing method thereof
EP2085813B1 (en) * 2006-10-18 2014-01-01 Sharp Kabushiki Kaisha Liquid crystal display and method for manufacturing liquid crystal display
JP5127419B2 (en) * 2007-11-28 2013-01-23 株式会社ジャパンディスプレイウェスト Liquid crystal display
TWI397130B (en) * 2008-06-10 2013-05-21 Chunghwa Picture Tubes Ltd Method for manufacturing a pixel structure and the pixel structure

Also Published As

Publication number Publication date
TWI412827B (en) 2013-10-21

Similar Documents

Publication Publication Date Title
KR101961427B1 (en) Liquid crystal display and manufacturing method thereof
KR100246688B1 (en) Active matrix substrate and liquid crystal display device, and its manufacturing method
US9880414B2 (en) Array substrate, liquid crystal display panel and display device
CN100476529C (en) Method of fabricating array substrate for in-plane switching liquid crystal display device
TW573190B (en) Liquid crystal display and fabricating method thereof
TW476862B (en) Reflection-type liquid crystal display and method for manufacturing the same
US8895987B2 (en) Array substrate for fringe field switching mode liquid crystal display device and method of fabricating the same
US20140160395A1 (en) Liquid crystal display
CN102914922A (en) In-plane switching mode liquid crystal display device
US20110128459A1 (en) Thin film transistor array substrate, fabrication method thereof, and liquid crystal display using the tft array substrate
KR20120050645A (en) Liquid crystal display and manufacturing method thereof
JP4794117B2 (en) Organic thin film transistor array substrate and liquid crystal display including the same
KR20130015737A (en) Liquid crystal display device
US9470829B2 (en) Polarizing plate, TFT substrate including the polarizing plate, and method of manufacturing the polarizing plate
KR100737895B1 (en) Reflective type liquid crystal display and transmissive and reflective type liquid crystal display and method of manufacturing the same
KR20130015734A (en) Liquid crystal display device
US9612379B2 (en) Wire grid polarizer and method of fabricating the same
TW569075B (en) Active matrix substrate and manufacturing method thereof
TW594160B (en) Reflective electrooptic device and electronic apparatus
JP2009139853A (en) Liquid crystal display device
KR100827856B1 (en) Array substrate of transflective type fringe field switching mode liquid crystal display and the method thereof
CN113534528A (en) Pixel structure, manufacturing method of pixel structure and array substrate
KR101222141B1 (en) Liquid crystal display and fabricating method thereof
EP2525255B1 (en) Array substrate and manufacturing method thereof
TW201131250A (en) Transreflective in-plane switching liquid crystal display panel and manufacturing method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees