TW201130886A - Copolymerized polyamide - Google Patents

Copolymerized polyamide Download PDF

Info

Publication number
TW201130886A
TW201130886A TW99143680A TW99143680A TW201130886A TW 201130886 A TW201130886 A TW 201130886A TW 99143680 A TW99143680 A TW 99143680A TW 99143680 A TW99143680 A TW 99143680A TW 201130886 A TW201130886 A TW 201130886A
Authority
TW
Taiwan
Prior art keywords
acid
copolymerized
nylon
polyamine
copolymerized polyamine
Prior art date
Application number
TW99143680A
Other languages
Chinese (zh)
Inventor
Junichi Nakao
Takashi Shimizu
Yasuto Fujii
Nobuhiro Yoshimura
Original Assignee
Toyo Boseki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Boseki filed Critical Toyo Boseki
Publication of TW201130886A publication Critical patent/TW201130886A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/36Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino acids, polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids

Abstract

The present invention provides a novel polyamide which not only fully satisfies extremely low water-absorbing property but also fully satisfies moldability and impact-resistant. The novel polyamide is copolymerized polyamide characterized by comprising (a) 50-98 mol% constituent unit obtained from the salt of decanediamine and terephthalic acid having same mole equivalents, and (b) 50-2 mol% constituent unit selected from the group consisting of 11-aminoundecanoic acid, 12-aminododecanoic acid, undecane lactam, lauryl lactam and a mixture of these.

Description

201130886 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種不但高度地滿足極低的吸水性,且高度 地滿足成形性及耐衝撃性之新穎的共聚合聚醯胺。 【先前技術】 [背景技術] 由於對於汽車零件、電氣電子零件之高熔點化、高耐熱老 化性等之要求,乃使用半芳香族聚醯胺作爲6耐綸或66耐綸 的替代品。由代表性的半芳香族聚醯胺之己二胺與對苯二甲酸 所製造之6T耐綸,因爲其單體熔點高,故藉由共聚合大量的 己二酸或間苯二甲酸、2-甲基-1,5戊二胺等,使其成爲熔點從 3 3 0°C降低至270°C的改質聚醯胺6T而使用。然而,共聚合成 分會造成結晶成分之6 T成分的結晶化受阻礙,引起結晶速度 的降低或結晶化度的降低,產生加工性或高溫物性降低的問 題。又,若與低吸水性聚醯胺之1 1耐綸或12耐綸比較,6T 成分在因爲骨架内含有多個醯胺鍵,故吸水性高,而且表面安 裝(surface mount)用之在電氣·電子用途所進行的回焊(re flow soldering)步驟中,在零件表面產生膨脹,即使對汽車零件之 冷卻零件上所使用的冷卻液等之藥品而言,耐性亦不佳。另一 方面’由壬二胺與對苯二甲酸所製得之9T耐綸,因爲二胺成 分的碳數爲奇數個,與碳數爲偶數個的二胺比較之下,係難以 獲得氫鍵之結構,因此結晶速度或結晶化度降低,即使在最終 製品方面,亦會發生高溫物性降低等之問題。又,即使在回焊 步驟中的膨脹方面,雖可見對於改質6T耐綸的改善傾向,但 201130886 尙不充分。因此,企求具有高加工性,以及低 樹脂。 在專利文獻1及2中,揭示了藉由1,1〇-癸 二甲酸(T)的聚縮合反應所合成之10 T耐綸作 優良之低吸水性的聚醯胺。此等之10T耐綸之 但高度的結晶性,會有結晶化非常之快,而在 嘴内凍結、或不具有充分的流動性等之加工性 在成型品中,會有焊接強度或耐衝撃性劣化等 又,在專利文獻3及4中,揭示了將10T 共聚合而成之聚醯胺。在此等之文獻中,所實 10T耐綸與6T耐綸共聚合而成者,不僅沒有 效果’而且10T耐綸原本具備之低吸水的特怡 的共聚合而降低(參照專利文獻4之第2圖)。 因此,先前習知之10T系耐綸之中,並無 率並且高度地滿足成形性與耐衝撃性者。 [先前技術文獻] [專利文獻] 專利文獻1:日本特開平06-239990號公報 專利文獻2:日本特開2002-293926號公報 專利文獻3:日本特開2002-293927號公報 專利文獻4:日本特開2〇〇8_274288號公報 【發明內容】 [發明的槪要] [發明所欲解決之課題] 吸水性之聚醯胺 二胺(10)與對苯 爲具有結晶性與 結晶性雖良好, 射出成形中在噴 上的問題,以及 之問題。 耐綸與其他成分 施之聚醯胺係將 耐衝撃性的改善 ί,亦因6 T成分 維持極低的吸水 201130886 本發明係鑒於該先前技術之現狀而首創者,其目的在於提 供一寧不但高度地滿足極低的吸水率,且高度地滿足成形性及 耐衝撃性之共聚合聚醯胺。 [用於解決課題的手段] 本發明者爲了達成上述目的,針對與ι〇τ耐綸共聚合之成 分的種類及其用量,進行潛心探討,結果發現了藉由將11耐 綸及/或1 2耐綸以一定的比例共聚合,可提供一種不但高度地 滿足極低的吸水率,且高度地滿足成形性與耐衝撃性之共聚合 聚醯胺,終至本發明的完成。 換言之,本發明係具有以下的(1) - (6)之構成者。 (1) 一種共聚合聚醯胺,其特徵爲由(a)50-98莫耳%的由癸二 胺與對苯二甲酸的等量莫耳鹽而製得之結構單位、及 (b) 5 0-2莫耳。/。的選自由11-胺十一碳酸' 12-胺十二碳 酸、十一碳內醯胺、十二碳內醯胺及此等之混合物構成之 群組的結構單位所構成。 (2) 如第(1)項所記載之共聚合聚醯胺,其特徵爲由(a)7 5 -9 8莫 耳%的由癸二胺與對苯二甲酸的等量莫耳鹽而製得之結構 單位、及(b)2 5-2莫耳%的選自由1 1-胺十一碳酸、12-胺 十二碳酸、十一碳內醯胺、十二碳內醯胺及此等之混合物 構成之群組的結構單位所構成。 (3) 如第(1)或(2)項所記載之共聚合聚醯胺,其特徵爲共聚合 聚醯胺含有(c)最多至30莫耳%,該(c)係由該(a)之結構 單位以外的二胺與二元酸的等量莫耳鹽製得之結構單 位、或由該(b)之結構單位以外的胺基羧酸或內醯胺製得 201130886 之結構單位。 (4) 如第(1)至(3)項中任—項所記載之共聚合聚醯肢’其特徵 爲共聚合聚醯胺的熔點(Tm)爲240-315。(:,且玻璃轉移溫 度(Tg)爲 70-120°C。 (5) —種共聚合聚醯胺樹脂組成物,其特徵爲相對於如第(1) 至(4)項中任一項之共聚合聚醯胺100重量份,最多調配 纖維狀強化材2 5 0重量份。 (6) 如第(5)項之共聚合聚醯胺樹脂組成物,其係使用於汽車零 件或電子零件的成形材料。 [發明的效果] 本發明的共聚合聚醯胺,由於將主成分之10T耐綸與11 耐綸及/或12耐綸以特定的比例進行共聚合,不但可發揮高熔 點、滑動性、低吸水率等之1 0T耐綸的特性,而且可高度地滿 足成形性及耐衝撃性。 【實施方式】 [用於實施發明的形態] 以下,針對本發明之共聚合聚醯胺進行詳述。本發明之共 聚合聚醯胺具有以下特徵:係以特定的比例含有相當於1 〇 τ耐 綸之(a)成分與相當於11耐綸及/或12耐綸之(b)成分者,不僅 改良了 1 0T耐綸的缺點之成形性、耐衝撃,亦高度地滿足低吸 水性。 (a)成分係相當於藉由使1,1〇-癸二胺(10)與對苯二甲酸(τ) 以等量莫耳進行共縮聚合而製得之10T耐綸,具體言之,係以 下列式(I )表示者。 201130886BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel copolymerized polyamine which not only highly satisfies extremely low water absorbability but also satisfies high formability and impact resistance. [Prior Art] [Background Art] Semi-aromatic polyamides are used as a substitute for 6 nylon or 66 nylon because of the high melting point of automotive parts, electrical and electronic parts, and high heat aging. 6T nylon manufactured by a representative semi-aromatic polyamine hexamethylene diamine and terephthalic acid, because of its high melting point of the monomer, by copolymerizing a large amount of adipic acid or isophthalic acid, 2 -Methyl-1,5-pentanediamine or the like is used as a modified polyamine 6T whose melting point is lowered from 340 ° C to 270 ° C. However, the copolymerization component causes crystallization of the 6 T component of the crystal component to be impeded, resulting in a decrease in the crystallization rate or a decrease in the degree of crystallization, resulting in a decrease in workability or high-temperature physical properties. In addition, when compared with the low water-absorbent polyamine 1 1 nylon or 12 nylon, the 6T component contains a plurality of guanamine bonds in the skeleton, so the water absorption is high, and the surface mount is used for electrical purposes. In the reflow soldering step performed for electronic applications, expansion occurs on the surface of the component, and the durability of the drug such as the coolant used for the cooling component of the automobile component is not good. On the other hand, '9T nylon made from decane diamine and terephthalic acid, because the carbon number of the diamine component is an odd number, compared with the diamine having an even number of carbon atoms, it is difficult to obtain hydrogen bonds. With such a structure, the crystallization rate or the degree of crystallization is lowered, and even in the case of the final product, problems such as a decrease in high-temperature physical properties occur. Further, even in the expansion in the reflow step, although the improvement tendency of the modified 6T nylon is seen, the 201130886 is not sufficient. Therefore, it is required to have high processability and low resin. In Patent Documents 1 and 2, 10 T nylon synthesized by a polycondensation reaction of 1,1 fluorene-dicarboxylic acid (T) is disclosed as an excellent low water absorption polyamine. These 10T nylons have high crystallinity, and there is crystallization which is very fast, and the processability of freezing in the mouth or not having sufficient fluidity, etc., in the molded article, there is weld strength or impact resistance. Further, in Patent Documents 3 and 4, polyamines obtained by copolymerizing 10T are disclosed. In these documents, the combination of the 10T nylon and the 6T nylon is not only ineffective, but also the copolymerization of the low water absorption of the 10T nylon originally reduced (see Patent Document 4). 2 picture). Therefore, among the conventional 10T-based nylons, there is no rate and a high degree of satisfyability for formability and impact resistance. [PRIOR ART DOCUMENT] [Patent Document 1] Japanese Patent Laid-Open Publication No. JP-A-2002-293926 (Patent Document No. JP-A-2002-293926) Patent Document No. JP-A-2002-293927 [Problem of the Invention] [Problems to be Solved by the Invention] The water-absorbing polyamine diamine (10) and p-benzene have good crystallinity and crystallinity, The problem of spraying on the injection molding, and the problem. Polyamide and other components are used to improve the impact resistance. Also, because the 6 T component maintains extremely low water absorption. The present invention is based on the current state of the art and is intended to provide a A copolymerized polyamine which satisfies extremely low water absorption and which satisfies high formability and impact resistance. [Means for Solving the Problem] In order to achieve the above object, the inventors of the present invention have conducted intensive studies on the types and amounts of the components copolymerized with ι〇τ, and found that by using 11 nylon and/or 1 2 The nylon is copolymerized in a certain ratio to provide a copolymerized polyamine which not only highly satisfies the extremely low water absorption rate but also satisfactorily satisfies the formability and the impact resistance, and is completed by the present invention. In other words, the present invention has the following constituents of (1) - (6). (1) A copolymerized polyamine which is characterized by (a) 50-98 mol% of a structural unit prepared from an equal molar amount of a terpene diamine and terephthalic acid, and (b) 5 0-2 Moer. /. The structure consists of a structural unit consisting of a group consisting of 11-amine undecanoic acid '12-amine dodecanoic acid, undecyl decylamine, dodecyl decylamine and mixtures thereof. (2) The copolymerized polyamine described in the item (1), which is characterized in that (a) 7 5 -9 8 mol% of an equivalent molar salt of decane diamine and terephthalic acid The resulting structural unit, and (b) 2 5-2 mol% selected from the group consisting of 1 1-amine undecanoic acid, 12-amine dodecanoic acid, undecyl indoleamine, dodecyl decylamine, and The structural unit of the group formed by the mixture of equal parts. (3) The copolymerized polyamine described in the item (1) or (2), characterized in that the copolymerized polyamine contains (c) up to 30 mol%, and the (c) is derived from the (a) a structural unit made up of an equivalent amount of a diamine of a diamine and a dibasic acid other than the structural unit, or an structural unit of 201130886 obtained from an aminocarboxylic acid or an indoleamine other than the structural unit of (b). (4) The copolymerized polypigment described in any one of the items (1) to (3), wherein the copolymerized polyamine has a melting point (Tm) of 240 to 315. (:, and the glass transition temperature (Tg) is 70-120 ° C. (5) A kind of copolymerized polyamide resin composition characterized by any one of items (1) to (4) 100 parts by weight of the copolymerized polyamine, and up to 250 parts by weight of the fibrous reinforcing material. (6) The copolymerized polyamide resin composition of the item (5), which is used for automobile parts or electronic parts. [Effects of the Invention] The copolymerized polyamine of the present invention exhibits a high melting point by copolymerizing a 10T nylon having a main component and 11 nylon and/or 12 nylon in a specific ratio. The properties of the 10T nylon such as the slidability and the low water absorption rate are high, and the moldability and the impact resistance are highly satisfied. [Embodiment] [Formulation for carrying out the invention] Hereinafter, the copolymerized polyamine of the present invention is used. The copolymerized polyamine of the present invention has the following characteristics: (a) component equivalent to 1 〇 耐 耐 耐 耐 耐 耐 耐 耐 耐 耐 耐 耐 耐Ingredients, not only improve the formability and resistance of the 10T nylon, but also highly satisfy the low Water absorption. (a) The composition is equivalent to 10T nylon obtained by co-condensation polymerization of 1,1 fluorene-diamine (10) and terephthalic acid (τ) with an equal amount of molars. In other words, it is expressed by the following formula (I).

(a) 成分係本發明之共聚合聚醯胺的主成分,具有賦予共聚 合聚醯胺優良的耐熱性、低吸水性、耐藥品性、滑動性等之功 用。共聚合聚醯胺中之(a)成分的調配比例係50-98莫耳%、較 佳係75-98莫耳%、進一步較佳係80-95莫耳%。當(a)成分的 調配比例小於上述下限時,結晶成分之1 0T耐綸會受到共聚合 成分造成之結晶阻礙,有招致成形性或耐熱性降低之虞,另一 方面,當超過上述上限時,因加工性或耐衝撃性會顯著地降低 故不佳。 (b) 成分係相當於藉由使11-胺十一碳酸、12-胺十二碳酸、 --•碳內醯胺、或十二碳內醯胺進行聚縮合而製得之11耐綸、 12耐輪’具體g之’係以下列式(II)、(in)表示者。可單獨使 用此等,亦可使用混合物。 —NH(CH2)10 C— (I ,)(a) The component is a main component of the copolymerized polyamine of the present invention, and has a function of imparting excellent heat resistance, low water absorbability, chemical resistance, slidability, and the like to the copolymerized polyamine. The blending ratio of the component (a) in the copolymerized polyamine is 50-98 mol%, preferably 75-98 mol%, more preferably 80-95 mol%. When the blending ratio of the component (a) is less than the above lower limit, the 10T nylon of the crystal component is inhibited by the crystallization of the copolymer component, and the moldability or heat resistance is lowered. On the other hand, when the above upper limit is exceeded It is not preferable because the workability or the impact resistance is remarkably lowered. (b) The composition is equivalent to 11 nylon obtained by polycondensation of 11-amine undecanoic acid, 12-amine dodecanoic acid, carbocine or dodecylamine. The 12-wheel-resistant 'specific g' is represented by the following formulas (II) and (in). These can be used alone or as a mixture. —NH(CH2)10 C— (I ,)

II 0II 0

—νη(〇η2)” (b)成分係用於改良(a)成分之缺點者,具有·改^胃所有共聚 合聚醯胺的耐衝撃性、加工性、低吸水性的功用。共聚合聚醯 月女中之(b)成分的調配比例係5 0 - 2莫耳%、較佳係2 5 - 2莫耳%、 進一步較佳係2 0 - 5莫耳%。當(b)成分的調配比例小於上述下 201130886 限時,共聚合聚醯胺的耐衝撃性未提升、低吸水化之效果亦不 足。當超過上述上限時,不僅共聚合聚醯胺的結晶性會大幅地 降低、結晶化速度變慢、成形性變差,尙有耐衝撃性劣化之虞。 又,相當於10T耐綸之(a)成分的量會變少,有耐熱性或滑動 性不足之虞,故不佳。 本發明之共聚合聚醯胺除了上述(a)成分及(b)成分以外, 尙可與(c)最多30莫耳%進行共聚合。該(c)係由上述(a)之 結構單位以外的二胺與二元酸的等量莫耳鹽製得之結構單 位、或由上述(b)之結構單位以外的胺基羧酸或內醯胺製得之 結構單位。此處(c)成分的共聚合量係以(a)、(b)、(c)之合計爲 100莫耳%時的量。(c)成分係爲了賦予共聚合聚醯胺由ι〇τ耐 綸或Π耐綸、12耐綸所無法獲得之其他的特性、或是爲了改 良由10T耐綸或11耐綸、12耐綸所獲得之特性而添加者。 使用於(c)成分之共聚合成分,具體言之可列舉如以下之共 聚合成分。就二胺成分而言,可列舉如1,2 -乙二胺、1,3-丙二 胺、1,4-丁二胺、1,5-戊二胺、2-甲基-丨,5_戊二胺、丨,6•己二胺、 1,7-庚二胺、1,8-辛二胺、1,9-壬二胺 '2-甲基-1,8-辛二胺 ' 1,10-癸二胺、1,11-十一烷二胺、1,12-十二烷二胺、1,13·十三烷 二胺、1,16-十六烷二胺、1,18-十八烷二胺、2, 2, 4 (或2,4,4) -三甲基己二胺之脂肪族二胺,如哌哄、環己二胺、雙(3 -甲基 -4-胺基己基)甲烷、雙-(4,4-胺基環己基)甲烷、異佛酮二胺之 脂環式二胺’間二甲苯二胺、對二甲苯二胺、對苯二胺、間苯 二胺等之芳香族二胺及此等之氫化物等。 就一兀酸成分而3 ’可使用如下所示之二元酸或酸酐。就 201130886 二元酸而言,可列舉例如對苯二甲酸、間苯二甲酸、鄰苯二甲 酸、1,5-萘二甲酸、2,6·萘二甲酸、4,4·-聯苯二甲酸、2,2’-聯 苯二甲酸、4,4’-二苯醚二甲酸、5-磺酸鈉間苯二甲酸、5-羥 基間苯二甲酸等之芳香族二元酸、反丁烯二酸、順丁烯二酸、 丁二酸、亞甲基丁二酸、己二酸、壬二酸、癸二酸、1,11-十一 烷二酸、1,1 2-十二烷二酸、1,14-十四烷二酸、1,1 8-十八烷二 酸、1,4-環己二甲酸、1,3-環己二甲酸、1,2-環己二甲酸、4-甲基-1,2-環己二甲酸、二聚酸等之脂肪族或脂環族二元酸等。 又,可列舉ε -己內醯胺等之內醯胺及此等進行閉環而成的結 構之胺基羧酸等。 就具體的 (c)成分而言,可列舉聚己醯胺(耐綸6)、聚己 二醯丁二胺(耐綸46)、聚己二醯己二胺(耐綸66)、聚己二醯十 —烷二胺(耐綸116)、聚間茬己二醯胺(耐綸MXD6)、聚對茬己 二醯胺(耐綸PXD6)、聚癸二醯丁二胺(耐綸41〇)、聚癸二醯己 二胺(耐綸610)、聚十亞甲己二醯胺(耐綸1〇6)、聚十亞甲癸二 醯胺(耐綸1010)、聚十二烷二醯己二胺(耐綸612)'聚十二烷 二醯癸二胺(耐綸1012)、聚間苯二甲醯己二胺(耐綸6 I )、聚 對苯二甲醯丁二胺(耐綸4Τ)、聚對苯二甲醯戊二胺(耐綸5Τ)' 聚(2 -甲基對苯二甲醯戊二胺)(耐綸Μ_5Τ)、聚對苯二甲醯己二 胺(耐綸6Τ)、聚六氫對苯二甲醯己二胺(耐綸6Τ(Η))、聚對苯 二甲醯壬二胺(耐綸9Τ)、聚對苯二甲醯十一烷二胺(耐綸 11Τ)、聚對苯二甲醯十二烷二胺(耐綸12Τ)、聚雙(3_甲基- 4-胺基己基)甲烷對苯二甲醯胺(耐綸PACMT)、聚雙(3_甲基-4-胺基己基)甲烷間苯二甲醯胺(耐綸PACMI)、聚雙(3_甲基-4-胺 201130886 基己基)甲烷十二醯胺(耐綸PACM 12)、聚雙(3-甲基-4-胺基己 基)甲烷十四醯胺(耐綸PACM14)等。 就前述結構單位之中較佳的(〇成分的例子而言,爲了提# 加工性、低吸水性、耐衝撃性,可列舉聚對苯二甲醯十二垸二 胺(耐綸12T)或聚十亞甲癸二醯胺(耐綸1010)、聚十二院二 醯癸二胺(耐綸1012)等。共聚合聚醯胺中之(c)成分的調配比例 較佳係最多至3 0莫耳%、進一步較佳係5 - 2 0莫耳%。當.(c)成 分的比例少時,有(c)成分造成之效果未充分發揮之虞,當超^ 上述上限時,必要成分之(a)成分或(b)成分的量會變少,有$ 發明之共聚合聚醯胺原本所意欲之效果未充分發揮之虞,故+ 佳。 在以低碳社會、環境和諧爲目標方面,本發明之共聚合@ 醯胺較佳係使用來自於植物的原料。就來自於植物的原料$ 言,較佳係使用來自於不與食用競爭之蓖麻子油的原料,本胃 明之共聚合聚醯胺的(a)成分中的癸二胺、作爲(b)成分中的月安 基十一酸、作爲(c)成分的癸二酸較佳係使用來自於植物的原 料。就本發明之共聚合聚醯胺的較佳組成而言,可列舉以高比 率使用此等來自於植物的原料的耐綸 10T/11、耐綸 PA10T/1010/11。 本發明之共聚合聚醯胺的溶點較佳係2 4 0 - 3 1 5 °c、更佳係 28 0- 315 t。當Tm超過上述上限時,因爲當藉由射出成形法等 將共聚合聚醯胺成形之際所需之加工溫度變爲極高,會有在加 工時分解,而無法獲得目的之物性或外觀的情形。反之當Tm 小於上述下限時,結晶化速度會變慢,均變爲成形困難。又, -10- 201130886 玻璃轉移溫度(Tg)較佳係70°c -120°c、更佳係85°c -110°c。當 Tg超過上述上限時,當藉由射出成形法等將共聚合聚醯胺成 形之際,不僅所需之模具溫度變高而成形變爲困難,而且會有 在射出成形的短循環之中結晶化未充分進行的情形,引起脫模 不完全等之成形瓶頸、或是在後續的使用之中,會衍生出在高 溫下進行結晶化,因二次收縮導致變形等問題。反之當T g小 於上述下限時,會發生物性大幅降低、或無法維持吸水後之物 性等之問題。 在電子零件的成形方面,除了企求280 °C以上的高熔點、 低吸水,亦企求薄型、高週期的成型。在聚對苯二甲醯癸二胺 聚合物(1 0T)方面,雖耐熱性良好,但成形性及耐衝撃性劣化。 又,由於玻璃轉移溫度高,而成型時高模具溫度變爲必要,在 射出成型加工性上有瓶頸。即使可用低溫模具成型,會衍生因 使用時的結晶化進行而導致二次收縮的問題。基於如上述之背 景,企求具有高熔點及低吸水、易成形性的樹脂,在本發明之 共聚合聚醯胺方面,藉由將10T耐綸與特定量的U耐綸及/或 1 2耐綸進行共聚合,不僅可改良耐衝撃性,而且可壓低射出成 形時的模具溫度,可改善射出成形的加工性。如上述,本發明 之共聚合聚醯胺可使用於各式各樣的用途,尤其是高熔點的共 聚合聚醢胺,完全高度地滿足電子零件用途或對汽車引擎室内 之展開所需要的耐熱性、易加工性、低吸水性及耐衝撃性。高 熔點的共聚合聚醯胺係可藉由使(a)成分爲75 -98莫耳%、(b) 成分爲25-2莫耳%,視需要與(c)成分最多至30莫耳%進行共 聚合而製得。 -11 - 201130886 就製造本發明之共聚合聚醯胺時使用的觸 磷酸、亞磷酸、次磷酸或其金屬鹽或銨鹽、酯 屬物種而言’可列舉鉀、鈉、鎂、釩、鈣、鋅 鎢、鍺、鈦'銻等。就酯而言,可添加乙酯、 己酯、異癸酯、十八烷酯、癸酯、硬脂酯、苯 融滯留安定性提升的觀點來看,較佳係添加氫 本發明之共聚合聚醯胺之在9 6 %濃硫酸中 得之相對黏度(RV)較佳係〇.4_4.0、更佳係1.C 佳係1.5-3.0,就使聚醯胺的相對黏度爲一定範 可列舉調整分子量的手段。 本發明之共聚合聚醯胺可藉由調整胺基j 比而聚縮合的方法或添加封端劑(end-capping 調整聚醯胺的末端基量及分子量。當以一定比 羧基之莫耳比進行聚縮合時,較佳係將使用之 二元酸之莫耳比調整至二胺/二元酸=1.00/1.05 範圍。 就添加封端劑的時期而言,可列舉原料添 時、聚合後期、或聚合結束時,就封端劑而言 聚醯胺末端的胺基或羧基的反應性之單官能性 特別限制,可使用單羧酸或單胺、鄰苯二甲酸 異氰酸酯、單酸鹵化物、單酯類、單醇類等。 可列舉例如乙酸、丙酸、丁酸、戊酸、己酸、 十三酸、十四酸、十六酸、十八酸、三甲基乙 脂肪族單羧酸;環己甲酸等之脂環式單羧酸;奇 媒而言,可列舉 。就金屬鹽的金 、鈷、猛 '錫、 異丙酯、丁酯、 酯等。又,從熔 氧化鈉。 、20°C下測定而 > -3 . 5、進一步更 圍的方法而言, i與羧基之莫耳 agent)的方法, 率的胺基量與 全部二胺與全部 至 1 . 10/1.00 的 加時、聚合開始 ,只要是具有與 的化合物,並無 酐等之酸酐、單 就封端劑而言, 辛酸 '十二酸、 酸、異丁酸等之 库甲酸、苯乙酸、 -12- 201130886 α·萘甲酸、/3-萘甲酸、甲基萘甲酸、苯基乙酸等之芳香族單 羧酸;順丁烯二酸酐、鄰苯二甲酸酐、六氫鄰苯二甲酸酐等之 酸酐;甲胺、乙胺、丙胺、丁胺、己胺、辛胺、癸胺、十八胺、 二甲胺、二乙胺、二丙胺、二丁胺等之脂肪族單胺;環己胺、 二環己胺等之脂環式單胺;苯胺、甲苯胺、二苯胺、萘胺等之 芳香族單胺等。 就本發明之共聚合聚醯胺的酸價及胺價而言,各自較佳係 0-200eq/ton、0-100eq/ton。若末端官能基超過 200eq/ton,不 僅熔融滞留時會促進凝膠化或劣化,而且在使用環境下,會引 起著色或水解等之問題。另一方面,當使玻璃纖維或順丁烯二 酸改質聚烯烴等之反應性化合物進行化合時,較佳係配合反應 性及反應基而使酸價及/或胺價爲5-lOOeq/ton。 可將先前之聚醯胺用的各種添加劑使用於本發明之共聚 合聚醯胺。就添加劑而言,可列舉纖維狀強化材、塡充材、安 定劑、衝撃改良材、難燃劑、脫模劑、滑動性改良材、著色劑、 可塑劑、結晶核劑、與本發明之共聚合聚醯胺不同的聚醯胺、 聚醯胺以外的熱塑性樹脂等。 就纖維狀強化材而言’可列舉玻璃纖維、碳纖維、金屬纖 維、陶瓷纖維、有機纖維、晶鬚等,其中較佳係玻璃纖維。此 等纖維狀強化材不僅可只單獨使用1種,亦可組合數種使用。 就此處所使用的玻璃纖維而言,可使用具有O.lmm-lOOmm之 長度的切股(chopped strand)或連續單絲纖維。就玻璃纖維的截 面形狀而言’可使用圓形截面及非圓形截面的玻璃纖維。就玻 璃纖維的截面形狀而言,較佳係從物性面來看係非圓形截面的 -13- .201130886 玻璃纖維。就非圓形截面的玻璃纖維而言,較佳係亦包含相對 於纖維長的長度方向,在垂直的截面上呈略橢圓形、略長圓 形、略繭形且偏平度係1 .5 - 8者。此處所謂的偏平度,係假設 相對於玻璃纖維的長度方向,外接至垂直的截面之最小面積的 長方形,當將此長方形的長邊的長度作爲長軸、短邊的長度作 爲短軸之時,長軸/短軸之比。玻璃纖維的粗細雖無特別限定, 但短軸係l-50/zm左右、長軸係2-100μιη左右。又,較佳係 可使用玻璃纖維成爲纖維束,將纖維長裁切成1-2 0mm左右之 切股狀者。纖維狀強化材的添加量係選擇最適當的量即可,相 對於共聚合聚醯胺100重量份,最多可添加250重量份、較佳 係添加5 - 1 5 0重量份、更佳係添加1 0 - 1 0 0重量份。 就塡充材(filler)而言,以目的來分類可列舉強化用塡充材 或導電性塡充材、磁性塡充材、難燃塡充材、導熱塡充材等, 具體言之可列舉玻璃珠、玻璃薄片、玻璃微球、二氧化矽、滑 石、高嶺土、矽灰石、雲母、礬土、水滑石、蒙脫石、氫氧磷 灰石、石墨、奈米碳管、芙樂儲(fullerene)、氧化鋅、氧化銦、 氧化錫、氧化鐵、氧化鈦、氧化鎂、氫氧化鋁、氫氧化鎂、紅 磷、碳酸鈣、鈦酸鉀、鈦酸鉻酸鉛、鈦酸鋇、氮化鋁、氮化硼、 硼酸鋅、硼酸鋁、硫酸鋇、硫酸鎂、硫化鋅、鐵、鋁、銅、銀 等。此等塡充材不僅可只單獨使用1種,亦可組合數種使用。 就形狀而言,雖無特別限定,但可使用針狀、球狀、板狀、不 定形等。塡充材的添加量係選擇最適當的量即可,相對於共聚 合聚醯胺100重量份,最多可添加250重量份、較佳係添加 2 0- 1 50重量份的塡充材。又,纖維狀強化材、塡充材爲了要提 -14- 201130886 升與聚醯胺樹脂的親和性,較佳係經偶合劑處理者、或與 劑倂用’就偶合劑而言’可使用砂院系偶合劑、鈦酸鹽系 劑、鋁系偶合劑中之任一者,其中特佳係胺基矽烷偶合劑 氧矽烷偶合劑。 就安定劑而言’可列舉受阻酚系抗氧化劑、硫系抗 劑、磷抗氧化劑等之有機系抗氧化劑或熱安定劑;受阻胺 二苯基酮系、咪唑系等之光安定劑或紫外線吸收劑;金屬 性化劑,銅化合物等。就銅化合物而言,可使用氯化亞銅 化亞銅、碘化亞銅 '氯化銅、溴化銅、.碘化銅、燐酸銅、 酸銅、硫化銅、硝酸銅、乙酸銅等之有機羧酸的銅鹽等。 就銅化合物以外的構成成分而言,較佳係含有鹵化鹼金屬 物,就鹵化鹼金屬化合物而言,可列舉氯化鋰、溴化鋰、 鋰、氟化鈉、氯化鈉、溴化鈉、碘化鈉、氟化鉀、氯化鉀 化鉀、碘化鉀等。此等添加劑不僅可只單獨使用1種,亦 合數種使用。安定劑的添加量係選擇最適當的量即可,相 共聚合聚醯胺100重量份,最多可添加5重量份。 又,本發明之共聚合聚醯胺可將與本發明之共聚合聚 不同的組成之聚醯胺進行聚合物摻合。就與本發明之共聚 醯胺不同的組成之聚醯胺而言,雖無特別限制,但可單獨 或使用二種以上之聚己醯胺(耐綸6)、聚十一醯胺(耐綸I 聚十二醯胺(耐綸12)、聚己二醯丁二胺(耐綸46)、聚己二 二胺(耐綸66)、聚間茬己二醯胺(耐綸MXD6)、聚對茬己 胺(耐綸PXD6)、聚癸二醯丁二胺(耐綸410)、聚癸二醯己 (耐綸610)、聚十亞甲己二醯胺(耐綸106)、聚十亞甲癸一 偶合 偶合 、環 氧化 系、 示活 、溴 焦磷 此外 化合 碘化 、漠 可組 對於 醯胺 合聚 使用 1) ' 醯己 二醯 二胺 醯胺 -15- 201130886 (耐綸1010)、聚十二烷二醯己二胺(耐綸612)、聚十二烷二醯 癸二胺(耐綸1012)、聚對苯二甲醯己二胺(耐綸6T)、聚間苯二 甲醯己二胺(耐綸61 )、聚對苯二甲醯丁二胺(耐綸4T)、聚對 苯二甲醯戊二胺(耐綸5 T)、聚(2-甲基對苯二甲醯戊二胺)(耐綸 M-5T)、聚六氫對苯二甲醯己二胺(耐綸6T (H))、聚2-甲基-八亞甲基對苯二甲醯胺、聚對苯二甲醯壬二胺(耐綸9T)、聚對 苯二甲醯癸二胺(耐綸10T)、聚對苯二甲醯十一烷二胺(耐綸 11T)、聚對苯二甲醯十二烷二胺(耐綸12T)、聚雙(3-甲基- 4-胺基己基)甲烷對苯二甲醯胺(耐綸PACMT)、聚雙(3-甲基- 4-胺基己基)甲烷間苯二甲醯胺(耐綸PACMI)、聚雙 (3-甲基-4-胺基己基)甲烷十二醯胺(耐綸PACM12)、聚雙(3-甲基-4-胺基 己基)甲烷十四醯胺(耐綸PACM14)、聚烷醚共聚合聚醯胺等之 單體、或此等之共聚合聚醯胺。在此等之中,爲了提升結晶速 度,可將耐綸66或耐綸6T66等進行聚合物摻合。與本發明之 共聚合聚醯胺不伺的組成之聚醯胺的添加量係選擇最適當的 量即可,相對於共聚合聚醯胺1 00重量份,最多可添加50重 量份。 可在本發明之共聚合聚醯胺中添加與本發明之共聚合聚 醯胺不同的組成之聚醯胺以外的熱塑性樹脂。就聚醯胺以外的 聚合物而言’可列舉聚苯硫(PPS)、液晶聚合物(LCP)、醯胺 樹脂、聚醚醚酮(PEEK)、聚醚酮(PEK)、聚醚醯亞胺(PEI)、熱 塑性聚醯亞胺、聚醯胺醯亞胺(PAI)、聚醚酮酮(PEKK)、聚伸 苯醚(PPE)、聚醚颯(PES)、聚颯(PSU)、聚芳酯(PAR)、聚對苯 二甲酸乙二酯、聚對苯二甲酸丁二酯、聚對萘二甲酸乙二酯、 -16- 201130886 聚對萘二甲酸丁二酯、聚碳酸酯(PC)、聚甲醛(POM)、聚丙烯 (PP)、聚乙烯(PE)、聚甲基戊烯(TPX)、聚苯乙烯(PS)、聚甲基 丙烯酸甲酯、丙烯腈-苯乙烯共聚合物(AS)、丙烯腈-丁二烯-苯乙烯共聚合物(ABS),當相溶性差時,添加反應性化合物或 嵌段聚合物等之相溶化劑、或將聚醯胺以外的聚合物改質(特 佳係酸改質)乃爲重要。此等熱塑性樹脂雖可藉由熔融混練在 熔融狀態下進行摻合,亦可使熱塑性樹脂成爲纖維狀、粒子狀 而分散於本發明之共聚合聚醯胺中。熱塑性樹脂的添加量係選 擇最適當的量即可,相對於共聚合聚醯胺100重量份,最多可 添加5 0重量份。 就衝撃改良材而言,可列舉乙烯·丙烯橡膠(EPM)、乙烯-丙烯-二烯橡膠(EPDM)、乙烯-丙烯酸共聚合物、乙烯·丙烯酸 酯共聚合物、乙烯-甲基丙烯酸共聚合物、乙烯-甲基丙烯酸酯 共聚合物、乙烯乙酸乙烯酯共聚合物等之聚烯烴系樹脂;苯乙 烯-丁二烯-苯乙烯嵌段共聚合物(SBS)、苯乙烯-乙烯·丁烯-苯 乙烯嵌段共聚合物(SEBS)、苯乙烯-異戊二烯-苯乙烯共聚合物 (SIS)、丙烯酸酯共聚合物等之乙烯聚合物系樹脂;將聚對苯二 甲酸丁二酯或聚對萘二甲酸丁二酯作爲可塑性成分、將聚丁二 醇或聚己內醋或聚碳酸酯二醇作爲柔軟性成分之聚酯嵌段共 聚合物、耐綸彈性體、胺基甲酸酯彈性體、丙烯酸系彈性體、 聚砂氧橡膠、氟系橡膠、具有由不同的2種聚合物所構成之核 -殼(core-shell)結構的聚合物粒子等。衝撃改良材的添加量係 選擇最適當的量即可,相對於共聚合聚醯胺100重量份而言, 最多可添加30重量份。 -17- 201130886 相對於本發明之共聚合聚醯胺而言,當添加本發明中的聚 醯胺樹脂以外的熱塑性樹脂及耐衝撃改良材時,較佳係共聚合 有可與聚醯胺反應的反應性基,就反應性基而言,係聚醯胺樹 脂的末端基之胺基、可與羧基及主鏈醯胺基反應之基。具體言 之,雖有例示羧酸基、酸酐基、環氧基、噚唑基、胺基、異氰 酸酯基等,但在該等之中,酸酐基係反應性最優良。因爲如此 地將具有與聚醯胺樹脂反應的反應性基的熱塑性樹脂微分散 於聚醯胺中,粒子間的距離變短,耐衝撃性被大幅地改良。 就難燃劑而言,鹵素系難燃劑與難燃助劑的組合爲佳,就 鹵素系難燃劑而言,較佳係溴化聚苯乙烯、溴化聚伸苯醚、溴 化雙酚型環氧系聚合物、溴化苯乙烯順丁烯二酸酐聚合物、溴 化環氧樹脂、溴化苯氧樹脂、十溴二苯醚、十溴聯苯、溴化聚 碳酸酯、全氯環十五烷及溴化交聯芳香族聚合物等,就難燃助 劑而言,較佳係三氧化銻、五氧化銻、銻酸鈉等之銻化合物或 錫酸鋅等。其中從熱安定性的方面來看,較佳係二溴聚苯乙烯 與銻酸鈉及/或錫酸鋅的組合。又,就非鹵素系難燃劑而言, 可列舉氰尿酸三聚氰胺、紅磷、次膦酸的金屬鹽、含氮磷酸系 的化合物。特佳係次磷酸金屬鹽與含氮磷酸系化合物的組合, 就含氮磷酸系化合物而言,係含有三聚氰胺、或如蜜白胺 (melame)'鯨蠟(melon)之三聚氰胺的縮合物與聚磷酸的反應性 生物或該等之混合物。當時,爲了模具等之金屬抗腐蝕,較佳 係添加水滑石系化合物。就其他的難燃劑、難燃助劑而言,可 列舉硼酸鋅、硫化鋅、鉬化合物、氧化鐵、氫氧化鋁、氫氧化 鎂、聚矽氧樹脂、氟樹脂、蒙脫石、二氧化矽、碳酸金屬鹽等。 -18- 201130886 難燃劑的添加量係選擇最適當的量即可,相對於共聚合聚醯胺 100重量份,最多可添加50重量份。 就脫模劑而言,可列舉長鏈脂肪酸或其酯或金屬鹽、醯胺 系化合物、聚乙烯蠟、聚矽氧、聚環氧乙烷等。就長鏈脂肪酸 而言,特佳係碳數1 2以上,可列舉例如十八酸、1 2 -羥基十八 酸、二十二酸、二十八酸等,部分或全羧酸可藉由單二醇或聚 二醇進行酯化、或亦可形成金屬鹽。就醯胺系化合物而言,可 列舉乙烯雙對苯二甲醯胺、亞甲基雙硬脂基醯胺等。此等脫模 劑可單獨使用或亦可使用混合物。脫模材的添加量係選擇最適 當的量即可’相對於共聚合聚醯胺1〇〇重量份,最多可添加5 重量份。 就滑動性改良材而言,可列舉高分子量聚乙烯、酸改質高 分子量聚乙烯、氟樹脂粉末、’二硫化鉬、聚矽氧樹脂、聚矽氧 油、鋅、石墨、礦物油等。相對於共聚合聚醯胺100重量份, 樹脂滑動性改良材最多可添加3重量份》 本發明之共聚合聚醯胺可用先前習知的方法製造,例如可 藉由使U)成分的原料單體之癸二胺、對苯二甲酸,及(b)成分 之11-胺十一碳酸、12-胺十二碳酸、十一碳內醯胺、十二碳內 醯胺及選自由此等之混合物構成之群組的原料單體,以及視需 要由(c)前述(a)之結構單位以外的二胺與二元酸的等量莫耳 鹽、或前述(b)之結構單位以外的胺基羧酸或內醯胺而製得之 原料單體進行共縮合反應而輕易合成。共縮聚合反應的順序並 無特別限定,可使全部的原料單體進行一次反應,亦可先使一 部分的原料單體進行反應,接著使剩餘的原料單體進行反應。 -19- 201130886 又’聚合方法並無特別限定,自原料添加至聚合物製造可用連 續的步驟進行,亦可於#且製造寡聚物後,在另外的步驟藉由 捏合機等進行聚合,或可使用藉由固態聚合將寡聚物高分子量 化等之方法。藉由調整原料單體的添加比率,可控制所合成之 共聚合聚醯胺中之各結構單位的比例。 [實施例] 以下藉由實施例進一步具體地説明本發明,但本發明並非 限定於此等之實施例。另外,實施例中所記載之測定値係藉由 以下的方法測定而得者。 (1) 相對黏度 將聚醯胺樹脂〇.25g溶解於96 %硫酸25ml中,使用奥士 華黏度計(Ostwald viscometer)在20。(:下測定而得。 (2) 熔點(Tm)及玻璃轉移溫度(Tg) 經1 0 5 °C下、1 5小時減壓乾燥之聚醯胺在鋁製秤盤(TA Instruments公司製;型號900793.901)中計量l〇mg,用鋁製蓋 (TA Instruments公司製;型號900794.90 1 )使其成爲密封狀態 調製成測定i式料後,使用微差掃描熱量計DSCQ100 (TA INSTRUMENTS製),自室溫以20°C /分昇溫,在.3 50 °C下維持3 分鐘後將測定試料坪盤取出’並浸入液態氮中使其急冷。其 後,自液態氮中將試樣取出,並在室溫下擱置3 0分鐘後,再 次使用微差掃描熱量計DSCQ100(TA INSTRUMENTS製)自室 溫以20°C /分昇溫,在3 5 0 °C下維持3分鐘。將該時的熔解造 成之吸熱的波峰溫度作爲熔點(Tm)。又,玻璃轉移溫度(Tg)係 以第2次的昇溫過程中玻璃轉移點以下之基線的延長線,與表 -20- 201130886 示在自波峰之挺立部分至波峰的頂點之間的最大傾斜的接線 之交點的溫度來求取。 ο)成形性 使用東芝機械製射出成形機EC-100,將料筒溫度設定爲 樹脂的熔點+ 2 0 °C。模具係使用縱1 〇 〇 m m、橫1 0 0 m m、厚度1 m m t 的平板製作用模具。將模具溫度設定爲1 40 °C,以射出速度 50mm/sec、保壓3〇MPa、射出時間10秒、冷卻時間1〇秒進行 成型’成形性的優劣係實施如以下的評價。 〇:看不到樹脂的分解,且可無問題地製得成型品。 △:成型時可看到發泡、外觀不良等分解的徵兆。 X:脫模性不足,成型品黏附於模具或變形。 (4) 飽和吸水率 飽和吸水率的評價係製造上述縱l〇〇mm、橫1〇〇mm、厚度 1mm的平板,將此浸漬於8(TC熱水中,由以下的算式求取而 得。 飽和吸水率(%)={(飽和吸水時的重量-乾燥時重量)/乾燥時重 量} X 100 (5) 單樑衝擊(Charpy impact)強度 單樑衝擊強度係以ISO 179爲準,在23 °c、具凹口狀態下 進行評價。試片係使用東芝機械製射出成形機EC_1〇〇,將料 筒溫度設定爲樹脂的熔點+20°C。將模具溫度設定爲14〇t, 以射出速度50mm/SeC、保壓3〇MPa、射出時間1()秒、冷卻時 間1 6秒進行成型。 〔實施例1〕 201130886 將癸二胺12.38kg、對苯二甲酸11.95kg、11-胺基十一酸 1.6 1kg、作爲觸媒之二亞磷酸鈉9g、作爲末端調整劑之乙酸 4〇g及離子交換水17.52kg添加至50升的壓力釜中,用N2自 常壓加壓至〇.〇5MPa,然後釋壓回到常壓。進行此操作3次, 進行N2取代後,在135°C、〇.3MPa下使其於攪拌下均勻溶解。 其後,藉由送液幫浦連續地供給溶解液,使其在加熱配管中昇 溫至240°C,加熱1小時。其後,將反應混合物供給至加壓反 應罐,加熱至290 °C,將一部分的水餾出以使罐内壓維持在 3 MP a,而製得低級縮合物。其後,將此低級縮合物維持在熔融 狀態並直接供給至雙軸捏合機(螺孔直徑37mm ; L/D = 60),使 樹脂溫度爲3 3 0 °C,一面自 3處的排水孔將水排去,一面在熔 融下進行聚縮合,而製得共聚合聚醯胺。將此非強化共聚合聚 醯胺之原料單體的添加比率與特性,及由此共聚合聚醯胺製得 之成形品的評價結果示於表1。接下來,將玻璃纖維添加至製 得之共聚合聚醯胺中’製造強化共聚合聚醯胺樹脂組成物。具 體言之’使用同方向雙軸捏合機,自漏料口端將料筒溫度設定 爲3 20°C -3 3 0°C - 3 3 0°C -3 20°C ’自側面進料口將玻璃纖維(日本 電氣硝子(股)製T-27 5 H)投入而進行。在水槽中冷卻製得之線 股後,用線股切割器粒狀化,在12 5 °C下乾燥5小時,製得強 化共聚合聚醯胺樹脂組成物。將此強化共聚合聚醯胺樹脂組成 物的組成比率、成形性、及由此共聚合聚醯胺樹脂組成物製得 之成形品的評價結果示於表2。 〔實施例2〕 除了將癸二胺的量變更爲8.26kg'對苯二甲酸的量變更爲 -22- 201130886 7.97kg、11-胺十—碳酸的量變更爲6.43kg以外,與 相同而合成共聚合聚醯胺。將此非強化共聚合聚醯胺 體的添加比率與特性、及由此共聚合聚醯胺製得之成 價結果示於表1。接下來,將玻璃纖維添加至製得之 醯fl安中’與實施例1相同地製得強化共聚合聚醯胺 物。將此強化共聚合聚醯胺樹脂組成物的組成比率、 及由此共聚合聚醯胺樹脂組成物製得之成形品的評 於表2。 〔實施例3〕 除了將癸二胺的量變更爲Π.0〗 kg、對苯二甲酸 爲10.62kg、11-胺十—碳酸的量變更爲3 22kg以外 例1相同而合成共聚合聚醯胺。將此共聚合聚醯胺之 的添加比率與特性示於表2。接下來,將玻璃纖維添 之共聚合聚醯胺中,與實施例1相同地製得強化共聚 樹脂組成物。將此強化共聚合聚醯胺樹脂組成物的組 成形性、及由此共聚合聚醯胺樹脂組成物製得之成形 結果示於表2。 〔實施例4〕 除了將11-胺十一碳酸3.22 kg變更爲十一碳內醯 以外,與實施例3相同而合成共聚合聚醯胺。將此共 胺之原料單體的添加比率與特性示於表2。接下來, 維添加至製得之共聚合聚醯胺中,與實施例1相同地 共聚合聚醯胺樹脂組成物。將此強化共聚合聚醯胺樹 的組成比率、成形性、及由此共聚合聚醯胺樹脂組成 實施例1 之原料單 形品的評 共聚合聚 樹脂組成 成形性、 價結果不 的量變更 ,與實施 原料單體 加至製得 合聚醯胺 成比率' 品的評價 胺 2.93kg 聚合聚醯 將玻璃纖 製得強化 脂組成物 物製得之 -23- 201130886 成形品的評價結果示於表2。 〔實施例5〕 除了將11-胺十一碳酸3.22kg變更爲12-j 3.44kg以外,與實施例3相同而合成共聚合聚醯胺 合聚醯胺之原料單體的添加比率與特性示於表2。 玻璃纖維添加至製得之共聚合聚醯胺中,與實施例 得強化共聚合聚醯胺樹脂組成物。將此強化共聚合 組成物的組成比率、成形性、及由此共聚合聚醯胺 製得之成形品的評價結果示於表2。 〔實施例6〕 除了將11-胺十一碳酸3.2 2kg變更爲十二碳內 以外,與實施例3相同而合成共聚合聚醯胺。將此 胺之原料單體的添加比率與特性示於表2。接下來 維添加至製得之共聚合聚醯胺中,與實施例1相同 共聚合聚醯胺樹脂組成物。將此強化共聚合聚醯胺 的組成比率、成形性、及由此共聚合聚醯胺樹脂組 成形品的評價結果示於表2。 〔實施例7〕 除了將對苯二甲酸11.95kg變更爲對苯二甲酸 癸二酸1.62kg以外,與實施例1相同而合成共聚 將此共聚合聚醯胺之原料單體的添加比率與特性开 下來,將玻璃纖維添加至製得之共聚合聚醯胺中’ 相同地製得強化共聚合聚醯胺樹脂組成物。將此強 醯胺樹脂組成物的組成比率、成形性、及由此共聚 i安十二碳酸 。將此共聚 接下來,將 1相同地製 聚醯胺樹脂 樹脂組成物 醯胺3 . 1 5 k g 共聚合聚醯 ,將玻璃纖 地製得強化 樹脂組成物 成物製得之 10.62kg 與 合聚醯胺, 於表2。接 與實施例1 化共聚合聚 合聚醯胺樹 -24- 201130886 脂組成物製得之成形品的評價.結果示於表2。 〔實施例8〕 除了將癸二胺的量變更爲13.07kg、對苯二甲酸的量變更 爲12.62kg、11-胺十一碳酸的量變更爲0.80kg以外’與實施 例1相同而合成共聚合聚醯胺。將此共聚合聚醯胺之原料單體 的添加比率與特性示於表2。接下來,將玻璃纖維添加至製得 之共聚合聚醯胺中,與實施例1相同地製得強化共聚合聚醯胺 樹脂組成物。將此強化共聚合聚醯胺樹脂組成物的組成比率、 成形性、及由此共聚合聚醯胺樹脂組成物製得之成形品的評價 結果不於表2。 〔比較例1 〕 除了不使用 11-胺十一碳酸、將癸二胺的量變更爲 13.76kg、對苯二甲酸的量變更爲13.28kg以外,與實施例1 相同而製得共聚合聚醯胺。將此非強化共聚合聚醯胺之原料單 體的添加比率與特性、及由此共聚合聚醯胺製得之成形品的評 價結果示於表1。接下來,將玻璃纖維添加至製得之共聚合聚 醯胺中’與實施例1相同地製得強化共聚合聚醯胺樹脂組成 物。將此強化共聚合聚醯胺樹脂組成物的組成比率、成形性、 及由此共聚合聚醯胺樹脂組成物製得之成形品的評價結果示 於表2。 〔比較例2〕 除了不使用11-胺Η--碳酸、將癸二胺12.38kg變更爲癸 二胺8.2 6kg與己二胺3.71kg、對苯二甲酸的量變更爲13.28kg 以外’與實施例1相同而製得共聚合聚醯胺。將此非強化共聚 -25- 201130886 合聚醯胺之原料單體的添加比率與特性、及由此共 製得之成形品的評價結果示於表1。接下來,將玻 至製得之共聚合聚醯胺中,與實施例1相同地製得 聚醯胺樹脂組成物。此強化共聚合聚醯胺樹脂組成 率、成形性、及由此共聚合聚醯胺樹脂組成物製得 評價結果示於表2。 〔比較例3〕. 除了將癸二胺的量變更爲5.50kg、對苯二甲酸 5.31kg、11-胺十一碳酸的量變更爲9.65kg以外, 相同而合成共聚合聚醯胺。將此共聚合聚醯胺之原 加比率與特性示於表2。接下來,將玻璃纖維添加 聚合聚醯胺中,與實施例1相同地製得強化共聚合 組成物。將此強化共聚合聚醯胺樹脂組成物的組成 性、及由此共聚合聚醯胺樹脂組成物製得之成形品 不於表2。 〔比較例4〕 除了將11-胺碳酸3.22kg變更爲ε·己內 以外,與實施例3相同而合成共聚合聚醯胺。將此 胺之原料單體的添加比率與特性示於表2。接下來 維添加至製得之共聚合聚醯胺中,與實施例1相同 共聚合聚醯胺樹脂組成物。將此強化共聚合聚醯胺 的組成比率、成形性、及由此共聚合聚醯胺樹脂組 成形品的評價結果示於表2。 聚合聚醯胺 璃纖維添加 強化共聚合 物的組成比 之成形品的 的量變更爲 與實施例1 料單體的添 至製得之共 聚醯胺樹脂 比率、成形 的評價結果 醯胺1 · 8 1 k g 共聚合聚醯 ,將玻璃纖 地製得強化 樹脂組成物 成物製得之 -26- 201130886 [表1] 非強化共聚合聚離 實施例1 實施例2 比較例1 比較例2 原料單體之添加 比率漠耳%) 己二胺 40 癸二胺 90 60 100 60 對苯二甲酸 90 60 100 100 11-胺基十一酸 10 40 共聚合聚赚 的特性 相對黏度. 2.8 2.6 2.5 2.6 熔點(。〇 302 250 316 287 玻璃轉移溫度(°c) 104 75 114 122 成形性 〇 〇 △ X 成形品的龍 結果 飽和吸水率(%) 2.7 2.5 2.9 3.2 單樑衝擊値(kj/m2) 6.3 5.8 4.2 4.4 -27- 201130886—νη(〇η2)” (b) The component is used to improve the disadvantages of component (a), and has the function of improving the punching resistance, workability, and low water absorption of all copolymerized polyamines. The proportion of the component (b) in the Juyue female is 5 0 - 2 mol%, preferably 2 5 - 2 mol%, further preferably 20 - 5 mol%. When the component (b) When the blending ratio is less than the above-mentioned limit of 201130886, the impact resistance of the copolymerized polyamine is not improved, and the effect of lowering the water absorption is insufficient. When the above upper limit is exceeded, not only the crystallinity of the copolymerized polyamine is greatly lowered, and the crystallinity is greatly lowered. The speed is slow, the formability is deteriorated, and the ruthenium resistance is deteriorated. The amount of the component (a) corresponding to the 10T nylon is reduced, and the heat resistance or the slidability is insufficient. The copolymerized polyamine of the present invention may be copolymerized with (c) up to 30 mol% in addition to the above components (a) and (b). (c) is a structural unit of the above (a) a structural unit prepared from an equivalent molar salt of a diamine and a dibasic acid, or an amine other than the structural unit of the above (b) The structural unit obtained by the carboxylic acid or the indoleamine. The amount of the copolymerization of the component (c) is the amount when the total of (a), (b), and (c) is 100 mol%. In order to impart other characteristics that the copolymerized polyamine is not available from ι〇τ or nylon, 12 nylon, or to improve the properties obtained from 10T nylon or 11 nylon and 12 nylon. Further, the copolymerization component to be used in the component (c) may, for example, be a copolymerization component as follows. Examples of the diamine component include 1,2-ethylenediamine and 1,3-propene. Diamine, 1,4-butanediamine, 1,5-pentanediamine, 2-methyl-indole, 5-pentanediamine, anthracene, hexamethylenediamine, 1,7-heptanediamine, 1, 8-octanediamine, 1,9-nonanediamine '2-methyl-1,8-octanediamine' 1,10-nonanediamine, 1,11-undecanediamine, 1,12-ten Dialkyldiamine, 1,13.tridecanediamine, 1,16-hexadecyldiamine, 1,18-octadecanediamine, 2, 2, 4 (or 2,4,4)-three An aliphatic diamine of methyl hexamethylenediamine such as piperazine, cyclohexanediamine, bis(3-methyl-4-aminohexyl)methane, bis-(4,4-aminocyclohexyl)methane, or different Foxone diamine An aromatic diamine such as an alicyclic diamine, m-xylylenediamine, p-xylenediamine, p-phenylenediamine or m-phenylenediamine, and the like, and the like. The dibasic acid or acid anhydride shown below is used. Examples of the 201130886 dibasic acid include terephthalic acid, isophthalic acid, phthalic acid, 1,5-naphthalene dicarboxylic acid, and 2,6-naphthalene. Dicarboxylic acid, 4,4·-diphenyl phthalic acid, 2,2′-diphenyl phthalic acid, 4,4′-diphenyl ether dicarboxylic acid, sodium 5-sulfonate isophthalic acid, 5-hydroxyisophthalic acid An aromatic dibasic acid such as formic acid, fumaric acid, maleic acid, succinic acid, methylene succinic acid, adipic acid, sebacic acid, sebacic acid, 1,11-Eleven Alkanoic acid, 1,1 2-dodecanedioic acid, 1,14-tetradecanedioic acid, 1,1 8-octadecanedioic acid, 1,4-cyclohexanedicarboxylic acid, 1,3-ring An aliphatic or alicyclic dibasic acid such as adipate, 1,2-cyclohexanedicarboxylic acid, 4-methyl-1,2-cyclohexanedicarboxylic acid or dimer acid. Further, examples thereof include an indoleamine such as ε-caprolactam and an aminocarboxylic acid having a structure in which the ring is closed. Specific examples of the component (c) include polyhexylamine (Nylon 6), polyhexamethylenediamine (Nylon 46), polyhexamethylenediamine (Nylon 66), and polyhexyl Dioxetane-alkaneamine (Nylon 116), poly-m-decylamine (Nylon MXD6), poly-p-xylamine (Nylon PXD6), polyfluorene diamine (Nylon 41) 〇), polyfluorene dihexyl hexamethylenediamine (Nylon 610), polydecamethylenediamine (Nylon 1〇6), polydecamethylenediamine (Nylon 1010), polydodecane Dioxanediamine (Nylon 612) 'Polydodecane Diamine Diamine (Nylon 1012), Poly(m-xylylenediamine hexamethylenediamine (Nylon 6 I ), Poly(p-xylylene) Amine (Nylon 4Τ), poly(p-xylylene pentanediamine (Nylon 5Τ)' poly(2-methyl-p-xylylene pentanediamine) (Nylon Μ5Τ), polyparaphenylene benzoate Diamine (Nylon 6Τ), polyhexahydrophthalic acid hexamethylenediamine (Nylon 6Τ(Η)), polyparaphenylene diamine (Nylon 9Τ), polyparaphenylene terephthalate Monoalkyldiamine (Nylon 11Τ), polyparaphenylene dodecanediamine (Nylon 12Τ), polybis(3_methyl-4-aminohexyl)methanephthalic acid (Nylon PACMT), poly-bis(3_methyl-4-aminohexyl)methane meta-xylamine (Nylon PACMI), poly-bis(3_methyl-4-amine 201130886 hexyl) methane Diamine (Nylon PACM 12), polybis(3-methyl-4-aminohexyl)methanetetradecylamine (Nylon PACM14), and the like. Among the above-mentioned structural units (for the example of the bismuth component, in order to mention the processability, low water absorption, and impact resistance, polytrimethylene sulfonium diamine (Nylon 12T) or Polydecamethylenediamine (Nylon 1010), Polytetradecyldiamine (Nylon 1012), etc. The proportion of the component (c) in the copolymerized polyamine is preferably up to 3 0% by mole, further preferably 5% to 2% by mole. When the ratio of the component (c) is small, the effect of the component (c) is not sufficiently exerted. When the upper limit is exceeded, the amount of the component (a) or the component (b) of the essential component is reduced, and there is The effect of the inventive copolymerized polyamine is not fully exerted, so it is better. In terms of a low-carbon society and environmental harmony, the copolymerization @ 醯amine of the present invention preferably uses a plant-derived raw material. In the case of raw materials derived from plants, it is preferred to use a raw material derived from castor oil which does not compete with food, and a diamine in the component (a) of the copolymerized polyamine of the stomach, as the component (b) In the case of the nicotinic acid in the medium and the sebacic acid as the component (c), a raw material derived from a plant is preferably used. The preferred composition of the copolymerized polyamine of the present invention includes nylon 10T/11 and nylon PA10T/1010/11 which are used as raw materials derived from plants at a high ratio. The melting point of the copolymerized polyamine of the present invention is preferably from 2 4 0 to 3 15 ° C, more preferably from 28 0 to 315 t. When the Tm exceeds the above upper limit, the processing temperature required for forming the copolymerized polyamine by the injection molding method or the like becomes extremely high, and it may be decomposed during processing to obtain the desired physical properties or appearance. situation. On the other hand, when Tm is less than the above lower limit, the crystallization rate becomes slow, and both become difficult to form. Further, -10- 201130886 The glass transition temperature (Tg) is preferably 70 ° c - 120 ° C, more preferably 85 ° c - 110 ° c. When the Tg exceeds the above upper limit, when the copolymerized polyamine is formed by an injection molding method or the like, not only the required mold temperature becomes high, but molding becomes difficult, and crystallizing in a short cycle of injection molding occurs. In the case where the chemical composition is insufficient, the molding bottleneck such as incomplete demolding or the subsequent use may cause problems such as crystallization at a high temperature and deformation due to secondary shrinkage. On the other hand, when Tg is less than the above lower limit, there is a problem that the physical properties are largely lowered or the physical properties after water absorption cannot be maintained. In the formation of electronic parts, in addition to the high melting point of 280 ° C or higher, low water absorption, it also requires thin, high cycle molding. In terms of polyparathylenediamine diamine polymer (10T), although heat resistance is good, moldability and impact resistance are deteriorated. Further, since the glass transition temperature is high, high mold temperature is required during molding, and there is a bottleneck in the injection molding processability. Even if it can be molded by a low temperature mold, there is a problem that secondary shrinkage occurs due to crystallization during use. Based on the above background, a resin having a high melting point and low water absorption and formability is sought, and in the copolymerized polyamine of the present invention, 10T nylon and a specific amount of U nylon and/or 12 are resistant. Copolymerization of the rayon not only improves the squeezing resistance, but also lowers the mold temperature at the time of injection molding, and improves the workability of injection molding. As described above, the copolymerized polyamine of the present invention can be used for a wide variety of applications, especially high-melting point copolymerized polyamines, to completely meet the heat resistance required for use in electronic parts or in the development of automotive engine rooms. Sex, easy to process, low water absorption and impact resistance. The high melting point copolymerized polyamine can be obtained by making the component (a) 75-98 mol%, (b) the component 25-2 mol%, and optionally the component (c) up to 30 mol%. It is obtained by copolymerization. -11 - 201130886 For the production of the phosphoric acid, phosphorous acid, hypophosphorous acid or its metal or ammonium salt or ester species used in the manufacture of the copolymerized polyamine of the present invention, 'potassium potassium, sodium, magnesium, vanadium, calcium , zinc tungsten, tantalum, titanium '锑 and so on. In the case of an ester, ethyl ester, hexyl ester, isodecyl ester, octadecyl ester, decyl ester, stearyl ester, and benzene melt retention stability are preferably added, and hydrogen is preferably added in the copolymerization of the present invention. The relative viscosity (RV) of polyamidamine in 9 6 % concentrated sulfuric acid is better. 4_4. 0, better system 1. C good system 1. 5-3. 0, the relative viscosity of polyamine is set to a certain standard. The copolymerized polyamine of the present invention can be polycondensed by adjusting the ratio of the amine group j or by adding a blocking agent (end-capping to adjust the terminal group amount and molecular weight of the polyamine). When polycondensation is carried out, it is preferred to adjust the molar ratio of the dibasic acid to be used to diamine/dibasic acid=1. 00/1. 05 range. In the period in which the terminal blocking agent is added, the monofunctionality of the reactivity of the amine group or the carboxyl group at the terminal of the polyamine is particularly limited in the case of the addition of the raw material, the later stage of the polymerization, or the end of the polymerization. A monocarboxylic acid or a monoamine, an isocyanate phthalate, a monoacid halide, a monoester, a monool or the like is used. For example, an alicyclic ring such as acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, tridecanoic acid, tetradecanoic acid, hexadecanoic acid, octadecanoic acid, trimethylethylaliphatic monocarboxylic acid or cyclohexanecarboxylic acid may be mentioned. The monocarboxylic acid; the inert medium is exemplified. The metal salts are gold, cobalt, turmeric, tin, isopropyl ester, butyl ester, ester, and the like. Also, from the melting of sodium oxide. , measured at 20 ° C and > -3 .  5. For a further method, the method of i and the carboxyl group of the carboxyl group, the rate of the amine group and all the diamines and all to 1 .  10/1. The addition of 00 and the initiation of polymerization are as long as they are compounds having a compound, and there is no anhydride such as an anhydride, and a capping agent, caprylic acid, octanoic acid, acid, isobutyric acid or the like, phenylacetic acid, 12-201130886 Aromatic monocarboxylic acid such as α-naphthoic acid, /3-naphthoic acid, methylnaphthoic acid or phenylacetic acid; maleic anhydride, phthalic anhydride, hexahydrophthalic anhydride, etc. Anhydride; an aliphatic monoamine such as methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, octadecylamine, dimethylamine, diethylamine, dipropylamine or dibutylamine; An alicyclic monoamine such as an amine or dicyclohexylamine; an aromatic monoamine such as aniline, toluidine, diphenylamine or naphthylamine. With respect to the acid value and amine valence of the copolymerized polyamine of the present invention, each is preferably 0-200 eq/ton, 0-100 eq/ton. When the terminal functional group exceeds 200 eq/ton, gelation or deterioration is promoted not only when the melt is retained, but also causes problems such as coloring or hydrolysis in the use environment. On the other hand, when a reactive compound such as glass fiber or a maleic acid-modified polyolefin is compounded, it is preferred to blend the reactivity and the reactive group so that the acid value and/or the amine value is 5-100 eq/ Ton. Various additives for the prior polyamine can be used in the copolymerized polyamine of the present invention. Examples of the additive include a fibrous reinforcing material, a cerium filling material, a stabilizer, a scouring improving material, a flame retardant, a releasing agent, a slidability improving material, a coloring agent, a plasticizer, a crystal nucleating agent, and the present invention. Copolymerization of a polyamine or a thermoplastic resin other than polyamine. Examples of the fibrous reinforcing material include glass fibers, carbon fibers, metal fibers, ceramic fibers, organic fibers, whiskers, and the like, and among them, glass fibers are preferred. These fibrous reinforcing materials may be used alone or in combination of several kinds. For the glass fiber used herein, it can be used with O. Chopped strand or continuous monofilament fiber of length lmm-lOOmm. Regarding the cross-sectional shape of the glass fiber, a glass fiber having a circular cross section and a non-circular cross section can be used. In terms of the cross-sectional shape of the glass fiber, it is preferred to have a non-circular cross section of -13- from the physical surface. 201130886 Fiberglass. In the case of a glass fiber having a non-circular cross section, it is preferred to include a longitudinal direction with respect to the length of the fiber, a slightly elliptical shape in the vertical cross section, a slightly rounded shape, a slightly rounded shape, and a flatness system. 5 - 8 people. Here, the degree of flatness is a rectangle which is assumed to be the smallest area of the cross section perpendicular to the longitudinal direction of the glass fiber, and when the length of the long side of the rectangle is the long axis and the length of the short side is the short axis , the ratio of the long axis to the short axis. The thickness of the glass fiber is not particularly limited, but the short axis is about 1 to 50/zm and the long axis is about 2 to 100 μm. Further, it is preferable to use a glass fiber as a fiber bundle and cut the fiber length into a strand shape of about 1-2 0 mm. The amount of the fibrous reinforcing material to be added may be selected in an optimum amount, and may be added up to 250 parts by weight, preferably from 5 to 1,500 parts by weight, based on 100 parts by weight of the copolymerized polyamine. 1 0 - 1 0 0 parts by weight. In terms of the purpose of the filler, the enthalpy for filling, the conductive enamel, the magnetic retort, the flammable ruthenium, the thermal conductive ruthenium, and the like can be cited. Glass beads, glass flakes, glass microspheres, cerium oxide, talc, kaolin, ash, mica, alumina, hydrotalcite, montmorillonite, hydroxyapatite, graphite, carbon nanotubes, Fu Le Chu (fullerene), zinc oxide, indium oxide, tin oxide, iron oxide, titanium oxide, magnesium oxide, aluminum hydroxide, magnesium hydroxide, red phosphorus, calcium carbonate, potassium titanate, lead chromate titanate, barium titanate, Aluminum nitride, boron nitride, zinc borate, aluminum borate, barium sulfate, magnesium sulfate, zinc sulfide, iron, aluminum, copper, silver, and the like. These enamel fillers may be used alone or in combination of several types. The shape is not particularly limited, but a needle shape, a spherical shape, a plate shape, an amorphous shape, or the like can be used. The amount of the cerium filler to be added may be selected in an optimum amount, and up to 250 parts by weight, preferably 20 to 150 parts by weight, of the cerium filler may be added to 100 parts by weight of the copolymerized polyamide. In addition, the fibrous reinforcing material and the enamel filler are preferably used for the treatment of the coupling agent or the agent for the coupling agent in order to obtain the affinity of the polyamide-based resin. Any one of a sanding system coupling agent, a titanate-based agent, and an aluminum-based coupling agent, wherein the amine-based decane coupling agent is an oxane coupling agent. Examples of the stabilizers include organic antioxidants or thermal stabilizers such as hindered phenol-based antioxidants, sulfur-based antioxidants, and phosphorus antioxidants; hindered amine diphenyl ketone-based, imidazole-based light stabilizers or ultraviolet rays. Absorbent; metallizing agent, copper compound, and the like. For the copper compound, cuprous chloride cuprous, cuprous iodide 'copper chloride, copper bromide, or the like. A copper salt of an organic carboxylic acid such as copper iodide, copper ruthenate, copper acid, copper sulfide, copper nitrate or copper acetate. The constituent component other than the copper compound preferably contains a halogenated alkali metal compound, and examples of the halogenated alkali metal compound include lithium chloride, lithium bromide, lithium, sodium fluoride, sodium chloride, sodium bromide, and iodine. Sodium, potassium fluoride, potassium potassium chloride, potassium iodide, etc. These additives may be used alone or in combination of several kinds. The amount of the stabilizer added may be selected in an optimum amount, and 100 parts by weight of the polyamide may be copolymerized, and up to 5 parts by weight may be added. Further, the copolymerized polyamine of the present invention can be polymer blended with the polyamine having a composition different from the copolymerization of the present invention. The polyamine which is different in composition from the copolymerized decylamine of the present invention is not particularly limited, but may be used alone or in combination of two or more kinds of polyhexylamine (Nylon 6) and polyundecamide (Nylon). I polydodecylamine (Nylon 12), polyhexamethylene diamine (Nylon 46), polyhexamethylenediamine (Nylon 66), poly-m-hexanediamine (Nylon MXD6), poly P-hexylamine (Nylon PXD6), polyfluorene diamine diamine (Nylon 410), polyfluorene diene (Nylon 610), poly-decamethyleneamine (Nylon 106), poly ten Methylene hydrazine-coupling coupling, epoxidation system, moxibustion, bromopyrophosphate, and iodine, and Moco group for the combination of guanamine 1) ' 醯 醯 醯 diamine amide -15 - 201130886 (Nylon 1010 ), polydodecane dimercaptohexamine (Nylon 612), polydodecanediamine diamine (Nylon 1012), polyparaphenylene hexamethylenediamine (Nylon 6T), poly-m-benzene Dimethyl hexamethylenediamine (Nylon 61), poly(p-phenylene terpene diamine (Nylon 4T), polyparaphenylene pentane diamine (Nylon 5 T), poly(2-methyl pair) Benzoquinone pentamine (Nylon M-5T), polyhexahydro-p-benzoquinone Amine (Nylon 6T (H)), poly 2-methyl-octamethylene terephthalamide, poly(p-xylylenediamine) (Nylon 9T), poly(p-xylylene) Amine (Nylon 10T), Polyparaphenylene undecanediamine (Nylon 11T), Polyparaphenylene dodecanediamine (Nylon 12T), Poly (3-methyl-4) -Aminohexyl)methane terephthalamide (Nylon PACMT), polybis(3-methyl-4-aminohexyl)methane meta-xylamine (Nylon PACMI), poly-double (3- Methyl-4-aminohexyl)methane dodecylamine (Nylon PACM12), polybis(3-methyl-4-aminohexyl)methanetetradecylamine (Nylon PACM14), polyalkyl ether copolymerization A monomer such as polyamine or a copolymerized polyamine. Among these, in order to increase the crystallization speed, nylon 66 or nylon 6T66 or the like may be blended with the polymer. The amount of the polyamine to be copolymerized with the copolymerized polyamine of the present invention may be selected in an optimum amount, and may be added in an amount of up to 50 parts by weight based on 100 parts by weight of the copolymerized polyamine. A thermoplastic resin other than the polyamidamide having a composition different from the copolymerized polyamine of the present invention may be added to the copolymerized polyamine of the present invention. As the polymer other than polyamide, polyphenylene sulfide (PPS), liquid crystal polymer (LCP), guanamine resin, polyetheretherketone (PEEK), polyether ketone (PEK), polyether oxime Amine (PEI), thermoplastic polyimide, polyamidimide (PAI), polyetherketoneketone (PEKK), polyphenylene oxide (PPE), polyether oxime (PES), polyfluorene (PSU), Polyarylate (PAR), polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, -16- 201130886 polybutylene naphthalate, polycarbonate (PC), polyoxymethylene (POM), polypropylene (PP), polyethylene (PE), polymethylpentene (TPX), polystyrene (PS), polymethyl methacrylate, acrylonitrile-styrene Copolymer (AS), acrylonitrile-butadiene-styrene copolymer (ABS), when the compatibility is poor, a compatibilizing agent such as a reactive compound or a block polymer is added, or a polyamide is added. Polymer modification (excellent acid modification) is important. These thermoplastic resins may be blended in a molten state by melt kneading, or the thermoplastic resin may be dispersed in the copolymerized polyamine of the present invention in a fibrous form or in a particulate form. The amount of the thermoplastic resin to be added may be selected in an optimum amount, and may be added up to 50 parts by weight based on 100 parts by weight of the copolymerized polyamine. For the improvement of the ruthenium, there are mentioned ethylene-propylene rubber (EPM), ethylene-propylene-diene rubber (EPDM), ethylene-acrylic acid copolymer, ethylene acrylate copolymer, ethylene-methacrylic acid copolymerization. Polyolefin resin such as ethylene-methacrylate copolymer or ethylene vinyl acetate copolymer; styrene-butadiene-styrene block copolymer (SBS), styrene-ethylene·butyl Ethylene-based styrene block copolymer (SEBS), styrene-isoprene-styrene copolymer (SIS), acrylate copolymer, etc., ethylene polymer resin; Diester or polybutylene naphthalate as a plastic component, a polyester block copolymer having a polybutylene glycol or a polycaprolactone or a polycarbonate diol as a softening component, a nylon elastomer, an amine A urethane elastomer, an acrylic elastomer, a polyoxyn rubber, a fluorine rubber, a polymer particle having a core-shell structure composed of two different polymers, and the like. The amount of the ruthenium-improved material to be added may be selected in an optimum amount, and may be added up to 30 parts by weight based on 100 parts by weight of the copolymerized polyamide. -17- 201130886 In contrast to the copolymerized polyamine of the present invention, when a thermoplastic resin other than the polyamide resin of the present invention and a tamper-resistant material are added, it is preferred to copolymerize with polyamine. The reactive group, in terms of the reactive group, is an amine group of a terminal group of a polyamide resin, and a group reactive with a carboxyl group and a main chain amide group. Specifically, the carboxylic acid group, the acid anhydride group, the epoxy group, the oxazolyl group, the amine group, the isocyanate group and the like are exemplified, but among these, the acid anhydride group-based reactivity is the most excellent. Since the thermoplastic resin having a reactive group reactive with the polyamide resin is finely dispersed in the polyamide, the distance between the particles is shortened, and the impact resistance is greatly improved. In the case of a flame retardant, a combination of a halogen-based flame retardant and a flame-retardant aid is preferred, and in the case of a halogen-based flame retardant, it is preferably a brominated polystyrene, a brominated polyphenylene ether, or a brominated double Phenolic epoxy polymer, brominated styrene maleic anhydride polymer, brominated epoxy resin, brominated phenoxy resin, decabromodiphenyl ether, decabromobiphenyl, brominated polycarbonate, all The chlorine-cyclopentadecane and the brominated cross-linked aromatic polymer are preferably an antimony compound such as antimony trioxide, antimony pentoxide or sodium antimonate or zinc stannate. Among them, a combination of dibromopolystyrene and sodium citrate and/or zinc stannate is preferred from the viewpoint of thermal stability. Further, examples of the non-halogen-based flame retardant include metal salts of melamine cyanurate, red phosphorus, phosphinic acid, and compounds containing a nitrogen-containing phosphate. a combination of a particularly preferred metal hypophosphite metal salt and a nitrogen-containing phosphate compound, and a melamine-containing compound, or a condensate and a melamine containing melamine or melamine such as melam A reactive organism of phosphoric acid or a mixture of such. At that time, it was preferable to add a hydrotalcite-based compound for corrosion resistance of a metal such as a mold. Examples of other flame retardants and flame retardant aids include zinc borate, zinc sulfide, molybdenum compounds, iron oxide, aluminum hydroxide, magnesium hydroxide, polyoxyn oxide resins, fluororesins, montmorillonite, and dioxide. Bismuth, metal carbonate and the like. -18- 201130886 The amount of the flame retardant added may be selected in an optimum amount, and may be added up to 50 parts by weight based on 100 parts by weight of the copolymerized polyamide. The release agent may, for example, be a long-chain fatty acid or an ester or metal salt thereof, a guanamine compound, a polyethylene wax, a polyfluorene oxide or a polyethylene oxide. In the case of a long-chain fatty acid, a carbon number of 12 or more is particularly preferable, and examples thereof include octadecanoic acid, 12-hydroxyoctadecanoic acid, behenic acid, octadecanoic acid, etc., and a partial or total carboxylic acid can be used. The monodiol or polyglycol is esterified or may also form a metal salt. The guanamine-based compound may, for example, be ethylenebis-p-xylyleneamine or methylenebisstearylamine. These release agents may be used singly or as a mixture. The amount of the release material to be added may be selected in an optimum amount, and may be added up to 5 parts by weight based on 1 part by weight of the copolymerized polyamine. Examples of the slidability-improving material include high molecular weight polyethylene, acid-modified high molecular weight polyethylene, fluororesin powder, 'molybdenum disulfide, polyfluorene oxide resin, polyoxyxylene oil, zinc, graphite, mineral oil, and the like. The resin slidability improving material may be added up to 3 parts by weight based on 100 parts by weight of the copolymerized polyamine. The copolymerized polyamine of the present invention can be produced by a conventional method, for example, by making the raw material of the U component癸 癸 diamine, terephthalic acid, and (b) component of 11-amine undecanoic acid, 12-amine dodecanoic acid, undecyl decylamine, dodecyl decylamine, and the like a raw material monomer of a group consisting of a mixture, and optionally an equivalent molar salt of a diamine and a dibasic acid other than the structural unit of the above (a), or an amine other than the structural unit of the above (b) The raw material monomers obtained by the carboxylic acid or the indoleamine are easily synthesized by a co-condensation reaction. The order of the copolycondensation reaction is not particularly limited, and all of the raw material monomers may be subjected to one reaction, or a part of the raw material monomers may be first reacted, and then the remaining raw material monomers may be reacted. -19- 201130886 Further, the polymerization method is not particularly limited, and may be carried out in a continuous step from the addition of the raw material to the production of the polymer, or may be carried out by a kneader or the like in another step after the production of the oligomer, or A method of polymerizing an oligomer or the like by solid state polymerization can be used. By adjusting the addition ratio of the raw material monomers, the ratio of each structural unit in the synthesized copolymerized polyamine can be controlled. [Examples] Hereinafter, the present invention will be specifically described by examples, but the present invention is not limited to the examples. Further, the measurement enthalpy described in the examples was obtained by the following method. (1) Relative viscosity. Polyamide resin. 25 g was dissolved in 25 ml of 96% sulfuric acid using an Ostwald viscometer at 20. (2) The melting point (Tm) and the glass transition temperature (Tg) The polyamine which was dried under reduced pressure at 105 ° C for 15 hours was made of aluminum weighing pan (TA Instruments); Model 900793. 901) Metered l〇mg, covered with aluminum (TA Instruments company; model 900794. 90 1) Make it sealed. After the measurement of the i-type material, use a differential scanning calorimeter DSCQ100 (manufactured by TA INSTRUMENTS), and heat up at room temperature at 20 ° C / min. 3 After maintaining at 50 °C for 3 minutes, the test plate was taken out and immersed in liquid nitrogen to quench it. Thereafter, the sample was taken out from the liquid nitrogen, and left at room temperature for 30 minutes, and then again heated at room temperature by 20 ° C /min using a differential scanning calorimeter DSCQ100 (manufactured by TA INSTRUMENTS) at 3 5 0 Maintain at °C for 3 minutes. The endothermic peak temperature caused by the melting at this time was taken as the melting point (Tm). Further, the glass transition temperature (Tg) is an extension of the baseline below the glass transition point during the second temperature rise, and the maximum inclination between the apex of the peak and the apex of the peak is shown in Table -20-201130886. The temperature at the intersection of the wiring is obtained. o) Formability Using a Toshiba mechanical injection molding machine EC-100, the cylinder temperature was set to the melting point of the resin + 20 °C. The mold used was a flat plate making mold having a vertical length of 1 〇 〇 m m , a width of 100 mm, and a thickness of 1 m m t . The mold temperature was set to 1 40 ° C, and the injection speed was 50 mm/sec, the pressure was maintained at 3 MPa, the injection time was 10 seconds, and the cooling time was 1 sec. The molding was excellent in the formability as follows. 〇: The decomposition of the resin was not observed, and the molded article was obtained without any problem. △: Signs of decomposition such as foaming and poor appearance were observed during molding. X: The mold release property is insufficient, and the molded article adheres to the mold or is deformed. (4) Evaluation of Saturated Water Absorption Rate Saturated Water Absorption Rate The above-mentioned plate having a vertical length of 10 mm, a width of 1 mm, and a thickness of 1 mm was produced and immersed in 8 (TC hot water, and obtained by the following formula). Saturated water absorption (%) = {(weight at saturated water absorption - weight at drying) / weight at drying} X 100 (5) Charpy impact strength Single beam impact strength is based on ISO 179, The evaluation was carried out at 23 °c with a notch. The test piece was made using Toshiba mechanical injection molding machine EC_1〇〇, and the barrel temperature was set to the melting point of the resin + 20 ° C. The mold temperature was set to 14 〇 t, The injection speed was 50 mm/SeC, the pressure was maintained at 3 MPa, the injection time was 1 (second), and the cooling time was 16 seconds. [Example 1] 201130886 The quinone diamine was prepared. 38kg, terephthalic acid 11. 95kg, 11-aminoundecanoic acid 1. 6 1kg, 9g of sodium diphosphite as a catalyst, 4〇g of acetic acid as a terminal regulator, and ion exchange water. 52kg was added to a 50 liter autoclave and pressurized with N2 to normal pressure. 〇 5MPa, then release back to normal pressure. Perform this operation 3 times, after N2 substitution, at 135 ° C, 〇. It was uniformly dissolved under stirring at 3 MPa. Thereafter, the solution was continuously supplied to the solution pump, and the mixture was heated to 240 ° C in a heating pipe and heated for 1 hour. Thereafter, the reaction mixture was supplied to a pressurized reaction tank, heated to 290 ° C, and a part of the water was distilled off to maintain the internal pressure of the tank at 3 MP a to obtain a lower condensate. Thereafter, the lower condensate was maintained in a molten state and directly supplied to a biaxial kneader (thread diameter: 37 mm; L/D = 60) so that the resin temperature was 3,300 ° C, and the drain hole from three sides The water is drained and polycondensed while being melted to obtain a copolymerized polyamine. The addition ratio and characteristics of the raw material monomers of the non-reinforced copolymerized polyamines, and the evaluation results of the molded articles obtained by copolymerizing the polyamides are shown in Table 1. Next, glass fibers were added to the obtained copolymerized polyamine to produce a reinforced copolymerized polyamide resin composition. Specifically, 'Using the same direction biaxial kneading machine, the barrel temperature is set to 3 20 ° C from the leakage port end -3 3 0 ° C - 3 3 0 ° C -3 20 ° C 'Self-side feed port Glass fiber (T-27 5 H made by Nippon Electric Glass Co., Ltd.) was put in and put in. After the obtained strands were cooled in a water bath, they were granulated by a strand cutter and dried at 12 5 ° C for 5 hours to obtain a composition of a strong copolymerized polyamide resin. Table 2 shows the evaluation results of the composition ratio and moldability of the reinforced copolymerized polyamide resin composition and the molded article obtained by copolymerizing the polyamide resin composition. [Example 2] The amount of the quinone diamine was changed to 8. The amount of 26kg 'terephthalic acid was changed to -22- 201130886 7. The amount of 97kg, 11-amine 10-carbonic acid was changed to 6. The copolymerized polyamine was synthesized in the same manner as 43 kg. The addition ratio and characteristics of the non-reinforced copolymerized polyamines and the results of the copolymerization of the polyamines thereof are shown in Table 1. Next, a glass fiber was added to the obtained 安fl An' to obtain a reinforced copolymerized polyamine as in Example 1. The composition ratio of the reinforced copolymerized polyamide resin composition and the molded article obtained by copolymerizing the polyamide resin composition therefrom are shown in Table 2. [Example 3] except that the amount of the quinone diamine was changed to Π. 0〗 kg, terephthalic acid is 10. The amount of 62 kg of the 11-amine deca-carbonic acid was changed to 3 22 kg, and the copolymerized polyamine was synthesized in the same manner as in Example 1. The addition ratio and characteristics of this copolymerized polyamine are shown in Table 2. Next, a copolymerized resin composition was obtained in the same manner as in Example 1 except that glass fibers were added to the copolymerized polyamine. The formability of the reinforced copolymerized polyamide resin composition and the results of the formation of the copolymerized polyamine resin composition are shown in Table 2. [Example 4] In addition to the 11-amine eleven carbonic acid 3. The copolymerized polyamine was synthesized in the same manner as in Example 3 except that 22 kg was changed to eleven carbon helium. The addition ratio and characteristics of the raw material monomers of this euamide are shown in Table 2. Next, the mixture was added to the obtained copolymerized polyamine, and the polyamide resin composition was copolymerized in the same manner as in Example 1. The composition ratio of the reinforced copolymerized polyamine tree, the moldability, and the composition of the copolymerized poly-resin of the raw material monolith of the composition of the copolymerized composition of Example 1 were changed. , with the implementation of the raw material monomer to the ratio of the obtained polyamines, the evaluation of amines. 93 kg of polymerized polyfluorene Manufactured from a glass fiber reinforced resin composition -23- 201130886 The evaluation results of the molded article are shown in Table 2. [Example 5] In addition to the 11-amine eleven carbonic acid 3. 22kg changed to 12-j 3. The addition ratio and characteristics of the raw material monomers for synthesizing the copolymerized polyamidamine in the same manner as in Example 3 except for 44 kg are shown in Table 2. Glass fibers were added to the obtained copolymerized polyamine to form a reinforced copolymerized polyamide resin composition with the examples. The composition ratio of the reinforced copolymer composition, the moldability, and the evaluation results of the molded article obtained by copolymerizing the polyamidamide are shown in Table 2. [Example 6] In addition to the 11-amine eleven carbonic acid 3. The copolymerized polyamine was synthesized in the same manner as in Example 3 except that 2 kg was changed to twelve carbons. The addition ratio and characteristics of the raw material monomers of this amine are shown in Table 2. Next, the copolymer was added to the obtained copolymerized polyamine, and the polyamine resin composition was copolymerized in the same manner as in Example 1. The composition ratio, the moldability of the reinforced copolymerized polyamine, and the evaluation results of the copolymerized polyamine resin group molded article are shown in Table 2. [Example 7] In addition to terephthalic acid 11. 95kg changed to terephthalic acid azelaic acid 1. In the same manner as in Example 1, except for 62 kg, synthetic copolymerization was carried out to increase the ratio and characteristics of the raw material monomers of the copolymerized polyamine, and the glass fibers were added to the obtained copolymerized polyamine to form the same. The polyamine resin composition is copolymerized. The composition ratio, formability, and thus copolymerization of the strong guanamine resin composition were obtained. This copolymerization Next, the melamine resin resin composition decylamine 3 was produced in the same manner.  1 5 k g copolymerized polyfluorene, which is obtained by making a glass resin to obtain a reinforced resin composition. 62kg and polyamidamine, as shown in Table 2. Next, the polymerization of the polyamido tree was carried out in the same manner as in Example 1. -24- 201130886 Evaluation of the molded product obtained from the fat composition. The results are shown in Table 2. [Example 8] The amount of the quinone diamine was changed to 13. The amount of 07kg and terephthalic acid was changed to 12. The amount of 62 kg, 11-amine eleven carbonic acid was changed to 0. The copolymerized polyamine was synthesized in the same manner as in Example 1 except for 80 kg. The addition ratio and characteristics of the raw material monomers of the copolymerized polyamine are shown in Table 2. Next, a glass fiber was added to the obtained copolymerized polyamine, and a reinforced copolymerized polyamide resin composition was obtained in the same manner as in Example 1. The composition ratio of the composition of the reinforced copolymerized polyamide resin composition, the moldability, and the evaluation results of the molded article obtained by copolymerizing the polyamide resin composition therefrom are not shown in Table 2. [Comparative Example 1] The amount of the decane diamine was changed to 13. except that 11-amine undecanoic acid was not used. The amount of 76kg and terephthalic acid was changed to 13. A copolymerized polyamine was prepared in the same manner as in Example 1 except for 28 kg. Table 1 shows the addition ratios and characteristics of the raw material monomers of the non-reinforced copolymerized polyamines and the evaluation results of the molded articles obtained by the copolymerization of the polyamides. Next, glass fiber was added to the obtained copolymerized polyamine. The reinforced copolymerized polyamide resin composition was obtained in the same manner as in Example 1. The composition ratio of the composition of the reinforced copolymerized polyamide resin composition, the moldability, and the evaluation results of the molded article obtained by the copolymerization of the polyamide resin composition are shown in Table 2. [Comparative Example 2] In addition to the use of 11-amine hydrazine-carbonic acid, the quinone diamine was 12. 38kg changed to 癸 diamine 8. 2 6kg and hexamethylene diamine 3. The amount of 71kg and terephthalic acid was changed to 13. Copolymerized polyamine was prepared in the same manner as in Example 1 except for 28 kg. The addition ratio and characteristics of the raw material monomers of the non-reinforced copolymerized -25-201130886 polyamide and the evaluation results of the molded articles obtained thereby are shown in Table 1. Next, a polyamine resin composition was obtained in the same manner as in Example 1 except that the obtained copolymerized polyamine was used. The evaluation results of the composition ratio, the formability, and the composition of the copolymerized polyamine resin obtained by the reinforced copolymerized polyamine resin are shown in Table 2. [Comparative Example 3].  In addition to changing the amount of guanidine diamine to 5. 50kg, terephthalic acid 5. The amount of 31 kg, 11-amine eleven carbonic acid was changed to 9. In addition to 65 kg, the copolymerized polyamine was synthesized in the same manner. The original addition ratio and characteristics of this copolymerized polyamine are shown in Table 2. Next, a glass fiber was added to the polymerized polyamine, and a reinforced copolymer composition was obtained in the same manner as in Example 1. The composition of the reinforced copolymerized polyamide resin composition and the molded article obtained by copolymerizing the polyamide resin composition therefrom are not shown in Table 2. [Comparative Example 4] In addition to the 11-amine carbonic acid 3. The copolymerized polyamine was synthesized in the same manner as in Example 3 except that 22 kg was changed to ε·. The addition ratio and characteristics of the raw material monomers of this amine are shown in Table 2. Next, the copolymer was added to the obtained copolymerized polyamine, and the polyamine resin composition was copolymerized in the same manner as in Example 1. The composition ratio, the moldability of the reinforced copolymerized polyamine, and the evaluation results of the copolymerized polyamine resin group molded article are shown in Table 2. The amount of the molded article of the polymerized polyimide glass fiber-reinforced reinforced copolymer was changed to the ratio of the copolymerized guanamine resin obtained by adding the monomer of Example 1, and the evaluation result of the molding was carried out. 1 kg of copolymerized polyfluorene, obtained by fiber-reinforced reinforced resin composition -26-201130886 [Table 1] Non-reinforced copolymerization polymerization Example 1 Example 2 Comparative Example 1 Comparative Example 2 Raw material list Addition ratio of the body to the ear %) hexamethylene diamine 40 癸 diamine 90 60 100 60 terephthalic acid 90 60 100 100 11-aminoundecanoic acid 10 40 copolymerization of the characteristics of the relative viscosity.  2. 8 2. 6 2. 5 2. 6 Melting point (. 〇 302 250 316 287 Glass transition temperature (°c) 104 75 114 122 Formability 〇 △ △ X The result of the dragon of the molded product Saturated water absorption (%) 2. 7 2. 5 2. 9 3. 2 single beam impact 値 (kj/m2) 6. 3 5. 8 4. twenty four. 4 -27- 201130886

I_II_I

比較例4 S S tt> cJ CM σ> CNJ s 比較例4 8 Ο CM c\i 00 ai 比較例3 § § § 卜 c\i ο CO (O 比_3 〇 X <〇 15.0 比較例2 〇 S 8 ς〇 csi oo CM CSJ 比較例2 〇 X csi csi 10.5 比較例1 8 8 U> Csj <〇 S 比較例1 〇 <3 ο csi 〇 T— 實施例8 ts> 〇> S 1£> «0 cJ s g :實施例8 〇 Ο 〇> ΙΛ 實施例7 § § 〇 〇 卜 ev ur> 〇> CM c〇 Oi 實施例7 〇 〇 〇〇 15.8 實施例6 S § <〇 cJ <〇 GO CM 實施例6 〇 Ο 00 16.0 實施例5 S § Γ— eg Γ-* 00 CM s 實施例5 〇 Ο 00 16.3 實施例4 S S S Csi o〇 00 CM eg σ> 實施例4 Ο oo 16.1 實施例3 S S <〇 <s 〇> c〇 eg 3 實施例3 〇 00 16,2 實施例2 S S 〇 *£> 〇i s CM :實施例2 〇 Ο r** 17.5 實施例1 § S 〇 a〇 3 CO s 實施例】 〇 Ο σ> i 15.5 共聚合聚麵 ! 己二胺 癸二胺 對苯二甲酸 癸二酸 11-胺基十一酸 i 十一碳內賺 12-胺+二碳酸 十二碳內赚 ε-己內_ 相對黏度 熔點(°c) l 玻璃瓣iaarc) 強化共聚合聚麵樹脂雛物 共聚合聚麵(龍%) | 玻璃纖維(重fi%) | 1 樹脂組成物的成形性 | 飽和吸水率(%) I 單樑衝擊値(kJ/m2) | 蜃驟f添加比 共聚合聚赚的特性 堪担 m ma 3?链 Qg m =gfi 耜S s -28- 201130886 由表1、2明顯可知,實施例1-8的共聚合聚醯胺及玻璃 纖維強化樹脂高度地滿足成形性、低吸水率、及耐衝撃性之三 個特性的全部。另一方面’未共聚合有11耐綸或12耐綸的成 分之比較例1的共聚合聚醯胺,不僅成型時引起發泡造成之成 型不良’而且吸水率亦高’此外製得之成型品變脆弱。又,使 環己烷與癸二胺的一部分共聚合而得之比較例2的共聚合聚醯 胺,因爲玻璃轉移溫度過高,.結晶化未充分進行,脫模時會產 生變形。又,因爲將己二胺共聚合,吸水率會大幅地增加。增 加胺基十一酸的共聚合量而得之比較例3的共聚合聚醯胺,雖 藉由1 1耐綸成分的增加,顯示極良好的低吸水性與耐衝撃 性,但結晶成分之1 0 T成分的結晶化受阻礙而成型時產生脫模 不良。取代胺基十一酸,使同爲胺基羧酸之ε-己內醯胺共聚 合而得之比較例4的共聚合聚醯胺不僅沒有衝撃改良的效果, 而且會引起吸水率大幅的惡化。 [產業上的利用可能性] 本發明之共聚合聚醯胺,由於使Π耐綸及/或12耐綸以 特定的比例與主成分之10Τ耐綸進行共聚合,因爲不僅可發揮 高熔點、滑動性等之1 0Τ耐綸的特性,而且可高度地滿足成形 性、低吸水率及耐衝撃性,故可適合使用於汽車或電子零件用 之成形材料或滑動用材料。 【圖式簡單說明】 無。 【主要元件符號說明】 /fnr 挑0 -29-Comparative Example 4 SS tt> cJ CM σ> CNJ s Comparative Example 4 8 Ο CM c\i 00 ai Comparative Example 3 § § § b c\i ο CO (O ratio _3 〇X <〇15.0 Comparative Example 2 〇 S 8 ς〇 csi oo CM CSJ Comparative Example 2 〇X csi csi 10.5 Comparative Example 1 8 8 U> Csj <〇S Comparative Example 1 〇<3 ο csi 〇T—Example 8 ts> 〇> S 1 £> «0 cJ sg : Embodiment 8 〇Ο 〇 > 实施 Example 7 § § ev ev ev & 〇 gt CM i i 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 〇cJ <〇GO CM Example 6 〇Ο 00 16.0 Example 5 S § Γ - eg Γ-* 00 CM s Example 5 〇Ο 00 16.3 Example 4 SSS Csi o〇00 CM eg σ> Example 4 Oo oo 16.1 Example 3 SS <〇<s 〇> c〇eg 3 Example 3 〇00 16,2 Example 2 SS 〇*£> 〇is CM: Example 2 〇Ο r** 17.5 Example 1 § S 〇a 〇 3 CO s Example 〇Ο σ> i 15.5 Copolymerized polyhedral! Hexadienediamine diamine terephthalate terephthalate Acid 11-aminoundecanoic acid i eleven carbon to earn 12-amine + dicarbonate 12 carbon to earn ε-hex _ relative viscosity melting point (°c) l glass iaarc) enhanced copolymerization of poly-resin resin Copolymerized polyhedron (Dragon%) | Glass fiber (heavy fi%) | 1 Formability of resin composition | Saturated water absorption (%) I Single beam impact 値 (kJ/m2) | f The characteristics earned are m ma 3? Chain Qg m = gfi 耜S s -28- 201130886 It is apparent from Tables 1 and 2 that the copolymerized polyamine and glass fiber reinforced resin of Examples 1-8 highly satisfy the formability. All of the three characteristics of low water absorption and impact resistance. On the other hand, the copolymerized polyamine of Comparative Example 1 which is not copolymerized with 11 nylon or 12 nylon components, not only causes molding failure caused by foaming during molding, but also has high water absorption rate. The product becomes fragile. Further, the copolymerized polyamine of Comparative Example 2 obtained by copolymerizing a part of cyclohexane and decanediamine has a glass transition temperature which is too high, and crystallization does not sufficiently proceed, and deformation occurs during demolding. Further, since the hexamethylenediamine is copolymerized, the water absorption rate is greatly increased. The copolymerized polyamine of Comparative Example 3 obtained by increasing the amount of copolymerization of aminoundecanoic acid showed excellent low water absorption and impact resistance by the increase of the 1 1 nylon component, but the crystal component was The crystallization of the T component is hindered, and mold release failure occurs during molding. The copolymerized polyamine of Comparative Example 4 obtained by copolymerizing ε-caprolactam which is an aminocarboxylic acid with a substituted aminodecanoic acid not only has no effect of improving the hydration, but also causes a large deterioration of water absorption. . [Industrial Applicability] The copolymerized polyamine of the present invention is obtained by copolymerizing a nylon resin and/or 12 nylon in a specific ratio with a main component of 10 Å nylon, because not only a high melting point but also a high melting point can be exhibited. The slidability and the like are excellent in the properties of the nylon, and the moldability, the low water absorption rate, and the impact resistance are high. Therefore, it can be suitably used for a molding material or a sliding material for automobiles or electronic parts. [Simple description of the diagram] None. [Main component symbol description] /fnr Pick 0 -29-

Claims (1)

201130886 七、申請專利範圍: .一種共聚合聚醯胺’其特徵係由(a)癸二胺與對苯二甲酸的等 量莫耳鹽而製得之構造單位50~98莫耳%,及(b)選自由u_ 胺十一碳酸、12-胺十二碳酸、十一碳內醯胺、十二碳內醯胺 及此等之混合物構成之群組的構造單位5 0〜2莫耳%構成。 2 ·如申請專利範圍第1項之共聚合聚醯胺,其係由(a)癸二胺與 對苯二甲酸的等量莫耳鹽而製得之構造單位75〜98莫耳%, 及(b)選自由11-胺十一碳酸、12-胺十二碳酸、十一碳內醯 胺、十二碳內醯胺及此等之混合物構成之群組的構造單位 2 5〜2莫耳%構成。 3 .如申請專利範圍第1或2項之共聚合聚醯胺,其中共聚合聚 醯胺係含有(c)最多至30莫耳%,該(c)係由該(a)之構造單位 以外的二胺與二羧酸的等量莫耳鹽製得之構造單位、或由該 (b)之構造單位以外的胺基羧酸或內醯胺製得之構造單位。 4·如申請專利範圍第1至3項中任一項之共聚合聚酿胺,其中 共聚合聚醯胺的熔點(Tm)係240~3 15°C,且玻璃轉移溫度(Tg) 係 70〜120。。。 5 · —種共聚合聚醯胺樹脂組成物,其特徵係相對於如申請專利 範圍第1至4項中任一項之共聚合聚醯胺100重量份,最多 調配纖維狀強化材250重量份。 6 ·如申請專利範圍第5項之共聚合聚醯胺樹脂組成物,其係使 用於汽車零件或電子零件的成形材料。 -30- 201130886 四、指定代表圖: (一) 本案指定代表圖為:無。 (二) 本代表圖之元件符號簡單說明: 並〇 /\\\ 五、本案若有化學式時,請揭示最能顯示發明特徵的化學式: 〇201130886 VII. Patent application scope: A copolymerized polyamine, characterized by a structural unit of 50 to 98 mol% obtained from (a) an equivalent amount of a molar salt of terpene diamine and terephthalic acid, and (b) a structural unit selected from the group consisting of u_amine undecanoic acid, 12-amine dodecanoic acid, undecyl decylamine, dodecyl decylamine, and mixtures thereof, 50 to 2 mol% Composition. 2) The copolymerized polyamine according to claim 1 of the patent application, which is a structural unit of 75 to 98 mol% obtained from (a) an equivalent molar salt of decane diamine and terephthalic acid, and (b) a structural unit selected from the group consisting of 11-amine undecanoic acid, 12-amine dodecanoic acid, undecyl decylamine, dodecyl decylamine, and mixtures thereof; 2 5 to 2 moles % constitutes. 3. The copolymerized polyamine of claim 1 or 2, wherein the copolymerized polyamine contains (c) up to 30 mol%, and the (c) is outside the structural unit of (a) A structural unit made up of an equivalent molar salt of a diamine and a dicarboxylic acid, or a structural unit made of an aminocarboxylic acid or an indoleamine other than the structural unit of (b). 4. The copolymerized polyamine according to any one of claims 1 to 3, wherein the melting point (Tm) of the copolymerized polyamine is 240 to 3 15 ° C, and the glass transition temperature (Tg) is 70. ~120. . . And a copolymerized polyamine resin composition characterized by a maximum of 250 parts by weight of the fibrous reinforcing material with respect to 100 parts by weight of the copolymerized polyamine of any one of claims 1 to 4; . 6. The copolymerized polyamine resin composition as claimed in claim 5, which is used for a molding material for an automobile part or an electronic part. -30- 201130886 IV. Designated representative map: (1) The representative representative of the case is: None. (2) A brief description of the symbol of the representative figure: 〇 /\\\ 5. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: 〇
TW99143680A 2009-12-14 2010-12-14 Copolymerized polyamide TW201130886A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009282912 2009-12-14

Publications (1)

Publication Number Publication Date
TW201130886A true TW201130886A (en) 2011-09-16

Family

ID=44167288

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99143680A TW201130886A (en) 2009-12-14 2010-12-14 Copolymerized polyamide

Country Status (3)

Country Link
JP (1) JPWO2011074536A1 (en)
TW (1) TW201130886A (en)
WO (1) WO2011074536A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2954773B1 (en) * 2009-12-24 2013-01-04 Arkema France SEMI-AROMATIC POLYAMIDE, PROCESS FOR PREPARING THE SAME, COMPOSITION COMPRISING SUCH POLYAMIDE AND USES THEREOF
JP5648426B2 (en) * 2010-11-01 2015-01-07 東洋紡株式会社 Polyamide resin composition and polyamide resin foam molding
US8691911B2 (en) * 2011-01-31 2014-04-08 E I Du Pont De Nemours And Company Melt-blended thermoplastic composition
JP2014062139A (en) * 2011-06-14 2014-04-10 Toyobo Co Ltd Copolymerized polyamide film
CN103087310B (en) * 2013-01-14 2014-10-15 金发科技股份有限公司 Polyamide resin and application thereof as well as polyamide composition consisting of same
FR3002180B1 (en) 2013-02-18 2017-12-29 Arkema France USE OF SEMI-AROMATIC COPOLYAMIDE FOR THE TRANSPORT OF REFRIGERANT FLUID
FR3002233B1 (en) 2013-02-18 2016-01-22 Arkema France THERMOPLASTIC STRUCTURE FOR TRANSPORTING REFRIGERANT FLUID
JP6146062B2 (en) * 2013-03-08 2017-06-14 東洋紡株式会社 Carbon long fiber reinforced polyamide composite for compression molding
JP6075691B2 (en) * 2013-04-16 2017-02-08 東洋紡株式会社 Polyamide resin composition with excellent vibration characteristics when absorbing water
CN103254422B (en) * 2013-05-20 2016-04-27 金发科技股份有限公司 A kind of polyamide resin and consisting of daiamid composition
WO2015019882A1 (en) * 2013-08-05 2015-02-12 東洋紡株式会社 Flame-retardant polyamide resin composition
JP2015071668A (en) * 2013-10-02 2015-04-16 東レ株式会社 Polyamide resin composition
CN103554905B (en) * 2013-10-14 2016-09-07 上海俊尓新材料有限公司 A kind of Elevator roller special PA66 composite and preparation method thereof
JP2015129243A (en) * 2014-01-08 2015-07-16 旭化成ケミカルズ株式会社 Polyamide composition and molded product
CN112226074A (en) * 2020-10-30 2021-01-15 郭勇 Chopped glass fiber reinforced PA10T copolymer composite material and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3606783B2 (en) * 2000-03-02 2005-01-05 三井化学株式会社 Process for producing polyamide and polyamide composition
WO2004015010A1 (en) * 2002-08-09 2004-02-19 E. I. Du Pont De Nemours And Company Polyamide molding compositions and electrical and electronic components molded therefrom having improved heat stability
DE10239326A1 (en) * 2002-08-27 2004-03-18 Ems-Chemie Ag Highly viscous molding compounds with nanoscale fillers
FR2858626B1 (en) * 2003-08-05 2005-10-07 Atofina SOFT SEMI AROMATIC POLYAMIDES WITH LOW HUMIDITY RESUME
US20060293435A1 (en) * 2005-06-10 2006-12-28 Marens Marvin M Light-emitting diode assembly housing comprising high temperature polyamide compositions
FR2896571B1 (en) * 2006-01-20 2009-06-12 Arkema Sa POLYAMIDE FLEXIBLE PIPES FOR COMPRESSED AIR
FR2926024B1 (en) * 2008-01-07 2010-04-09 Teknimed BIOMATERIAL FOR OSTEOSYNTHESIS

Also Published As

Publication number Publication date
WO2011074536A1 (en) 2011-06-23
JPWO2011074536A1 (en) 2013-04-25

Similar Documents

Publication Publication Date Title
TW201130886A (en) Copolymerized polyamide
TWI615418B (en) Flame retardant polyamide resin composition
JP4998841B2 (en) Polyamide resin composition used for reflector for surface mount LED
TW201122019A (en) Copolymerized polyamide
TW200813125A (en) Polyamide resin
JPWO2017131018A1 (en) Molded product and manufacturing method thereof
JP6243706B2 (en) Polyamide resin
TW201302918A (en) Polyamide resin composition for optical member
JP5429966B2 (en) Automotive cooling system parts made of polyamide composition
JPWO2017077901A1 (en) Semi-aromatic polyamide resin and method for producing the same
JP6234175B2 (en) Polyamide resin composition
JP2004107576A (en) Polyamide composition
JP2011111576A (en) Copolyamide
JP5818184B2 (en) High melting point polyamide resin composition with excellent vibration and appearance at the time of water absorption
JP2000212436A (en) Polyamide composition
JP2012102232A (en) Copolyamide
TW202144496A (en) Flame-retardant polyamide resin composition
JP5959190B2 (en) Polyamide resin composition and molded product
JP6324745B2 (en) Polyamide resin
JP2012136643A (en) Copolyamide
JP2013001836A (en) Polyamide welded molding
TW202016213A (en) Polyamide composition and molded product composed of said polyamide composition
JP2023001647A (en) Waterproof component and electronic apparatus including the same, waterproofing method using insert molding and waterproofing method for electronic apparatus
WO2021059901A1 (en) Inorganic reinforced semi-aromatic polyamide resin composition
WO2021106850A1 (en) Semi-aromatic polyamide resin composition and metal-plated molded body