TW201130586A - Preparation of silver spheres by the reduction of silver polyamine complexes - Google Patents

Preparation of silver spheres by the reduction of silver polyamine complexes Download PDF

Info

Publication number
TW201130586A
TW201130586A TW99106021A TW99106021A TW201130586A TW 201130586 A TW201130586 A TW 201130586A TW 99106021 A TW99106021 A TW 99106021A TW 99106021 A TW99106021 A TW 99106021A TW 201130586 A TW201130586 A TW 201130586A
Authority
TW
Taiwan
Prior art keywords
silver
solvent
patent application
polyamine
particles
Prior art date
Application number
TW99106021A
Other languages
Chinese (zh)
Inventor
Daniel V Goia
Ionel Halaciuga
Original Assignee
Du Pont
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont filed Critical Du Pont
Priority to TW99106021A priority Critical patent/TW201130586A/en
Publication of TW201130586A publication Critical patent/TW201130586A/en

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

Dispersed uniform spherical silver particles were prepared in the absence of a protective colloid by rapidly mixing concentrated iso-ascorbic acid and silver-polyamine complex solutions.

Description

201130586 六、發明說明: 【發明所屬之技術領域】 本案係關於從銀鹽製備球形銀粒子。 本案主張2007年9月口 * μ Θ 19日申請之美國專利申請案第 60/960,170號的優先權。 【先前技術】 具有各種形狀的銀粒子被用來建造生活周遭大部分電子 設備中所含的電毁顯示面板、多層陶究電容器、太陽能電 池印刷书路板及+多其他厚薄膜構件。這些應用情形中 的技術進度越來越取決於控制粒子之大小、形狀及内部結 構的月b力。冋度分散均勻的球形銀粒子對電子產業尤其重 要’因為這些球形銀粒子提供非常顯著的優點。在製造電 聚顯示面板時’具有平滑表面之銀球體允許較佳的光微影 圖案化。此種粒子之優越的堆砌方式有利於形成緊實的 「綠色」結構,其產生連續傳導的燒結層。目前用於電子 设備中的大多數銀粉末係由使用高分子量的聚合物作為分 散劑的程序所產生,並且含有能干擾其燒結的殘餘有機 物。 已藉由各種方法製備出細緻的銀粒子,這些方法包括還 原溶液中或反微細胞系統内的銀鹽、光還原作用及熱分解 作用等。同質溶液中的沉澱顯然是最通用的方式,因有各 種可用的溶劑及多種還原劑、分散劑及複合劑。雖然盔 分散劑的情況下有數種能夠產生大型銀球體的方法,但其 使用低金屬濃度及不受歡迎的化學物。因此,本發明人希[ 146628.doc 201130586 望創造一種形成良好分散且均勻的大球形銀粒子而不需要 作為保護性膠體之聚合物的改進方法。 伊利薩力-力非雅(Irizarry-Rivera)等人所申請之美國專 利申請案第2008/002889號「製造可高度分散的球形銀粉 末粒子之程序及由此形成之銀粒子(Process f〇r Making201130586 VI. Description of the invention: [Technical field to which the invention pertains] This case relates to the preparation of spherical silver particles from a silver salt. The present application claims priority to U.S. Patent Application Serial No. 60/960,170, filed on Sep. 19, 2007. [Prior Art] Silver particles having various shapes are used to construct an electric destruction display panel, a multilayer ceramic capacitor, a solar cell printed book board, and a plurality of other thick film members contained in most electronic devices around the life. The technical progress in these application scenarios is increasingly dependent on controlling the size, shape, and monthly b-force of the internal structure. Spherical silver particles with uniform dispersion are particularly important to the electronics industry because these spherical silver particles offer very significant advantages. Silver spheres with a smooth surface allow for better photolithographic patterning in the fabrication of electropolymer display panels. The superior stacking of such particles facilitates the formation of a compact "green" structure that produces a continuous conductive sintered layer. Most of the silver powder currently used in electronic equipment is produced by a procedure using a high molecular weight polymer as a dispersing agent and contains residual organic compounds that can interfere with its sintering. Fine silver particles have been prepared by various methods, including silver salts in the reducing solution or in the anti-microcell system, photoreduction and thermal decomposition. Precipitation in homogeneous solutions is clearly the most versatile way due to the wide variety of solvents available and the various reducing, dispersing and complexing agents. Although there are several methods for producing large silver spheres in the case of helmet dispersants, they use low metal concentrations and undesirable chemicals. Accordingly, the inventors hope to create an improved method of forming a polymer which is well dispersed and uniform in large spherical silver particles without requiring a protective colloid. U.S. Patent Application Serial No. 2008/002,889, issued to the entire entire entire entire entire entire entire entire entire entire content Making

Highly Dispersible Spherical Silver Powder Particles and Silver Particles Formed There from)」,其在有添加物的情 況下以抗壞血酸還原硝酸銀。 在「膠體及介面科學」期刊(J. of Colloid and Interfaee Science)第288期(2005年)第489至495頁中之「在同質溶液 中之不同型態的銀粒子的製備及形成機制(Preparati〇n and the mechanisms of formation for silver particles of different morphologies in homogeneous solutions)」文章 中,在有萘磺酸鈉-曱醛共聚物的情況下以異抗壞血酸還 原硝酸銀。 伊特(Ittel)的美國專利第7291292號「使用熱變態性聚合 物製備銀粒子(Preparation of Silver Particles Using Thermomorphic Polymers)」,在有胺基及允許膠態銀與清 洗物分離的熱變態性聚合物的情況下經由銀鹽的還原來製 造膠態銀粒子。 葛力克絲門(Glicksman)的美國專利第5389122號「細 分、密集堆彻之球形銀粒子之製造程序(Process for Making Finely Divided, Dense Packing, Spherical Shaped Silver Particles)」之,以抗壞血酸來還原銀乙醇胺複合 I46628.doc 201130586 物。 【發明内容】 粒 以下將描述一種形成分散 子而不使用保護性膠體之 b· 在溶劑中溶解銀鹽並將 銀-聚乙婦胺複合物溶液 製備包含溶解在溶劑中 的一還原溶液; ' 1句勻且具平滑表面的球形銀 方法’其包含下列依序步驟·· 此溶液與聚胺混合以形成 9 之異抗壞血酸或抗壞血酸 將該還原溶液添加至該銀·聚乙烯胺複合物溶液以 形成細分、分散、均勻塑型的球形銀粒子; d. 從步驟(c)的溶液中分離出銀粒子; 以一溶劑清洗銀粒子;Highly Dispersible Spherical Silver Powder Particles and Silver Particles Formed There from)", which reduces the silver nitrate with ascorbic acid in the presence of an additive. In the J. of Colloid and Interfaee Science, 288 (2005), pp. 489-495, "Preparation and Formation Mechanism of Different Types of Silver Particles in Homogeneous Solutions (Preparati 〇n and the mechanisms of formation for silver particles of different morphologies in homogeneous solutions), in the case of sodium naphthalene sulfonate-furfural copolymer, silver nitrate is reduced with erythorbic acid. U.S. Patent No. 7,291,292 to "Preparation of Silver Particles Using Thermomorphic Polymers" in Ittel, in the presence of an amine group and thermal metamorphic polymerization allowing separation of colloidal silver from the cleaning product. In the case of a substance, colloidal silver particles are produced by reduction of a silver salt. U.S. Patent No. 5,389,122, "Process for Making Finely Divided, Dense Packing, Spherical Shaped Silver Particles" by Glicksman, using ascorbic acid to reduce silver ethanolamine Compound I46628.doc 201130586. SUMMARY OF THE INVENTION Particles Hereinafter, a method of forming a dispersion without using a protective colloid will be described. b. Dissolving a silver salt in a solvent and preparing a silver-polyethylamine compound solution containing a reducing solution dissolved in a solvent; A spherical silver method with a smooth surface and a smooth surface, which comprises the following sequential steps. · This solution is mixed with polyamine to form 9 isoascorbic acid or ascorbic acid. The reducing solution is added to the silver·polyvinylamine complex solution. Forming finely divided, dispersed, uniformly shaped spherical silver particles; d. separating silver particles from the solution of step (c); washing the silver particles with a solvent;

f · 供乾該等細分、分散日彡此4A A 刀欺且形狀均勾的球形銀粒子。 【實施方式】 本發明涉及-種製程,其中以在異抗壞錢還原銀及線 性聚胺之間所形成的複合物,而在無保護性膠體的情況下 產生大型、良好分散且均勾的銀球體。在無保護性膠體的 情況下,所產生之銀粉末僅含有有機物,其在夠低而不干 擾燒結程序及形成高傳導性銀結構的溫度下進行分解。銀 球體藉由奈米大小的銀實體的迅速聚集而形成,且其最終 大小可藉由改變聚集程序的動力學來加以控制。 可以在例如水或其他適當溶劑中製造銀_聚胺複合物溶 液,這些溶劑可溶解銀鹽及還原劑且與聚胺相容。可供使 用且與水不同的溶劑例如有二甘醇(DEG)的多元醇類。在 146628.doc 201130586 一些實施例中,溶劑為水。 首先,添加可溶於水的銀鹽至去離子纟中以製備銀聚胺 複合物水溶液。諸如硝酸銀、磷酸銀、硫峻銀等任何可溶 於水的銀鹽皆可用於本發明的製程t。在—些實施例中冷 銀鹽為硝酸銀。接著’添加聚胺以形成銀,聚胺複合物溶 液。聚胺可為線性或取代線性聚胺,如乙烯二胺、二乙烯 三胺、三乙烯四胺及四乙烯戊胺。在沉澱之前,使聚胺複 合物達到想要的溫度。想要的溫度可能隨著溶劑、濃度及 反應劑的選擇而大幅改變。在一些實施例中,此溫度為約 20°C以下’且在其他實施例中為8(rc以上。 藉由蔣還原劑溶解於去離子水中來製備還原溶液。用於 本發明製程的適當還原劑為L_抗壞血酸及D·抗壞血酸及其 鹽類。 將還原溶液迅速加至銀-聚胺複合物溶液以形成細分且 密集堆砌的球形銀粒子。在沉澱完成後,將銀粒子與水分 離開來、並予以清洗及烘乾。 藉由改變聚胺的分子量,可以製造出具有不同粒子大小 分佈的銀粉末。粒子大小的範圍可從小於〇. 1微米變化上 至大於1微米(由掃瞄式電子顯微鏡所測得)。隨著聚胺的分 子量增加,粒子大小減少且粒子型態的均勻度變差藉由從 乙烯一胺變至二乙烯三胺、至三乙烯四胺及四乙烯戊胺, 可製造出更小的粒子溫度亦可用來改變粒子大小分佈。在 20 C及80 C之間改變溫度,可產生在小於〇 3微米至大於 2.5微米的範圍之間變化的粒子大小(由掃瞄式電子顯微鏡 146628.doc 201130586 所測得)。 改變銀與聚胺的莫耳比,可改變所產生的銀粒子之粒子 大小。銀與聚胺的莫耳比可從1:1改變至大於4:ι。增加聚 胺的莫耳過量可改善銀粒子的均勻度且增加平均大小。 可在非水的溶财進行此製程^改變_不會改變銀粉 末的粒子大小。使用二甘醇作為溶劑會產生具有和微 米之非常小的粒子(由掃瞒式電子顯微鏡所測得卜可使用 二甘醇及水的混合物來提供從“微米至ut米之間範圍的 的銀粉末粒子大小(由掃瞄式電子顯微鏡所測得卜 實例 提出下列實例及討論以進一步描述而非限制本發明之製 程。下列製程說明係用以製造表1所示的實例。 首先,在250 cm3的去離子水中溶解〇〇5莫耳的銀鹽,接 著添加指定量的聚胺,且最後以水調整容積至44〇 cm3, 而在1000 cm3的圓柱型玻璃燒杯中製備銀_聚胺複合物的水 溶液。所使用聚胺包括乙烯二胺(EDa)、二乙稀三胺 (DETA)、三乙烯四胺(TETA)及四乙烯戊胺(TEPA)。接 著’在80°C加熱溶液2小時’之後冷卻至反應溫度。藉由 在冷去離子水中溶解0.03莫耳的異抗壞血酸結晶(代表2〇% 化學計量過刺)並將容積變成60 cm3,而在另一 1〇〇 cm3的 玻璃燒杯中製備反應劑溶液。為了方便比較,在每一實例 中’銀胺溶液的濃度為每dm3 0.1莫耳且異抗壞血酸溶液的 濃度為每dm3 0.44莫耳’雖在一般習慣上濃度可有所變 化0 1: 146628.doc 201130586 藉由迅速添加冷異抗壞血酸溶液至強力混合的銀聚胺複 合物溶液内以形成銀粒子所有情況中之最終容積為5〇〇 cm3且金屬濃度為0.1 mol dm·3。在完全還原銀之後,其花 費少於2分鐘’授摔分散液20分鐘以上,之後允許固體= 降。隨後’輕輕倒出透明上層液並且以5〇〇 cm3的去離子 水且以100 cm3的乙醇清洗銀粒子各三次。最後藉由過 遽來分離粒子並在真空中於70t烘乾粒子。用於每—實例 中的製程之進一步細節係顯示於表i。 如貫例1至4中所示,當聚胺分子量增加時,粒子大小變 小且其均勻度變差。乙烯二胺產生具有平均大小為〇 97的 粒子,而二乙烯三胺產生〇.29微米的大小且三乙烯四胺產 生0.06微米的大小此效果顯示在圖1中。 實例1A顯示出熱處理銀粉末會減少有機物含量並增加結 晶度而不改變粒子大小。 比較實例1與實例5至7,可見得改變反應溫度會影響粒 子大小 '球度及表面平滑度。參考圖2。如場發射掃瞄式 電子顯微鏡所偵測,當反應溫度增加時,粒子大小便會減 ;。在60 C的反應溫度可獲得最佳球度及表面平滑度。 實例7至9顯不改變銀對聚胺比例的效果。將聚胺的莫耳 過剩量從1:1的銀對聚胺比例增加至4:1,可明顯改善均勻 度並增加平均大小。此效果顯示在圖3中。 貫例10顯示出可使用水楊酸銀作為硝酸銀起始材料的取 代物來製造銀粉末。 貫例11至13顯示出將溶劑從水改成二甘醇(deg)的效 146628.doc 201130586 果。增加DEG對水的比例可製造出較小的粒子。此效果顯 示在圖4中。 附表1 實例 編號 銀 先質 胺3 胺:銀 莫耳比 溶劑b 溫度 CC) 有機物 含量 (%)c 微晶大 (nm)d 平均 直徑 (μηι)ε 1 AgN03 EDA 4:1 水 60 2.2 14 0.97 lAf 無 無 無 無 220 0.18 57 0.97 2 AgN03 DETA 4:1 水 60 1.25 18 0.29 3 AgN〇3 TETA 4:1 水 60 1.19 20 0.06 4 AgN03 ΤΕΡΑ 4:1 水 60 0.9 18 0.08 5 AgN03 EDA 4:1 水 20 2.3 13 1.36 6 AgN03 EDA 4:1 水 40 0.86 15 2.48 7 AgN03 EDA 4:1 水 80 3.2 22 0.33 8 AgN03 EDA 1:1 水 60 2.3 19 0.40 9 AgN03 EDA 2:1 水 60 2.38 18 0.38 10 AgC7H503 EDA 4:1 水 60 2.39 22 0.62 11 AgN03 EDA 4:1 100% DEG 60 1.33 14 0.096 12 AgN03 EDA 4:1 25% DEG 60 2.07 15 約0.2 13 AgN03 EDA 4:1 5% DEG 60 2.39 18 約0.5 a EDA乙烯二胺、DETA二乙烯三胺、TETA三乙烯四胺、ΤΕΡΑ 四乙烯戊胺 b DEG二甘醇 c藉由使用博金艾摩拜樂(Perkin Elmer Pyris)l儀器之熱解重量 分析(TGA)來評估銀粒子中之有機物質的含量。 d微晶大小係由使用玻克(Bruker)D8繞射計及Cu Κα波長 (1.5406 Α)的X光繞射(XRD)而決定。 e藉由具喬耳(J〇el)7400儀器的場發射掃瞄式電子顯微鏡 (FESEM),其中從電子顯微圖測量100粒子。 r i. f在220°C熱處理來自實例1的粉末9小時。 146628.doc -9- 201130586 【圖式簡單說明】 圖la至Id為藉由在攝氏60度以4:1的銀莫耳比作為配位 體,利用a)乙烯二胺(EDA)、b)二乙烯三胺(DETA)、c)三 乙烯四胺(TETA)及d)四乙烯戊胺(ΤΕΡΑ)還原銀複合物所獲 得之銀粒子的電子顯微圖。 圖2a至2d為在攝氏a) 20、b) 40、c) 60及d) 80度以EDA (乙烯二胺)所獲得之銀粒子的電子顯微圖。 圖3a至3c為以Ag/EDA莫耳比a) 1:1、b) 1:2及c) 1:4所獲 得之銀粒子的電子顯微圖。 圖4a至4d為在a) 100%水(試樣1號)、b) 95%水/5% DEG、c) 75% 水/25%/DEG及 d) 100% DEG所獲得之銀球 體。 -10· 146628.docf · For the purpose of drying these subdivided, scattered spherical silver particles with a 4A A knife shape and a hook shape. [Embodiment] The present invention relates to a process in which a composite formed between silver and a linear polyamine is reduced in a heterogeneous anti-bad money, and in the case of a non-protective colloid, a large, well-dispersed and uniformly-linked one is produced. Silver sphere. In the absence of a protective colloid, the silver powder produced contains only organic matter which decomposes at a temperature low enough to interfere with the sintering process and form a highly conductive silver structure. The silver sphere is formed by the rapid aggregation of nano-sized silver entities, and its final size can be controlled by changing the dynamics of the aggregation procedure. The silver-polyamine complex solution can be produced, for example, in water or other suitable solvent, which dissolves the silver salt and the reducing agent and is compatible with the polyamine. Solvents which can be used and which are different from water are, for example, polyols of diethylene glycol (DEG). In some embodiments, 146628.doc 201130586, the solvent is water. First, a water-soluble silver salt is added to a deionized crucible to prepare an aqueous solution of a silver polyamine complex. Any water-soluble silver salt such as silver nitrate, silver phosphate, sulphur silver, or the like can be used in the process t of the present invention. In some embodiments the cold silver salt is silver nitrate. The polyamine is then added to form a silver, polyamine complex solution. The polyamine can be a linear or substituted linear polyamine such as ethylene diamine, diethylene triamine, triethylenetetramine and tetraethylene pentylamine. The polyamine complex is brought to the desired temperature prior to precipitation. The desired temperature may vary greatly depending on the solvent, concentration, and choice of reactants. In some embodiments, this temperature is below about 20 ° C and in other embodiments is 8 (rc or more. The reducing solution is prepared by dissolving the Jiang reducing agent in deionized water. Suitable reduction for the process of the invention The agent is L_ascorbic acid and D·ascorbic acid and salts thereof. The reducing solution is rapidly added to the silver-polyamine complex solution to form finely divided and densely packed spherical silver particles. After the precipitation is completed, the silver particles are separated from the water. And cleaning and drying. By changing the molecular weight of the polyamine, silver powders with different particle size distributions can be produced. The particle size can range from less than 0.1 micron to more than 1 micron (by scanning) As measured by electron microscopy. As the molecular weight of the polyamine increases, the particle size decreases and the uniformity of the particle form becomes worse by changing from ethylene monoamine to diethylenetriamine, to triethylenetetramine and tetraethylenepentylamine. , can produce smaller particle temperatures can also be used to change the particle size distribution. Changing the temperature between 20 C and 80 C can produce a range from less than 〇3 μm to more than 2.5 μm. Particle size (measured by the scanning electron microscope 146628.doc 201130586). Changing the molar ratio of silver to polyamine can change the particle size of the silver particles produced. The molar ratio of silver to polyamine can be from 1 :1 is changed to be greater than 4: ι. Increasing the molar excess of polyamine improves the uniformity of the silver particles and increases the average size. This process can be carried out in a non-aqueous solvent. The change does not change the particle size of the silver powder. The use of diethylene glycol as a solvent produces particles of very small size and micrometers (a mixture of diethylene glycol and water can be used to provide silver ranging from "micron to ut m" as measured by a broom electron microscope. Powder particle size (measured by a scanning electron microscope) The following examples and discussion are presented to further describe and not limit the process of the present invention. The following process descriptions are used to fabricate the examples shown in Table 1. First, at 250 cm3 Dissolve 5 moles of silver salt in deionized water, then add the specified amount of polyamine, and finally adjust the volume to 44 〇cm3 with water, and prepare silver-polyamine complex in 1000 cm3 cylindrical glass beaker. The aqueous solution used includes ethylene diamine (EDa), diethylene triamine (DETA), triethylenetetramine (TETA) and tetraethylene pentylamine (TEPA). Then 'heat the solution at 80 ° C for 2 hours. 'After cooling to the reaction temperature. By dissolving 0.03 moles of isoascorbic acid crystals in cold deionized water (representing 2〇% stoichiometric over-spurs) and changing the volume to 60 cm3, in another 1〇〇cm3 glass beaker In order to facilitate the comparison, in each case, the concentration of the 'silveramine solution is 0.1 mol per dm3 and the concentration of the isoascorbic acid solution is 0.44 mol per dm3' although the concentration may vary in general habit. 0 1: 146628.doc 201130586 The rapid formation of the cold isoascorbic acid solution into the strongly mixed silver polyamine complex solution to form silver particles in all cases with a final volume of 5 〇〇 cm 3 and a metal concentration of 0.1 mol dm·3 . After the silver is completely reduced, it takes less than 2 minutes to dispense the dispersion for more than 20 minutes, after which solids = drop is allowed. Subsequently, the clear supernatant was decanted and the silver particles were washed three times with 5 cm 3 of deionized water and 100 cm 3 of ethanol. Finally, the particles were separated by hydrazine and the particles were dried at 70 Torr in a vacuum. Further details of the process used in each of the examples are shown in Table i. As shown in the examples 1 to 4, as the molecular weight of the polyamine increases, the particle size becomes small and the uniformity thereof deteriorates. Ethylenediamine produced particles having an average size of 〇97, while diethylenetriamine produced a size of 29.29 μm and triethylenetetramine produced a size of 0.06 μm. This effect is shown in Fig. 1. Example 1A shows that heat treating the silver powder reduces the organic content and increases the crystallinity without changing the particle size. Comparing Example 1 with Examples 5 to 7, it can be seen that changing the reaction temperature affects the particle size 'sphericality and surface smoothness. Refer to Figure 2. As detected by the field emission scanning electron microscope, as the reaction temperature increases, the particle size decreases. The optimum sphericity and surface smoothness are obtained at a reaction temperature of 60 C. Examples 7 to 9 did not significantly alter the effect of silver on the ratio of polyamines. Increasing the molar excess of polyamine from a 1:1 ratio of silver to polyamine to 4:1 significantly improves the uniformity and increases the average size. This effect is shown in Figure 3. Example 10 shows that silver powder can be produced using silver salicylate as a substitute for the silver nitrate starting material. Examples 11 through 13 show the effect of changing the solvent from water to diethylene glycol (deg) 146628.doc 201130586. Increasing the ratio of DEG to water produces smaller particles. This effect is shown in Figure 4. Table 1 Example No. Silver Proline Amine 3 Amine: Silver Molar Ratio Solvent b Temperature CC) Organic Content (%) c Microcrystalline Large (nm) d Average Diameter (μηι) ε 1 AgN03 EDA 4:1 Water 60 2.2 14 0.97 lAf No or no 220 0.18 57 0.97 2 AgN03 DETA 4:1 Water 60 1.25 18 0.29 3 AgN〇3 TETA 4:1 Water 60 1.19 20 0.06 4 AgN03 ΤΕΡΑ 4:1 Water 60 0.9 18 0.08 5 AgN03 EDA 4: 1 Water 20 2.3 13 1.36 6 AgN03 EDA 4:1 Water 40 0.86 15 2.48 7 AgN03 EDA 4:1 Water 80 3.2 22 0.33 8 AgN03 EDA 1:1 Water 60 2.3 19 0.40 9 AgN03 EDA 2:1 Water 60 2.38 18 0.38 10 AgC7H503 EDA 4:1 Water 60 2.39 22 0.62 11 AgN03 EDA 4:1 100% DEG 60 1.33 14 0.096 12 AgN03 EDA 4:1 25% DEG 60 2.07 15 Approx. 0.2 13 AgN03 EDA 4:1 5% DEG 60 2.39 18 About 0.5 a EDA ethylene diamine, DETA diethylene triamine, TETA triethylene tetramine, ΤΕΡΑ tetraethylene pentylamine b DEG diethylene glycol c by using the pyrolysis of Perkin Elmer Pyris instrument Gravimetric analysis (TGA) is used to assess the amount of organic matter in the silver particles. The d crystallite size is determined by X-ray diffraction (XRD) using a Bruker D8 diffractometer and Cu Κα wavelength (1.5406 Α). e A field emission scanning electron microscope (FESEM) with a J〇el 7400 instrument in which 100 particles were measured from an electron micrograph. r i. f The powder from Example 1 was heat treated at 220 ° C for 9 hours. 146628.doc -9- 201130586 [Simplified Schematic] Figures la to Id use a) ethylene diamine (EDA), b) by using a 4:1 silver molar ratio as a ligand at 60 degrees Celsius. Electron micrographs of silver particles obtained by diethylenetriamine (DETA), c) triethylenetetramine (TETA) and d) tetraethylenepentylamine (ΤΕΡΑ) reduced silver complex. Figures 2a to 2d are electron micrographs of silver particles obtained with EDA (ethylenediamine) at 80 °C, b) 40, c) 60 and d) 80 °. Figures 3a to 3c are electron micrographs of silver particles obtained by Ag/EDA molar ratio a) 1:1, b) 1:2 and c) 1:4. Figures 4a to 4d are silver spheres obtained in a) 100% water (sample No. 1), b) 95% water / 5% DEG, c) 75% water / 25% / DEG and d) 100% DEG. -10· 146628.doc

Claims (1)

201130586 七、申請專利範圍: -種形成分散、均句、平滑表面之球形銀粒子而不使用 保護性膠體的方法,其包含下列依序步驟: g. 在-溶劑中溶解-銀鹽並將該溶液與一聚胺混合 以形成一銀-聚乙烯胺複合物溶液; h. 製備包含溶解在一溶劑中之異抗壞血酸或抗壞血 酸的一還原溶液; 1 ·將該還原溶液加至該銀-脊7 I* p人, 聚乙烯胺複合物溶液以形 成細分、分散、均勻塑型的球形銀粒子; j•從該步驟⑷的該溶液中分離出該等銀粒子; k.以一溶劑清洗該等銀粒子;以及 烘乾該等細分 2·如申請專利範圍第1 銀。 、分散且均勻塑型的球形銀粒子。 項所述之方法,#巾該銀鹽為㈣ 3. 4. 如申請專利範圍第丨項所述之方法 的溫度範圍中執行該步驟(c)。 如申請專利範圍第i項所述之方法 線性聚胺或取代線性聚胺。 其中在2〇t至肋它 其令該聚乙烯胺為 5. 如申請專利範圍第〗項所述 選自乙烯二胺、二乙烯三胺 所構成之群組。 之方法,其中該聚乙烯胺為 、二乙烯四胺及四乙烯戊胺 6·如申請專利範圍第5項所述 二胺。 其中該聚胺為乙烯 1項所述之方法 如申請專利範圍第 其申该還原劑包括[S J46628.doc 201130586 8. 9.10. 11.12. 13. 14. 15. 下列之一:L-抗壞血醆 如申請專利範圍第7項 抗壞血·酸。 D-抗壞jk酸及其鹽類。 所述之方法, 其中該還原劑為異 如申請專利範圍第丨項所述之方法, 等粒子以移除殘餘有冑材料並增加結 如申請專利範圍第1項所述之方法, 比例等於或大於1 : 1。 其中在22(TC烘乾該 晶度。 其中銀/聚乙烯胺的 如申請專利範圍第10項所述 ^ ^ ^ 吓遢之方法,其中銀/聚乙烯胺的 比例等於或大於4:1。 如申清專利範圍第1項所述之方法,其中該溶劑為水。 如申請專利範圍第i項所述之方法,其中該溶劑為多元 醇類。 如申凊專利範圍第13項所述之方法,其中該溶 二甘 醇。 ‘一 如申晴專利範圍第1項所述之方法,其中該溶劑為多元 醇類及水之混合物β 146628.doc201130586 VII. Scope of application: - A method of forming spherical silver particles of dispersed, uniform, smooth surface without using a protective colloid, which comprises the following sequential steps: g. Dissolving in a solvent - silver salt and The solution is mixed with a polyamine to form a silver-polyvinylamine complex solution; h. preparing a reducing solution comprising isoascorbic acid or ascorbic acid dissolved in a solvent; 1) adding the reducing solution to the silver-ridge 7 I* p human, a polyvinylamine complex solution to form finely divided, dispersed, uniformly shaped spherical silver particles; j• separating the silver particles from the solution of the step (4); k. washing the solvent with a solvent Silver particles; and drying the subdivisions 2 as claimed in the first silver range. , spherical silver particles dispersed and uniformly shaped. The method described in the section, the silver salt is (4) 3. 4. Performing the step (c) in the temperature range of the method described in the scope of the patent application. The method of claim i is a linear polyamine or a substituted linear polyamine. Wherein the polyvinylamine is at a level of from 2 Torr to 5. The group consisting of ethylene diamine and diethylene triamine as described in the scope of the patent application. The method wherein the polyvinylamine is diethylenetetramine and tetraethylenepentylamine. 6. The diamine as described in claim 5 of the patent application. The method in which the polyamine is ethylene is as claimed in the patent application. The reducing agent includes [S J46628.doc 201130586 8. 9.10. 11.12. 13. 14. 15. One of the following: L-anti-ascorbic blood For example, patent application No. 7 is ascorbic acid. D-anti-jk acid and its salts. The method, wherein the reducing agent is a method as described in the scope of the patent application, and the particles are used to remove the residual ruthenium material and increase the knot as described in claim 1 of the patent application, the ratio is equal to or Greater than 1:1. Wherein the crystallinity is dried at 22 (TC), wherein silver/polyvinylamine is as described in claim 10 of the patent application, wherein the ratio of silver/polyvinylamine is equal to or greater than 4:1. The method of claim 1, wherein the solvent is water. The method of claim i, wherein the solvent is a polyol, as described in claim 13 The method according to the method of claim 1, wherein the solvent is a mixture of a polyol and a water β 146628.doc
TW99106021A 2010-03-02 2010-03-02 Preparation of silver spheres by the reduction of silver polyamine complexes TW201130586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99106021A TW201130586A (en) 2010-03-02 2010-03-02 Preparation of silver spheres by the reduction of silver polyamine complexes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99106021A TW201130586A (en) 2010-03-02 2010-03-02 Preparation of silver spheres by the reduction of silver polyamine complexes

Publications (1)

Publication Number Publication Date
TW201130586A true TW201130586A (en) 2011-09-16

Family

ID=50180176

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99106021A TW201130586A (en) 2010-03-02 2010-03-02 Preparation of silver spheres by the reduction of silver polyamine complexes

Country Status (1)

Country Link
TW (1) TW201130586A (en)

Similar Documents

Publication Publication Date Title
Chen et al. Multimorphology mesoporous silica nanoparticles for dye adsorption and multicolor luminescence applications
KR101229687B1 (en) Preparation of silver spheres by the reduction of silver polyamine complexes
Yan et al. Polydopamine spheres as active templates for convenient synthesis of various nanostructures
Jahangirian et al. Synthesis and characterization of zeolite/Fe3O4 nanocomposite by green quick precipitation method
WO2017143978A1 (en) Method of producing a porous crystalline material with a highly uniform structure
JP6274444B2 (en) Method for producing copper powder
KR20160126989A (en) Copper nanoparticles and production method for same, copper nanoparticle fluid dispersion, copper nanoink, copper nanoparticle preservation method, and copper nanoparticle sintering method
WO2012078590A2 (en) Stable dispersions of monocrystalline nanometric silver particles
Yang et al. Facile, large-scale, and expeditious synthesis of hollow Co and Co@ Fe nanostructures: application for electromagnetic wave absorption
Petrakli et al. α‐Alumina nanospheres from nano‐dispersed boehmite synthesized by a wet chemical route
Jiu et al. Ag nanowires: large-scale synthesis via a trace-salt-assisted solvothermal process and application in transparent electrodes
Chen et al. Hydrothermal synthesis of BaTiO3 nanoparticles and role of PVA concentration in preparation
TWI221344B (en) Composition of composite polymer electrolyte containing nano-tube and manufacturing method thereof
CN104860357A (en) Monodispersed nano-sheet and/or nano-ring as well as preparation and application thereof
CN110181074B (en) Method for green preparation of high-length-diameter-ratio silver nanowires by composite soft template method
KR20180104404A (en) Methods of preparing metal nanoplates and metal nanoplates prepared by using the same
Zhao et al. A facile approach to fabrication of hexagonal‐phase NaYF4: Yb3+, Er3+ hollow nanospheres: formation mechanism and upconversion luminescence
Xu et al. Controllable synthesis of highly ordered Ag nanorod arrays by chemical deposition method
Wang et al. Green synthesis of dendritic silver nanostructure and its application in conductive ink
TW201130586A (en) Preparation of silver spheres by the reduction of silver polyamine complexes
EP3117024B1 (en) A process for the synthesis of nanostructured metallic hollow particles and nanostructured metallic hollow particles
JP2008069388A (en) Polyhedral metal particulate and method for producing the same
CN114728807A (en) Moderately dispersed Dy2O3Granules
Mahale et al. Synthesis and the structural transformation of fcc to hcp in Ni‐graphene nanocomposite by simple chemical route via sonication
Gautam et al. Synthesis, mechanical and I–V characteristics of Ag–PVA nanocomposite films