TW201129128A - Wireless communication method of mutual authentication with dynamic keys - Google Patents

Wireless communication method of mutual authentication with dynamic keys Download PDF

Info

Publication number
TW201129128A
TW201129128A TW99103051A TW99103051A TW201129128A TW 201129128 A TW201129128 A TW 201129128A TW 99103051 A TW99103051 A TW 99103051A TW 99103051 A TW99103051 A TW 99103051A TW 201129128 A TW201129128 A TW 201129128A
Authority
TW
Taiwan
Prior art keywords
base station
station
key
authentication
subscriber station
Prior art date
Application number
TW99103051A
Other languages
Chinese (zh)
Other versions
TWI425845B (en
Inventor
Yi-Li Huang
Fang-Yi Lv
Original Assignee
Yi-Li Huang
Fang-Yi Lv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yi-Li Huang, Fang-Yi Lv filed Critical Yi-Li Huang
Priority to TW99103051A priority Critical patent/TWI425845B/en
Publication of TW201129128A publication Critical patent/TW201129128A/en
Application granted granted Critical
Publication of TWI425845B publication Critical patent/TWI425845B/en

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

In this invention, we propose a novel communication authentication method which provides wireless communication with a mutual authentication and dynamic keys. Under this invention, a subscriber station (SS) and a base station (BS) individually input a random number into the Diffie-Hellman Public Key Distribution System (DH-PKDS for short) function to separately generate a set of public keys and, hence, a set of common secret keys, with which the SS and BS individually generate their own AKs, TEKs, and NTEKs as the strong data connection between them. With these three sets of parameters, the SS and BS authenticate each other by using the certification keys which are delivered between them. Under this invention, plaintext and ciphertext are respectively encrypted into ciphertext and decrypted into plaintext with a two dimensional encryption/decryption approach. But, only ciphertext is transmitted through wireless channels. Additionally, communication safety between the SS and BS can be improved by using the mutual authentication with dynamic keys and all the parameters transmitted through wireless channels are used once only.

Description

201129128 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種在IEEE 802.l6ePKMVl環境下的無 線通訊方法,尤指具有動態金鑰雙向認證之無線通訊方法。 【先前技術】 無線通訊主要包括手機通訊與無線網路通訊,然而在 - IEEE 802.16ePKMVl 的環境下,用戶台(subscriber station, w Φ SS)端與基地台(base station,BS)端在進行無線通訊前並沒 有任何的資料連結(共同的基本資料),不同於在手機SIM 卡内之IMSI以及Ki的資料連結或在IEEE 802.16e之 PKMV2中用戶台與認證、授權、計費 (Authentication-Authorization-Accounting, AAA)間的 Radius 資料連結’所有用戶台端與基地台端間之資料連結均需透 過無線通訊傳輸資料來建立,若無線通訊一開始資料未具 • 有良好的安全機制保護,則用戶台端與基地台端間建立起 來的連結資料將是不安全的,而隨後整個無線通訊系統的 安全將是脆弱的。 茲以目前IEEE 802.16ePKMVl為例來說明,IEEE 802.16ePKMVl無線通訊執行步驟如下: PART I :(PKM Authorization)BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wireless communication method in an IEEE 802.16ePKMV1 environment, and more particularly to a wireless communication method with dynamic key mutual authentication. [Prior Art] Wireless communication mainly includes mobile phone communication and wireless network communication. However, in the environment of IEEE 802.16ePKMV1, the subscriber station (w Φ SS) and the base station (BS) are wireless. There is no data link (common basic information) before the communication, which is different from IMSI and Ki data link in the SIM card of the mobile phone or PKMV2 in IEEE 802.16e. User station and authentication, authorization and accounting (Authentication-Authorization) Radius data connection between -Accounting, AAA) 'The data link between all user stations and the base station needs to be established through wireless communication. If the wireless communication is not available at the beginning. · With good security protection, the user terminal The link information established with the base station will be insecure, and then the security of the entire wireless communication system will be fragile. Taking IEEE 802.16ePKMVl as an example, the IEEE 802.16ePKMVl wireless communication implementation steps are as follows: PART I : (PKM Authorization)

Message 1: SS->BS: Cert(Manufacturer(SS))Message 1: SS->BS: Cert(Manufacturer(SS))

Message 2: 201129128 SS->BS: Cert(SS) I Capabilities I SAID Message 3: BS->SS:RSA-Encrypt(PubKey(SS),AK) | Lifetime | SeqN ο I SAIDList PART Π : (Privacy and key management)Message 2: 201129128 SS->BS: Cert(SS) I Capabilities I SAID Message 3: BS->SS:RSA-Encrypt(PubKey(SS),AK) | Lifetime | SeqN ο I SAIDList PART Π : (Privacy And key management)

Message 1: BS^SS: SeqNo | SAID | HMAC(l)Message 1: BS^SS: SeqNo | SAID | HMAC(l)

Message 2: SS^BS: SeqNo | SAID | HMAC(2)Message 2: SS^BS: SeqNo | SAID | HMAC(2)

Message 3: BS->SS: SeqNo | SAID | OldTEK | NewTEK | HMAC(3) 對於前述PKMV1無線通訊過程中,至少有下列幾項安 全漏洞’兹陳述如下:(1)骇客(Hacjer)可以從PARTI, message2 的 Cert(SS)中,取得 SS 的 PubKey(SS),進而從 PART I ’message3中,求得由BS傳來的AK,當駭客(Hacjer) 取得認證金鑰(Authentication Key,AK)後,則在 part jj 中’用戶台與基地台所有傳輸資料皆是危險的,因為<a>骇 客可以輕易取得OldTEK(其中TEK為流量加密金鑰口以任卜 Encryption Key,TEK))與NewTEK ’則隨後的任何資料傳 播將會被駭客所破解,而沒有安全性可言;<b>駭客可以才八 演偽用戶台而與基地台通訊’亦可扮演僞基地台與用戶么 通訊,只要該駭客持續破壞,整個無線通訊系統將無法二Message 3: BS->SS: SeqNo | SAID | OldTEK | NewTEK | HMAC(3) For the aforementioned PKMV1 wireless communication process, at least the following security vulnerabilities are listed as follows: (1) Hacker (Hacjer) can From the CERT (SS) of PARTI, message2, obtain the PubKey(SS) of the SS, and then obtain the AK from the BS from PART I 'message3, and when the hacker (Hacjer) obtains the authentication key (Authentication Key, After AK), in the part jj, all the data transmitted by the subscriber station and the base station are dangerous, because the <a> hacker can easily obtain the OldTEK (where TEK is the traffic encryption key to the Encryption Key, TEK). )) and NewTEK' then any data dissemination will be cracked by the hacker, and there is no security at all; <b> hackers can only play pseudo-user stations and communicate with the base station' can also play pseudo-base Communication between the station and the user, as long as the hacker continues to destroy, the entire wireless communication system will not be able to

LSI 5 201129128 作。(2)在PART I (PKM authorization)無線通訊中,由於用 戶台與基地台間尚未建立起連結資訊(AK),且在message3 的傳遞資料中,並沒有認證功能,故駭客玎以輕易的扮演 僞基地台而發送一偽message3訊號給用戶台’因無認證功 能,用戶台將無條件接收此一偽訊號後,造成用戶台得到 不正確的AK,使得隨後PART Π的無線通訊中, HAMC(l)〜HAMC(3)的認證失敗,而使整個無線通訊無法進 -行。(3)由於用戶台從發出訊息要求無線通訊到取得 .· TEKs,用戶台與基地台間共有6次無線傳輸’這使得駭客 可以很容易地介入用戶台與基地台間之無線傳輸,進而截 取資訊或破壞無線通訊,因此減少用戶台與基地台的無線 傳輸次數亦是提高安全度的方法之一。 為了改善IEEE 802.16ePKMVl在無線通訊安全本質上 的缺陷,其無線通訊過程作如下的改進: PART I : (PKM Authorization) • Message 1: SS^BS: Cert(Manufacturer(SS))LSI 5 201129128. (2) In the PART I (PKM authorization) wireless communication, since the connection information (AK) has not been established between the subscriber station and the base station, and there is no authentication function in the message 3 of the message, the customer is not easy. Play a pseudo-base station and send a pseudo message3 signal to the subscriber station. 'Because there is no authentication function, the subscriber station will unconditionally receive this false signal, causing the subscriber station to get an incorrect AK, so that the subsequent PART Π wireless communication, HAMC ( l) ~ HAMC (3) authentication failed, so that the entire wireless communication can not enter - line. (3) Since the subscriber station requests wireless communication from the outgoing message to the TEKs, there are 6 wireless transmissions between the subscriber station and the base station. This allows the hacker to easily intervene in the wireless transmission between the subscriber station and the base station. Intercepting information or disrupting wireless communications, thus reducing the number of wireless transmissions between subscriber stations and base stations is one of the ways to improve security. In order to improve the defect of IEEE 802.16ePKMV1 in the nature of wireless communication security, the wireless communication process is improved as follows: PART I : (PKM Authorization) • Message 1: SS^BS: Cert(Manufacturer(SS))

Message 2: SS->BS: SS-Random | Cert(SS) | Capabilities | SAID Message 3:Message 2: SS->BS: SS-Random | Cert(SS) | Capabilities | SAID Message 3:

BS->SS: SS-Random I BS-Random I RSA-Encrypt(PubKey(SS),pre_AK) |BS->SS: SS-Random I BS-Random I RSA-Encrypt(PubKey(SS),pre_AK) |

Lifetime I SeqNo | SAIDList I Cert(BS) | Sig(BS) PART Π :(Privacy and key management) 201129128Lifetime I SeqNo | SAIDList I Cert(BS) | Sig(BS) PART Π :(Privacy and key management) 201129128

Message 1: BS->SS: SS-Random | BS-Random | SeqNol2 | SAID I HAMC(l) Message 2: SS^BS: SS-Random | BS-Random | SeqNol2 | SAID | HMAC(2) Message 3: BS->SS: SS-Random I BS-Random | SeqNol2 | SAID | OldTEK I NewTEK|HMAC(3) 此改進方法中’主要是在無線通訊過程中(1)加入隨機 參數 SS-Random 與 BS-Random ; (2)以 Pre AK 取代 AK 而 由BS傳遞至用戶台,再由用戶台依公式產生ak,避免加 了密之AK直接在封包中傳遞;(3)在AK及TEK的產生公 式中加入SS-Random及BS-Random等隨機參數,以祈望此 等公式能有隨機特性,較不易被駭客破解。然而整個無線 通sfl過程中’並未建立Mutual authentication機制,充其量 只是讓AK及TEK的產生能隨加入的隨機參數SS Rand〇m 及BS-Random而變化,然,美中不足的是ss_Rand〇m及 BS-Random是直接經由無線傳播得到,且沒有任何加密保 護,故駭客可以报容易地取得這兩筆資料,故此等方=在 =質上對安全度而言貢獻不大;(4)由於產生ak&tek 公式所需要的變數,包括Pre—AK、SS-Rand〇m、 201129128 BS-Random、SS-MAC-Addr、BS-MAC-Addr 及 pre-TEK 等, 駿客可經由無線通訊過程中直接或間接取得,故系統的安 全度並未有明顯的改善。這樣的修改,對於整個IEEE 802.16e PKMV1在無線通訊安全本質上的缺陷之改進成效 有限’這樣的修改應該不算成功,需要重新做大幅的改進。 由上可之’ 一個安全的無線通訊系統中,其基本要求 為每次的無線通訊均需要進行認證,且用於無線傳播的參 數要隨用即丟,而這在IEEE 802.16e PKMV1的環境下是很 難辦到的。 本發明係整合Diffie-Hellman公開金鑰分配系統 (Diffie-Hellman public key distribution system,簡稱 Diffie-Hellman PKDS)’ 資料載體(Data Carriers)’ 以及雙向 認證等技術,在用戶台端與基地台端之間構建一套安全的 動態金鑰機制’在此機制下,即使在IEEE 802.16e之PKMV1 環境中,用戶台端與基地台端之間的任何無線通訊均能雙 向認證且隨用即丟’大大地提昇無線通訊之安全度。 在ffiEE 802.16e之PKMV1環境中,本發明所建構的 動態金鑰’只需一次往返之無線通訊(即 其安全機制就已建立,用戶台端與基地台端間可安全無線 通訊且可有效排除駭客在一段時間内(約3個月)之任何 攻擊。 因此,如何發明出一種具有動態金鑰雙效認證之無線 通訊系方法,以使無線通訊系統之安全度提升,將是本發 明所欲積極揭露之處。 201129128 【發明内容】 有鑑於上述無線通訊方法之缺憾,發明人有感其未臻 於完善,遂竭其心智悉心研究克服’憑其從事該項產業多 年之累積經驗,進而研發出一種具有動態金錄雙向認證之 無線通訊方法,以期達到用戶台以及基地台間之雙向無線 通訊皆需要經過雙向認證(Mutual authentication)的機制,唯 有通過認證才可進一步進行無線通訊資料處理,以達到提 高無線通訊安全性的目的。 本發明之主要目的在提供一種具有動態金鑰雙向認證 之無線通訊方法,其藉著在用戶台以及基地台間建構一套 安全之動態金鑰系統,在此系統的保護下,即使在IEEE 802.16e PKMV1的環境中,用戶台與基地台之間的任何無 線通訊均能達到雙向認證且隨用即丟的要求,俾大幅提昇 無線通訊的安全度。 為達上述目的,本發明之無線通訊方法包含:一種具 有動態金鑰雙向認證之無線通訊方法,其包含:一用戶台 隨機產生一組用戶台隨機亂數,做為用戶台的密鑰,並將 此組用戶台的密鑰輸入至一 Diffie-Hellman公開金鑰分配 系統(Diffie-Hellman PKDS)函數而產生一組用戶台公開金 鑰,用戶台傳送該組用戶台公開金鑰以及一無線通訊認證 要求給一基地台;基地台接收用戶台之無線通訊認證要 求,隨機取出一組基地台隨機亂數,做為相對於此用戶台 之基地台的密鑰,並將該組密鑰輸入至一 Diffie-Hellman公 開金鑰分配系統(Diffie-Hellman PKDS)函數而產生一組基 201129128 地台公開金鑰,接著基地台經由機械認證對用戶台進行認 證;當用戶台通過基地台之機械認證後,則該基地台使用 用戶台所傳來之該組用戶台公開金鑰與該基地台密鑰計算 產生一組共同密錄(Common Secret Key,CSKl,CSK2, CSK3),進而由所求得之該組共同密鑰計算產生一組基地台 第一身份認證金鑰(Cerfun(CSKl, CSK2, CSK3)),隨即基地 台傳送一認證成功訊息及該基地台第一身份認證金論給用 戶台,接著該基地台獨立計算產生一組基地台認證金鑰 (Authentication Keys,AKs)、一組基地台流量加密金鎗 (Traffic Encryption Keys, TEKs)以及一組基地台新流量加密 金鑰(NTEKs)。 該用戶台經由操作_識別碼得知基地台傳來一無線通 訊認證要求之認證成功訊息及身份認證金鑰,該用戶台隨 即檢驗該基地台所傳來之該Pubkey(SS)與該組用戶台内部 之Pubkey是否相等,若相等,則該用戶台使用基地台所傳 來之該組基地台公開金鑰與該用戶台密鑰計算產生一組共 同密鑰,進而由所求得之該組共同密鑰計算產生一組用戶 台第一身份認證金鑰,並將該組計算所得之用戶台第一身 份認證金鑰與由該基地台所傳來之身份認證金鑰比較;若 相等,則該用戶台獨立計算產生一組用戶台認證金鑰 (Authentication Keys, AKs)、一組用戶台流量加密金錄 (Traffic Encryption Keys,TEKs)以及一組用戶台新流量加密 金鑰(NTEKs);該用戶台傳送一資料傳輪要求以及用戶台第 二身份認證金鑰(Cerfun(AKl,AK2, AK3))給該基地台;該基 201129128 地台接收該用戶台之該資料傳輸要求,並檢驗由該用戶台 傳來之該用戶台第二身份認證金鑰與該基地台經由内部計 算產生之該組基地台第二身份認證金鑰(Cerfun(AKl. AK2, AK3))是否相等;若相等,則該基地台回傳一允許資料傳輸 訊息以及基地台第三身份認證金鍮(Cerfun(AK4,AK5, AK6))給該用戶台;該用戶台接收該基地台之該允許資料傳 輸要求以及基地台第三身份認證金錄(Cerfun(AK4,AK5, AK6)),且對該基地台所傳來之該基地台第三身份認證金鑰 進行認證;若該用戶台檢驗該基地台所傳來之該基地台第 三身份認證金鑰與該用戶台内部計算產生之一用戶台第三 身份認證金鑰(Cerfun(AK4, AK5, AK6))相等,則該用戶台將 一明文資料加密為一密文資料,並將該密文資料以及用戶 台認證碼(EXOR(TEKm,NTEKm))傳送給該基地台;該基地 台接收該用戶台之該密文資料以及用戶台認證碼,並驗證 該組用戶台由流量加密金鑰(TEK)以及該組用戶台新流量 加密金鑰(NTEK)計算產生之一用戶台認證碼(EXOR(TEKm, NTEKm))與該基地台内所產生之該組基地台認證金錄(TEK) 以及該組基地台新流量加密金鑰(NTEK)計算產生之一基地 台認證碼(EXOR(TEKm, NTEKm))是否相等,若驗證成功, 則對該密文資料解密成為一明文資料。藉此,本發明之一 種具有動態金鑰雙向認證之無線通訊方法可提升無線通訊 之安全度。 【實施方式】 201129128 為充分瞭解本發明之目的、特徵及功效,茲藉由下述 具體之實施例,並配合所附之圖式,對本發明做一詳細說 明,說明如後: 參考第1圖及第2圖,係分別為本發明具有動態金鑰 雙向認證之無線通訊方法之較佳具體實施例之實施例流程 圖’及接續第1圖之實施例流程圖。 首先,進行步驟 S100,用戶台(subscriber station,SS) - 透過擬亂數產生器(Pseudo Random Number Generator, -· PRNG)隨機產生一組用戶台隨機亂數,做為用戶台的密 鑰,並將此組用戶台的密鑰輸入至一 Diffie-Hellman公開金 鑰分配系統(Diffie-Hellman PKDS)函數而得出一組用戶台 公開金鑰,用戶台傳送該組用戶台公開金鑰以及一無線通 訊認證要求Message 1給一基地台。上述之Diffie-Hellman 公開金鑰分配系統函數係DH(p,g,x)=gx mod p,其中p為強 質數,g為p之原根,X為一隨機參數,DH(p,g,x)、p與X φ 三者具有相同的位元大小,該位元可為512、1024或2048 位元。無線通訊認證要求之形式如下:Message 1: BS->SS: SS-Random | BS-Random | SeqNol2 | SAID I HAMC(l) Message 2: SS^BS: SS-Random | BS-Random | SeqNol2 | SAID | HMAC(2) Message 3 : BS->SS: SS-Random I BS-Random | SeqNol2 | SAID | OldTEK I NewTEK|HMAC(3) In this improved method, 'mainly in the wireless communication process (1) adding random parameters SS-Random and BS -Random ; (2) Replace AK with Pre AK and pass it to the user station by BS, and then generate ak according to the formula by the user station, avoiding the AK added directly in the packet; (3) Formula for generating AK and TEK Random parameters such as SS-Random and BS-Random are added to hope that these formulas can have random characteristics and are less likely to be cracked by hackers. However, during the entire wireless communication process, the Mutual authentication mechanism is not established. At best, the generation of AK and TEK can be changed with the random parameters SS Rand〇m and BS-Random. However, the fly in the ointment is ss_Rand〇m and BS. -Random is directly transmitted via wireless, and there is no encryption protection, so the hacker can easily obtain these two data, so this side = does not contribute much to the security in terms of quality; (4) due to The variables required by the ak&tek formula, including Pre-AK, SS-Rand〇m, 201129128 BS-Random, SS-MAC-Addr, BS-MAC-Addr, and pre-TEK, etc., can be communicated via wireless communication. Obtained directly or indirectly, so the system's security has not been significantly improved. Such a modification has limited effectiveness in improving the defects of the entire IEEE 802.16e PKMV1 in the nature of wireless communication security. Such modifications should not be successful and require significant improvements. From the above, in a secure wireless communication system, the basic requirement is that each wireless communication needs to be authenticated, and the parameters used for wireless propagation should be lost, and this is in the environment of IEEE 802.16e PKMV1. It is very difficult to do. The invention integrates Diffie-Hellman public key distribution system (Diffie-Hellman PKDS) 'Data Carriers' and two-way authentication technology, and constructs between the user station and the base station. A secure dynamic key mechanism. Under this mechanism, even in the PKMV1 environment of IEEE 802.16e, any wireless communication between the user station and the base station can be authenticated in both directions and can be used to greatly improve wireless communication. The degree of security. In the PKMV1 environment of ffiEE 802.16e, the dynamic key constructed by the present invention requires only one round-trip wireless communication (that is, its security mechanism is established, and secure wireless communication between the user station and the base station can be effectively eliminated. Any attack over a period of time (about 3 months). Therefore, how to invent a wireless communication system with dynamic key double-effect authentication, so as to improve the security of the wireless communication system, will be positive for the present invention. 201129128 [Invention] In view of the shortcomings of the above wireless communication method, the inventor felt that it was not perfected, and exhausted his mental research to overcome the accumulated experience of the industry for many years, and then developed A wireless communication method with dynamic gold recording two-way authentication, in order to achieve two-way wireless communication between the user station and the base station, a mutual authentication (Mutual authentication) mechanism is required, and only through authentication can the wireless communication data be processed further. To achieve the purpose of improving the security of wireless communication. The main purpose of the present invention is to provide a A wireless communication method with dynamic key mutual authentication, which constructs a secure dynamic key system between the subscriber station and the base station, and under the protection of the system, even in the environment of IEEE 802.16e PKMV1, the subscriber station Any wireless communication with the base station can achieve the requirements of two-way authentication and loss of use, and greatly improve the security of wireless communication. To achieve the above purpose, the wireless communication method of the present invention comprises: a dynamic key bidirectional The authentication wireless communication method comprises: a user station randomly generates a random number of user stations, as a key of the user station, and inputs the key of the group of users to a Diffie-Hellman public key distribution system. (Diffie-Hellman PKDS) function generates a set of subscriber station public key, the subscriber station transmits the group subscriber station public key and a wireless communication authentication request to a base station; the base station receives the subscriber station's wireless communication authentication request, and is randomly Take a set of base station random random numbers as a key to the base station of the subscriber station, and input the set of keys to a Diffie-Hel Lman public key distribution system (Diffie-Hellman PKDS) function to generate a set of base 201129128 platform public key, and then the base station authenticates the user station through mechanical authentication; when the user station passes the mechanical certification of the base station, then The base station uses the public key of the group of subscriber stations transmitted by the subscriber station to calculate a common secret record (Common Secret Key, CSK1, CSK2, CSK3), and then obtains the common secret of the group. The key calculation generates a set of base station first identity authentication keys (Cerfun (CSK1, CSK2, CSK3)), and then the base station transmits an authentication success message and the base station first identity authentication fund to the subscriber station, and then the base station Independent computing generates a set of Base Station Authentication Keys (AKs), a set of Base Station Traffic Encryption Keys (TEKs), and a set of base station new traffic encryption keys (NTEKs). The subscriber station learns the authentication success message and the identity authentication key of the wireless communication authentication request sent by the base station via the operation_identification code, and the subscriber station immediately checks the Pubkey (SS) and the group of subscriber stations transmitted by the base station. Whether the internal Pubkey is equal. If they are equal, the subscriber station uses the group base station public key transmitted by the base station to calculate a common key with the subscriber station key, and then obtains the common key of the group. The key calculation generates a set of user station first identity authentication keys, and compares the calculated first identity authentication key of the user station with the identity authentication key transmitted by the base station; if equal, the subscriber station Independent computing generates a set of User Key Authentication Keys (AKs), a set of User Encryption Keys (TEKs), and a set of User Station New Traffic Encryption Keys (NTEKs); The data transmission request and the second authentication key of the subscriber station (Cerfun (AKl, AK2, AK3)) are given to the base station; the base 201129128 receives the data transmission request of the subscriber station, and Verifying whether the second identity authentication key of the subscriber station transmitted by the subscriber station is equal to the second identity authentication key (Cerfun (AKl. AK2, AK3)) of the group base station generated by the base station via internal calculation; If the base station is equal, the base station returns a data transmission message and a base station third identity authentication certificate (Cerfun (AK4, AK5, AK6)) to the subscriber station; the subscriber station receives the permitted data transmission request of the base station. And the base station third identity authentication record (Cerfun (AK4, AK5, AK6)), and the third identity authentication key of the base station transmitted by the base station is authenticated; if the subscriber station checks the base station to transmit The base station third identity authentication key is equal to one of the subscriber station third identity authentication keys (Cerfun (AK4, AK5, AK6)) generated by the internal calculation of the subscriber station, and the subscriber station encrypts a plaintext data into one. Ciphertext data, and transmitting the ciphertext data and the subscriber station authentication code (EXOR (TEKm, NTEKm)) to the base station; the base station receives the ciphertext data of the subscriber station and the subscriber station authentication code, and verifies the Group user station is encrypted by traffic (TEK) and the set of subscriber station new traffic encryption key (NTEK) calculations to generate one of the subscriber station authentication codes (EXOR (TEKm, NTEKm)) and the set of base station authentication records (TEK) generated in the base station and The base station new traffic encryption key (NTEK) calculates whether one of the base station authentication codes (EXOR (TEKm, NTEKm)) is equal. If the verification is successful, the ciphertext data is decrypted into a plaintext data. Therefore, one of the wireless communication methods with dynamic key mutual authentication can improve the security of wireless communication. [Embodiment] 201129128 In order to fully understand the object, features and effects of the present invention, the present invention will be described in detail by the following specific embodiments and the accompanying drawings, And FIG. 2 is a flow chart of an embodiment of a preferred embodiment of a wireless communication method with dynamic key mutual authentication, and a flow chart of an embodiment of the first embodiment. First, in step S100, the subscriber station (SS) - randomly generates a random number of user stations through a pseudo random number generator (Pseudo Random Number Generator, - PRNG), as a key of the subscriber station, and Entering the key of the group of subscriber stations into a Diffie-Hellman Public Key Distribution System (Diffie-Hellman PKDS) function to obtain a set of subscriber station public keys, and the subscriber station transmits the set of subscriber station public keys and a wireless Communication authentication requires Message 1 to be given to a base station. The above Diffie-Hellman public key distribution system function system DH(p, g, x)=gx mod p, where p is a strong prime, g is the original root of p, X is a random parameter, DH(p, g, x), p and X φ have the same bit size, which can be 512, 1024 or 2048 bits. The form of wireless communication certification requirements is as follows:

Message 1: BS—SS: op—code I Cert(Manufacture(SS)) I Cert(SS) |Message 1: BS-SS: op-code I Cert(Manufacture(SS)) I Cert(SS) |

Psri I Psr2 I Psr3 I Lifetime 用戶台隨機產生該組用戶台隨機亂數SR1,SR2, SR3做 為用戶台的密鑰,其步驟更包含用戶台隨機輸入一字串至 一擬亂數產生器,並輸出3個長度為1024位元的一組用戶 台隨機亂數SR1,SR2, SR3,其中字串之格式為(SS隨機輸 12 201129128 入長度212的字串)+ (西元年+月+日+時+分+秒+ 秒) + (無線網卡號碼+秒+ 秒)。接著,用戶台計算 PSRi=DH(p,g,SRi),lSi$3。 其後,進行步驟S110,基地台接收用戶台之無線通訊 認證要求,首先由其内部隨機亂數表中取出3個長度為1024 位元的一組基地台隨機亂數BR1,BR2, BR3,並將該組基地 台隨機亂數輸入至一 Diffie-Hellman公開金錄分配系統 - (Diffie-Hellman PKDS)函數計算得出一組基地台公開金鑰 .鲁 pBRi=gBRl modp,l$i^3 ’並進行下列計算以求得一組共同 掛输 CKK1,CSK2,及 CSK3 ’ 其中 CSKi=^^/ mod p,1 S 3,緊接著,基地台進而由所求得之該組共同密输計算 產生一組基地台第一身份認證金鑰(Cerfun(CSKl,CSK2, CSK3))。 步驟S120,基地台經由機械認證對用戶台進行認證。 其中此機械認證係為一 X.509機械認證,基地台透過X.509 鲁 認證,由Cert(SS)找出對應之PubKey(SS)。此外,除了前 述之機械認證,任何以同樣精神之機械認證皆屬於本說明 書欲保護的範圍。 步驟S130,用戶台通過基地台之機械認證後,基地台 由内部資料取出隨機亂數pre_AK 1,pre_AK2, pre_AK3。 又,基地台傳送一認證成功訊息Message2給該用戶台,其 内容如下:The Psri I Psr2 I Psr3 I Lifetime subscriber station randomly generates the random number SR1, SR2, and SR3 of the user station as the key of the subscriber station, and the step further includes the user station randomly inputting a string to a pseudo random number generator. And output a set of three random random numbers SR1, SR2, SR3 with a length of 1024 bits, wherein the format of the string is (SS random input 12 201129128 into the length 212 string) + (Western year + month + day) + hours + minutes + seconds + seconds) + (wireless network card number + seconds + seconds). Next, the subscriber station calculates PSRi = DH(p, g, SRi), lSi$3. Thereafter, in step S110, the base station receives the wireless communication authentication request of the user station, firstly, three sets of base station random random numbers BR1, BR2, BR3, which are 1024 bits long, are taken out from the internal random random number table, and The random number of the base station is input to a Diffie-Hellman public record allocation system - (Diffie-Hellman PKDS) function to calculate a set of base station public key. Lu pBRi=gBRl modp, l$i^3 ' And the following calculation is performed to obtain a set of jointly CKK1, CSK2, and CSK3 'where CSKi=^^/ mod p, 1 S 3, and then the base station is further calculated by the obtained common density calculation of the group. A set of base station first identity keys (Cerfun (CSKl, CSK2, CSK3)). In step S120, the base station authenticates the subscriber station via mechanical authentication. The mechanical certification is an X.509 mechanical certification, the base station passes X.509 Lu certification, and Cert (SS) finds the corresponding PubKey (SS). In addition, in addition to the mechanical certifications described above, any mechanical certification in the same spirit is within the scope of this specification. Step S130, after the user station passes the mechanical authentication of the base station, the base station extracts random random numbers pre_AK 1, pre_AK2, pre_AK3 from the internal data. In addition, the base station transmits an authentication success message Message2 to the subscriber station, and its contents are as follows:

Message2:BS-^SSMessage2:BS-^SS

〇p一code | PubKey(SS) | PBR1 | PBR2 丨 PBR3 丨 Cerfun(CSKl,CSK 13 201129128 2,CSK3) I ADR(CSKl,pre_AKl) | ADR(CSK2,pre_AK2) I ADR( CSK3, pre_AK3) I Lifetimes 接著該基地台獨立計算產生一組基地台認證金鑰 (Authentication Keys, AKs)、一組基地台流量加密金錄 (Traffic Encryption Keys, TEKs)以及一組基地台新流量加密 金鑰(NTEKs)。 若用戶台未通過基地台之機械認證,則進入步驟 S122 ’在步驟S122中,基地台將其失敗原因事項寫入錯誤 鲁 表(FAJLists) ’並回傳用戶台認證失敗訊息Message2,接 著’基地台結束此次無線通訊。認證失敗回覆訊息之内容 如下:〇p_code | PubKey(SS) | PBR1 | PBR2 丨PBR3 丨Cerfun(CSKl,CSK 13 201129128 2,CSK3) I ADR(CSKl,pre_AKl) | ADR(CSK2,pre_AK2) I ADR( CSK3, pre_AK3) I Lifetimes The base station then independently calculates a set of Base Station Authentication Keys (AKs), a set of Base Station Traffic Encryption Keys (TEKs), and a set of base station new traffic encryption keys (NTEKs). If the subscriber station fails the mechanical authentication of the base station, the process proceeds to step S122. In step S122, the base station writes the reason for the failure to the error table (FAJLists) and returns the subscriber station authentication failure message Message2, and then the base Taiwan ended the wireless communication. The content of the authentication failure reply message is as follows:

Message2:BS->SS 〇p_code I Prbi I Prb2 I Prb3 I Cerfun(CSKl,CSK2,CSK3) I FA_List 此無線通訊系統更提供一操作—識別碼〇p—c〇de於該基 • 地台與該用戶台間傳送每一訊息之首欄位。基地台與用戶 台係藉由操作一識別碼得知傳送訊息之功能,其中該操作 識別碼長度則在4位元以上。操作—識別碼〇p—缝為一一* 位7L控制訊號,操作一識別碼對照表可參考第3圖。 步驟S140’用戶台由操作一識別碼〇p—c〇de判斷得知是 否通過機械認證,若通過機械認證,則進人步驟si5〇,用 戶台檢驗基地台所傳來之PubKey(Ss)與該組用戶台内部之 PubKey疋否相等,若相等,則進入步驟8剛,若不相等, 認證失敗,則進入步驟S152,抛棄此偽訊息,繼續等待耶 201129128 回傳訊息。 若機械驗證失敗,則至步驟S142,用戶台計算共同密 鑰如下:CSKi=户肠.modp,l$i$3。接著,用戶台對基地 台進行身份認證’其程序如下:判斷由基地台傳來之基地台 第一身份認證金鑰Cerfun(CSKl,CSK2,CSK3),是否等於由 用戶台内部計算產生之用戶台共同密鑰CSKi,l$i$3,進 而求得用戶台第一身份認證金餘 - Cerfun(CSKl,CSK2,CSK3)。若相等,則進入步驟 S144,用 .籲 戶台顯示錯誤表(FA_Lists)訊息,並結束無線通訊。若不相 等,則進入步驟S146,用戶台拋棄此偽訊息,繼續等待基 地台回傳訊息。 步驟S160中,用戶台計算一組用戶台共同密鑰CSK1, CSK2, CSK3 ’ 其計算過程如下:CSKi=尸肌· mod p,l $ 3, 用戶台進行進一步身份認證:判斷用戶台接收基地台所傳 來之一基地台第一身份認證金鍮Cerfun(CSKl,CSK2,CSK3) | 是否等於,由用戶台内部計算產生之CSKi,lSiS3而求得 之該組用戶台第一身份認證金鑰 Cerfun(CSKl,CSK2,CSK3)。 若不相等,則至步驟S162,基地台身份認證失敗,拋 棄此偽訊息,繼續等待基地台回傳訊息。 若相等,則至步驟S164,用戶台取得參數pre_Aki,lS i$3,其程序如下:Message2:BS->SS 〇p_code I Prbi I Prb2 I Prb3 I Cerfun(CSKl,CSK2,CSK3) I FA_List This wireless communication system provides an operation-identification code 〇p-c〇de on the base station and The first field of each message is transmitted between the subscriber stations. The base station and the subscriber station learn the function of transmitting a message by operating an identification code, wherein the operation identifier length is more than 4 bits. Operation—Identification Code 〇p—Sew is one-to-one* 7L control signal. For operation of an identification code comparison table, refer to Figure 3. Step S140' The subscriber station determines whether the mechanical authentication is passed by operating the identification code 〇p_c〇de. If the mechanical authentication is passed, the user enters step si5〇, and the subscriber station checks the PubKey (Ss) transmitted from the base station and the The PubKeys in the group user station are equal. If they are equal, the process proceeds to step 8. If the authentication fails, the process proceeds to step S152, the pseudo message is discarded, and the message is returned to wait for 201129128. If the mechanical verification fails, then to step S142, the subscriber station calculates the common key as follows: CSKi = household intestine.modp, l$i$3. Then, the subscriber station authenticates the base station. The procedure is as follows: determine whether the base station first identity authentication key Cerfun (CSK1, CSK2, CSK3) transmitted from the base station is equal to the subscriber station generated by the internal calculation of the subscriber station. The common key CSKi, l$i$3, and then the first identity authentication of the subscriber station - Cerfun (CSKl, CSK2, CSK3). If they are equal, the process goes to step S144, where the error table (FA_Lists) message is displayed, and the wireless communication is ended. If not, the process proceeds to step S146, and the subscriber station discards the pseudo message and continues to wait for the base station to return the message. In step S160, the subscriber station calculates a set of subscriber station common keys CSK1, CSK2, CSK3'. The calculation process is as follows: CSKi = corpse muscle mod p, l $ 3, the subscriber station performs further identity authentication: determining that the subscriber station receives the base station One of the first base station authentication certificates, Cerfun (CSKl, CSK2, CSK3) | is equal to the CSKi, lSiS3 generated by the internal calculation of the user station, and the first identity authentication key Cerfun of the group of users is obtained. CSKl, CSK2, CSK3). If they are not equal, then to step S162, the base station identity authentication fails, discarding the pseudo message, and continuing to wait for the base station to return the message. If they are equal, then to step S164, the subscriber station obtains the parameters pre_Aki, lS i$3, and the procedure is as follows:

Pre_AKi=IADR(CSKi,ADR(CSKi,pre—AKi)),lSiS3,緊接 著進入步驟S170。 15 201129128 步驟S170中,用戶台獨立計算產生一組用戶台認證金 鑰(Authentication Keys,AKs)、一組用戶台流量加密金餘 (Traffic Encryption Keys,TEKs)以及一組用戶台新流量加密 金鑰(NTEKs)。AKi, IS i <6依下列計算產生: AKl=HMAC-SHAl(CSKl,pre_AKl | CSK2 | pre_AK2 | S S_MAC_Addr| BS_MAC_Addr) AK2=HMAC-SHAl(CSK2,pre_AK2 | CSK3 | pre_AK3 | S - S_MAC_Addr| BS_MAC_Addr)Pre_AKi = IADR (CSKi, ADR (CSKi, pre - AKi)), lSiS3, immediately proceeds to step S170. 15 201129128 In step S170, the subscriber station independently calculates and generates a set of User Key Authentication Keys (AKs), a set of User Encryption Keys (TEKs), and a set of user station new traffic encryption keys ( NTEKs). AKi, IS i <6 is generated as follows: AKl=HMAC-SHAl(CSKl, pre_AKl | CSK2 | pre_AK2 | S S_MAC_Addr| BS_MAC_Addr) AK2=HMAC-SHAl(CSK2,pre_AK2 | CSK3 | pre_AK3 | S - S_MAC_Addr| BS_MAC_Addr )

.· AK3=HMAC-SHAl(CSK3,pre_AK3 | CSK1 |pre_AKl | S S_MAC_Addr| BS_MAC_Addr) AK4=HMAC-SHA1(CSK1,CSK2 | CSK3 | pre_AKl | pre_ AK2| SS_MAC_Addr) AK5=HMAC-SHA1(CSK2,CSK3 | CSK1 | pre_AK2 | pre_ AK3 I BS—MAC—Addr) AK6=HMAC-SHA1(CSK1,CSK3 | CSK2 | pre_AK3 | pre_ ^ AK1 I SS MAC Addr) . TEKi,IS is 243依下列計算產生: TAKa-\)^j = AKi + Pre - AKU 1 ^ i, j ^ 3 · TCK^j=CSKi + pre_AKj, l<i,j<3. ^^(M)x8i+(y-i)x9+* = (-^^(1+3) ® TAK j) + TCKk, l<i<3, l<j,k<9. NTEKi, IS i S 243依下歹丨J計算產生: NTAKt = AKA® TAKn 1<i<9. NTCKj = ΑΚ^ΘΤϋΚ:』,l<i<9. 201129128 ㈣=(乂尤,㊉+ (#70;㊉乂尺6),BiS3, 1 < j,kS9. 步驟S180中’用戶台傳送一資料傳輸要求訊息暨用戶 台第二身份認證金鑰(Cerfun(AKl,AK2,AK3))給基地台。其 中,上述訊息内容如下:.. AK3=HMAC-SHAl(CSK3,pre_AK3 | CSK1 |pre_AKl | S S_MAC_Addr| BS_MAC_Addr) AK4=HMAC-SHA1(CSK1,CSK2 | CSK3 | pre_AKl | pre_ AK2| SS_MAC_Addr) AK5=HMAC-SHA1(CSK2,CSK3 | CSK1 | pre_AK2 | pre_ AK3 I BS—MAC—Addr) AK6=HMAC-SHA1(CSK1,CSK3 | CSK2 | pre_AK3 | pre_ ^ AK1 I SS MAC Addr) . TEKi,IS is 243 is generated by the following calculation: TAKa-\) ^j = AKi + Pre - AKU 1 ^ i, j ^ 3 · TCK^j=CSKi + pre_AKj, l<i,j<3. ^^(M)x8i+(yi)x9+* = (-^^(1 +3) ® TAK j) + TCKk, l <i<3, l<j,k<9. NTEKi, IS i S 243 is calculated according to J: NTAKt = AKA® TAKn 1<i<9. NTCKj = ΑΚ^ΘΤϋΚ:』,l<i<9. 201129128 (4)=(乂尤,十+ (#70; 十乂6), BiS3, 1 < j,kS9. In step S180, 'user station transmits a data The transmission request message and the second authentication key of the subscriber station (Cerfun (AKl, AK2, AK3)) are sent to the base station. The content of the above message is as follows:

Message3:SS-^BS op一code I Cerfun(AKl,AK2,AK3) | Lifetime 步驟S190中,基地台透過操作__識別瑪〇p_code得知 用戶台要求資料傳輸。基地台接收用戶台之資料傳輸要求 ,並檢驗由該用戶台傳來之該組用戶台第二身份認證金输 Cerfun(AKl,AK2,AK3)與該基地台内部經由計算產生之基 地台第二身份認證金鑰Cerfun(AKl,AK2,AK3)是否相等。 若相等,則至步驟S200,若不相等,則至步驟S192,拋棄 此偽訊息,繼續等待用戶台的訊息。 步驟S200中,基地台回傳一允許資料傳輸訊息暨基地 台第三身份認證金鑰(Cerfun(AK4,AK5,AK6))給用戶台。其 中,上述訊息内容如下:Message3: SS-^BS op-code I Cerfun(AKl, AK2, AK3) | Lifetime In step S190, the base station learns that the subscriber station requires data transmission by operating the __ identification 〇p_code. The base station receives the data transmission request of the subscriber station, and checks the second identity authentication gold transmission Cerfun (AKl, AK2, AK3) transmitted by the subscriber station and the base station second generated by the calculation within the base station. Whether the authentication key Cerfun (AKl, AK2, AK3) is equal. If they are equal, then to step S200, if they are not equal, then to step S192, the pseudo message is discarded, and the message of the subscriber station is continued. In step S200, the base station returns a permitted data transmission message and a base station third identity authentication key (Cerfun (AK4, AK5, AK6)) to the subscriber station. Among them, the above content is as follows:

Message4:BS—SS op_code I Cerfun(AK4,AK5,AK6) | Lifetime 用戶台由操作_識別碼op_code得知基地台傳來允許用 戶台資料傳輸要求,則進入步驟S210,用戶台接收基地台 之允許資料傳輸要求,且對基地台所傳來之該組基地台第 三身份認證金鑰(Cerfun(AK4,AK5,AK6))進行認證。用戶台 判斷由基地台傳來的基地台第三身份認證金鑰 Cerfun(AK4, AK5,AK6)是否等於由用戶台内部自行計算產 17 201129128 生的用戶台第三身份認證金鑰Cerfun(AK4,AK5,AK6)。若 相等,則進入步驟S220,若不相等則至步驟S212,拋棄此 偽允許資料傳輸訊息,繼續等待基地台回傳訊息。 步驟S220,用戶台將一明文資料加密為一密文資料, 並將該密文資料傳送給基地台。其中,用戶台經由下列方 式將明文資料加密為密文資料後送出;假設明文(Plaintext) 可分解成η個明文片段,而每一明文片段長度為1024位元 (Plaintext l~Plaintextn,n 2 1)則:Message4: BS_SS op_code I Cerfun(AK4, AK5, AK6) | The Lifetime subscriber station is informed by the operation_identification code op_code that the base station transmits the request for the data transmission of the subscriber station, and proceeds to step S210, where the subscriber station receives the permission of the base station. Data transmission requirements, and the third identity authentication key (Cerfun (AK4, AK5, AK6)) of the group base station transmitted by the base station is authenticated. The subscriber station determines whether the base station third identity authentication key Cerfun (AK4, AK5, AK6) transmitted by the base station is equal to the subscriber station third identity authentication key Cerfun (AK4, which is generated by the subscriber station itself). AK5, AK6). If they are equal, the process goes to step S220. If they are not equal, the process proceeds to step S212, and the pseudo-allowed data transmission message is discarded, and the base station returns the message. Step S220, the subscriber station encrypts a plaintext data into a ciphertext data, and transmits the ciphertext data to the base station. The user station encrypts the plaintext data into ciphertext data and sends it out in the following manner; assuming that plaintext can be decomposed into n plaintext segments, and each plaintext segment is 1024 bits long (Plaintext l~Plaintextn, n 2 1 )then:

Ciphertexti=(plaintexti㊉NTEKj)+TEKj,式中 lgiSn, j=(i mod 243)+1,Ciphertexti=(plaintexti ten NTEKj)+TEKj, where lgiSn, j=(i mod 243)+1,

Ciphertexts=Ciphertext 1 +Ciphertext2+... +Ciphertextn-1 +Ciphertextn 用戶台傳送密文資料訊息暨認證碼 EXOR(TEKm,NTEKm)至基地台,接著進入步驟S230,其 中,上述訊息内容如下:Ciphertexts=Ciphertext 1 +Ciphertext2+... +Ciphertextn-1 +Ciphertextn The subscriber station transmits the ciphertext data message and the authentication code EXOR (TEKm, NTEKm) to the base station, and then proceeds to step S230, where the content of the message is as follows:

Message5:SS^BSMessage5: SS^BS

op—code | RHS_EXOR(AK6,Index-m) | EXOR(TEKm,NT EKm) I Ciphertexts I Lifetime 步驟S230中,基地台由操作_識別碼〇p_code得知用 戶台傳來密文資料,則:m=Index-m=RHS(AK6)㊉ RHS-EXOR(AK6, Index-m)。基地台接收用戶台之密文資 料,並驗證該組用戶台傳來之用戶台認證碼 EXOR(TEKm,NTEKm),與基地台内部由基地台該組認證金 鑰(TEKs)以及基地台該組新流量加密金鑰(NTEKs)計算產 201129128 生之認證碼EXOR(TEKm,NTEKm)是否相等。若相等,則進 入步驟S234,基地台對密文資料解密成為一明文資料,若 不相等,則進入步驟S232,基地台拋棄此偽訊息,繼續等 待用戶台回傳訊息,其中解密之程序如下: 解密:Op_code | RHS_EXOR(AK6, Index-m) | EXOR(TEKm,NT EKm) I Ciphertexts I Lifetime In step S230, the base station learns from the operation_identification code 〇p_code that the ciphertext data is transmitted from the subscriber station, then: m =Index-m=RHS(AK6)10 RHS-EXOR(AK6, Index-m). The base station receives the ciphertext data of the subscriber station, and verifies the subscriber station authentication code EXOR (TEKm, NTEKm) transmitted from the group of subscriber stations, and the base station authentication key (TEKs) and the base station group in the base station. The new traffic encryption key (NTEKs) calculates whether the authentication code EXOR (TEKm, NTEKm) produced by 201129128 is equal. If they are equal, the process proceeds to step S234, and the base station decrypts the ciphertext data into a plaintext data. If not, the process proceeds to step S232, and the base station discards the pseudo message and continues to wait for the user station to return the message. The decryption procedure is as follows: Decryption:

Plaintexti= (Ciphextexti-TEKj)㊉ NTEKj,ifCiphextextigTEKj (Ciphextexti+ΤΈΆ+Ι)㊉NTEKj,ifCiphextexti<TEKj 式中 l$i$n,j=(i mod 243)+1 前述中,基地台傳送一認證成功訊息給用戶台以及用 戶台將密文資料傳送給該基地台時,基地台以及用戶台係 藉由一互斥或函數(Exclusive-or function)或一加法函數 (Adder function)作為一資料載體(data carrier) 〇 用戶台與基地台間傳送之密文資料係採用一二維串流 加密處理的保護技術(two dimension stream cipher technique protection),其中二維運算係指以二種不同之運算對同一明 文訊息進行加密運算,而串流加密係指每一不同的明文位 元組皆與不同的隨機亂碼進行加密處理,而結合此二特性 的加密運算技術則稱為二維串流加密處理技術。 本發明是在IEEE 802.16e PKMV1環境下建構一用戶台 與基地台的可相互認證的無線通訊系統,為達此目的,本 發明有下列子功能,茲分述如下: 子功能(一):Encryption/Decryption Functions : 1. Diffie-Hellman PKDS function: 201129128 DH(p,g,x)=gx mod p式中,p為強質數,g為p之原 根,x為一隨機參數,DH(p,g,x)、p與x三者有相同 的size,均為512、1024或2048位元。 2. Exclusive OR function: EXOR(x,y)=x㊉ y。 3. Right-Hand-Side Exclusive OR function: RHS_EXOR(x,y)=RHS(x)㊉ y where RHS(x) is the right-hand-side of x and length of RHS(x) is equal to length of y ° 4. Adder function: ADR(x,y)=x+y where is a binary adder which discards the carry of the most significant bits of x+y ° 5. Certification function(身份認證函):Plaintexti= (Ciphextexti-TEKj) ten NTEKj, ifCiphextextigTEKj (Ciphextexti+ΤΈΆ+Ι) ten NTEKj, ifCiphextexti<TEKj where l$i$n,j=(i mod 243)+1 In the above, the base station transmits an authentication success message When the user station and the user station transmit the ciphertext data to the base station, the base station and the user station use a Exclusive-or function or an Adder function as a data carrier (data). Carrier) The ciphertext data transmitted between the subscriber station and the base station is a two-dimensional stream cipher technique protection, where the two-dimensional operation refers to the same plaintext in two different operations. The message is encrypted, and the stream encryption means that each different plaintext byte is encrypted with a different random garbled code, and the cryptographic operation technique combined with the two features is called a two-dimensional stream encryption processing technique. The invention constructs a mutually authenticated wireless communication system between a subscriber station and a base station in an IEEE 802.16e PKMV1 environment. To achieve the above, the present invention has the following sub-functions, which are described as follows: Sub-function (1): Encryption /Decryption Functions : 1. Diffie-Hellman PKDS function: 201129128 DH(p,g,x)=gx mod p where p is a strong prime, g is the original root of p, x is a random parameter, DH(p, g, x), p and x have the same size, both 512, 1024 or 2048 bits. 2. Exclusive OR function: EXOR(x,y)=x ten y. 3. Right-Hand-Side Exclusive OR function: RHS_EXOR(x,y)=RHS(x)10 y where RHS(x) is the right-hand-side of x and length of RHS(x) is equal to length of y ° 4. Adder function: ADR(x,y)=x+y where is a binary adder which discards the carry of the most significant bits of x+y ° 5. Certification function:

Cerfun(x,y,z)=(z㊉ y)+x 〇 6. Decryption: <a>y=x ㊉ EXOR(x,y) <b>y=RHS(x)㊉ RHS_EXOR(x,y) <c>IADR(x,ADR(x,y))=y y=ADR(x,y)-x, if ADR(x,y) ^ x y=ADR(x,y)+x +1, if ADR(x,y)<x <d>ICerfun(x,y,z)=z z=(Cerfun(x,y,z)-x)㊉ y,if Cerfun(x,y,z)2x z=(Cerfun(x,y,x)+又+1)㊉ y,if Cerfun(x,y,x)<x 子功能(二):資料載體(Data Carriers) 201129128 當用戶台與基地台有共同的資料連結時,如 CSK(Common Secrete Key)同時為用戶台與基地台所擁有, 則我們可用下列二法安全地將將隨機參數RN由用戶台攜 帶傳至基地台,或由基地台攜帶傳至用戶台,而不懼骇客 的竊取。 (1) 加密:EXOR(CSK,RN) 解密:RN=CSK㊉EXOR(CSK,RN) (2) 加密:ADR(CSK,RN)Cerfun(x,y,z)=(z 十 y)+x 〇6. Decryption: <a>y=x ten EXOR(x,y) <b>y=RHS(x)10 RHS_EXOR(x,y ) <c>IADR(x,ADR(x,y))=yy=ADR(x,y)-x, if ADR(x,y) ^ xy=ADR(x,y)+x +1, if ADR(x,y)<x <d>ICerfun(x,y,z)=zz=(Cerfun(x,y,z)-x) 十 y,if Cerfun(x,y,z)2x z =(Cerfun(x,y,x)++1) ten y,if Cerfun(x,y,x)<x sub-function (2): Data Carriers 201129128 When the subscriber station and the base station have When a common data link, such as CSK (Common Secrete Key) is owned by both the subscriber station and the base station, we can safely transmit the random parameter RN from the subscriber station to the base station or carry it on the base station by the following two methods. To the user station, not afraid of the hacking of the hacker. (1) Encryption: EXOR (CSK, RN) Decryption: RN = CSK ten EXOR (CSK, RN) (2) Encryption: ADR (CSK, RN)

解密:RN=ADR(CSK,RN)-CSK,if ADR(CSK,RN)g CSKDecryption: RN=ADR(CSK,RN)-CSK, if ADR(CSK,RN)g CSK

RN=ADR(CSK,RN)+ CSK+1,if ADR(CSK,RN)<CSK (3) 方式:在發送端加密,將密文以無線傳輸至接收端, 再由接收端解密,如此可安全地將隨機參數RN資 料以無線傳輸給接收方,此時,EXOR〇及ADR〇 成為資料載體。 子功能(三):Mutual Authentication 要建立用戶台與基地台間相互認證機制,首先是用戶 台與基地台至少要有二筆連結資料,如CSK1和CSK2,則 下列二種方法皆可完成相互認證: 方法一: 傳送加密的認證訊號,如EX0R(CSK1,CSK2)或 ADR(CSK1,CSK2),由於CSK1及CSK2只有用戶台與基地 台知曉,故只有用戶台與基地台可以認證,駭客是無法仿 製的,但此法缺點是CSK1和CSK2有較高的機會被駭客破 r «.-· 21 201129128 解而得。 方法二: 使用身份認證函數,Cerfun(CSKl,CSK2,CSK3)。 此方法的優點是使用三個隨機參數碼CSK1,CSK2,CSK3產 生一個身份認證碼Cerfun(CSKl,CSK2,CSK3),故擁有相當 高的安全度;其缺點是發送方與接收方在無線通訊認證前 要求此三個隨機參數碼CSK1,CSK2,CSK3,在發送方與接 收方之間已完成資料連結。 子功能(四):op_code Table 〇p__code為一 4位元控制訊號,其内涵如第3圖所示。 子功能(五):PRNG(Pseudo Random Number Generator) 擬亂數產生器 本發明是要建立一套有效率的動態金鍮系統,在每次 無線傳輸訊號時都有隨機參數(亂碼)加入,且用過即丟, 如此可使安全性提昇,故基地台與用戶台皆需要一相同有 效率的隨機亂碼產生器(PRNG),PRNG的基本結構圖如下:RN=ADR(CSK, RN)+ CSK+1, if ADR(CSK, RN)<CSK (3) mode: encrypting at the transmitting end, transmitting the ciphertext wirelessly to the receiving end, and then decrypting by the receiving end, The random parameter RN data can be transmitted to the receiver wirelessly. At this time, EXOR〇 and ADR〇 become data carriers. Sub-function (3): Mutual Authentication To establish a mutual authentication mechanism between the subscriber station and the base station, firstly, the subscriber station and the base station must have at least two links, such as CSK1 and CSK2, the following two methods can complete mutual authentication. : Method 1: Send encrypted authentication signals, such as EX0R (CSK1, CSK2) or ADR (CSK1, CSK2). Since CSK1 and CSK2 are only known to the subscriber station and the base station, only the subscriber station and the base station can authenticate, and the hacker is Can not be copied, but the disadvantage of this method is that CSK1 and CSK2 have a higher chance of being destroyed by the hacker r «.-· 21 201129128. Method 2: Use the identity authentication function, Cerfun (CSKl, CSK2, CSK3). The advantage of this method is that three random parameter codes CSK1, CSK2, and CSK3 are used to generate an identity authentication code Cerfun (CSK1, CSK2, CSK3), so it has a relatively high degree of security; its disadvantage is that the sender and the receiver are in wireless communication authentication. The three random parameter codes CSK1, CSK2, and CSK3 are required before, and the data link is completed between the sender and the receiver. Sub-function (4): op_code Table 〇p__code is a 4-bit control signal, the connotation is shown in Figure 3. Sub-function (5): PRNG (Pseudo Random Number Generator) The invention is to establish an efficient dynamic system, which has random parameters (garbled) added every time the signal is transmitted wirelessly, and If you use it or lose it, you can improve the security. Therefore, both the base station and the user station need an identical and efficient random garbled generator (PRNG). The basic structure of the PRNG is as follows:

Seeds--- PRNG--► PRNS PRNS(Pseudo-Random Number Sequence):Ψl,Ψ2,ψ3,…,ψq,q:PRNG之長度,其中Seeds為 啟動PRNG的輸入種子,可為固定單位的輪入參數,而 PRNG的輸出為PRNS,為隨機亂碼數列,係由輸出的隨機 22 201129128 亂瑪構成。 如上所述’本發明完全符合專利三要件:新穎性、進 步性和產業上的可利用性。以新穎性和進步性而言,本發 明係整合了 Diffie-Hellman公開金鑰分配系統 (Diffie-Hellman PKDS) > 資料載體(data carrier),以及雙向 認證(Mutual authentication)機制,在用戶台與基地台之間構 建一套安全的動態金鑰系統,致使在IEEE 802.16ePKMVl • 的環境中,用戶台與基地台之間的任何無線通訊均能達到 ·· 雙向認證且隨用即丟的要求’進而提昇無線通訊的安全度 ;就產業上的可利用性而言,利用本發明所衍生的產品, 當可充分滿足目前市場的需求。 本發明在上文中已以較佳實施例揭露,然熟習本項技 術者應理解的是,該實施例僅用於描繪本發明,而不應解 3貝為限制本發明之範圍。應注意的是,舉凡與該實施例等 效之變化與置換,均應設為涵蓋於本發明之範疇内。因此, Φ 發月之保5蔓範圍當以下文之申請專利範圍所界定者為準 【圖式簡單說明】 第1 ®為本發明具杨態錢雙向認證之無線通 ' 較佳具體實施例之實施例流程圖。 弟2圖為接續第1圖之實施例流程圖。 表。第Μ為本發明之較佳具體實施例之操作-識別鳴對照 23 201129128 【主要元件符號說明】Seeds--- PRNG--► PRNS PRNS(Pseudo-Random Number Sequence): Ψl, Ψ2, ψ3,..., ψq,q: the length of the PRNG, where Seeds is the input seed for starting the PRNG, which can be a fixed unit of the wheel The parameter, and the output of the PRNG is PRNS, which is a random garbled sequence, which is composed of the random 22 201129128 chaotic output. As described above, the present invention fully complies with the three requirements of the patent: novelty, advancement, and industrial applicability. In terms of novelty and advancement, the present invention integrates a Diffie-Hellman Public Key Distribution System (Diffie-Hellman PKDS) > data carrier, and a mutual authentication mechanism, at the subscriber station and A secure dynamic key system is built between the base stations, so that in the environment of IEEE 802.16ePKMV1, any wireless communication between the subscriber station and the base station can achieve the requirements of two-way authentication and loss of use. In turn, the security of wireless communication is improved; in terms of industrial availability, products derived from the present invention can fully satisfy the needs of the current market. The invention has been described above in terms of preferred embodiments, and it is to be understood by those skilled in the art that the present invention is only intended to illustrate the invention, and is not intended to limit the scope of the invention. It should be noted that variations and permutations that are equivalent to the embodiments are intended to be within the scope of the present invention. Therefore, the range of Φ 发 之 5 蔓 蔓 蔓 蔓 蔓 蔓 蔓 蔓 蔓 蔓 蔓 蔓 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第Example flow chart. Figure 2 is a flow chart of an embodiment following the first figure. table. The third embodiment is the operation of the preferred embodiment of the present invention - the recognition sound control 23 201129128 [The main component symbol description]

Claims (1)

201129128 七、申請專利範圍: 1. 一種具有動態金餘雙向認證之無線通訊方法,其包含: 一用戶台隨機產生一組用戶台隨機亂數,作為一用戶 台密錄’並將該組用戶台密鑰輸入一 Diffie-Hellman公開 金餘分配系統(Diffie-Hellman PKDS)函數得出一組用戶台 公開金錄’該用戶台傳送該組用戶台公開金输以及一無線 通訊認證要求給一基地台; 該基地台接收該用戶台之該無線通訊認證要求,隨機 取出一組基地台隨機亂數’作為一基地台密鑰,並將該組 基地台密鎗輸入一 Diffie-Hellman公開金鍮分配系統 (Diffie-HellmanPKDS)函數得出一組基地台公開金鑰,接 著該基地台經由機械認證對該用戶台進行認證; 該用戶台通過該基地台之機械認證後,則該基地台使 用該用戶台所傳來之該組用戶台公開金鑰與該基地台密 鑰計算產生一組共同密鑰(Common Secret Key, CSK1, CSK2, CSK3),進而由所求得之該組共同密鑰計算產生一 組基地台第一身份認證金鑰(Cerfun(CSKl,CSK2, CSK3)),隨即該基地台傳送一認證成功訊息及該基地台第 一身份認證金鑰給該用戶台,接著該基地台獨立計算產生 一組基地台認證金錄(Authentication Keys,AKs)、一組基地 台流量加密金输(Traffic Encryption Keys,TEKs)以及一組 基地台新流量加密金鑰(NTEKs); 該用戶台經由一操作_識別碼得知該基地台傳來該無 線通訊認證要求之認證成功訊息及基地台第一身份認證 25 201129128 金鍮’該用戶台隨即檢驗該基地台所傳來之該pubkey(SS) 與該用戶台内部之該Pubkey是否相等,若相等,則該用 戶台使用該基地台所傳來之該組基地台公開金鑰與該用 戶台密鑰計算產生一組共同密鑰,進而由所求得之該組共 同密鑰計算產生一組用戶台第一身份認證金鑰 (Cerfun(CSKl,CSK2, CSK3)),並將該組計算所得之用戶 台第一身份認證金鑰與由該基地台所傳來之基地台第一 - 身份認證金鑰比較;若相等,則該用戶台獨立計算產生一 -籲 組用戶台認證金錄(Authentication Keys,AKs)、一組用戶台 流量加密金鑰(Traffic Encryption Keys, TEKs)以及一組用 戶台新流量加密金鑰(NTEKs);該用戶台傳送一資料傳輸 要求以及一用戶台第二身份認證金鑰(Cerfun(AKl,AK2, AK3))給該基地台;該基地台接收該用戶台之該資料傳輸 要求,並檢驗由該用戶台傳來之該用戶台第二身份認證金 鑰與該基地台經由内部計算產生之一基地台第二身份認 φ 證金鑰(Cerfun(AKl. AK2, AK3))是否相等;若相等,則該 基地台回傳一允許資料傳輸訊息以及一基地台第三身份 認證金鑰(Cerfun(AK4,AK5,AK6))給該用戶台;該用戶台 接收該基地台之該允許資料傳輸訊息以及基地台第三身 份認證金鑰(〇6^1111(入〖4,入〖5,入〖6)),且對該基地台所傳 來之該基地台第三身份認證金鑰進行認證;若該用戶台檢 驗該基地台所傳來之該基地台第三身份認證金鑰與該用 戶台内部計算產生之一用戶台第三身份認證金鑰 (Cerfun(AK4, AK5, AK6))相等,則該用戶台將一明文資料 26 201129128 加密為一密文資料,並將該密文資料以及一用戶台認證碼 (EXOR(TEKm,NTEKm))傳送給該基地台;該基地台接收 該用戶台之該密文資料以及該用戶台認證碼,並驗證該組 用戶台由用戶台流量加密金鑰(TEK)以及該組用戶台新流 量加密金鑰(NTEK)計算產生之一用戶台認證碼 (EXOR(TEKm,NTEKm))與該基地台内所產生之該組基地 台認證金鑰(TEK)以及該組基地台新流量加密金鑰(NTEK) 計算產生之一基地台認證碼(EXOR(TEKm,NTEKm))是否 相等’若驗證成功,則對該密文資料解密成為一明文資料。 2. 如申請專利範圍第1項所述之具有動態金鑰雙向認證之無 線通訊方法,其中,該機械認證係為一 X.509機械認證。 3. 如申請專利範圍第1項所述之具有動態金鑰雙向認證之無 線通訊方法,其中,該用戶台隨機產生該組用戶台隨機亂 數更包含該用戶台隨機輸入一字串至一擬亂數產生器 (Pseudo Random Number Generator,PRNG),並輸出 q 個長 度為1024位元的隨機亂碼,其中,該字串之格式係為(用 戶台隨機1輸入長度212的字串)+(西1元年+月+日+時+ 分+秒+1¾秒)+ (無線網卡號碼+秒+ ¾秒)。 4. 如申請專利範圍第1項所述之具有動態金鑰雙向認證之無 線通訊方法,其中,該基地台傳送一認證成功訊息給該用 戶台以及該用戶台將該密文資料傳送給該基地台時,該基 地台以及該用戶台係藉由一互斥或函數(Exclusive-or function)或一加法函數(Adder function)作為一資料载體 (data carrier),一發送端係將該組用戶台共同密鑰或該組基 27 201129128 地台共同密鑰以及一隨機參數藉由該互斥或函數 (exclusive OR function)或該加法函數加密,並將該密碼資 料以無線傳輸方式傳至一接收端,該接收端再以該互斥或 函數或該加法函數解密成為該隨機參數資料。 5. 如申請專利範圍第1項所述之具有動態金鑰雙向認證之無 線通訊方法,更包含提供一操作_識別碼(op_code)於該基 地台與該用戶台間傳送每一訊息之一首攔位,該基地台與 該用戶台係藉由該操作_識別碼得知該訊息之功能,其 中’該操作_識別碼係為一 4位元以上之數碼。 6. 如申請專利範圍第1項所述之具有動態金鑰雙向認證之無 線通訊方法,其中,該基地台與該用戶台間傳送之每一明 文資料係採用一二維串流加密處理的保護技術(two dimension stream cipher technique protection),其中二維運 算係指以二種不同之運算對同一明文資料進行加密運 算’而串流加密係指每一不同的明文位元組皆與不同的隨 機IL碼進行加密處理,而結合此二特性的加密運算技術則 稱為二維串流加密處理技術。 7. 如申請專利範圍第1項所述之具有動態金鑰雙向認證之無 線通訊方法,其中,該用戶台若沒有通過該基地台之該機 械認證’則該基地台傳送一失敗訊息至該用戶台,且該用 戶台接收該基地台所傳來之該組基地台公開金鑰與該用 戶台密鑰計算產生一組共同密鑰,併進而計算產生用戶台 第一身份認證金鑰Cerfun(CSKl,CSK2,CSK3),接著比較 該組用戶台計算所得之用戶台第一身份認證金鑰與由該 28 201129128 組基地台傳來之基地台第一身份認證金鑰 Cerfun(CSKl,CSK2,CSK3)是否相等,若相等,則該用戶台 顯示由該基地台所傳來之該失敗訊息,若不相等,則該用 戶台拋棄該無線通訊認證訊息,繼續等待該基地台之該無 線通訊認證訊息。 8. 如申請專利範圍第1項所述之具有動態金鍮雙向認證之無 線通訊方法,其中,該基地台檢驗該用戶台所傳來之該用 戶台第二身份認證金鑰Cerfun(AKl,AK2,AK3)與該基地台 内部經由計算所得之該組基地台第二身份認證金鑰 Cerfun(AKl,AK2,AK3),若不相等時,則該基地台拋棄該 用戶台之該資料傳輸要求,繼續等待該用戶台之該資料傳 輸要求。 9. 如申請專利範圍第1項所述之具有動態金鑰雙向認證之無 線通訊方法,其中,該用戶台檢驗該基地台所傳來之該基 地台第三身份認證金鑰Cerfun(AK,AK5,AK6)與該用戶台 内部經由計算所得之該用戶台第三身份認證金鑰 Cerfun(AK4,AK5,AK6),若不相等,貝該用戶台拋棄該允 許資料傳輸要求訊息,繼續等待該基地台之該允許資料傳 輸要求訊息。 10·如申請專利範圍第1項所述之具有動態金鑰雙向認證之 無線通訊方法,其中,該基地台接收該用戶台之該密文 資料,並驗證該組用戶台之認證碼EXOR(TEKm,NTEKm) 與該基地台内部計算產生之認證碼EXOR(TEKm,NTEKm) 是否相等,若驗證不成功,則該基地台拋棄該用戶台之 201129128 密文資料傳輸,繼續等待該用戶台之該密文資料傳輸。201129128 VII. Patent application scope: 1. A wireless communication method with dynamic gold residual two-way authentication, comprising: a user station randomly generates a random random number of user stations, as a user station secret record 'and the group of user stations Key input - Diffie-Hellman public gold distribution system (Diffie-Hellman PKDS) function to obtain a set of user stations public record 'The subscriber station transmits the group of subscriber stations public gold and a wireless communication certification request to a base station The base station receives the wireless communication authentication request of the subscriber station, randomly takes out a random number of base station stations as a base station key, and inputs the group base station secret gun into a Diffie-Hellman public gold distribution system. (Diffie-HellmanPKDS) function obtains a set of base station public key, and then the base station authenticates the user station through mechanical authentication; after the user station passes the mechanical certification of the base station, the base station uses the user station The set of user station public key and the base station key calculation generate a common key (Common Secret Key, CSK1, CSK2, CSK3). And the set of common key calculations obtained by the group generates a set of base station first identity authentication key (Cerfun (CSK1, CSK2, CSK3)), and then the base station transmits an authentication success message and the first identity of the base station. The authentication key is given to the subscriber station, and then the base station independently calculates and generates a set of Base Station Authentication Keys (AKs), a set of Base Station Traffic Encryption Keys (TEKs), and a set of base station new traffic. Encryption key (NTEKs); the subscriber station learns, via an operation_identification code, the authentication success message sent by the base station to the wireless communication authentication request and the base station first identity authentication 25 201129128 Whether the pubkey (SS) sent by the base station is equal to the Pubkey in the subscriber station, and if equal, the subscriber station uses the group base station public key transmitted by the base station to calculate the base station key A set of common keys, and then a set of user station first identity authentication keys (Cerfun (CSK1, CSK2, CSK3)) is calculated by the obtained common key group, and the group is calculated. The first identity authentication key of the subscriber station is compared with the first-identity authentication key transmitted by the base station; if equal, the subscriber station independently calculates and generates an authentication key (Authentication Keys, AKs), a set of User Encryption Keys (TEKs) and a set of User Station New Traffic Encryption Keys (NTEKs); the subscriber station transmits a data transmission request and a subscriber station second identity authentication key ( Cerfun (AK1, AK2, AK3)) is given to the base station; the base station receives the data transmission request of the subscriber station, and checks the second identity authentication key of the subscriber station transmitted by the subscriber station and the base station via The internal calculation generates whether the base station second identity φ certificate key (Cerfun (AKl. AK2, AK3)) is equal; if equal, the base station returns a permitted data transmission message and a base station third identity authentication The key (Cerfun (AK4, AK5, AK6)) is given to the subscriber station; the subscriber station receives the permitted data transmission message of the base station and the third identity authentication key of the base station (〇6^1111 (into 4, into 〖5, into 〖6)), Authenticating the third identity authentication key of the base station transmitted by the base station; if the subscriber station checks the third identity authentication key of the base station transmitted by the base station and one of the internal calculations generated by the user station If the third identity key (Cerfun (AK4, AK5, AK6)) is equal, the subscriber station encrypts a plaintext data 26 201129128 into a ciphertext data, and the ciphertext data and a subscriber station authentication code (EXOR ( TEKm, NTEKm)) is transmitted to the base station; the base station receives the ciphertext data of the subscriber station and the subscriber station authentication code, and verifies the group subscriber station by the subscriber station traffic encryption key (TEK) and the group of users The Taiwan New Traffic Encryption Key (NTEK) calculation generates a subscriber station authentication code (EXOR (TEKm, NTEKm)) and the set of base station authentication keys (TEK) generated in the base station and the new base station encryption credit of the group. The key (NTEK) calculation generates whether one of the base station authentication codes (EXOR(TEKm, NTEKm)) is equal. If the verification is successful, the ciphertext data is decrypted into a plaintext material. 2. The wireless communication method with dynamic key mutual authentication as described in claim 1 of the patent scope, wherein the mechanical certification is an X.509 mechanical certification. 3. The wireless communication method with dynamic key mutual authentication according to claim 1, wherein the user station randomly generates the random number of the user stations, and the user station randomly inputs a string to a Pseudo Random Number Generator (PRNG), and output q random garbled characters of length 1024 bits, wherein the format of the string is (user station random 1 input length 212 string) + (west 1 year + month + day + hour + minute + second + 13⁄4 seconds) + (wireless network card number + seconds + 3⁄4 seconds). 4. The wireless communication method with dynamic key mutual authentication according to claim 1, wherein the base station transmits an authentication success message to the user station and the user station transmits the ciphertext data to the base station. In the case of the station, the base station and the subscriber station are used as a data carrier by an exclusive-or function or an adder function, and a sender is the user of the group. The common key or the set of bases 2011 29128 the common key of the platform and a random parameter are encrypted by the exclusive OR function or the addition function, and the cryptographic data is transmitted to the receiving by wireless transmission. The receiving end decrypts the random parameter data by the mutual exclusion function or the adding function. 5. The wireless communication method with dynamic key mutual authentication as described in claim 1 further includes providing an operation_identification code (op_code) to transmit one of each message between the base station and the user station. Blocking, the base station and the subscriber station learn the function of the message by using the operation_identification code, wherein the operation code is a digit of more than 4 bits. 6. The wireless communication method with dynamic key mutual authentication according to claim 1, wherein each plaintext data transmitted between the base station and the user station is protected by a two-dimensional stream encryption process. Two dimension stream cipher technique protection, in which two-dimensional operation refers to the encryption operation of the same plaintext data by two different operations. 'Streaming encryption means that each different plaintext byte has a different random IL. The code is encrypted, and the encryption operation technology combining these two characteristics is called a two-dimensional stream encryption processing technology. 7. The wireless communication method with dynamic key mutual authentication as claimed in claim 1, wherein the base station transmits a failure message to the user if the machine station does not pass the mechanical authentication of the base station And the user station receives the group base station public key transmitted by the base station and the user station key calculation to generate a common key, and further calculates a user station first identity authentication key Cerfun (CSKl, CSK2, CSK3), and then compare the first identity authentication key calculated by the user station and the first identity authentication key Cerfun (CSKl, CSK2, CSK3) transmitted by the base station of the 2011 2011128128 group base station. If they are equal, the subscriber station displays the failure message transmitted by the base station. If not, the subscriber station discards the wireless communication authentication message and continues to wait for the wireless communication authentication message of the base station. 8. The wireless communication method with dynamic mutual authentication according to claim 1, wherein the base station checks the second identity authentication key Cerfun (AK1, AK2, of the subscriber station transmitted by the subscriber station). AK3) and the base station second identity authentication key Cerfun (AK1, AK2, AK3) calculated by the base station, if not equal, the base station discards the data transmission request of the subscriber station, and continues Wait for the data transmission request of the subscriber station. 9. The wireless communication method with dynamic key mutual authentication according to claim 1, wherein the subscriber station checks the base station third identity authentication key Cerfun (AK, AK5, transmitted from the base station). AK6) and the subscriber station third identity authentication key Cerfun (AK4, AK5, AK6) calculated internally by the subscriber station, if not equal, the subscriber station discards the permitted data transmission request message and continues to wait for the base station The data transmission request message is allowed. 10. The wireless communication method with dynamic key mutual authentication as described in claim 1, wherein the base station receives the ciphertext data of the subscriber station, and verifies the authentication code EXOR of the group of subscriber stations (TEKm) , NTEKm) is equal to the authentication code EXOR (TEKm, NTEKm) generated by the internal calculation of the base station. If the verification is unsuccessful, the base station discards the 201129128 ciphertext data transmission of the subscriber station and continues to wait for the secret of the subscriber station. Text transmission. 3030
TW99103051A 2010-02-02 2010-02-02 Wireless communication method of mutual authentication with dynamic keys TWI425845B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99103051A TWI425845B (en) 2010-02-02 2010-02-02 Wireless communication method of mutual authentication with dynamic keys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99103051A TWI425845B (en) 2010-02-02 2010-02-02 Wireless communication method of mutual authentication with dynamic keys

Publications (2)

Publication Number Publication Date
TW201129128A true TW201129128A (en) 2011-08-16
TWI425845B TWI425845B (en) 2014-02-01

Family

ID=45025527

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99103051A TWI425845B (en) 2010-02-02 2010-02-02 Wireless communication method of mutual authentication with dynamic keys

Country Status (1)

Country Link
TW (1) TWI425845B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105117910A (en) * 2012-04-25 2015-12-02 简裕昌 Electronic consumption method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7480384B2 (en) * 2003-02-10 2009-01-20 International Business Machines Corporation Method for distributing and authenticating public keys using random numbers and Diffie-Hellman public keys
KR100704675B1 (en) * 2005-03-09 2007-04-06 한국전자통신연구원 authentication method and key generating method in wireless portable internet system
US8060741B2 (en) * 2006-12-29 2011-11-15 Industrial Technology Research Institute System and method for wireless mobile network authentication
US8666077B2 (en) * 2008-05-07 2014-03-04 Alcatel Lucent Traffic encryption key generation in a wireless communication network

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105117910A (en) * 2012-04-25 2015-12-02 简裕昌 Electronic consumption method
TWI566564B (en) * 2012-04-25 2017-01-11 Samton International Development Technology Co Ltd Virtual reality authentication circuit, system and electronic consumption method

Also Published As

Publication number Publication date
TWI425845B (en) 2014-02-01

Similar Documents

Publication Publication Date Title
EP3761588B1 (en) Data access rights control method and device
US10567165B2 (en) Secure key transmission protocol without certificates or pre-shared symmetrical keys
CN108599925B (en) Improved AKA identity authentication system and method based on quantum communication network
JP4634612B2 (en) Improved subscriber authentication protocol
EP2416524B1 (en) System and method for secure transaction of data between wireless communication device and server
EP2082525B1 (en) Method and apparatus for mutual authentication
US7793103B2 (en) Ad-hoc network key management
CN101741555B (en) Method and system for identity authentication and key agreement
CN108683501B (en) Multiple identity authentication system and method with timestamp as random number based on quantum communication network
CN109075973B (en) Method for carrying out unified authentication on network and service by using ID-based cryptography
CN108650028B (en) Multiple identity authentication system and method based on quantum communication network and true random number
JP2000083018A (en) Method for transmitting information needing secrecy by first using communication that is not kept secret
JP2012110009A (en) Methods and arrangements for secure linking of entity authentication and ciphering key generation
JP2009510978A (en) Constrained encryption key
JP2012512612A (en) Enhanced security for direct link communication
US8230218B2 (en) Mobile station authentication in tetra networks
CN108964897B (en) Identity authentication system and method based on group communication
US20120189122A1 (en) Method with dynamic keys for mutual authentication in wireless communication environments without prior authentication connection
CN1770681A (en) Conversation key safety distributing method under wireless environment
CN107682152B (en) Group key negotiation method based on symmetric cipher
CN106888092A (en) Information processing method and device
CN110012467A (en) The packet authentication method of narrowband Internet of Things
TW201129128A (en) Wireless communication method of mutual authentication with dynamic keys
WO2010133036A1 (en) Communication method, device and communication system between base stations
JPH11191761A (en) Mutual authentication method and device therefor

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees