TW201128801A - Method for enhancing light extraction efficiency of light emitting diodes - Google Patents

Method for enhancing light extraction efficiency of light emitting diodes Download PDF

Info

Publication number
TW201128801A
TW201128801A TW99104019A TW99104019A TW201128801A TW 201128801 A TW201128801 A TW 201128801A TW 99104019 A TW99104019 A TW 99104019A TW 99104019 A TW99104019 A TW 99104019A TW 201128801 A TW201128801 A TW 201128801A
Authority
TW
Taiwan
Prior art keywords
light
emitting diode
layer
oxide layer
light emitting
Prior art date
Application number
TW99104019A
Other languages
Chinese (zh)
Other versions
TWI404236B (en
Inventor
Ming-Teng Kuo
Jang-Ho Chen
Ching-Hwa Changjean
Original Assignee
Walsin Lihwa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Walsin Lihwa Corp filed Critical Walsin Lihwa Corp
Priority to TW99104019A priority Critical patent/TWI404236B/en
Publication of TW201128801A publication Critical patent/TW201128801A/en
Application granted granted Critical
Publication of TWI404236B publication Critical patent/TWI404236B/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

A method for enhancing light extraction efficiency of a light emitting diode is disclosed. The method includes the steps of providing a light emitting diode including in sequence a substrate, a first layer of a first conduction type, an active layer, and a second layer of a second conduction type opposite to the first conduction type; growing a number of protrusions on at least one layer selected from the first layer, the active layer, and the second layer of the light emitting diode to form a patterned oxide layer for protecting the light emitting diode from etch; controlling height of the protrusions to achieve a predetermined etching depth of the light emitting diode; dry etching through a portion of the light emitting diode which is not protected by the patterned oxide layer to form a plurality of depressions on the light emitting diode; and removing the oxide layer from the selected layer. The light emitting diode is patterned so that more light beams can be emitted. Therefore, light extraction efficiency is enhanced.

Description

201128801 六、發明說明: 【發明所屬之技術領域】 本發明有關增益發光二極體出光效率的方法,尤指一 種藉由粗化發光二極體表面來增益發光二極體出光效率的 【先前技術】 • 發光二極體的發光效率受内部量子效率和出光效率所 主導。内部1子效率和產生自活性層的光有關。出光效率 係將活性層的光發射到周圍介質⑽⑴㈣的能力。隨著蟲 晶技術的發展,内部量子效率可達8〇%。然而,出光效率 仍低。舉例來說,GaN系列材料的折射率約2 5。其周圍的 空氣折射率為1。由於全反射的影響,介面的出光效 10 〜12%。 為了增益出光效率,在透明傳導層的表面形成不規則 钱刻的空腔。如此-來,來自活性層的大部分光束可自發 光一極體射出而免文反射影響。粗化p型層亦可達到相同的 效果。 般來說’產生紅或黃光束的GaN或AlGalnP串聯發光 二極體的上部磊晶結構的厚度大於5 μιη。因此,可施以電 漿蝕刻$化學蝕刻來產生空腔或二雉圖型。然而,產生藍、 綠或uv光纟的發光二極體的上部蟲晶結構相當薄⑽.2 :m)如而改善外邰里子效率來增益出光效率,空腔的深度 ,。至 >、有0.2 μιη。因此’傳統的表面粗化方法並不適用。 201128801 此外’傳統蝕刻粗化方法常利用光阻來做為光罩。因 為姓刻選擇比不高,以致於無法有效蝕刻出所要之深度, 尤其姓刻更深的深度更是困難。因此,要有效圖型化^粗 化發光二極體有其難度。此外,當諸如鎳等金屬材料作為 熱光罩時’在設置熱光罩前預先將光阻塗布於發光二極^ 上’如此將使製程更為繁瑣,亦增加生產成本。 傳統的表面粗化方法所產生的圖型化效果,其凸部的 間距大於2〜3μιη,由於圖型化程度低,故改善出光效率效 果有限。再者’傳統蚀刻方法僅能粗化發光二極體的上表 面,無法粗化側邊的部份。 美國第6,551,936號專利揭示一種方法以解決上述習知 技藝的問題。敬請參照圖1,其繪示在半導體材料蝕刻圖型 取決於形成在半導體材料上的lnp光栅光罩。Ιηρ光栅光罩 的形成與半導體材料的多層結構以及lnp層間的蝕刻中止 (etch-stop)層有關。對應於半導體材料蝕刻圖型的光阻光拇 光罩形成於上InP層之上。隨後使用非選擇性蝕刻來穿透上 InP層、蝕刻中止層、以及下InP層。接著使用適當的剝離 溶劑來移除光阻,然後利用選擇性蝕刻來清除剩餘露出的 InP材料,移除受污染的材料,根據要蝕刻的圖型來露出下 面的半導體材料。因此’除InP光罩之外不需要額外的光 罩。露出的半導體材料經餘刻後’以致圖型轉移至半導 材料。 201128801 :到限制’無法有效控制爛預定2型= :::: 【發明内容】 利用Ϊί::ΐί技藝受限於上述問題’本發明遂揭示-種 改用氧化極體來增,光效率的方法。蝕刻製程 厚产_好二岳I示舊有技術常使用的光阻。由於氧化層的 可任二丄,較易蝕刻出發光二極體預期的深度,因而 生產成本=的凸部。因此本發明比傳統製程更為節省 φ 之目的為提供一種增益發光二極體出光效率的方 m以下步驟:a)提供發光二極體,依序包含基板、 第二僂1型I的第一層、活性層、以及相對於第一傳導型的 一、導里的第二層;b)在發光二極體的第一層、活性 以形二層中至少選定一層’於其上生長多個凸部, ^ 。里化氧化層來保護發光二極體免於蝕刻;控 到發光二極體臟刻深度;d)乾敍刻穿 -托二生化氧化層的保護的部分發光二極體,以在發光 ―。上形成多個凹陷;以及e)將氧化層自選定層移除。 型。根據本案構想,第—傳導型為p型,第二傳導型為打 構=案構想’活性層具有量子井結構、同質接面結 構、或異質接面結構。 201128801 根據本案構想,圖型化氧化層由水熱處理、電锻、熱蒸 鍍法、化學氣相沈積法(CVD)、或分子束磊晶法(MBE)所形 成。 根據本案構想’圖型化氧化層由ITO、AZO、Si02、Zn0、 MgO、Mo〇、Al2〇3、Ti〇2、Ni〇、Ca〇、Ba〇、Mn〇、Cu〇、201128801 VI. Description of the Invention: [Technical Field] The present invention relates to a method for improving the light-emitting efficiency of a light-emitting diode, and more particularly to a method for enhancing the light-emitting efficiency of a light-emitting diode by roughening the surface of a light-emitting diode. 】 • The luminous efficiency of a light-emitting diode is dominated by internal quantum efficiency and light-emitting efficiency. The internal 1 sub-efficiency is related to the light generated from the active layer. Light extraction efficiency is the ability to emit light from the active layer to the surrounding medium (10)(1)(d). With the development of insect crystal technology, the internal quantum efficiency can reach 8〇%. However, the light extraction efficiency is still low. For example, GaN series materials have a refractive index of about 25 . The air around it has a refractive index of 1. Due to the effect of total reflection, the light output of the interface is 10 to 12%. In order to gain light extraction efficiency, irregular cavities are formed on the surface of the transparent conductive layer. In this way, most of the light beam from the active layer can be emitted from the light-emitting body without being affected by the reflection. The same effect can be achieved by roughening the p-type layer. Generally, the thickness of the upper epitaxial structure of a GaN or AlGalnP series light-emitting diode that produces a red or yellow light beam is greater than 5 μm. Thus, a plasma etch can be applied to chemically etch to create a cavity or a two-dimensional pattern. However, the upper insect crystal structure of the light-emitting diode that produces blue, green or uv light is quite thin (10). 2 : m) to improve the efficiency of the outer lining to gain light efficiency, the depth of the cavity. To >, there is 0.2 μηη. Therefore, the traditional surface roughening method does not apply. 201128801 In addition, the conventional etching roughening method often uses photoresist as a mask. Because the choice of the surname is not so high, it is impossible to effectively etch the desired depth, especially the deeper depth of the surname is more difficult. Therefore, it is difficult to effectively pattern the roughening of the light-emitting diode. Further, when a metal material such as nickel is used as the thermal mask, the photoresist is previously applied to the light-emitting diode before the heat shield is disposed. This makes the process more complicated and increases the production cost. The conventional surface roughening method produces a patterning effect in which the pitch of the convex portions is larger than 2 to 3 μm, and the effect of improving the light extraction efficiency is limited due to the low degree of patterning. Furthermore, the conventional etching method can only roughen the upper surface of the light-emitting diode and cannot roughen the side portions. U.S. Patent No. 6,551,936 discloses a method to solve the problems of the above-described prior art. Referring to Figure 1, the etch pattern of the semiconductor material is determined by the lnp grating mask formed on the semiconductor material. The formation of the Ιηρ grating mask is related to the multilayer structure of the semiconductor material and the etch-stop layer between the lnp layers. A photoresist mask corresponding to the semiconductor material etch pattern is formed over the upper InP layer. A non-selective etch is then used to penetrate the upper InP layer, the etch stop layer, and the lower InP layer. The photoresist is then removed using a suitable stripping solvent and then selectively etched to remove the remaining exposed InP material, removing the contaminated material and exposing the underlying semiconductor material depending on the pattern to be etched. Therefore, no additional reticle is required other than the InP reticle. The exposed semiconductor material is transferred to the semiconducting material after the remainder. 201128801: To limit 'cannot effectively control rotten schedule 2 type = :::: 【Invention content】 The use of Ϊί::ΐί technology is limited by the above problem 'The invention 遂 reveals - the use of oxide body to increase, light efficiency method. Etching process Thick production _ good two Yue I show the old used technology commonly used photoresist. Due to the urgency of the oxide layer, it is easier to etch the desired depth of the light-emitting diode, thus producing a convex portion of cost =. Therefore, the present invention saves φ more than the conventional process in order to provide a light-emitting diode light-emitting efficiency. The following steps are performed: a) providing a light-emitting diode, sequentially including a substrate, and a first type I a layer, an active layer, and a second layer relative to the first conductivity type, a second layer; b) at the first layer of the light-emitting diode, at least one selected layer of the active two-layer layer Convex, ^. The oxidized layer is protected to protect the light-emitting diode from etching; the depth of the etched diode is controlled; d) the dry-cutting-protected part of the light-emitting diode is protected by luminescence. Forming a plurality of depressions thereon; and e) removing the oxide layer from the selected layer. type. According to the present invention, the first conductivity type is p type, and the second conductivity type is structure = case conception. The active layer has a quantum well structure, a homojunction structure, or a heterojunction structure. 201128801 According to the concept of the present invention, the patterned oxide layer is formed by hydrothermal treatment, electric forging, thermal evaporation, chemical vapor deposition (CVD), or molecular beam epitaxy (MBE). According to the present concept, the patterned oxide layer consists of ITO, AZO, SiO 2 , Zn 0 , MgO, Mo 〇, Al 2 〇 3, Ti 〇 2, Ni 〇, Ca 〇, Ba 〇, Mn 〇, Cu 〇,

Sn〇2、或其混合所製成。 根據本案構想,凸部的形狀為六角錐狀、截頭的六角錐 狀、或六角圓柱狀。 根據本案構想’圖型化氧化層至少部份形成於發光二極 體的上表面或側面。 據本案構想’乾㈣步驟藉由電漿钱刻、電感式柄合 P)姓刻、離子光束蝕刻法、或反應性離子蝕刻來施 根據本案構想 (微米)之間。 根據本案構想 反應時間來達成。 凸部的直徑介於1 nm (奈米)與iOjum 預定餘刻深度藉由控制乾姓刻步驟的 根據本案構想,發光二極 階梯形。 體的剖面形狀為楔形、矩形或 根據本案構想,本發明進 步驟dl)。 一步包括乾蝕刻部分氧化層的 根據本案構想 根據本案構想 來施行。 兩個相鄰的凸部距離小於1微米。 移除步驟藉由氫氣酸、硝酸或過氧化氫 201128801 【實施方式】 體現本發明特徵與優點的八個實施例將在後段的說明 中詳細敘述。本發明能夠在不同的態樣上具有各種的變 化’皆不脫離本發明的範圍’且其中的說明及圖式在本質 上當作說明之用,而非用以限制本發明。 第一實施例 敬請參照圖2、圖3A至3D。圖2繪示用以增益出光效率 之圖型化發光二極體的流程圖。首先提供發光二極體2〇, 如圖2之步驟S101所示。如圖3A,發光二極體20由上至下包 含p型層202、活性層204、η型層206、以及基板208。在本 實施例中,ρ型層202形成於活性層204之上,η型層206形成 於活性層204之下,其中ρ型層2〇2和η型層206可互換。活性 層204具有量子井結構。實際上,活性層2〇4亦可具有同質 接面結構或異質接面結構。 本實施例中,多個凸部2102生長在選定的ρ型層202, 以形成圖型化氧化層210 (S102)。氧化層210藉由溶膠凝膠 (sol-gel)法所形成’然不限於此,亦可由水熱處理、電鍵、 熱蒸鍍法、化學氣相沈積法(CVD)、或分子束磊晶法(MBE) 來形成。 氧化層210所使用的材料為CaO,實際上亦可為ITO、 ΑΖΟ、Si02、ZnO、MgO、ΜοΟ、Α12〇3 ' Ti02、NiO、Sn02、Made of Sn 2 or a mixture thereof. According to the present invention, the shape of the convex portion is a hexagonal cone shape, a truncated hexagonal cone shape, or a hexagonal column shape. According to the present invention, the patterned oxide layer is formed at least partially on the upper surface or side of the light-emitting diode. According to the present concept, the 'dry (four) steps are applied between the concept (micrometer) by means of plasma etching, inductive shank P), ion beam etching, or reactive ion etching. According to the concept of the case, the reaction time is reached. The diameter of the convex portion is between 1 nm (nano) and iOjum. The predetermined residual depth is controlled by the method of controlling the dry name according to the present case, and the light-emitting diode is stepped. The cross-sectional shape of the body is wedge-shaped, rectangular or, according to the present invention, the invention proceeds to step dl). One step including dry etching of the partial oxide layer is carried out according to the concept of the present invention. The distance between two adjacent protrusions is less than 1 micron. The removal step is carried out by hydrogen acid, nitric acid or hydrogen peroxide. 201128801 [Embodiment] Eight embodiments embodying the features and advantages of the present invention will be described in detail in the following description. The present invention is capable of various modifications in the various aspects of the invention and the invention is not intended to limit the invention. First Embodiment Please refer to Figs. 2, 3A to 3D. 2 is a flow chart showing a patterned light emitting diode for gaining light extraction efficiency. First, a light-emitting diode 2 is provided, as shown in step S101 of FIG. As shown in Fig. 3A, the light-emitting diode 20 includes a p-type layer 202, an active layer 204, an n-type layer 206, and a substrate 208 from top to bottom. In the present embodiment, a p-type layer 202 is formed over the active layer 204, and an n-type layer 206 is formed under the active layer 204, wherein the p-type layer 2〇2 and the n-type layer 206 are interchangeable. The active layer 204 has a quantum well structure. In fact, the active layer 2〇4 may have a homojunction structure or a heterojunction structure. In the present embodiment, a plurality of convex portions 2102 are grown on the selected p-type layer 202 to form the patterned oxide layer 210 (S102). The oxide layer 210 is formed by a sol-gel method, which is not limited thereto, and may be hydrothermal treatment, electric bonding, thermal evaporation, chemical vapor deposition (CVD), or molecular beam epitaxy ( MBE) to form. The material used for the oxide layer 210 is CaO, and may actually be ITO, yttrium, SiO 2 , ZnO, MgO, Μ Ο, Α 12 〇 3 ' Ti02, NiO, Sn02,

BaO、MnO、CuO、或上述材料之混合。 201128801 t於氧化層210,凸部21〇2為微米柱或奈 的采壯13相* /1的方法來生長氧化層210,凸部2102 狀二t 角錐狀、截頭的六角錐狀、或六角圓柱 〇圖5所不,凸部2102的俯視圖呈現一六角形的圖案。 机為凸°P2102的同度可觉控制’以達到發光二極體20的預 接下來,在發光二極體20上施以乾敍 ^程,穿透科不受圖型化氧化層2娜護的發光二極體 紅 光二極體20上形成多個凹陷_4)。當開始進 订刻時’凸部2102未覆蓋的部份將受飯刻,同時也會餘 J凸邛2102 §施行姓刻製程來移除凸部21 〇2時,未覆蓋 =部純刻達預定深度。凸部靡高度愈高,钮刻深度則 愈深。根據本發明的構想,兩個相鄰凸部㈣的間距小於! 微米。 本實施例使用電聚姓刻,亦可由電感式輕合電榮(icp) 韻刻、離子光束㈣法、或反應性離子㈣來取代,依據 氧化層21G使用的材料來使用適當的_方式。當電聚持續 碰撞凸部2】〇2時,凸部21〇2逐漸崩解,亦蝕刻發光二極體 2〇。請參照圖3C。乾㈣製程完成後,電聚碰撞消除氧化 層210的部分柱體。乾蝕刻製程在氧化層21〇的表面產生凹 陷。 最後,氧化層210自發光二極體2〇移除(sl〇5)。氫氯 酸、硝酸或過氧化氫可用來移除氧化層21〇。在本發明中, 硝酸用來清洗n型層2〇6表面上的氧化鈣。圖型化表面2〇22 形成於發光二極體2〇上。由於凸部21〇2的直徑介於! nm至 201128801 ΙΟμπί’圖型化發光二極體2〇可對應形成多個凸面,盆直徑 _化表面勘可使產生自活性層綱 的先束更谷易透過凹陷來發射’因而改善發光二極體湖 出光效率。 第二實施例 清參照圖6A至6D。發光二極體30具有P型層3〇2、活性 層304、η型層306、以及基板3〇8。本實施例中,活性層3〇4 具有量子井結構。 由氧化鈣凸部3102製成的氧化層31〇形成於ρ型層3〇2 之上。本實施例中,氧化層31〇的厚度大於第一實施例中的 氧化層210。因此,當在氧化層31〇施以乾蝕刻製程(如電感 式耦合電漿蝕刻)時,會導致凹陷形成。與第一實施例相 比,凹陷的深度可藉由ρ型層3〇2和活性層3〇4延伸至η型層 306。 利用硝酸進行移除製程後,圖型化表面3〇22形成於發 光一極體30上。由於本實施例的發光二極體钱刻至η型層 306,因此出光效率比第一實施例更好。 本實細*例產生更》未凹陷所需的時間會比第一實施例更 為費日守。因為ICP钱刻的敍刻氧化層31 〇的能力差,在氧化 層310蝕刻達一預定程度前,已形成更深的凹陷。簡言之, 凹陷的深度可藉由乾触刻的反應時間和氧化層3丨〇的厚度 來加以控制。此外,當姓刻反應過後,凸部31 〇2的間距擴 201128801 大。也就是說,圖型化的程度可由乾蝕刻時間或氧化層31〇 的厚度所控制。 第三實施例 為了更容易在特定的發光二極體上形成一對接點,部 分的發光二極體將受蝕刻。此情形仍適用本發明。 請參照圖7A至圖7D。發光二極體40具有p型層402、活 性層404、η型層406、以及基板408。由於上述兩個實施例 已充份揭露各個元件的材料、蝕刻方法和移除步驟,遂不 再贅述。 在部分露出的η型層406上,形成具有數個氧化凸部 4102的氧化層410〇發光二極體4〇的ρ型層402的上表面未設 有氧化層410。在蝕刻和移除步驟後,氧化層41〇隨之移除。 η型層圖型4062因而成形。第三實施例繪示可在發光二極體 上表面任一特定區域進行圖型化,來增益出光效率(如蝕刻 製程可施行於該區域)。 第四實施例 請參照圖8。發光二極體50具有ρ型層502、活性層504、 η型層506和基板508。與第三實施例的發光二極體4〇相比, 發光二極體50具有露出的η型層506。在生長氧化層之後, 乾蝕刻發光二極體50,並移除殘餘的氧化層’分別在11型層 506和Ρ型層502的表面形成„型層圖型5〇62和ρ型層圖型 201128801 5022。最後,不管水平高度的差異’在整個發光二極體5〇 的上表面做圖型化。 第五實施例 在某些情況下’可施行第二次餘刻製程來加深發光二 極體的凹陷’以達成不同的出光效率。 請參照圖9A至圖9D。發光二極體60具有p型層6〇2、活 •性層604、η型層606、以及基板608。與第三實施例的發光 一極體40相比,發光二極體6〇具有露出的η型層。具有 凸部6102的氧化層610形成於發光二極體6〇上表面的上 方。如圖9Β,第一次乾蝕刻製程完成後,氧化層61〇的厚度 減少。凸部6102的間距增加。第一次乾蝕刻產生一致的凹 陷深度。 除了中央部分以外,發光二極體6〇為遮蔽層(未圖示) 所覆蓋。接著施行第二次乾蝕刻製程。如圖9C,發光二極 體60的中央部份蝕刻較深入。移除製程之後,形成了 n型層 _圖型化表面6062、姓刻較深的ρ型層圖型化表面6〇22、以^ 蝕刻較淺的ρ型層圖型化表面6〇24,如圖9D所示。蝕刻較深 的p型層圖型化表面6022的出光效率顯然較佳。 第六實施例 本發明的氧化層生長於發光二極體的上表面和侧邊。 因此,完成蝕刻和移除製程後,圖型於焉形成。如發光二 極體的表面並非平坦的傾斜表面,本發明仍適用。 201128801 請參照圖ίο。發光二極體70具有p型層7〇2、活性層 704、η型層706、以及基板708。發光二極體7〇的兩側邊有 坡度,其剖面為楔形。實際上,發光二極體的剖面形狀可 為矩形或上述的階梯狀。 在蝕刻和移除製程後,形成ρ型層圖型化表面7〇22、活 性層圖型化表面7042以及η型層圖型化表面7〇62。圖型可形 成於傾斜的表面。即使圖型形成於傾斜的表面,乾蝕刻所 蝕刻的凹陷仍會向下形成。 第七實施例 圖11繪示第五和第六實施例的組合。發光二極體8〇具 有ρ型層802、活性層804、η型層806、以及基板8〇8。發光 一極體8 0的兩侧邊有坡度。 藉由在發光二極體80上方形成氧化層(未圖示),蝕刻發 光二極體80的兩侧邊,蝕刻發光二極體8〇的中央部份並移 除氧化層,以形成。在第二次蝕刻製程後,顯然更加深了ρ 型層圖型化表面8022的凹陷深度。 第八實施例 上個實施例揭示在不同方向生長氧化層。不單是發光 二極體的上表面’氧化層亦可形成於發光二極體的側面。 凊參照圖12Α至圖12C。發光二極體90具有ρ型層902、 活性層904、η型層906、以及基板908。不同於其他實施例 所述的發光二極體,發光二極體90係利用乾蝕刻來移除其 201128801 ,側,P型層902、活性層904以及n型層9〇6的形狀為倒楔 為增益出光效率’發光二極體9Q的上表面及侧面亦需 進行圖型化。 一請參照圖丨2B。氧化層910覆蓋上述的表面。如圖13A 所不,應注意的是側面上的氧化層可同時沿著上表面的氧 化層形成,如圖13B。當施行乾蝕刻時,蝕刻粒子應與上表 面與側面的氧化層910相互碰撞。在移除製程後,圖型化表 鲁面9022在整個發光二極體9〇上露出,基板9〇8除外。 在上述實施例中,P型層形成於活性層之上,η型層形 成於活性層之下,然而ρ型層和η型層可互換。 雖然本發明已以實施例揭露如上,然其並非用以限定 本發明。反之’任何所屬技術領域中具有通常知識者,在 不脫離本發明之精神和範圍内,當可作些許之更動與潤 飾’因此本發明之保護範圍當視後附之申請專利範圍所界 定者為準。 ^BaO, MnO, CuO, or a mixture of the above materials. 201128801 t is in the oxide layer 210, the convex portion 21〇2 is a micro-column or a nano-grain 13-phase* /1 method for growing the oxide layer 210, the convex portion 2102 is a two-t pyramid, a truncated hexagonal cone, or The hexagonal cylinder is not shown in Fig. 5. The top view of the convex portion 2102 presents a hexagonal pattern. The machine has the same degree of sensible control of the convex P2102 to achieve the pre-sequence of the light-emitting diode 20, and the dry diode is applied to the light-emitting diode 20, and the penetrating section is not subjected to the patterned oxide layer 2 A plurality of recesses _4) are formed on the light-emitting diode red diode 20 of the shield. When the start of the engraving, the portion of the uncovered portion of the convex portion 2102 will be subjected to the meal, and at the same time, the J-convex 2102 § will be applied to remove the convex portion 21 〇2, and the cover will be purely engraved. Scheduled depth. The higher the height of the convex part, the deeper the depth of the button. According to the concept of the invention, the spacing of two adjacent projections (four) is less than! Micron. In this embodiment, the electromagnetization is used, and the inductive light-gathering (icp) rhyme, ion beam (four) method, or reactive ion (four) may be used, and the appropriate method is used according to the material used for the oxide layer 21G. When the electro-convergence continues to collide with the convex portion 2 〇 2, the convex portion 21 〇 2 gradually disintegrates, and the light-emitting diode 2 蚀刻 is also etched. Please refer to FIG. 3C. After the dry (four) process is completed, the electropolymer collision collides with a portion of the pillars of the oxide layer 210. The dry etching process creates a recess on the surface of the oxide layer 21A. Finally, the oxide layer 210 is removed from the light-emitting diode 2 (sl〇5). Hydrochloric acid, nitric acid or hydrogen peroxide can be used to remove the oxide layer 21〇. In the present invention, nitric acid is used to wash calcium oxide on the surface of the n-type layer 2〇6. The patterned surface 2〇22 is formed on the light-emitting diode 2〇. Due to the diameter of the convex part 21〇2! Nm to 201128801 ΙΟμπί' patterning light-emitting diode 2〇 can form a plurality of convex surfaces, and the diameter of the basin can be generated from the first layer of the active layer, and the valley is easily transmitted through the depression. Thus improving the light-emitting diode Body lake light efficiency. Second Embodiment Referring to Figures 6A to 6D. The light-emitting diode 30 has a P-type layer 3, an active layer 304, an n-type layer 306, and a substrate 3A. In this embodiment, the active layer 3〇4 has a quantum well structure. An oxide layer 31 made of the calcium oxide convex portion 3102 is formed on the p-type layer 3〇2. In this embodiment, the thickness of the oxide layer 31 is larger than that of the oxide layer 210 in the first embodiment. Therefore, when a dry etching process (e.g., inductively coupled plasma etching) is applied to the oxide layer 31, a depression is formed. The depth of the recess can be extended to the n-type layer 306 by the p-type layer 3〇2 and the active layer 3〇4 as compared with the first embodiment. After the removal process using nitric acid, the patterned surface 3〇22 is formed on the light-emitting body 30. Since the light-emitting diode of the present embodiment is engraved to the n-type layer 306, the light-emitting efficiency is better than that of the first embodiment. The time required for this actual example to produce a more "not recessed" will be more expensive than the first embodiment. Because of the poor ability of the ICP to etch the oxide layer 31, deeper depressions have formed before the oxide layer 310 is etched to a predetermined extent. In short, the depth of the depression can be controlled by the dry etching reaction time and the thickness of the oxide layer 3丨〇. In addition, when the surname is reflected, the pitch of the convex portion 31 〇 2 is enlarged by 201128801. That is, the degree of patterning can be controlled by the dry etching time or the thickness of the oxide layer 31A. THIRD EMBODIMENT In order to make it easier to form a pair of contacts on a particular light-emitting diode, a portion of the light-emitting diodes will be etched. This situation still applies to the present invention. Please refer to FIG. 7A to FIG. 7D. The light emitting diode 40 has a p-type layer 402, an active layer 404, an n-type layer 406, and a substrate 408. Since the above two embodiments have fully disclosed the materials, etching methods, and removal steps of the respective elements, they will not be described again. On the partially exposed n-type layer 406, the upper surface of the p-type layer 402 in which the oxide layer 410 having the plurality of oxidized convex portions 4102 is formed and the light-emitting diode 4 is formed is not provided with the oxide layer 410. After the etching and removal steps, the oxide layer 41 is removed. The n-type layer pattern 4062 is thus shaped. The third embodiment illustrates that patterning can be performed on any particular area of the upper surface of the light emitting diode to gain light extraction efficiency (e.g., an etching process can be performed in the area). Fourth Embodiment Please refer to Fig. 8. The light emitting diode 50 has a p-type layer 502, an active layer 504, an n-type layer 506, and a substrate 508. The light emitting diode 50 has an exposed n-type layer 506 as compared with the light emitting diode 4A of the third embodiment. After the oxide layer is grown, the light-emitting diode 50 is dry-etched, and the residual oxide layer is removed to form a pattern of the type 〇62 and the p-type layer on the surface of the type 11 layer 506 and the Ρ-type layer 502, respectively. 201128801 5022. Finally, regardless of the difference in level, 'patterning is performed on the upper surface of the entire LED 5〇. The fifth embodiment can perform a second engraving process to deepen the light-emitting diode in some cases. The recesses of the body are used to achieve different light-emitting efficiencies. Referring to Figures 9A to 9D, the light-emitting diode 60 has a p-type layer 〇2, an active layer 604, an n-type layer 606, and a substrate 608. The light-emitting diode 6 has an exposed n-type layer as compared with the light-emitting diode 40 of the embodiment. The oxide layer 610 having the convex portion 6102 is formed above the upper surface of the light-emitting diode 6。, as shown in FIG. After the dry etching process is completed, the thickness of the oxide layer 61〇 is reduced. The pitch of the protrusions 6102 is increased. The first dry etching produces a uniform recess depth. In addition to the central portion, the light-emitting diode 6 is a shielding layer (not Covered. The second dry etching process is then performed. 9C, the central portion of the light-emitting diode 60 is etched deeper. After the removal process, an n-type layer_patterned surface 6062, a deeper p-type layer patterned surface 6〇22 is formed. ^ Etching the shallow p-type layer patterned surface 6〇24, as shown in Fig. 9D. The light-emitting efficiency of etching the deep p-type layer patterned surface 6022 is obviously better. Sixth embodiment oxide layer of the present invention The invention is applied to the upper surface and the side of the light-emitting diode. Therefore, after the etching and removal process is completed, the pattern is formed on the germanium. For example, the surface of the light-emitting diode is not a flat inclined surface, and the present invention is still applicable. The light-emitting diode 70 has a p-type layer 〇2, an active layer 704, an n-type layer 706, and a substrate 708. The sides of the light-emitting diode 7〇 have a slope and have a wedge-shaped cross section. The cross-sectional shape of the light-emitting diode may be a rectangle or a step shape as described above. After the etching and removal process, a p-type layer patterned surface 7〇22, an active layer patterned surface 7042, and an n-type layer pattern are formed. Surface 7〇62. The pattern can be formed on an inclined surface. Even if the pattern is formed on the slope The surface, the recess etched by the dry etching is still formed downward. Seventh Embodiment FIG. 11 illustrates the combination of the fifth and sixth embodiments. The light-emitting diode 8 has a p-type layer 802, an active layer 804, and an n-type. The layer 806 and the substrate 8〇8 have slopes on both sides of the light-emitting diode 80. By forming an oxide layer (not shown) over the light-emitting diode 80, both sides of the light-emitting diode 80 are etched. The central portion of the light-emitting diode 8 蚀刻 is etched and the oxide layer is removed to form. After the second etching process, the recess depth of the p-type layer patterned surface 8022 is obviously deeper. One embodiment discloses the growth of an oxide layer in different directions. Not only the upper surface of the light-emitting diode, but also the oxide layer may be formed on the side of the light-emitting diode.凊 Refer to FIG. 12A to FIG. 12C. The light emitting diode 90 has a p-type layer 902, an active layer 904, an n-type layer 906, and a substrate 908. Different from the light-emitting diodes described in other embodiments, the light-emitting diode 90 is dry-etched to remove its 201128801, and the side, the P-type layer 902, the active layer 904, and the n-type layer 9〇6 are in the shape of inverted wedges. For the gain light-emitting efficiency, the upper surface and the side surface of the light-emitting diode 9Q also need to be patterned. Please refer to Figure 2B. The oxide layer 910 covers the surface described above. As shown in Fig. 13A, it should be noted that the oxide layer on the side surface can be simultaneously formed along the oxide layer of the upper surface, as shown in Fig. 13B. When dry etching is performed, the etched particles should collide with the oxide layer 910 on the upper surface and the side surface. After the removal process, the patterned surface 9022 is exposed on the entire LED 9 除外 except for the substrate 9 〇 8 . In the above embodiment, the P-type layer is formed on the active layer, and the n-type layer is formed under the active layer, however, the p-type layer and the n-type layer are interchangeable. Although the invention has been disclosed above by way of example, it is not intended to limit the invention. To the contrary, the scope of the invention is defined by the scope of the appended claims. quasi. ^

13 201128801 【圖式簡單說明】 圖1繪示習知之發光二極體。 圖2繪示本發明第一實施例圖型化發光二極體之流程圖。 圖3 A至3D繪示本發明第一實施例圖型化發光二極體之製 程。 圖4A至4D繪示發光二極體上不同形狀凸部的掃描電子顯 微鏡(SEM)影像。 〃 圖5繪示本發明第一實施例之蝕刻發光二極體的俯視圖。 圖6A至6D繪示本發明第二實施例圖型化發光二極體之製 _ 程。 圖7A至7D繪示本發明第三實施例圖型化發光二極體之製 程。 圖8繪示本發明第四實施例之圖型化發光二極體。 圖9A至9D繪示本發明第五實施例圖型化發光二極體之製 程。 圖10繪示本發明第六實施例之圖型化發光二極體。 圖11繪示本發明第七實施例之圖型化發光二極體。 籲 圖12A至12C繪示本發明第八實施例圖型化發光二極體之 製程。 圖13A至13B繪示具有凸部形成於其上的發光二極體的掃 描電子顯微鏡(SEM)影像。 14 20112880113 201128801 [Simplified description of the drawings] Fig. 1 shows a conventional light-emitting diode. 2 is a flow chart of a patterned light emitting diode according to a first embodiment of the present invention. 3 to 3D illustrate a process of patterning a light-emitting diode according to a first embodiment of the present invention. 4A to 4D illustrate scanning electron microscope (SEM) images of protrusions of different shapes on the light-emitting diode. 5 is a top plan view of an etched LED according to a first embodiment of the present invention. 6A to 6D are diagrams showing the process of patterning a light-emitting diode according to a second embodiment of the present invention. 7A to 7D illustrate a process of patterning a light-emitting diode according to a third embodiment of the present invention. FIG. 8 is a diagram of a patterned light emitting diode according to a fourth embodiment of the present invention. 9A to 9D illustrate a process of patterning a light-emitting diode according to a fifth embodiment of the present invention. FIG. 10 is a diagram of a patterned light emitting diode according to a sixth embodiment of the present invention. FIG. 11 is a diagram of a patterned light emitting diode according to a seventh embodiment of the present invention. 12A to 12C illustrate a process of patterning a light-emitting diode according to an eighth embodiment of the present invention. 13A to 13B are scanning electron microscope (SEM) images of a light-emitting diode having a convex portion formed thereon. 14 201128801

【主要元件符號說明】 S101〜S105 步驟 20 發光二極體 202 P型層 2022 圖型化表面 204 活性層 206 η型層 208 基板 210 氧化層 2102 凸部 30 發光二極體 302 Ρ型層 3022 圖型化表面 304 活性層 306 η型層 308 基板 310 氧化層 3102 凸部 40 發光二極體 402 Ρ型層 4022 圖型化表面 404 活性層 406 η型層 4062 η型層圖型 基板 氧化層 凸部 發光二極體 P型層 P型層圖型 活性層 η型層 η型詹圖型 基板 發光二極體 Ρ型層 钮刻較深的ρ型層圖型化表面 钱刻較淺的ρ型層圖型化表面 活性層 η型層 η型層圖型化表面 基板 氧化層 凸部 發光二極體 Ρ型層 ρ型層圖型化表面 活性層 16 活性層圖型化表面 η型層 η型層圖型化表面 基板 發光二極體 Ρ型層 ρ型層圖型化表面 活性層 活性層圖型化表面 η型層 η型層圖型化表面 基板 發光二極體 Ρ型層 圖型化表面 活性層 η型層 基板 氧化層 17[Main component symbol description] S101~S105 Step 20 Light-emitting diode 202 P-type layer 2022 Patterned surface 204 Active layer 206 η-type layer 208 Substrate 210 Oxide layer 2102 Projection 30 Light-emitting diode 302 Ρ-type layer 3022 Shaped surface 304 active layer 306 n-type layer 308 substrate 310 oxide layer 3102 convex portion 40 light-emitting diode 402 germanium layer 4022 patterned surface 404 active layer 406 n-type layer 4062 n-type layer pattern substrate oxide layer convex portion Light-emitting diode P-type layer P-type layer active layer n-type layer η-type Jane-type substrate light-emitting diode Ρ-type layer button deeper p-type layer patterned surface surface shallower p-type layer Patterned surface active layer n-type layer n-type layer patterned surface substrate oxide layer convex portion light-emitting diode layer p-type layer patterned surface active layer 16 active layer patterned surface n-type layer n-type layer Patterned surface substrate light-emitting diode, Ρ-type layer, p-type layer, patterned surface active layer, active layer, patterned surface, n-type layer, n-type layer, patterned surface substrate, light-emitting diode, ruthenium layer, patterned surface activity Layered n-type substrate Layer 17

Claims (1)

201128801 七、申請專利範圍: 1. 一種增益發光二極體出光效率的方法,包括以下步驟: a)提供發光二極體,依序包含基板、第一傳導型的第一 層、活性層、以及相對於第一傳導型的第二傳導型的 第二層;201128801 VII. Patent application scope: 1. A method for gaining light-emitting diode light-emitting efficiency, comprising the following steps: a) providing a light-emitting diode, comprising a substrate, a first conductive first layer, an active layer, and a second layer of a second conductivity type relative to the first conductivity type; b) 在發光二極體的第一層、活性層、以及第二層中至少 選疋一層’於其上生長複數個凸部,以形成圖型化氧 化層來保護發光二極體免於敍刻; c) 控制凸部的高度以達到發光二極體預定蝕刻深度; d) 乾蝕刻穿透部分的發光二極體,該部分未受圖型化氧 化層的保護,以在發光二極體上形成複數個凹陷;以 及 e) 將氧化層自選定層移除。 一傳導型為ρ型, 2.如申請專利範圍第1項的方法,其中第 第二傳導型為η型。b) at least one layer of the first layer, the active layer, and the second layer of the light-emitting diode is grown to form a plurality of protrusions thereon to form a patterned oxide layer to protect the light-emitting diode from Engraving; c) controlling the height of the protrusion to achieve a predetermined etching depth of the light-emitting diode; d) dry etching the portion of the light-emitting diode that is not protected by the patterned oxide layer to be in the light-emitting diode Forming a plurality of depressions thereon; and e) removing the oxide layer from the selected layer. A conductivity type is a p-type, 2. The method of claim 1, wherein the second conductivity type is an n-type. 3·如申請專利範圍第!項的方法,其中活性層具有量子井 結構、同質接面結構、或異質接面結構。 4.如申請專利範圍帛i項的方法,&中圖型化氧化層由7 熱處理、電鍍、錢㈣、化學氣相沈積邮 : 束蟲晶法(MBE)所形成。 ίτΛν=範圍第1項的方法’其中圖型化氧化… ITO、AZO、Sl〇2、Zn0、Mg〇、M〇〇、Al2〇3、丁叫、Ν】〇 CaO、BaO、ΜηΟ、Cu〇、Sn〇2、或其混合所製 6.如申請專利範圍第】項的方法,其中凸部的形狀為六^ 18 201128801 錐狀、截頭的六角錐狀、或六角圓柱狀。 7.如申請專利範圍第1項的方法,其 部份形成於發光二極體的上表面或側面。 a至少 如申請專利範圍帛"員的方法,其中乾餘刻 =刻、電感絲合電即CP)_、離子光束 反應性離子蝕刻來施行。 A 其中凸部的直徑介於1 〇 其中預定餘刻深度藉由 0 進一步包括乾蝕刻部分 其中發光二極體的剖面 其中兩個相鄰的凸部距 其中移除步驟藉由氫氯 9·如申請專利範圍第1項的方法, (奈米)與1 Ομιη (微米)之間 10‘如申請專利範圍第1項的方法, 控制乾蝕刻步驟的反應時間來達成 1 1 ·如申請專利範圍第1項的方法, 氧化層的步驟d 1)。 12.如申請專利範圍第1項的方法 形狀為楔形、矩形或階梯形。 13·如申請專利範圍第1項的方法 離小於1微米。 14.如申請專利範圍第1項的方法 酸、硝酸或過氧化氫來施行。3. If you apply for a patent scope! The method of the invention, wherein the active layer has a quantum well structure, a homojunction structure, or a heterojunction structure. 4. As in the method of patent application 帛i, the patterning oxide layer in & is formed by 7 heat treatment, electroplating, money (4), chemical vapor deposition: MBS. ίτΛν=The method of the first item 'where the patterning oxidation... ITO, AZO, Sl2, Zn0, Mg〇, M〇〇, Al2〇3, Ding, Ν】〇CaO, BaO, ΜηΟ, Cu〇 6. The method of claim 2, wherein the shape of the convex portion is six^18 201128801 cone-shaped, truncated hexagonal cone shape, or hexagonal column shape. 7. The method of claim 1, wherein the portion is formed on an upper surface or a side surface of the light emitting diode. a At least as in the patent application scope, the method of the member, in which the residual engraving = engraving, the inductance of the wire is CP), and the ion beam reactive ion etching is performed. A wherein the diameter of the convex portion is between 1 〇 and wherein the predetermined residual depth is further comprised by 0. The dry etching portion includes a cross section of the light emitting diode, wherein two adjacent convex portions are removed therefrom by hydrogen chloride 9 The method of claim 1 of the patent scope, (nano) and 1 Ομιη (micron) 10', as in the method of claim 1, to control the reaction time of the dry etching step to achieve 1 1 · as claimed The method of item 1, the step d 1) of the oxide layer. 12. The method of claim 1 is in the form of a wedge, a rectangle or a step. 13. The method of claim 1 is less than 1 micron. 14. The method of claim 1, wherein the acid, nitric acid or hydrogen peroxide is used.
TW99104019A 2010-02-09 2010-02-09 Method for enhancing light extraction efficiency of light emitting diodes TWI404236B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99104019A TWI404236B (en) 2010-02-09 2010-02-09 Method for enhancing light extraction efficiency of light emitting diodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99104019A TWI404236B (en) 2010-02-09 2010-02-09 Method for enhancing light extraction efficiency of light emitting diodes

Publications (2)

Publication Number Publication Date
TW201128801A true TW201128801A (en) 2011-08-16
TWI404236B TWI404236B (en) 2013-08-01

Family

ID=45025382

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99104019A TWI404236B (en) 2010-02-09 2010-02-09 Method for enhancing light extraction efficiency of light emitting diodes

Country Status (1)

Country Link
TW (1) TWI404236B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103489978A (en) * 2012-06-07 2014-01-01 隆达电子股份有限公司 Light emitting diode and method for manufacturing the same
TWI513036B (en) * 2013-09-11 2015-12-11 Advanced Optoelectronic Tech Single photon source and method for making the same
TWI571429B (en) * 2015-09-25 2017-02-21 義守大學 Transparent conductive film and method of manufacturing the same
CN110178229A (en) * 2016-12-02 2019-08-27 原子能与替代能源委员会 With the optoelectronic device with light emitting diode for extracting enhancing

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100900288B1 (en) * 2007-10-29 2009-05-29 엘지전자 주식회사 Light emitting device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103489978A (en) * 2012-06-07 2014-01-01 隆达电子股份有限公司 Light emitting diode and method for manufacturing the same
TWI488336B (en) * 2012-06-07 2015-06-11 Lextar Electronics Corp Light emitting diode and method of fabricating the same
US9087960B2 (en) 2012-06-07 2015-07-21 Lextar Electronics Corporation Light emitting diode and method of fabricating the same
US9324909B2 (en) 2012-06-07 2016-04-26 Lextar Electronics Corporation Light emitting diode and method of fabricating the same
TWI513036B (en) * 2013-09-11 2015-12-11 Advanced Optoelectronic Tech Single photon source and method for making the same
US9219190B2 (en) 2013-09-11 2015-12-22 Advanced Optoelectronic Technology, Inc. Single photon source die and method of manufacturing the same
TWI571429B (en) * 2015-09-25 2017-02-21 義守大學 Transparent conductive film and method of manufacturing the same
CN110178229A (en) * 2016-12-02 2019-08-27 原子能与替代能源委员会 With the optoelectronic device with light emitting diode for extracting enhancing

Also Published As

Publication number Publication date
TWI404236B (en) 2013-08-01

Similar Documents

Publication Publication Date Title
JP5421001B2 (en) Light emitting device and manufacturing method thereof
TWI309481B (en) A light emitting device having a patterned substrate and the method thereof
US9159868B2 (en) Method for manufacturing semiconductor light emitting device
JP4970783B2 (en) High-efficiency semiconductor light-emitting device and manufacturing method thereof
TWI377696B (en)
US8847265B2 (en) Light-emitting device having dielectric reflector and method of manufacturing the same
JP2006165582A (en) Light-emitting device containing uneven structure, and manufacturing method therefor
KR101673955B1 (en) Semiconductor Light Emitting Device and Manufacturing Method of The Same
US20110001147A1 (en) Semiconductor light-emitting device
TWI539624B (en) Light-emitting device having patterned interface and the manufacturing method thereof
JP2011091443A (en) Method for manufacturing light-emitting diode
KR200472973Y1 (en) Light emitting diode substrate and light emitting diode
US20120292630A1 (en) Led substrate and led
TWI470829B (en) A method to fabrication an epitaxial substrate, a light emitting diode and the method to fabrication said light emitting diode
JP2007221142A (en) Semiconductor light-emitting device, and method of manufacturing same
JP2014509075A (en) Manufacturing method of light emitting diode
TW201128801A (en) Method for enhancing light extraction efficiency of light emitting diodes
JP6916777B2 (en) Semiconductor light emitting device and its manufacturing method
TWI355096B (en) Light-emitting diode structure and method for manu
JP2010129596A (en) Light-emitting element and manufacturing method thereof
TWI501419B (en) Leds and methods for manufacturing the same
US8153455B2 (en) Method for enhancing light extraction efficiency of light emitting diodes
KR20070040260A (en) Nitride based semiconductor light emitting devices and manufacturing methods
KR101518858B1 (en) Semiconductor light emitting device and manufacturing method of the same
TWI288492B (en) Light emitting diode and the method for manufacturing the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees