TW201128251A - Lens module - Google Patents

Lens module Download PDF

Info

Publication number
TW201128251A
TW201128251A TW99103357A TW99103357A TW201128251A TW 201128251 A TW201128251 A TW 201128251A TW 99103357 A TW99103357 A TW 99103357A TW 99103357 A TW99103357 A TW 99103357A TW 201128251 A TW201128251 A TW 201128251A
Authority
TW
Taiwan
Prior art keywords
lens
group
module
lens module
lens group
Prior art date
Application number
TW99103357A
Other languages
Chinese (zh)
Other versions
TWI422895B (en
Inventor
Yi-Tien Lu
Yu-Tsung Lee
Original Assignee
Young Optics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Young Optics Inc filed Critical Young Optics Inc
Priority to TW99103357A priority Critical patent/TWI422895B/en
Publication of TW201128251A publication Critical patent/TW201128251A/en
Application granted granted Critical
Publication of TWI422895B publication Critical patent/TWI422895B/en

Links

Abstract

A lens module including a first lens group, a second lens group, a third lens group, and an aperture stop is provided. The first lens group disposed between an enlarged side and a reduced side has a positive refractive power. The second lens group disposed between the first lens group and the reduced side has a negative refractive power. The third lens group disposed the second lens group and the reduced side has positive refractive power. The aperture stop is disposed between the first lens group and the second lens group. Additionally, the distance from a center of the second surface to a center of the third surface is L1, an effective focal length is f, and the lens module satisfies 0.4 < L1/ f < 1.2.

Description

201128251 r i i j3569twf.doc/n 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種鏡頭,且特別是有關於一種定焦 鏡頭模組。 【先前技術】 近年來’數位顯示裝置’例如液晶顯示器(Liquid Crystal Display,LCD)、數位微顯示器(Digital Light201128251 r i i j3569twf.doc/n VI. Description of the Invention: [Technical Field] The present invention relates to a lens, and more particularly to a fixed focus lens module. [Prior Art] In recent years, 'digital display devices' such as liquid crystal displays (LCDs) and digital microdisplays (Digital Light)

Processing,DLP)與電漿顯示器(piasma Display Panel,PDP) 等已逐漸取代傳統的陰極射線管(Cathode Ray Tube,CRT) 而為新一代顯示裝置所廣泛應用。由於數位影像訊號傳輸 及處理有不失真和清晰等特性,因此將數位顯示裝置應用 在投影顯示裝置(例如數位背投影顯示裝置)更是時勢所 趨。然而,應用於投影顯示裝置的鏡頭模組對光學設計者 而言,存在諸多的挑戰。 舉例而言’ 一般投影顯示裝置為了達成良好的成像品 質,其鏡頭模組通常具有低畸變像差、高解析度、高對比 度以及均勻的晝面照度等特性。此外,這些高品質的投影 顯示裝置除了具有良好的成像品質之外,最好還能具有較 大的視場角’以滿足小空間可投影大畫面的需求。另外, 為了提升光源的利用率以及投影晝面照度的均勻性,於鏡 頭模組之縮小側的主光線與其光軸要愈接近平行愈好,也 就是說其縮小側的主光線相對於光軸的遠心角(telecentric angle)要愈小愈好。 201128251 1 j. 1 33569twf.doc/n 台灣新型專利第M362997中揭露一種光學模缸, 括前透鏡群與後透鏡群。前透鏡群包括第一透鏡、、、第其包 鏡及第三透鏡。第一透鏡呈雙凹形狀。第二透鏡具一透 屈光度且像側的透鏡面呈凸面。第三透鏡具有正^尸正的 且物側的透鏡面呈凸面。後透鏡群從物側依次具備^ 〃度 鏡及第五透鏡。第四透鏡具有負的屈光度且像侧的透Z透 呈凹面。第五透鏡呈雙凸形狀,光學模組之優點、見面 受性高。 芍衣境耐 美國專利號第6747816號之圖1中揭露_種四片 廣角鏡頭,四片透鏡的屈光度自物側到像側依序為負式的 負、正,其中第一片透鏡朝向物侧為一凹面,第二片、正、 的至少其中-面為非球面’第四片透鏡朝向像 2 面,且第四片透鏡的至少其中—面為非球面。另外’、,'二= 專利號第49938M號之圖8、9中揭露—種兩群 ;^ 焦鏡頭,其包括第-魏群(具有―㈣光度片鏡大^ =群(分別由屈光度為正、負、正之透鏡所組 從光攔位於第一透鏡群與第二透鏡群之間。 )孔 美國專利號第5233474號之圖!中揭露 五片式的變焦鏡頭’其包括第—透鏡群與第^兩, 於第二透鏡群的第三片透鏡與第四片透ί之間, 於第朝向放大側為—非球面。另外,美國專利 號弟5796528 #u之圖6中又揭露 頭’其包括第-透鏡群與第二透鏡群。二鏡 透鏡群錢群之間。同樣地姻專概第湖〇8 201128251 hi -^3569twf.doc/n 號與第4679913號亦揭露-種兩群的鏡頭。此外,在美國 專利公開號第·__號巾_露—種W式的定焦 鏡頭。 【發明内容】 本發明提供一種鏡頭模組,其具有小體積以及 質較佳的優點。 本發_其他目的和優料⑽本發明所揭露的技 術特徵中得到進一步的了解。 為達上述之-或部份或全部目的或是其他目的,本發 實施例提出-種鏡頭模組,其包括—第—透鏡群、 ^透鏡群、-第三透鏡群及—孔經光闌。第一透鏡群 放大側與-縮小側之間,具有正屈光度。第一透 j包括從放大側往縮小側依序排列之—第—子透鏡群反 群。第—子透鏡群與第二子透鏡群分別具有 1屈先度與正屈光度,其中第—子透鏡群具有一第一透 第—透鏡之朝向放大側的—第—表面為-凹面。第 it鏡群具有—第&quot;透鏡。第二透鏡群配置於第一透鏡 之間’具有負屈光度。第二透鏡群包括從放大 序排列之—第三透鏡及1四透鏡,其中第 鏡鏡分別具有正屈光度與負屈光度。第二透 群取:近縮小側的透鏡表面為一第二表面。第三透鏡 二透鏡群與縮小側之間,具有正屈光度。第三 通鏡群包括-第五透鏡。第三透鏡群中最靠近放大側的透 201128251 ηι 咖 33569twf:d0c/n 鏡表面為一第二主τ 一、卷也 辰面。孔徑光闌配置於第二子透鏡群與第 *一思鏡群之問。拉 心至第_ 鏡頭模組的有效焦距為f,第二表面的中 τ /·ρ —表面的中心距離為k,且鏡頭模組可符合0.4 &lt; #本發明之-實施例中,第二表面為一凹面。 在,發明之—實施例中,第一透鏡、第二透鏡、第三 透鏡在弟:透鏡及第五透鏡至少其—為—非球面透鏡。 • 蚊·本發”之1關,,細透叙朝狀大側的表 丰匁=率半牷為尺1,第四透鏡之朝向縮小側的表面之曲率 —,且鏡頭模組可符合〇.7&lt;(丨Rl丨+R2)/(丨Rl丨 在本發明之一實施例中,第三透鏡的阿貝數為Up,第Processing, DLP) and piasma display panels (PDPs) have gradually replaced traditional cathode ray tubes (CRTs) and are widely used in next-generation display devices. Since digital video signal transmission and processing are not distorted and clear, it is a trend to apply a digital display device to a projection display device (for example, a digital rear projection display device). However, lens modules used in projection display devices present many challenges for optical designers. For example, in general projection display devices, lens modules typically have low distortion aberrations, high resolution, high contrast, and uniform illuminance in order to achieve good imaging quality. In addition, in addition to good image quality, these high-quality projection display devices preferably have a larger field of view to meet the needs of a large space to project large images. In addition, in order to improve the utilization of the light source and the uniformity of the illumination of the projection surface, the principal ray on the reduction side of the lens module and the optical axis thereof are closer to each other, that is, the principal ray on the reduction side is opposite to the optical axis. The telecentric angle should be as small as possible. 201128251 1 j. 1 33569twf.doc/n Taiwan Patent No. M362997 discloses an optical mold cylinder comprising a front lens group and a rear lens group. The front lens group includes a first lens, a first lens, and a third lens. The first lens has a biconcave shape. The second lens has a translucency and the lens side of the image side is convex. The third lens has a positive surface and the lens surface on the object side is convex. The rear lens group is provided with a 〃 镜 mirror and a fifth lens in this order from the object side. The fourth lens has a negative refracting power and the image side transparent Z is a concave surface. The fifth lens has a biconvex shape, and the advantages and meeting advantages of the optical module are high. U.S. Patent No. 6,674,816 to U.S. Patent No. 6,674,816 discloses a four-piece wide-angle lens. The diopter of the four lenses is negative and positive from the object side to the image side, wherein the first lens faces the object side. For a concave surface, at least the middle surface of the second sheet, the positive portion is aspherical, and the fourth lens faces the image 2 surface, and at least the inner surface of the fourth lens is aspherical. In addition, ',, 'II = Patent No. 49938M, Figures 8 and 9 disclose a two-group; ^ focal lens, including the first - Wei group (with - (four) luminosity mirror large ^ = group (respectively by diopter The positive, negative, and positive lens groups are located between the first lens group and the second lens group. The US Patent No. 5233474, which discloses a five-piece zoom lens, includes a first lens group. Between the third lens and the fourth lens of the second lens group, the amplifying side is an aspherical surface. In addition, the U.S. Patent No. 5796528 #u is further disclosed in FIG. 'It includes the first lens group and the second lens group. The second lens lens group between the money group. The same marriage specializes in the lake 8 8 201128251 hi -^3569twf.doc/n and 4679913 also reveals - two In addition, in the U.S. Patent Publication No. __ towel _ _ type W type fixed focus lens. [Invention] The present invention provides a lens module, which has the advantages of small size and better quality. The present invention is further understood in the technical features disclosed in the present invention. In order to achieve the above-mentioned or some or all of the objectives or other purposes, the present embodiment provides a lens module including a - lens group, a lens group, a third lens group, and a hole lens. Between the magnification side and the reduction side of a lens group, there is a positive refracting power. The first permeable lens includes a sub-lens group anti-group which is sequentially arranged from the magnification side to the reduction side. The first sub-lens group and the second sub-lens The group has a first yaw and a positive refracting power, wherein the first sub-lens group has a first surface of the first through-lens facing the magnifying side - the first surface is a concave surface. The first mirror group has a - "lens". The second lens group is disposed between the first lenses and has a negative refracting power. The second lens group includes a third lens and a four-lens lens arranged from the amplification order, wherein the first mirror has positive diopter and negative refracting power, respectively. Taking: the lens surface on the near reduction side is a second surface. The third lens has a positive refractive power between the lens group and the reduction side. The third lens group includes a fifth lens. The third lens group is closest to the magnification side.透透201128251 ηι 咖33569t Wf:d0c/n The surface of the mirror is a second main τ, and the volume is also the surface. The aperture stop is arranged in the second sub-lens group and the first mirror group. The core is effective to the _ lens module. The focal length is f, the center distance of the surface of τ /·ρ - the surface of the second surface is k, and the lens module can conform to 0.4 &lt; In the embodiment of the invention, the second surface is a concave surface. In the embodiment, the first lens, the second lens, and the third lens are at least the aspherical lens of the lens and the fifth lens, and the first lens of the mosquito lens is substantially closed. The side of the table is 匁 匁 = rate is half of the ruler 1, the curvature of the surface of the fourth lens toward the reduction side - and the lens module can conform to 7.7 &lt;(丨Rl丨+R2)/(丨Rl丨在本In an embodiment of the invention, the Abbe number of the third lens is Up,

四透鏡的阿貝數為h,且鏡頭模組可符合2Q &lt;3〇。 々 h ^在本發明之一實施例中,鏡頭模組的有效焦距為f, 第一子透鏡群的有效焦距為fSG1,第二子透鏡群'的有效焦 距為fSG2’且鏡頭模組可符合〇.5&lt; | fSG]丨/f&lt;4l及〇3二 fsG2/ f&lt; 0.95。 ^在本發明之一實施例中,鏡頭模組的有致焦距為f, 第三透鏡的有效焦距為f3,第四透鏡的有效焦距'為f4,且 鏡頭模組可符合〇.5&lt;f3/f&lt;2及〇.35&lt; | ^、丨/^〈^。 卜在本發明之一實施例中,鏡頭模組的有欵焦距為f, 第三透鏡群的有效焦距為fa,且鏡頭模組可符:〇 8、〈 201128251 3J569twf.doc/n 在本發明之一實施例中,第一透鏡具有負屈光度,且 第一透鏡具有正屈光度。 在本發明之一實施例中,第一透鏡群中最靠近放大侧 的表面為凹面’且第二透鏡群巾最#近放域的表面為凸 面。 —在本發明之一實施例中,第五透鏡具有正屈光度,且 第五透鏡朝向放大側的表面為凸面。 在本發明之一實施例中,第二子透鏡群更具有一第六 透鏡配置於第二透鏡與孔徑光闌之間。在本發明之一實 轭例中第透鏡具有負屈光度,第二透鏡具有正屈光度, 士第六透鏡具有正屈光度。在本發明之一實施例中,且第 六透鏡朝向放大側的表面為&amp;面。此外,第三透鏡朝向放 J勺表面為凸面,弟四透鏡朝向縮小側的表面為凹面。 在本發明之一實施例中,第一透鏡、第二透鏡、第三透鏡、 第四透鏡、第五透鏡及第六透鏡至少其一為一非球面透鏡。 在本發明之一實施例中,第一透鏡群與第二透鏡群為 對焦群,第三透鏡群為一固定群。 ^本發明貫施例具有以下至少其中一個優點,本發明實 知例之鏡賴組可藉由將最靠近放大綱第—子透鏡群採 用負屈光度,且最靠近放大側的透鏡朝向放大側的表面為 凹面,如此可增加鏡頭模組的視場角外,亦可修正第二 透鏡群所產生的畸變相差而使鏡頭模組具有較佳的光學2 ^二此外,鏡頭模組可藉由第一透鏡群與第二透鏡群相對 弟三透鏡群移動來對焦,並_第三透鏡群使鏡頭模組縮 201128251 ^ r i j -5:&gt;569twf.doc/n 小側附近的主光線與光軸接近平行。因此,鏡頭模組可 到有效消除像差、色差、畸變、提高成像品質、縮 等至少其中之一的功效。 、 為讓本發明之上述特徵和優點能更明顯易懂,下 舉實施例’並配合所附圖式作詳細說明如下。 、 【實施方式】 有關本發明之前述及其他技術内容、特點與 以下配合參考圖^之—紐實闕的詳細說财 楚的呈現。以下實施例中所提到的方向用語,例如:上Z二 :、左、右、前或後等,僅是參考附加圖式的方向。因此, 4用的方向驗是用來說明並非絲限制本發明。The Abbe number of the four lenses is h, and the lens module can conform to 2Q &lt;3〇. 々h ^ In an embodiment of the present invention, the effective focal length of the lens module is f, the effective focal length of the first sub-lens group is fSG1, and the effective focal length of the second sub-lens group 'fSG2' and the lens module can conform to 〇.5&lt; | fSG]丨/f&lt;4l and 〇3 two fsG2/ f&lt;0.95. In an embodiment of the present invention, the focal length of the lens module is f, the effective focal length of the third lens is f3, the effective focal length of the fourth lens is f4, and the lens module can conform to 5.5&lt;f3/ f&lt;2 and 〇.35&lt; | ^, 丨/^<^. In an embodiment of the present invention, the lens module has a focal length of f, the effective focal length of the third lens group is fa, and the lens module can be: 〇8, <201128251 3J569twf.doc/n in the present invention. In one embodiment, the first lens has a negative refracting power and the first lens has a positive refracting power. In an embodiment of the invention, the surface of the first lens group closest to the magnification side is a concave surface and the surface of the second lens group is a convex surface. - In an embodiment of the invention, the fifth lens has a positive refracting power and the surface of the fifth lens facing the magnification side is a convex surface. In an embodiment of the invention, the second sub-lens group further has a sixth lens disposed between the second lens and the aperture stop. In one embodiment of the invention, the first lens has a negative refracting power, the second lens has a positive refracting power, and the sixth lens has a positive refracting power. In an embodiment of the invention, the surface of the sixth lens facing the magnification side is a &amp; Further, the third lens is convex toward the surface of the spoon, and the surface of the fourth lens facing the reduction side is concave. In an embodiment of the invention, at least one of the first lens, the second lens, the third lens, the fourth lens, the fifth lens and the sixth lens is an aspherical lens. In an embodiment of the invention, the first lens group and the second lens group are in a focus group, and the third lens group is a fixed group. The embodiment of the present invention has at least one of the following advantages. The mirror group of the embodiment of the present invention can adopt a negative refracting power of the first sub-lens group closest to the grading, and the lens closest to the magnifying side faces the magnifying side. The surface is concave, which can increase the angle of view of the lens module, and can also correct the distortion difference generated by the second lens group to make the lens module have better optical 2^2, and the lens module can be used by the first A lens group and a second lens group move relative to the third lens group to focus, and the third lens group shrinks the lens module 201128251 ^ rij -5:&gt;569twf.doc/n main light and optical axis near the small side Close to parallel. Therefore, the lens module can effectively eliminate at least one of aberration, chromatic aberration, distortion, image quality, and shrinkage. The above features and advantages of the present invention will become more apparent and understood from the appended claims. [Embodiment] The foregoing and other technical contents, features, and the following description of the present invention will be described in conjunction with the detailed description of the present invention. The directional terms mentioned in the following embodiments, for example: upper Z 2 :, left, right, front or back, etc., are only directions referring to the additional drawings. Therefore, the direction test used is to illustrate that the present invention is not limited by wire.

圖1為本發明之一實施例之鏡頭模組 請參照,本實施例之鏡頭模組刚配置於 二且包括從放大側往縮小側依序排列之一第 二,—孔徑光鬧120、一第二透鏡群130及一第 i 在本實施例中’第—透鏡群11G、第二透鏡 群130及弟二透鏡群14〇的屈光度分別為正 序排群11G包括從放大側往縮小侧依 排歹〗之第-子透鏡群馳及—第二 /、屈光度依序例如為負、正。第 兄群b, 二透鏡心且第一透鏡112之朝二二具有-第 凹面。第二子透鏡群110b具有-第二读#、面S1為 鏡群130包括從放大纖縮州依序·^ 201128251 .3569twf.d〇c/n 一及一第四透鏡丨34,其屈光度依序例如為正、負。在此, 第三透鏡群140由一第五透鏡142所組成,且其屈 如為正。具體而言,在本實施例中,第—透鏡112為^ 朝向,大側,凸面朝向縮小側的凸凹透鏡,且具有負屈光 ,二第一透鏡群130中最靠近放大側的表面86為凸面, 第二透鏡/32為一凸面朝向放大側,凹面朝向縮小側的凹 凸透鏡’第四透鏡134為一凹面朝向縮小側,凸面朝向放 大側的凸凹透鏡,且第五透鏡142朝向放大側的表面si〇 為面而本發明不以此為限,於其他實施例中,透鏡 亦可有不同於上述的形狀,視實際的狀況而定。 在本實施例中,為了可使鏡頭模組100達到緊湊與小 型化的目的,因此組成鏡頭模组100的透鏡至少其一可以 是使用非球面透鏡’如此便可使用較少的透鏡(如,五片) 而^成-種具有遠心系統並同時具有較佳的成像品質的鏡 f模組。在此’ H統是指為了提升光_率以及 投影畫面照度的均勻性,因此鏡頭模組1〇〇縮小側的主光 線與其光轴A要愈接近平行愈好,意即具有一種遠心鏡頭 (tdecentrie lens)的光學特性。具體*言,本實施例之鏡頭 模組loo是以第一透鏡112與第四透鏡134各為一非球面 透鏡作為舉例說明,但本發明並不限於此。在另一實施例 中鏡頭模組也可以將其他的透鏡採用非球面透鏡的設 計。此外,若透鏡採用非球面之設計時,則其材質可以是 選擇玻璃材質’但也可以是選擇塑膠透鏡的材質,從而可 201128251 &gt;ί ΐδ^υ 33569twf.doc/n 達到節省成本的目的。另外,關於非球面鏡的參數與設計 將於後續的段落中進行說明。 一般而言,於縮小側可設置有一影像處理元件 60(image processing device)。在本實施例中,影像處理元 件60例如是光閥(light valve) ’而光閥例如為—數位微鏡元 件(digital micro-mirror device,DMD)、一矽基液晶面板 (liquid-crystal-on-silicon pane卜 LCOS panel)或一穿透式液1 is a lens module according to an embodiment of the present invention. The lens module of the embodiment is disposed in two and includes a second one from the enlarged side to the reduced side, and the aperture is 120. The second lens group 130 and an ith are in the present embodiment, and the diopter of the 'the first lens group 11G, the second lens group 130, and the second lens group 14A are respectively positively arranged. The group 11G includes the side from the magnification side to the reduction side. The first-sub-lens group and the second/, diopter are, for example, negative and positive. The fourth brother group b, the two lens cores and the second lens 112 has a - concave surface. The second sub-lens group 110b has a second read #, and the surface S1 is a mirror group 130 including a scaled-down state, and the second lens 丨34, the diopter of which is The order is, for example, positive or negative. Here, the third lens group 140 is composed of a fifth lens 142, and it is as positive as it is. Specifically, in the present embodiment, the first lens 112 is a convex-concave lens with a large orientation and a convex surface facing the reduction side, and has a negative refractive power. The surface 86 closest to the magnification side of the two first lens groups 130 is The convex surface, the second lens/32 is a convex lens having a convex surface facing the enlarged side, and the concave surface is facing the reduction side. The fourth lens 134 is a concave-convex lens whose concave surface faces the reduction side, the convex surface faces the magnification side, and the fifth lens 142 faces the magnification side. The surface of the surface is not limited thereto. In other embodiments, the lens may have a shape different from the above, depending on the actual situation. In this embodiment, in order to achieve the purpose of compactness and miniaturization of the lens module 100, at least one of the lenses constituting the lens module 100 may use an aspherical lens so that fewer lenses can be used (eg, Five pieces) and a kind of mirror f module with telecentric system and better imaging quality at the same time. In this case, in order to improve the uniformity of the light _ rate and the illuminance of the projected picture, the closer the main ray of the lens module 1 〇〇 to the side of the optical axis A is as close as possible, that is, it has a telecentric lens ( Optical properties of tdecentrie lens). Specifically, the lens module loo of the present embodiment is an aspherical lens in which the first lens 112 and the fourth lens 134 are each exemplified, but the present invention is not limited thereto. In another embodiment, the lens module may also employ other lenses as aspherical lenses. In addition, if the lens is designed with an aspherical surface, the material can be selected from the glass material ‘but the material of the plastic lens can be selected, so that the cost can be saved by 201128251 &gt;ί ΐδ^υ 33569twf.doc/n. In addition, the parameters and design of the aspherical mirror will be explained in the following paragraphs. In general, an image processing device 60 can be disposed on the reduction side. In the present embodiment, the image processing element 60 is, for example, a light valve, and the light valve is, for example, a digital micro-mirror device (DMD) or a liquid-crystal-on liquid crystal. -silicon pane LCOS panel) or a penetrating solution

晶面板(transmissive liquid crystal pand,transmissive LCD)。此外,在本實施例中,鏡頭模組1〇〇適於將影像處 理元件60所提供的影像成像於放大側。 ’ ^ 在本實施例中,由於第一子透鏡群u〇a具有負屈光 度,因此除可使鏡頭模組1〇〇達到廣角的目的外,亦可修 正第二透鏡群120所產生的畸變相差。另外,當第—透鏡 U2之朝向放大側的表面S1為凹面時,除了可增加視場= 外’亦可縮小此鏡片的尺寸,從而對鏡頭模組1〇〇在進 .小Ϊ化時亦有所幫助。除此之外,由於第二子透鏡群n〇b 中靠近孔徑光闌12 〇的第二透鏡u 4摩月向縮小側之表面以 為凸面,而第二透鏡群13〇中靠近孔徑光闌120的第三透 鏡132朝向放大側之表面S6亦為凸面,如此可使第二秀 三透鏡132儘可能地接近’使得鏡頭模組^ 的〜長L有效地被縮短,而可達到將鏡頭模組ι〇〇Transmissive liquid crystal pand (transmissive LCD). Further, in the present embodiment, the lens module 1 is adapted to image the image provided by the image processing element 60 on the magnification side. In the present embodiment, since the first sub-lens group u〇a has a negative refracting power, in addition to the purpose of making the lens module 1 广 wide-angle, the distortion difference generated by the second lens group 120 can also be corrected. . In addition, when the surface S1 of the first lens U2 facing the magnification side is concave, the size of the lens can be reduced, in addition to increasing the field of view = the outer lens, so that the lens module 1 is also smashed. Helpful. In addition, since the surface of the second lens u 4 adjacent to the aperture stop 12 第二 in the second sub-lens group n 〇 b is convex, the second lens group 13 is adjacent to the aperture stop 120 The surface S6 of the third lens 132 facing the magnification side is also convex, so that the second three-lens 132 can be as close as possible so that the length L of the lens module is effectively shortened, and the lens module can be achieved. 〇〇〇〇

66 曰 AA ~ J 另外,在本實施例中,為了使鏡頭模組1〇〇於 附近的主光線與綠A裝平行,即近似於如鏡頭1、因 201128251 r 1 i〇j\j j3569twf.doc/n 此可將鏡頭模組100中笛= 度。此外,第二透鏡群13G中―鏡群⑽設計為正屈光 透鏡134朝向著縮小側 ^ j透鏡群140的第四 可使第四透鏡134的尺+ _ |若設計為凹面時,如此 至第:透鏡群140 Γ 且亦可使第二透鏡群13〇 的光ΐΐ像=說在化的尺寸及具有較好 模組100滿足下列條件。A ⑽的前提下,鏡頭 甘士 ^*4 &lt; Lj/ f &lt; 1.2 (條件—、66 曰AA ~ J In addition, in this embodiment, in order to make the main beam of the lens module 1 in the vicinity parallel to the green A, it is similar to the lens 1, because 201128251 r 1 i〇j\j j3569twf. Doc/n This will give the flute = degree in the lens module 100. In addition, the mirror group (10) in the second lens group 13G is designed such that the positive refractive lens 134 faces the fourth side of the reduction side lens group 140, so that the scale + _ | of the fourth lens 134 is designed to be concave, thus The lens group 140 Γ can also make the pupil image of the second lens group 13 = = the size of the sizing and the better module 100 satisfy the following conditions. Under the premise of A (10), the lens Gans ^*4 &lt; Lj/ f &lt; 1.2 (condition -

至表面SK) i鏡頭模幻⑼的有效焦距,且為表面S9 f &lt; μ,則第距言’在鏡頭模組則中,若W 小,如此會㈡=;;:群二_會太 130與第三透鏡群140之間牛於弟二透鏡群 型化的透鏡134尺寸會變大,而無法達到小 第:Π: Wf,則會使第二透鏡和。中靠i 弟—透鏡群14〇的第 ^近 正其^鏡片所造成的像差。1、錢小,而不足修 像品:細::二!可使鏡頭模組100呈現較佳的光學成 因此鏡碩模組還可視實際狀況滿足下列條件二戍 其中R&lt;為ί1 Ά )’(丨Rl卜心)&lt; 4 (條件二) 率半徑]‘·、'弟四透鏡134之朝向放大側的表* S8之曲 &quot;2則為第四透鏡134之朝向縮小側的表面S9 12 201128251 triiojv 33569twf.doc/n 之曲率半徑。若鏡頭模組滿足條件二時,則在修正離軸像 差(off-axis aberration)可具有較佳的表現,尤其是場曲(fidd curvature)和慧差。舉例而言,在鏡頭模組1〇〇中,若(丨To the surface SK) i lens illusion (9) effective focal length, and the surface S9 f &lt; μ, then the distance from the 'in the lens module, if W is small, so will (2) =;;: group two _ will be too The size of the lens 134 between the 130 and the third lens group 140 is increased, and the small lens: Π: Wf cannot be achieved. In the middle of the brother--the lens group 14〇 is close to the aberration caused by the lens. 1, the money is small, and the lack of repairing products: fine:: two! Can make the lens module 100 a better optical formation, so the mirror master module can also meet the following conditions according to the actual situation, where R&lt; is ί1 Ά )' (丨Rl hub) &lt; 4 (Condition 2) Rate Radius]'·, 'Table 4 of the four-lens 134 toward the magnification side* The song of S8&quot;2 is the surface S9 of the fourth lens 134 facing the reduction side 12 201128251 The radius of curvature of triiojv 33569twf.doc/n. If the lens module satisfies the condition two, it can have better performance in correcting off-axis aberrations, especially fidd curvature and coma. For example, in the lens module 1〇〇, if (丨

Ri I +¾ )/( | R!丨一R2 ) &gt; 4時,則第四透鏡134之朝向縮 小側的表面S9會產生較大的像差,且較困難去修正離軸 ,差、’尤其是場曲;若(I 丨+1)/(丨I —R2)&lt;0.7時,When Ri I +3⁄4 ) / ( | R! 丨 R2 ) &gt; 4, the surface S9 of the fourth lens 134 facing the reduction side generates a large aberration, and it is more difficult to correct the off-axis, difference, ' Especially the field curvature; if (I 丨 +1) / (丨I - R2) &lt; 0.7,

第二透鏡群130靠近第三透鏡群140的第四透鏡134之負 屈光度較弱,而不足以修正像差。 、 另外,若為了提升使鏡頭模組1〇〇在修正色差 力,鏡頭模組100可滿足下列條件三: 犯 盆士 . r (條件三) 第:_ 為t透鏡群130,靠近孔徑光攔120的 ί;靠 數。舉例而古在^^群140的第四透鏡以的阿貝 表示第三透乙二第四:二〇〇中,若'&quot;“2〇,則 興弟四透鏡134的阿貝數太蛀浴t , 正鏡頭模組1〇0的横向色差;若^1 S t &gt;鏡碩模100的縱向色差會較困難。17,則 此外’鏡頭模組_可狀下列條件四: .及 03&lt;Wf&lt; 其中f為鏡頭模組10()的有效焦距,f (條件四) -見群ll〇a的有效焦距,而f我签_ SG1為第一子透 效焦距。詳細而言,在鏡頭模:10“ 群110b的有 及一,則第,鏡群::第:丨子^ 13 201128251 ti ιο^υ j3569twf.doc/n 的光焦度增加,雖可使鏡頭模組1〇〇之總長度1縮短,達 到緊湊的光學系統,但其在慧差和球差像差的表現會變 大;若I fsGi丨/ f &gt; 4.1及fSG2/ f &gt; 0.95 ’則第一子透鏡群 110a和第二子透鏡群110b的光焦度會減小而使像差易被 修正,但鏡頭模組1〇〇的總長度]L便會增加。 同樣地’鏡頭模組1〇〇還可滿足下列條件五: 〇.5&lt;f3/f&lt;2 及 〇.35&lt; | f4 | /f&lt;〇9 (條件五) 其中,fs為第二透鏡群130中靠近孔徑光攔12〇的第 二透鏡132之有效焦距,&amp;則為第二透鏡群13〇中靠近第 二透鏡群140的第四透鏡134之有效焦距,而£為整個鏡 頭模組100的有效焦距。詳細而言,在鏡頭模組1〇〇中, 若f3/f&lt;0.5且| &amp; | / f&lt;〇.35,則第三透鏡132和第四透 鏡134的光焦度會增加,雖可使鏡頭模組1〇〇整體總長度 L縮短,達到緊湊的光學系統,但場曲和像散像差亦會變 大,若2 &lt;心/ f且〇.9〈丨&amp;丨/ f ’則第三透鏡132和第四 透鏡134的光焦度會減小,使像差易被修正,但鏡頭模組 100整體之總長度L卻會增加。 再者,為了使鏡頭模組100於縮小側附近的主光線與 光軸A接近平行,而達到具有遠心系統之目的,可將鏡頭 模組100的第三透鏡群丨4〇設計為正屈光度,且鏡頭模組 1 〇〇可滿足下列條件六: 0.8 &lt; f〇3 / f &lt; 2 (條件六) 其中f為鏡頭模組100的有效焦距,fG3為第三透鏡群 140的有效焦距。舉例而言,在鏡頭模組1〇〇中,若 14 201128251 mojv 33569twf.d〇c/n /f’則第三透鏡群14G的折射力 於縮小側附近的主光線盔 足’以致於鏡頭模組100 前述目的,料造成赌第接近平行。若要達到 群140的第四透㈣4的尺大辑130巾靠近第三透鏡 會愈高’也無法達到小型化的:大生產成本 第三透鏡群140之間的距離^ 士使侍弟一透鏡群130至 置進行1太小,而不夠足夠的空間放 運仃杈影呀所需的元件,如反射片。 需同,於設計鏡頭時,不限定鏡頭模組 ^ 之條件’而是視光學成像品質的需 衣k擇性地滿足上述所列之條件。 惟 B以下内容將舉出鏡頭模組100之一實施例。需注意的 疋下述之表一中所列的數據資料並非用以限定本發明, 2何所屬技術領域巾具有通常知識者在參照本發明之後’ 當可應用本發明的原則對其參數或設定作適當的更動,Μ 其仍應屬於本發明之範疇内。 表面 si 曲率半徑 (: -3.59882 間距 mm 1.946158 折射率 1.631919 阿貝數 .備註 S2 4.83673 0.066615 23.41612 第一透鏡The negative diopter of the second lens group 130 of the second lens group 130 close to the third lens group 140 is weak, and is not sufficient to correct the aberration. In addition, if the lens module 1 is adjusted to correct the chromatic aberration force, the lens module 100 can satisfy the following condition three: swearing. r (condition three): _ is the t lens group 130, close to the aperture stop 120 ί; by number. For example, in the fourth lens of the ^^ group 140, the Abe represents the third through the second and the fourth. In the second, if the '&quot; "2", the Abbe number of the Xingdi four lens 134 is too embarrassing. Bath t, the lateral color difference of the positive lens module 1〇0; if ^1 S t &gt; the longitudinal color difference of the mirror master 100 will be more difficult. 17, in addition, the 'lens module _ can be the following four conditions: . and 03&lt;;Wf&lt; where f is the effective focal length of the lens module 10(), f (condition 4) - see the effective focal length of the group ll〇a, and f I sign _ SG1 is the first sub-transparent focal length. In detail, in Lens mode: 10" group 110b has one and then, the first, the mirror group:: the first: 丨子^ 13 201128251 ti ιο^υ j3569twf.doc/n the power is increased, although the lens module can be 1〇〇 The total length 1 is shortened to achieve a compact optical system, but its performance in coma and spherical aberration is increased; if I fsGi 丨 / f &gt; 4.1 and fSG2 / f &gt; 0.95 'the first sub-lens The power of the group 110a and the second sub-lens group 110b is reduced to make the aberration easy to be corrected, but the total length L of the lens module 1〇〇 is increased. Similarly, the 'lens module 1〇〇 can also satisfy the following condition five: 〇.5&lt;f3/f&lt;2 and 〇.35&lt; | f4 | /f&lt;〇9 (condition 5) where fs is the second lens group The effective focal length of the second lens 132 adjacent to the aperture stop 12〇 in 130, & is the effective focal length of the fourth lens 134 of the second lens group 13 靠近 adjacent to the second lens group 140, and is the entire lens module The effective focal length of 100. In detail, in the lens module 1 ,, if f3/f &lt; 0.5 and | &amp; | / f &lt; 〇.35, the power of the third lens 132 and the fourth lens 134 will increase, although The overall length L of the lens module 1 is shortened to achieve a compact optical system, but the field curvature and astigmatic aberration also become large, if 2 &lt; heart / f and 〇.9 <丨 &amp; 丨 / f Then, the power of the third lens 132 and the fourth lens 134 is reduced, so that the aberration is easily corrected, but the total length L of the entire lens module 100 is increased. Furthermore, in order to make the principal ray of the lens module 100 near the reduction side nearly parallel to the optical axis A, and to achieve the telecentric system, the third lens group 丨4〇 of the lens module 100 can be designed as positive diopter. The lens module 1 〇〇 can satisfy the following condition six: 0.8 &lt; f 〇 3 / f &lt; 2 (condition 6) where f is the effective focal length of the lens module 100, and fG3 is the effective focal length of the third lens group 140. For example, in the lens module 1 ,, if 14 201128251 mojv 33569twf.d 〇 c / n / f 'the refractive power of the third lens group 14G is near the reduction side of the chief ray of the helmet foot so that the lens mode The aforementioned purpose of group 100 is expected to cause the bet to be nearly parallel. To reach the fourth transmissive (four) 4 of the group 140, the 130 towel will be higher near the third lens, and the miniaturization cannot be achieved: the large production cost is the distance between the third lens group 140. Group 130 is set to 1 too small, and there is not enough space to store the components required for the shadow, such as reflective sheets. In the case of designing the lens, the condition of the lens module is not limited, but the condition of the optical imaging quality is selectively satisfied to meet the conditions listed above. However, an embodiment of the lens module 100 will be described below. It should be noted that the data sheets listed in Table 1 below are not intended to limit the invention, and the technical field of the art has a general knowledge after referring to the present invention. 'When the principles of the present invention can be applied to its parameters or settings Appropriate changes, which still fall within the scope of the present invention. Surface si radius of curvature (: -3.59882 pitch mm 1.946158 refractive index 1.631919 Abbe number. Remarks S2 4.83673 0.066615 23.41612 First lens

S3 60.59833 1.454517 S4 -13.0373 0.050013 1.834 37.16049 第二透鏡S3 60.59833 1.454517 S4 -13.0373 0.050013 1.834 37.16049 Second lens

15 201128251 r 丄 j&gt;3569twf.doc/n S5 無限大 0 \ 孔徑光闌 S6 10.16985 1.342347 1.772499 49.59837 第三透鏡 S7 163.0793 0.60942 \ \ S8 7.151089 0.850136 2.019603 21.45252 第四透鏡 S9 3.495621 11.616 \ \ S10 10.65 3 1.620411 60.28958 第五透鏡 S11 60 1.190511 \ \ S12 無限大 0.65 1.508469 61.1878 玻璃蓋 S13 無限大 0.709 \ S14 無限大 \ \ 在表一中’間距是指兩相鄰表面間於光軸Α上之直線 距離,舉例來說,表面S3之間距,即表面S3至表面§4 間於光軸A上之直線距離。備註攔中各透鏡所對應之厚 度、折射率與阿貝數請參照同列中各間距、折射率與阿貝 數對應之數值。此外,在表一中,表面S1、S2為第—透 鏡112的兩表面,表面幻、S4為第二透鏡114之兩表面, 表面S5為孔徑光闌12〇,表面S6、S7為第三透鏡132之 兩表面,表面S8、S9為第四透鏡134的兩表面,且表面 S10、S11為第五透鏡142的兩表面。表面S12、Sl3為— 用於光閥60之玻璃蓋(cover giass ) 70的兩表面。 有關於各表面之曲率半徑、間距等參數值,請參照表 一,在此不再重述。 201128251 r i iojkj 33569twf.doc/n15 201128251 r 丄j&gt;3569twf.doc/n S5 Infinity 0 \ Aperture stop S6 10.16985 1.342347 1.772499 49.59837 Third lens S7 163.0793 0.60942 \ \ S8 7.151089 0.850136 2.019603 21.45252 Fourth lens S9 3.495621 11.616 \ \ S10 10.65 3 1.620411 60.28958 Fifth lens S11 60 1.190511 \ \ S12 Infinite 0.65 1.508469 61.1878 Glass cover S13 Infinite 0.709 \ S14 Infinite \ \ In Table 1, 'pitch is the linear distance between two adjacent surfaces on the optical axis ,, for example Said, the distance between the surfaces S3, that is, the linear distance between the surface S3 and the surface § 4 on the optical axis A. For the thickness, refractive index and Abbe number of each lens in the remarks, refer to the values in the same column, the refractive index and the Abbe number. In addition, in Table 1, the surfaces S1 and S2 are the two surfaces of the first lens 112, the surface is illusory, S4 is the two surfaces of the second lens 114, the surface S5 is the aperture stop 12〇, and the surfaces S6 and S7 are the third lens. The two surfaces of 132, the surfaces S8, S9 are the two surfaces of the fourth lens 134, and the surfaces S10, S11 are the two surfaces of the fifth lens 142. The surfaces S12, S13 are - both surfaces of a cover giass 70 for the light valve 60. For the parameter values such as the radius of curvature and the spacing of each surface, please refer to Table 1 and will not be repeated here. 201128251 r i iojkj 33569twf.doc/n

圖2A至圖2D為圖1之鏡頭模組100的成像光學模 擬數據圖。請參照圖圖2A至圖2D,其中圖2A為調制轉 換函數曲線圖(modulation transfer function,MTF ),其橫 轴為每週期/毫米(mm)之空間頻率(spatial frequency in cycles per millimeter ),縱軸為光學轉移函數的模數 (modulus of the OTF)。在圖2A中是以三種不同波長的 光(分別為460 nm、527 nm、615 nm)所做的模擬數據圖。 此外,圖2B與圖2C分別為場曲(field curvature )與畸變 (distortion)的圖形’且皆是以三種不同波長(分別為460 nm、527 nm、615 nm)的光所模擬出來的。圖2D為橫向色 差圖(lateral color),且是以三種不同波長的光(分別為460 nm、527 nm、615 nm)所作的模擬數據圖。由於圖2A至圖 2D所顯示出的圖形均在標準的範圍内,因此本實施例之鏡 頭模組100具有良好的成像品質。 另外,由於表面SI、S2、S8、S9為非球面,而非球 面的公式如下:2A to 2D are diagrams showing imaging optical simulation data of the lens module 100 of Fig. 1. 2A to 2D, wherein FIG. 2A is a modulation transfer function (MTF) whose horizontal axis is a spatial frequency in cycles per millimeter. The axis is the modulus of the OTF. In Figure 2A is a simulated data plot of light at three different wavelengths (460 nm, 527 nm, 615 nm, respectively). In addition, Fig. 2B and Fig. 2C are graphs of field curvature and distortion, respectively, and are simulated by light of three different wavelengths (460 nm, 527 nm, 615 nm, respectively). Figure 2D is a lateral color diagram and is a simulated data plot of three different wavelengths of light (460 nm, 527 nm, 615 nm, respectively). Since the patterns shown in Figs. 2A to 2D are all within the standard range, the lens module 100 of the present embodiment has good image quality. In addition, since the surfaces SI, S2, S8, and S9 are aspherical, the formula of the non-spherical surface is as follows:

10 Z(h)=—-. l + Vl-(l + k)(h/r)3 C,h12+C,h14+C,h16 + C2h2+C2h.4+C2h8 + C,h 其中,Z為光轴L方向之偏移量。r是密切球面 (osculating sphere)的半徑,也就是接近光軸處的曲率半後 (如表格内S1、S2、S8、S9的曲率半徑為圓錐常數(c〇nie constant)。11是非球面上距光軸的垂直高度,即為從透鏡中 心往透鏡邊緣的高度,從公式中可得知,不同的h會對應 17 201128251 κι ι»^υ 3i569twf.doc/n 出不同的Ζ值。C2〜C16為非球面係數(aspheric coefficient)。表面S卜S2、S8、S9的非球面係數及k值如 表二所示: 〈表二〉 SI S2 S8 S9 K -1.2629 -4.34425 0 0.070606 C2 ,0 0 0 0 C4 1.2841E-03 -1.0204E-03 -1.9043E-03 -7.1111E-03 C6 5.2238E-05 1.9378E-04 7.5376E-05 5.0144E-04 C8 -4.9978E-06 -1.2096E-05 -5.1103E-05 -2.8553E-04 C10 1.1414E-07 4.9715E-07 1.3235E-05 ------- 7.6527E-05 Cl2 2.5887E-09 -1.2050E-08 -1.5958E-06 -1.1521E-05 Ci4 -1.1938E-10 1.2804E-10 9.4649E-08 8.8624H-07 Ci6 0 0 -2.2435E-09 -2.8534E-08 ---------- 另外,在表三中分別列出鏡頭模組100的一些模擬參 數值,包括有效焦距(EFL)、視場角、遠心角,以及鏡頭模 組100滿足條件一至條件六的模擬數值。 ~ '~~—--__{表二) 項目 ------- 數值 凌效焦跖 *——--— ·** 15 0831 - 視場角 37.2 度 遠心自 0 71度 L,/f —. - _ — —------ 0.77 2.918 ------------ X X 1 ij^\/ 33569twf.doc/n &quot;&quot;——-- V Ρ— V Ν _____________ 28.15 ^Π _ 1 fsGl 1 / f_____ 3.769 fsG2〆 f f) JW f3/f 0.921 __\U\ ii __ 0^5~^ f〇3 / f — 1.344 201128251 ” 在本實施例中,第一透鏡群^中的第一 ι·為負屈光度’如此可修正第二透鏡群13〇所產生 變像差’且當笫-透鏡112為朝向放大側的表面s 面時,則可縮小第一透鏡112的尺寸。另外,若第二透铲 114朝向縮小側的表面S4為凸面’且第三透鏡132朝向= 大側的表面S6亦為凸面,則鏡頭模組的尺寸便可獲得縮 減,而可達到小型化之目的。此外,第三透鏡群14〇為正 屈光度,可使於鏡頭模組100縮小側附近的主光線與光軸 A接近平行。因此,鏡頭模組1〇〇兼具成像之像差較小以 及畸變程度較低等優點。再者,鏡頭模組1〇〇中至少部分 的鏡片除了可藉由使用非球面透鏡來減少像差而增加 品質外,亦可進一步減少透鏡的數量的使用而進—步地縮 小鏡頭模組100的尺寸。此外,第三透鏡群14〇的位置相 對鏡頭模組100固定,其可藉由第—透鏡群u〇與第二透 鏡群130相對第三透鏡群140移動來對焦 一 圖3為本發明之另一實施例之鏡頭模組的結構示音、 圖。請參照圖3,本實施例之鏡頭模組300類似^鏡頭$ 組1〇〇,惟兩者之間最主要的差異在於鏡頭模組30〇中的 19 201128251 ^3569twf.d〇c/n 群3鳩更包括—第六透鏡316,其配置於第二 透鏡314與孔徑光闌320之間。在本實施例中,第二透鏡 與第六透鏡316組成類似於前述具 子,群詳“言’在第二子透鏡群 二^314具有正屈光度,且第六透鏡加具有正屈光度, 2=鏡31二為一凸面朝向縮小側’凹面朝向放大侧 1 =透鏡,且#舰316為—雙凸透鏡。在本實施例 的凸鏡312為一凹面朝向縮小侧,凸面朝向放大側 3凹透鏡,具有負的屈光度,第三透鏡332為一凸面朝 =放0側,凹面朝向縮小侧的凹凸透鏡,且具有正的屈光 2第四透鏡334為-凹面朝向縮小側,凸面朝向放大侧 ^的凸凹透鏡,且具有負的屈光度,且第五透鏡342為一 凸面朝向縮小側’凹面朝向放大側的凹凸透鏡,且亘有正 的屈光度。 /' 類似地’鏡頭模組300中的第—透鏡312、第二透鏡 3 Η、第三透鏡332、第四透鏡334、第五透鏡342及第六 骑=316至少其-可採用非球面的設計,如此可提高其整 體的成像品質外,亦可縮小鏡職組3⑽的整體的尺寸。 在本實施例中’鏡頭模組3〇〇是以第三透鏡332盘第六透 鏡316各為-非球面透鏡作為舉例說明,但不限於此,其 亦可根據使用者的需求與設計而略作調整。 而要。尤明的疋,由於鏡頭模組3〇〇與鏡頭模組1㈧的 結構相似’主要差異在於喊具有正屈光度的帛二子透鏡 群的方式不同’目此鏡賴組3⑻囉具有鏡輕組1〇〇 20 201128251 r 1 ιο^υ 33569twf.d〇c/n 的優點。換言之’若鏡賴組3GG符合前述的條件 時,其整敎寸及其光學品質將可10 Z(h)=—-. l + Vl-(l + k)(h/r)3 C,h12+C,h14+C,h16 + C2h2+C2h.4+C2h8 + C,h where Z It is the offset of the optical axis L direction. r is the radius of the osculating sphere, that is, half the curvature near the optical axis (as in the table, the radius of curvature of S1, S2, S8, S9 is the conic constant (c〇nie constant). 11 is the aspherical distance The vertical height of the optical axis, that is, the height from the center of the lens to the edge of the lens, can be known from the formula, the different h will correspond to different values of C. s. s. It is the aspheric coefficient. The aspherical coefficients and k values of the surface S, S2, S8, and S9 are as shown in Table 2: <Table 2> SI S2 S8 S9 K -1.2629 -4.34425 0 0.070606 C2 , 0 0 0 0 C4 1.2841E-03 -1.0204E-03 -1.9043E-03 -7.1111E-03 C6 5.2238E-05 1.9378E-04 7.5376E-05 5.0144E-04 C8 -4.9978E-06 -1.2096E-05 - 5.1103E-05 -2.8553E-04 C10 1.1414E-07 4.9715E-07 1.3235E-05 ------- 7.6527E-05 Cl2 2.5887E-09 -1.2050E-08 -1.5958E-06 -1.1521 E-05 Ci4 -1.1938E-10 1.2804E-10 9.4649E-08 8.8624H-07 Ci6 0 0 -2.2435E-09 -2.8534E-08 ---------- In addition, in Table 3 List some of the analog parameter values of the lens module 100, including valid The distance (EFL), the angle of view, the telecentric angle, and the analog value of the lens module 100 satisfying the condition 1 to condition 6. ~ '~~—--__{Table 2) Item ------- Numerical efficiency coke跖*————————·** 15 0831 - The angle of view is 37.2 degrees Far from 0 71 degrees L, /f —. - _ — —------ 0.77 2.918 --------- --- XX 1 ij^\/ 33569twf.doc/n &quot;&quot;——-- V Ρ — V Ν _____________ 28.15 ^Π _ 1 fsGl 1 / f_____ 3.769 fsG2〆ff) JW f3/f 0.921 __\U \ ii __ 0^5~^ f〇3 / f — 1.344 201128251 ” In the present embodiment, the first ι· in the first lens group ^ is a negative refracting power ′ so that the change of the second lens group 13 可 can be corrected. When the aberration is made and the lens 112 is the surface s surface toward the magnification side, the size of the first lens 112 can be reduced. In addition, if the surface S4 of the second shovel 114 toward the reduction side is a convex surface and the surface S6 of the third lens 132 facing the large side is also a convex surface, the size of the lens module can be reduced, and the size can be reduced. purpose. Further, the third lens group 14A has a positive refracting power, and the principal ray near the reduction side of the lens module 100 can be made nearly parallel to the optical axis A. Therefore, the lens module 1 has the advantages of less aberration of imaging and lower distortion. Furthermore, at least part of the lens of the lens module 1 can increase the quality by reducing the aberration by using an aspherical lens, and further reducing the number of lenses to further reduce the lens module 100. size of. In addition, the position of the third lens group 14A is fixed relative to the lens module 100, and can be focused by moving the first lens group u〇 and the second lens group 130 relative to the third lens group 140. FIG. 3 is another embodiment of the present invention. The structure of the lens module of an embodiment is shown in sound and diagram. Referring to FIG. 3, the lens module 300 of the present embodiment is similar to the lens $ group 1〇〇, but the most significant difference between the two is the 19 201128251 ^3569twf.d〇c/n group in the lens module 30〇 The third lens further includes a sixth lens 316 disposed between the second lens 314 and the aperture stop 320. In the present embodiment, the second lens and the sixth lens 316 are composed similarly to the aforementioned tool, and the group "speaks" has positive diopter in the second sub-lens group 314, and the sixth lens plus positive diopter, 2= The mirror 31 has a convex surface facing the reduction side, the concave surface faces the magnification side 1 = lens, and the # ship 316 is a lenticular lens. The convex mirror 312 in this embodiment has a concave surface facing the reduction side, and the convex surface faces the magnification side 3 concave lens. In the negative refracting power, the third lens 332 is a convex lens having a convex surface facing the 0 side, a concave surface facing the reduction side, and having a positive refractive power 2. The fourth lens 334 has a concave surface facing the reduction side and a convex surface facing the magnification side. a convex-concave lens having a negative refracting power, and the fifth lens 342 is a meniscus lens having a convex surface facing the reduction side 'concave surface toward the magnification side, and having a positive refracting power. /' Similarly, the lenticular lens in the lens module 300 312, the second lens 3 Η, the third lens 332, the fourth lens 334, the fifth lens 342, and the sixth riding 316 are at least - an aspherical design can be adopted, which can improve the overall imaging quality, and can also Reduce the scope of the mirror group 3 (10) In the present embodiment, the 'lens module 3' is a third lens 332 and the sixth lens 316 is an aspherical lens as an example, but is not limited thereto, and may be according to the needs of the user. And the design is slightly adjusted. But Yu Ming’s flaw, because the lens module 3〇〇 is similar to the lens module 1 (eight), the main difference is that the way of shunting the two sub-lens groups with positive diopter is different. Lai group 3(8)啰 has the advantages of mirror light group 1〇〇20 201128251 r 1 ιο^υ 33569twf.d〇c/n. In other words, if the mirror group 3GG meets the above conditions, its overall inch and its optical quality will be can

3,二了内备將舉出鏡頭模組300之-實施例。需注意的 V之表四中所列的數據資料並非用以限定本發明, :何所屬技術領域巾具有通f知識者在參照本發明之後, 虽可應用本發明之原麟其參數或設定作適當的更動,惟 其仍應屬於本發明之範疇内。 (表四) 表面 曲率半徑 (mm) 間距 (mm) 折射率 阿貝數 備註 S1 -7.56726 0.774597 1.69592 32.73821 第一透鏡 S2 ~~ .. I - -49.3447 1.068661 X S3 -8.85348 1.277076 1.804581 45.99062 第二透鏡 S4 -6.7022 0.05 \ S5 10.89912 1.5055 1.806073 40.70956 第六透鏡 S6 -25.2964 0 \ S7 無限大 0.01962 \ 孔徑光闌 S8 7.321552 1.415775 1.7746 44.57834 第三透鏡 S9 12.7861 0.739861 \ S10 76.02054 0.782778 1.84241 22.95441 第四透鏡 21 201128251 一…——3569twf,doc/n Sll 5.662418 9.795562 \ \ S12 10.6557 2.982835 1.67511 60.28958 第五透鏡 S13 60.51079 1.325 \ \ S14 無限大 0.65 1.508469 61.1878 玻璃蓋 S15 無限大 0.709 \ S16 無限大3, and the second embodiment will be described as an embodiment of the lens module 300. It should be noted that the data listed in Table 4 of V is not intended to limit the present invention, and the technical field of the invention has the knowledge that the parameters of the original invention can be applied after the reference to the present invention. Appropriate changes, but they still fall within the scope of the invention. (Table 4) Surface Curvature Radius (mm) Spacing (mm) Refractive Index Abbe Number Remarks S1 - 7.56726 0.774597 1.69592 32.73821 First Lens S2 ~~ .. I - -49.3447 1.068661 X S3 -8.85348 1.277076 1.804581 45.99062 Second Lens S4 -6.7022 0.05 \ S5 10.89912 1.5055 1.806073 40.70956 Sixth lens S6 -25.2964 0 \ S7 Infinite 0.01962 \ Aperture stop S8 7.321552 1.415775 1.7746 44.57834 Third lens S9 12.7861 0.739861 \ S10 76.02054 0.782778 1.84241 22.95441 Fourth lens 21 201128251 One...- —3569twf,doc/n Sll 5.662418 9.795562 \ \ S12 10.6557 2.982835 1.67511 60.28958 Fifth lens S13 60.51079 1.325 \ \ S14 Infinite 0.65 1.508469 61.1878 Glass cover S15 Infinite 0.709 \ S16 Infinite

在表六中’間距是指兩相鄰表面間於光軸A上之直線 距離’舉例來說’表面S3之間距,即表面S3至表面S4 間於光軸A上之直線距離。備註攔中各透鏡所對應之厚 度、折射率與阿貝數請參照同列中各間距、折射率與阿貝 數對應之數值。此外,在表一中,表面S1、S2為第一透 鏡312的兩表面,表面S3、S4為第二透鏡314之兩表面, 表面85、86為第六透鏡316之兩表面,表面57為孔徑光 闌350’表面S8、S9為第三透鏡332之兩表面,表面S10、 S11為第四透鏡334的兩表面,且表面S12、SB為第五透In Table 6, 'pitch is the linear distance between two adjacent surfaces on the optical axis A', for example, the distance between the surfaces S3, that is, the linear distance between the surface S3 and the surface S4 on the optical axis A. For the thickness, refractive index and Abbe number of each lens in the remarks, refer to the values in the same column, the refractive index and the Abbe number. Further, in Table 1, the surfaces S1, S2 are the two surfaces of the first lens 312, the surfaces S3, S4 are the two surfaces of the second lens 314, the surfaces 85, 86 are the two surfaces of the sixth lens 316, and the surface 57 is the aperture The surface of the aperture 350' S8, S9 is the two surfaces of the third lens 332, the surfaces S10, S11 are the two surfaces of the fourth lens 334, and the surfaces S12, SB are the fifth surface

,342的兩表面。表面Sl4、S15為一用於光閥6〇之玻螭 蓋(cover glass) 70的兩表面。 在鏡頭模組300中,由於第三透鏡332與第六透鏡316 疋採用非球面設計作為舉例,因此表面S5、S6、S8、沾 為非球面’而非球面的公式如下: 10 C2h12+C2hM+C,h16 22 201128251 r 11 〇ju 33569twf.doc/n 其中’ Z為光軸L方向·之偏移量。r是密切球面 (osculating sphere)的半徑,也就是接近光轴處的曲率半徑 (如表格内S卜S2、S8、S9的曲率半徑)。k為圓錐常數(c〇nic constant)。h是非球面上距光軸的垂直高度,即為從透鏡中 心往透鏡邊緣的高度,從公式中可得知,不同的h會對應 出不同的z值。ο〜C16為非球面係數(aspheric coefficient)。表面S5、S6、S8、S9的非球面係數及k值如 表五所示: 〈表五〉, the two surfaces of the 342. The surfaces S14, S15 are the two surfaces of a cover glass 70 for the light valve 6''. In the lens module 300, since the third lens 332 and the sixth lens 316 疋 are aspherical design as an example, the surfaces S5, S6, and S8, which are aspherical rather than spherical, are as follows: 10 C2h12+C2hM+ C, h16 22 201128251 r 11 〇ju 33569twf.doc/n where 'Z is the offset of the optical axis L direction. r is the radius of the osculating sphere, that is, the radius of curvature near the optical axis (such as the radius of curvature of S, S2, S8, and S9 in the table). k is a conic constant (c〇nic constant). h is the vertical height from the optical axis on the aspherical surface, which is the height from the center of the lens to the edge of the lens. It can be known from the formula that different h will correspond to different z values. ο~C16 is an aspheric coefficient. The aspherical coefficients and k values of the surfaces S5, S6, S8, and S9 are as shown in Table 5: <Table 5>

SI S2 S8 S9 K -19.3573 -69.443 —4.77467 ---~ -96.2801 C2 0 0 0 --- 0 C4 1.5405E-03 2.233 IE-03 3.6161E-03 3.7748E-03 C6 -1.3100E-05 -1.1417E-04 -5.7640E-06 —» 一 -6.0345E-04 C8 4.6944E-06 ~ ...— -8.3352E-08 -2.8501E-05 1.3846E-04 Cio -4.371 IE-07 7.0387E-07 4.6477E-06 —1 -2.2658E-05 Ci2 -3.5285E-09 - ------— -4.9956E-08 -3.3397E-07 2.5427E-06 Ci4 2-5518E-09 9.8620E-10 1.5224E-08 -1.5636E-07 Ci6 -1.0934E-10 -1.5635E-11 -4 1 c\ 灵々k,Λ· * k 丄·、- . — ^*〇U JZJti-1U 另外在表六中分別列出鏡頭模組300的一些模擬參 數值’包括有效焦距(EFL)、視場角、遠心角,以及鏡頭模 組300滿足前述條件—至條件六的模擬數值。 、 201128251, X 1 X 0-&gt;V ~3 3569twf.doc/n _有效焦距__ _視場角 _遠心角 _Wf__ (I Ri 1 +R2)/( 1 Ri 1 -R2)SI S2 S8 S9 K -19.3573 -69.443 —4.77467 ---~ -96.2801 C2 0 0 0 --- 0 C4 1.5405E-03 2.233 IE-03 3.6161E-03 3.7748E-03 C6 -1.3100E-05 -1.1417 E-04 -5.7640E-06 —» 一-6.0345E-04 C8 4.6944E-06 ~ ...— -8.3352E-08 -2.8501E-05 1.3846E-04 Cio -4.371 IE-07 7.0387E-07 4.6477E-06 —1 —2.2658E-05 Ci2 -3.5285E-09 - ------—— -4.9956E-08 -3.3397E-07 2.5427E-06 Ci4 2-5518E-09 9.8620E-10 1.5224 E-08 -1.5636E-07 Ci6 -1.0934E-10 -1.5635E-11 -4 1 c\ 灵々k,Λ· * k 丄·, - . — ^*〇U JZJti-1U Also in Table 6 Some of the analog parameter values of the lens module 300 are listed as including the effective focal length (EFL), the field of view, the telecentric angle, and the analog values of the lens module 300 satisfying the aforementioned conditions - to condition 6. , 201128251, X 1 X 0-&gt;V ~3 3569twf.doc/n _effective focal length __ _field angle _ telecentric angle _Wf__ (I Ri 1 +R2)/( 1 Ri 1 -R2)

VV

V fsGi 1 ! f LSG2 y f f3/ff41 /f fG3/fV fsGi 1 ! f LSG2 y f f3/ff41 /f fG3/f

--—----__l.JZJ '宗上所述,本發明之實施例可^ 一。由於鏡頭模組至少部分的透鏡是使用非球面透鏡(ς .此除了可呈現較佳的成像品質(如修正像差)外,亦 少透鏡的制上的數量而具有較小的尺寸。其次 禮 組的架構可達到有效消除像差、色差、畸變、 _ 成像品料上述至少其中之-的功效。錢轉且 中最靠近放大側的第-子透鏡群為負屈光度,則的表面為一凹面,可增加二二具有較佳 鏡群相對第三透鏡群⑽十由弟一透鏡群與第二透 頭模組縮小側附近‘ m圭並_第三透鏡群使鏡 内)。因此,本發線與光軸接近平行(約在3度 貫%例提供的鏡頭模組,其兼具尺寸 24 201128251^ r x joji/ 33569twf.doc/n 較小與較佳的光學特性。 惟以上所述者,僅為本發明之較佳實施例而已,當不能 以此限定本發明實施之範圍’即大凡依本發明申請專利範圍及 發明說明内容所作之簡單的等效變化與修飾,皆仍屬本發明專 利涵蓋之範圍内。另外本發明的任一實施例或申請專利範 圍不須達成本發明所揭露之全部目的或優點或特點。此 外,摘要部分和標題僅是用來輔助專利文件搜尋之用,並 .非用來限制本發明之權利範圍。 【圖式簡單說明】 圖1為本發明之一實施例之鏡頭模組的結構示意圖。 圖2A至圖2D為圖1之鏡頭模組1〇〇的成像光學模 擬數據圖。 圖3為本發明之另—實施例之鏡頭模組的結構示意 圖。 【主要元件符號說明】 60 :影像處理元件 70:玻璃蓋 100、300 :鏡頭模組 110、310 :第一透鏡群 120、320 :孔徑先闌 130 ' 330 :第二透鏡君_ 140、340 :第三透鏡群 25 ^3569twf.doc/n 201128251 110a、310a :第一子透鏡群 110b、310b :第二子透鏡群 112 :第一透鏡 114 :第二透鏡 132 :第三透鏡 134 :第四透鏡 142 :第五透鏡 316 :第六透鏡 A :光轴 L :總長 L〗.距離 S1〜S16 :表面 26-------__l.JZJ As described above, the embodiment of the present invention can be used. Since at least part of the lens of the lens module uses an aspherical lens (in addition to the better imaging quality (such as correction aberration), the number of lenses is also small and has a smaller size. The structure of the group can effectively eliminate the effects of aberration, chromatic aberration, distortion, and at least one of the above-mentioned imaging materials. The first sub-lens group closest to the magnification side is negative diopter, and the surface is a concave surface. It is possible to add two or two with a better mirror group relative to the third lens group (10) ten from the lens group and the second head module to reduce the vicinity of the side of the 'm Gui and _ third lens group to make the mirror). Therefore, the hairline is nearly parallel to the optical axis (approximately 3 degrees of the lens module provided in the example, which has a size of 24 201128251^rx joji/ 33569twf.doc/n smaller and better optical characteristics. The present invention is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention are still It is intended to cover all of the objects or advantages or features of the present invention. The abstract and the title are only used to assist in the search of patent documents. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic structural view of a lens module according to an embodiment of the present invention. FIG. 2A to FIG. 2D are lens modules of FIG. FIG. 3 is a schematic structural view of a lens module according to another embodiment of the present invention. [Description of Main Components] 60: Image Processing Element 70: Glass Cover 100, 300 : lens module 110, 310: first lens group 120, 320: aperture 阑 130 '330: second lens 君 140, 340: third lens group 25 ^ 3569 twf. doc / n 201128251 110a, 310a: first Sub-lens group 110b, 310b: second sub-lens group 112: first lens 114: second lens 132: third lens 134: fourth lens 142: fifth lens 316: sixth lens A: optical axis L: total length L 〗. Distance S1~S16: Surface 26

Claims (1)

201128251 mo^u 33569twf.doc/n 七、申請專利範圍: 1. 一種鏡頭模組,包括·· 有jdr配置於—放大側與-縮小側之間,且 if 括從該放大側往該縮小側依序排列之二 -子、秀镑群八龍t鏡雜―子透鏡群與該第 -子透鏡群刀別具有負屈光度與正屈 透鏡群具有一第一透鏡,且八 子201128251 mo^u 33569twf.doc/n VII. Patent application scope: 1. A lens module, including: jdr is disposed between the magnification side and the reduction side, and if from the magnification side to the reduction side The second-sub, the syllabary group, the eight-dot-mirror-sub-lens group and the first-sub-lens group have a negative diopter and the positive refractive lens group has a first lens, and eight sons 弟一t面為—凹面’該第二子透鏡群具有-第二透鏡. m鏡群’配置於鄕—透辆_縮小側之 狀-苐三透鏡及—第四透鏡,該第三透鏡與= 分別具有正屈光度與負屈光度,其中該第二透鏡群中^ 近該縮小側的一表面為一第二表面; 奍 一第三透鏡群,配置於該第二透鏡群與該縮 君^ΐί正屈光度’且包括一第五透鏡’其中該第三透鏡 群中取罪近該放大側的一表面為一第三表面;以及 一孔徑光闌,配置於該第二子透鏡群與該第二 之間, 、祝砰 &lt; 其中該鏡頭模組的有效焦距為f’該第二表面的中 至該第三表面的中心的距離為Li ’該鏡頭模组符人 Wfcu。 σ 2. 如申請專利範圍第1項所述之鏡頭模組,其 第二表面為一凹面 °亥 3. 如申請專利範圍第1項所述之鏡頭模組,其中士亥 201128251, 1 X *. _/ 3569twf.doc/n St::第:透鏡、該第三透鏡、該第四透鏡及該第 五透鏡至^其一為一非球面透鏡。 斤^ *申請專利範圍第i項所述之鏡頭模組,盆中古亥 弟=透鏡之朝向該放大側的—表面之曲率半#為心, 四透鏡之朝向賴小_—表狀⑽半徑,且該梦 頭板組符合0.7&lt;(|Ri hR2)/(|Ri卜尺2)&lt;4〇 乂兄The second sub-lens group has a second lens. The m-mirror group is disposed on the 鄕-transmission-reduction side-the third lens and the fourth lens, and the third lens Having a positive refracting power and a negative refracting power, respectively, wherein a surface of the second lens group adjacent to the reduced side is a second surface; and a third lens group is disposed on the second lens group and the shrinking lens Positive diopter 'and includes a fifth lens ′, wherein a surface of the third lens group that is close to the magnification side is a third surface; and an aperture stop disposed at the second sub-lens group and the second Between the two, wherein the effective focal length of the lens module is f' the distance from the center of the second surface to the center of the third surface is Li 'the lens module is Wfcu. σ 2. The lens module according to claim 1, wherein the second surface is a concave surface. The lens module according to claim 1, wherein Shihe 201128251, 1 X * _/ 3569twf.doc/n St:: the lens, the third lens, the fourth lens and the fifth lens are each an aspherical lens.斤^ * Apply for the lens module described in item i of the patent scope, in the basin of Gu Haidi = the curvature of the lens facing the magnifying side - the curvature of the surface is half, the orientation of the four lenses is small _ - the surface (10) radius, And the head group meets 0.7&lt;(|Ri hR2)/(|Ri 尺2)&lt;4〇乂 5·如申請專利範圍第丨項所述之鏡頭模組,其中該 弟二透鏡的阿貝數為〜,該第四透鏡的阿貝數為 ^ 該鏡頭模組符合20 &lt; ^—^&lt;30。 ^ 6·如申請專利範圍第1項所述之鏡頭模組,其中該 第-子透鏡群的有效f、距為fsGi,該第二子透鏡群的有^ 焦距為fSG2,且該鏡頭模組符合〇 5 &lt; | fsGi | / f&lt; 4丨及 0.3 &lt; fSG2/ f&lt; 0.95。 卜7,如申請專利範圍第1項所述之鏡頭模組,其中該 第一透鏡的有效焦距為f3,該第四透鏡的有效焦距為f4, 且該鏡頭模組符合0.5〈 f3 / f〈 2及0.35〈丨f4丨/ f &lt; 0.9。5. The lens module of claim 2, wherein the Abbe number of the second lens is ~, and the Abbe number of the fourth lens is ^ the lens module conforms to 20 &lt;^-^&lt;;30. The lens module of claim 1, wherein the effective sub-lens group has an effective f and a distance of fsGi, and the second sub-lens group has a focal length of fSG2, and the lens module Compliant with 〇5 &lt; | fsGi | / f&lt; 4丨 and 0.3 &lt; fSG2/ f&lt; 0.95. The lens module of claim 1, wherein the first lens has an effective focal length of f3, the fourth lens has an effective focal length of f4, and the lens module conforms to 0.5<f3 / f< 2 and 0.35 <丨f4丨/ f &lt; 0.9. 8_如申請專利範圍第1項所述之鏡頭模組,其中該 第二透鏡群的有效焦距為圮3,且該鏡頭模組符合〇.8&lt;fc3 /f&lt;2。 9·如申請專利範圍第1項所述之鏡頭模組,其中該 第一透鏡具有負屈光度,且該第二透鏡具有正屈光度。 10.如申請專利範圍第丨項所述之鏡頭模組,其中該 第一透鏡群中最靠近該放大側的〆表面為一凹面,該第二 28 201128251 33569twf.doc/n 透鏡群中最靠近該放大側的一表面為一凸面。 11. 如申請專利範圍第1項所述之鏡頭模組,其中該 第五透鏡具有正屈光度。 12. 如申請專利範圍第11項所述之鏡頭模組,其中該 第五透鏡朝向該放大側的一表面為一凸面。 13. 如申請專利範圍第1項所述之鏡頭模組,其中該 第二子透鏡群更具有一第六透鏡,配置於該第二透鏡與該 孔徑光闌之間。 ® 14·如申請專利範圍第13項所述之鏡頭模組,其中該 第一透鏡具有負屈光度,該第二透鏡具有正屈光度,且該 第六透鏡具有正屈光度。 15.如申請專利範圍第14項所述之鏡頭模組,其中該 弟/、透鏡朝向該放大側的一表面為一凸面。 16·如申請專利範圍第1項所述之鏡頭模組,其中該 第二透鏡朝向該放大側的一表面為一凸面,該第四透鏡朝 向該縮小側的一表面為一凹面。 # I7.如申請專利範圍第13項所述之鏡頭模組,其中該 第透鏡該第一透鏡、該第三透鏡、該第四透鏡、該第 五透鏡及該第六透鏡至少其一為一非球面透鏡。 18.如申請專利範圍第丨項所述之鏡頭模組,其中該 第-透鏡群與該第二透鏡群為一對焦群,該第三透鏡群^ 一~ [5]定雜D 298) The lens module of claim 1, wherein the second lens group has an effective focal length of 圮3, and the lens module conforms to 8.8&lt;fc3/f&lt;2. 9. The lens module of claim 1, wherein the first lens has a negative refracting power and the second lens has a positive refracting power. 10. The lens module of claim 2, wherein a surface of the first lens group closest to the magnification side is a concave surface, and the second 28 201128251 33569 twf.doc/n lens group is closest A surface of the magnification side is a convex surface. 11. The lens module of claim 1, wherein the fifth lens has a positive refracting power. 12. The lens module of claim 11, wherein a surface of the fifth lens facing the enlarged side is a convex surface. 13. The lens module of claim 1, wherein the second sub-lens group further has a sixth lens disposed between the second lens and the aperture stop. The lens module of claim 13, wherein the first lens has a negative refracting power, the second lens has a positive refracting power, and the sixth lens has a positive refracting power. 15. The lens module of claim 14, wherein the surface of the lens/the lens facing the magnification side is a convex surface. The lens module of claim 1, wherein a surface of the second lens facing the enlarged side is a convex surface, and a surface of the fourth lens facing the reduced side is a concave surface. The lens module of claim 13, wherein the first lens, the third lens, the fourth lens, the fifth lens, and the sixth lens are at least one Aspherical lens. 18. The lens module of claim 2, wherein the first lens group and the second lens group are a focus group, and the third lens group is [5] fixed D 29
TW99103357A 2010-02-04 2010-02-04 Lens module TWI422895B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99103357A TWI422895B (en) 2010-02-04 2010-02-04 Lens module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99103357A TWI422895B (en) 2010-02-04 2010-02-04 Lens module

Publications (2)

Publication Number Publication Date
TW201128251A true TW201128251A (en) 2011-08-16
TWI422895B TWI422895B (en) 2014-01-11

Family

ID=45025124

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99103357A TWI422895B (en) 2010-02-04 2010-02-04 Lens module

Country Status (1)

Country Link
TW (1) TWI422895B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI506331B (en) * 2010-07-26 2015-11-01 Panavision Int Lp High-speed zoom lens
CN113294742A (en) * 2020-02-21 2021-08-24 扬明光学股份有限公司 Vehicle lamp device, projection lens and manufacturing method thereof
CN113721353A (en) * 2021-08-11 2021-11-30 苏州中科行智智能科技有限公司 Image space telecentric objective lens with large numerical aperture and flying spot scanning interferometer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI273303B (en) * 2005-08-10 2007-02-11 Asia Optical Co Inc Zoom lens
TW200909849A (en) * 2007-08-31 2009-03-01 E Pin Optical Industry Co Ltd Three Groups Compact Zoom Lens and design method thereof
TWM326635U (en) * 2007-08-31 2008-02-01 E Pin Optical Industry Co Ltd Three groups compact zoom lens

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI506331B (en) * 2010-07-26 2015-11-01 Panavision Int Lp High-speed zoom lens
CN113294742A (en) * 2020-02-21 2021-08-24 扬明光学股份有限公司 Vehicle lamp device, projection lens and manufacturing method thereof
CN113294742B (en) * 2020-02-21 2024-01-23 扬明光学股份有限公司 Car light device, projection lens and manufacturing method thereof
CN113721353A (en) * 2021-08-11 2021-11-30 苏州中科行智智能科技有限公司 Image space telecentric objective lens with large numerical aperture and flying spot scanning interferometer

Also Published As

Publication number Publication date
TWI422895B (en) 2014-01-11

Similar Documents

Publication Publication Date Title
TWI781947B (en) Optical lens
TWI439722B (en) Fixed-focus lens
TW201106040A (en) Imaging lens system
TWI658288B (en) Optical lens
TW201215942A (en) Optical lens system
TW201723560A (en) Optical lens set
TWI408435B (en) Projection lens
TWI403755B (en) Fixed-focus lens
TW201133024A (en) Photographing optical lens assembly
TW201113553A (en) Fixed-focus lens
JP2004326079A (en) Projection lens and projection type picture display device
TW201037352A (en) Fixed-focus lens
TWI442085B (en) Projection lens and projection apparatus
TW201128251A (en) Lens module
TWI407143B (en) Fixed-focus lens
TW201135278A (en) Zoom lens
TWI418873B (en) Wide-angle lens
CN109491060B (en) Ultrashort-focus objective lens for desktop projection
TWI454728B (en) Projection lens
US8144401B2 (en) Zoom lens
US7911716B1 (en) Lens module
CN117666095B (en) Large-view-field short-focus ultra-short-distance ultra-high definition imaging system and lens
JP6043189B2 (en) Projection lens and projector device
TWI831882B (en) Zoom projection lens
CN111856848B (en) Micro-projection lens for 0.23-inch chip