TW201126849A - Single-longitudinal-mode linear cavity fiber laser apparatus - Google Patents

Single-longitudinal-mode linear cavity fiber laser apparatus Download PDF

Info

Publication number
TW201126849A
TW201126849A TW99101884A TW99101884A TW201126849A TW 201126849 A TW201126849 A TW 201126849A TW 99101884 A TW99101884 A TW 99101884A TW 99101884 A TW99101884 A TW 99101884A TW 201126849 A TW201126849 A TW 201126849A
Authority
TW
Taiwan
Prior art keywords
fiber
laser
cavity
longitudinal mode
single longitudinal
Prior art date
Application number
TW99101884A
Other languages
Chinese (zh)
Other versions
TWI398059B (en
Inventor
Shien-Kuei Liaw
Shiang Wang
Original Assignee
Shien-Kuei Liaw
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shien-Kuei Liaw filed Critical Shien-Kuei Liaw
Priority to TW99101884A priority Critical patent/TWI398059B/en
Priority to US13/012,768 priority patent/US20120033688A1/en
Publication of TW201126849A publication Critical patent/TW201126849A/en
Application granted granted Critical
Publication of TWI398059B publication Critical patent/TWI398059B/en

Links

Landscapes

  • Lasers (AREA)

Abstract

The present invention provides a single-longitudinal-mode linear cavity fiber laser apparatus. The fiber laser apparatus includes a piece of erbium doped fiber, and a wavelength multiplexer connected to the erbium doped fiber. A pump source is coupled via the wavelength multiplexer. At least one multiple ring cavity component, an absorb component or mixture of the above two components are inserted into the cavity for facilitating suppressing laser side modes to create a single-longitudinal-mode fiber laser. A partial reflectance fiber Bragg grating (FBG) is used as the front cavity end for this fiber laser.

Description

201126849 六、發明說明: 【發明所屬之技術領域】 特別係有關於一種單 本發明關於一種光纖雷射裳置 縱模線性共振腔光纖雷射裝置。 【先前技術】 隨著光纖通訊的需求曰益增加,光纖元 重視,而光纖元件中最重要的即為雷射光源。201126849 VI. Description of the Invention: [Technical Field to Which the Invention Is Applicable] In particular, a single invention relates to a fiber-optic laser-jet longitudinal mode linear cavity laser device. [Prior Art] As the demand for optical fiber communication increases, the fiber element pays attention, and the most important one among the fiber components is the laser light source.

雷射最基本的三個組成,為-個共振腔(⑽ 編空二提供一個增益介質(-…—與果激光^ LD),光纖雷射是以摻鲜光纖放大器做為基礎,使 ^參斜光纖做為增益介質,並搭配光纖光栅與光反射元件 來構成共振腔,因此_光纖雷射架構簡單,且全光纖 fiber)型結構是其優點’可與光纖相容性高,相對於半導體 雷射:言較能夠適應惡劣的工作環境,例如:高溫、高振 動、高衝擊和戶外環境。 -般而言’在使用光頻譜分析儀分析時,受限於解析 度(resolution)的影響,在測量輸出雷射的線寬時,往往會 k成數據上的誤差,而造成量測上的不正確性。一種電頻 譜分析儀(electronic spectrum analyzer,ESA)可用來分析輸 出訊號,其係將雷射光轉換為電頻譜來分析,不僅得以提 升數據的正確性,在優化線性型光纖雷射裝置上,可以清 邊的觀/則efl號疋否為單頻(singie frequenCy)雷射光源。 舉例而5,儀器型號為Agilent 71200C的電頻譜分析 儀其係採用延遲自同差(delayed self-homodyne, DSH)的 201126849 方式來分析線寬’它的頻率範圍可達22GHz,因此可做非 常精密的分析量測,並且其優點在於操作簡易、可以量測 極小的雷射線寬’且無需額外的雷射光源當作參考頻率, 對於線寬極窄的光纖雷射來說是相當適合的分析技術。 旦與波長的關係式中計算出在光頻譜分析儀所 光纖雷射線寬約5GHz左右。將相同的光纖雷 裟置輸出至電頻譜儀上觀測’其雷射頻譜範圍大約只有 1GHz左右’因此必須由電頻譜分析儀來做更深入的分析。 有關光纖雷射的研究相當的多,這些研究無非是要改 良以往架構的缺點。在早期的研究裡,光纖元件並不像現 在的精密,造成光纖雷射輸出的特性不佳 產業的蓬勃發展,光纖元件的特性已大幅的改良, 上也隨著兀件的特性而改變,使得雷射的輸出特性也相對 =提升。傳統的_雷射架構包括雙光纖光栅式 射、光循環器式光纖雷射與寬頻鏡面式光纖雷射。 其中雙光纖光柵式光纖雷射在共振腔端面是以光纖光 柵來作為反射端面,光纖光栅會將符合布拉格條件的波長 =至共振腔令’因此在架構上使用兩個光纖光栅作為反、 射鈿面,必須將雙光纖光栅的反射波長相互對準, : = :出結果’十分的困難。再者,兩個光 柵的反射波長為固定波長’若要改變輸出雷射的令心波 長’就必㈣時改變兩個m拇的反射波長才能達到波 長可調的雷射輸出,也降低了架構的使用性。 / 光循環器式光纖雷射受限於光循環器的工作波段,一 m 4 201126849 般市售的光循環器普遍多在C + L頻帶(band),對於光纖 雷射的工作波段已足夠,但是對於泵激光源卻無法有效的 導回共振腔之中再度利用,後向泵激光纖雷射架構尤其明 顯,如此便會造成功率的損耗。寬頻鏡面式光纖雷射架構 中,寬頻譜反射鏡的售價較高,因此增加了架構組成上的 費用。 此外,摻铒光纖雷射的架構可分為線性型與環型兩種 条構,其中線性型摻辑光纖雷射結構簡單,且共振腔長度 較短,在自由頻譜範圍方面較環型摻铒光纖雷射架構優 越,環型摻铒光纖雷射所使用的元件較多,成本相對提高, 共振腔長度較長也會造成功率擾動的現象。 在光纖通訊中,最重要的元件之一即為雷射光源,而 單縱模光纖雷射(single-l〇ngitudinal_m〇de fiber laser)意指 2出雷射僅有單一頻率的模態,它具有窄的雷射線寬、模 態影響性小、雜訊低和輸出雷射穩定之優點,對於需要高 速度與長距離傳輸的光纖通訊(fiber_〇ptic communication)、有線電視(c〇mmunity 八仙刪 TeieWsi〇n, CATV)系統、光纖感測(fiber sens〇r)方面或是高解析度 的光譜量測等都有很好的應用。目前產生單縱模光纖雷射 有許多不同的技術,已知的方法有下列幾種:(1)短共振 腔法:當一個雷射共振腔非常短時,會使得雷射模態間的 頻率間距變覓,當頻率間距大於輸出雷射的增益頻寬時, 就能使共振腔中只有單一縱模在腔内振盪;(2).環型共振 腔法:在線性型光纖雷射的共振腔中,光波會以駐波的形 201126849 式在共振腔中傳遞,造成模態的不穩定。若是將共振腔設 计成環形結構,能使光波用行進波的方式讓光以單一方向 ,遞,,咸少模態間的影響,使雷射以單縱模的形式輸 ’目刖-般多是以此方式作為基礎架構;(3)標準具法: 在雷射共振腔中,加入一個合適的光學標準具__,例 如Fabry-P0rot干涉儀,能夠抑制雷射旁模的產生,只允 雷射縱模通過標準具在腔内振盪;⑷.遽波片 > 射共振腔中加人濾、波片,旋轉其角度,使得雷射 -二立Γ遲射輸出的模態頻率間距大於增益頻 見,便此讓雷射以單縱模的形式輸出。 然而’目前單縱模光纖雷射的研製以 二甚少探討線性型光纖雷射’因此本發明提二^ ==:::纖r裝置,其為習知技術所未提及 射。比擬者,並且可以有效地形成單縱模光纖雷 【發明内容】 雷射=克服習知技術問題,本發明提供一種單縱模光纖 "以達到單縱模線性共振腔光纖雷射之目的。 纖雷射π之:=提供一種光循環器共振腔式單縱模光 振腔元件,以達至,jr縱模光纖雷射裝置係利用多重環形共 達到早縱模光纖雷射之目的。 本"發"明之_ g _ g ^ 雷射贫署,^. w的係提供一種寬頻鏡面式單縱模光纖 腔元二以達: = 雷射裝置係利用多重環形共振 % j早縱槟光纖雷射之效果。 201126849 種吸收體型單縱模光纖雷 置係利用吸收體元件,以 本發明之再一目的係提供一 射裝置,所述單縱模光纖雷射裝 達到單縱模光纖雷射之效果。 本發日狀又-目㈣提供―種混 裝置,所述單縱模光㈣㈣$心丨平觀m射 重環形共振腔元件,: = ==吸收體元件配合多 乂違到早縱杈光纖雷射之效果。 2月所揭路之—種單縱模線性共振腔光纖雷射裝The most basic three components of the laser are a resonant cavity ((10) weaving two provides a gain medium (-...-fruit laser ^ LD), the fiber laser is based on the doped fiber amplifier, so that The oblique fiber is used as the gain medium, and the fiber grating and the light reflecting element are used to form the resonant cavity. Therefore, the _ fiber laser structure is simple, and the all-fiber fiber type structure is advantageous in that it can be compatible with the optical fiber, compared with the semiconductor. Laser: Words can adapt to harsh working conditions, such as: high temperature, high vibration, high impact and outdoor environment. - Generally speaking, when using optical spectrum analyzer analysis, it is limited by the influence of resolution. When measuring the line width of the output laser, it will often become a data error, resulting in measurement. Incorrectness. An electronic spectrum analyzer (ESA) can be used to analyze the output signal, which converts the laser light into an electrical spectrum for analysis, which not only improves the accuracy of the data, but also improves the linear fiber laser device. Side view / then efl number is a single frequency (singie frequenCy) laser source. For example, the instrument model is the Agilent 71200C's electrical spectrum analyzer. It uses the delayed self-homodyne (DSH) 201126849 method to analyze the line width. Its frequency range is up to 22GHz, so it can be very precise. Analytical measurement, and its advantages are easy to operate, can measure very small lightning ray width ' and no additional laser light source as a reference frequency, is a suitable analytical technique for fiber lasers with extremely narrow line width . The relationship between the wavelength and the wavelength is calculated to be about 5 GHz wide in the optical spectrum of the optical spectrum analyzer. The same fiber thunderbolt is output to the electrical spectrum analyzer to observe 'the laser spectrum range is only about 1 GHz', so a more in-depth analysis must be performed by an electrical spectrum analyzer. Research on fiber lasers is quite extensive, and these studies are nothing more than improving the shortcomings of previous architectures. In the early research, the fiber optic components were not as sophisticated as the current ones, which led to the booming of the poor performance of the fiber laser output. The characteristics of the fiber optic components have been greatly improved, and the characteristics of the components have changed with the characteristics of the components. The output characteristics of the laser are also relatively = increased. Traditional _laser architectures include dual fiber gratings, optical circulator fiber lasers, and broadband mirror fiber lasers. The double fiber grating type fiber laser is used as the reflection end face of the fiber cavity grating at the end face of the cavity, and the fiber grating will match the wavelength of the Bragg condition to the cavity. Therefore, two fiber gratings are used as the inverse and the emitter in the architecture. Face, the reflection wavelengths of the double fiber grating must be aligned with each other, : = : The result is very difficult. Furthermore, the reflection wavelengths of the two gratings are fixed wavelengths. 'If you want to change the center wavelength of the output laser', you must change the reflection wavelength of the two m's thumb to achieve the wavelength-adjustable laser output, which also reduces the architecture. Usability. / Optical circulator fiber laser is limited by the working band of the optical circulator. A commercially available optical circulator of the type of m 4 201126849 is generally in the C + L band, which is sufficient for the working band of the fiber laser. However, the pump laser source cannot be effectively used back into the resonant cavity, and the backward pumped fiber laser structure is particularly obvious, thus causing power loss. In the wide-band specular fiber laser architecture, the wide spectrum mirrors are more expensive, thus increasing the cost of the architectural components. In addition, the structure of the erbium-doped fiber laser can be divided into two types: linear type and ring type. The linear type of blended fiber has a simple laser structure and a short resonant cavity length, and the ring type is erbium in the free spectral range. The fiber laser structure is superior, and the ring type erbium-doped fiber laser uses many components, the cost is relatively increased, and the long cavity length also causes power disturbance. In fiber-optic communication, one of the most important components is the laser source, and single-l〇ngitudinal_m〇de fiber laser means that the two-outlet laser has only a single frequency mode. It has the advantages of narrow lightning ray width, small modal influence, low noise and stable output laser. For fiber optic communication (fiber_〇ptic communication) and cable TV (c〇mmunity Deleting TeieWsi〇n, CATV) systems, fiber sens〇r or high-resolution spectral measurements have been well applied. There are many different techniques for generating single longitudinal mode fiber lasers. The known methods are as follows: (1) Short cavity method: When a laser cavity is very short, the frequency between laser modes is made. When the pitch is changed, when the frequency spacing is larger than the gain bandwidth of the output laser, only a single longitudinal mode in the cavity can oscillate in the cavity; (2) Ring-shaped cavity method: resonance of the linear fiber laser In the cavity, the light wave is transmitted in the resonant cavity in the form of standing wave shape 201126849, causing modal instability. If the resonant cavity is designed as a ring structure, the light wave can be transmitted in a single direction by the way of traveling waves, and the laser can be transmitted in the form of a single longitudinal mode. Mostly in this way as the infrastructure; (3) etalon method: In the laser cavity, add a suitable optical etalon __, such as Fabry-P0rot interferometer, can suppress the generation of laser side mode, only The allowable laser longitudinal mode oscillates in the cavity through the etalon; (4). The 遽 wave plate> The filter cavity is added with a filter, a wave plate, and the angle is rotated, so that the modal frequency spacing of the laser-two vertical delay output is made. More than the gain frequency, the laser is output in the form of a single longitudinal mode. However, the current development of single longitudinal mode fiber lasers has rarely discussed linear fiber lasers. Therefore, the present invention provides a device that is not mentioned in the prior art. Comparable, and can effectively form a single longitudinal mode fiber Ray [Exposure] Laser = overcome the conventional technical problems, the present invention provides a single longitudinal mode fiber " to achieve a single longitudinal mode linear cavity optical fiber laser. Fiber laser π: = provides a light circulator cavity single longitudinal mode diaphragm component, to achieve, jr longitudinal mode fiber laser device uses multiple rings to achieve the purpose of early longitudinal mode fiber laser. This "发" 明之_g _ g ^ Laser Department, ^. w provides a wide-band mirror type single longitudinal mode fiber cavity two to reach: = laser device uses multiple ring resonance % j early vertical The effect of Penang fiber laser. The 201126849 type of absorbent single-longitudinal mode fiber optic ray utilizes an absorber element, and in yet another object of the present invention is a radiation device that achieves the effect of a single longitudinal mode fiber laser. The present invention also provides a "mixing device" for the single longitudinal mode light (four) (four) $ 丨 丨 m m 射 环形 环形 环形 环形 , , , , , , , , , = = = = = = = = = = = = = = = = = = The effect of the laser. In February, the road is a single longitudinal mode linear cavity laser

:件广-段光纖元件;一分波多工器,連接一段光纖 源:輕合分波多工器;至少-多重環形共 二。凡…馬合分波多工器’以利於抑制雷射旁模,而產 邱t縱模光纖雷射;以及—光纖光栅元件當作共振腔端面 部分反射鏡。 根據本發明另一觀點,揭露一種單縱模線性共振腔光 纖雷射裳置,包括:一辟杏總分杜. ^ 從 奴光纖兀件,—分波多工器,連接 一段光纖元件;-泵激光源,搞合該分波多工器;一吸收 ?兀件,耦合分波多工器’以利於抑制雷射旁模,而產生 早縱模光纖雷射;以及—光纖光柵元件#作共振腔端面部 分反射鏡。 根據本發明又一觀點,揭露一種單縱模線性共振腔光 纖:射裝置’包括:一段光纖元件;—分波多工器,連接 一段光纖元件;一泵激光源,耦合分波多工器;一吸收體 疋件與一多重環形共振腔元件,其中吸收體元件耦合分波 工器以利於抑制雷射旁模,而產生單縱模光纖雷射; 以及一光纖光柵元件當作共振腔端面部分反射鏡。 201126849 其中多重環形共振腔元件包括—第_絲合器、一第 :先搞合器與一光猶環器,其中第,合器、第二光搞 5器與光循環器依序配置於—環形共振腔中以形成二道以 上不同長度光路徑。 ^本發明之單縱模線性共振腔光纖雷射裝置更包含一光 firm頻光纖鏡面’當作後端鏡面麵合光纖元件。 【實施方式】 本發明主要係針對線性型光纖雷射的共振腔之中加入 先學ΐϋ ’利用元件的特性來作模態抑制,設計一套低成 本、^單與高穩定度的線性共振腔單縱模光纖雷射架構。 ▲。月參照第-圖’其顯不光循環器式光纖雷射裝置之示 二圖在第圖中,光循環器式光纖雷射裝置1 〇〇係包括 光循環器1G1、摻铒光纖(EDF)1G2、分波多工器1〇3、光 纖光柵(FBG)1〇4、栗激雷射(PUMp_LD)i()7、光頻譜分析 儀105'光檢測器(Ph〇t〇-detector)i〇8以及電頻譜分析儀 1〇6。其中共振腔長度可以為2公尺或其他尺寸,泵激光源 f長為148〇nm或980_。摻錦光纖1〇2分別連接光循環 杰1〇1以及分波多工器103 ’分波多工器1〇3連接光纖光 柵104與泵激雷射1G7。光循環器iqi制為共振腔之一 端面並定為殘餘泵激功率之回收再使用。光纖光概ι〇4可 為波長可調或固定波長,以當作共振腔端面部分反射鏡。 光循環器式光纖雷射裴置1〇〇係透過分波多工器ι〇3 將泵激光源送入摻铒光纖1〇2中,以對共振腔中的訊號作 放大。光循環器式光纖雷射裂置i⑼的輸出波長係由光纖 [S1 8 201126849 光柵104的反射波長所決^,並經由光纖光拇的穿透 端取出雷射信號,因此單縱模光纖雷射的輸出功率、輸出 雷射線寬及雷射輸出旁模抑制比係受到光纖光拇性能 響。 光循環器式光纖雷射裝置1〇〇含内建光隔離器,以確 保泵激光源不會反射㈣激雷射1G7輸出端而造成其損 壞。泵激光源經過摻铒光纖1〇2產生增益效果,再耦合進 籲^光循環器101的第2埠,藉由光循環器的光學特性,將 第2埠輸入的雷射光耦合至第3埠。而且,將光循環器1 〇 1 第3蟑與第1埠接續在一起,雷射光即可由第3蜂搞合入 第1埠,再經由第1埠耦合進入第2埠,以再經過摻铒光 纖102 —次而增加雷射光源之放大效果。 經過摻铒光纖1 〇2兩次放大後的雷射光進入分波多工 器103後,利用分波多工的原理,此時在155〇波段的雷射 光將會與泵激光源所提供的1480nm的泵激光源分離,反 #之亦然。經摻餌光纖1〇2放大的雷射光將進入光纖光柵1〇4 中,且由於雷射光已經過兩次的放大強度已經被增強,所 以經由光纖光栅104反射部分雷射光回共振腔後,在光纖 光栅104的穿透端亦可以取得所需要的雷射光,由光纖光 柵104穿透端取出之雷射光波長將與光纖光柵的反射波長 相同。 當泵激光源第一次經過摻铒光纖丨〇2時,尚有光功率 未被摻铒光纖102所吸收。此時,未被摻餌光纖1〇2吸收 的光功率將依序經由光循環器1 〇 1之第2埠、第3 i阜與第 9 201126849 ’再次進入摻餌光纖1〇2中’以提高泵激光源的 效率,並同昧担& 用 亏知南摻铒光纖1〇2所能提供的整體效益。 射# 第:與第三圖,其分別顯示光循環器式:纖雷 ^ ;光頻瑨分析儀與電頻譜分析儀之輸出頻譜。如第 二圖所示,在光循環器式與寬頻鏡面式光纖雷射裝置中, 所產生的雷射線寬是非常寬的。因此,本發明嘗試在 腔:加入改善因子,來改善雷射旁模的影響。舉—實ς例 秦而5,本發明利用多重環形共振腔結構加入原冑的雷射共 振腔中’以改變原有共振腔縱模的分佈,使雷 的形式輸出。 ㈣ 、、/°第二圖所示’其中光循環器式光纖雷射裂置係在下 述壞境下做量測:3 4鋅光纖,光纖光栅的中心波長為 :"55〇nm、反射率約5〇%,泵激光功率固定以50mW輪出’: 攸第一圖中可以看出利用光譜儀(Optical Spectrum Analyzer,簡稱OSA)量得之雷射輸出功率為7 29讀、訊 •雜比為56.56 dB ’而臨界功率為3 22 mW。 實驗數據得知增益介質使用約3心參鲜光纖ι〇2,以 及使用後向泵激來激發摻辑光纖1〇2,具有最佳的輸出雷 射功率。因此,在製作單縱模光纖雷射裝置時,可使用3m 摻餌光纖102的後向泵激光纖雷射裝置做為基礎的改善裳 置。換言之,本發明可以利用光循環器式光纖雷射裝置做 基礎裝置。在此裝置中,使用光循環器當作共振腔的反射 面如同近環型雷射(qUasi_ring laser),可讓雷射光單一方向 前進,對於逆向訊號有阻絕的作用,對於單縱模光纖雷射 201126849 1 ,作比寬頻鏡面式光纖雷射有更佳的模態穩定性。在此 哀置中曰輸出的光纖雷射接到電頻譜分析儀1〇6上來做量 測,而1測之前先經過光檢測器1〇8以進行光電轉換。基 =電頻》曰:析儀106所能承受的功率較低,所以在光檢測 之刖可連接一個衰減器(例如10 dB)以防止光檢測哭 108的損毁。 口° Μ參照第二與第 團 由上述圖可以發現光頻譜分析: a wide-section fiber optic component; a split-wave multiplexer connected to a section of fiber source: a light-to-split multiplexer; at least - a multi-ring of two. Where... the Mahe splitter multiplexer is used to suppress the laser side mode, and the Q-th longitudinal mode fiber laser is produced; and the fiber grating element is used as a partial mirror of the cavity end face. According to another aspect of the present invention, a single longitudinal mode linear cavity laser fringing device is disclosed, including: a branch of apricots, a slave fiber optic component, a splitting multiplexer, connecting a length of fiber optic components; The laser source is engaged with the splitter multiplexer; a absorbing element, a coupled multiplexer is used to suppress the laser side mode, and an early longitudinal mode fiber laser is generated; and the fiber grating component is used as a cavity end face. Partial mirror. According to still another aspect of the present invention, a single longitudinal mode linear cavity optical fiber is disclosed: a device comprising: a length of fiber optic component; a demultiplexing multiplexer connecting a length of fiber optic components; a pump laser source, a coupling demultiplexer; and an absorption a body member and a multiple ring resonator element, wherein the absorber element couples the wave splitter to facilitate suppression of the laser side mode to produce a single longitudinal mode fiber laser; and a fiber grating element is partially reflected as a cavity end face mirror. 201126849 wherein the multiple ring resonator components include a -th wire combiner, a first: first fitter and a light looper, wherein the first, the second, the second light and the optical circulator are sequentially arranged in - The annular resonant cavity is formed to form two or more light paths of different lengths. The single longitudinal mode linear cavity laser fringing device of the present invention further comprises a light-refractive-frequency fiber mirror as a rear-end mirror-finished fiber component. [Embodiment] The present invention mainly relates to a linear cavity of a linear fiber laser, which incorporates the characteristics of the component to perform modal suppression, and designs a linear cavity with low cost, single and high stability. Single longitudinal mode fiber laser architecture. ▲. Referring to the first figure, the second diagram of the optical circulator type fiber laser device is shown in the figure. The optical circulator type fiber laser device 1 includes an optical circulator 1G1, an erbium doped fiber (EDF) 1G2. , splitter multiplexer 1〇3, fiber grating (FBG)1〇4, chestnut laser (PUMp_LD)i()7, optical spectrum analyzer 105' photodetector (Ph〇t〇-detector) i〇8 And the electric spectrum analyzer 1〇6. The cavity length can be 2 meters or other dimensions, and the pump laser source f length is 148 〇 nm or 980 _. The doped fiber 1〇2 is connected to the optical cycle, respectively, and the splitter multiplexer 103's the splitter multiplexer 1〇3 connects the fiber optic grating 104 with the pumped laser 1G7. The optical circulator iqi is made up as one end face of the resonant cavity and is determined to be used for recycling of residual pump power. The fiber optic light 〇4 can be wavelength-tunable or fixed-wavelength to serve as a mirror for the end face of the cavity. The optical circulator type fiber laser device 1 〇〇 transmits the pump laser source to the erbium doped fiber 1 透过 2 through the multiplexer ι 〇 3 to amplify the signal in the resonant cavity. The output wavelength of the optical circulator-type fiber laser splitting i(9) is determined by the reflection wavelength of the fiber [S1 8 201126849 grating 104, and the laser signal is taken out through the penetrating end of the optical fiber, so the single longitudinal mode fiber laser The output power, the output lightning ray width, and the laser output side mode suppression ratio are affected by the fiber optical thumb performance. The optical circulator fiber laser device 1 includes a built-in optical isolator to ensure that the pump laser source does not reflect (iv) the laser 1G7 output and cause damage. The pump laser source generates a gain effect through the erbium-doped fiber 1〇2, and is coupled into the second 埠 of the optical circulator 101, and the second 埠 input laser light is coupled to the third 藉 by the optical characteristics of the optical circulator. . Moreover, the third loop of the optical circulator 1 〇1 is connected to the first turn, and the laser light can be merged into the first turn by the third bee, and then coupled to the second turn via the first turn to be erected. The optical fiber 102 - in turn, increases the amplification effect of the laser source. After the erbium-doped fiber 1 〇 2 twice amplified laser light enters the split-wave multiplexer 103, using the principle of split-wave multiplexing, the laser light in the 155-band band will be connected to the pump of 1480 nm provided by the pump laser source. The laser source is separated, and the opposite is also true. The laser light amplified by the doped fiber 1〇2 will enter the fiber grating 1〇4, and since the amplification intensity of the laser light has been enhanced twice, after the partial laser light is reflected back to the resonant cavity via the fiber grating 104, The required end of the fiber grating 104 can also obtain the desired laser light. The wavelength of the laser light taken out from the penetrating end of the fiber grating 104 will be the same as the wavelength of the fiber grating. When the pump laser source passes through the erbium doped fiber 第一2 for the first time, the optical power is not absorbed by the erbium doped fiber 102. At this time, the optical power absorbed by the undoped fiber 1〇2 will be sequentially entered into the doped fiber 1〇2 via the second 埠, the third 阜, and the 9th 201126849 of the optical circulator 1 以1. Improve the efficiency of the pump laser source, and the overall benefits that can be provided by the 知 & amp 南 南 南 南 南 南 南 南 南 。 。 。 。 。. Shoot #第: and the third figure, which respectively show the optical circulator type: fiber mine ^; the output spectrum of the optical frequency analyzer and the electric spectrum analyzer. As shown in the second figure, in the optical circulator type and broadband mirror type optical fiber laser device, the generated ray ray width is very wide. Therefore, the present invention attempts to improve the influence of the laser side mode by adding an improvement factor to the cavity. — ς 而 而 而 秦 秦 秦 秦 秦 秦 秦 秦 秦 秦 秦 秦 秦 秦 秦 秦 秦 秦 秦 秦 秦 秦 秦 秦 秦 秦 秦 秦 秦 秦 秦 秦 秦 秦 秦 秦 秦 秦 秦 秦 秦(4) , , / ° The second figure shows 'the optical circulator fiber laser cracking system is measured under the following conditions: 3 4 zinc fiber, the center wavelength of the fiber grating is: "55〇nm, reflection The rate is about 5〇%, and the pump laser power is fixed at 50mW. ': 攸In the first figure, it can be seen that the laser output power measured by the Optical Spectrum Analyzer (OSA) is 7 29 read, signal, and ratio. It is 56.56 dB ' and the critical power is 3 22 mW. The experimental data shows that the gain medium uses about 3 cores of fresh fiber ι〇2, and uses backward pumping to excite the blended fiber 1〇2, which has the best output laser power. Therefore, in the production of a single longitudinal mode fiber laser device, a backward-pumped fiber laser device using a 3 m doped fiber 102 can be used as an improvement. In other words, the present invention can utilize an optical circulator type fiber laser device as a base device. In this device, the optical circulator is used as the reflection surface of the resonant cavity like a near-ring laser (qUasi_ring laser), which allows the laser light to advance in a single direction, and has a blocking effect on the reverse signal, for a single longitudinal mode fiber laser. 201126849 1 , for better modal stability than broadband mirror fiber laser. In this case, the fiber laser output from the middle 曰 is connected to the electric spectrum analyzer 1〇6 for measurement, and before the measurement, the photodetector 1〇8 is passed through for photoelectric conversion. Base = Frequency 曰: The power of the analyzer 106 can be low, so an attenuator (for example, 10 dB) can be connected after the light detection to prevent the light detection from being damaged. °° Μ Refer to the second and the second group. The optical spectrum analysis can be found from the above figure.

:二〇5與電頻譜分析儀1〇6的差異,實際上光纖雷射頻譜 還存在許多旁模的影響,是光頻譜分析儀Η)5所無法量 測’而光纖雷射經過電頻譜分析儀1〇6降頻後,頻譜大約 t散在1咖左右的範圍。本發明將藉由底下之架構來改 善上述旁模的影響。 、首先,本發明之單縱模光纖雷射之設計可參考底下方 程式⑴來完成。縮短共振料長度會使雷射㈣間的頻率 間距變寬,兩相鄰的頻率間隔定義為自由頻譜範圍。 FSRm ~ ^ (1) 其中《為光纖的折射係數,、為共振腔的長度。由方 程式⑴中可以發現,自由頻譜範圍與共振腔長度呈 反比關係。換言之,共振腔長度越短則自由頻 =寬。錢在本發明之單,_錢㈣Μ(例纖 雷射裝置)中,共振腔長度為_定值,而共振 轉,部分元件所逹接的光纖長度無法隨意縮短,因此本 201126849 發明使用—㈣動式的外接子環形絲腔⑽_dng Cavity) 力入原有的田射共振腔中,來改變自由頻譜範圍,上述被 動元=稱為多重環型共振腔(multiple〜⑽办,mrc)。 請參照第四圖,其顯示單環之環型共振腔光循環器式 光纖雷射架構或裝置200之示意圖,其係在上述架構之共 振,中加入-個多重環形共振腔元件⑴,其耦合分波多 工為103與光纖光栅1()4。舉例而言,子環形共振腔的長 度為2 m,估算一下自由頻譜範圍約為1〇〇 MHz。一極化 控制器110可以用來控制光的極化方向並增加輸出雷射光 的穩定度,其中增加極化控制器11〇之後與沒增加前的裝 置功率相差大約為0.13 dBm。換言之,增加多重環形丘 胜元件m之後,雷射輸出功率方面大約下降 mW ,變成6.48 mW,而訊雜比為56 28 dB,約下降〇 28 dB,在增加光學元件的情況下,這些功率的差距是在可以 接受的範圍。 • 舉一實施例而言,本發明之多重環形共振腔元件U1 之結構可以選用元件為2 X 2光耦合器丨丨la、分光比為5〇 / 50,如第五圖所示。其製作方式係將其中兩端回接,另 兩端接至原先的線性型光纖雷射共振腔當中,而光耗合器 111 a相接的兩端便成為一子環形共振腔n lb,子環形共振 腔111 b長度為兩端相接的單模光纖長度。經由這樣的設古十 方式’能夠改變原本雷射共振腔的自由頻譜範圍,其原因 在於’子環形共振腔的長度與原先的光纖雷射裝置共振腔 長度相比短許多,在兩個自由頻譜範圍的相互影響下,即 12 201126849 :二=整個共振腔中整體自由頻譜範圍。舉例而言,增加 =共振腔的數量或縮短子環形共振腔的長度,都能夠 •1+仏山將頻率間距變得更寬’而當頻率間距超過了光纖雷 ’剧的增益範圍,便能夠形成單縱模光纖雷射。 在光頻言醤分㈣105巾,頻譜並無太大的改變,然而 f電T普分析儀106中,就可以很明顯的發現到加入一個 :重衣幵/共振腔元件! i i的作用。如第六圖所示’部分的 籲雷=模已受到抑制,估算子環形共振腔所能造成的自由 頻4乾圍約1〇〇 MHz,因此從圖中可以觀察到電頻譜分析 儀10:上頻率約$ 100MHz倍數之處才會有雷射縱模的產 生。從本此實施中可知,採用一個多重環形共振腔元件所 產生的雷射縱模數目為複數個,且其數目比未採用多重環 形共振腔元件所產生的雷射縱模之數目少許多。 4參照第七圖,其顯示多重環型共振腔光循環器式光 纖雷射架構300之示意圖,其係在上述架構之共振腔中加 #入,環之環型共振腔元件ln與112,其左右串接極化控 制器110與光纖光柵104。基於上述架構產生複數個雷射 縱模,還未達到單縱模光纖雷射的效果。因此,在第七圖 之多重環型共振腔光循環器式光纖雷射架構3〇〇中,嘗試 再加入另一個多重環形共振腔元件丨12來改善光纖雷射效 果。類似地,多重環形共振腔元件112之結構可以選用元 件為2 X 2光搞合器、分光比為50 /50。舉例而言,第一 個子環形共振腔長度為2 m,第二個子環形共振腔長度為 2.2 m。在此實施例中,光頻譜分析儀1〇5上的功率變化, 13 201126849 ==多重環形共振腔之後’功率下降至(Μ,訊 ⑽二至从⑽。而在電頻譜分析儀106上,可以觀疚 到兩個夕重環形共振腔件 不 兩個子環形共振腔各有不同的自成的影響,在 二ί 約為1GG MHZ與92馳,兩者取 二二可以侍到大約為580職的自由頻譜範圍,如第八 L::在第八圖中,可以看出在電頻譜分析儀106上只 中可知=共振腔公倍數的雷射縱模輸出。從本實施例 射旁模的產生。 卩·地抑制雷 了可:固實施例可知’採用多重環形共振腔元件除 旁模的=㈣之數目之外’還可以有效地抑制雷射 万換的產生”隹’其若要達到單縱模光纖雷射 射旁模全部抑制。在前述兩個裝置實驗中已證 2 腔元件加入原有的雷射共振腔中確實能抑制= 方极的產生,在接下來之實施例中,再加入一個多重環形 ^腔兀件U3來改善雷射效果,如第九圖所示。類似地: 夕重%形共振腔元件113選用元件為2 χ 2光麵合器、八 光比為50 / 50。 ° 刀 ,請參照第九圖,其顯示多重環型共振腔光循環 誠雷射架構400之示意圖’其係在上述架構之共振腔中加 八-個多重環形共振腔元件ln、112與113,其 控制器m與光纖光栅104。從上述可知在加入兩個多重 環形共振腔元件111、112之後的雷射旁模個數已經非常 m 14 201126849 少,在本時施例中嘗試再加入 113以作進-步更佳的旁模抑制。舉:::'、振腔-件 個子環形共振腔元件⑴之二=而、加入的第三 圍已趙㈣“ 的相互影響下’自由頻譜範 觀制Μ射的增益範圍’在電頻譜分析儀106上所 =ΓΓ模影響已經完全消失,如第十圖所示,如 此即產生-姉的單縱模光纖雷射。 在:頻譜分析,義105中所觀測的雷 二:下降至一’約下降一,訊: 56.56 dB 下降曼 5? A/ι α . 2.64 dB,大約差距3 92 d 元崎形下,功率差是尚可接受的範圍。 “ =上述,從本發明之上述實施例中可知,加入三個 1衣形共振腔元件於光循環器式光纖雷射裝置中,可以完 射Ρ:Γ射:杈的產生’而產生-極佳的單縱模光纖雷 p值付注思的是上述僅為本發明之一實施例,本發明不 --^ 4 V从平秋恢 在另一實施例中,多重環形共振腔元件13〇選 =子環形共振腔元件的個數,其他個數子環形共振腔元 一一或搭配其他光學元件亦可以得到單縱模光纖雷射。舉 人施例而5 ’多重環形共振腔元件120選用4 X 4光耦 :咨12〇a’包括三個不同長度的子環形共振腔120b之回 ★ ’串接4x4光耦合器12〇a’其分光比端視應用情形而 々第十圖所不。在此實施例中,係利用增加子環形 共振腔的數量,以有效將頻率間距變得更寬,而當頻率間 距超過了光纖雷射輸出的增益範圍,即可形成單縱模光 雷射。力箕一眘故丨山 ^ . 用 m 15 201126849 個2 χ 2光耦合器13〇a與13〇b以及—個光循環器uoc, 包括不同長度路徑的多重子環形共振腔,以有效的將 間距㉙知更寬。2 X 2光耗合器i3〇a與13〇b分光 -或其他比率,如第十二圖所示。2X2光耗合=〇與 UOb以及光循環器⑽之第!埠與第2琿串接於多重子 ,形共振腔之中以形成第一光路徑u〇d,而2χ2光耦合 器130a與l30b以及光循環器u〇c之第2埠與第3埠ς 於多重子環形共振腔之中以形成第二光路徑13如。在此 施例中’基於光循環器13Ge之作用而產生不同路徑的多重 子環形共振腔U〇d、13()e,結果得以有效的將頻率間距變 =更寬°同樣地,當頻率間距超過了光纖雷射輸出的增益 範圍’可形成單縱模光纖雷射。 請參照第十三圖’其為本發明之另—實施例之寬頻鏡 面式⑽M)光纖雷射裝置150,其與前述光循環器式光纖雷 射裝置所用元件與參數大部分相同,不同之處在於其中一 端的反射面以寬頻譜反射鏡151代替,因此其詳細運作 式與㈣結關係不再#述。寬頻譜反射鏡⑸ 合摻鎮光纖1〇2。實驗結果顯示於光頻譜分析儀1〇5上^ 硯測在泵激先源50 mW的雷射輸出情形之下,雷 2為7·96 ^,訊雜比為57·68 dB,臨界功率為3.12 mW, ,、比光循環器式光纖雷射的輸出雷射較佳。而以 電頻譜分析儀106上做分析’在電頻譜分析儀= ^以看出雷射依然有許多旁模的影響,因此需要加入多 重壤型共振腔來抑制這些模態的影響。 [S] 16 201126849 請參照第十四圖,其顯示多重環型共振腔寬頻鏡面式 光纖雷射架構250之示意圖,其係在上述架構之共振腔中 加入一個多重環形共振腔元件lu。第一個多重環形共振 腔為2 m,將它加入原有的雷射共振腔中,並加入一極化 控制器11〇來穩定雷射輸出,而加入一極化控制器11〇的 力率差、’’二測i約為〇 〇5 dBm,對於輸出雷射的影響性非常 的小’在雷射輸出功率變化上,經過一個多重環形共振腔 後輸出功率變為6.43 mW,約下降i 53讀,訊雜比為% Μ d^。在電頻譜分析儀1()6上可以發現旁模的影響已減少很 =2m的子環形共振腔的影響下,模態間的自由頻譜 摩巳圍已經受到改變。 請參照第十五圖,其顯示多重環型共振胪育镅浐而— 光纖雷射架構35。之示意圖,其係在鏡面式 兵係在上述架構之共振腔中 S'固夕重環形共振腔元件m與112。類似地,在加 入第二個多重環形共 •訊雜比為55 4 1 :二射輸出功率降為5.27 發現,旁模的旦^ 電頻譜分析儀106中可以 、、如a已經銳減為一個雷射縱模輸出。 最低此要ί:單縱模光纖雷射仍需再將旁模影響降到 制旁模的影響形共振腔元件⑴,來抑 月茶照第十六圖,並顧一夕土 m 寬頻鏡面式#總+ 6 '貝夕重裱型共振腔 之共====4^示意圖,其係在上述架構 ⑴1由光頻呀 夕重環形共振腔元件⑴、m與 、由先頻5曰为析儀1〇5與電頻 析,結果與光循+ 斤儀106的頻譜分 以式光纖雷射相似,在加入三個多重環 201126849 形共振腔之後,雷射的旁模影響已完全抑制,因此可势成 单縱模光纖雷射裝置450。在比較雷射功率輪出方面,瘦 過二個多重環形共振腔後,輸出功率為冰讀,而尚未 改善裝置的雷射輸出功率為7.96 mW,大約下降了 4 Μ : 在訊雜比方面’未加入多重環形共振腔的訊雜比為 ^㈣,而改善裝置的訊雜比為53 76犯,差距大約⑼ 月丨J述的實施例當中,可以了 出雷射產生影響。 了解歲長度確實會對輸 本發明所使用的裝置,在&去 义 卢分別β·上μ 纟尚未優化則的共振腔來回長 ,別疋.先循環器式光纖雷射裝置約為14 式光纖雷射約為13m,經由 見頻鏡面 分別的盔η u #後了以侍到自由頻譜範圍 I ==與ΜΙ在加入三個多重環型共振腔 單為2°m,而多重環型共振腔型寬頻鏡 雷射裳置的主要共振腔長度約為心,自 =頻料圍分別約41_ζμ 振腔的長度分別為2、22#35 ^而—個子;衣形共 圍約為100MHz、92A/m . m ”個別的自由頻譜範 自由頻譜範圍遠小;^ /和57MHZ。由於主要共振腔的 在計算自由頻P 展型共振腔的自由頻譜範圍,所以 述實二以三個子環型共振腔為主。由上 以在加人第—個子肋範圍大約有1 GHz左右,所 耻)還無法有效^古(自由頻譜範圍約為1〇0 抑制所有雷射旁模的影響;加入第二個子 [S] 18 201126849 枝型共振腔(自由頻譜範圍約為92MHz)之後,自由頻譜範 圍會因為兩個共振腔互相影響下,呈現—個公倍數^關 =:自由頻譜範圍大約為580 MHz,然已經抑制了大部 刀模態,產生’但是在雷射增益範圍中仍然有縱模的產 生於疋再加入第二個子環型共振腔(自由頻譜範 V随小此時有三個共振腔互相影響下,自由頻譜範^: The difference between the 2〇5 and the electric spectrum analyzer 1〇6, in fact, the fiber laser spectrum still has many side modes, which is the optical spectrum analyzer Η)5 can not measure 'and the fiber laser through the electric spectrum analysis After the frequency reduction of the instrument 1〇6, the spectrum is scattered around a range of 1 coffee. The present invention will improve the effects of the above-described side modes by the underlying architecture. First, the design of the single longitudinal mode fiber laser of the present invention can be accomplished by referring to the bottom program (1). Shortening the length of the resonator causes the frequency spacing between the lasers (4) to be widened, and the two adjacent frequency intervals are defined as the free spectral range. FSRm ~ ^ (1) where "is the refractive index of the fiber, and is the length of the cavity. It can be found from the equation (1) that the free spectral range is inversely proportional to the length of the cavity. In other words, the shorter the length of the cavity, the faster the frequency is. In the invention of the invention, _ Qian (four) Μ (for example, the laser device), the length of the resonant cavity is _ fixed value, and the resonance is turned, the length of the fiber spliced by some components cannot be arbitrarily shortened, so the invention of 201126849 is used - (4) The dynamic circumferential wire cavity (10)_dng Cavity) is forced into the original field cavity to change the free spectrum range. The above passive element is called a multiple ring type cavity (multiple~(10), mrc). Please refer to the fourth figure, which shows a schematic diagram of a single-ring ring-shaped resonant cavity optical circulator type fiber laser architecture or device 200, which is coupled with a multi-ring resonant cavity component (1) in the resonance of the above structure, and coupled The splitting multiplex is 103 and the fiber grating 1()4. For example, the length of the sub-ring resonator is 2 m, and the free-spectrum range is estimated to be about 1 〇〇 MHz. The polarization controller 110 can be used to control the polarization direction of the light and increase the stability of the output laser light, wherein the polarization controller 11 增加 is increased by about 0.13 dBm after the power is increased. In other words, after adding multiple ring-shaped sturdy components m, the laser output power is reduced by about mW to 6.48 mW, and the signal-to-noise ratio is 56 28 dB, which is about dB28 dB. In the case of adding optical components, these powers The gap is in an acceptable range. • In one embodiment, the multi-ring resonator element U1 of the present invention may be constructed with a 2 X 2 optical coupler 丨丨la and a split ratio of 5 〇 / 50, as shown in the fifth figure. The manufacturing method is that the two ends are connected back, and the other ends are connected to the original linear fiber laser cavity, and the two ends of the light-conductor 111 a are connected to a sub-ring resonator n lb. The length of the ring resonator 111 b is the length of the single mode fiber that is connected at both ends. Through such an ancient method, the free spectral range of the original laser cavity can be changed because the length of the sub-ring resonator is much shorter than the length of the original fiber laser resonator, in the two free spectra. Under the influence of the range, ie 12 201126849: two = the entire free spectral range of the entire resonant cavity. For example, increasing the number of resonant cavities or shortening the length of the sub-annular resonant cavity can all be able to form a wider range of frequencies when the frequency spacing exceeds the gain range of the fiber-optic thunder. Single longitudinal mode fiber laser. In the frequency of light (4) 105 towels, the spectrum does not change much, but in the f-electric analyzer 106, it can be clearly found that one is added: heavy clothing / cavity components! The role of i i. As shown in the sixth figure, the 'partial slamming failure=module has been suppressed, and the free frequency 4 can be estimated to be about 1 〇〇MHz. Therefore, the electric spectrum analyzer 10 can be observed from the figure: A laser longitudinal mode is produced at an upper frequency of approximately $100 MHz. As can be seen from this implementation, the number of laser longitudinal modes produced by a multiple annular cavity element is a plurality, and the number is much less than the number of laser longitudinal modes that are not produced by multiple ring resonator elements. 4, which is a schematic diagram showing a multi-ring type resonant cavity optical circulator type fiber laser structure 300, which is added to the resonant cavity of the above-mentioned structure, and the ring-shaped resonant cavity elements ln and 112 of the ring are The polarization controller 110 and the fiber grating 104 are connected in series to the left and right. Based on the above architecture, a plurality of laser longitudinal modes are generated, and the effect of the single longitudinal mode fiber laser is not yet achieved. Therefore, in the multi-ring type resonant cavity optical circulator type fiber laser structure 3 of the seventh figure, another multi-ring resonator element 丨12 is attempted to improve the fiber laser effect. Similarly, the structure of the multiple ring resonator element 112 can be selected from a 2 X 2 light combiner with a split ratio of 50 / 50. For example, the first sub-ring resonator has a length of 2 m and the second sub-ring resonator has a length of 2.2 m. In this embodiment, the power variation on the optical spectrum analyzer 1〇5, 13 201126849 == after the multiple ring resonator, the power drops to (Μ, (10) 2 to (10). On the electrical spectrum analyzer 106, It can be observed that the two sub-ring resonators have different self-forming effects, and the two sub-rings have different self-forming effects. In the case of two ί MHZ and 92, the two can take about 580. The free spectrum range of the job, such as the eighth L:: In the eighth figure, it can be seen that only the laser longitudinal mode output of the resonance cavity is known to be on the electric spectrum analyzer 106. From the embodiment, the side mode is emitted.产生·········································································································· The single longitudinal mode fiber laser beam side mode is all suppressed. In the above two device experiments, it has been proved that the addition of the two cavity elements to the original laser cavity can suppress the generation of square poles. In the following embodiments, Add a multi-ring cavity U3 to improve the laser efficiency , as shown in the ninth figure. Similarly: the U-shaped % cavity component 113 is selected as a 2 χ 2 light surface combiner, and the eight-light ratio is 50 / 50. ° Knife, please refer to the ninth figure, which shows multiple A schematic diagram of a ring-shaped resonant cavity light-circulating laser structure 400 is provided with eight-multiple annular cavity elements ln, 112 and 113, a controller m and a fiber grating 104 in the resonant cavity of the above-mentioned structure. The number of laser side modes after the addition of the two multiple ring resonator elements 111, 112 is already very small, m 14 201126849, and in this case, try to add 113 again for better side mode suppression. :::', vibrating cavity - one sub-ring resonator element (1) two = and the added third circumference has Zhao (four) "the mutual influence of the 'free spectrum speculative Μ shot gain range' in the electric spectrum analyzer The influence of the mode on 106 has completely disappeared, as shown in the tenth figure, thus producing a single longitudinal mode fiber laser of -姊. In the spectrum analysis, the Ray II observed in the meaning of 105: down to a 'about Decrease one, the news: 56.56 dB drop MAN 5? A / ι α . 2.64 dB, about the difference In the case of 3 92 d, the power difference is an acceptable range. " = As described above, it is known from the above embodiments of the present invention that three 1-shaped cavity elements are added to the optical circulator type fiber laser device. , can be finished Ρ: Γ 杈 杈 产生 产生 而 而 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极In another embodiment, the multiple ring resonator element 13 is selected = the number of sub-ring resonator elements, and the other number of ring resonators can be obtained by using a single longitudinal mode fiber together with other optical components. Laser. For example, 5' multiple ring resonator element 120 selects 4 X 4 optocoupler: 12 〇a' includes three different lengths of sub-ring resonator 120b back ★ 'Spliced 4x4 optocoupler 12〇 a' its splitting is better than the end view of the application. In this embodiment, the number of sub-ring resonators is increased to effectively widen the frequency spacing, and when the frequency spacing exceeds the gain range of the fiber laser output, a single longitudinal mode light laser can be formed.箕 箕 慎 慎 ^ ^ ^ 用 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 knows wider. 2 X 2 light combiner i3〇a and 13〇b split - or other ratios, as shown in Figure 12. 2X2 light consumption = 〇 and UOb and the optical circulator (10)!埠 and the second 珲 are connected in series with the multiplex sub-shaped cavity to form the first optical path u 〇 d, and the 2 χ 2 optical couplers 130a and 130b and the second 第 and the third of the optical circulator u 〇 c are The plurality of sub-ring resonators are formed to form a second light path 13 such as. In this embodiment, the multiple sub-ring resonators U〇d, 13()e which generate different paths based on the action of the optical circulator 13Ge are used to effectively change the frequency pitch to be wider. Similarly, when the frequency spacing exceeds The gain range of the fiber laser output can form a single longitudinal mode fiber laser. Please refer to the thirteenth figure, which is a broadband mirror type (10)M optical fiber laser device 150 of another embodiment of the present invention, which is mostly the same as the components and parameters used in the optical circulator type optical fiber laser device, and the difference is the same. The reflective surface at one end is replaced by a wide-spectrum mirror 151, so that the detailed operational relationship with the (four) junction is no longer described. Wide spectrum mirror (5) combined with town fiber 1〇2. The experimental results are shown on the optical spectrum analyzer 1〇5. Under the laser output of the pump source 50 mW, the Ray 2 is 7.96 ^, the signal-to-noise ratio is 57·68 dB, and the critical power is 3.12 mW, ,, is better than the output laser of the optical circulator fiber laser. The analysis is performed on the electrical spectrum analyzer 106. In the electrical spectrum analyzer = ^ to see that the laser still has many side modes, it is necessary to add a multi-soil resonator to suppress the effects of these modes. [S] 16 201126849 Please refer to FIG. 14 for a schematic diagram of a multi-ring resonator wideband mirrored fiber laser architecture 250 incorporating a multiple ring resonator element lu in the resonant cavity of the above architecture. The first multiple ring resonator is 2 m, which is added to the original laser cavity, and a polarization controller 11 is added to stabilize the laser output, and the force rate of the polarization controller 11 is added. Poor, ''two measurements i is about dB5 dBm, the effect on the output laser is very small'. In the laser output power variation, after a multiple ring resonator, the output power becomes 6.43 mW, about a drop i 53 reading, the signal to noise ratio is % Μ d^. On the electric spectrum analyzer 1()6, it can be found that the influence of the side mode has been reduced by the sub-ring resonator with a very =2m, and the free-spectrum friction between the modes has been changed. Please refer to the fifteenth figure, which shows a multi-ring resonance 镅浐 镅浐 - fiber laser architecture 35. The schematic diagram is based on the mirror-type squadron in the resonant cavity of the above-mentioned structure, S's solid-state annular cavity elements m and 112. Similarly, when adding a second multi-ring common signal-to-noise ratio of 55 4 1 : the two-shot output power is reduced to 5.27, it can be found that the side-mode electrical spectrum analyzer 106 can be reduced to one as a. Laser longitudinal mode output. The minimum is this: ί: The single longitudinal mode fiber laser still needs to reduce the influence of the side mode to the influence of the cavity cavity component (1), to suppress the moonlight photo of the sixteenth figure, and to take care of the earth m wide-band mirror type #总+ 6 'A total of ====4^ schematic diagram of the Bayi heavy-duty resonant cavity, which is based on the above-mentioned architecture (1)1 by the optical frequency, the ring-shaped resonant cavity component (1), m and the frequency of the first frequency The instrument 1〇5 and the electric frequency analysis, the result is similar to the spectrum of the optical cyclotron 106. The effect of the side mode of the laser is completely suppressed after adding the three multi-ring 201126849 resonant cavity. It can be a single longitudinal mode fiber laser device 450. In comparing the laser power rotation, after outputting two multiple ring resonators, the output power is ice reading, and the laser output power of the device has not been improved to 7.96 mW, which is about 4 Μ: in terms of signal-to-noise ratio The signal-to-noise ratio of the multi-ring resonator is not added to (4), and the signal-to-noise ratio of the improved device is 53 76. The difference is about (9). In the example described in the section, the laser can be affected. It is true that the length of the old age will indeed be used for the device used in the invention. In the case of & Deyilu, respectively, the resonance cavity of the β·upper 纟 is not optimized, and the circulator type fiber laser device is about 14 The fiber laser is about 13m, and the helmet η u # after the mirror surface is used to serve the free spectral range I == and ΜΙ is added to the three multiple ring resonators by 2°m, and the multiple ring resonance The length of the main cavity of the cavity type wide-band mirror laser is about the heart, and the length of the cavity is about 41_ζμ, and the length of the cavity is 2, 22#35 ^, respectively; the shape of the clothing is about 100MHz, 92A. /m . m "The individual free-spectrum range of the free spectral range is far smaller; ^ / and 57MHZ. Since the main resonant cavity is in the free spectral range of the free-frequency P-type resonant cavity, the three sub-ring resonances are described. The cavity is dominated. From the top to the first rib of the Canadian, about 1 GHz, shame) is still not effective (the free spectrum range is about 1〇0 to suppress the influence of all laser side modes; join the second [S] 18 201126849 After the dendrite cavity (free spectrum range is about 92MHz) The free spectral range will be presented as a common multiple due to the mutual influence of the two resonant cavities. ^: The free spectral range is approximately 580 MHz, but the majority of the modal mode has been suppressed, resulting in 'but still in the laser gain range. There is a longitudinal mode generated by 疋 and then added to the second sub-ring type resonant cavity (the free-spectrum V is small, then there are three resonant cavities interacting with each other, the free spectrum is ^

:經=了光纖雷射的增益範圍,由於沒有其他模態的影 a光纖雷射得以單縱模的形式輸出。 經由實驗發現,多重環型共振腔型光循環器式單縱模 光纖雷射的功率變化約為0.04mw以内,而多重環型共振 腔型寬頻鏡面式單縱模域雷射的功率變化約為 由此可以看出此光纖f射裝置具有非常穩定的雷射 輸出,其與一般半導體雷射(線寬約數MHz等級)比較 有過之無不及。 -射哄罢I/之另一觀點’提出一種吸收體型單縱模光纖雷 鲁架構。摻錦光纖本身所具有的吸收與放射的特 卜在未施以泵激光源激發時,光功率會受到辑離子的吸 而ie成功率的相耗,然而,若加以控制兩端注入的光波, 使其在内部形成干涉現象,便能夠使旁模 單縱模光纖雷射的效果。 Μ 请參照第十七圖,其顯示吸收體型光循環器式光纖雷 500之示意圖’其係在上述多重環型共振腔光循環 纖雷射架構中加入—吸收體元件5ιι,連接極化控 制盗110與光纖光栅1〇4。舉例而言,吸收體元件川為 19 201126849 推斜光纖吸收體元件。本實施例與前述光循環哭 射裝置所用元件與參數大部分相同,不同之處在於以吸收 體兀件511代替多重子環形共振腔元件,因此其詳細運作 方式與元件之間的連結關係不在贅述。在—實_中,使: = = the gain range of the fiber laser, because there is no other mode of shadow a fiber laser can be output in the form of a single longitudinal mode. It has been found through experiments that the power variation of a single-resonant cavity type optical circulator type single longitudinal mode fiber laser is about 0.04 mW, and the power variation of a multi-ring type cavity type wide-frequency mirror type single longitudinal mode field laser is about It can be seen that the fiber optic device has a very stable laser output, which is comparable to a general semiconductor laser (line width of about several MHz). Another point of view of the "I shot" I propose an absorption type single longitudinal mode fiber Rayleigh architecture. When the absorption and radiation of the fiber-doped fiber itself is excited by the pump laser source, the optical power will be absorbed by the ions and the power consumption of the electrons. However, if the light waves injected at both ends are controlled, By forming an interference phenomenon inside, the effect of the single mode longitudinal mode fiber laser can be made. Μ Refer to the seventeenth figure, which shows a schematic diagram of an absorber-type optical circulator type fiber-optic ray 500, which is added to the above-mentioned multi-ring type resonant cavity optical cycle fiber laser structure, and the absorber element is connected to the polarization control thief. 110 with fiber grating 1〇4. For example, the absorber element is 19 201126849 to push the fiber optic absorber element. The components and parameters used in the present embodiment and the above-mentioned optical cycle crying device are mostly the same, except that the absorbing body element 511 is substituted for the multiple sub-ring resonator element, and thus the detailed operation mode and the connection relationship between the elements are not described herein. In the - _, make

2-段㈣光纖作為吸收體的基本元件,將频光纖吸收 體配置於共振腔之中泵激光源未經過之處。在沒有泵激光 源的影響下,摻铒光纖的自發吸收與放射的特性就:相當 明顯。後向泵激光纖雷射架構比起前向栗激光纖雷ς架ς 有更佳的優勢,例如摻餌光纖能夠產生兩次吸收泵激光功 率使訊號放大的效果,亦有較佳的雷射輸出功率。 依照上述吸收體的原理,本發明選用後向果激光纖雷 射木構,在分波多工器與光纖光栅之間加入摻餌光纖吸收 體,亚加入一個極化控制器,來控制進入摻铒光纖吸收體 光波的相位,使雷射光在摻餌光纖吸收體内得以形成干涉 現象,藉此達到模態抑制的效果。 • 在架構中我們將會使用到兩種摻铒光纖,其中做為共 振腔增盈介質的摻铒光纖,以輸出雷射功率較佳的3 m摻 铒光纖,這邊使用的摻铒光纖為銓州光電所生產,其吸收 係數為 12.4 dB/m @ 979 nm、18.79 dB/m @ 1531 nm ;而 做為吸收體的摻斜光纖’若是使用相同吸收係數的摻铒光 纖的话’訊號光功率會受到摻铒光纖吸收體過多的吸收, 造成輪出雷射功率較大的損耗。因此,在摻餌光纖吸收體 的選擇上,本發明選用FIBERCORE公司所生產的低摻雜 推鎮光纖,其吸收係數為5·〇 dB/m @ 979 nm、6.24 dB/m @ [S] 20 201126849 nm,可以得到較佳的吸收體效果。而其他元件的參 數没定為:泵激光源波長為148〇邮·頻帶)、功率固定在 50mW光纖光柵的中心波長為⑽反射率約。 在另例子+泵激光源波長設定為i別nm(c·頻帶)。 實驗上可以使用不同長度的推辑光纖吸收體來觀察輸 =雷射功率與旁模抑制的情形,例如長度的選擇上,可以 ^別使用2、3、4和5m的低摻雜摻_光纖來做吸收量測。The 2-stage (4) fiber is used as the basic component of the absorber, and the frequency fiber absorber is disposed in the cavity where the pump laser source does not pass. Under the influence of no pump laser source, the characteristics of spontaneous absorption and emission of erbium-doped fiber are quite obvious. The backward-pumped fiber-optic laser architecture has better advantages than the forward-looking fiber-optic fiber-optic Thunderbolt. For example, a doped fiber can generate two absorption pump laser powers to amplify the signal, and a better laser. Output Power. According to the principle of the above-mentioned absorber, the present invention selects a back-spike fiber laser wood structure, and a bait fiber absorber is added between the splitter multiplexer and the fiber grating, and a polarization controller is added to control the incorporation of the erbium. The phase of the optical fiber absorption light wave causes the laser light to form an interference phenomenon in the absorption body of the doped fiber, thereby achieving the modal suppression effect. • In the architecture we will use two erbium-doped fibers, which are erbium-doped fibers for the resonant cavity gain medium, to output a 3 m erbium-doped fiber with better laser power. The erbium-doped fiber used here is The absorption coefficient is 12.4 dB/m @ 979 nm and 18.79 dB/m @ 1531 nm produced by Luzhou Optoelectronics Co., Ltd.; and the erbium-doped fiber used as the absorber is the same as the erbium-doped fiber with the same absorption coefficient. It will be absorbed by the erbium-doped fiber absorber, resulting in a large loss of laser power. Therefore, in the selection of the doped fiber absorber, the invention selects the low doped push-spun fiber produced by FIBERCORE, and the absorption coefficient is 5·〇dB/m @ 979 nm, 6.24 dB/m @ [S] 20 At 201126849 nm, a better absorber effect can be obtained. The parameters of other components are not determined as: the pump laser source wavelength is 148 〇 post·band), and the power is fixed at 50 mW. The center wavelength of the fiber grating is (10) reflectance. In another example, the pump laser source wavelength is set to i, nm (c·band). Experimentally, different lengths of the absorbing fiber absorber can be used to observe the case of transmission = laser power and side mode suppression. For example, the length can be selected, and the low-doped _ fiber can be used for 2, 3, 4 and 5 m. To do the absorption measurement.

藉由電頻譜分析儀106可以看出加入吸收體元件511之後 的模態抑制效果,可藉由調整_光纖吸收體的長度來觀 察模態抑制的效果。 凊參照第十八圖,其顯示吸收體型寬頻鏡面式光纖雷 射架構550之示意圖,其係在上述多重環型共振腔寬頻鏡 面式光纖雷射架構中加入一吸收體元件511,連接極化控 制器11〇與光纖光柵104。大體上,吸收體元件511不限 於摻铒光纖。本實施例係將前述架構的光循環器1〇1換成 φ覓頻谱反射鏡151。舉一實施例而言,可利用不同長度的 換铒光纖吸收體(例如2、3、4和5 m)來觀察吸收體長度對 於旁模抑制的效果。在本實施例中,泵激光源經過分波多 工器103之後’經過摻铒光纖吸收產生訊號放大到達寬頻 譜反射鏡151 ’經由寬頻譜反射鏡反射後,泵激光功率經 反射使摻餌光纖產生第二次吸收放大,回到分波多工器 103時會將泵激光功率與雷射光分開,摻餌光纖吸收體便 能夠單純吸收雷射光功率,不會受到泵激光源的激發,當 共振腔中的雷射光在吸收體中產生干涉現象時,便能夠有 21 201126849 效抑制雷射旁模,而產生單縱模光纖雷射。 此外,根據本發明之再一觀點,提出一種混合型光循 環器式單縱模光纖雷射裝置或架構。由前述可知,多重環 形共振腔型或吸收體型單縱模光纖雷射架構皆可以抑制雷 射旁杈的影響,因此本實施例中,在光循環器式光纖雷射 架構中加入一吸收體元件511與多重環型共振腔元件ιη 互相連接,以構成混合型光循環器式單縱模光纖雷射架構 600,請參照第十九圖。吸收體元件511連接極化控制器 no,多重環型共振腔元件ln耦合光纖光栅1〇4。在另一 實施例中,吸收體元件511與多重環型共振腔元件U1之 配置位置可以互換,例如吸收體元件511連接光 104,多重環型共振腔元件lu連接極化控制器11〇,請參 照第二十圖。本實施例之動機在於吸收體型單縱模光纖雷 射實驗中,發現使用更長的摻铒光纖吸收體可以更加抑Z 旁模,卻會造成共振腔中功率的更多損耗。或者需要加入 鲁三個多重環型共振腔元件lu又顯得複雜。因此,在一實 施例中可以選用一個2 m摻铒光纖吸收體搭配—個2 m多 重環型共振腔來作為共振腔内的改善因子,原則上最佳化 的意思是仍達成單縱模條件時之最短吸收體與最短環型共 振腔長度。本實施例中的元件設定如下:泵激光源為148〇 nm、功率為5〇mW’摻餌光纖為&,光纖光柵的中心波 長為1550 nm、反射率約50%,在電頻譜分析儀中 現雷射旁模的影響幾乎已經完全消失,因此產生單縱模光 纖雷射。 1 S1 22 201126849 # ^另實^例中,將前述光循環器式光纖雷射架構以 二頻譜反射鏡151代替光循環器1〇1,以構成一種混合型 寬頻鏡面式單縱模光纖雷射裝置或架冑650,請參照第二The modal suppression effect after the addition of the absorber element 511 can be seen by the electric spectrum analyzer 106, and the effect of modal suppression can be observed by adjusting the length of the _ fiber absorber. Referring to FIG. 18, there is shown a schematic diagram of an absorber-type broadband mirror-type fiber laser architecture 550, which incorporates an absorber element 511 in the multi-ring resonator wide-band mirror-type fiber laser architecture, and connection polarization control. The device 11 is connected to the fiber grating 104. In general, the absorber element 511 is not limited to an erbium doped fiber. In this embodiment, the optical circulator 1 〇 1 of the foregoing architecture is replaced by a φ 觅 spectral mirror 151. For one embodiment, different lengths of fiber-optic absorbers (e.g., 2, 3, 4, and 5 m) can be utilized to observe the effect of absorber length on side mode suppression. In this embodiment, after the pump laser source passes through the splitter multiplexer 103, the signal is amplified by the erbium-doped fiber to obtain a wide-spectrum mirror 151. After being reflected by the wide-spectrum mirror, the pump laser power is reflected to cause the doped fiber to be generated. The second absorption amplification, when returning to the splitter multiplexer 103, separates the pump laser power from the laser light, and the doped fiber absorber can simply absorb the laser light power without being excited by the pump laser source. When the laser light produces interference in the absorber, it can suppress the laser side mode and produce a single longitudinal mode fiber laser. Moreover, in accordance with still another aspect of the present invention, a hybrid optical circulator type single longitudinal mode fiber laser device or architecture is proposed. It can be seen from the foregoing that the multiple ring resonator type or the absorber type single longitudinal mode fiber laser structure can suppress the influence of the laser bypass. Therefore, in this embodiment, an absorber component is added to the optical circulator fiber laser structure. The 511 and the multi-ring type resonant cavity element ιη are interconnected to form a hybrid optical circulator type single longitudinal mode fiber laser structure 600, please refer to FIG. The absorber element 511 is connected to the polarization controller no, and the multi-ring type resonator element ln is coupled to the fiber grating 1〇4. In another embodiment, the arrangement positions of the absorber element 511 and the multiple ring type resonator cavity element U1 are interchangeable, for example, the absorber element element 511 is connected to the light 104, and the multiple ring type cavity element element lu is connected to the polarization controller 11〇, Refer to the twenty-fifth figure. The motivation of this embodiment is that in the absorption type single longitudinal mode fiber laser experiment, it is found that the use of a longer erbium-doped fiber absorber can suppress the Z-side mode, but cause more power loss in the cavity. Or it is complicated to add Lu three multi-ring resonator elements. Therefore, in one embodiment, a 2 m erbium-doped fiber absorber can be selected as a 2 m multi-ring resonator as an improvement factor in the cavity. In principle, optimization means that the single longitudinal mode condition is still achieved. The shortest absorber and the shortest ring cavity length. The components in this embodiment are set as follows: the pump laser source is 148 〇 nm, the power is 5 〇 mW', the doped fiber is & the center wavelength of the fiber grating is 1550 nm, and the reflectivity is about 50%. The effect of the current laser side mode has almost completely disappeared, thus producing a single longitudinal mode fiber laser. 1 S1 22 201126849 # ^ In another example, the optical circulator type fiber laser structure is replaced by a two-spectrum mirror 151 instead of the optical circulator 1 〇1 to form a hybrid wide-band mirror single longitudinal mode fiber laser. Device or frame 650, please refer to the second

十一圖。在另一實施例中,吸收體元件511與多重環型共 振腔7C件111之配置位置可以互換’例如吸收體元件51J 連接光纖光柵104,多重環型共振腔元件ιη連接極化控 制器110,請參照第二十二圖。此外,在又一實施例卜 一環形共振腔元件700配置於上述混合型單縱模光纖雷射 裝置或架構之雷射共振腔中,其中共振腔元件7〇〇包括吸 收體元件711配置於子環形共振腔7〇2之部分區段内,子 環形共振腔702連接-分光比為5〇/5〇之2><2光搞合器 〇3明參』第一十二圖。由於寬頻鏡面式光纖雷射的殘餘 功率再湘率較高,所以能夠得到較高的輸出雷射功率。 舉例而言’將2m摻斜光纖吸收體與化多重環型共振腔 ^入寬頻鏡面式光纖雷射架構中,以組成混合型寬頻鏡面 式早縱換光纖雷射,而達到模態抑制的效果。在雷射輸出 功率方面,以光頻譜分析儀1〇5觀測輸出功㈣4外 訊雜比為53.76 dB,而尚未改善前的光纖雷射架構 輸出功率為7.96mW’訊雜比為57.68 dB,功率約下降3 37 讀,訊雜比的差值為3,92dB,與多重 鏡面式單縱模光纖雷射相比的話,功率約提高㈢讀。 對熟悉此領域技藝者,本發明雖以較佳實例闡明如 上,然其並非用以限定本發明之精神。在不脫離本發明之 精神與範圍内所作之修改與類似的配置,均應包含在下述 ES] 23 201126849 椹申J ί"利靶圍内’此範圍應覆蓋所有類似修改與類似社 構,且應做最寬廣的詮釋。 【圖式簡單說明】 施方ί述元件’以及本發明其他特徵與優點,藉由閱讀實 %方式之内容及其圖式後’將更為明顯·· 第:圖為光循環器式光纖雷射裝置之示意圖。 第二圖為光循環器式光纖雷射褒置 輸出頻譜圖。 U Κ曰刀啊儀之 第三圖為光循環器式光纖雷射褒置 輪出頻譜圖。 ❺π a刀啊饿之 第四圖為本發明之星援 雷射架構之示意圖。*之㈣共振腔光循環器式光纖 =五圖為本發明之環型共振以件之示意圖。 =圖為本發明之光循環器式光纖雷 化共振腔於電頻譜分析儀之輸出頻譜圖。 早- 第七圖為本發明之雙環之環型妓据胪# M P 4 1 g 雷射架構之示意圖。 H、振式光纖 开纖雷射裝置加入雙環 也共振腔於電頻譜分析儀之輪出頻譜圖。 雙f 第九圖為本發明之三環 雷射架構之示意圖。 U共振腔光循環器式光纖 =十圖為本發明之光循環器式光纖雷射展置加入三 1腔於電頻譜分析儀之圖。 一 第十-圖為本發明之多重環形共振腔元件選用… S] [ 24 201126849 光耦合器示意圖,其_包括二個 ^ , , ^ ^ ± 一個不同長度的子環形共振腔。 第十一圖為本發明之多重淨刑必 支共振腔元件選用二個2 X 2光耦合器與一個光循環 子環形共振腔。 匕括不同長度路徑之多重 第十三圖為寬頻鏡面式光纖雷射裝置之示意圖。 第十四圖為單環型共振腔實艇# 不意圖 土,、锨胺見頻鞑面式光纖雷射架構之 圖。 〜=十五圖為雙環型共振腔寬頻鏡面式光纖雷射架構之 不思圖。 :十六圖為多重環型共振腔寬頻鏡面式光纖雷射架構 <不思圖。 第^圖為本發明之吸收體型光循環器式單縱模光纖 由射系構之示意圖。 雷射LI八圖為本發明之吸收體型寬頻鏡面式單縱模光纖 雷射条構之示意圖。 第+九圖為本發明之混合式光循環器式單縱模光 射架構之示意圖。 田 射空=二十圖為本發明之混合式光循環器式單縱模光纖雷 射条構之示意圖。 田 第二十一圖為本發明之混合式寬頻鏡面式單縱 雷射架構之示意圖。 取 第二十二圖為本發明之混合式寬頻鏡面式單縱模光纖 雷射架構之示意圖。 、’· 第二十三圖為本發明之環型共振腔元件之示意圖。 [S1 25 201126849 【主要元件符號說明】 100光循環器式光纖雷射裝置 101光循環器 102摻_光纖 103分波多工器 104光纖光柵 105光頻譜分析儀 106電頻譜分析儀 107泵激雷射 108光檢測器 110極化控制器 111、112、113、120、130多重環形共振腔元件 120a 4 X 4光耦合器 130a、130b 2 X 2光耦合器 130c光循環器 130d第一光路徑 130e第二光路徑 151 寬頻譜反射鏡 150 寬頻鏡面式光纖雷射裝置 200、300、400多重環型共振腔光循環器式光纖雷射 架構 250、350、450多重環型共振腔寬頻鏡面式光纖雷射 架構 500吸收體型光循環器式光纖雷射架構Eleven pictures. In another embodiment, the arrangement position of the absorber element 511 and the multi-ring type resonant cavity 7C member 111 can be interchanged. For example, the absorber element 51J is connected to the fiber grating 104, and the multi-ring type resonator element is connected to the polarization controller 110. Please refer to the twenty-second figure. In addition, in still another embodiment, a ring resonator element 700 is disposed in the laser cavity of the hybrid single longitudinal mode fiber laser device or architecture, wherein the cavity element 7 includes an absorber element 711 disposed in the sub In a partial section of the ring resonator 7〇2, the sub-ring resonator 702 is connected to a splitting ratio of 5〇/5〇2><2 light fitting device 〇3 Mingshen" Since the residual power of the wide-band specular fiber laser is higher, the higher output laser power can be obtained. For example, the 2m-doped oblique fiber absorber and the multi-ring resonant cavity are incorporated into a wide-band mirror-type fiber laser structure to form a hybrid wide-band mirror-type early longitudinal fiber laser to achieve modal suppression. . In terms of laser output power, the output spectrum of the optical spectrum analyzer 1〇5 is observed to be 53.76 dB, and the output power of the fiber laser architecture before the improvement is 7.96mW, the signal-to-noise ratio is 57.68 dB. About 3 37 readings, the difference between the signal and the odds ratio is 3,92 dB. Compared with the multi-mirror single longitudinal mode fiber laser, the power is increased (3). The present invention has been described by way of example only, and is not intended to limit the scope of the invention. Modifications and similar configurations made without departing from the spirit and scope of the invention should be included in the following ES] 23 201126849 椹 J 利 利 此 此 此 此 此 此 此 此Should be the broadest interpretation. [Simple description of the schema] The stipulations of the components and the other features and advantages of the present invention will be more obvious by reading the contents of the actual % method and its schema. Schematic diagram of the launching device. The second picture shows the output spectrum of the optical circulator fiber laser device. U The third figure of the instrument is the optical circulator type fiber laser device.第四π a knife is hungry The fourth picture is a schematic diagram of the star-assisted laser architecture of the present invention. * (4) Resonator cavity optical circulator fiber = Figure 5 is a schematic diagram of the ring-shaped resonance of the present invention. = Figure is the output spectrum of the optical circulator fiber-optic resonant cavity of the present invention in an electrical spectrum analyzer. Early - The seventh figure is a schematic diagram of the double-ring ring type 妓# M P 4 1 g laser structure of the present invention. H. Vibrating fiber optic The open fiber laser device is added to the double-ring and also the resonant cavity of the electric spectrum analyzer. Double f The ninth diagram is a schematic diagram of the three-ring laser architecture of the present invention. U-resonator optical circulator fiber = Ten is a diagram of the optical circulator fiber laser deployment of the present invention incorporating a three-cavity electrical spectrum analyzer. A tenth-picture is a multi-ring resonant cavity component of the present invention... S] [ 24 201126849 A schematic diagram of an optical coupler, which includes two ^ , , ^ ^ ± sub-ring resonators of different lengths. The eleventh figure shows that the multi-column mandatory cavity component of the present invention uses two 2 X 2 optical couplers and one optical circulating sub-ring resonant cavity. Multiples of different length paths are shown. Figure 13 is a schematic diagram of a broadband mirrored fiber laser device. The fourteenth figure is a single-ring type resonant cavity real boat#. It is not intended to show the structure of the fiber-optic laser structure. ~=15 picture is a double-ring type cavity wide-band mirror type fiber laser structure. : The sixteenth picture shows a multi-ring type resonant cavity wide-band mirror-type fiber laser structure. Fig. 4 is a schematic view showing the structure of an absorber type optical circulator type single longitudinal mode fiber according to the present invention. The laser LI diagram is a schematic diagram of the absorption type wide-band mirror single longitudinal mode fiber laser strip structure of the invention. Fig. 9 is a schematic view showing the hybrid optical circulator type single longitudinal mode light-emitting structure of the present invention. Tian Yingkong = Twenty Figure is a schematic diagram of the hybrid optical circulator type single longitudinal mode fiber laser strip structure of the present invention. Field The twenty-first figure is a schematic diagram of the hybrid wide-band mirror type single-span laser structure of the present invention. The twenty-second figure is a schematic diagram of the hybrid broadband mirror single longitudinal mode fiber laser structure of the present invention. The twenty-third figure is a schematic view of the ring-shaped resonant cavity element of the present invention. [S1 25 201126849 [Major component symbol description] 100 optical circulator fiber laser device 101 optical circulator 102 _ fiber 103 multiplexer 104 fiber grating 105 optical spectrum analyzer 106 electrical spectrum analyzer 107 pump laser 108 photodetector 110 polarization controller 111, 112, 113, 120, 130 multiple ring resonator element 120a 4 X 4 optical coupler 130a, 130b 2 X 2 optical coupler 130c optical circulator 130d first optical path 130e Two light path 151 wide spectrum mirror 150 wide frequency mirror type fiber laser device 200, 300, 400 multiple ring type resonant cavity optical circulator type fiber laser structure 250, 350, 450 multiple ring type cavity wide frequency mirror type fiber laser Architecture 500 absorber type optical circulator fiber laser architecture

LSI 26 201126849 5 11 吸收體元件 550 吸收體型寬頻鏡面式光纖雷射架構 600 混合型光循環器式單縱模光纖雷射架構 650混合型寬頻鏡面式單縱模光纖雷射架構 700 環形共振腔元件 711 吸收體元件 702 子環形共振腔 703 2 X 2光耦合器LSI 26 201126849 5 11 Absorber Element 550 Absorber Type Broadband Mirror Fiber Laser Architecture 600 Hybrid Optical Circulator Single Longitudinal Mode Fiber Laser 650 Hybrid Broadband Mirror Single Longitudinal Mode Fiber Laser Architecture 700 Ring Resonant Element 711 absorber element 702 sub-ring resonator 703 2 X 2 optical coupler

Claims (1)

201126849 七、申請專利範圍: 1. 一種單縱模線性共振腔光纖雷射裝置,包括: 一光纖元件; 一分波多工器,連接該光纖元件; 一泵激光源’由該分波多工器耦合進入; 一波長可調或不可調光纖光柵;以及 至少一多重環形共振腔元件,插入於一光纖共振腔中, 以利於抑制雷射旁模’而產生單縱模光纖雷射。 2·如請求項1之單縱模線性共振腔光纖雷射裝置,更包括 一光循環器,耦合該光纖元件。 3.如請求項丨之單縱模線性共振腔光纖雷射裝置,更包括 見頻光纖鏡面,耦合該光纖元件。 籲4. ^叫求項i之單縱模線性共振腔光纖雷射裝置,其中該 ^重%、形共振腔元件包括一第一光耦合器、一第二光耦 =器與一光循環器,其中該第一光耦合器、該第二光耦 以與該光循環器依序配置於—環形共振腔中以形成 二道光路徑。 5.種單縱模線性共振腔光纖雷射裝置,包括: 一光纖元件; 刀波多工器’連接該光纖元件; [s] 28 201126849 一泵激光源,耦合該分波多工器; 利於抑制雷射旁 一波長可調或不可調光纖光栅;以及 一吸收體元件内含料纖共振腔中,以 杈,而產生單縱模光纖雷射。 6·如μ求項5之單縱模線性共振腔光纖雷射I置 一光循環器,耦合該光纖元件。 包括 7.如請求項5之單縱模線性共振腔光纖雷射裴置, 一見頻光纖鏡面,耦合該光纖元件。 匕括 8. —種單縱模線性共振腔光纖雷射裝置,包括: 一光纖元件; 一分波多工器,連接該光纖元件; 一泵激光源’由該分波多工器耦合進入; 一波長可調或不可調光纖光柵;以及 一吸收體元件與至少一多重環形共振腔元件,其中該吸 收體元件包含於光纖共振腔中,以利於抑制雷射旁模° 而產生單縱模光纖雷射。 ' ’ 9.如請求項8之單縱模線性共振腔光纖雷射裳置,更勺括 一光循環器,耦合該光纖元件。 10.如请求項8之単縱模線性共振腔光纖雷射奘 衣直,更包括 m 29 201126849 一寬頻光纖鏡面,耦合該光纖元件。 Ϊ1.如請求項8之單縱模線性共振腔光纖雷射裒置,其中該 吸收體元件與該至少一多重環形共振腔元件係互相連 妾或違吸收體元件配置於該至少一多重環形共振腔元 件之部分區段内。201126849 VII. Patent application scope: 1. A single longitudinal mode linear cavity laser device, comprising: a fiber component; a wavelength division multiplexer connecting the fiber component; a pump laser source coupled by the wave multiplexer Entering; a wavelength-tunable or non-adjustable fiber grating; and at least one multi-ring resonator element inserted into a fiber cavity to facilitate suppression of the laser side-mode to produce a single longitudinal mode fiber laser. 2. The single longitudinal mode linear cavity laser device of claim 1, further comprising an optical circulator coupled to the fiber optic component. 3. A single longitudinal mode linear cavity laser device as claimed in the present invention, further comprising a fiber mirror for coupling the fiber element. The single longitudinal mode linear cavity laser device of claim i, wherein the component of the resonant cavity comprises a first optical coupler, a second optical coupler and an optical circulator The first optical coupler and the second optical coupler are sequentially disposed in the ring-shaped resonant cavity with the optical circulator to form two optical paths. 5. A single longitudinal mode linear resonant cavity fiber laser device comprising: a fiber optic component; a knife wave multiplexer 'connecting the fiber optic component; [s] 28 201126849 a pump laser source coupled to the split wave multiplexer; A wavelength-adjustable or non-adjustable fiber grating is disposed adjacent to the emitter; and an absorber element contains a fiber-optic resonator to generate a single longitudinal mode fiber laser. 6. A single longitudinal mode linear cavity fiber laser I, such as μ, is placed in an optical circulator to couple the fiber optic components. Including a single longitudinal mode linear cavity fiber laser device of claim 5, a frequency fiber mirror, coupled to the fiber component. A single longitudinal mode linear cavity laser device comprises: a fiber component; a wavelength division multiplexer connecting the fiber component; a pump laser source coupled by the wavelength multiplexer; An adjustable or non-adjustable fiber grating; and an absorber element and at least one multiple ring resonator element, wherein the absorber element is included in the fiber cavity to facilitate suppression of the laser side mode to produce a single longitudinal mode fiber Shoot. 9. A single longitudinal mode linear cavity laser striking of claim 8 and a light circulator coupled to the fiber optic component. 10. The longitudinal mode linear cavity fiber laser 奘 衣 衣 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 1. The single longitudinal mode linear cavity fiber laser device of claim 8, wherein the absorber element and the at least one multiple ring cavity element are interconnected or the absorber element is disposed in the at least one multiple Within a portion of the annular cavity element. I S1 30I S1 30
TW99101884A 2010-01-25 2010-01-25 Single-longitudinal-mode linear cavity fiber laser apparatus TWI398059B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW99101884A TWI398059B (en) 2010-01-25 2010-01-25 Single-longitudinal-mode linear cavity fiber laser apparatus
US13/012,768 US20120033688A1 (en) 2010-01-25 2011-01-24 Single longitudinal mode fiber laser apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99101884A TWI398059B (en) 2010-01-25 2010-01-25 Single-longitudinal-mode linear cavity fiber laser apparatus

Publications (2)

Publication Number Publication Date
TW201126849A true TW201126849A (en) 2011-08-01
TWI398059B TWI398059B (en) 2013-06-01

Family

ID=45024651

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99101884A TWI398059B (en) 2010-01-25 2010-01-25 Single-longitudinal-mode linear cavity fiber laser apparatus

Country Status (1)

Country Link
TW (1) TWI398059B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI630802B (en) * 2016-01-08 2018-07-21 達運光電股份有限公司 Method for improving characteristics of optical fiber amplifier

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5200964A (en) * 1991-03-12 1993-04-06 General Instrument Corporation Broad linewidth lasers for optical fiber communication systems
US5689519A (en) * 1993-12-20 1997-11-18 Imra America, Inc. Environmentally stable passively modelocked fiber laser pulse source
US7027468B2 (en) * 2003-09-22 2006-04-11 Corning Incorporated Phase-insensitive recovery of clock pulses of wavelength division multiplexed optical signals

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI630802B (en) * 2016-01-08 2018-07-21 達運光電股份有限公司 Method for improving characteristics of optical fiber amplifier

Also Published As

Publication number Publication date
TWI398059B (en) 2013-06-01

Similar Documents

Publication Publication Date Title
Yao et al. Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation
He et al. Tunable and switchable dual-wavelength single-longitudinal-mode erbium-doped fiber lasers
CN101132103A (en) Single longitudinal mode optical fiber laser based on Fabry-Perot resonant cavity
TW200843264A (en) Broadband fiber laser
US20120033688A1 (en) Single longitudinal mode fiber laser apparatus
CN107317219B (en) Dual-wavelength pulse fiber laser based on rhenium disulfide saturable absorber
US20030021302A1 (en) Raman cascade light sources
CN112397979B (en) Single-longitudinal-mode narrow-linewidth optical fiber laser based on double-coupling optical fiber ring and Mach-Zehnder filter
CN111668684A (en) Ultra-narrow bandwidth filter and high-power single longitudinal mode narrow linewidth optical fiber laser
US7394837B2 (en) Traveling-wave linear cavity laser
CN100423385C (en) A linear resonant cavity wide narrow line tunable optical fiber laser
Huang et al. Multiwavelength self-seeded Brillouin-erbium fiber laser with 45-nm tunable range
Liu et al. A novel bidirectional output oscillating-amplifying integrated fiber laser with 2 ports× 2 kW level near-single-mode output
CN102610987A (en) Switchable multi-wavelength erbium-doped optical fiber laser based on optical fiber Mach-Zehnder interferometer
CN210608006U (en) Wavelength-switchable single-wavelength fiber laser
CN105896250A (en) Multi-wavelength multi-core fiber laser
TW201126849A (en) Single-longitudinal-mode linear cavity fiber laser apparatus
JP2003031879A (en) Optical device, optical fiber used therefor, pulse generator, optical amplifier, and fiber laser
CN1599283B (en) Long-wave band erbium-doped fibre-optical superflourescence light source of high-power and high-smooth
TWI236193B (en) Fast wavelength-tunable laser system using Fabry-Perot laser diode
JP4234353B2 (en) Semiconductor laser module and optical fiber amplifier using the same
CN104577675B (en) Linear cavity multi-wavelength thulium-doped fiber laser based on M Z interferometers
CN100468890C (en) Single polarization dual wavelength optical fiber grating laser realizing method
TWI472107B (en) Single-frequency fiber laser apparatus
CN220291344U (en) Vortex rotation laser

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees