TW201126522A - Memory device with field enhancement arrangement - Google Patents

Memory device with field enhancement arrangement Download PDF

Info

Publication number
TW201126522A
TW201126522A TW100101528A TW100101528A TW201126522A TW 201126522 A TW201126522 A TW 201126522A TW 100101528 A TW100101528 A TW 100101528A TW 100101528 A TW100101528 A TW 100101528A TW 201126522 A TW201126522 A TW 201126522A
Authority
TW
Taiwan
Prior art keywords
conductive
electrode
memory
memory device
metal oxide
Prior art date
Application number
TW100101528A
Other languages
Chinese (zh)
Other versions
TWI478161B (en
Inventor
Wei-Chih Chien
Yan-Ru Chen
Yi-Chou Chen
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/878,861 external-priority patent/US20110175050A1/en
Priority claimed from US12/928,396 external-priority patent/US8279656B2/en
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Publication of TW201126522A publication Critical patent/TW201126522A/en
Application granted granted Critical
Publication of TWI478161B publication Critical patent/TWI478161B/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access

Abstract

The present invention provides a memory device comprising a metal-oxide memory element in a current path between a first electrode at a first voltage and a second electrode at a second voltage; a nonconductive element adjacent to the metal-oxide memory element; a conductive element in the current path between the first electrode and the second electrode, the conductive element having a first part at a fist distance from the first electrode and a second part at a second distance from the first electrode, the first distance larger than the second distance, wherein the metal-oxide memory element is between the first part of the conductive element and the first electrode, and the nonconductive element is between the second part of the conductive element and the first electrode.

Description

201126522 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種S己憶體褒置,尤指一種具有場增強排列的 記憶體裝置。 【先前技術】 電阻s己憶體是一種有前景的非揮發性記憶體。尤盆,Lee 在IED^Ipp. 771-774, 2007所刊登的“具有氧化物二極體的2堆疊 ro_iR父又點結構做為開關元件用於高密度電阻記憶體應用,,;及 C.H· =〇 在 Symp. VLSI Tech.,卯.228-229, 2007 所刊登的%—種高 度,^信賴的自排列分級氧化物|(^電阻記憶體:導電機制及可信 5 ,以及在2010年1月19日美國臨時申請案61/296,231中討 “ WOxRRAM為具有有前景的記憶體特性。 所討論的記憶體具有插頭的外型,且在形成記憶體胞元的時 候與一相當高的電流需求有關。 【發明内容】 ^發明,一主要目的為提供一記憶體裝置,其具有一金屬氧 化物記憶體元件、一非傳導元件以及一傳導元件。 該金屬氧化物記憶體元件,位於具有一第一電壓的一第一電 極,具有一第二電壓的一第二電極之間的一電流路徑中。例如: ^第一與第二電極為上部與底部電極。其他實施例可以有不同的 電,排列。該非傳導元件,鄰近於該金屬氧化物記憶、體元件。在 貝施例中,该非傳導元件包含在該第二電極上的一襯墊的一氧 化物。 該傳,元件’位於該第一電極與該第二電極間的電流路徑 在貝施例中’該傳導元件包含位於該第二電極上的一襯墊、 201126522 以及位於魏射插頭。該料 — ;第;及與該第二電極 第—P刀如此该第-距離大於該第二距離。 第-元件位於該傳導元件的該第一部分與該 二電ί增強了靠近該非傳導元件的金屬氧化物記憶體元件 ,實=包括在該金屬氧化物記憶體祕上執行201126522 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a S-remembrance device, and more particularly to a memory device having a field-enhanced arrangement. [Prior Art] Resistivity is a promising non-volatile memory. You, Lei, published in IED^Ipp. 771-774, 2007, "2 stacking ro_iR with oxide diodes as a switching element for high-density resistive memory applications, and; =〇 S S S S 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 228 In US Provisional Application No. 61/296,231, January 19, "WOxRRAM has promising memory characteristics. The memory in question has a plug shape and a relatively high current when forming memory cells. According to the invention, a main object of the invention is to provide a memory device having a metal oxide memory device, a non-conductive component and a conductive component. The metal oxide memory component is located at one. a first electrode of the first voltage, in a current path between a second electrode having a second voltage. For example: ^The first and second electrodes are upper and bottom electrodes. Other embodiments may have different electrical ,arrangement. a non-conducting element adjacent to the metal oxide memory and body element. In the embodiment, the non-conducting element comprises an oxide of a pad on the second electrode. The element is located at the first The current path between the electrode and the second electrode is in the embodiment of the present invention. The conductive element includes a spacer on the second electrode, 201126522, and a Wei-Plug plug. The material is; and the second electrode The first-P blade is such that the first-distance is greater than the second distance. The first-component is located at the first portion of the conductive element and the second-electrode enhances the metal oxide memory component adjacent to the non-conductive element, and is included in the Metal oxide memory secret implementation

作以及-,_的電路。在另—實施例中,在正規操作U 5不會執彳了與該重設操作麟設定操作抑之—形成操作。‘ 是記2體,7L的增進的電場的好處。在—實施例中,該重設操作 以設定操作具有—馳性。在另—實施财,咳重 設操作以及該設定操作具有相反的電壓極性。 μ重 或一 物讀, 月^ -目的為提供一種製造—記 ;值1 Γ!,·广第一電極上方的-凹處形成-傳 該包括-弟―導電材料以及—第二導電材料;從該 兀:的該第:f電材料形成該記憶體裝置的一金屬氧化物記憶體 該傳^70件的該第二導電材料形成—非傳導耕, = = Ϊ件Ϊί該非傳導元件;以及在該金屬氧化物記 隐體7G件及該傳V70件上方形成—第二電極,以使①該 Γίΐί藉具有介於該傳導元件與該第二電極的餘料之間的一 極的餘料之間的一第二厚度,該第一厚度大於該第二厚度乂弟電 施例中’藉由氧化該傳導元件的一表面來—同執行形 成違金屬氧化物記憶體讀的步驟及形成該非料元件的步驟。 201126522 面的實1例主形成該傳導元件的步驟包括形成具有一表 在表該 憶體;;定=路=金!= 吏用的;上設⑸:要 =逆逆:5;新==得= 寬電;ίίίΓ例中,該第二電極係為氧惰性的。氧惰性電極與 極上的义=導祕的步桃括:在底部電 上形,====:部電極 面^各種實施例中,該方法製造—抗氧化物編或—__ 括-記憶體胞元之交。二,=體3包 此處揭露的記憶體胞元。*早歹π⑽錢體胞凡包括在 【實施方式】 :列揭露的描述將典型地參考特定結構的實施+ 施方式中應被了解岐沒有任何顏去_縣 。I 施例及方法’但是揭露中可使用其他特徵、元件方^、的貫 來實施。較佳的實施例被描述用來制目前的揭露,非限 201126522 本領域人員具有通常知識者將在下列的描述認得種種 相寺的變化。如在各種實施例中的元件共同參照至參考數字。 1,1 ^本發明之使用§己憶體胞元實施一交叉點記憶體陣列 、邛分示意圖,每一記憶體胞元包含一個二極體存取裝置I一 基於記憶體元件的金屬氧化物。 /、And the circuit of -, _. In another embodiment, the normal operation U 5 does not perform the forming operation with the reset operation setting operation. ‘It is the benefit of the enhanced electric field of the 2L, 7L. In the embodiment, the reset operation has a relaxation in the setting operation. In another implementation, the coughing operation and the setting operation have opposite voltage polarities. μ heavy or one object read, month ^ - the purpose is to provide a manufacturing - record; value 1 Γ!, · wide above the first electrode - the formation of the recess - the pass - brother - conductive material and - the second conductive material; Forming the first conductive material of the memory device from the first:f electrical material to form the second conductive material of the memory device - non-conducting tillage, = = the non-conducting element; Forming a second electrode over the metal oxide body 7G and the V70 member such that the first electrode is between the conductive element and the remaining material of the second electrode a second thickness between the first thickness and the second thickness of the second embodiment, by oxidizing a surface of the conductive element, performing the step of forming a metal oxide memory read and forming the non- The steps of the material component. The actual step of the 201126522 surface forming the conductive element includes forming a memory having a table in the table; determining = path = gold! = 吏; setting (5): to = inverse: 5; new == = = wide; in the example, the second electrode is oxygen inert. Oxygen-inert electrode and electrode on the pole = guide step: in the bottom of the electric shape, ====: part of the electrode surface ^ In various embodiments, the method of manufacturing - anti-oxidation or -__ bracket - memory The turn of the cell. Second, = body 3 package Memory cells disclosed herein. * Early 歹 π (10) money body cells are included in the [Embodiment]: The description of the column disclosure will typically be referred to the implementation of the specific structure + the implementation method should be understood 岐 without any yan to _ county. I. EMBODIMENT AND METHODS However, other features and elements can be used in the disclosure. The preferred embodiment is described to make the current disclosure, and is not limited to 201126522. Those of ordinary skill in the art will recognize various variations of the temple in the following description. Elements as in various embodiments are collectively referred to the reference numerals. 1,1 ^ use of the present invention § memory cells to implement a cross-point memory array, schematic diagram, each memory cell contains a diode access device I - memory element based metal oxide . /,

如圖1的示意圖所示,該記憶體陣列1〇〇中的每一 ,含-個二極體存取裝置與—基於記憶妓件的二氧 圖1中藉由一可變電阻來表示每一個),其被配置串接於在一相對 應的字線110與一相對應的一位元線12〇之間的一電流路徑中。 如下更詳細的描述,在一給定的記憶體胞元中的記憶體元件是可 編程序為複數個電阻狀態包括一第一與一第二電阻狀態。 記憶體陣列100包含複數個字線110,其包括字線ll〇a、字 ,11,)、及子線ii〇c在一第一方向平行延伸。記憶體陣列丨⑽還 匕含複數個位元線12〇 ’其包括位元線120a、位元線120b、及位 元線120c在垂直於該第一方向的一第二方向上平行延伸。該記憶 體陣100參照至—交叉鱗列,因為該字線u。與雜元線12〇 互相$錯,但實體上無交叉,且該記憶體胞元位於該字線110與 該位元線120這些交叉點的位置。 、 ^憶體胞元115代表記憶體陣列1〇〇的記憶體胞元,且配置 於該字線110b與該位元線12〇b的交叉點的位置,該記憶體胞元 115包含一個二極體13〇與一記憶體元件14〇串接地配置。該二極 體140電耦接於該字線11〇b,以及該記憶體元件14()電耦接於該 位元線120b。 讀取或寫入該記憶體陣列10〇的記憶體胞元115可藉由施加 適當的電壓脈衝至該相對應的字線11〇b與位元線12〇b以感應生 成一電流穿過選擇的記憶體胞元115而達成。所施加電壓的程度 與期間視所執行的操作而定。例如:一讀取操作或一編製程式的 操作。 201126522 丄物圖”曜配置供麵,電流源 i钟線11Gb触祕12Gb⑽加適合振幅盘 u間的穿舰錢體就115的偏齡 岛 ηΧΖΤ: 140的電阻決定’因此該資料值儲存於 體胞το 115。例如藉由感_放Α||比較在位元線_上 適當的參考電流可決定該資料值(請參考,例如,在圖 9中結構24的感測放大器/資料)。 在一資料值被儲存於該記憶體胞元n5的編製程式操作中, 偏壓電路(請參考’例如圖9中的偏麵置供應銶,f流源 輕合至對應的字線11Gb與位元線㈣職加適合振幅與持續期 ,的穿越該記憶體胞元115的偏壓佈置,以感應在記憶體元件⑽ 中的=程控的改變,以在記憶體胞元115中儲存該資料值,該記 ,體元件140的電阻相對應於在該記憶體胞元115中所儲存的該 資料值。 〇Λ 、偏壓佈置包括一第一偏壓佈置,其足以順向偏壓該二極體13〇 以及從相對應於第一已程式狀態的電阻至相對應於第二已程式狀 態,電阻改變該記憶體元件140的電阻狀態。該偏壓佈置亦包括 一第二偏壓佈置,其足以順向偏壓該二極體130以及從相對應於 第一已程式狀態的電阻至相對應於第一已程式狀態的電阻改變該 記憶體元件140的電阻狀態。在實施例中用於記憶體元件14〇的 單極操作的每一個偏壓配置可包含一個或更多個電壓脈衝,且該 電壓程度與脈衝次數對於每一個實施例而言可憑經驗決定。 圖2Α和2Β顯示在交叉點陣列1〇〇之内排列的記憶體胞元(包 括代表性的記憶體胞元115)之一實施例的部份截面圖,圖2八是 顯示沿著位元線120的截面,而圖2Β是顯示沿著字線的截面。 參閱圖2Α和2Β,該記憶體胞元115包括位於字線110b之内 201126522 的一摻雜的半導體區域132。字線li〇b含有導電型態與該摻雜的 半導體區域132相反的摻雜的半導體物質。因此,在該摻‘的半 導體區域132與字線110b之間界定出一 PN接合134,二極體13〇 包括該摻雜的半導體區域132以及字線ii〇b鄰近於該摻雜的半導 體區域132的部份。在所示的實施例中,字線11〇b含有摻雜的p 型半導體物質例如多晶矽,而該摻雜的半導體區域132含有換 的N型半導體物質。 々’As shown in the schematic diagram of FIG. 1, each of the memory arrays 1 含 includes a diode access device and a memory device-based dioxograph 1 is represented by a variable resistor. One) is configured to be connected in series in a current path between a corresponding word line 110 and a corresponding one bit line 12A. As described in more detail below, a memory component in a given memory cell is programmable to a plurality of resistive states including a first and a second resistive state. The memory array 100 includes a plurality of word lines 110 including word lines 110a, s, 11, and sub-lines ii 〇c extending in parallel in a first direction. The memory array 丨 (10) further includes a plurality of bit lines 12 〇 ' including bit lines 120a, bit lines 120b, and bit lines 120c extending in parallel in a second direction perpendicular to the first direction. The memory array 100 is referenced to the cross-scale column because of the word line u. And the odd line 12 互相 are mutually wrong, but there is no intersection on the entity, and the memory cell is located at the intersection of the word line 110 and the bit line 120. The memory cell 115 represents a memory cell of the memory array, and is disposed at a position of the intersection of the word line 110b and the bit line 12〇b, and the memory cell 115 includes one The pole body 13〇 is arranged in series with a memory element 14〇. The diode 140 is electrically coupled to the word line 11〇b, and the memory element 14() is electrically coupled to the bit line 120b. The memory cell 115 read or written to the memory array 10 can be induced to generate a current through selection by applying an appropriate voltage pulse to the corresponding word line 11 〇 b and the bit line 12 〇 b The memory cell is reached 115. The degree of voltage applied is dependent on the operation performed during the period. For example: a read operation or a program operation. 201126522 丄 图 曜 曜 曜 曜 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 电流 电流 电流 电流 电流 电流 电流 电流 电流 电流 电流 电流 电流 电流 电流 电流 电流 电流 电流 电流 电流 电流 电流The cell το 115. The data value can be determined, for example, by comparing the appropriate reference current on the bit line _ (refer to, for example, the sense amplifier/data of structure 24 in FIG. 9). A data value is stored in the programming operation of the memory cell n5, the bias circuit (please refer to 'for example, the bias surface supply in FIG. 9, the f current source is lightly coupled to the corresponding word line 11Gb and the bit The line (4) applies a biasing arrangement across the memory cell 115 for amplitude and duration to sense a change in program control in the memory element (10) to store the data value in the memory cell 115. The electrical resistance of the body element 140 corresponds to the data value stored in the memory cell 115. The biasing arrangement includes a first biasing arrangement sufficient to bias the dipole in a forward direction Body 13〇 and corresponding to the resistance corresponding to the first programmed state In a second programmed state, the resistance changes the resistance state of the memory component 140. The biasing arrangement also includes a second biasing arrangement sufficient to forward bias the diode 130 and corresponding to the first programmed The resistance of the state changes to the resistance state of the memory element 140 to a resistance corresponding to the first programmed state. Each bias configuration for unipolar operation of the memory element 14A in an embodiment may include one or more A plurality of voltage pulses, and the degree of voltage and the number of pulses can be determined empirically for each of the embodiments. Figures 2A and 2B show memory cells arranged within 1交叉 of the array of intersections (including representative memories) A partial cross-sectional view of one embodiment of a cell 115), FIG. 2 is a cross-section along the bit line 120, and FIG. 2A shows a cross-section along the word line. Referring to Figures 2A and 2B, the memory Cell 115 includes a doped semiconductor region 132 located within word line 110b 201126522. Word line li〇b contains a doped semiconductor species having a conductivity profile opposite that of doped semiconductor region 132. Thus, in the doped 'half A PN junction 134 is defined between the conductor region 132 and the word line 110b, and the diode 13 includes the doped semiconductor region 132 and a portion of the word line ii 〇b adjacent to the doped semiconductor region 132. In the illustrated embodiment, word line 11 〇 b contains a doped p-type semiconductor material such as polysilicon, and the doped semiconductor region 132 contains a modified N-type semiconductor material.

—在另一實施例中,字線130可包含其他的導電物質,例如鎢、 氮化鈦、氮化钽、鋁,而該二極體可由字線11〇上面且有不同 電型態的第一與第二摻雜區域所構成。在又一實施例中,可讓二 輕度摻雜區域位於多個具相反導電性的高摻雜區域之間而形成誃 二極體,這是由於觀察發現可以改進該二極體的崩潰電壓。〆 該記憶體胞元115包括有一傳導元件15〇,其延伸穿過介併 170以將二極體130耦接於記憶體元件14〇。 貝 於所稍實施财,料元件⑼含_ *且記,随元件14〇 ^鎢氧化物WOx。記憶體元件14G被—層氮化鈦15qa 氮化矽與氮化鈦的夾層所圍繞。其他的物質亦可用作概墊。 於所示的實施例中,形成含有鎢氧化物的記憶體元件14〇 包括直接電®氧化、下游氧化、熱擴散氧化、麵 ,反^式_。賴氧化製㈣實施方式包括有純氧氣: 作用’例如氧氣/氮氣或氧氣/氮氣/氫氣。在下『樂 氧化的-實關中,該下游賴被施加約15⑻耳的 ^ 。1000瓦的功率、氧氣與氣氣流速比率在〇 i到之間 ^ ηΐ且f續10到2000秒的時間。參閱如美國專利”青 在此將其併作參考。這項製程亦導致該層b〇A其 氧化,以形成-場增強元件999。場增強元件999包^ 上ί電極的記憶體元件的氮化鈦氧化物TiN〇X: 鶴氧化物觸汉以較觀化鈦氧化物層的厚度更厚層的方法而形 201126522 ί度:ί穿電Ϊ以及圍繞於鎢插頭的襯墊頂端的介質 ίί :到鎢插頭頂端的介質厚度。由於距: :之Η=ΐ : 間的電場大於上部電極與鎢插頭表 當鎢“徑,或者上,轉麵皮加強。 者整個記憶體元件賴面實壯均勻的增加/的a琢成為七 在另一實施例中,記憶體元件140可包 =的2 Wx # ’可擇做得其具嫌_元請 -的H位元^120包括作為該記憶體胞元115 —上部電極的位 120電輕接於記憶體元件140,伸入並且 Γ =元線120可含有錄或鈾或其他高^數Ξ ϋ部ί底Γ極和導體可以是氮化鈦、鏡、錢、纪、鑭銳 ί、ϊ、, 鈦:鈮、鉻、釩、鋅、鎢、鉬、銅、錁、釕、 錢等等。高功函數電極降低操作的切換電流。 =為例’於60 nm的操作電流降至1〇〇微安培以下而切換速度 直二兄微秒,可以預期在85。°具有大於3。。年的保存期間。而且, 具有相似的生成自由能的上部電極能改善保存性質。 介質174分隔相鄰的位元線12(^於所示的實施例中,介質 Π0、172含树氧化物。然而,亦可選用其他介電材料。 從圖2A和2B所是的截面圖可以看出陣列1〇〇的記憶體胞元 糸女排在字線110與位元線12G的交叉點位置。以記㈣胞元ιΐ5 201126522 作為代表’其安排於字線110b與位元線120b的交叉點位置。此 外,記憶體元件140與傳導元件150、160具有一第一寬度,其實 質上和該等字線(參閱圖2A)的寬度114相同。而記恃 ,元件14〇與傳導元件15〇、W0具有一第二寬度,其實質上^言^ 等,位元線120 (參閲圖2B)的寬度124相同。在此所用的“實= 上” 一詞是為了容納製造允差。因此,陣列10〇的記憶體皰元二 該截面區域完全由該等字線110和該等位元線12〇 ^尺 . 定’讓陣列100能有一高記憶體密度。 /、In another embodiment, the word line 130 may include other conductive materials such as tungsten, titanium nitride, tantalum nitride, aluminum, and the diode may be on the top of the word line 11 and have different electrical patterns. One and the second doped region are formed. In yet another embodiment, the two lightly doped regions can be positioned between a plurality of highly doped regions of opposite conductivity to form a germanium diode, which is observed to improve the breakdown voltage of the diode. . The memory cell 115 includes a conductive element 15〇 extending through the dielectric 170 to couple the diode 130 to the memory element 14A. In the case of a small implementation, the material element (9) contains _ * and is recorded with the element 14 〇 ^ tungsten oxide WOx. The memory element 14G is surrounded by a layer of titanium nitride 15qa tantalum nitride and titanium nitride. Other substances can also be used as a cushion. In the illustrated embodiment, the formation of the memory element 14? containing tungsten oxide includes direct electrical oxidation, downstream oxidation, thermal diffusion oxidation, surface, and inverse. The oxidative (4) embodiment includes pure oxygen: an action such as oxygen/nitrogen or oxygen/nitrogen/hydrogen. In the next "oxidation-reality", the downstream reliance is applied about 15 (8) ears ^. The 1000 watt power, oxygen to gas flow rate ratio is between 〇 i and ^ η ΐ and f continues for 10 to 2000 seconds. See, for example, U.S. Patent, which is incorporated herein by reference. This process also causes the layer b〇A to oxidize to form a field-enhancing element 999. The field-enhancing element 999 contains the nitrogen of the memory element of the electrode Titanium oxide TiN〇X: The crane oxide touches the shape of the thicker layer of the titanium oxide layer. The shape is 201126522 ί: 穿 穿 Ϊ Ϊ Ϊ Ϊ Ϊ Ϊ Ϊ Ϊ 围绕 围绕 围绕 围绕 围绕 围绕 围绕 围绕 围绕 围绕 围绕: The thickness of the medium to the top of the tungsten plug. Because of the distance: : Η = ΐ : The electric field between the upper electrode and the tungsten plug is larger than the tungsten "diameter", or the upper surface is strengthened. The entire memory element surface is evenly increased by the increase of / a becomes seven. In another embodiment, the memory element 140 can be packaged = 2 Wx # ' can be selected to be its _ yuan please - H The bit 120 includes the bit 120 as the upper electrode of the memory cell 115 electrically connected to the memory element 140, and the pixel 120 can be included and the uranium line 120 can contain uranium or other high Ξ ί The bungee and the conductor may be titanium nitride, mirror, money, Ji, 镧, ϊ, 钛, titanium: bismuth, chromium, vanadium, zinc, tungsten, molybdenum, copper, bismuth, antimony, money, and the like. The high work function electrode reduces the switching current of the operation. = For example, the operating current at 60 nm drops below 1 〇〇 microamperes and the switching speed is straight for two microseconds, which can be expected at 85. ° has greater than 3. . The period of preservation of the year. Moreover, the upper electrode having a similar free energy of formation can improve the preservation property. The dielectric 174 separates adjacent bit lines 12 (in the illustrated embodiment, the dielectrics 、0, 172 contain tree oxide. However, other dielectric materials may also be used. The cross-sectional views from Figures 2A and 2B may It can be seen that the memory cell of the array 1〇〇 is at the intersection of the word line 110 and the bit line 12G. The intersection of the word line 110b and the bit line 120b is represented by the symbol (4) cell ιΐ5 201126522. In addition, the memory element 140 and the conductive elements 150, 160 have a first width that is substantially the same as the width 114 of the word lines (see FIG. 2A). Note that the element 14 and the conductive element 15 〇, W0 has a second width, which is substantially the same, and the width 124 of the bit line 120 (see Fig. 2B) is the same. The term "real = up" as used herein is intended to accommodate manufacturing tolerances. Therefore, the cross-sectional area of the memory blister 2 of the array 10 is completely determined by the word lines 110 and the bit lines 12. The array 100 can have a high memory density.

該等字線110具有字線寬度114,並且由字線分隔距離u 隔相鄰的字線Π0 (參閱圖2A>該等位元線12〇具有位元線寬二 124,並且由位几線*隔距离隹122分隔相鄰的位元線^ 2B)。在較佳實施财,字線寬度114與字線分隔麟ιΐ2的^ 成陣列的製程的特徵尺寸F的兩倍,而位元^寬 = 與位元線分膈距離122的總和也等於該特徵尺寸F的兩倍。 為於驗形賴科線110與該等位元線12G的製i 平面Ϊ刷^程)之一最小特徵尺寸,其使得陣列_ Ϊ d憶體胞兀具有4F的記憶體胞元面積。 導雷=示的記憶體陣列100,記憶體元件140自行盘 由二了Ζ述較詳細的製造實施例中,記憶“ 疋、,,生由傳Vtl件150的材料氧化所形成。 壓下,接到相對應的字線_和位元線120b的偏 偏壓排·_,_元 115,= 140的電阻狀態中感應-可程控的變ί記情體Ϊ件 140的電阻顯示儲存於記憶體胞元115的資料^變 體件 二如圓—所示記憶體胞元的交又點 圖3Α卻顯示在—基板上形成字線U0以及在字線„〇上形 201126522 成介質170的第一步驟之截面圖,字線n〇自一第一方向伸展進 ί並示的截面圖,所示的實施例含雜雜的半導體材 具有字線寬度114,並且由字線分隔距離112分隔相 鄰的字線。 接著,具有寬度610的偏壓陣列600形成於介質17〇 二露出部分的字線11。’摻雜的半導親域W於字線η。之間例 如用離子植入方式形成,產生的結構如圖4Α_4β的截面圖所示。 該摻雜的半導體區域m具有與字線11〇相反的傳導類 ΞΐΐΤϋϋ體區域132與字線110定義了 PN接合134,二 H 導舰域132从紐雜料導體區域 的ίί=圖4A-4B中’傳導元件150是在導通孔6〇〇中形成 件150勺括射^5Β截面圖所示的結構。在本實施例中的傳導元 件150包括材縣,且可藉由導通孔6〇 接著施以平面化的步驟如化學機械磨絲形成相沈積材科鶴 該場增強元件999==i= f剩餘部分自行排列,導致如圖6錄截面圖 的因此不而要額外的遮蔽物來形成記憶體元件140。 之後,金屬氧化物記憶體元件140利 ^ 氣、氫氣或氬氣的氣體下,溫度高於贈1二性=至d 任何合適的_絲實f 12 201126522 系統)。暴露過程的時間、溫度及壓力取決於數種因素,包括所使 用的系統,以及各實施例的不同。例如:溫度範圍可以從15〇它 500°c,時間從10到10,000秒,在10_5到10·2托耳間的壓力。下 面將詳細討論關於圖11A-11B,此處所述之固化金屬氧化物記憶 體元件140是為了說明改善金屬氧化物記憶體元件14〇 ^ 換性能以及循環耐久性。 轉 形成咼功函數位元線130使用例如物理氣相沈積法,以介質 174分開,形成於如圖6A-6B所示之結構上,而導致如圖2a_2B 所不之交叉點陣列1〇〇。在某些實施例中,關於圖4A_4b所述的 鲁金屬氧化物記憶體元件140的選擇性暴露程序可替代操作於位元 線130上。偏壓電路如供應電壓和/或電流源可形成在相同的裝置 如S己憶體元件上,以及輕合到字線HQ和位元線12〇用於應用此 處所述之偏壓配置。形成位元線130與介質174可藉由將位元線 材料成型於圖4A-4B中的結構,在位元線130上形成介質,以及 執行一平面化程序如化學機械磨光。 在圖6B之後,一具有導體的上部電極形成。 圖7為本發明的一整合電路1〇的簡化流程圖,該整合電路1〇 包括記憶體胞元的交叉點記憶體陣列〗00 ’該記憶體胞元包括一金 鲁 ^氧化物為基礎之記憶體元件以及一二極體存取裝置。字線解碼 器14與複數個字線16耦合且電子通訊。位元線(行)解碼器18 ,複f個位元線20電子通訊以從陣列100中的記憶體胞元(未顯 =)項取與寫進資料。位址供應於排線22上至字線解碼器與驅動 器14以及位元線解碼器18。方塊24中的感測放大器及資料進入 經由資料排線26耦合至位元線解碼器18。資料的提供係從整 ΐ電路上的輸入/輸出埠,或從整合電路10内部或外部的其他 $料源藉由資料進入線28至方塊24中的資料進入結構。其他的 電路30可包括於整合電路10中,如一普遍用途的處理器或特殊 用途,應用電路,或模組的結合提供由陣列1〇〇所支援的在晶片 上的系統功能❶資料的提供係從方塊24中的感測放大器藉由資料 13 201126522 10内部或 ⑽入_,或整合電路 制偏4配置供應電㈣的&配置狀態機器,控 執行於相同的整合電路用途的處理器,其可 作。在又另一與γ你丨由/執仃一电腦種式來控制該裝置的操 器可結合以“制器Γ4Γ實Ϊ!邏輯電路與普遍用途的處理 ⑽ϋίΓ®6Α_6Β’在製造财二_絲裝置的記传體 物記憶體元件140可藉由暴露於包含至少二氮 亂虱虱或氬氣的氣體中來固化。 物、ίΐίί氧化物如鈦氧化物、錄氧化物、18氧化物、銅氧化 ί、氧化物、銀伽匕物、鉻捧雜錯酸 ;極==:、繼鍵、以卿_與高功函數上部 此裝置不僅可使用雙極操作,亦可使用單極操作。雙 ,不該裝置可以相反極性的電場來設定或重設操作。單極操以 示該裝置可以相同極性的電場來設定或重設操作。 圖8為具有一電場增強排列的一範例記憶體胞元的簡單示意 圖0 < 、一 δ己憶體如抗氧化物ram或磁穿隨接面抗磁性具有一 場,強排列。記憶體胞元具有一上部電極與一底部電極,i記憶 體元件排列於上部電極與底部電極間的電流路徑中的電系列。〜 在上部電極與底部電極間的電流路徑中的電系列,一傳導元 件或導體具有“U”字形截面。該傳導元件的“u”字形戴面的凹 處部分位於與上部電極距離第一距離dl處,對應該記憶體元件的 201126522 厚度cn。該傳導元件的“σ,字職面 ϊ厚於^上部電極算起的距離,dl是從該上部電極至傳 導兀件的U子形截面_處部分的第—轉,⑽是從該上 字,面的臂狀部分的第二距離,ϋ 。導U賴2魏轉導元件及該非導電絕緣體1β 可導緣是相同或不同的材料。薄絕緣體1 的材料需求為高電阻材料,如可在絕緣體,内支樓 == 或氮氧化鈦(TiN〇x)。為使場增強,d2的厚度^ 末端Sr及ί憶體元件的寬度越窄’則在絕緣體1的 末如及S己憶體疋件内所產生的電場越高。 temU為具有-電場職排觸-範例記憶體胞元的—截面圖 ㈣ί圖! L’60腿裝置的TEM影像以金屬氧化物·〇χ作為 Ί為特徵。記憶體元件的上部被非導電絕緣體TiN0x所 ίϊ拖件為㈣電性鎢插頭以及⑻環繞記憶體树與導電 中:一丄卩的導電性氮化鈦(Τ1Ν)襯墊兩者的組合。在此實施例The word lines 110 have a word line width 114, and the word lines Π0 are separated by a word line separated by a distance u (see FIG. 2A > the bit line 12 〇 has a bit line width of two 124, and is determined by a bit line * Separation distance 隹 122 separates adjacent bit lines ^ 2B). In a preferred implementation, the word line width 114 is separated from the word line by twice the feature size F of the array process, and the sum of the bit width = the bit line distance 122 is equal to the feature. Double the size F. A minimum feature size for determining the shape of the Lai Ke line 110 and the i-plane line 12G, such that the array has a 4F memory cell area. The memory array 100, the memory element 140, and the memory element 140 are formed by a more detailed manufacturing embodiment, and the memory "疋,,, is formed by oxidation of the material of the Vtl member 150. Receiving the corresponding word line _ and the bit bias line of the bit line 120b, _, _ yuan 115, = 140 in the resistance state of the sense-programmable variable ί Ϊ 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 The data of cell 115 is the same as that of the memory cell. Figure 3 shows the word line U0 on the substrate and the first on the word line 2011 2011 201126522 into the medium 170. In a cross-sectional view of the steps, the word line n〇 extends from a first direction and is shown in cross section. The illustrated embodiment contains a heterogeneous semiconductor material having a word line width 114 and is separated by a word line separation distance 112. Word line. Next, a bias array 600 having a width 610 is formed on the word line 11 of the exposed portion of the dielectric 17 . The doped semi-conducting well W is at word line η. For example, it is formed by ion implantation, and the resulting structure is shown in the cross-sectional view of Fig. 4Α_4β. The doped semiconductor region m has a conductive-like body region 132 opposite to the word line 11A and the word line 110 defines a PN junction 134, and the second H-guided domain 132 is from the nucleus conductor region ίί=FIG. 4A-4B The middle conductive element 150 is a structure shown in the cross-sectional view of the forming member 150 in the through hole 6A. The conductive element 150 in this embodiment includes a material county, and can be planarized by a via hole 6 如, such as chemical mechanical polishing to form a phase deposition material, the crane enhancement element 999==i=f remaining Partial self-alignment results in an additional mask to form the memory element 140 as shown in the cross-sectional view of FIG. Thereafter, the metal oxide memory element 140 is subjected to a gas of a gas, a hydrogen gas or an argon gas at a temperature higher than that of the gift of the second element = to d any suitable _ wire solid f 12 201126522 system). The time, temperature and pressure of the exposure process depend on several factors, including the system used, and the differences in the various embodiments. For example, the temperature range can be from 15 〇 to 500 ° C, time from 10 to 10,000 seconds, and pressure between 10 _ 5 and 10 Torr. Referring to Figures 11A-11B in detail, the cured metal oxide memory device 140 described herein is illustrative of improved metal oxide memory device 14 conversion performance and cycle durability. The turn-to-form work function bit line 130 is separated from the dielectric 174 by, for example, physical vapor deposition, and formed on the structure as shown in Figs. 6A-6B, resulting in an array of cross-points as shown in Figs. 2a-2B. In some embodiments, the selective exposure process for the Lu metal oxide memory device 140 described with respect to Figures 4A-4b can be substituted for operation on the bit line 130. A bias voltage circuit, such as a supply voltage and/or current source, can be formed on the same device, such as a S-resonance element, and lightly coupled to word line HQ and bit line 12 for applying the bias configuration described herein. . Forming the bit line 130 and the dielectric 174 can form a dielectric on the bit line 130 by forming the bit line material into the structure of Figures 4A-4B, and performing a planarization process such as chemical mechanical polishing. After FIG. 6B, an upper electrode having a conductor is formed. 7 is a simplified flow chart of an integrated circuit 1A of the present invention, the integrated circuit 1 includes a cross-point memory array of a memory cell, and the memory cell includes a gold-based oxide-based oxide Memory component and a diode access device. Word line decoder 14 is coupled to a plurality of word lines 16 and is in electronic communication. A bit line (row) decoder 18, the complex f bit lines 20 are electronically communicated to fetch and write data from memory cell (not shown) entries in array 100. The address is supplied to the line 22 to the word line decoder and driver 14 and the bit line decoder 18. The sense amplifier and data entry in block 24 is coupled to bit line decoder 18 via data line 26. The data is supplied from the input/output ports on the integrated circuit, or from other sources within or outside of the integrated circuit 10, through the data entry line 28 to the data in block 24 into the structure. Other circuits 30 may be included in the integrated circuit 10, such as a general purpose processor or special purpose, application circuit, or combination of modules to provide system functions on the wafer supported by the array. From the sense amplifier in block 24, by means of the data 13 201126522 10 internal or (10) into _, or integrated circuit configuration 4 configuration power (four) & config state machine, control the processor executed in the same integrated circuit use, Can be done. In another device that controls the device with γ 丨 仃 仃 仃 仃 可 可 可 可 可 可 可 可 可 可 逻辑 逻辑 逻辑 逻辑 逻辑 逻辑 逻辑 逻辑 逻辑 逻辑 逻辑 逻辑 逻辑 逻辑 逻辑 逻辑 逻辑 逻辑 逻辑 逻辑 逻辑 逻辑 逻辑 逻辑 逻辑 逻辑 逻辑 逻辑 逻辑 逻辑 逻辑 逻辑 逻辑 逻辑 逻辑 逻辑 逻辑 逻辑 逻辑 逻辑The device memory device component 140 of the device can be cured by exposure to a gas comprising at least dinitrogen or argon. An oxide, such as titanium oxide, oxide oxide, 18 oxide, copper. Oxidation ί, oxide, silver gamma, chrome holding erroneous acid; pole ==:, relay, qing _ and high work function upper This device can not only use bipolar operation, but also use unipolar operation. The device may not be set or reset by an electric field of opposite polarity. The unipolar operation indicates that the device can be set or reset by an electric field of the same polarity. Figure 8 is an example memory cell with an electric field enhancement arrangement. A simple schematic diagram of 0 <, a δ-remembered body such as an anti-oxidation ram or a magnetic wear-resistant surface has a field, strong alignment. The memory cell has an upper electrode and a bottom electrode, and the i-memory elements are arranged in Current between the upper electrode and the bottom electrode Electrical series in the path. ~ Electrical series in the current path between the upper electrode and the bottom electrode, a conducting element or conductor having a "U" shaped cross section. The concave portion of the "u" shaped face of the conducting element is located The upper electrode is at a distance dl from the first distance, corresponding to the 201126522 thickness cn of the memory element. The σ of the conductive element is thicker than the distance calculated by the upper electrode, and dl is from the upper electrode to the conductive element The U-shaped section _ at the portion of the first turn, (10) is the second distance from the upper word, the arm portion of the face, ϋ. The guiding electrode and the non-conductive insulator 1β can be the same or different materials. The material requirements for thin insulator 1 are high-resistance materials, such as in insulators, inner support == or titanium oxynitride (TiN〇x). In order to enhance the field, the thickness of d2, the narrower the width of the end Sr and the element, the higher the electric field generated at the end of the insulator 1 and in the S-resonance element. temU is a cross-sectional view of the electric field-like touch-example memory cell. (4) The TEM image of the L'60 leg device is characterized by metal oxide·〇χ as Ί. The upper portion of the memory element is a combination of a non-conductive insulator TiN0x and a (4) electrical tungsten plug and (8) a surrounding memory tree and a conductive conductive titanium nitride pad. In this embodiment

TiNcT,的場增強裝置排列係藉由氧化鹽槪墊為絕緣 X ’如此w〇x被迫凸出於其餘的TiN襯墊上。 且古2?:”式記憶體*互補金氧半導體具_好_容性,且 °然而’不像過渡金屬氧化物,W0x呈現低起 电阻吸^電流,且嚴重_其寫入頻寬。 其他過渡金屬氧化物雜式記憶體不同。由於溫度的 =欠氧化物 全消除在原生的WOx電阻式記憶體元件中 4物形成洩漏路徨。一形成過程改變該低電阻狀態為一高 L此操作需要高電電流以及需要正確的極性;該形成 15 201126522 脈衝的相反極性無法達到一高電阻狀態。 、W〇x電阻式記憶體的X射線光電子光譜學分析指出w〇x電阻 式3己憶體表面的頂層主要由W〇3所組成,且在低於表面約2.5 nm 處,其組成改變為W〇2 + W2〇5+W〇3的混合。導電式原子力顯微 鏡顯示,漏路徑可藉由應用一電流穿過原子力顯微鏡尖端來消 除’暗示洩漏路徑被氧化所密封係由焦耳熱所導致。 2 對於形成過程一提議的機制為:正電壓從較低於表面處吸引 負〇>離子,且將有漏洞的次氧化物轉換為絕緣W〇3。該上部電極 係為氧惰性的。下面的表格顯示一氧惰性上部電極(TiN,pt)較一氧 反應上部電極(Al,Ti,W)顯示較佳的電阻式記憶體的高電阻狀鲅/ 低電阻妝錐。The field enhancement device arrangement of TiNcT, which is insulated by the oxide salt pad, is forced to protrude from the remaining TiN pads. And the ancient 2::" memory * complementary MOS semiconductor _ good _ capacitive, and ° however ' unlike the transition metal oxide, W0x exhibits a low starting resistance sink current, and severe _ its write bandwidth. Other transition metal oxide hybrid memories are different. Due to the temperature = under-oxide elimination, the leakage path is formed in the original WOx resistive memory device. A formation process changes the low resistance state to a high L. The operation requires high electric current and requires the correct polarity; the opposite polarity of the formation of the 2011 20112222 pulse cannot reach a high resistance state. X-ray photoelectron spectroscopy analysis of the W〇x resistive memory indicates that the w〇x resistance type 3 recalls The top layer of the surface of the body is mainly composed of W〇3, and its composition is changed to a mixture of W〇2 + W2〇5+W〇3 at a distance of about 2.5 nm below the surface. Conductive atomic force microscopy shows that the leak path can be borrowed. By applying a current through the tip of the atomic force microscope to eliminate 'the suggestion that the leak path is oxidized, the seal is caused by Joule heat. 2 The proposed mechanism for the formation process is: positive voltage draws negative 较低 from lower surface> And the porous oxide is converted to the insulating layer W. 3. The upper electrode is oxygen-inert. The following table shows that the oxygen-containing upper electrode (TiN, pt) reacts with the upper electrode (Al, Ti). , W) shows a high resistance 鲅/low resistance makeup cone of a preferred resistive memory.

電阻窗 TiN / WOx 5KO-100 KO Pt / WOx 5 KO-1 MO A1 / WOx _ 無轉換 Ti / WOx 〇·3 KO-3 KO W/WOx __^2Κ0-1 KO 下面敘述設定/重設機制。對於設定操作,產生一或多wo 經由電化學氧化還原反麟起上部與底部電極的橋襟。談 t = wo3.n層產生低電阻狀態。對於重設操作,w〇3n燈絲^ $2稭由形成程序的相同機制轉換為絕_ W〇3 (由較深處拉 化2。因此’最初僅在未加卫的裝置上以大量的_路徑‘ 成特殊的重設。 電阻決定層靠近上部m表面。因此,完全密封的 由-正規的重,衝來達成。對於各種不同 2 1〇〇 nm)的裝置實施設糧設·與電流顯示 = 16 201126522 裝置大小沒有或很弱的依賴關係,暗示wox電阻式記憶體的重設 與設定機制透過氧化還原反應過程中燈絲的形成與分裂來支配。 50 ns的重設脈衝具有一中間重設電壓保持在約·ΐ 3ν,且一中 定電流保持在約0.65 mA。 起始的電阻分佈是與50個最近的180細w〇x電阻式記憶體 裝置以及50個最近的60 nm WOx電阻式記憶體裝置來比較。在 60nm,具有寬分佈(l〇gR介於3.8與65之間)的起始電阻更高, 而對於180 nm裝置(log R介於2.5與3·〇之間)是非常緊的。此可 由洩漏路徑的密度來解釋。若洩漏路徑密度接近在6〇nm χ 6〇nm 鲁的面積中的單一數字,則此分佈係由統計學波動所預期。 緊的程序電壓分佈是由於從50、60 nm WOx電阻式記憶體胞 元的設定與重設操作。對於重設(電阻約l00k〇hm)平均電壓是 1·91 V ’標準差0.31 V ’而對於設定(電阻約10k〇hm)平均電壓 是1.31 V,標準差0.22 V。 瞬變電流的電流-時間圖顯示在60 nm WOX電阻式記憶體胞元 上50ns的重設與設定脈衝表現良好。可達到具有6〇nmW〇x電阻 式s己憶體胞元的多層式晶片操作’以至少四層在2〇κ〇與80KO 之間产生兩個額外的層次,且該多層次晶片的耐久力>1〇4循環。 % >51()9讀取次數的優異的讀取擾亂免疫存在時,以通常層次約1.5 χ 10 ohms在0.25V的重設狀態’通常層次約2.0 x 1〇5 ohms在0.5 V的重設狀態,通常層次約7.5 χ 103 ohms在0.5 V的重設狀態。 圖10為在中央的電場v.s.記憶體胞元的直徑的圖,係由模擬 以範例記憶體胞元來重設與設定操作而來,兩者皆包括具有與不 具有一電場增強排列的情況^ 〃 不具有該電場增強排列的該範例記憶體胞元被參照為一棒狀 結構。在棒狀結構中,該傳導元件缺乏“U”字形截面,取而代之 的是具有一插頭的簡單矩形截面.。 不具有該電場增強排列的該範例記憶體胞元被參照為場增強 17 201126522 結構1 因為傳導元件的“u”字形截面的兩臂之 極’"於上部電極與傳導元件之間的一 上》P電 的電⑴與棒狀結構相比具有更如=底 的“U”字形截面的兩臂之尖端。 會更问,接近傳導元件 後的;的尺寸下糾’wc>x巾心的電場會相當高。接近邊 額 一形 埸強有1011111至10011111直徑的記憶體元件’顯示電 2广=與§己憶體70件中心的距離。對於L5 v之施加’- 了。日〜魏體7C件尺寸賴約2Qnm,資料顯示場實質上被增強 記,體元件的各種直徑範圍從1〇〇nm、8〇nm6〇nm、4〇nm、 L1GlUn°圖U將記憶體胞元的中心集缺來。圖11指出, 下ί時,傳導元件的“u”字形截面的兩臂會更靠 t冋屯琢的侧邊位置對應記憶體胞元的半徑(直徑的一半)。 - 4«^ 12為由具有電場增強排列的1〇0加1直徑的示範記憶體胞 凡模擬而來的電場的二維圖。 4« &圖!3為由具有電場增強排列的20扭11直徑的示範記憶體胞元 模擬而來的電場的二維圖。 “,t,圖12與圖13亦顯示當插頭的尺寸下修時,傳導元件的 U字形戴面的兩臂會更靠近,且近似傳導元件的“U”字形截 面的兩臂的高電場漸增地聚集於中心。 圖1。4為由具有電場增強排列的各種直徑的範例記憶體胞元在 一形成操作下的實驗結果而來的脈衝電壓圖。 201126522 圖15為由具有電場增強排列的各種直徑 各種操作下的實驗結果而來的電流圖。糊錢、體胞凡在 圖14與圖15顯示當胞元尺寸上升時,初始形 電壓,電流快速下降。因此,在⑻肺或以下,初始形成程二给 略的。在如此小的記憶體胞元尺寸中,控制電路^ 而不操作,—具有命令碼的不同形成操作不同於~ 規律狀或重設操作的命令碼。取而代之的是,可執行規律操作。 圖16為由具有電場增強排列的Resistance window TiN / WOx 5KO-100 KO Pt / WOx 5 KO-1 MO A1 / WOx _ No conversion Ti / WOx 〇·3 KO-3 KO W/WOx __^2Κ0-1 KO The setting/reset mechanism is described below. For the set operation, one or more of the bridges of the upper and bottom electrodes are produced by electrochemical oxidation reduction. The t = wo3.n layer produces a low resistance state. For the reset operation, the w〇3n filament ^ $2 straw is converted to the absolute _ W〇3 by the same mechanism that forms the program (by the deeper pull 2). Therefore, initially only on the unguarded device with a large number of _ paths 'Into a special reset. The resistance determines the layer close to the upper m surface. Therefore, the completely sealed by - normal weight, rush to achieve. For a variety of different 2 1 〇〇 nm) device implementation set and current display = 16 201126522 There is no or very weak dependence on the size of the device, suggesting that the reset and settling mechanism of the wox resistive memory is governed by the formation and splitting of the filament during the redox reaction. The 50 ns reset pulse has an intermediate reset voltage maintained at approximately ΐ 3 ν and a constant current held at approximately 0.65 mA. The initial resistance distribution is compared to the 50 most recent 180 fine w〇x resistive memory devices and the 50 nearest 60 nm WOx resistive memory devices. At 60 nm, the initial resistance is higher with a broad distribution (l〇gR between 3.8 and 65) and very tight for a 180 nm device (log R between 2.5 and 3·〇). This can be explained by the density of the leak path. If the leak path density is close to a single number in the area of 6〇nm χ 6〇nm Lu, then this distribution is expected from statistical fluctuations. The tight program voltage distribution is due to the setting and reset operation of the WOx resistive memory cells from 50, 60 nm. For the reset (resistance approx. l00k〇hm), the average voltage is 1.91 V ' standard deviation 0.31 V ' and for the setting (resistance approx. 10 k〇hm) the average voltage is 1.31 V with a standard deviation of 0.22 V. The current-time plot of the transient current shows that the 50 ns reset and set pulse performed well on the 60 nm WOX resistive memory cell. Multilayer wafer operation with 6〇nmW〇x resistive s-resonant cells can be achieved' to create two additional layers between 2〇κ〇 and 80KO in at least four layers, and the durability of the multi-layer wafer >1〇4 loop. % >51()9 reads the number of excellent reads disturbing the presence of immunity at a typical level of about 1.5 χ 10 ohms in a reset state of 0.25V 'usually about 2.0 x 1 〇 5 ohms at a weight of 0.5 V Set the state, usually the level is about 7.5 χ 103 ohms in the reset state of 0.5 V. Figure 10 is a diagram of the diameter of the electric field vs memory cell at the center, which is simulated and reset by the exemplary memory cell, both with and without an electric field enhancement arrangement ^ The example memory cell that does not have the electric field enhancement arrangement is referred to as a rod-like structure. In the rod-like structure, the conducting element lacks a "U" shaped cross section and is instead a simple rectangular cross section with a plug. The example memory cell that does not have the electric field enhancement arrangement is referred to as field enhancement 17 201126522 Structure 1 Because the two-armed pole of the "u"-shaped cross section of the conductive element is on the upper electrode and the conductive element The electricity of the P electric (1) has a more extreme tip of the "U"-shaped cross section than the rod-like structure. It will be even more questioned that the electric field of the size of the ’wc>x can be quite high when the size of the element is close to the conduction element. Near the edge One shape Reluctantly has a memory element of 1011111 to 10011111 diameter' showing the distance between the wide and the center of 70 pieces of the § memory. For the application of L5 v'. Day ~ Wei body 7C size depends on about 2Qnm, the data display field is substantially enhanced, the various diameters of the body components range from 1〇〇nm, 8〇nm6〇nm, 4〇nm, L1GlUn°U will memory cells The center of the Yuan is missing. Figure 11 indicates that at the time of ί, the two arms of the "u"-shaped cross section of the conducting element will correspond to the radius of the memory cell (half the diameter) of the side of the t冋屯琢. - 4 «^ 12 is a two-dimensional map of the electric field simulated by an exemplary memory cell with an electric field enhanced arrangement of 1 〇 0 plus 1 diameter. 4« &Fig. 3 is a two-dimensional map of an electric field simulated from a 20-torn 11-diameter exemplary memory cell with an electric field enhancement arrangement. ", t, Fig. 12 and Fig. 13 also show that when the size of the plug is repaired, the arms of the U-shaped wearing surface of the conducting element will be closer, and the high electric field of the two arms of the "U" shaped section of the conducting element is gradually The augmentation is concentrated in the center. Figure 1. 4 is a pulse voltage diagram of experimental results of a sample memory cell of various diameters with electric field enhancement arrangement in a forming operation. 201126522 Figure 15 is an arrangement enhanced by an electric field. The current graphs obtained from the experimental results of various diameters under various operations. The money and body cells in Fig. 14 and Fig. 15 show that when the cell size increases, the initial shape voltage and current decrease rapidly. Therefore, in (8) lung or below, In the case of such a small memory cell size, the control circuit does not operate, and the different forming operations with the command code are different from the command codes of the regular or reset operation. Instead, , can perform regular operations. Figure 16 is arranged by electric field enhancement

60 nm直徑的範例^己,降ρ的_ 在重設與設錢作㈣讀環下的實騎絲 電壓期間圖。 .s.服衡 圖16指出如此小的記憶體胞元不需要不同的形成操作。 在會電場增強排列的60 nm直徑的範例記憶體胞元 在重5又與S又疋刼作的多次循環下而來的電阻v s•循環次數圖。 ^ 17指出60nm裝置的循環耐久力大於一百萬次。在一百萬 次循環的重設/設定操作中,重設/設定電阻窗仍保持良好的分離。 大約10倍電阻窗可藉由程式確認演算法來妥善地保持。 圖^為對於具有電場增強湖的6Gnm直㈣範例記憶體胞 70在一貫質的加熱期間後的電阻v.s.保持時間圖。 八離重設與設定雜、即使在15G°C、纖小時的輯後亦充分地 以上所述係利用較佳實施例詳細說明本發明,而非限制本發 明的範圍,因此熟知此技藝的人士應_瞭,適當而作些微的改 變與調整,仍將不失本發明之要義所在,亦不脫離本發^之精神 和範圍,故都應視為本發明的進一步實施狀況。 【圖式簡單說明】 19 201126522 圖1為本發明之使用記憶體胞元實施一交叉點記憶體陣列的 部分不意圖。 圖2A與2B為在交叉點陣列1〇〇之内排列的記憶體胞元之一 實施例的部份截面圖。 圖3-6說明用以製造如圖2A-2B所示之記憶體胞元的交叉點 陣列的一製造順序步驟。 圖7為本發明的一整合電路的簡化流程圖,該整合電路包括 記憶體胞元的交叉點陣列,該記憶體胞元包括一金屬氧化物為基 礎之記憶體元件以及一二極體存取裝置。 圖8為具有一電場增強排列的一範例記憶體胞元的簡單示意 圖。 。 圖9為具有一電場增強排列的一範例記憶體胞元的一截面 TEM影像。 #圖10為在中央的電場vs•記憶體胞元的真徑的圖,係由模擬 以範例5己憶體胞元來重設與設定操作而來,兩者皆包括具有與不 具有一電場增強排列的情況。 一 ,圖11為由具有一電場增強排列的各種直徑範例記憶體胞元在 一形成操作下模擬而來的截面圖的電場圖。 一圖12為由具有電場增強排列的100胃直徑的示範記憶體胞 元模擬而來的電場的二維圖。 圖13為由具有電場增強排列的2〇nm直徑的示範記憶體胞元 模擬而來的電場的二維圖。 ,圖14為由具有電場增強排列的各種直徑的範例記憶體胞元在 一形成操作下的實驗結果而來的脈衝電壓圖。 ,15為由具有電場增強排列的各種直徑的範例記憶體胞元在 各種操作下的實驗結果而來的電流圖。 201126522 圖16為由具有電場增強排列的60 nm直徑的範例記憶體胞元 在重設與設定操作的多次循環下的實驗結果而來的電阻v.s.脈衝 電壓期間圖。 圖17為由具有電場增強排列的60 nm直徑的範例記憶體胞元 在重設與設定操作的多次循環下而來的電阻vs.循環次數圖。 圖18為對於具有電場增強排列的60 nm直徑的範例記憶體胞 元在一實質的加熱期間後的電阻v.s.保持時間圖。 【主要元件符號說明】 100記憶體陣列 120,120a, 120b, 120c 位元線 130二極體 132掺雜的半導體區域 170, 172, 174 介質 999場增強元件 114字線寬度 U2子線分隔距離 600導通孔 1〇整合電路 16複數個字線 2〇複數個位元線 26資料排線 30其他電路 34控制器 110,110¾ 110b,110c 字線 115記憶體胞元 140記憶體元件 134I>N接合 150A觀墊 150,160傳導元件 124位元線寬度 122位元線分隔距離 610偏壓陣列寬度 14字線解碼器 I8位元線(行)解哭 22排線 28資料進入線 32資料輪出線 36偏壓配置供應電壓 21The example of 60 nm diameter ^, ρ _ _ in the reset and set the money (4) read ring under the real riding voltage period diagram. .s. Service Scale Figure 16 indicates that such small memory cells do not require different forming operations. A graph of the resistance vs. cycle number of a 60 nm-diameter sample memory cell with an enhanced electric field in a multi-cycle with a weight of 5 and S. ^ 17 indicates that the cycle endurance of the 60 nm device is greater than one million times. In the reset/set operation of one million cycles, the reset/set resistor window remains well separated. Approximately 10 times the resistance window can be properly maintained by a program validation algorithm. Figure 2 is a graph showing the resistance v.s. retention time for a 6Gnm straight (four) example memory cell 70 with an electric field enhanced lake after a consistent heating period. The present invention is described in detail by the preferred embodiments, and is not limited to the scope of the present invention, and is therefore known to those skilled in the art. It should be noted that the appropriate changes and modifications of the present invention will remain without departing from the spirit and scope of the present invention, and should be considered as further implementation of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS 19 201126522 FIG. 1 is a partial schematic view of a cross-point memory array using memory cells of the present invention. Figures 2A and 2B are partial cross-sectional views of one embodiment of a memory cell arranged within a cross-point array 1A. 3-6 illustrate a fabrication sequence step for fabricating a cross-point array of memory cells as shown in Figures 2A-2B. 7 is a simplified flow diagram of an integrated circuit of the present invention, the integrated circuit including an array of intersections of memory cells including a metal oxide based memory component and a diode access Device. Figure 8 is a simplified schematic diagram of an exemplary memory cell having an electric field enhanced arrangement. . Figure 9 is a cross-sectional TEM image of an exemplary memory cell having an electric field enhanced arrangement. #图10 is a diagram of the true path of the electric field vs. memory cell in the center, which is reset and set by the simulation with the example 5 memory cells, both of which have and do not have an electric field. Enhance the arrangement. 1. Figure 11 is an electric field diagram of a cross-sectional view simulated by a plurality of diameter exemplary memory cells having an electric field enhanced arrangement under a forming operation. Figure 12 is a two-dimensional map of an electric field simulated from an exemplary memory cell of 100 gastric diameters with an electric field enhanced arrangement. Figure 13 is a two dimensional diagram of an electric field simulated from an exemplary memory cell of 2 〇 nm diameter with an electric field enhanced arrangement. Figure 14 is a pulse voltage diagram of experimental results of a sample memory cell of various diameters having an electric field enhanced arrangement under a forming operation. , 15 is a current diagram derived from experimental results of exemplary memory cells of various diameters with enhanced electric field alignment under various operations. 201126522 Figure 16 is a graph of the resistance v.s. pulse voltage period from the experimental results of a 60 nm diameter sample memory cell with an electric field enhanced arrangement under multiple cycles of reset and set operation. Figure 17 is a graph of resistance vs. number of cycles from a plurality of cycles of reset and set operations of a 60 nm diameter example memory cell with an electric field enhanced arrangement. Figure 18 is a graph showing the resistance v.s. retention time for a 60 nm diameter example memory cell with an electric field enhanced arrangement after a substantial heating period. [Main component symbol description] 100 memory array 120, 120a, 120b, 120c bit line 130 diode 132 doped semiconductor region 170, 172, 174 medium 999 field enhancement element 114 word line width U2 sub-line separation distance 600 conduction Hole 1〇 integrated circuit 16 plural word lines 2 〇 plural bit lines 26 data lines 30 other circuits 34 controllers 110, 1103⁄4 110b, 110c word lines 115 memory cells 140 memory elements 134I > N joint 150A mat 150,160 conductive element 124 bit line width 122 bit line separation distance 610 bias array width 14 word line decoder I8 bit line (line) uncle crying 22 line 28 data entry line 32 data round line 36 bias Configure the supply voltage 21

Claims (1)

201126522 七、申請專利範圍: h —種記憶體裝置,其包含: -金屬氧化物記憶體树,位於具有—第—電壓的 电極與具有-第二電制—第二電極之間的—電流路徑中; 一非傳導元件,鄰近_金屬氧化物纖體元件; 傳導位於該第一電極與該第二電極之間的該電流 該傳^70件具有與該第一電極距離一第一距 一部分以及與該第二電極轉—第二 | 一距離大於該第二距離, 』乐〇丨刀《系弟 八*該ί屬氧化物記憶體元件位於該傳導元件的該第一部 該非料元件位於該傳導元件的該第 2·如申凊專利範圍第丨項所述之記憶體裝置,更包括: 操作夕Ϊί屬氧化物讀體元件上執行—重設操作以及一設定 ^作之$路,該重設操作以及該設定操作具有—共_雜極 3·如申請專概圍^销述之贼職置,更包括: 操作執行-重設麟以及一設定 《如申請專利'定操作具有相反的電驗性。 圍第1項所述之記憶體裝置,更包括: 操作屬,物記憶社件上執行-重設操作以及一設定 該設定^刊作魏料錄雜該重設操作及 5. 圍第1項所述之記憶體裝置,辦第1極 !!乾’1項所述之記憶體裝置,其中該非傳導元 7 第二電極上的,塾的-氧化物。 包含:於之記憶體裝置’其中該傳導元件 頭。 Χ 屯極上的一襯塾、以及位於該襯整中的一插 22 201126522 =述之記憶艘裝置,其中該記憶體裝 9. 述之記憶體裝置’其中該記憶體裝 10. —種製造一記憶體裝置的方法,其包括: 在第電極上方的一凹處形成一傳導元件,該 包括一第一導電材料以及一第二導電材料丨 ^傳‘7〇件 從_導元件的該第一導電材料形成 屬氧化物記Μ元件; & 裝置的-金201126522 VII. Patent application scope: h—a memory device comprising: - a metal oxide memory tree, located between an electrode having a -first voltage and a current having a second electrical system - a second electrode In the path; a non-conducting element adjacent to the metal oxide slimming element; conducting the current between the first electrode and the second electrode, the transmitting member having a first distance from the first electrode And the distance from the second electrode to the second electrode is greater than the second distance, and the music processor element is located at the first portion of the conductive element. The memory device of the second aspect of the present invention, further comprising: performing an operation on the operation of the oxide element and resetting the operation, and a setting of the path. The reset operation and the setting operation have a total of _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The electrical test. The memory device of the first item further includes: an operation genus, an execution-reset operation on the object memory device, and a setting of the setting for the re-setting operation and 5. The memory device described in the first aspect of the invention, wherein the non-conducting element 7 is on the second electrode, the bismuth-oxide. Including: a memory device' wherein the conductive element head.一 a lining on the bungee, and a plug in the lining 22 201126522 = the memory device, wherein the memory device is 9. The memory device is described in the memory device. A method of a memory device, comprising: forming a conductive element in a recess above the first electrode, the first conductive material and a second conductive material, and the first one of the first conductive element The conductive material forms an oxide recording element; & 從該傳導元件的該第二導電材料形成一非 屬氧化物記憶體元件鄰近該非傳導元件;以及 牛該金 在該金屬氧化物記憶體元件及該傳導元件上方 該金屬氧化物記憶體元件具有介於該g元 ns?厚該r極的餘料之間的-第以i 圍項所述之方法’其中形成該傳導元件 成具有-表面的該傳導树,該表面包括該第^ 導電材料’該第一導電材料在該表面鄰近該第 12.如I料利範,iG項所述之方法,其帽由氧化該傳導 二二ίΐί;同執行形成該金屬氧化㈣ 請補翻第1G項所述之方法,其巾形辆傳導 =形成具有-表面的該傳導树,該表面包括該第带 第一導電材料在該表面鄰近該^ j電材枓,其中稭由氧化該傳導元件的—表面來— 形成該金屬氧化物記憶體元件及形成該非傳導元件。 14.如申請專利範圍第10項所述之方法,更包括: 形成在該金屬氧化物記憶體元件上執行—重設操作以及一 23 201126522 作之電路,該4鱗作以及該蚊操作具有—共同的電 I5·如申請專利範圍第ίο項所述之方法,更包括: 形成在該金屬氧化物記憶體元件上執行一重設操作以及一 設定操作之電路,該重設操作以及該設定操作具^相反的電壓 極性。 16·如申請專利關第1G項所述之方法,射仙於該記憶體 胞元之正規使用的設定及重設操作之前,不需要不同於該嗖 定及重設操作的一形成操作。 、°^Forming a non-oxide memory component adjacent to the non-conductive component from the second conductive material of the conductive element; and the metal oxide memory component is interposed between the metal oxide memory component and the conductive component In the method of the present invention, wherein the conductive element is formed into a conductive layer having a surface, the surface comprising the conductive material The first conductive material is adjacent to the surface of the first conductive material according to the method of claim 12, i.e., iG, the cap is oxidized by the conductive bismuth; the same is performed to form the metal oxide (4). The method of the towel-shaped conduction = forming the conductive tree having a surface, the surface comprising the first conductive material on the surface adjacent to the electrical material, wherein the straw is oxidized by the surface of the conductive element - The metal oxide memory device is formed and the non-conductive element is formed. 14. The method of claim 10, further comprising: forming a circuit on the metal oxide memory device - a reset operation and a circuit of 23 201126522, wherein the four scales and the mosquito operation have - The method of claim 5, further comprising: forming a circuit for performing a reset operation and a setting operation on the metal oxide memory device, the resetting operation and the setting operation device ^The opposite voltage polarity. 16. If the method described in the patent application section 1G is applied, a forming operation different from the determining and resetting operation is not required before the setting and resetting operation of the normal use of the memory cell. , °^ 17. 如申請專利範圍第10項所述之方法,其中該第二電極為 氧惰性的。 18. 如申請專利範圍第1〇項所述之方法’其令形成該非傳導元 件包括: 在底部電極上氧化該傳導元件的一導電觀塾。 !9·如申請專利範圍第10項所述之方法,其中形成該傳導元件 包括: 在底部電極上形成一導電襯墊;以及 在該導電襯墊中形成一導電插頭。 20. 如申請專利範圍第10項所述之方法,其中由該方法所 的該記憶體裝置係為一抗氧化物RAM。17. The method of claim 10, wherein the second electrode is oxygen inert. 18. The method of claim 1, wherein the forming the non-conductive element comprises: oxidizing a conductive image of the conductive element on the bottom electrode. The method of claim 10, wherein forming the conductive element comprises: forming a conductive pad on the bottom electrode; and forming a conductive plug in the conductive pad. 20. The method of claim 10, wherein the memory device by the method is an anti-oxidation RAM. 21. 如申請專利範圍第10項所述之方法,其中由該方法所製造 的該記憶體裝置係為一磁穿隧接面RAM。 22· —種記憶體裝置,其包含: .一記憶體胞元之交又點陣列,在該陣列中的記憶體胞元包 括: 一金屬氧化物記憶體元件,位於具有一第一電壓 第一電極與具有一第二電壓的一第二電極之間的—雷沒 路徑中; 电/瓜 一非傳導元件,鄰近於該金屬氧化物記憶體元件; 一傳導元件,位於該第一電極與該第二電極之間的該 S 24 20112652221. The method of claim 10, wherein the memory device manufactured by the method is a magnetic tunnel junction RAM. 22. A memory device comprising: a memory cell intersection point array, the memory cell in the array comprising: a metal oxide memory element located at a first voltage first a non-conducting element between the electrode and a second electrode having a second voltage; a non-conducting element adjacent to the metal oxide memory element; a conducting element located at the first electrode and the The S 24 between the second electrodes 2011 26522 電流路徑中,該傳導元件具有與該第一電極距離一第一距 離的一第一部分以及與該第二電極距離一第二距離的一 第二部分,該第一距離大於該第二距離, 其中該金屬氧化物記憶體元件位於該傳導元件的該 第一部分與該第一電極之間,而該非傳導元件位於該傳導 元件的該第二部分與該第一電極之間。 25In the current path, the conductive element has a first portion at a first distance from the first electrode and a second portion at a second distance from the second electrode, the first distance being greater than the second distance, wherein The metal oxide memory component is between the first portion of the conductive component and the first electrode, and the non-conductive component is between the second portion of the conductive component and the first electrode. 25
TW100101528A 2010-01-19 2011-01-14 Memory device with field enhancement arrangement TWI478161B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US29623110P 2010-01-19 2010-01-19
US35884110P 2010-06-25 2010-06-25
US12/878,861 US20110175050A1 (en) 2010-01-19 2010-09-09 Metal Oxide Resistance Based Semiconductor Memory Device With High Work Function Electrode
US12/928,396 US8279656B2 (en) 2010-06-25 2010-12-10 Nonvolatile stacked nand memory

Publications (2)

Publication Number Publication Date
TW201126522A true TW201126522A (en) 2011-08-01
TWI478161B TWI478161B (en) 2015-03-21

Family

ID=44570906

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100101528A TWI478161B (en) 2010-01-19 2011-01-14 Memory device with field enhancement arrangement

Country Status (2)

Country Link
CN (1) CN102184744B (en)
TW (1) TWI478161B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104051616B (en) * 2013-03-13 2017-04-12 旺宏电子股份有限公司 Manufacturing method of member of integrated circuit and unit manufactured thereby

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003241844A1 (en) * 2002-07-11 2004-02-02 Matsushita Electric Industrial Co., Ltd. Nonvolatile memory and its manufacturing method
US9287356B2 (en) * 2005-05-09 2016-03-15 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US7781862B2 (en) * 2005-05-09 2010-08-24 Nantero, Inc. Two-terminal nanotube devices and systems and methods of making same
KR100655435B1 (en) * 2005-08-04 2006-12-08 삼성전자주식회사 Nonvolatile memory device and method of fabricating the same
KR100668348B1 (en) * 2005-11-11 2007-01-12 삼성전자주식회사 Nonvolatile memory device and fabrication method of the same
KR100718155B1 (en) * 2006-02-27 2007-05-14 삼성전자주식회사 Non-volatile memory device using two oxide layer
US7479671B2 (en) * 2006-08-29 2009-01-20 International Business Machines Corporation Thin film phase change memory cell formed on silicon-on-insulator substrate
US7728405B2 (en) * 2007-03-08 2010-06-01 Qimonda Ag Carbon memory
US7830698B2 (en) * 2008-04-11 2010-11-09 Sandisk 3D Llc Multilevel nonvolatile memory device containing a carbon storage material and methods of making and using same
US7859887B2 (en) * 2008-04-11 2010-12-28 Sandisk 3D Llc Multilevel nonvolatile memory device containing a carbon storage material and methods of making and using same

Also Published As

Publication number Publication date
TWI478161B (en) 2015-03-21
CN102184744A (en) 2011-09-14
CN102184744B (en) 2013-12-18

Similar Documents

Publication Publication Date Title
US10224370B2 (en) Device switching using layered device structure
US8279656B2 (en) Nonvolatile stacked nand memory
US9680095B2 (en) Resistive RAM and fabrication method
US8581364B2 (en) Resistance memory devices and methods of forming the same
KR102118768B1 (en) Three or more resistive state random access memory cell
US8461564B2 (en) Memory devices having an embedded resistance memory with metal-oxygen compound
TWI442549B (en) Graded metal-oxide resistance based semiconductor memory device
US8048755B2 (en) Resistive memory and methods of processing resistive memory
JP4973666B2 (en) Resistance memory element, manufacturing method thereof, and nonvolatile semiconductor memory device
KR100593448B1 (en) Non-volatile memory cells employing a transition metal oxide layer as a data storage material layer and methods of fabricating the same
US7214587B2 (en) Method for fabricating a semiconductor memory cell
EP2592624A2 (en) Metal doped non-volatile resistive memory elements
TWI450392B (en) Metal oxide resistance based semiconductor memory device with high work function electrode
CN102725846A (en) GCIB-treated resistive device
US9000407B2 (en) ReRAM materials stack for low-operating-power and high-density applications
US20150188043A1 (en) Embedded Resistors for Resistive Random Access Memory Cells
CN102568565B (en) Storage device
US20100102308A1 (en) Programmable resistive memory cell with oxide layer
KR102464065B1 (en) switching device and method of fabricating the same, and resistive random access memory having the switching device as selection device
JP2009146943A (en) Resistance variation element, semiconductor storage device using the same, and manufacturing method thereof
US9177916B1 (en) Amorphous silicon doped with fluorine for selectors of resistive random access memory cells
KR101520221B1 (en) Resistive random access memory device
Lee et al. NiO resistance change memory with a novel structure for 3D integration and improved confinement of conduction path
US9425389B2 (en) Doped ternary nitride embedded resistors for resistive random access memory cells
TW201126522A (en) Memory device with field enhancement arrangement