TW201126377A - Electroactive polymer transducers for tactile feedback devices - Google Patents

Electroactive polymer transducers for tactile feedback devices Download PDF

Info

Publication number
TW201126377A
TW201126377A TW99102024A TW99102024A TW201126377A TW 201126377 A TW201126377 A TW 201126377A TW 99102024 A TW99102024 A TW 99102024A TW 99102024 A TW99102024 A TW 99102024A TW 201126377 A TW201126377 A TW 201126377A
Authority
TW
Taiwan
Prior art keywords
user interface
electroactive polymer
converter
actuator
circuit
Prior art date
Application number
TW99102024A
Other languages
Chinese (zh)
Inventor
Chris A Weaber
Alireza Zarrabi
Roger Hitchcock
Original Assignee
Artificial Muscle Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Artificial Muscle Inc filed Critical Artificial Muscle Inc
Priority to TW99102024A priority Critical patent/TW201126377A/en
Publication of TW201126377A publication Critical patent/TW201126377A/en

Links

Abstract

Electroactive transducers as well as methods of producing a haptic effect in a user interface device simultaneously with a sound generated by a separately generated audio signal and electroactive polymer transducers for sensory feedback applications in user interface devices are disclosed.

Description

201126377 六、發明說明: 【發明所屬之技術領域】 本發明係針對使用電活性聚合物轉換器來提供感覺回 饋。 α 【先前技術】 現今使用之極多種裝置依賴於一類或另一類致動器以將 電能轉換為機械能。相反,許多發電應用藉由將機械動作 轉換成電能而操作。用以按此方式收集機械能,相同類型 〇 之致動器可稱作發電機。同樣,當使用該結構來將諸如振 動或壓力之物理刺激轉換成電信號以供達成量測目的時, 其可被特徵化為感測器。然而,術語「轉換器」可用以— 般指代該等裝置中之任一者。 多個没計考慮因素促成選擇及使用先進之介電彈性體材 料(亦稱作「電活性聚合物」(ΕΑΡ))來製造轉換器。此等 考慮因素包括位力(potential f0rce)、功率密度、功率轉換/ jQ ’肖耗大小、里量、成本、回應時間、工作循環、服務要 求、%境影響等。因而,在許多應用中,EAp技術供應對 壓電、形狀記憶合金(SMA)及電磁裝置(諸如,馬達及螺線 管)之理想替換。 ΕΑΡ裝置之實例及其應用描述於以下美國專利中:第 7,394,282 號;第 7,378,783 號;第 7,368,862 號;第 7,362,032 號;第 7,320,457 號;第 7,259,503 號;第 7,233,097 號;第 7,224,106 號;第 7,2ιι,937 號;第 7,199,501 號;第 7,166,953 號;第 7,064,472 號;第 146043.doc 201126377 7,062,055 號; 7,034,432 號 6,891,317 號 6,812,624 號 6,781,284 號 6,664,718 號 6,583,533 號 第 7,052,594 號;第 7,049,732 號;第 第 6,940,221 號;第 6,911,764 號;第 第 6,882,086 號;第 6,876,135 號;第 第 6,809,462 號;第 6,806,621 號;第 第 6,768,246 號;第 6,707,236 號;第 第 6,628,040 號;第 6,586,859 號;第 第 6,545,384 號;第 6,543,110 號;第 6,376,971號及第6,343,129號中;及描述於以下美國專利申 請公開案中:第2009/0001855號;第2〇09/0154053號;第 2008/0180875 號;第 2008/0157631 號;第 2008/0116764號; 第 2008/0022517號;第 2007/0230222號;第 2007/0200468 號;第 2007/0200467號;第 2007/0200466號;第 2007/0200457 號;第 2007/0200454 號;第 2007/0200453 號;第 2007/0170822 號;第 2006/0238079 號;第 2006/0208610號;第 2006/0208609 號;及第2005/01 57893號,以及於2009年1月22日申請之 美國專利申請案第12/358,142號;PCT申請案第 PCT/US09/63307號;及 PCT公開案第 W0 2009/067708號, 該等案之全文以引用的方式併入本文中。 ΕΑΡ轉換器包含具有可變形特性且由薄彈性體介電材料 分隔的兩個電極。當將電壓差施加於該等電極時,帶相反 電荷之電極彼此吸引,藉此將聚合物介電層壓在其間。隨 著將該等電極拉近於一起,介電聚合物膜隨著其在平面方 向上(沿X軸及y軸)擴張(亦即,膜之位移係在平面中)而變 得較薄(z轴分量收縮)。該ΕΑΡ膜亦可經組態以在正交於膜 146043.doc 201126377 結構之方向上(沿Z軸)產生移動,亦即,該膜之位移係在平 面外。美國專利申請案第2005/0157893號揭示提供此平面 外位移-亦稱作表面變形或厚度模式偏轉-之ΕΑΡ膜構造。 該ΕΑΡ膜之材料及物理性質可變化且受控制以定製轉換 器所經歷之表面變形。更具體言之,諸如以下各者之因素 可叉控制及變化以在該膜處於活性模式下時定製該膜之表 面特徵.聚合物膜與電極材料之間的相對彈性、聚合物膜 0 與電極材料之間的相對厚度及/或聚合物膜及/或電極材料 之變化厚度、聚合物膜及/或電極材料之實體圖案(以提供 局部化之活性及非活性區域)、對£八?膜整體施加之張力或 預應變,及施加於該膜之電壓的量或該膜上所誘發之電 容。 $ 存在幕多基於轉換器之應用,其將得益於由此等EM膜 提供之優點。一個此應用包括在使用者介面裝置中使用 膜來產生觸感回饋(經由施加至使用者身體之力來將資 〇 訊傳達給使用者)。存在許多已知之使用者介面裝置,其 通常回應於使用者所引發之力而使用觸感回饋。可使用觸 感回饋之使用者介面桊罟 展置的貝例包括鍵盤、小鍵盤、遊戲 控制器、遙控器、觸控勞幕、電腦滑鼠、執跡球、尖筆 棒、操縱桿等。使用去&amp;;主工1 A 1 Α 考&quot;面表面可包含使用者操縱、從事 及/或觀測之關於來自該驻要 I曰通凌置之回饋或資訊的任何表面。 此等介面表面之實例包括(但不限於)鍵(例如,鍵盤上之 鍵)、遊戲板或按紐、顯示螢幕等。 由此等類型之介面裝置所提供的觸感回饋係呈生理感覺 146043.doc 201126377 之形式’諸如振動、脈徐 等生理感覺(例如,二::暮厂吏用者直接感測到該 ,一丄 由觸摸螢幕)、間接地感測到(例如, :振動效應,諸如行㈣話在錢包或皮包 (例如,經由移動身體之動作,在= '、生壓力擾動但不產生音訊信號)。 經常’具有觸感回饋之使用者介面裝置可為「接收」由 =二之動作的輸入裝置以及提供指示引發了該動作 使二口貝1輸出裝置。實務上,藉由使用者所施加之力 仔、用者面裴置之某受接觸或受觸摸部分或表面(例 :鈕)之位置沿至少一自由度改變,#中所施加之力 Ρ達到某最小臨限值以使受接觸部分改變位置 tr如,受㈣部分之位置的改變之達成或註冊產生回= 受使用者Γ口、振動、脈動),該回應力亦強加於裝置的 用之文接觸部分’該力係、經由使用者之觸摸感 覺而傳達給該使用者。 ::彈回、「雙穩態」或「雙相」類型之觸感回饋的使 面裝置之一普通實例為滑鼠、鍵盤、 :介面:置一。直至所施加之力達到某一=? 士、者;I φ表面才移冑’在所施加之力達到某一臨限值時 2按紐相對容易地向下移動且接著停止其集體感覺定義 亩 X祕钮。或者,该表面在阻力增大之情況下移動 你至達到某臨限值為止,在達到某臨限值時力分布改變 (J如減小)。使用者所施加之力實質上沿著垂直於按鈕 表面之轴’如與使用者感覺到之回應(但相反)力—樣。然 146043.doc 201126377 而,變體包括使用者所施加之力在側向或在平面中施加於 按紐表面。 在另實例中,在使用者在觸控螢幕上鍵入輸入時,該 • 帛幕通常藉由螢幕上之圖形改變連同聽覺提示或無聽覺提 示來確認該輸入。觸控螢幕藉由螢幕上之視覺提示(諸 如,色彩或形狀改變)來提供圖形回饋。觸控板藉由榮幕 上之游標來提供視覺回饋。儘管以上提示確實提供回饋, 〇 但來自手指致動之輸入裝置的最直觀且有效之回饋為觸覺 回饋,諸如鍵盤鍵之掣動或滑鼠輪之擎動。因此,在觸控 螢幕上併有觸感回饋為需要的。 已知觸感回饋能力改良使用者生產力及效率,尤其在資 料鍵入之背景下。本發明之發明者咸信,對傳達給使用二 之觸感感覺之特性及品質的進一步改良可進一步增加此生 產力及效率。若此等改良由一感覺回饋機構提供則將為 另外有益的’該感覺回饋機構為易於製造且為節省成本 〇 #,且不增加且較佳減小已知觸感回饋裂置之空間 及/或質量要求。 儘管基於ΕΑΡ之轉換器之併人可改良此等使用者介面裝 置上之觸感互動,但仍需要在不使使用者介面裝置之輪廊 增加的情況下使用此等ΕΑΡ轉換器。 【發明内容】 本發明包括涉及用於感覺應用之電活性轉換器的裝置 糸統及方法。在-個變體中,提供_種具有感覺回饋 用者介面裝置。本發明之-個益處為向使用者介面裝置之 146043.doc 201126377 使用者提供觸感回饋,只要由軟體或該裳置或相關聯組件 所產生之另一信號觸發輪入即可。 本文所述之方法及裝置尋求對基於EAp之轉換器系統之 結構及功能的改良。本發明論述供用在各種應用中之定製 轉換器構造。本發明亦提供詩驅動EAp轉換器以及美於 ΕΑΡ轉換器之裝置及用於機械致動、發電及/或感測之:統 的眾多裝置及方法。 ’μ 熟習此項技術者在閱讀如下文更充分描述的本發明之細 節後將顯而易見本發明之此等及其他特徵、目標及優點。 可與此等設計一起使用之EPAM匣包括(但不限於)平 面、膜片、厚度模式及被動耦接裝置(混合)。 、 在包括電活性聚合物轉換器之使用者介面裝置的—個鐵 體中,該裝置包括:-底盤;—使用者介面表面;—第一 電源供應器;至少一電活性聚合物轉換器,其鄰近於該使 用者介面表面,該電活性聚合物轉換器進一步包含—導雨 表面,其中該使用者介面表面之—部分及該導電表面^ 第-電源供應器形成一電路’使得在正常狀態下,該導電 表面與該使用|介面表面之該部分電氣隔離以斷開該電路 從而使該電活性聚合物轉換器保持於無電力狀態,且其中 該使用者介面表面可撓性地耦接至該底盤,使得該使用者 介面表面偏轉至該電活性聚合物轉換器中閉合該電路以對 該電活性聚合物轉換器供給能量,使得一提供至該電活性 聚合物轉㈣之信號在該使用者介面表面處產生—觸感感 146043.doc 201126377 如上所述之使用者介面的額外變體可包括複數 聚合物轉換器,其各自鄰近於一使用者介面表面且各自且 有各別導電表面,使得—個使用者介面表面偏轉至該導電 表面中使該各別電活性聚合物轉換器與該各別導電表面形 成閉口電路,且其中剩餘之電活性聚合物轉換器保持於爷 無電力狀態。 ' ° 在另一變體中,該使用告介 使用者&quot;面裝置包括-低電壓電源供 Ο Ο ‘,、益及-耦接至一開關之高電壓電源供應器,使得該電活 !·生聚合物轉換器及該導電表面之偏轉閉合該開關,從而允 許該高電壓電源供應器對電活性聚合物致動器供給能量。 另一使用者介面裝置之另一變體包含一類似於上述裝置之 哀置其中至少—電活性聚合物轉換器耦接至該使用者介 面表面’該電活性聚合物轉換器進一步包含一導電表面, 该導電表面與該第一電源供應器形成一電路,使得在正常 狀〜、下肖V電表面與該電路電氣隔離以斷開該電路,使 得該電活性聚合物轉換器保持於一無電力狀態丨且其中該 電活性聚合物轉換器可撓性地麵接至該底盤,使得該使用 者介面表面之偏轉使該電活性聚合物轉換器偏轉以與該第 一電源供應器之該電路接觸以閉合該電路且對該電活性聚 ^物致動益供給能量’使得一提供至該電活性聚合物轉換 器之㈣在該使用纟介面表面處產生一觸感感覺。 在另-變體中,該使用者介面裝置包括複數個電活性聚 合物轉換器’其各自鄰近於一使用者介面表面且各自具有 各別導電表面,使知一個使用者介面表面偏轉至該導電表 146043.doc 201126377 面中使該各別電活性聚合物轉換器與該各別導電表面形成 閉合電路,且其巾㈣之電活性聚合轉換㈣持於該無 電力狀態。 以下揭示内容亦包括-種在—使用者介面裝置中產生觸 感效應之方法,其中該㈣效應模仿—雙穩態開關效應。 在一個實例中’此方法包括:提供—使用者介面表面,該 使用者介面表面具有一耦接至其之電活性聚合物轉換器, 其中該電活性聚合物#換器包含至少—電活性聚合物膜; 使該使用者介面表面位移了一位移量以亦使該電活性聚合 物膜位移及增加由該電活性聚合物膜對該使用者介面表面 施加之阻力;使在該電活性聚合物膜之位移期間該電活性 聚合物轉換器之啟動延遲;及啟動該電活性聚合物轉換器 以在未減小該位移量之情況下使該阻力變化以產生模仿該 雙穩態開關效應之觸感效應。該電活性聚合物之延遲啟動 可發生在一預定時間後《或者,使該電活性聚合物之啟動 延遲發生在該電活性聚合物膜之一預定位移後。 在以下揭示内容下之一方法的另一變體包括在一使用者 介面裝置中產生一預定觸感效應。該方法可包括:提供一 波升^電路’其經組態以產生至少一預定之觸感波形信號; 將一信號投送至該波形電路,使得在該信號等於一觸發值 時’該波形電路產生該觸感波形信號;及將該觸感波形信 號提供至一耦接至一電活性聚合物轉換器之電源供應器, 使得該電源供應器驅動該電活性聚合物轉換器以產生由該 觸感波形信號控制之複合觸感效應。 146043.doc -10· 201126377 本發明亦包括一種葬Α 猎由以下動作來在—具有一使用者介 面表面之使用者介面裝置中姦斗 罝中產生一觸感回饋感覺的方法·· ,-輸入信號自-驅動電路傳輸至__電活性聚合物轉換 益,其中該輸入信號致動該電活性聚合物轉換器且在該使 用者介面表面處提供該觸感回饋感覺;及傳輸-阻尼信號 以在該所要觸感回饋感覺後減少該使用者介面表面之機械 Ο201126377 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention is directed to the use of electroactive polymer converters to provide sensory feedback. α [Prior Art] A wide variety of devices used today rely on one or the other type of actuator to convert electrical energy into mechanical energy. In contrast, many power generation applications operate by converting mechanical action into electrical energy. To collect mechanical energy in this manner, an actuator of the same type 〇 can be referred to as a generator. Also, when the structure is used to convert a physical stimulus such as vibration or pressure into an electrical signal for measurement purposes, it can be characterized as a sensor. However, the term "converter" can be used to generally refer to any of these devices. A number of considerations have led to the selection and use of advanced dielectric elastomer materials (also known as "electroactive polymers" (ΕΑΡ)) to make converters. These considerations include potential f0rce, power density, power conversion/jQ's consumption, volume, cost, response time, duty cycle, service requirements, and % environmental impact. Thus, in many applications, EAp technology is ideal for the replacement of piezoelectric, shape memory alloy (SMA) and electromagnetic devices such as motors and solenoids. Examples of sputum devices and their applications are described in U.S. Patent Nos. 7,394,282; 7,378,783; 7,368,862; 7,362,032; 7,320,457; 7,259,503; 7,233,097; 7,224,106; , No. 7, 199, 501; No. 7, 166, 953; No. 7, 064, 472; No. 146, 043. doc; 201126, 377, 062, 055; 7, 034, 432, 6, 891, 317, 6, 812, 624, 6,78, 284, 6,664, 718, 6,583, 533, 7,052, 594; No. 6,940,221; No. 6,911,764; No. 6,882,086; No. 6,876,135; No. 6,809,462; No. 6,806,621; No. 6,768,246; No. 6,707,236; No. 6,628,040; No. 6,586,859; No. 6, 545, 384; No. 6, 543, pp; No. 6, 376, 971 and No. 6, 343, 129; and in the following U.S. Patent Application Publication No. 2009/0001855; No. 2, No. 09/0154053; No. 2008/0180875; /0157631; No. 2008/0116764; No. 2008/0022517; No. 2007/0230222; 2007/0200468; 2007/0200467; 2007/0200466; 2007/0200457; 2007/0200454; 2007/0200453; 2007/0170822; 2006/0238079; 2006/ U.S. Patent Application Serial No. 12/358,142, filed on Jan. 22, 2009, and PCT Application No. PCT/US09/63307; And PCT Publication No. WO 2009/067708, the entire contents of each of which are hereby incorporated by reference. The helium converter comprises two electrodes having deformable properties and separated by a thin elastomeric dielectric material. When a voltage difference is applied to the electrodes, the oppositely charged electrodes are attracted to each other, whereby the polymer is dielectrically laminated therebetween. As the electrodes are brought together, the dielectric polymer film becomes thinner as it expands in the planar direction (along the X and y axes) (ie, the displacement of the film is in the plane). The z-axis component shrinks). The diaphragm may also be configured to move in a direction orthogonal to the structure of the membrane 146043.doc 201126377 (along the Z axis), i.e., the displacement of the membrane is outside the plane. U.S. Patent Application Serial No. 2005/0157893 discloses the provision of this out-of-plane displacement, also known as surface deformation or thickness mode deflection. The material and physical properties of the diaphragm can be varied and controlled to tailor the surface deformation experienced by the converter. More specifically, factors such as the following can be forked and varied to tailor the surface characteristics of the film when the film is in the active mode. The relative elasticity between the polymer film and the electrode material, polymer film 0 and The relative thickness between the electrode materials and/or the varying thickness of the polymer film and/or electrode material, the physical pattern of the polymer film and/or electrode material (to provide localized active and inactive areas), for £8? The tension or pre-strain applied by the film as a whole, and the amount of voltage applied to the film or the capacitance induced on the film. The presence of a multi-transformer-based application will benefit from the advantages offered by this EM film. One such application involves the use of a membrane in a user interface device to generate tactile feedback (via the force applied to the user's body to communicate the message to the user). There are many known user interface devices that typically use tactile feedback in response to forces generated by the user. The user interface that can be used for touch feedback 贝 The examples of the display include keyboard, keypad, game controller, remote control, touch screen, computer mouse, trackball, sharp pen, joystick, etc. The use of the &amp;; main worker 1 A 1 Α test&quot; surface may include any surface that the user manipulates, engages in, and/or observes about feedback or information from the resident. Examples of such interface surfaces include, but are not limited to, keys (e.g., keys on a keyboard), game pads or buttons, display screens, and the like. The tactile feedback provided by the interface device of this type is in the form of physiological sensation 146043.doc 201126377 'physiological sensation such as vibration, pulse, etc. (for example, two:: 暮 吏 吏 直接 直接 直接 直接 直接 直接 直接 直接 直接丄 by touch screen), indirectly sensed (for example, vibration effects, such as line (four) words in a wallet or purse (for example, by moving the body's movements, at = ', the pressure of life is disturbed but does not produce an audio signal). The user interface device with tactile feedback can be used to "receive" the input device by the action of =2 and provide an indication to trigger the action to enable the two-bowl 1 output device. In practice, the force exerted by the user The position of a touched or touched portion or surface (eg, button) of the user's face is changed along at least one degree of freedom, and the force applied in # reaches a certain threshold to change the position of the contacted portion. For example, if the change of the position of the (4) part is achieved or the registration is generated back = the mouth, vibration, and pulsation of the user, the back stress is also imposed on the contact portion of the device. touch The feeling is conveyed to the user. A common example of a flip-flop, "bistable" or "biphasic" type of tactile feedback device is the mouse, keyboard, interface: interface: one. Until the applied force reaches a certain value, the surface of the I φ is moved. 'When the applied force reaches a certain threshold, the button 2 moves relatively easily and then stops its collective feeling. X secret button. Alternatively, the surface moves as you increase the resistance until it reaches a certain threshold, and the force distribution changes (if reduced) when a certain threshold is reached. The force applied by the user is substantially along the axis perpendicular to the surface of the button, as is the response (but opposite) to the user's perception. However, 146043.doc 201126377, the variant includes the force applied by the user applied to the surface of the button laterally or in a plane. In another example, when a user types an input on a touch screen, the screen is typically confirmed by a graphical change on the screen along with an audible or non-audible prompt. The touch screen provides graphical feedback through visual cues (such as color or shape changes) on the screen. The trackpad provides visual feedback through the cursor on the screen. Although the above tips do provide feedback, 最 the most intuitive and effective feedback from finger-actuated input devices is tactile feedback, such as the sway of the keyboard keys or the movement of the mouse wheel. Therefore, there is a tactile feedback on the touch screen as needed. Tactile feedback capabilities are known to improve user productivity and efficiency, especially in the context of data entry. The inventor of the present invention has further improved the productivity and efficiency by further improving the characteristics and quality of the tactile sensation conveyed to the use of the second. If such improvements are provided by a sensation feedback mechanism, it would be otherwise beneficial that the sensation feedback mechanism is easy to manufacture and cost effective, and does not increase and preferably reduces the space for known haptic feedback splitting and/or Or quality requirements. Although the ΕΑΡ-based converter can improve the tactile interaction on such user interface devices, it is still necessary to use these ΕΑΡ converters without increasing the porch of the user interface device. SUMMARY OF THE INVENTION The present invention includes apparatus and methods relating to electroactive transducers for sensory applications. In a variant, a sensor interface device with sensory feedback is provided. A benefit of the present invention is that the user is provided with a tactile feedback to the user interface device 146043.doc 201126377, as long as another signal generated by the software or the skirt or associated component triggers the wheeling. The methods and apparatus described herein seek to improve the structure and functionality of an EAp based converter system. The present invention discusses custom converter configurations for use in a variety of applications. The present invention also provides a poultry-driven EAp converter and a device for the ΕΑΡ converter and a plurality of devices and methods for mechanical actuation, power generation and/or sensing. These and other features, objects and advantages of the present invention will become apparent from the <RTIgt; EPAMs that can be used with such designs include, but are not limited to, flat surfaces, diaphragms, thickness modes, and passive coupling devices (mixing). In an iron body comprising a user interface device of an electroactive polymer converter, the device comprises: a chassis; a user interface surface; a first power supply; at least one electroactive polymer converter, Adjacent to the user interface surface, the electroactive polymer converter further includes a rain guiding surface, wherein the portion of the user interface surface and the conductive surface forming a circuit are in a normal state The conductive surface is electrically isolated from the portion of the interface surface to open the circuit to maintain the electroactive polymer converter in an unpowered state, and wherein the user interface surface is flexibly coupled to The chassis deflects the user interface surface into the electroactive polymer converter to close the circuit to supply energy to the electroactive polymer converter such that a signal provided to the electroactive polymer (IV) is used Produced at the interface surface - tactile sensation 146043.doc 201126377 Additional variations of the user interface as described above may include complex polymer converters Each of them is adjacent to a user interface surface and has a respective conductive surface such that a user interface surface is deflected into the conductive surface such that the respective electroactive polymer converters form a closed circuit with the respective conductive surfaces And the remaining electroactive polymer converter remains in a state of no power. ' ° In another variant, the use of the user &quot; face device includes - low voltage power supply Ο ',, and - coupled to a switch high voltage power supply, so that the electric! The green polymer converter and the deflection of the electrically conductive surface close the switch to allow the high voltage power supply to supply energy to the electroactive polymer actuator. Another variation of another user interface device includes a device similar to the device described above, wherein at least the electroactive polymer converter is coupled to the user interface surface. The electroactive polymer converter further includes a conductive surface The conductive surface forms a circuit with the first power supply such that the normal, lower, and lower electrical surfaces are electrically isolated from the circuit to disconnect the circuit, such that the electroactive polymer converter remains in a no-power State and wherein the electroactive polymer converter is flexibly grounded to the chassis such that deflection of the user interface surface deflects the electroactive polymer converter to contact the circuit of the first power supply In order to close the circuit and actuate the electroactive polymer to provide energy, a (four) provided to the electroactive polymer converter produces a tactile sensation at the surface of the use interface. In another variation, the user interface device includes a plurality of electroactive polymer converters each adjacent to a user interface surface and each having a respective conductive surface such that a user interface surface is deflected to the conductive Table 146043.doc 201126377 makes the respective electroactive polymer converters form a closed circuit with the respective electrically conductive surfaces, and the electroactive polymerization conversion (4) of the towels (4) is maintained in the no-power state. The following disclosure also includes a method of generating a haptic effect in a user interface device, wherein the (four) effect mimics - a bistable switching effect. In one example, the method includes: providing a user interface surface having an electroactive polymer converter coupled thereto, wherein the electroactive polymer # converter comprises at least electroactive polymerization Having the surface of the user interface displaced by a displacement to also shift the electroactive polymer film and increase the resistance applied by the electroactive polymer film to the surface of the user interface; Activating a delay of the electroactive polymer converter during displacement of the membrane; and activating the electroactive polymer converter to vary the resistance without reducing the amount of displacement to produce a touch that mimics the bistable switching effect Sensing effect. The delayed initiation of the electroactive polymer can occur after a predetermined period of time. Alternatively, the initiation of initiation of the electroactive polymer occurs after a predetermined displacement of one of the electroactive polymer membranes. Another variation of one of the methods disclosed below includes generating a predetermined tactile effect in a user interface device. The method can include providing a wave boost circuit configured to generate at least one predetermined haptic waveform signal; delivering a signal to the waveform circuit such that the waveform is equal to a trigger value when the signal is equal to a trigger value Generating the haptic waveform signal; and providing the haptic waveform signal to a power supply coupled to an electroactive polymer converter such that the power supply drives the electroactive polymer converter to generate The composite tactile effect of the sensed waveform signal control. 146043.doc -10· 201126377 The present invention also includes a method for generating a tactile feedback feeling in a scabbard in a user interface device having a user interface surface by the following actions. Signaling from the drive circuit to the __electroactive polymer conversion benefit, wherein the input signal activates the electroactive polymer converter and provides the tactile feedback sensation at the user interface surface; and the transmission-damping signal Reducing the mechanical flaw of the user interface surface after the desired sense of feedback

位移。此方法可用以產生包含雙穩態按鍵效應的觸感效應 感覺。 如本文所揭示之又一方法包括一種藉由以下動作來在— 使用者介面裝置中產生—觸感回饋的方法:向該使用者介 面4置提供-電活性聚合物轉換器,該電活性聚合物轉換 器一有第相位且具有一第二相位,其中該電活性聚合 物轉換器包含該第一相位共有之一第一引線、該第二相位 共有之一第二引線,及該第一相位及該第二相位共有之一 第三引線;使一第一引線維持於一高電壓,同時使該第二 引線維持於接地;及驅動該第三引線使其自該接地變化至 該回電壓以使能夠在該第一相位或該第二相位之撤銷後即 啟動該各別另一相位。 本發明可用於任何類型之使用者介面裝置中,包括(但 不限於)用於電腦、電話、PDA、視訊遊戲控制台、GPS系 統、公共資訊查詢站應用等之觸控板、觸控螢幕或小鍵盤 或其類似者。 關於本發明之其他細節’如在熟習相關技術者之水平 内’可使用材料及替代之相關組態。在如一般地使用或在 146043.doc •11- 201126377 邏輯上使用之額外動作方面,關於本發明之基於方法的離 樣,上述情況可保持成立。另外,儘管已參考若干實例: 描述本發明(視情況併有 Λ 认士化 各種特被),但本發明不限於如關 於本务明之每一變體所涵蓋的一 不脫離本發明之真實精神 ;L 3 曰不的實例。在 本發明進行各種改變、,=::情況下 文中或是為_性起見二==述於本 個個別零件或子總成在 數 入甘/、π冲上可整合。可藉由用於 之設計原理來進行或指導此等改變或其他改變。… ^習此項技術者在„如下文更充分㈣ 【實施方式】 之此寻及其他特徵、目標及優點。 發η隨附圖式閱讀時’自以下實施方式最佳地理解本 ==理解’已使用相同參考數字(在實用時)來指 明圖式所共有之類似元件。 現參看隨附圖式來詳細地# 平、地插述本發明之裝置、系統及方 法0 如上所提,可藉由使用梦 ^ P ^ '&quot;置之使用者螢幕上之觸感回饋 末改良需要使用者介面的裝置。 置m之簡翠㈣。每及圖1B說明此等裝 1 置I括顯示螢幕232,使用者對 ,、鍵入貝料或檢視資料。 士遍加〜 /顯不螢幕耦接至該裝置之主體 或框木234。明顯地,任何數 硌内τ… 17數目個裝置包括於本發明之範 可内’不官是攜帶型的(例如, 偌笙、々β 订動電話、電腦、製造設 備等)或U於其他非攜帶型結構的(例如,資訊顯示面板 146043.doc 201126377 之螢幕、自動出納機螢幕等)。為達成本發明之目的,一 顯示榮幕亦可包括一觸控板型之裝置,其中使用者輸入或 互動發生於遠離實際觸控板(例如,膝上型電腦觸控板)之 監視器或位置上。 多個設計考慮因素促成選擇及使用先進之介電彈性體材 料(亦稱作「電活性聚合物」(EAP))來製造轉換器,尤其 在尋求顯示螢幕232之觸感回饋時。此等考慮因素包括位 ❾力、功率密度、功率轉換/消耗、大小、重量、成本、回 應時間、工作循環、服務要求、環境影響等。因而,在許 多應用中,ΕΑΡ技術供應對壓電、形狀記憶合金(SMA)及 電磁裝置(諸如,馬達及螺線管)之理想替換。 ΕΑΡ轉換盗包含具有彈性特性且由薄彈性體介電材料分 隔的兩個薄膜電極。在一些變體中,ΕΑρ轉換器可包含非 彈性介電材料。在任何情況下,當將電壓差施加於該等電 極時,帶相反電荷之電極彼此吸引,藉此將聚合物介電層 〇 壓在其間。隨著將該等電極拉近於一起,介電聚合物膜隨 著其在平面方向上擴張(χ軸及y軸分量擴張)而變得較薄(Ζ 軸分量收縮)。 圖2A至圖2B展示具有顯示螢幕232之使用者介面裝置 230的一部分,顯示螢幕232具有由使用者回應於該顯示螢 幕上之資訊、對其之控制或刺激而實體觸摸的表面。顯示 螢幕234可為任何類型之觸控板或螢幕面板,諸如液晶顯 不器(LCD)、有機發光二極體(OLED)或其類似者。另外, 介面裝置23 0之變體可包括顯示螢幕232(諸如,「虛設」螢 146043.doc -13· 201126377 幕),其中影像在該螢幕上進行轉置(例如,投影儀或圖形 遮蓋)。該螢幕可包括習知監視器或甚至具有固定資訊(諸 如,一般標記或顯示)之螢幕。 在任何情況下,顯示螢幕232包括框架234(或外殼或經 由直接連接或一或多個接地元件將該螢幕用機械方式連接 至該裝置的任何其他結構)及將螢幕232耦接至該框架或外 殼234的電活性聚合物(EAp)轉換器236。如本文中所提, 該等ΕΑΡ轉換器可沿著螢幕232之邊緣’或EAp轉換器之陣 列可經置放而與該螢幕232之遠離該框架或外殼234的部分 接觸。 圖2A及圖2B說明基本使用者介面裝置,其中一囊封EAp 轉換器236形成一活性墊片。任何數目個活性墊片EAp a% 可耦接於觸控螢幕232與框架234之間。通常,提供足夠之 活性墊片ΕΑΡ 236以產生所要觸感感覺。然而,數目將經 常視特定應用而變化。在該裝置之一變體中,觸控螢幕 232可包含顯示螢幕或感測器板(其中該顯示螢幕將 測器板後面)。 心 諸圖展不使觸控螢幕232在非作用中狀態與作用中狀態 之間循環的使用者介面裝置23〇。圖2Α展示使用者介面裝 置230,其中觸控螢幕232處於非作用中狀態。在此條件 下,=場施加於ΕΑΡ轉換器236,從而允許轉換器處於休 止狀態。圖2Β展示在某使用者輸入觸發ΕΑΡ轉換器236進 入作用巾狀態後的使用纟介面裝置23〇,在該作用中狀態 中轉換器236使顯示螢幕232在由箭頭238所展示之方向上 146043.doc •14- 201126377 移動。或者’一或多個ΕΑΡ轉換器236之位移可變化以產 生顯示螢幕232之方向性移動(例如,並非整個顯示榮幕 23;2均一地移動,而是螢幕232之一個區域之位移程度可大 於另一區域之位移程度)。明顯地,耦接至該使用者介面 裝置230之控制系統可經組態以使ΕΑΡ 236以所要頻率循環 及/或使ΕΑΡ 236之偏轉量變化。 圖3Α及圖3Β說明使用者介面裝置230之另一變體,其具 0 有顯示螢幕232,該顯示螢幕232由起作用以保護顯示螢幕 232之可撓性薄膜240遮蓋。又,該裝置可包括將顯示螢幕 232耦接至基座或框架234的多個活性墊片ΕΑΡ 236。回應 於使用者輸入,在將電場施加於ΕΑΡ 236時,螢幕232連同 薄膜240位移,從而引起位移使得裝置230進入作用中狀 態。 圖4說明使用者介面裝置23〇之額外變體,該使用者介面 裝置23 0具有定位於該顯示螢幕232之邊緣周圍的彈簧偏置 ❹ ΕΑΡ薄膜Μ4。該ΕΑΡ薄膜244可置放於該螢幕之周邊周圍 或僅置放於准許該螢幕向使用者產生觸感回饋的彼等位置 中。在此變體中,一被動順應墊片或彈簧244對螢幕232提 供力,藉此使ΕΑΡ薄膜242以拉緊狀態置放。在將電場242 提供給薄膜後(又,在由使用者輸入產生信號後),ΕΑΡ薄 膜242即鬆弛以使螢幕232位移。如由箭頭246所標註,使 用者輸入裝置230可經組態以產生螢幕232在任何方向上相 子於墊片244所供之偏置的移動。另外,少於所有RAP 薄膜242之致動產生螢幕232之非均一移動。 146043.doc -15- 201126377 圖5說明使用者介面裝置230之又一變體。在此實例中, 使用多個順應墊片244將顯示螢幕232耦接至框架234,且 用於顯示器232之驅動力為多個ΕΑΡ致動器膜片248。ΕΑΡ 致動器膜片248受彈簧偏置,且在施加電場後即可驅動顯 示螢幕。如所展示,ΕΑΡ致動器膜片248在彈簧之任一側 上具有相對ΕΑΡ薄膜。在此組態中,啟動ΕΑΡ致動器膜片 248之相對側使該總成在中性點處為剛性的。ΕΑΡ致動器 膜片248作用正如同控制人手臂之移動的相對之二頭肌及 三頭肌。儘管未展示,但如美國專利申請案第11/085,798 號及第1 1/085,804號中所論述,致動器膜片248可堆疊以提 供雙相輸出動作及/或放大該輸出以供用於更強健之應用 中。 圖6Α及圖6Β展示使用者介面230之另一變體,其具有 ΕΑΡ薄膜或膜242,該ΕΑΡ薄膜或膜242耦接於顯示器232與 框架234之間於多個點或接地元件252處以適應ΕΑΡ膜242 之起皺或摺疊。如圖6Β中所展示,將電場施加於ΕΑΡ膜 242引起在起皺方向上之位移且使顯示螢幕232相對於框架 234偏轉。使用者介面232可視情況包括亦耦接於顯示器 232與框架234之間的偏置彈簧250及/或遮蓋顯示螢幕232 之一部分(或全部)的可撓性保護薄膜240。 注意,上文所論述之諸圖示意性地說明使用ΕΑΡ膜或轉 換器之此等觸覺回饋裝置的例示性組態。許多變體係在本 發明之範疇内,例如,在裝置之變體中,可實施ΕΑΡ轉換 器以僅移動一感測器板或元件(例如,在使用者輸入後即 146043.doc -16- 201126377 觸發且將信號提供至ΕΑΡ轉換器的感測器板或元件)而非整 個螢幕或墊總成。 在任何應用中,由ΕΑΡ部件所引起之顯示螢幕或感測器 . 板的回饋位移可排他地為平面中的(其被感測為側向移動) 或可為平面外的(其被感測為垂直位移)。或者,ΕΑρ轉換 器材料可為分段的以獨立地提供可定址/可移動之區段, 以便提供板元件之角位移或其他類型之位移的組合。另 ◎ 外,任何數目個ΕΑΡ轉換器或膜(如上文所列出之申請案及 專利中所揭示)可併入於本文所描述之使用者介面裝置 中〇 本文所描述之裝置的變體允許該裝置之整個感測器板 (或顯示螢幕)充當觸覺回饋元件。此允許廣泛之通用性。 舉例而言,該螢幕可回應於虛擬鍵敲擊而跳動(b〇unce) 一 次,或其可回應於捲動元件(諸如,螢幕上之觸控條(siide bar))而輸出連續跳動’從而有效地模擬滚輪之機械擎動。 〇 ϋ由使用控制系統’可藉由讀取使用者手指在螢幕上之精 4位置及相應地移動螢幕面板以模擬職構來合成三維外 形。給定足夠之螢幕位移及螢幕之大量質量,營幕之重複 振盈可甚至替換行動電話之振動功能。此功能性可應用於 ^覽文字,其中-行文字之捲動(垂直地)由觸f:「凸塊」 來表不’藉此模擬擎自。在視訊遊戲之背景中,本發明相 對於先刖技術視讯遊戲系統中所使用之振盡式振動馬達提 仏土曰加之互動性及更精細之運動控带J。在觸控板之情況 下,可藉由提供生理提示來改良使用者互動性及可接近 146043.doc -17- 201126377 性,尤其對於視力障礙者而言。 ΕΑΡ轉換器可經組態以位移至所施加電壓,此促進對與 標的觸覺回饋裝置一起使用之控制系統的程式化。舉例而 吕,一軟體演算法可將像素灰度轉換為ΕΑρ轉換器位移, 藉此連續地量測在螢幕游標之尖端下的像素灰度值且藉由 ΕΑΡ轉換器將其轉譯為成比例之位移。藉由在觸控板上移 動手指,可感覺或感測到粗糙之3D紋理。可對網頁應用類 似演算法,其中圖符之邊界在手指移動過該圖符後即作為 網頁紋理中之凸塊或蜂音按鈕而回饋給使用者。對於正常 使用者而言,此將會在瀏覽網站之同時提供全新感覺體 驗,對於視力障礙者而言,此將會添加不可缺少之回饋。 出於多個理由,ΕΑΡ轉換器對於此等應用為理想的。舉 例而言,由於其重量輕及極小的組件,ΕΑρ轉換器供應極 低輪廝,且因而,用於感覺/觸感回饋應用中為理想的。 圖7Α及圖7Β說明ΕΑΡ膜或薄膜1〇結構的實例。薄彈性體 介電膜或層12夾於順應或可拉伸電極板或層^與“之間, 藉此形成電容性結構或膜。介電層以及複合結構之長度 「丨」及寬度「w」遠大於其厚度「t」。通常,介電層具: 在自約H),至約1〇〇㈣之範圍中的厚度,該結構之總厚 度在自約15,至約1〇c_範圍中。另外,需要選擇電極 、16之彈性模數、厚度及/或微觀幾何形態,使得盆貢 獻給致動器之額外硬度大體上小於介電層12之硬度,介· 層12具有相對低之彈性模數(亦gp,小於約⑽踏且更: 常小於約1〇 MPa),但有可能厚於該等電極中之每一者。 146043.doc -18· 201126377 適於與此等順應電容性結構一起使用之電極為能夠耐受大 於約1%之循環應變而不會歸因於機械疲勞而發生故障的 電極。Displacement. This method can be used to produce a tactile effect sensation that includes a bistable button effect. Yet another method as disclosed herein includes a method of generating a tactile feedback in a user interface device by providing an electroactive polymer converter to the user interface 4, the electroactive polymerization The material converter has a phase and has a second phase, wherein the electroactive polymer converter includes a first lead shared by the first phase, a second lead shared by the second phase, and the first phase And the second phase sharing one of the third leads; maintaining a first lead at a high voltage while maintaining the second lead at ground; and driving the third lead to change from the ground to the return voltage The respective other phase is enabled after the first phase or the second phase is revoked. The invention can be used in any type of user interface device, including but not limited to touchpads, touch screens or the like for computers, telephones, PDAs, video game consoles, GPS systems, public information query station applications, etc. Keypad or the like. Other details regarding the present invention may be used in conjunction with materials and alternative configurations as is known to those skilled in the art. This aspect may remain true with respect to the method-based departure of the present invention in terms of additional actions as generally used or logically used in 146043.doc •11-201126377. In addition, although the invention has been described with reference to a number of examples, the invention is described (as the case may be), the invention is not limited to the true spirit of the invention as disclosed in the present invention. ; L 3 曰 not examples. In the case of various changes in the present invention, =:: in the case of _ sex, the second == described in this individual part or sub-assembly can be integrated on the number of gamma, π rush. Such changes or other changes may be made or directed by the principles of the design. ... ^ The person skilled in the art is more fully as follows (4) [Embodiment] This is to find other features, goals and advantages. When reading η with the drawing, 'Best understanding from the following implementations == understanding 'The same reference numerals have been used (in practical terms) to indicate similar elements that are common to the drawings. Referring now to the drawings in detail, the apparatus, system and method of the present invention are interleaved in detail. By using the touch screen on the user's screen, the device that needs the user interface is modified. The simple screen (4) of m is used. Each and FIG. 1B illustrates that the device displays the display screen. 232, the user pairs, types the bait material or view the data. The shi jia 〜 / display screen is coupled to the main body of the device or the frame wood 234. Obviously, any number of τ τ... 17 number of devices included in this The invention may be portable (for example, 偌笙, 々β, telephone, computer, manufacturing equipment, etc.) or U in other non-portable structures (for example, information display panel 146043.doc 201126377 Screen, automatic teller machine screen, etc.) For the purpose of the invention, a display screen may also include a touch panel type device in which user input or interaction occurs on a monitor or location remote from the actual touch panel (eg, a laptop touch panel). A number of design considerations have led to the selection and use of advanced dielectric elastomer materials (also known as "electroactive polymers" (EAP)) to make converters, especially when seeking to display the tactile feedback of screen 232. These considerations include position, power density, power conversion/consumption, size, weight, cost, response time, duty cycle, service requirements, environmental impact, and more. Thus, in many applications, germanium technology supplies an ideal replacement for piezoelectric, shape memory alloy (SMA) and electromagnetic devices such as motors and solenoids. Tantalum conversion thieves comprise two membrane electrodes having elastic properties and separated by a thin elastomeric dielectric material. In some variations, the ΕΑρ converter can comprise a non-elastic dielectric material. In any case, when a voltage difference is applied to the electrodes, the oppositely charged electrodes attract each other, thereby pressing the polymer dielectric layer therebetween. As the electrodes are brought together, the dielectric polymer film becomes thinner as it expands in the planar direction (the y-axis and the y-axis component expand) (the y-axis component shrinks). 2A-2B show a portion of a user interface device 230 having a display screen 232 having a surface that is physically touched by a user in response to information on the display screen, control or stimulation thereof. Display screen 234 can be any type of trackpad or screen panel, such as a liquid crystal display (LCD), an organic light emitting diode (OLED), or the like. Additionally, variations of the interface device 230 may include a display screen 232 (such as "Dummy" 146043.doc -13. 201126377) in which the image is transposed (e.g., projector or graphic). The screen may include a conventional monitor or even a screen with fixed information (e.g., general indicia or display). In any event, display screen 232 includes frame 234 (or a housing or any other structure that mechanically connects the screen to the device via a direct connection or one or more grounding elements) and couples screen 232 to the frame or An electroactive polymer (EAp) converter 236 of the outer casing 234. As discussed herein, the chirp converters can be placed along the edge of the screen 232 or the array of EAp transducers to contact the portion of the screen 232 that is remote from the frame or housing 234. 2A and 2B illustrate a basic user interface device in which an encapsulated EAp converter 236 forms an active spacer. Any number of active spacers EAp a% can be coupled between the touch screen 232 and the frame 234. Typically, sufficient active gasket 236 is provided to create the desired feel. However, the number will vary depending on the particular application. In one variation of the device, touch screen 232 can include a display screen or sensor board (where the display screen is behind the detector board). The user interface device 23 that does not cause the touch screen 232 to circulate between the inactive state and the active state. Figure 2A shows a user interface device 230 in which the touch screen 232 is in an inactive state. Under this condition, the = field is applied to the ΕΑΡ converter 236, allowing the converter to be in a rest state. Figure 2A shows the use of the interface device 23A after a user input triggers the ΕΑΡ converter 236 into the action towel state, in which the converter 236 causes the display screen 232 to be in the direction indicated by arrow 238 146043. Doc •14- 201126377 Move. Alternatively, the displacement of one or more of the sigma converters 236 can be varied to produce a directional movement of the display screen 232 (e.g., not the entire display glory 23; 2 is uniformly moved, but a portion of the screen 232 can be displaced more than The extent of displacement in another area). Notably, the control system coupled to the user interface device 230 can be configured to cause the ΕΑΡ 236 to cycle at a desired frequency and/or to vary the amount of deflection of the ΕΑΡ 236. 3 and 3 illustrate another variation of the user interface device 230 having a display screen 232 that is covered by a flexible film 240 that functions to protect the display screen 232. Additionally, the apparatus can include a plurality of active spacers 236 that couple display screen 232 to the base or frame 234. In response to user input, when an electric field is applied to ΕΑΡ 236, screen 232 is displaced along with film 240, causing displacement to cause device 230 to enter an active state. 4 illustrates an additional variation of the user interface device 23 having a spring biased diaphragm 4 positioned about the edge of the display screen 232. The tantalum film 244 can be placed around the perimeter of the screen or only in positions that permit the screen to produce tactile feedback to the user. In this variation, a passive compliant pad or spring 244 provides force to the screen 232, thereby placing the diaphragm 242 in a taut condition. After the electric field 242 is supplied to the film (again, after a signal is generated by the user input), the thin film 242 is relaxed to displace the screen 232. As indicated by arrow 246, the user input device 230 can be configured to produce a movement of the screen 232 in any direction relative to the bias provided by the spacer 244. Additionally, less than all of the RAP film 242 actuation produces a non-uniform movement of the screen 232. 146043.doc -15- 201126377 FIG. 5 illustrates yet another variation of the user interface device 230. In this example, a plurality of compliant pads 244 are used to couple display screen 232 to frame 234, and the driving force for display 232 is a plurality of ΕΑΡ actuator diaphragms 248.致 The actuator diaphragm 248 is spring biased and can drive the display screen after an electric field is applied. As shown, the ΕΑΡ actuator diaphragm 248 has a relatively ΕΑΡ film on either side of the spring. In this configuration, the opposite side of the actuator actuator diaphragm 248 is activated to make the assembly rigid at the neutral point. ΕΑΡ Actuator Diaphragm 248 acts as a biceps and triceps that control the movement of the human arm. Although not shown, the actuator diaphragms 248 can be stacked to provide a two-phase output action and/or to amplify the output for use in the discussion as discussed in U.S. Patent Application Serial No. 11/085,798, the disclosure of which is incorporated herein by reference. Strong application. 6A and 6B show another variation of the user interface 230 having a meandering film or film 242 coupled between the display 232 and the frame 234 at a plurality of points or grounding elements 252 to accommodate The ruthenium film 242 is wrinkled or folded. As shown in Figure 6A, application of an electric field to the diaphragm 242 causes displacement in the direction of wrinkling and deflects the display screen 232 relative to the frame 234. The user interface 232 can optionally include a biasing spring 250 coupled between the display 232 and the frame 234 and/or a flexible protective film 240 that covers a portion (or all) of the display screen 232. Note that the figures discussed above schematically illustrate an exemplary configuration of such tactile feedback devices using a diaphragm or converter. Many variations are within the scope of the present invention. For example, in variations of the device, a chirp converter can be implemented to move only one sensor board or component (eg, after user input, ie 146043.doc -16 - 201126377) Trigger and provide a signal to the sensor board or component of the ΕΑΡ converter) rather than the entire screen or pad assembly. In any application, the display screen caused by the ΕΑΡ component may be exclusively in a plane (which is sensed as lateral movement) or may be out of plane (which is sensed) For vertical displacement). Alternatively, the 转换ρ converter material can be segmented to provide an addressable/movable section independently to provide a combination of angular displacement or other type of displacement of the plate elements. In addition, any number of enthalpy converters or membranes (as disclosed in the applications and patents listed above) can be incorporated into the user interface devices described herein, and variations of the devices described herein allow The entire sensor board (or display screen) of the device acts as a tactile feedback element. This allows for a wide range of versatility. For example, the screen can be bounced once in response to a virtual key tap, or it can output a continuous beat in response to a scrolling element (such as a siide bar on the screen). Effectively simulate the mechanical movement of the wheel.使用 ϋ The use of the control system can synthesize a three-dimensional shape by reading the user's finger on the screen and moving the screen panel accordingly to simulate the job. Given sufficient screen displacement and a large amount of quality on the screen, the repetitive vibration of the camp can even replace the vibration function of the mobile phone. This functionality can be applied to the text, where the scrolling of the -line text (vertically) is represented by the touch f: "bump" to simulate the engine. In the context of video games, the present invention is more interactive and more sophisticated than the vibrating motor used in the video game system of the advanced video game system. In the case of a touchpad, user interaction can be improved by providing physiological cues and accessibility, especially for visually impaired persons. The chirp converter can be configured to shift to the applied voltage, which facilitates stylization of the control system for use with the target haptic feedback device. For example, a software algorithm converts pixel grayscale to ΕΑρ converter displacement, thereby continuously measuring pixel grayscale values at the tip of the screen cursor and translating it into proportional by a chirp converter. Displacement. A rough 3D texture can be felt or sensed by moving the finger on the touchpad. A similar algorithm can be applied to the web page, where the border of the icon is fed back to the user as a bump or buzz button in the web texture after the finger has moved past the icon. For normal users, this will provide a new sensory experience while browsing the website, and for visually impaired people, this will add an indispensable feedback. Helium converters are ideal for these applications for a number of reasons. For example, due to its light weight and extremely small components, the ΕΑρ converter supplies extremely low rims and, therefore, is ideal for use in sensation/feelback applications. Fig. 7A and Fig. 7B illustrate an example of a tantalum film or film structure. The thin elastomer dielectric film or layer 12 is sandwiched between a compliant or stretchable electrode plate or layer and thereby forming a capacitive structure or film. The length of the dielectric layer and the composite structure is "丨" and width "w It is much larger than its thickness "t". Typically, the dielectric layer has a thickness in the range from about H) to about 1 Torr, and the total thickness of the structure ranges from about 15 to about 1 〇 c. In addition, the electrode, the modulus of elasticity, the thickness and/or the micro-geometry of the electrode 16 need to be selected such that the additional hardness contributed by the basin to the actuator is substantially less than the hardness of the dielectric layer 12, and the layer 12 has a relatively low modulus of elasticity. The number (also gp, less than about (10) step and more: often less than about 1 MPa), but may be thicker than each of the electrodes. 146043.doc -18· 201126377 Electrodes suitable for use with such compliant capacitive structures are electrodes capable of withstanding cyclic strains greater than about 1% without failure due to mechanical fatigue.

如圖7B中所見’在將電壓施加於該等電極上時,該兩個 電極14、16中不同之電荷彼此吸引,且此等靜電吸引力壓 縮介電膜12(沿著z轴)。藉此使介電膜12隨電場之改變而 偏轉。由於電極14、16為順應的,因此其隨介電層12改變 形狀。一般而言,偏轉指代任何位移、擴張、收縮、扭 轉、線性或面積應變,或介電膜12之一部分的任何其他變 形視使用電谷性結構1 〇之架構(例如,框架)(共同稱作 「轉換器」)而定,此偏轉可用以產生機械功。在上文所 識別之專利參照案中揭示並描述各種不同之轉換器架構。 在施加電壓之情況下’轉換器膜10繼續偏轉,直至機械 力使驅動該偏轉之靜電力平衡為止。機械力包括介電層12 之彈性復原力、電極14、16之順應或拉伸,及由耗接轉 換益10之裝置及/或負載提供之任何外部阻力。轉換器 由於所施加之電壓而引起之所得偏轉亦可視多個其他因素 而定’諸如彈性體材料之介電常數及其大小及硬度。移除 電壓差及所誘發之電荷引起逆效應。 〃 在-些情況下’電極14及16可相對於介電膜。之總面 遮蓋介電膜12之有限部分。可進行此操作以在介電質之 緣四周防止電擊穿志允甘甘' 、 —某二邛分中達成定製偏轉。可 在活性區域外部之介電材料 丁叶古性區域為介電材料之旦 足夠靜電力以使自套能^ 更自身月匕夠偏轉的_部分)在偏轉_充 146043.doc •19- 201126377 對該活性區域之外部彈力。更具體言《,該活性區域外部 之材料可藉由其收鈿或擴張而阻止或增強活性區域偏轉。 介電膜12可為預應變❸。預應變改良電能與機械能之間 的轉換,亦即,預應變允許介電膜12偏轉更多且提供更大 機械功。膜之預應變可描述為在預應變後於一方向上之尺 寸相對於預應變前在彼方向上之尺寸的改變。預應變可包 含介電膜之彈性變形且(例如)藉由拉伸該膜使其處於拉緊 狀態及在拉伸之同時使邊緣中之一或多者固定來形成。可 在該膜之邊界處或僅對該膜之一部分強加預應變,且該預 應變可藉由使用剛性框架或藉由使該膜之一部分變硬來實 施。 圖7A及圖7B之轉換器結構及其他類似順應結構及其構 造之細節更充分地描述於本文所揭示之引用專利及公開案 中之許多引用專利及公開案中。 除了上述ΕΑΡ膜之外,感覺或觸感回饋使用者介面裝置 亦可包括經设計以產生側向移動之ΕΑρ轉換器。舉例而 言,各種組件包括(如圖8Α及圖8Β中所說明自頂至底)致動 益30,其具有呈彈性膜之形式的電活性聚合物(ΕΑρ)轉換 器10,該轉換器10將電能轉換為機械能(如上文所提)。所 得機械能係呈輸出部件(此處呈圓盤28之形式)的實體「位 移」的形式。 參看圖9Α至圖9C,ΕΑΡ轉換器膜1〇包含兩對工作之薄彈 !·生電極32a、32b及34a、34b ,其中每一工作對由彈性體介 電聚合物26(例如,由丙烯酸酯、聚矽氧、胺基甲酸酯、 146043.doc -20- 201126377 熱塑性彈极μ f &amp; 、!橡膠、氟彈性體或其類似者製成)的薄 ^ °在將電壓差施加於每—卫作對之帶相 極上時f亦Pn ^ 34b上 ,靶加於電極32&amp;及3213上及施加於電極34&amp;及 )’相對之電極彼此吸引,藉此將介電聚合物層26壓 纟:間。隨著將該等電極拉近於-起,介電聚合物26隨著 方向上擴張(亦即,x軸及y軸分量擴張)而變得較 夕Z軸分$收縮)(關於軸參考,見圖9B及圖9C)。此 〇 ♦ 於每電極上之相似電荷使嵌入於彼電極内之導 屯粒子相互排斥,藉此有助於彈性電極及介電膜之擴張。 藉此使,I电層26隨電場之改變而偏轉。由於電極材料亦為 :應的因此電極層連同介電層26一起改變形狀。一般而 '偏轉指代任何位移、擴張、收縮、扭轉、線性或面積 α變或&quot;電層26之一部分的任何其他變形。此偏轉可用 以產生機械功。 在製造轉換器2〇之過程令,藉由兩個或兩個以上相對之 〇 剛性框架侧8a、8b將彈性膜拉伸並使其保持於預應變條件 下。在使用4側框架之彼等變體中,在兩個軸向上拉伸該 膜。已觀測到,預應變改良聚合物層26之介電強度,藉此 改良電能與機械能之間的轉換,亦即’預應變允許膜偏轉 更夕且提供更大機械功。通常,在使聚合物層預應變後施 加電極材料,但可預先施加電極材料。提供於層%之同一 側上的兩個電極(本文中稱作同側電極對)(亦即,在介電層 26之頂部侧26a上的電極32a及34a(見圖9B)及介電層26之底 部側26b上的電極32b及34b(見圖9C))藉由非活性區域或間 146043.doc •21 · 201126377 隙25而彼此電氣隔離。該聚合物層之相對側上之相對電極 來自兩組工作電極對,亦即,用於一工作電極對之電極 32a及32b以及用於另一工作電極對之電極34&amp;及每— 同側電極對較佳具有相同極性,而每一工作電極對之電極 的極性彼此相反,亦即,電極32&amp;與3215帶相反電荷,且電 極34a與34b帶相反電荷。每—電極具有針對電連接至電壓 源(未圖示)而組態之電觸點部分3 5。 在所說明之實施例中’該等電極中之每―者具有半圓形 組態’其中同侧電極對在介電層26之每—側上界定用於容 納安置於中央之剛性輸出圓盤2〇a、2Gb的實質上圓形之圖 案。圓盤2〇a、2〇b(在下文論述其功能)緊固至聚合物層26 的中央曝露之外表面26a、26b’藉此將層26夹於其間:圓 盤與膜之間的叙接可為機械的或藉由黏接提供。大體上, 將相對於轉換益框架22a、22b來對圓盤定尺寸。 更具體言之’圓盤直徑與框架之内環形直徑之比率將使得 適當地分散施加於轉換器_之應力。圓盤直徑與框架直 徑之比率愈大’回饋信號或移動之力愈大,但圓盤之線性 4移降低另—方面,該比率愈低,輸出力愈低且線性位 移愈大。 “且心而疋,轉換器i 〇可能能夠在單相或雙相模式 下起作用。以所組態之方式,上述之標的感覺回饋裝置的 輸出組件(亦即’兩個耗接之圓盤施及20b)之機械位移為 側向而非垂直的。換言之,替代感覺回饋信號為在垂直於 使用者介面之顯示表面232且平行於由使用者之手指⑽ I46043.doc -22- 201126377 加之輸入力(在圖10中由箭頭60a指明)之方向上的力(但在 相反或向上方向上),本發明之感覺/觸感回饋裝置的所感 測回饋或輸出力(在圖10中&amp;雙頭箭頭60b指明)係在平行於 . 顯示表面232且垂直於輸入力60a的方向上。視電極對圍燒 自直於轉換器10之平面的軸且相對於轉換器操作所處之顯 • 示表面232模式(亦即’單相或雙相)之位置的旋轉對準而 定,此側向移動可在360。内之任一方向或任何多個方向 〇 上。舉例而言’側向回饋運動可相對於使用者之手指(或 手掌或抓手等)之前向自側至側或上及下(均為雙相致動)。 儘管熟習此項技術者將認識到提供橫斷於或垂直於觸感回 饋裝置之接觸表面的回饋位移之某些其他致動器組態,但 如此組態之裝置的總體輪廓可能大於前述設計。 圖9D至圖9G說明可置放於裝置之顯示螢幕上的電活性 聚合物之陣列的實例。在此實例中,EAp膜陣列2〇〇(見圖 9F)(分別)之電壓侧2〇〇a及接地側2〇〇b供用於EAp致動器之 Ο 陣列中,該EAP致動器陣列用於本發明之觸覺回饋裝置 中。膜陣列200包括提供為矩陣組態以增加空間及功率效 率並簡化控制電路的電極陣列。EAp膜陣列之高電壓側 200a提供在介電膜2〇8材料上垂直(根據圖9D中所說明之視 點)延伸(run in)的電極圖案2〇2。每一圖案202包括一對高 電壓線202a ' 202b。ΕΑΡ膜陣列之相對或接地側2〇〇b提供 相對於焉電壓電極橫向延伸(亦即,水平延伸)之電極圖案 206 ° 每一圖案206包括一對接地線2〇6a、2〇6b。每一對相對 146043.doc -23- 201126377 之间電麼及接地線(2〇2a ' 2〇0a及之咖、篇b)提供可單獨 啟動之電極對,使得相對電極對之啟動在由箭頭叫所說 月之方向上提供雙相輸出運動。裝配好之EAp膜陣列 2〇_明介電膜2()8之頂部側及底部側上之電極的相交圖 案)提供於圖9F中在ΕΑΡ轉換器222之陣列204的分解圖内, 該ΕΑΡ轉換器陣列以其裝配好之形式說明於圖go中。EM 膜陣列2GG夾於相對之框架陣列214”難之間,該兩個 陣列中之每-者内的每一個別框架段216由位於一開口區 域中央之輪出圓盤218界定。框架/圓盤段216之每一組合 及電極組態形成EAP轉換器222。視所要之應用及致動: 類型而定,可將組件之額外層添加至轉換器陣列204。舉 例而言,轉換器陣列22〇可整個併入至使用者介面陣列, 諸如顯示螢幕、感測器表面或觸控板。 當在單相模式下操作感覺/觸感回饋裝置2時,在任何一 次時將僅啟動致動器3〇之一對工作電極。可使用單一高電 壓電源供應器來控制致動器3〇之單相操作。隨著施加於選 定之單一工作電極對的電壓增加,轉換器膜之活化部分 (一半)將擴張,藉此在轉換器膜之非活性部分之方向上在 平面中移動輸出圓盤20。圖11Α說明在單相模式下交替地 啟動該兩個工作電極對時相對於中性位置的致動器川之咸 覺回饋信號(亦即,輸出圓盤位移)之力-衝程關係。如所說 明,輸出圓盤之各別力及位移彼此相等但方向相反。圖 11Β說明在此單相模式下操作時所施加之電壓與致動器之 輸出位移的所得非線性關係。藉由共用之介電膜所引:的 146043.doc •24· 201126377 兩個電極對之「機械」輕接可使得輸出圓盤在相反方向上 移動。因此,當操作兩個電極對時(儘管其係彼此獨立地 操作),將電麈施加於第一工作電極對(相㈣將使輸出圓 . #2G在—個方向上移動,且將電壓施加於第:工作電極對 (相位Q將使輸出圓盤2〇在相反方向上移動。如圖UB之各 ㈣圖所反映’在電壓線性變化時,致動器之位移為非線 性的。亦可經由兩個相位之同步操作來控制輸出圓盤在位 〇 #期間之加速以增強觸感回饋效應。該致動器亦可劃分成 兩個以上可獨立啟動之相位以使輸出圓盤能夠進行更複雜 之運動。 為實現輸出部件或组件之更大位移,且由此向使用者提 供更大之感覺回饋信號,在雙相模式下操作致動器30,亦 即’同時啟動致動器之兩個部分。圖uc說明在雙相模式 下操作致動器時輸出圓盤之感覺回饋信號之力-衝程關 係°如所說明’在此模式下致動器之兩個部分32、34之力 €) 絲程兩者係在同-方向上’且具有為致動器在單相模式 下操作時之力及衝程兩倍的量值。圖UD說明在此雙相模 式下操作時所施加之電壓與致動器之輸出位移的所得線性 關係。藉由將致動器之機械柄接部分32、34電串聯連接及 控制其共同節點55(諸如,以圖13之方塊圖40中所說明之 方式),共同節點55之電壓與輸出部件(以任何組態)之位移 (或受阻力)之間的關係接近線性相關。在此操作模式下, 致動器30之兩個部分32、34的非線性電壓回應有效地彼此 抵消以產生線性電壓回應。藉由使用控制電路44及開關總 146043.doc -25- 201126377 成46a、46b(致動器之每一部分一個),此線性關係允許藉 由使用藉由該控制電路供應至該等開關總成的變化類型之 波形來微調及調變致動器之效能。使用電路4〇之另一優點 為減少操作感覺回饋裝置所需之開關電路及電源供應器之 數目的能力。在不使用電路40之情況下,將需要兩個獨立 之電源供應器及四個開關總成。因此,降低電路之複雜性 及成本,同時改良控制電壓與致動器位移之間的關係,亦 即,使其變得更線性。另一優點為在雙相操作期間致動器 獲得同步性,此消除可降低效能之延遲。 圖12A至圖12C說明雙相電活性聚合物轉換器之另一變 體。在此變體中,轉換器1〇包含在介電膜96周圍之第一對 電極90及在介電膜96周圍之第二對電極%,其中該兩對電 極9〇及92係在促進轉接至另一結構以轉移移動的桿或機械 部件94的相對側上。如圖12A中所展示,兩個電極9〇及μ 處於同一電遷(例如,均處於零電旬。在第—相位中,如 圖12B中所說明,對一斟雷炼 耵對电極92供給能量以使膜擴張及使 桿94移動了距離D。第二對電極9〇藉由連接至膜之本性而 受壓縮’但處於零電壓。圖12C展示第二相位,其中第一 對電極^2之電廢減小或斷開,而將電壓施加於第二對電極 90。此弟一相位與第一相位同步,使得位移為兩倍之 圖咖說明圖12A至圖12C之轉換器峨時間過去而發生之 :移。如所展示,在針對相位丨對第一電極”供給能量 % ’相位1隨桿94你梦τ曰η品山日 …山現。在時間T1時,相位2 之開頭出現’且與第-電極92之電塵的減小同步地對相對 H6043.doc -26· 201126377 電極90供給能量。桿94在該兩個相位内之淨位移為2xd。 可使用各種類型之機構來傳達來自使用者之輸入力60a 以實現所要感覺回饋60b(見圖10)。舉例而言,電容性或電 阻性感測器50(見圖13)可接納於使用者介面墊4内以感測由 使用者施加於使用者接觸表面輸入端之機械力。將來自感 測器50之電輸出52供應至控制電路44,此又觸發開關總成 46a、46b根據該控制電路所提供之模式及波形來將來自電 源供應器42之電壓施加於感覺回饋裝置之各別轉換器部分 32、34。 本發明之另一變體涉及EAP致動器之氣密密封以最小化 濕氣或結露可能對ΕΑΡ膜產生之任何效應。對於下述各種 實施例,以實質上與觸覺回饋裝置之其他組件分離之障壁 膜來密封該ΕΑΡ致動器。該障壁膜或套管可由(諸如)箱= 成,其較佳為㈣的或其類似者以最小化水汽线漏至密封 膜内障壁膜或套管之部分可由順應材料製成以允許改良 該套管内部之致動器至該套管外之一點的機械耦接。此二 裝置實施例中之每—者使致動器之輸出部件之回饋運動能 夠輕接至使用者輸入表面(例如,小鍵盤)之接觸表面; 時最小化對氣密密封致動H封裝之任何折衷。亦提 將致動器之運動#接至使用IΑ ^ ^ 動純至使用者介面接觸表面的各__ 。關於方法’標的方法可包括與所描述之裝置 相關聯的機械及/或活動中每— 果今比 因而,所描述之萝 用所隱含的方法形成本發明之部分。其他 : 中於此等裝置之製造。 了木 146043.doc •27- 201126377 圖14A展不耦接至使用者輪入裝置19〇之EAp致動器2〇4 的平面陣列之實例。如所展示,EAp致動器Μ*之陣列遮 蓋螢幕232之一部分且經由支座256而耦接至裝置19〇之框 架234。在此變體中,支座256准許存在空隙以供致動器 204及螢幕232移動。在裝置19〇之一個變體中,致動器2〇4 之陣列可為在使用者介面表面或螢幕232後面的多個離散 致動器或致動器陣列,此視所要應用而定。圖】4B展示圖 14A之裝置190的仰視圖。如由箭頭254所展示,EAp致動 204可允許螢幕232沿一軸移動,作為對在螢幕232之法 線方向上之移動的替代或與該法線方向上之移動組合。 迨今所描述之轉換器/致動器實施例具有耦接至EAp轉換 為膜之活性區(亦即,包括重疊電極之區域)及非活性區兩 者的(多個)被動層。在轉換器/致動器亦已使用剛性輸出結 構之情況下,彼結構已定位於駐於活性區上方之被動層之 區域上。此外,此等實施例之活性/可活化區已相對於非 活性區定位於中央。本發明亦包括其他轉換器/致動器組 態。舉例而言’(多個)被動層可僅遮蓋活性區或僅遮蓋非 活|·生區。另外,ΕΑΡ膜之非活性區可相對於活性區定位於 中央。 參看圖15Α及圖15Β,提供對根據本發明之一個實施例 的表面變形ΕΑΡ致動器10之示意性表示,表面變形ΕΑρ致 動器10用於將電能轉換為機械能。致動器1〇包括Εαρ轉換 盗12,該ΕΑΡ轉換器12具有薄彈性體介電聚合物層14及分 別附接至介電質14之頂部表面及底部表面之部分上的頂部 146043.doc •28- 201126377 電極16a及底部電極16b。轉換器12之包含介電質及至少兩 個電極之部分在本文中稱作活性區域。本發明之轉換器中 之任一者可具有一或多個活性區域。 在將電壓差施加於重疊且帶相反電荷之電極l6a、 (、f生£域)上4,相對之電極彼此吸引,藉此將介電聚 合物層14之部分壓在其間。隨著將該等電極丨以、拉近 於一起(沿z軸),介電層丨4之在該等電極之間的部分隨著其 0 在平面方向上擴張(沿X軸及y軸)而變得較薄。在框架中或 其類似者中,對於不可壓縮之聚合物(亦即,在應力下具 有實質上恆定之體積的聚合物)或對於以其他方式可壓縮 之聚合物,此動作使活性區域(亦即,由電極遮蓋之區域) 外邛(特疋S之,在活性區域之邊緣的周邊周圍,亦即, 緊罪其四周)之順應介電材料在厚度方向上(正交於藉由轉 換器膜所界定之平面)位移或凸出平面外。此凸出產生介 電表面特徵24a至24d。儘管平面外表面特徵24展示為相對 〇 地在活性區域之局部,但平面外並非總是如所展示般局部 化。在-些情況下,若聚合物為預應變的,則表面特徵 24a至24b分散於介電材料之非活性部分之表面區域上。 為了放大標的轉換器之表面特徵的垂直輪廓及/或可見 性,可將一可選被動層添加至轉換器膜結構之一侧或兩 侧,其中被動層遮蓋ΕΑΡ膜表面區域的全部或一部分。在 圖15Α及圖15Β之致動器實施例中,頂部被動層心及底部 被動層18b分別附接至EAp膜12之頂部側及底部侧。藉由 被動層18a、18b之添加厚度來放大致動器及介電層12^所 146043.doc -29· 201126377 得表面特徵17&amp;至17(^ 動,如由圖15B中之參考數字26a 王表不。 、&quot;之聚°物/被動層表面特徵26a至26d之外,ΕΑΡ 膜12可經組態以使得— 個或兩個電極16a、16b減低低於介 也2厚度。因而,減低之電極或其部分在EAP膜12之致 及介電材料14之所得偏轉後即提供—電極表面特徵。電 m6a、16e可經圖案化或設計以產线製轉換器膜表面特 被,其可包含聚合物表面特徵、電極表面特徵及/或被動 層表面特徵。 在圖W及圖15B之致動器實施例1〇中,提供—或多個 結構2〇a、鳩以促進麵合順應被動厚塊與剛性機械結構之 1的力及才曰引致動盗之功輪出。此處’頂部結構施(其可 呈平台、杯、相桿、棒等之形式)充當輸出部件,而底部 結構20b用以將致動器1〇耗接至固定或剛性結構22,諸如 地面。此等輸出結構無需為離散組件’而是可與致動器意 欲驅動之結構整合或與其成單體。結構2〇&amp;、2扑亦用以界 定由被動層18a、18b形成之表面特徵心至26d的周邊或形 狀。在所說明之實施例中,儘管集體致動器堆疊產生致動 器之非活性料的厚度之增加(如圖別中所展示),但致 動器在致動後即經歷之高度的淨改變处為負的。 本發明之ΕΑΡ轉換器可具有任何合適之構造以提供所要 之厚度模式致動。舉例而言’可使用一個以上ΕΑρ膜層來 製造轉換器以供用在更複雜之應用中’諸如具有整合式感測 能力之鍵盤鍵,其中額外ΕΑΡ膜層可用作電容性感測器。 146043.doc •30· 201126377 圖16 A §兒明根據本發明的使用具有雙EAp膜層3 *之堆疊 轉換器32的此致動器30。該雙層包括兩個介電彈性體膜, 頂部膜34a分別夾於頂部電極34b與底部電極34c之間,且 • 底部膜36a分別夾於頂部電極36b與底部電極3以之間。提 供導電跡線或層之對(通常稱作「匯流條」)以將該等電極 •耦接至電力源之高電壓及接地側(電力源未圖示)。該等匯 流條定位於各別ΕΑΡ膜之「非活性」部分(亦即,頂部電極 0 肖纟部電極不重疊之部分)上。1Ή匯流條42a及底部匯流 條42b分別定位於介電層34a之頂部側及底部側上,且頂部 匯流條44a及底部匯流條44b分別定位於介電層36&amp;之頂部 側及底部側上。通常藉由經由導電彈性體通孔68&amp;(展示於 圖1 6B中)將匯流條42&amp;與44a相互耦接來使介電質3乜之頂 部電極34b及介電質36a之底部電極36c(亦即,兩個面向外 之電極)偏振,在下文關於圖17A至圖17D來更詳細地描述 導電彈性體通孔68a之形成。亦通常藉由經由導電彈性體 Ο 通孔68b(展示於圖1 6B中)將匯流條42b與44b相互耦接來使 介電質34a之底部電極34(:及介電質36a之頂部電極(亦 即,兩個面向内之電極)偏振。使用罐封(p〇uing)材料 66a、66b來密封通孔68a、6扑。在操作致動器時,在施加 電壓時將每一電極對之相對電極拉到一起。為達成安全之 目的’可將接地電極置放於堆叠外部,以便使任何穿孔物 件在其到達高電壓電極之前接地,由此消除電擊危險。該 兩個ΕΑΡ膜層可藉由膜至膜黏著劑4〇b而黏附於—起。該 黏著層可視情況包括被動或厚塊層以增強效能1部被動 146043.doc -31 - 201126377 層或厚塊50a及底部被動層52b藉由黏著層4〇a及藉由黏著 層4〇C而黏附至轉換器結構。輸出桿46a、46b可分別藉由 黏著層48a、48b而分別耦接至頂部被動層及底部被動層。 本發明之致動器可使用任何合適數目個轉換器層,其中 層之數目可為偶數或奇數。在後—種構造中,可使用一或 多個共同接地電極及匯流條。料,在安全不成問題之情 況下,高電壓電極可定位於轉換器堆疊外部以更好地適應 特定應用。 ’ 為處於操作,致動器30必須電耦接至電力源及控制電子 裝置(皆未圖示)。此可藉由致動器上或pCB或撓曲連接器 62上之電跡線或電線來實現,pcB或撓曲連接器62將高電 壓及接地通孔68a、68b耦接至電源供應器或中間連接。可 以保護障壁材料來封裝致動器30以密封其使其免遭濕氣及 % i兄污染物影響。此處,該保護障壁包括頂部蓋6〇及底部 蓋64,該兩個蓋較佳在PCB/撓曲連接器“周圍密封以保護 該致動器使其免遭外力及應變及/或環境曝露影響。在— 些實施例中,該保護障壁可為不可滲透的以提供氣密密 封。該等蓋可具有稍剛性之形式以保護致動器3〇使其免遭 實體損害或可為順應的以允許存在用於致動器3〇之致動位 移的空間。在一個具體實施例中,頂部蓋6〇係由成形箔製 成,且底部蓋64係由順應箔製成,或反之亦然,該兩個蓋 接著熱封至板/連接器62。亦可使用許多其他封裝材料, 諸如金屬化聚合物膜、PVDC、AcUr、苯乙烯或烯烴共聚 物、聚酯及聚烯烴。使用順應材料來遮蓋輸出結構或多個 146043.doc •32· 201126377 輸出結構(此處為桿46b),其轉譯致動器輸出。 本發明之堆疊之致動器/轉換器結構(諸如,剛才所描述 之致動器30)的導電組件/層通常藉由形成穿過該堆疊、妹構 之電通孔(圖16B中之68a及68b)來耦接。圖i7a至圖19說明 本發明之用於形成該等通孔之各種方法。 參看圖17A至圖17D來描述圖16B之致動器3〇中所使用之 類型的導電通孔之形成。在將致動器7〇(此處,由單膜轉 0 換器建構,該單膜轉換器具有置放於介電層74之非活性部 分之相對侧上的正相反地定位之匯流條76a、76b,該等非 活性部分共同夾於被動層78a、78b之間)層壓至pCB/撓曲 連接器72之前或之後,如圖17B中所說明,對堆疊之轉換 器/致動器結構70進行雷射鑽孔80使得穿過其整個厚度至 PCB 72以形成通孔82a、82b。亦可使用用於產生該等通孔 之其他方法,諸如機械鑽孔、打孔、模製、穿孔及取心 (coring)。如圖17C中所展示,接著藉由任何合適之分配方 〇 法(諸如,藉由注射)用導電材料(例如,聚矽氧中之碳粒 子)來填充該等通孔。接著,如圖17D中所展示,視情況以 任何相谷之非導電材料(例如,聚矽氧)來罐封86a、86b導 電填充通孔84a、84b以使該等通孔之曝露末端電氣隔離。 或者,可將非導電帶置放於曝露之通孔上。 可使用標準電接線來替代PCB或撓曲連接器以將致動器 t接至電源供應器及電子裝置。此等實施例之形成至電源 i、應器之電通孔及電連接的各種步驟說明於圖1 8 A至圖 D中,與圖17A至圖1 7D中之組件及步驟相似的組件及步 146043.doc -33- 201126377 驟具有相同參考數字。此處,如圖18A中所展示通孔 82a、82b僅需要鑽至致動器厚度内之一深度,至到達匯流 條84a、84b之程度。接著,在如圖18C中所展示將引2 88a、88b插入至所沈積之導電材料中之後’如圖18B中所 展示,用導電材料來填充該等通孔。如圖18D中所展示, 可接著罐封上該等導電填充通孔及引線。 、 圖19說明在本發明之轉換器内提供導電通孔之另一方 式。轉換器100具有一介電膜,該介電膜包含具有爽於電 極106a、106b之間的部分的介電層1〇4,該等電極又夾於 被動聚合物層ll〇a、l10b之間。導電匯流條1〇8提供於ΕΑρ 膜之非活性區域上。用手或以其他方式驅動具有穿孔組態 之導電觸點114,該穿孔組態係穿過轉換器之一側至一刺 入匯流條材料108之深度。導電跡線116沿pCB/撓曲連接器 112自穿孔觸點114之曝露末端延伸。此形成通孔之方法特 別有效,因為其消除對通孔鑽孔、填充通孔、將導線置放 於通孔中及罐封通孔的步驟。 本發明之ΕΑΡ轉換器可以任何合適構造及表面特徵呈現 來用於多種致動器應用中。圖20Α至圖24說明例示性厚度 模式轉換器/致動器應用。 圖20Α說明具有圓形構造之厚度模式轉換器12〇 ,其對於 用在觸覺或觸感回饋應用中之按鈕式致動器為理想的在 該等觸覺或觸感回饋應用中使用者實體上接觸一梦置 如,鍵盤、觸控螢幕、電話等。轉換器12〇係由薄彈性體 介電聚合物層122以及頂部及底部電極圖案124a、i24b(底 I46043.doc -34- 201126377 部電極圖案展示為幻象)形成,此最佳地展示於圖2〇b中之 分離圖(isolated…⑻中。電極圖案124中之每一者提供短 柱。P刀125 ’其具有形成同心圖案之複數個相反延伸之指 部分127。該兩個電極之短柱彼此正相反地定位於圓形介 電層122之相對側上,其中其各別指部分彼此並置地對準 以產生圖2GA中所展示之圖#。儘管在此實施例中相對之 電極圖案彼此等同且對稱,但涵蓋其他實施例,其中相對 之電極圖案在形狀及/或其佔據之表面積的量方面為不對 稱的。轉換器材料4兩個電極材料不重疊的部分界定該轉 換器之非活性部分128a、128b。在該兩個電極短柱部分中 之每一者的基座處提供電觸點Uh、丨2^,以用於將轉換 器電搞接至電力源及控制電子裝置(皆未圖示)。在啟動該 轉換器時’將相對之電極指拉於一起’藉此將介電材料 122壓在其間,其中該轉換器之非活性部分12“、η朴凸 出以按而要在按鈕之周邊周圍及/或按鈕内部形成表面特 徵。 該按鈕式致動器可呈單一輸入或接觸表面之形式或可提 供為具有複數個接觸表面之陣列格式。在建構成陣列形式 %,圖20A之按鈕式轉換器用在多種使用者介面裝置(例 如’電腦鍵盤 '電話、計算器等)之小鍵盤致動器13〇(如圖 21中所6兒明)中為理想的。轉換器陣列丨32包括互連電極圖 案之頂部陣列136a及電極圖案之底部陣列13讣(展示為幻 象),其中該兩個陣列彼此相對以如所述以活性部分及非 活性部分產生圖2〇A之同心轉換器圖案。鍵盤結構可呈在 146043.doc -35- 201126377 轉換器陣列13 2頂上之被動層13 4的形式。被動層1 3 4可具 有其自己之表面特徵(諸如,鍵邊界13 8),其可在被動狀態 下上升以使得使用者能夠憑觸覺使其手指與個別鍵墊對 準,及/或在啟動後即進一步放大各別按鈕之周邊的凸 出。在按下鍵時,啟動在其下平放之個別轉換器,從而使 得厚度模式凸出(如上所述)’以向使用者提供回觸覺感 覺。可以此方式提供任何數目個轉換器且該等轉換器間隔 開以適應正使用之小鍵盤134的類型及大小。此等轉換器 陣列之製造技術的實例揭示於2〇〇8年6月27日申請之題為As seen in Figure 7B, when a voltage is applied to the electrodes, the different charges in the two electrodes 14, 16 attract each other, and the electrostatic attraction compresses the dielectric film 12 (along the z-axis). Thereby, the dielectric film 12 is deflected as the electric field changes. Since the electrodes 14, 16 are compliant, they change shape with the dielectric layer 12. In general, deflection refers to any displacement, expansion, contraction, torsion, linear or area strain, or any other deformation of a portion of dielectric film 12, depending on the structure (eg, frame) of the electrical grain structure 1 (eg, frame) Depending on the "converter", this deflection can be used to generate mechanical work. A variety of different converter architectures are disclosed and described in the patent references identified above. The transducer film 10 continues to deflect under application of a voltage until the mechanical force balances the electrostatic forces that drive the deflection. The mechanical forces include the elastic restoring force of the dielectric layer 12, the compliance or stretching of the electrodes 14, 16 and any external resistance provided by the device and/or load that consumes the conversion. The resulting deflection of the converter due to the applied voltage can also depend on a number of other factors, such as the dielectric constant of the elastomeric material and its magnitude and hardness. Removing the voltage difference and the induced charge causes an inverse effect. 〃 In some cases, the electrodes 14 and 16 may be opposite to the dielectric film. The total face covers a limited portion of the dielectric film 12. This can be done to prevent electrical breakdowns around the dielectric from being able to achieve a custom deflection in a certain two points. The dielectric material outside the active area is the ancient area of the Dingye, which is a sufficient electrostatic force for the dielectric material to make the self-sleeving energy _ part of the deflection of the self-slewing y _ 146043.doc •19- 201126377 External elasticity of the active area. More specifically, the material outside the active area can prevent or enhance the deflection of the active area by its contraction or expansion. Dielectric film 12 can be pre-strained. The pre-strain improves the conversion between electrical energy and mechanical energy, i.e., the pre-strain allows the dielectric film 12 to deflect more and provide greater mechanical work. The pre-strain of the film can be described as a change in the dimension in one direction after pre-straining relative to the dimension in the other direction before the pre-strain. The pre-strain may comprise elastic deformation of the dielectric film and is formed, for example, by stretching the film to be in a tensioned state and securing one or more of the edges while stretching. Pre-strain may be imposed at or near only one portion of the film, and the pre-strain may be performed by using a rigid frame or by hardening a portion of the film. The details of the converter structure and other similar compliant structures of Figures 7A and 7B and their construction are more fully described in the numerous cited patents and publications of the cited patents and publications herein. In addition to the above-described diaphragm, the sensory or tactile feedback user interface device may also include a ΕΑp converter designed to produce lateral movement. For example, the various components include (from top to bottom as illustrated in Figures 8A and 8B) actuating benefits 30 having an electroactive polymer (ΕΑρ) converter 10 in the form of an elastic film, the converter 10 Convert electrical energy to mechanical energy (as mentioned above). The resulting mechanical energy is in the form of an entity "displacement" of the output member (here in the form of a disk 28). Referring to Figures 9A through 9C, the xenon converter film 1 includes two pairs of working thin bombs! - green electrodes 32a, 32b and 34a, 34b, each of which is operated by an elastomeric dielectric polymer 26 (e.g., by acrylic acid) Ester, polyoxyl, urethane, 146043.doc -20- 201126377 Thermoplastic elastomer μ f &amp;, rubber, fluoroelastomer or the like) When each of the guards is on the phase of the phase, f is also Pn ^ 34b, and the target is applied to the electrodes 32 & and 3213 and applied to the electrodes 34 &amp; and the opposite electrodes attract each other, thereby pressing the dielectric polymer layer 26 Hey: between. As the electrodes are brought closer together, the dielectric polymer 26 becomes divergent with the direction (i.e., the x-axis and y-axis components expand), and the Z-axis is divided into $ contractions (for the axis reference, See Figure 9B and Figure 9C). This ♦ ♦ similar charge on each electrode causes the conductive particles embedded in the electrode to repel each other, thereby contributing to the expansion of the elastic electrode and the dielectric film. Thereby, the I electrical layer 26 is deflected as the electric field changes. Since the electrode material is also: the electrode layer thus changes shape together with the dielectric layer 26. Generally, 'deflection refers to any displacement, expansion, contraction, torsion, linear or area alpha change or &quot; any other deformation of one of the electrical layers 26. This deflection can be used to generate mechanical work. In the process of manufacturing the transducer 2, the elastic film is stretched and held under pre-strain conditions by two or more opposing 刚性 rigid frame sides 8a, 8b. In the variants using the 4-sided frame, the film was stretched in two axial directions. It has been observed that the pre-strain improves the dielectric strength of the polymer layer 26, thereby improving the conversion between electrical energy and mechanical energy, i.e., 'pre-straining allows the film to deflect and provide greater mechanical work. Usually, the electrode material is applied after the polymer layer is pre-strained, but the electrode material may be applied in advance. Two electrodes (referred to herein as ipsilateral electrode pairs) provided on the same side of layer % (i.e., electrodes 32a and 34a (see Figure 9B) and dielectric layer on top side 26a of dielectric layer 26) The electrodes 32b and 34b (see Fig. 9C) on the bottom side 26b of 26 are electrically isolated from each other by an inactive area or a gap 146043.doc • 21 · 201126377. The opposite electrodes on opposite sides of the polymer layer are from two sets of working electrode pairs, namely electrodes 32a and 32b for one working electrode pair and electrodes 34&amp; and each side electrode for another working electrode pair Preferably, the electrodes have the same polarity, and the polarities of the electrodes of each working electrode pair are opposite to each other, that is, the electrodes 32 &amp; and 3215 are oppositely charged, and the electrodes 34a and 34b are oppositely charged. Each electrode has an electrical contact portion 35 that is configured for electrical connection to a voltage source (not shown). In the illustrated embodiment, 'each of the electrodes has a semi-circular configuration' in which the ipsilateral electrode pairs are defined on each side of the dielectric layer 26 for receiving a rigid output disc disposed centrally A substantially circular pattern of 2〇a, 2Gb. The discs 2〇a, 2〇b (discussed below) are fastened to the central exposed outer surface 26a, 26b' of the polymer layer 26 thereby sandwiching the layer 26 therebetween: between the disc and the membrane The connection can be mechanical or provided by bonding. In general, the disc will be sized relative to the conversion benefit frame 22a, 22b. More specifically, the ratio of the diameter of the disc to the annular diameter within the frame will cause the stress applied to the transducer to be properly dispersed. The greater the ratio of the diameter of the disc to the diameter of the frame, the greater the force of the feedback signal or movement, but the lower the linear shift of the disc, the lower the ratio, the lower the output force and the greater the linear displacement. “And the heartbeat, the converter i 〇 may be able to function in single-phase or dual-phase mode. In the configured way, the output components of the above-mentioned sensory feedback device (ie 'two consuming discs' The mechanical displacement of the application 20b) is lateral rather than vertical. In other words, the alternative sensation feedback signal is at the display surface 232 perpendicular to the user interface and parallel to the input by the user's finger (10) I46043.doc -22- 201126377 The force in the direction of force (indicated by arrow 60a in Figure 10) (but in the opposite or upward direction), the sensed feedback or output force of the sensory/tactile feedback device of the present invention (in Figure 10 &amp; double The head arrow 60b indicates) in a direction parallel to the display surface 232 and perpendicular to the input force 60a. The view electrode pair is burned from the axis of the plane of the converter 10 and is displayed relative to the operation of the converter. Depending on the rotational alignment of the position of the surface 232 mode (ie, 'single phase or two phase'), this lateral movement can be in either of 360 or any of a number of directions. For example, 'lateral feedback Movement can be relative to the user's finger Or palm or grip, etc.) before the side to the side or up and down (both biphasic actuation). Although those skilled in the art will recognize that providing a contact surface that is transverse or perpendicular to the tactile feedback device. Some other actuator configurations that feedback the displacement, but the overall profile of the device so configured may be larger than the previous design. Figures 9D-9G illustrate an example of an array of electroactive polymers that can be placed on the display screen of the device. In this example, the voltage side 2〇〇a and the ground side 2〇〇b of the EAp film array 2〇〇 (see Fig. 9F) (respectively) are used in the Ο array of the EAp actuator, the EAP actuator The array is used in the haptic feedback device of the present invention. The film array 200 includes an electrode array that is provided in a matrix configuration to increase space and power efficiency and to simplify the control circuit. The high voltage side 200a of the EAp film array is provided on the dielectric film 2〇8 The electrode pattern 2〇2 is run vertically on the material (according to the viewpoint illustrated in Fig. 9D). Each pattern 202 includes a pair of high voltage lines 202a' 202b. The opposite or ground side of the tantalum array 2〇〇 b provides lateral extension relative to the 焉 voltage electrode (ie, horizontally extending) electrode pattern 206 ° Each pattern 206 includes a pair of grounding wires 2〇6a, 2〇6b. Each pair is opposite to 146043.doc -23- 201126377 and the grounding wire (2〇 2a '2〇0a and coffee, b) provide separate pairs of electrodes that can be activated so that the opposite electrode pair provides a two-phase output motion in the direction of the arrow called the moon. The assembled EAp film array 2〇 The intersection pattern of the electrodes on the top side and the bottom side of the clear dielectric film 2 () 8 is provided in an exploded view of the array 204 of the erbium converter 222 in FIG. 9F, which is assembled with it. The form is illustrated in Figure Go. The EM film array 2GG is sandwiched between opposing frame arrays 214", each individual frame segment 216 in each of the two arrays being defined by a wheel 218 located in the center of an open area. Each combination and electrode configuration of disk segments 216 forms an EAP converter 222. Depending on the application and actuation: type, additional layers of components can be added to converter array 204. For example, converter array 22 The device can be integrated into the user interface array, such as a display screen, sensor surface or trackpad. When the sensory/feel feedback device 2 is operated in single phase mode, only the actuator will be activated at any one time. One pair of working electrodes. A single high voltage power supply can be used to control the single phase operation of the actuator 3. As the voltage applied to the selected single working electrode pair increases, the active portion of the converter membrane (half Will expand, thereby moving the output disk 20 in a plane in the direction of the inactive portion of the converter membrane. Figure 11A illustrates the relative activation of the two working electrode pairs in a single phase mode relative to the neutral position Actuator The force-stroke relationship of the salty feedback signal (ie, the output disk displacement). As illustrated, the individual forces and displacements of the output disk are equal but opposite in direction. Figure 11A illustrates the operation in this single phase mode. The resulting nonlinear relationship between the applied voltage and the output displacement of the actuator. 146043.doc •24· 201126377 by the common dielectric film: The “mechanical” light connection of the two electrode pairs allows the output disc to be made Move in the opposite direction. Therefore, when operating two electrode pairs (although they operate independently of each other), an electric cymbal is applied to the first working electrode pair (phase (4) will cause the output circle. #2G to move in one direction and apply voltage In the first: working electrode pair (phase Q will cause the output disc 2〇 to move in the opposite direction. As shown in Figure UB (4), the displacement of the actuator is nonlinear when the voltage changes linearly. The acceleration of the output disc during position 〇# is controlled via two phase synchronization operations to enhance the tactile feedback effect. The actuator can also be divided into two more independently activatable phases to enable the output disc to be made more Complex motion. To achieve greater displacement of the output member or assembly, and thereby provide a greater sensory feedback signal to the user, the actuator 30 is operated in a two-phase mode, ie, the two actuators are simultaneously activated. Figure uc illustrates the force-stroke relationship of the sensory feedback signal of the output disc when operating the actuator in dual phase mode. As explained, the force of the two parts 32, 34 of the actuator in this mode ) Silk process is in the same side Upper 'and has twice the force and stroke of the actuator when operating in single-phase mode. Figure UD illustrates the resulting linearity of the applied voltage and the output displacement of the actuator when operating in this two-phase mode The voltage and output components of the common node 55 by electrically connecting the mechanical handle portions 32, 34 of the actuators in series and controlling their common nodes 55 (such as in the manner illustrated in block 40 of Figure 13). The relationship between the displacement (or resistance) of (in any configuration) is nearly linearly related. In this mode of operation, the nonlinear voltage responses of the two portions 32, 34 of the actuator 30 effectively cancel each other out to produce linearity. Voltage response. By using control circuit 44 and switch total 146043.doc -25- 201126377 into 46a, 46b (one for each part of the actuator), this linear relationship is allowed to be supplied to the switches by means of the control circuit The waveform of the change type of the assembly is used to fine tune and modulate the performance of the actuator. Another advantage of using the circuit 4 is the ability to reduce the number of switching circuits and power supplies required to operate the feedback device. In the case of circuit 40, two separate power supplies and four switch assemblies will be required. Therefore, the complexity and cost of the circuit is reduced, and the relationship between the control voltage and the actuator displacement is improved, that is, It becomes more linear.Another advantage is that the actuator achieves synchronism during two-phase operation, which eliminates the delay in performance.Figures 12A-12C illustrate another variation of a dual phase electroactive polymer converter. In this variation, the converter 1A includes a first pair of electrodes 90 around the dielectric film 96 and a second pair of electrodes % around the dielectric film 96, wherein the two pairs of electrodes 9 and 92 are facilitating rotation. Connected to another structure to transfer the moving rod or mechanical component 94 on the opposite side. As shown in Figure 12A, the two electrodes 9 and 19 are in the same electromigration (e.g., both at zero volts. In the first phase, as illustrated in Fig. 12B, a pair of refining crucible counter electrode 92 is energized to expand the membrane and move the rod 94 by a distance D. The second pair of electrodes 9 are compressed 'by being connected to the nature of the film' but at zero voltage. Fig. 12C shows a second phase in which the electrical waste of the first pair of electrodes ^2 is reduced or broken, and a voltage is applied to the second pair of electrodes 90. The phase of the younger brother is synchronized with the first phase, so that the displacement is twice. The rotation of the converter of Fig. 12A to Fig. 12C occurs. As shown, the energy is supplied to the first electrode for phase ' 'phase 1 with the rod 94. You are dreaming of the mountain.... At time T1, the beginning of phase 2 appears and the first electrode The reduction of 92 dust automatically supplies energy to the opposite H6043.doc -26· 201126377 electrode 90. The net displacement of the rod 94 in the two phases is 2xd. Various types of mechanisms can be used to convey input from the user. Force 60a to achieve desired sensation feedback 60b (see Figure 10). For example, capacitive or resistive sensor 50 (see Figure 13) can be received within user interface pad 4 to sense application to the user by the user Contacting the mechanical input of the surface input. The electrical output 52 from the sensor 50 is supplied to the control circuit 44, which in turn triggers the switch assembly 46a, 46b to be supplied from the power supply 42 in accordance with the mode and waveform provided by the control circuit. The voltage is applied to the respective converter sections 32, 34 of the sensation feedback device. Another variation of the invention relates to the hermetic sealing of the EAP actuator to minimize any effects that moisture or condensation may have on the ruthenium film. Various embodiments described below, A barrier film that is substantially separate from other components of the tactile feedback device to seal the crucible actuator. The barrier film or sleeve may be minimized by a water vapor line such as a box =, preferably (d) or the like. The portion of the barrier film or sleeve that leaks into the sealing film can be made of a compliant material to allow for improved mechanical coupling of the actuator inside the sleeve to a point outside the sleeve. Each of the two apparatus embodiments Enabling the feedback motion of the output member of the actuator to be lightly coupled to the contact surface of the user input surface (eg, the keypad); minimizing any trade-offs in the hermetic seal actuation H package. Motion# is connected to each __ using I Α ^ ^ pure to the user interface contact surface. The method of the method's method may include each of the machinery and/or activities associated with the device being described. The description of the radish forms part of the invention by the implied method. Others: The manufacture of such devices. Wood 146043.doc • 27- 201126377 Figure 14A shows the EAp not coupled to the user wheeling device 19〇 Plane of actuator 2〇4 An example of an array. As shown, the array of EAp actuators 遮* covers a portion of the screen 232 and is coupled to the frame 234 of the device 19 via the pedestal 256. In this variation, the pedestal 256 permits the presence of a void. Actuator 204 and screen 232 are moved. In one variation of device 19, the array of actuators 2〇4 can be a plurality of discrete actuators or actuators behind the user interface surface or screen 232. Array, depending on the application to be applied. Figure 4B shows a bottom view of the device 190 of Figure 14A. As shown by arrow 254, the EAp actuation 204 can allow the screen 232 to move along an axis as a normal to the screen 232. The alternative to the upper movement is combined with the movement in the normal direction. The converter/actuator embodiment described herein has a passive layer(s) coupled to both the active region of the membrane (i.e., the region including the overlapping electrodes) and the inactive region. Where the converter/actuator has also used a rigid output structure, the structure has been positioned over the area of the passive layer that resides above the active area. Moreover, the active/activatable regions of these embodiments have been localized relative to the inactive region. The invention also includes other converter/actuator configurations. For example, the passive layer(s) may only cover the active area or only cover the inactive area. Alternatively, the inactive area of the ruthenium film can be positioned centrally relative to the active area. Referring to Figures 15A and 15B, a schematic representation of a surface deformation crucible actuator 10 for converting electrical energy into mechanical energy is provided in accordance with an embodiment of the present invention. The actuator 1A includes a Εαρ converting thief 12 having a thin elastomeric dielectric polymer layer 14 and a top portion 146043.doc attached to portions of the top and bottom surfaces of the dielectric 14, respectively. 28- 201126377 Electrode 16a and bottom electrode 16b. The portion of converter 12 comprising a dielectric and at least two electrodes is referred to herein as an active region. Any of the converters of the present invention can have one or more active regions. When a voltage difference is applied to the overlapping and oppositely charged electrodes 16a, 4, the opposing electrodes are attracted to each other, whereby a portion of the dielectric polymer layer 14 is pressed therebetween. As the electrodes are pulled together (along the z-axis), the portion of the dielectric layer 丨4 between the electrodes expands in the planar direction with its zero (along the X and y axes) And become thinner. In the framework or the like, for an incompressible polymer (i.e., a polymer having a substantially constant volume under stress) or for a otherwise compressible polymer, the action causes the active region (also That is, the area covered by the electrode) is the outer dielectric (the characteristic of S, around the periphery of the edge of the active area, that is, the surrounding area of the active area) in the thickness direction (orthogonal to the converter) The plane defined by the film is displaced or protruded out of plane. This projection produces dielectric surface features 24a through 24d. Although the out-of-plane surface features 24 are shown as being relatively local to the active area, the out-of-plane is not always localized as shown. In some cases, if the polymer is pre-strained, surface features 24a through 24b are dispersed over the surface region of the inactive portion of the dielectric material. To amplify the vertical profile and/or visibility of the surface features of the target transducer, an optional passive layer can be added to one or both sides of the converter membrane structure, wherein the passive layer covers all or a portion of the surface area of the diaphragm. In the actuator embodiment of Figs. 15A and 15B, the top passive center layer and the bottom passive layer 18b are attached to the top side and the bottom side of the EAp film 12, respectively. By adding the thickness of the passive layers 18a, 18b to enlarge the actuator and the dielectric layer 12 146043.doc -29· 201126377 surface features 17 &amp; to 17 (^, as shown by the reference numeral 26a in Figure 15B In addition to the poly/substance surface features 26a to 26d, the ruthenium film 12 can be configured such that the - or both electrodes 16a, 16b are reduced below the thickness of the dielectric layer. Thus, the thickness is reduced. The electrode or portion thereof provides an electrode surface feature after the resulting deflection of the EAP film 12 and the dielectric material 14. The electrical m6a, 16e can be patterned or designed to produce a converter film surface feature. Including polymer surface features, electrode surface features, and/or passive layer surface features. In the actuator embodiment 1 of Figures W and 15B, one or more structures 2〇a, 鸠 are provided to promote surface conformance to passive The force and the force of the thick block and the rigid mechanical structure lead to the turn of the power. Here the 'top structure (which can be in the form of a platform, cup, phase rod, rod, etc.) acts as an output part, while the bottom structure 20b is used to draw the actuator 1 to a fixed or rigid structure 22, such as the ground. These output structures need not be discrete components' but can be integrated with or singular with the structure that the actuator is intended to drive. Structures 2 〇 &amp; 2 are also used to define the surface features formed by the passive layers 18a, 18b. To the perimeter or shape of 26d. In the illustrated embodiment, although the collective actuator stack produces an increase in the thickness of the inactive material of the actuator (as shown elsewhere), the actuator is actuated That is, the net change in height experienced is negative. The helium converter of the present invention can have any suitable configuration to provide the desired thickness mode actuation. For example, more than one ΕΑρ film layer can be used to make the converter for use. In more complex applications, such as keyboard keys with integrated sensing capabilities, where an additional diaphragm layer can be used as a capacitive sensor. 146043.doc • 30· 201126377 Figure 16 A § The use according to the invention has This actuator 30 of the stacking converter 32 of the double EAp film layer 3*. The double layer comprises two dielectric elastomer films, the top film 34a being sandwiched between the top electrode 34b and the bottom electrode 34c, respectively, and • the bottom film 36a respectively Sandwiched between the top electrode 36b and the bottom electrode 3. A pair of conductive traces or layers (commonly referred to as "bus bars") are provided to couple the electrodes to the high voltage and ground side of the power source (power source) Not shown.) The bus bars are positioned on the "inactive" portion of the respective diaphragms (that is, the portions of the top electrode 0 where the oscillating electrodes do not overlap). The 1Ή bus bar 42a and the bottom bus bar 42b are respectively positioned. On the top side and the bottom side of the dielectric layer 34a, the top bus bar 44a and the bottom bus bar 44b are respectively positioned on the top side and the bottom side of the dielectric layer 36 &amp; The top electrode 34b of the dielectric material and the bottom electrode 36c of the dielectric material 36a are generally coupled to each other via the conductive elastomer vias 68 &amp; (shown in FIG. 16B) to couple the bus bars 42 &amp; That is, the two outwardly facing electrodes are polarized, and the formation of the conductive elastomer through holes 68a is described in more detail below with respect to Figs. 17A through 17D. The bottom electrode 34 of the dielectric 34a (and the top electrode of the dielectric 36a) is also typically coupled by interconnecting the bus bars 42b and 44b via conductive elastomer vias 68b (shown in Figure 16B). That is, the two inward facing electrodes are polarized. The vias 66a, 66b are used to seal the vias 68a, 6. When the actuator is operated, each electrode is applied when a voltage is applied. The opposing electrodes are pulled together. For safety purposes, the grounding electrode can be placed outside the stack so that any perforated objects are grounded before they reach the high voltage electrode, thereby eliminating the risk of electric shock. Adhesive from film to film adhesive 4〇b. The adhesive layer may include passive or thick layers to enhance performance. Passive 146043.doc -31 - 201126377 layer or thick block 50a and bottom passive layer 52b The adhesive structure is adhered to the converter structure by the adhesive layer 4A and by the adhesive layer 4A. The output rods 46a, 46b can be respectively coupled to the top passive layer and the bottom passive layer by the adhesive layers 48a, 48b, respectively. The actuator can use any suitable number of converters The number of layers may be even or odd. In the latter configuration, one or more common ground electrodes and bus bars may be used. The material may be positioned on the converter stack if safety is not a problem. External to better suit a particular application. 'For operation, actuator 30 must be electrically coupled to a power source and control electronics (all not shown). This can be connected by actuator or pCB or flex The electrical traces or wires on the device 62 are implemented, and the pcB or flex connector 62 couples the high voltage and ground vias 68a, 68b to a power supply or intermediate connection. The barrier material can be protected to encapsulate the actuator 30. Sealing it from moisture and contaminants. Here, the protective barrier includes a top cover 6〇 and a bottom cover 64, which are preferably sealed around the PCB/flex connector to protect The actuator is protected from external forces and strain and/or environmental exposure. In some embodiments, the protective barrier may be impermeable to provide a hermetic seal. The covers may be slightly rigid to protect Actuator 3 〇 to protect it from real The body damage may be compliant to allow for the presence of a space for the actuation displacement of the actuator 3. In one particular embodiment, the top cover 6 is made of a shaped foil and the bottom cover 64 is made of a compliant foil. Made, or vice versa, the two caps are then heat sealed to the board/connector 62. Many other encapsulating materials can also be used, such as metallized polymer film, PVDC, AcUr, styrene or olefin copolymer, polyester. And polyolefin. Compliance material is used to cover the output structure or multiple 146043.doc • 32· 201126377 output structure (here rod 46b), which translates the actuator output. The stacked actuator/converter structure of the present invention The conductive components/layers (such as the actuator 30 just described) are typically coupled by forming electrical vias (68a and 68b in Figure 16B) through the stack. Figures i7a through 19 illustrate various methods of forming the vias of the present invention. The formation of conductive vias of the type used in the actuator 3 of Fig. 16B is described with reference to Figs. 17A to 17D. At the actuator 7A (here, constructed by a single film converter having oppositely positioned bus bars 76a placed on opposite sides of the inactive portion of the dielectric layer 74) , 76b, the inactive portions are sandwiched between the passive layers 78a, 78b) before or after lamination to the pCB/flex connector 72, as illustrated in Figure 17B, the stacked converter/actuator structure The laser drilled hole 80 is made to pass through its entire thickness to the PCB 72 to form through holes 82a, 82b. Other methods for creating such through holes, such as mechanical drilling, perforating, molding, perforating, and coring, can also be used. As shown in Figure 17C, the vias are then filled with a conductive material (e.g., carbon particles in polyfluorene oxide) by any suitable dispensing method, such as by injection. Next, as shown in FIG. 17D, the vias 84a, 84b are electrically filled with vias 84a, 86b to electrically isolate the exposed ends of the vias, as appropriate, with any phase non-conductive material (eg, polyoxynitride). . Alternatively, a non-conductive strip can be placed over the exposed via. Standard electrical wiring can be used in place of the PCB or flex connector to connect the actuator t to the power supply and electronics. The various steps of forming the electrical vias and electrical connections of the power supply i, the device in these embodiments are illustrated in FIGS. 18A to D, components and steps similar to those in FIGS. 17A to 17D and steps 146043. .doc -33- 201126377 has the same reference number. Here, the through holes 82a, 82b as shown in Fig. 18A need only be drilled to a depth within the thickness of the actuator to the extent that the bus bars 84a, 84b are reached. Next, after the leads 2 88a, 88b are inserted into the deposited conductive material as shown in Fig. 18C, the via holes are filled with a conductive material as shown in Fig. 18B. As shown in Figure 18D, the electrically conductive filled vias and leads can then be canned. Figure 19 illustrates another way of providing conductive vias in the converter of the present invention. The converter 100 has a dielectric film comprising a dielectric layer 1〇4 having a portion between the electrodes 106a, 106b, which are sandwiched between the passive polymer layers 11a, 11b . Conductive bus bars 1〇8 are provided on the inactive area of the ΕΑρ film. The conductive contacts 114 having a perforated configuration are driven by hand or otherwise, the perforation configuration passing through one side of the transducer to a depth that penetrates the bus bar material 108. Conductive trace 116 extends from the exposed end of perforated contact 114 along pCB/flex connector 112. This method of forming the through holes is particularly effective because it eliminates the steps of drilling the through holes, filling the through holes, placing the wires in the through holes, and sealing the through holes. The helium transducer of the present invention can be utilized in a variety of actuator applications in any suitable configuration and surface features. Figures 20A through 24 illustrate an exemplary thickness mode converter/actuator application. Figure 20A illustrates a thickness mode converter 12A having a circular configuration that is ideal for user physical contact in such tactile or tactile feedback applications for push button actuators used in tactile or tactile feedback applications. A dream, keyboard, touch screen, phone, etc. The converter 12 is formed from a thin elastomer dielectric polymer layer 122 and top and bottom electrode patterns 124a, i24b (bottom I46043.doc -34 - 201126377 electrode patterns are shown as phantoms), which is best shown in FIG. In the separation diagram in 〇b (isolated... (8), each of the electrode patterns 124 provides a short post. The P-knife 125' has a plurality of oppositely extending finger portions 127 forming a concentric pattern. The short posts of the two electrodes Opposite to each other, on opposite sides of the circular dielectric layer 122, wherein the respective finger portions are aligned side by side to each other to produce the pattern # shown in Figure 2GA. Although in this embodiment the opposing electrode patterns are mutually Equivalent and symmetrical, but encompassing other embodiments in which the opposing electrode pattern is asymmetrical in shape and/or the amount of surface area it occupies. The portion of the converter material 4 where the two electrode materials do not overlap defines the non-converter. Active portions 128a, 128b. Electrical contacts Uh, 丨2^ are provided at the base of each of the two electrode stub portions for electrically connecting the converter to the power source and the control electronics ( None of them When the converter is activated, 'the opposing electrode fingers are pulled together' thereby pressing the dielectric material 122 therebetween, wherein the inactive portion 12 of the converter is embossed to press the button Surface features are formed around the perimeter and/or inside the button. The push button actuator may be in the form of a single input or contact surface or may be provided in an array format having a plurality of contact surfaces. The built-in array form %, the button of Figure 20A The converter is ideal for use in a variety of user interface devices (e.g., 'computer keyboard' phones, calculators, etc.) keypad actuators 13 (as shown in Figure 21). The converter array 32 includes A top array 136a of interconnected electrode patterns and a bottom array 13 of electrode patterns (shown as phantoms), wherein the two arrays are opposite each other to produce a concentric converter pattern of FIG. 2A with active and inactive portions as described The keyboard structure may take the form of a passive layer 13 4 on top of the 146043.doc -35- 201126377 converter array 13 2. The passive layer 134 may have its own surface features (such as a bond boundary 13 8), It can be raised in a passive state to enable the user to align his or her finger with the individual key pad by touch, and/or to further enlarge the protrusion of the periphery of each button after activation. When the button is pressed, the device is activated The individual transducers are laid flat so that the thickness mode is convex (as described above) to provide a tactile sensation to the user. Any number of transducers can be provided in this manner and the transducers are spaced apart to accommodate the small use being used. The type and size of the keyboard 134. Examples of manufacturing techniques for such converter arrays are disclosed in the application dated June 27, 2008.

「ELECTROACTIVE POLYMER TRANSDUCERS FOR SENSORY FEEDBACK APPLICATIONS」的美國專利申請案第12/163 554 號中,該案之全文以引用的方式併入。 熟習此項技術者應瞭解,本發明之厚度模式轉換器無需 為對稱的且可採取任何構造及形狀。標的轉換器可用於任 何可想像之新穎應用中,諸如圖22中所說明之新穎手裝置 140。提供呈人手形式之介電材料142,其具有呈類似手形 狀之頂部及底部電極圖案144a、144b(下面之圖案展示為 幻象)。該等電極圖案中之每一者分別電耦接至匯流條 146a、146b,該等匯流條又電耦接至電力源及控制電子裝 置(皆未圖示)。此處,相對之電極圖案彼此對準或彼此疊 置而非插人’藉此產生交替之活性區域及非活性區域。= 而,替代僅在整個圖案之内部及外部邊緣上產生上升之表 面特徵,遍及手輪廓(亦即’在非活性區域上)提供上升之 表面特徵。注意,在此例示性應用中,該等表面特徵可供 146043.doc -36 - 201126377 應視覺回饋而非觸覺回饋。預期可藉由著色、反射材料等 來增強視覺回饋。 ΟIn the U.S. Patent Application Serial No. 12/163,554, the entire disclosure of which is incorporated herein by reference. Those skilled in the art will appreciate that the thickness mode converter of the present invention need not be symmetrical and can take any configuration and shape. The target converter can be used in any conceivable novel application, such as the novel hand device 140 illustrated in FIG. A dielectric material 142 is provided in the form of a hand having top and bottom electrode patterns 144a, 144b in a similar hand shape (the lower pattern is shown as an illusion). Each of the electrode patterns is electrically coupled to bus bars 146a, 146b, which are in turn electrically coupled to a power source and control electronics (all not shown). Here, the opposing electrode patterns are aligned with each other or overlap each other instead of being inserted, thereby creating alternating active and inactive regions. Instead, instead of creating raised surface features only on the inner and outer edges of the entire pattern, raised surface features are provided throughout the hand contour (i.e., 'on the inactive area). Note that in this illustrative application, the surface features are available for 146043.doc -36 - 201126377 for visual feedback rather than tactile feedback. It is expected that visual feedback can be enhanced by coloring, reflecting materials, and the like. Ο

G 可错由常用之基於網的製造技術來有效地大批生產本發 明之轉換器膜,尤其在轉換器電極圖案為均一或重複之情 況下如圖23中所展不’轉換!!膜15()可提供為連續條帶 格式,其具有沈積於或形成於介電材料152之條帶上的連 續頂部及底部電匯流排156a、156b。最通常,藉由離散 (亦即’非連續)但重複之活性區158來界定厚度模式特徵, 該等活性區158由電輕接至各別匯流條156&amp;、⑽之頂部 及底部電極圖案⑽、⑽形成;可針對特定應用來定製 該等厚度模式特徵之大小、長度、形狀及圖案。然而,預 期(多個)活性區可提供為連續圖案。可藉由已知之基於網 之製造技術來形成電極及匯流排圖案,其中接著亦藉由已 Z術(諸如,藉由沿選定之單—化線155來切割條帶BO) 1意’在沿該條帶連續地提供活性 :之=,需要以高精確度來切割該條帶以避免縮短電 L:rk要罐封或否則可回敍此等電極之切割末端以避 免攸電(trackmg)問題。接著將匯流排156 ^ 子二至電力源/控制裝置以使能夠致動所得致二她 在早一化之前或之後’該條帶或單一 何數目個其他轉換器膜條帶/條帶部分堆叠、以:分了與任 構。若如此需要,則可接著將 1供多層結 至致動器之剛性機械組件,諸如輸㈣機械純 圖24說明標的轉換器之另-變體,其中、轉換器_介 146043.doc -37. 201126377 電材料162之條帶形成,頂部及底部電極164a、164b在該 條π之相對側上,該條帶配置成矩形圖案藉此框住一開口 區域1 65。该等電極中之每一者終止於電匯流排】6以、 166b中,電匯流排166a、16讣分別具有用於耦接至電力源 及控制電子裝置(皆未圖示)之電接觸點168a、16訃。延伸 跨越封閉區域165之被動層(未圖示)可用於轉換器膜之任一 側上,藉此形成墊片組態,用於環境保護及輸出桿(亦未 圖不)之機械耦接兩者。如所組態,轉換器之啟動產生沿 轉換器條帶之内及外周邊169的表面特徵及活性區域 164a、164b之厚度的減小。應注意,㉟片致動器無需為連 續、單-致動器。亦可使用一或多個離散致動器以沿一區 域之周邊排列,該區域可視情況用非活性順應墊片材料來 密封。 其他墊片型致動器揭示於上文引用之美國專利中情案第 12腕,554號中。此等類型之致動器適合於(諸如)具有觸 摸感測器板、觸控板及觸控螢幕之感覺(例如,觸感或振 動)回饋應S ’供應用於掌上型多媒體裝置、醫療器具、、 公共資訊查詢站或汽車儀接柘、 a 早儀錶板玩具及其他新穎產品等 中Ο 圖25A至圖25D為使用本發明之厚度模式致動器之變體 的觸控發幕之横截面圖,其中相似參考數字在該四個圖: 中指代類似組件。參看圖25A ’觸控螢幕裝置”: 常由玻璃或塑膠材料製成之觸控感測器板1741 = 括液晶顯示器(LCD)172。該兩者堆疊在—起且藉由 146043.doc •38 ‘ 201126377 度模式致動器180間隔開,從而在其間界定一開口空間 176。藉由框架178將該集體堆疊結構固持在一起。致動器 180包括由藉由電極對184a、18扑夾於中央之介電膜層【Μ 形成的轉換器膜。該轉換器膜又夾於頂部與底部被動層 6a 186b之間,且進一步固持於一對輸出結構188a、 1 88b之間,該對結構分別機械耦接至觸控板1 74及LCD 172。圖25A之右側展示在致動器為非作用中時lcD與觸控 0 板之相對位置’而圖25A之左侧展示在致動器為作用中時 (亦即,在使用者在箭頭175之方向上按下觸控板174後)該 等組件之相對位置。如自圖式之左側顯而易見,在啟動致 動益180時,將電極184a、184b拉於一起,藉此將介電膜 1 82之部分壓在其間,同時在活性區域外部之介電材料及 被動層1 86a、186b中產生表面特徵,該等表面特徵藉由輸 出區塊188a、188b所引起之壓縮力來進一步增強。因而, 該等表面特徵在與箭頭175相反之方向上對觸控板174提供 〇 輕微之力’此給予使用者回應於按下觸控板之觸覺感覺。 圖25B之觸控螢幕裝置190具有與圖2 5A之觸控螢幕裝置 類似的構造,不同之處為LCD 172整個駐於由矩形(或正方 形等)形狀之厚度模式致動器18〇框住的内部區域内。因 而’在裝置處於非作用中狀態時LCD 172與觸控板174之間 的間距176(如該圖之右側上所演示)顯著小於圖25A之實施 例中的間距’藉此提供較低輪靡設計。此外,致動器之底 部輸出結構188b直接擱置於框架178之後壁178'上。不管該 兩個實施例之間的結構差異,裝置190與裝置170類似地起 146043.doc •39- 201126377 作用’因為致動器表面特徵回應於按下觸控板而在與箭頭 185相反之方向上提供輕微之觸覺力。 剛才所描述之該兩個觸控螢幕裝置為單相裝置,因為其 在單一方向上起作用。如在圖25C中,兩個(或兩個以上、) 才示的塾片型致動器可—前—後地用以產生雙相(雙向)觸控 螢幕裝置200。裝置2〇〇之構造類似於圖25B之裝置的構 造’但添加了擱在觸控板174頂上之第二厚度模式致動器 180’。該兩個致動器及觸控板174藉由框架178而保持堆疊 關係,框架178具有一添加之向内延伸之頂部肩部178,。 因而,觸控板174直接夾於致動器18〇、18〇,(分別)之最内 輸出區塊188a、l88b,之間,而致動器18〇,(分別)之最外輸 出區塊188b、188a’分別支撐框架部件178,及178,,。此封閉 墊片配置使灰塵及碎屑在空間176内之光學路徑外。此 處,該圖之左侧說明處於主動狀態之底部致動器18〇及處 於被動狀態之頂部致動器180,,其中使感測器板174在箭頭 195之方向上朝著LCD 172移動。相反,該圖之右側說明處 於被動狀態之底部致動器180及處於主動狀態之頂部致動 器180’,其中使感測器板174在箭頭195'之方向上遠離LCD 1 7 2移動。 圖25D說明另一雙相觸摸感測器裝置21〇,但具有隨正交 於觸摸感測益板之電極定向的一對厚度模式條帶致動器 180。此處,如由箭頭205指示,觸控板174之雙相或雙向 移動為平面中的。為使能夠進行此平面中運動,致動器 180經定位’使得其ΕΑΡ膜之平面正交於LCD 172及觸控板 146043.doc • 40- 201126377G can be used to efficiently mass-produce the converter film of the present invention by conventional web-based manufacturing techniques, especially if the converter electrode pattern is uniform or repeated, as shown in Figure 23; ! Film 15() can be provided in a continuous strip format having continuous top and bottom electrical busbars 156a, 156b deposited or formed on a strip of dielectric material 152. Most commonly, the thickness mode features are defined by discrete (i.e., 'non-continuous) but repeating active regions 158 that are electrically coupled to the respective top and bottom electrode patterns (10) of the respective bus bars 156 &amp; (10) forming; the size, length, shape and pattern of the thickness mode features can be customized for a particular application. However, it is expected that the active area(s) can be provided as a continuous pattern. The electrodes and busbar patterns can be formed by known web-based fabrication techniques, which are then followed by Z (such as by cutting the strip BO along the selected mono-line 155). The strip continuously provides activity: =, the strip needs to be cut with high precision to avoid shortening the electricity L: rk is to be canned or otherwise the cutting ends of the electrodes can be reverted to avoid the problem of trackmg . The busbars are then 156^2 to the power source/control device to enable actuation of the resulting two. Before or after the earlyization, the strip or a single number of other converter film strips/strip portions are stacked. To: divided and appointed. If so required, then a multi-layered junction to the rigid mechanical component of the actuator, such as the input (four) mechanically pure figure 24, illustrates another variant of the target converter, wherein the converter _ 146043.doc -37. 201126377 A strip of electrically conductive material 162 is formed with the top and bottom electrodes 164a, 164b on opposite sides of the strip π, the strip being arranged in a rectangular pattern thereby enclosing an open region 165. Each of the electrodes terminates in the electrical busbars 6 to 166b, and the electrical busbars 166a, 16b respectively have electrical contacts for coupling to the power source and control electronics (all not shown) 168a, 16讣. A passive layer (not shown) extending across the enclosed region 165 can be used on either side of the converter membrane, thereby forming a gasket configuration for environmental protection and mechanical coupling of the output rod (also not shown) By. As configured, the activation of the transducer produces surface features along the inner and outer perimeters 169 of the converter strip and a reduction in the thickness of the active regions 164a, 164b. It should be noted that the 35-piece actuator need not be a continuous, single-actuator. One or more discrete actuators may also be used to align along the perimeter of an area that may optionally be sealed with an inactive compliant gasket material. Other shim-type actuators are disclosed in U.S. Patent Application Serial No. 12, No. 554, which is incorporated herein by reference. These types of actuators are suitable for, for example, having a touch sensor panel, a touchpad, and a touch screen (eg, tactile or vibratory) feedback should be supplied for handheld multimedia devices, medical devices , public information inquiry station or car instrument interface, a early instrument panel toy and other novel products, etc. FIG. 25A to FIG. 25D are cross sections of the touch screen using the variant of the thickness mode actuator of the present invention. Figures, in which like reference numerals refer to like components in the four figures. Referring to Figure 25A, 'Touch Screen Device': A touch sensor panel 1741, often made of glass or plastic material, includes a liquid crystal display (LCD) 172. The two are stacked together and are 146043.doc • 38 The '201126377 degree mode actuators 180 are spaced apart to define an open space 176 therebetween. The collective stacking structure is held together by the frame 178. The actuator 180 includes a centered pair of electrodes 184a, 18 a dielectric film layer [Μ] formed by a converter film. The converter film is sandwiched between the top and bottom passive layers 6a 186b and further held between a pair of output structures 188a, 188b, respectively. Coupling to the touchpad 1 74 and the LCD 172. The right side of Figure 25A shows the relative position of the lcd and the touchpad 0 when the actuator is inactive and the left side of Figure 25A is shown in the actuator The relative position of the components (i.e., after the user presses the trackpad 174 in the direction of arrow 175). As is apparent from the left side of the figure, the electrodes 184a, 184b are activated when the actuation benefit 180 is activated. Pulled together, thereby pressing the portion of the dielectric film 182 Simultaneously, surface features are generated in the dielectric material and the passive layers 186a, 186b outside the active region, and the surface features are further enhanced by the compressive forces caused by the output blocks 188a, 188b. Thus, the surface features The touch panel 174 is provided with a slight force in the opposite direction to the arrow 175. This gives the user a tactile sensation in response to pressing the touch panel. The touch screen device 190 of FIG. 25B has the touch with FIG. A similar configuration of the screen device, except that the LCD 172 is entirely housed in an interior region framed by a rectangular (or square, etc.) shaped thickness mode actuator 18. Thus 'LCD 172 when the device is in an inactive state The spacing 176 from the touchpad 174 (as demonstrated on the right side of the figure) is significantly smaller than the spacing in the embodiment of Figure 25A, thereby providing a lower rim design. In addition, the bottom output structure 188b of the actuator Directly resting on the wall 178' behind the frame 178. Regardless of the structural difference between the two embodiments, the device 190 acts similarly to the device 170 as 146043.doc • 39-201126377 'because of the actuator surface features A slight tactile force should be provided in the opposite direction to the arrow 185 when the touchpad is pressed. The two touchscreen devices just described are single phase devices because they act in a single direction. In the 25C, two (or more than two) slap-type actuators can be used to create a two-phase (two-way) touch screen device 200. The structure of the device 2 is similar to that of the figure. The configuration of the 25B device 'but adds a second thickness mode actuator 180' resting on top of the trackpad 174. The two actuators and trackpad 174 maintain a stacked relationship by a frame 178 having an added inwardly extending top shoulder 178. Thus, the touchpad 174 is directly sandwiched between the actuators 18〇, 18〇, (respectively) the innermost output blocks 188a, l88b, and the actuators 18〇, (respectively) the outermost output blocks 188b, 188a' support frame members 178, and 178, respectively. This closed shim configuration places dust and debris out of the optical path within space 176. Here, the left side of the figure illustrates the bottom actuator 18 in an active state and the top actuator 180 in a passive state in which the sensor plate 174 is moved toward the LCD 172 in the direction of arrow 195. Rather, the right side of the figure illustrates the bottom actuator 180 in the passive state and the top actuator 180' in the active state, with the sensor plate 174 moving away from the LCD 1 7 2 in the direction of arrow 195'. Figure 25D illustrates another dual phase touch sensor device 21A, but with a pair of thickness mode strip actuators 180 oriented with respect to the electrodes of the touch sensitive panel. Here, as indicated by arrow 205, the biphasic or bidirectional movement of trackpad 174 is in a plane. To enable this in-plane motion, the actuator 180 is positioned such that its plane of the diaphragm is orthogonal to the LCD 172 and the trackpad 146043.doc • 40-201126377

174之平面。為維持此位置將致動器wo固持於框架us ::壁202與内框架部件2〇6之間,觸控板174擱置於内框 术邛件206上。在内框架部件2〇6附於致動器⑽之輸出區 之同時,其及觸控板174相對於外框架i 78而「浮 動」以允許平面中或側向運動。此構造提供相對緊凑、.低 輪廓之a又汁,因為其消除所添加之空隙,該空隙對於觸控 板所進行之雙相平面外運動另外為必要的。該兩個致 動时對於又相運動相反地工作。板i74與托架咖之組合總 成使致動器條帶180保持稍壓住框架178之側壁2〇2。在一 個致動器為作用中肖,其壓縮或進—步變薄,而另一致動 H歸因於所儲存之壓縮力而擴張。此使該板總成朝著該作 用中致動益移動。藉由撤銷第一個致動器且啟動第二個致 動器來使板在相反方向上移動。 圖26A及圖26B說明轉換器之非活性區域定位於(多個)活 性區内部或中央(亦即’ ΕΑΡ膜之中央部分缺乏重疊電極) 的變體。厚度模式致動器36G包括包含夹於電極層364a、 364b之間的介電層362&amp;ΕΑρ轉換器膜,其中該膜之中央 部分365為被動的且缺乏電極材料。藉由頂部及底部框架 部件366a、366b(共同提供厘組態)中之至少—者使該ΕΑρ 膜保持於拉緊或拉伸條件下。遮蓋該膜之被動部分之 頂部側及底部側中之至少一者的分別為被動層刊“、 368b,其上面安裝有可選之剛性約束或輸出部件370a、 370b。在ΕΑΡ膜藉由匣式框架366約束於其周邊處之情況 下,在被啟動(見圖26Β)時,該ΕΑΡ膜之壓縮使膜材料向内 146043.doc •41· 201126377 縮回(如由箭頭367a、367b展示)而非如同上述致動器實施 例之情況-樣向外。㉟壓縮之EAp膜撞擊於被動材料 368a、雇上,從而使其直徑減小且其高度增加。此組態 改變將向外之力分別施加於輸出部件⑽、3鳩。如同先 前所描述之致動器實施例之情況—樣,被動㈣之膜致動 器可多個地以堆疊或平面關係來提供,以提供多相致動及/ 或增加致動器之輸出力及/或衝程。 可藉由使介電膜及/或被動材料預應變來增強效能。該 致動器可用作鍵或独裝置且可與諸如薄㈣關之感測器 裝置堆疊或整合。可使用底部輸出部件或底部電極向薄膜 開關提供;i夠之壓力以完成電路或可在該底部輸出部件且 有導電層時直接完成電路。可針對諸如小鍵盤或鍵盤之應 用以陣列形式使用多個致動器。 揭示於美國專利申請公開案第2〇〇5/〇ι 57893號中之各種 介電彈性體及電極材料適於與本發明之厚度模式轉換器一 起使用。大體上,介電彈性體包括任何實f上絕緣、順應 之聚合物(諸如’聚發氧橡膠及㈣酸),其回應於靜電力 而變形或其變形導致電場之改變。在設計或選擇適當聚合 物之過程中’可考慮最佳材料、物理及化學性質。可藉由 明智地選擇單體(包括任何側鏈)、添加劑、交聯程度、結 晶度 '分子量等來裁適(tail〇r)此等性質。 σ 其中所描述且適於使用之電極包括結構化電極,包含金 屬跡線及電荷分散層、有紋理之電極、導電油脂(諸如, &quot;&quot;油脂或銀油脂)、膠狀懸浮液、高縱橫比導電材料(諸 146043.doc -42- 201126377 石墨烯及金屬奈米 極可由順應材料(諸 矩陣)製成。本發明 如,導電碳黑、碳纖維、碳奈米管、 線)及離子導電材料之混合物。該等電 如,含有碳或其他導電粒子之彈性體 亦可使用金屬及半非可撓性電極。 舉例而言’供用在標的鏟趟笼七 專換益中之例示性被動層材料包 括(但不限於)聚矽氧、笨乙稀 _、丙浠酸酯、橡膠'軟c物、聚胺基甲酸 ΟThe plane of 174. To maintain this position, the actuator wo is held between the frame us::wall 202 and the inner frame member 2〇6, and the touchpad 174 rests on the inner frame member 206. While the inner frame member 2〇6 is attached to the output region of the actuator (10), it and the trackpad 174 "float" relative to the outer frame i 78 to allow for in-plane or lateral movement. This configuration provides a relatively compact, low profile a juice because it eliminates the added voids that are otherwise necessary for the biphasic out-of-plane motion of the touchpad. The two actuations work inversely for the phase motion. The combination of plate i74 and bracket coffee assembly maintains actuator strip 180 slightly against the side wall 2〇2 of frame 178. In the case of one actuator, it is compressed or progressively thinned, while the other actuation H is expanded due to the stored compressive force. This causes the plate assembly to move toward the action. The plate is moved in the opposite direction by undoing the first actuator and activating the second actuator. Figures 26A and 26B illustrate variants in which the inactive region of the transducer is positioned inside or in the center of the active region (i.e., the central portion of the diaphragm lacks overlapping electrodes). The thickness mode actuator 36G includes a dielectric layer 362 & ΕΑ 转换器 converter film sandwiched between electrode layers 364a, 364b, wherein the central portion 365 of the film is passive and lacks electrode material. The ΕΑρ film is maintained under tension or tension conditions by at least the top and bottom frame members 366a, 366b (combining the PCT configuration). At least one of the top side and the bottom side of the passive portion covering the film is a passive layer ", 368b having optional rigid restraint or output members 370a, 370b mounted thereon. With the frame 366 constrained to its periphery, the compression of the diaphragm causes the membrane material to retract inwardly (as shown by arrows 367a, 367b) when activated (see Figure 26A). Unlike the actuator embodiment described above, the 35-compressed EAp film impinges on the passive material 368a, hiring it, thereby reducing its diameter and increasing its height. This configuration change will force outward Applied to the output members (10), 3鸠. As in the case of the actuator embodiments previously described, passive (four) membrane actuators may be provided in multiple stacked or planar relationships to provide multiphase actuation and / or increase the output force and / or stroke of the actuator. The performance can be enhanced by pre-straining the dielectric film and / or passive material. The actuator can be used as a key or a single device and can be used with such as thin (four) The sensor devices are stacked or integrated. The bottom can be used The output member or bottom electrode is provided to the membrane switch; i is sufficient to complete the circuit or can complete the circuit directly at the bottom output member and has a conductive layer. Multiple applications can be used in an array for applications such as keypads or keyboards Various dielectric elastomers and electrode materials disclosed in U.S. Patent Application Publication No. 2/5, No. 57,893, the disclosure of which is incorporated herein in its entirety in its entirety in its entirety in its entirety in its entirety in its entirety in Including any solid, compliant polymer (such as 'polyoxy rubber and (tetra) acid) that deforms in response to electrostatic forces or deforms it to cause a change in the electric field. In the process of designing or selecting an appropriate polymer Considering the best material, physical and chemical properties, these properties can be tailored by judicious selection of monomers (including any side chains), additives, degree of crosslinking, crystallinity 'molecular weight, etc.' Electrodes described and suitable for use include structured electrodes comprising metal traces and charge-distributing layers, textured electrodes, conductive greases (such as &quot;&quot; grease or Grease), colloidal suspension, high aspect ratio conductive material (146043.doc -42- 201126377 Graphene and metal nano poles can be made of compliant materials (matrices). The present invention, for example, conductive carbon black, carbon fiber, carbon Mixtures of nanotubes, wires) and ionically conductive materials. For example, elastomers containing carbon or other conductive particles may also use metal and semi-non-flexible electrodes. For example, 'for use in the standard shovel cage seven Exemplary passive layer materials in the exchange include, but are not limited to, polyfluorene oxide, stupid ethylene, propionate, rubber 'soft c, urethane

膠軟聚合物、軟彈性體(凝膠)、软聚 δ物發泡體,或聚合物/凝膠 人啻昆,Μ 物選擇(多個)被動層及 二電層之相對彈性及厚度以達成所要輸出(例如 之 表面特徵的淨厚度或薄 』 ^f '、甲°亥輸出回應可經設計以 ^的(例如’被動層之厚度與在啟動時介電層之厚度 成::地放大)或非線性的(例如,被動層及介電: 之速率變薄或變厚)。 之裝置之使用相關 ,所描述之裝置之 其他方法可集中於 關於方法,標的方法可包括與所描述 聯的機械及/或活動中之每一者。因而 使用所隱含的方法形成本發明之部分。 此等裝置之製造。 關於本發明之其他細節,如在熟習相關技術者之水平 邏輯:=:=Γ關組態。在如一般地使用或在 輯使用之額外動作方面,關於本發明之基於方 樣,上述情況可保持成立。另外,儘管已參考若干: 描述本發明(視情況併有各種特徵),但本發明不限:如關 於本發明之每—變體所涵蓋的所描述或所指示的 j 不脫離本料之真㈣衫斜㈣況T,可對所 146043.doc •43- 201126377 本發明進行各種改變,且可取代等效物(無論是敍述於本 文中或是為某簡潔性起見而未包括)。所展示之任何數目 個:別零件或子總成在其設計上可整合。可藉由用於裝配 之設計原㈣進行或指冑此等改變或其他改變。 在另一變體中,厘式總成或致動器36〇可適於用於在振 動按鈕、鍵、觸控板、滑鼠或其他介面中提供觸感回應。' 在此實例中’致動器36〇之耦接使用非可壓縮輸出幾何形 狀。此變體藉由使用模製成該輸出幾何形狀之非可塵縮材 料來提供來自電活性聚合物膜片g之接合中央約束的替 代。 在不具有中央圓盤之電活性聚合物致動$巾,致動改變 電極幾何形狀之中央中的被動膜之條件,減小應力及應變 (力及位移)兩者。此減小發生在膜之平面中的所有方向 上’不僅係單一方向上。在電活性聚合物之放電後,被動 膜即接者相至原始應力及應變能態。可料可壓縮材料 (在應力下具有實質上恆定之體積的材料)來建構電活性聚 ^物致動器。將致動器烟與接合至非活性區365中的致動 器360之中央處之被動膜區域的非可壓縮輸出墊、 368b裝配,從而替換中央圓盤。可使用此組態以藉由在輸 出墊與被動部分365之介面處壓縮輸出墊來轉移能量。此 使輸出墊368a及368b脹大以在正交於平坦膜之方向上產生 致動。可藉由將約束添加給各種表面以控制其在致動期間 之改變的定向纟進-步增強非可壓縮幾何开i狀。對於以上 實例,添加非順應加強件以約束輸出墊之頂部表面,防止 146043.doc •44- 201126377 彼表面改變其尺寸、將幾何形狀改變集中於輪出墊之 尺寸。 上述之變體亦可允許在致動後電活性聚合物介電彈性體 之雙軸應力及應變狀態改變的耗合;轉移正交於致動之方 向的致動;設計非可麼縮幾何形狀以最佳化效能。上述變 體可包括各種轉換器平台,包括:膜片、平面、慣性驅 動、厚度模式、混合(所附揭示案中所描述之平面與厚度 模式的組合)及平滑滾動(even roll)_對於任何觸感回饋(滑 鼠、控制胃、營幕、$、按叙、鍵盤等)。此等變體可能 移動使用者接觸表面之具體部分(例如,觸控螢幕、小鍵 盤、按鈕或鍵帽),或移動整個農置。 不同裝置實施可能需要不同ΕΑΡ平台。舉例而言,在一 個實例中,厚度模式致動器之條帶可能提供觸控螢幕之平 面外運動,混合式或平面致動器可能提供鍵盤上之按鈕的 按鍵感覺’或慣性驅動設計在滑鼠及控制器中提供隆隆聲 回饋。 圖27 Α說明用於向各種使用者介面裝置提供觸感回饋的 轉換器之另一變體。在此變體中,將質量或重量262耗接 至電活性聚合物致動器30。儘管所說明之聚合物致動器包 含膜匣式致動器’但該裝置之替代變體可使用如在上文所 揭示之ΕΑΡ專利及申請案中所描述的彈簧偏置之致動器。 圖27Β說明圖27Α之轉換器總成的分解圖。如所說明, 慣性轉換器總成260包括夾於兩個致動器3〇之間的質量 262。然而,該裝置之變體包括一或多個致動器,此取決 146043.doc -45- 201126377 ;在X貝量之任一側上的預期應用。如所說明該(等)致 動器搞接至慣性質量262且經由基底板或凸緣而緊固。致 動器30之致動使得該質量在相對於該致動器之^定向上 私動纟額外變體中等致動器可經組態以提供質量 262之法向或z軸移動。 圖27C說明圖27A之慣性轉換器總成26〇的側視圖。在此 忒明中,該總成展示為具有中央外殼266及頂部外殼, 該兩者封閉致動器3〇及慣性質量262。又,總成26g展示為 具有延伸通過外殼及致動器内之開口或通孔24的固定構件 或扣件270。通孔24可起到多個功能。舉例而言,該等通 孔可僅用於達成安裝目的。或者,或以組合方式該等通 孔可將該致動器電耦接至一電路板、撓曲電路或機械接 地。圖27D說明圖27C之慣性轉換器總成26〇之透視圖,其 中慣性質量(未圖示)位於外殼總成264、266及268内。該外 殼總成之部分可起到多個功能。舉例而言,除了提供機械 支撐以及安裝及附接特徵之外,其可併有充當機械硬擒止 件以防止慣性質量在X、y及/或Z方向上之過多運動的特 徵’該過多運動可能損壞致動器匣。舉例而言,該外殼可 包括上升表面以限制慣性質量之過多移動。在所說明之實 例中,該等上升表面可包含外殼之含有通孔24的部分。或 者’可選擇性地置放通孔24,使得經定位而通過其之任何 扣件270充當有效擋止件以限制慣性質量之移動。 外殼總成264及266亦可設計有整合式唇緣或延伸部,該 等唇緣或延伸部遮蓋致動器之邊緣以在處理時防止電擊。 146043.doc -46- 201126377 任何及所有此等部分亦可作為較大總成之外殼(諸如,消 費型電子裝置之外殼)的部分而整合。舉例而言,儘管所 說明之外殼展示為將緊固於使用者介面裝置内之單獨組 件,但轉換器之替代變體包括為實際使用者介面裝置之外 殼的整體或部分的外殼總成。舉例而言,電腦滑鼠之主體 可經組態以充當用於慣性轉換器總成之外殼。 Οa soft polymer, a soft elastomer (gel), a soft poly-δ foam, or a polymer/gel, which is selected from the relative elasticity and thickness of the passive layer and the second layer. To achieve the desired output (for example, the net thickness or thinness of the surface features) ^f ', the output response of the A-Hai can be designed to be (for example, the thickness of the passive layer and the thickness of the dielectric layer at startup:: Or non-linear (eg, passive layer and dielectric: the rate is thinned or thickened). Related to the use of the device, other methods of the described device may be focused on the method, and the method of the subject may include Each of the machinery and/or activities, thus forming part of the invention using the implied method. Manufacture of such devices. For other details of the invention, such as the level of logic of those skilled in the art: =: = 组态 组态 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 feature), However, the invention is not limited to the invention described or indicated in relation to each of the variants of the invention, without departing from the true (four) oblique (four) condition T of the present invention, which may be 146043.doc • 43- 201126377. Various changes are made and may be substituted for equivalents (whether described herein or not for simplicity). Any number shown: the parts or sub-assemblies may be integrated in their design. The change or other change can be made or referred to by the design original (4) for assembly. In another variation, the centroid assembly or actuator 36 can be adapted for use in vibrating buttons, keys, touches A tactile response is provided in the control panel, mouse or other interface. 'In this example, the actuator 36 is coupled using a non-compressible output geometry. This variant is molded using the output geometry. Non-dustable material to provide an alternative to the central constraint of the bond from the electroactive polymer film g. Actuating the wiper in an electroactive polymer without a central disk, actuating the passive film in the center of the changing electrode geometry Conditions to reduce stress and strain (force and displacement) This reduction occurs in all directions in the plane of the film 'not only in a single direction. After the discharge of the electroactive polymer, the passive film is the contact phase to the original stress and strain energy state. The compressible material can be made An electroactive polymer actuator is constructed (a material having a substantially constant volume under stress). The actuator smoke is bonded to the passive membrane region at the center of the actuator 360 in the inactive region 365 The non-compressible output mat, 368b is assembled to replace the central disc. This configuration can be used to transfer energy by compressing the output mat at the interface between the output pad and the passive portion 365. This causes the output pads 368a and 368b to expand Actuation is produced in a direction orthogonal to the flat film. The non-compressible geometry can be enhanced by adding a constraint to the various surfaces to control its change during actuation. For the above example, a non-compliant reinforcement is added to constrain the top surface of the output pad to prevent the surface from changing its dimensions and concentrating the geometry change on the size of the wheel pad. The above variants may also allow for the adaptation of biaxial stress and strain state changes of the electroactive polymer dielectric elastomer after actuation; transfer of actuation orthogonal to the direction of actuation; design of non-shrinkable geometry To optimize performance. The above variants may include various converter platforms including: diaphragm, planar, inertial drive, thickness mode, hybrid (combination of plane and thickness modes as described in the accompanying disclosure) and even roll_for any Tactile feedback (mouse, control stomach, camp, $, press, keyboard, etc.). These variants may move the user to a specific part of the surface (for example, a touch screen, a small keyboard, a button or a keycap), or move the entire farm. Different device implementations may require different platforms. For example, in one example, a strip of thickness mode actuators may provide out-of-plane motion of a touch screen, and a hybrid or planar actuator may provide a button feel of a button on a keyboard or an inertial drive design is slipping Rumble feedback is provided in the mouse and controller. Figure 27 illustrates another variation of a transducer for providing tactile feedback to various user interface devices. In this variation, mass or weight 262 is consumed to the electroactive polymer actuator 30. Although the illustrated polymer actuator includes a membrane-type actuator, the alternative embodiment of the device can use a spring-biased actuator as described in the above-disclosed patents and applications. Figure 27 is an exploded view of the converter assembly of Figure 27; As illustrated, the inertia converter assembly 260 includes a mass 262 sandwiched between two actuators 3''. However, variations of the device include one or more actuators, depending on the intended application on either side of the X-beauty range of 146043.doc -45-201126377. As described, the actuator is engaged to the inertial mass 262 and secured via the base plate or flange. Actuation of the actuator 30 causes the mass to be private with respect to the orientation of the actuator. The additional actuator medium actuator can be configured to provide normal or z-axis movement of the mass 262. Figure 27C illustrates a side view of the inertial transducer assembly 26A of Figure 27A. In this description, the assembly is shown with a central outer casing 266 and a top outer casing that enclose the actuator 3 and the inertial mass 262. Again, the assembly 26g is shown as having a securing member or fastener 270 that extends through the opening or through opening 24 in the outer casing and actuator. The through hole 24 can serve multiple functions. For example, the through holes can be used only for installation purposes. Alternatively, or in combination, the vias can electrically couple the actuator to a circuit board, flex circuit, or mechanical ground. Figure 27D illustrates a perspective view of the inertial transducer assembly 26A of Figure 27C with inertial mass (not shown) located within housing assemblies 264, 266 and 268. The portion of the housing assembly serves multiple functions. For example, in addition to providing mechanical support and mounting and attachment features, it may have features that act as mechanical hard stop members to prevent excessive movement of the inertial mass in the X, y, and/or Z directions 'this excessive motion The actuator 匣 may be damaged. For example, the outer casing can include a raised surface to limit excessive movement of the inertial mass. In the illustrated example, the rising surfaces may comprise portions of the outer casing containing the through holes 24. Alternatively, the through hole 24 can be selectively placed such that any fastener 270 positioned therethrough acts as an effective stop to limit the movement of the inertial mass. The housing assemblies 264 and 266 can also be designed with integrated lips or extensions that cover the edges of the actuator to prevent electric shock during handling. 146043.doc -46- 201126377 Any and all such parts may also be integrated as part of a larger assembly enclosure, such as a housing for a consumer electronic device. For example, although the illustrated housing is shown as a separate component that will be secured within the user interface device, alternative variations of the transducer include an integral or partial housing assembly that is the outer casing of the actual user interface device. For example, the body of a computer mouse can be configured to act as a housing for an inertial converter assembly. Ο

G 慣性質量262亦可起到多個功能。儘管在圖27八及圖27b 中展示為圓形,但慣性質量之變體可經製造以具有更複雜 之形狀,使得其具有充當限制其在X、⑻或z方向上之運 動的機械硬播止件的整合式特徵。舉例而t,圖27£說明 慣性轉換器總成之具有慣性質量262的變體,該慣性質旦 加具有鳴合外殼264之擋止件或其他特徵的成形表面 263。在所說明之變體中,慣性f量加之表面263喷合扣 =7〇。因此’慣性質量262之位移限於成形表面加盘擒 止件或扣件270之間的間隙。可選擇重^ 個總成之賴财,且構造之材料可裁適整 佳經選擇以最小化 、 不付彳-較 屬本。合適之材料包括金 金屬5金,諸如銅、鋼、鶴、銘、錄、路及黃銅,且 °使用聚合物/金屬複合材料、樹 材料。 ^日机體、凝膠或其他 用於電活性聚合物觸感裝置之濟 德疚15聲音驅動波形 丰文所述的發明性方法及裝置 饋之方十水肺知 罝之另—變體涉及以改良回 來驅動;s :::動益。在一個此實例中’藉由聲音信號 萄感致動器。此組態消除對肖&amp; 了用U產生波形以產生不 146043.doc -47- 201126377 同類型之觸感感覺之單獨處理器m。實情為,觸感裝 置可使用一或多個雷政L、i ϋ交ja 士 t 电路以將現有音讯偽號修改成經修改之 觸感L號例如’對頻譜之不同部分進行濾波或放大。因 此’經修改之觸感信號接著驅動致動器。在一個實例中, 經修改之觸感信號驅動電源供應器以觸發致動器來達成不 同感覺效應。此方法具有與任何音訊信號自動相關及同步 的優點’此可加強自觸感裝置(諸如,遊戲控制器或掌上 型遊戲控制台)中之音樂或聲音效應的回饋。 圖28A說明用以調譜音訊信號以使其在用於電活性聚合 物致動器之最佳觸感頻率内工作的電路之-個實例。所說 明之電路藉由振幅戴去、Dc偏移調整及ac波形峰至峰量 值調整來修改音訊信號以產生類似於圖28B中所展示之信 喊的信號0在某4匕變體φ ^ . 干一玟體中,電活性聚合物致動器包含雙相 電活性聚合物致動器,且其中更改音訊信號包含對該音訊 號之音訊波形之正部分進行濾波以驅動電活性聚合物轉 ㈣之第-個相位’且使該音訊信號之音訊波形之負部分 反轉以驅動電活性聚合物轉換器之第二個相位以改良電活 性聚合物轉換器之效能。舉例而言,呈正弦波形式… :信號可轉換成方波(例如’經由修剪),使得觸感信“ 產生最大致動器力輸出的方波。 ’ 在另一實例中,電路可包括—或多個整流器以對音訊作 戒之頻率進㈣波以使用音訊信號之音訊波形的全部或I :分來驅動觸感效應。圖28c說明經設計以對音訊信鍊之 fl波形的正邛刀進行濾波的電路之一個變體。在另 146043.doc -48- 201126377 體中’此電路可與圓28D中所展示之電路組合,用於具有 兩個相位之致動器。如所展示,圖28C之電路可對音茂波 形之正部分進行遽波以驅動該致動器之-個相位,而圖 勘中所展示之電路可使音訊波形之負部分反轉以驅動雙 相觸感致動器之另一相位。結果為雙相致動器將具有: 之致動器效能。 父 在:-實施中,可使用音訊信號之臨限值來觸發驅動該 Ο Ο 致動器之二次電路的操作。可藉由音訊信號之振幅、頻率 或特疋圖案來界定該臨限值。該二次電路可具有固定回應 (諸如,輸出特定頻率之振盈器電路集合),或可具有基ς 多個經界定之觸發器的多個回應。在一些變體中,可美於 特定觸發器來預定該等回應。在此情況下,所儲存之2應 信號可提供於特定觸發器中。以此方式,替代修改源; 號,該電路觸發-預定回應,此取決於源信號之一或多個 特性。該二次電路亦可包括一計時器以輸出有限持續時間 之回應。 許多系統可得益於具有關於聲音之能力的觸感裝置之實 施(例如,電腦、智慧電話、PDA、電子遊戲)。在此變體 中’經遽波之聲音充當電活性聚合物觸感裝置之驅動波 形。通常用在此等系統中之聲音樓案可經渡波以僅包括對 於觸感回饋致動器設計最佳之頻率範圍。圖28E及圖挪說 明裝置400之一個此實例’在此情況下為電腦滑氣,具有 在滑鼠主體4G0内且純至慣性f量他的—或多個電活性 聚合物致動器402。 146043.doc -49- 201126377 當前系統在&lt;200 Hz之最佳頻率下操作。聲音波形(諸 如,獵搶噴射(sh〇tgun blast)之聲音或關門之聲音)可經低 通濾波以僅允許使用來自此等聲音的&lt;200 Hz之頻率。接 著將此經濾波之波形作為輸入波形供應至驅動觸感回饋致 動器之epAM電源供應器。絲此等實例用在遊戲控制器 t ’則撒搶喷射及關門之聲音對於觸感回饋致動器將為同 時的,從而向遊戲玩家供應強化之體驗。 在一個變體中,現有聲音信號之使用可允許在使用者介 面裝置中與單獨產生之音訊信號所產生的聲音同時產生觸 感效應的方法。舉例而t,該方法可包括:將該音訊信號 投送至渡波電路;更改音訊信號以藉由對在狀頻率以下° 之頻率轭圍進行濾波來產生觸感驅動信號;及將該觸感驅 動信號提供至耦接至電活性聚合物轉換器之電源供應器, 使得電源供應器致動該電活性聚合物轉換器以與該音訊信 號所產生之聲音同時驅動觸感效應。 該方法可進一步包括驅動該電活性聚合物轉換器以同時 產生聲音效應及觸感回應兩者。 圖29A至圖30B說明另—變體,其藉由使用轉換器之— 結構對轉換器供電來驅動—或多個轉換器,使得在正常 (預啟動)狀態下該等轉換器保持為無電力#。以下之描述 可併入本文所述之任何設計中。在嘗試減小使用者介面裝 置之主體或底盤之輪廓時,用於驅動轉換器之裝置及方法 尤其有用。 在第一實例中’使用者介面裝置400包括-或多個電活 146043.doc -50- 201126377 性聚合物轉換器或致動器360,其可受驅動以在使用者介 面表面402處產生觸感效應而無需複雜之開關機構。實情 為,藉由一或多個電源供應器380對該多個轉換器36〇進行 供電。在所說明之實例中,如上文以及先前以引用的方式 併入之申請案中所述,轉換器360為厚度模式轉換器。然 而,針對此變體所呈現之概念可應用於多個不同轉換器設 計。 〇 如所展示’致動器36〇可堆疊於包括斷路之層中,該斷 路包含高電壓電源供應器380 ’ 一或多個接地匯流排線382 充當至母一轉換器360之連接。然而,裝置4〇〇經組態,使 得在待用狀態下,每一致動器360保持無電力,此係因為 形成電源供應器3 8 0之電路保持為斷開的。 圖29B展示具有如圖29A中所展示之轉換器36〇的單一使 用者介面表面420。為了完成匯流排線382與電源供應器 3 80之間的連接,使用者介面表面4〇2包括一或多個導電表 〇 面404。在此變體中,導電表面404包含使用者介面4〇2之 底部表面。轉換器360亦將包括在輸出部件37〇或轉換器 36〇之另一部分上的導電表面。 為了致動轉換器360,如圖29C中所展示,在使用者介面 表面402偏轉至轉換器360中時,該兩個導電部分電耦接以 閉合電路。此動作完成電源供應器38〇之電路。另外,按 下使用者介面表面402不僅閉合與轉換器36〇之間隙,其亦 可用以閉合裝置400之開關,使得裝置4〇〇辨識到致動了表 面 402。 146043.doc -51 - 201126377 ,此組態之—個益處為並不對所有轉換器360供電。實情 為僅對各別使用者介面表面完成該電路之彼等轉換器供 電。此組態最小化功率消耗且可消除一陣歹”之致動器 360之間的串話。此構造允許極薄之小難及鍵盤,因為 其消除對常用於此等褒置之金屬或彈性圓頂型開關的需 要。 圖3〇缝圖細說明使用者介面裝置_之另-變體,其 具有組態為嵌入式開關之電活性聚合物轉換器·。在圖 3〇A中所展示之變體中,存在轉換器烟與使用者介面表面 4〇2之間的第一間隙偏及轉換器360與底盤4〇4之間的第二 間隙彻。在此變體中,如圖规中所展示,按下使用者介 面表面4〇2閉合第-開關或在使用者介面表面402與轉換器 360之間建立一閉合電路。此電路之閉合允許將電力自高 電壓電源供應器(未展示於圖3〇八中)投送至電活性聚合物 轉換器則。繼續按下使用者介面表面術驅動轉換器360 使其與位於裝置400之底盤4〇4上的額外開關接觸。後一種 連接使月b夠輸入至裳置4〇〇,從而使高電壓電源供應器能 句致動轉換器36G以在使用者介面表面術處產生觸感感覺 或觸覺回饋。在釋放轉換器35〇與底盤4〇4之間的連接後即 斷開(建立間隙408)。此動作切斷至裝置彻之信號從而有 效地斷開高電壓電源供應器且防止該致動器產生任何觸感 效應。繼續釋放使用者介面表面術使使用者介面表面4〇2 ”轉換器360分隔以建立間隙4〇6。在匕後一個開關之斷開有 效地使轉換器360與電源供應器斷開連接。 146043.doc •52· 201126377 在上述變體中,使用者介面表面可包含鍵盤(例如, QWERTY鍵盤或其他類型之輸入鍵盤或小鍵盤)之一或多 個鍵。EPAM之致動提供按鈕按下之觸覺回饋,其替換當 前圓頂鍵之鍵按下。然而,該組態可用於任何使用者介面 裝置中,包括(但不限於)··鍵盤、觸控螢幕、電腦滑鼠、 軌跡球、尖筆、控制面板,或將得益於觸感回饋感覺的任 何其他裝置。The G inertial mass 262 can also perform multiple functions. Although shown as circular in Figures 27 and 27b, the inertial mass variant can be fabricated to have a more complex shape such that it has a mechanical hard broadcast that acts to limit its movement in the X, (8) or z direction. The integrated features of the stop. By way of example, FIG. 27 illustrates a variation of the inertial converter assembly having an inertial mass 262 that incorporates a shaped surface 263 that has a stop or other feature of the outer casing 264. In the variant described, the amount of inertia f is added to the surface 263 spray buckle = 7 〇. Thus the displacement of the inertial mass 262 is limited to the gap between the forming surface plus the disk stop or fastener 270. You can choose to use the weight of the assembly, and the material of the construction can be tailored to minimize the choice, not to pay for it. Suitable materials include gold metal 5 gold, such as copper, steel, crane, Ming, Lu, Lu and brass, and ° using polymer/metal composites, tree materials. ^Inventive methods and devices described in the body, gel or other electroacupuncture sensation device for the electroactive polymer sensation device Drive back with improvement; s ::: Motivation. In one such example, the actuator is sensed by a sound signal. This configuration eliminates the need for a separate processor m that uses U to generate waveforms to produce a tactile sensation of the same type as 146043.doc -47- 201126377. The reality is that the touch device can use one or more of the Lei Zheng L, i ja ja t t circuit to modify the existing audio semaphore to a modified haptic L number such as 'filtering or amplifying different parts of the spectrum. Thus the modified tactile signal then drives the actuator. In one example, the modified tactile signal drives the power supply to trigger the actuator to achieve a different sensory effect. This method has the advantage of automatically correlating and synchronizing with any audio signal. This enhances the feedback of music or sound effects in a tactile device such as a game controller or a handheld game console. Figure 28A illustrates an example of a circuit for modulating an audio signal to operate within the optimum haptic frequency for an electroactive polymer actuator. The illustrated circuit modifies the audio signal by amplitude wear, Dc offset adjustment, and ac waveform peak-to-peak magnitude adjustment to produce a signal 0 similar to the signal shown in Figure 28B in a 4 匕 variant φ ^ In a dry body, the electroactive polymer actuator comprises a dual phase electroactive polymer actuator, and wherein modifying the audio signal comprises filtering a positive portion of the audio signal of the audio signal to drive the electroactive polymer transfer (d) the first phase' and inverting the negative portion of the audio signal of the audio signal to drive the second phase of the electroactive polymer converter to improve the performance of the electroactive polymer converter. For example, in the form of a sine wave...: the signal can be converted to a square wave (eg, 'via trimming) such that the tactile sensation "generates a square wave that produces the maximum actuator force output." In another example, the circuit can include - Or a plurality of rectifiers enter the (four) wave at the frequency of the audio signal to drive the tactile effect using all or one of the audio waveforms of the audio signal. Figure 28c illustrates the positive boring tool designed to the fl waveform of the audio signal chain. A variant of the circuit for filtering. In another 146043.doc -48- 201126377 body, this circuit can be combined with the circuit shown in circle 28D for an actuator having two phases. As shown, the figure The 28C circuit can chop the positive portion of the microphone waveform to drive the phase of the actuator, and the circuitry shown in the map reverses the negative portion of the audio waveform to drive the biphasic actuation. The other phase of the device. The result is that the two-phase actuator will have: actuator performance. In the implementation: - the implementation, the threshold of the audio signal can be used to trigger the secondary circuit that drives the Ο 致 actuator Operation by amplitude and frequency of the audio signal Or a pattern to define the threshold. The secondary circuit may have a fixed response (such as a set of oscillator circuits that output a particular frequency), or may have multiple responses based on a plurality of defined triggers. In some variations, the response may be predetermined for a particular trigger. In this case, the stored 2 signal may be provided in a particular trigger. In this way, instead of modifying the source; - a predetermined response, depending on one or more characteristics of the source signal. The secondary circuit may also include a timer to output a response of a limited duration. Many systems may benefit from a tactile device having the capability of sound. Implementation (eg, computers, smart phones, PDAs, video games). In this variant, the sound of chopping acts as a driving waveform for an electroactive polymer haptic device. Sound systems commonly used in such systems are available. The wave is only included in the frequency range that is optimal for the tactile feedback actuator design. Figure 28E and Figure 1 illustrate one example of the device 400 'in this case, computerized slippery, with the mouse body Within 4G0 and pure to inertia f - or a plurality of electroactive polymer actuators 402. 146043.doc -49- 201126377 The current system operates at an optimum frequency of &lt;200 Hz. Sound waveforms (such as hunting The sound of the sh〇tgun blast or the sound of the closed door can be low pass filtered to allow only the frequency of &lt;200 Hz from these sounds. This filtered waveform is then supplied as an input waveform to the drive touch. The epAM power supply of the feedback actuator. These examples are used in the game controller t' to sprinkle the sound of the jet and close the door for the tactile feedback actuator to be simultaneous, thereby providing the game player with an enhanced experience. In one variation, the use of existing sound signals may allow for a method of producing a tactile effect simultaneously with the sound produced by the separately generated audio signal in the user interface device. For example, t, the method may include: transmitting the audio signal to the wave circuit; modifying the audio signal to generate a tactile drive signal by filtering a frequency yoke below the frequency of the frequency; and driving the touch The signal is provided to a power supply coupled to the electroactive polymer converter such that the power supply actuates the electroactive polymer converter to simultaneously drive the haptic effect with the sound produced by the audio signal. The method can further include driving the electroactive polymer converter to produce both a sound effect and a tactile response. 29A-30B illustrate another variant that is driven by powering the converter using a structure of the converter - or a plurality of converters such that the converter remains unpowered in a normal (pre-start) state. #. The following description can be incorporated into any of the designs described herein. Apparatus and methods for driving a transducer are particularly useful when attempting to reduce the contour of the body or chassis of the user interface device. In a first example, 'user interface device 400 includes - or a plurality of electrical activities 146043.doc -50 - 201126377 polymer converter or actuator 360 that can be driven to generate a touch at user interface surface 402 Sensing effect without the need for complicated switching mechanisms. The reality is that the plurality of converters 36 are powered by one or more power supplies 380. In the illustrated example, converter 360 is a thickness mode converter as described above and in the application previously incorporated by reference. However, the concepts presented for this variant can be applied to many different converter designs.致 As shown, the actuators 36 can be stacked in a layer that includes an open circuit that includes a high voltage power supply 380' or one or more ground bus bars 382 that serve as a connection to the mother-to-converter 360. However, the device 4 is configured such that in the standby state, each of the actuators 360 remains unpowered because the circuit forming the power supply 380 remains open. Figure 29B shows a single user interface surface 420 having a transducer 36A as shown in Figure 29A. In order to complete the connection between the bus bar 382 and the power supply 380, the user interface surface 〇2 includes one or more conductive surface 404. In this variation, conductive surface 404 includes the bottom surface of user interface 4〇2. Converter 360 will also include a conductive surface on output member 37 or another portion of converter 36A. To actuate the converter 360, as shown in Figure 29C, when the user interface surface 402 is deflected into the converter 360, the two conductive portions are electrically coupled to close the circuit. This action completes the circuit of the power supply 38〇. In addition, pressing the user interface surface 402 not only closes the gap with the transducer 36, but can also be used to close the switch of the device 400 such that the device 4 recognizes the actuation of the surface 402. 146043.doc -51 - 201126377 , a benefit of this configuration is that not all converters 360 are powered. The fact is that only the converters that complete the circuit on the surface of the individual user interface are powered. This configuration minimizes power consumption and eliminates crosstalk between the actuators 360. This configuration allows for extremely thin and difficult keyboards because it eliminates metal or elastic circles commonly used in such devices. The need for a top-type switch. Figure 3 is a quilted diagram detailing the user interface device _ another variant with an electroactive polymer converter configured as an embedded switch. Figure 3A In the variant, there is a first gap between the converter smoke and the user interface surface 4〇2 and a second gap between the converter 360 and the chassis 4〇4. In this variant, as shown in the figure As shown, pressing the user interface surface 4〇2 closes the first switch or establishes a closed circuit between the user interface surface 402 and the converter 360. The closing of the circuit allows power to be supplied from the high voltage power supply (not shown) In Figure 3-8, the electroactive polymer converter is delivered. Continue to press the user interface surface to drive the transducer 360 into contact with an additional switch located on the chassis 4〇4 of the device 400. The latter connection Make the month b enough to enter the skirt 4, so that the high electricity The power supply can actuate the converter 36G to generate a tactile sensation or tactile feedback at the user interface surface. The connection is released after the connection between the converter 35 〇 and the chassis 4 〇 4 is released (the gap 408 is established) This action cuts off the signal to the device to effectively disconnect the high voltage power supply and prevents the actuator from producing any tactile effects. Continue to release the user interface surface to allow the user interface surface 4〇2 ” converter The 360 is separated to establish a gap of 4〇6. The disconnection of a switch after the switch effectively disconnects the converter 360 from the power supply. 146043.doc • 52· 201126377 In the above variations, the user interface surface may include one or more keys of a keyboard (eg, a QWERTY keyboard or other type of input keyboard or keypad). The actuation of the EPAM provides a tactile feedback of button presses that replaces the key press of the current dome button. However, this configuration can be used in any user interface device, including (but not limited to) keyboards, touch screens, computer mice, trackballs, styluses, control panels, or will benefit from a tactile feedback feel. Any other device.

在上述組態之另一變體中 斷開之低電壓電路。該低電 力提供給高電壓電路。以此 電壓電力且僅在使用轉換器 ,閉合一或多個間隙將閉合一 壓電路將接著觸發開關以將電 方式,在高電壓電路上提供高 來完成電路時提供給轉換器。 只要低電壓電路保持斷開’則高電壓電源供應器便保持無 電力且轉換器保持無電力。 E之使用可允許將電開關埋人至使用者介面表面之整個 設計中,且可消除對使用傳統圓頂開關來啟動介面裝置之 ❹ 輸入信號(亦即,使得該裝置辨識到鍵之輸人)以及啟動鍵 之觸感信號(亦即,產生與鍵之選擇相關聯的觸感感覺)的 需要。可藉由每—次鍵按下來閉合任何數目個開關,其中 可在設計之約束内定製此組態。 埋入式致動器開關可藉由組態鍵來投送每—觸感事件, 使得每-次按下皆完成具有對致動器供電的電源供應器之 電路。此組態簡化鍵盤之電子學要求。可藉由用於整個鍵 盤之單-高電壓電源供應器來供應驅動每一鍵之觸感所需 的高電壓電力ϋ可將任何數目個電源供應器併人該 146043.doc -53· 201126377 設計中。 可與此等設計一起使用之EPAM匣包括平面、膜片、厚 度模式及被動耦接裝置(混合)。 在另一變體中,嵌入式開關設計亦允許模仿雙穩態開 關,諸如傳統圓頂型開關(例如,橡膠圓頂或金屬屈曲開 關)。在一個變體中,如上所述,使用者介面表面使電活 性聚合物轉換器偏轉。然而,使電活性聚合物轉換器之啟 動延遲。因此’電活性聚合物轉換器之繼續偏轉增加使用 者在使用者介面表面處感受到之阻力。該阻力由轉換器内 之電活性聚合物膜的變形引起。接著,在預定偏轉後或在 轉換器偏轉後的一段持續時間後,啟動電活性聚合物轉換 器,使得使用者在使用者介面表面處感受到之阻力變化 (通常減小)。然而,使用者介面表面之位移可繼續。電活 性聚合物轉換器之啟動的此延遲模仿雙穩態效能之傳統圓 頂或屈曲開關。 圖31A說明延遲電活性聚合物轉換器之啟動以產生雙浪 態效應的圖表。如所說明,線1〇1展示電活性聚合物轉拍 器隨著其偏轉但使轉換器之啟動延遲之情況下的被動硬肩 曲線。線102展示電活性聚合物轉換器一旦啟動時之主鸯 硬度曲線。線103展示電活性聚合物轉換器之力分布,為 其沿著被動硬度曲線移動,接著在受致動時,硬度下降至 主動硬度曲線1G2。在—個實例中,在衝程之中間的某處 啟動電活性聚合物轉換器。 線103之輪廓非常接近於追蹤橡膠圓頂或金屬屈曲雙穩 146043.doc -54- 201126377 態機構之硬度的類仞&amp; # , ^ ^ 似輪廓。如所展示,EAP致動器適於模 擬橡膠圓頂之力分布。被動曲線與主動曲線之間的差異將 為感覺之主要貢獻者,意謂間隙愈高,機會愈高且感覺將 會愈強烈。 曲線及達成所要m回應之機構的形狀可獨立於致動 器類型。另外,可使任何類型之致動器(例如,膜片致動 器、厚度模式、混合等)之啟動回應延遲以提供所要觸感 〇 ⑨應。在此情況下’電活性聚合物轉換器充當藉由施加電 壓改變輸出反作用力的可變彈簧。圖則說明基於使用啟 動電活性聚合物轉換器之延遲的上述致動器之變體的額外 圖表。 用於驅動t活性聚合物轉換器之另—M包括使用給予 臨限輸入彳5號之所儲存波形。該輸入信號可包括一音訊或 八他觸發彳5號。舉例而言,圖32中所展示之電路說明充當 用於所儲存波开》之觸發器的音訊信號。又,該系統可使用 〇 觸發或其他信號來替代該音訊信號。此方法藉由一或多個 預定波形而非僅由該音訊信號直接驅動致動器來驅動電活 性聚合物轉換器。驅動致動器之此模式的一個益處為使用 所儲存之波形使能夠以最小記憶體及複雜性來產生複合波 形及致動器效能。可藉由使用針對致動器最佳化之驅動脈 衝(例如’在較佳之電壓或脈寬或在諧振下執行)而非使用 類比音訊信號來增強致動器效能。致動器回應可與輸入信 號同步或可延遲。在一個實例中,可將25 v之觸發臨限值 用作觸發器。此低位準信號可接著產生一或多個脈衝波 146043.doc •55- 201126377 开&gt;。在另一變體中,此驅動技術可潛在地允許使用同一輸 入或觸發信號以基於任何數目個條件(例如,使用者介面 裝置之位置、使用者介面裝置之狀態、在該裝置上執行之 程式等)而具有不同輸出信號。 圖33A及圖33B說明用於藉由用單一驅動電路提供雙相 啟動來驅動電活性聚合物轉換器的又一變體。如所展示, 在雙相轉換器中之三個電力引線中,在相位中之一者上的 一個引線在高電壓處保持恆定,在另一相位上之一個引線 接地,且兩個相位所共有之第三引線受驅動以使電壓自接 地變化至高電壓。此使一個相位之啟動能夠與第二個相位 之撤銷同時發生以增強雙相致動器之快速穿過(snap-through)效能。 在另一變體中,可藉由調整使用者介面表面之機械行為 來改良如本文所述之使用者介面表面上的觸感效應。舉例 而言,在電活性聚合物轉換器驅動觸控螢幕的彼等變體 中,觸感信號可消除使用者介面表面在觸感效應後的非所 要移動。在該裝置包含觸控螢幕時,該螢幕(亦即,使用 者介面表面)之移動通常發生在觸控螢幕之平面中或平面 外(例如,z方向)。在任一情況下,如圖34B中示意性地說 明,藉由脈衝502驅動電活性聚合物轉換器以產生觸感回 應。然而,如圖34A之說明使用者介面表面(例如,觸控螢 幕)之位移的圖表中所展示,可藉由滯後之機械振鈐或振 盪500來追隨所得移動。為改良觸感效應,驅動觸感效應 之方法可包括使用複合波形來提供電子阻尼以產生逼真之 146043.doc -56- 201126377 觸感效應。此波形包括觸感驅動部分502以及阻尼部分 504。在如上所述觸感效應包含「按鍵」之情況下,電子 阻尼波形可消除或減少滯後效應以產生更逼真之感覺。舉 例而言’圖34A及圖34C之位移曲線說明在試圖仿效按鍵 時之位移曲線。然而,可使用感覺之電子阻尼來改良任何 數目個觸感感覺。 圖3 5說明用於對電活性聚合物轉換器供電之能量產生電A low voltage circuit that is disconnected in another variation of the above configuration. This low power is supplied to the high voltage circuit. With this voltage power and only with the converter, closing one or more gaps will close the voltage circuit and then trigger the switch to provide the converter to the converter in an electrical mode that provides high on the high voltage circuit. As long as the low voltage circuit remains open, the high voltage power supply remains unpowered and the converter remains unpowered. The use of E allows the electrical switch to be buried throughout the design of the user interface surface, and eliminates the need to use conventional dome switches to activate the interface device's input signal (ie, the device recognizes the key input) And the need to activate the touch signal of the key (i.e., to create a tactile sensation associated with the selection of the key). Any number of switches can be closed by pressing each key press, which can be customized within the constraints of the design. The embedded actuator switch can deliver a per-touch event by configuring a key such that each time the press completes the circuit with the power supply to the actuator. This configuration simplifies the electronics requirements of the keyboard. The high voltage power required to drive the tactile sensation of each key can be supplied by a single-high voltage power supply for the entire keyboard. Any number of power supplies can be combined. 146043.doc -53· 201126377 Design in. EPAMs that can be used with these designs include flat, diaphragm, thickness mode, and passive coupling (mixing). In another variation, the embedded switch design also allows for the emulation of a bi-stable switch, such as a conventional dome switch (e.g., a rubber dome or a metal flexure switch). In one variation, as described above, the user interface surface deflects the electroactive polymer converter. However, the activation of the electroactive polymer converter is delayed. Thus the continued deflection of the electroactive polymer converter increases the resistance experienced by the user at the interface of the user interface. This resistance is caused by deformation of the electroactive polymer film within the converter. The electroactive polymer converter is then activated after a predetermined deflection or after a period of time after deflection of the transducer so that the user experiences a change in resistance (typically reduced) at the interface of the user interface. However, the displacement of the user interface surface can continue. This delay in the activation of the electroactive polymer converter mimics the traditional dome or buckling switch for bistable performance. Figure 31A illustrates a graph of the initiation of a delayed electroactive polymer converter to produce a dual wave effect. As illustrated, line 1〇1 shows the passive hard shoulder curve of the electroactive polymer rotator as it deflects but delays the startup of the converter. Line 102 shows the primary hardness curve of the electroactive polymer converter once it is activated. Line 103 shows the force distribution of the electroactive polymer converter as it moves along the passive hardness curve, and then when actuated, the hardness drops to the active hardness curve 1G2. In one example, the electroactive polymer converter is activated somewhere in the middle of the stroke. The contour of line 103 is very close to the tracking rubber dome or metal buckling bistable 146043.doc -54- 201126377 The hardness of the mechanism of the class 仞&# , ^ ^ like contour. As shown, the EAP actuator is adapted to simulate the force distribution of the rubber dome. The difference between the passive curve and the active curve will be the main contributor to the sense, meaning that the higher the gap, the higher the chance and the stronger the feeling will be. The shape of the curve and the mechanism that achieves the desired m response can be independent of the type of actuator. In addition, the activation response of any type of actuator (e.g., diaphragm actuator, thickness mode, mixing, etc.) can be delayed to provide the desired feel. In this case, the electroactive polymer converter acts as a variable spring that changes the output reaction force by applying a voltage. The diagram illustrates an additional graph based on a variation of the above described actuator using a delay that initiates the electroactive polymer converter. The other M used to drive the t-active polymer converter includes the use of stored waveforms that are given a threshold input 彳5. The input signal can include an audio or eight-trigger 彳5 number. For example, the circuit shown in Figure 32 illustrates an audio signal that acts as a trigger for the stored wave. Also, the system can use 〇 trigger or other signals to replace the audio signal. This method drives the electroactive polymer converter by one or more predetermined waveforms rather than simply driving the actuator directly from the audio signal. One benefit of this mode of driving actuators is that the use of stored waveforms enables complex waveform and actuator performance to be produced with minimal memory and complexity. Actuator performance can be enhanced by using drive pulses optimized for the actuator (e.g., 'executing at a preferred voltage or pulse width or at resonance) rather than using analog audio signals. The actuator response can be synchronized with the input signal or can be delayed. In one example, a trigger threshold of 25 v can be used as a trigger. This low level signal can then generate one or more pulse waves 146043.doc • 55- 201126377 on &gt;. In another variation, this driving technique may potentially allow the same input or trigger signal to be used based on any number of conditions (eg, the location of the user interface device, the state of the user interface device, the program executing on the device) And so on) with different output signals. Figures 33A and 33B illustrate yet another variation for driving an electroactive polymer converter by providing a dual phase start with a single drive circuit. As shown, among the three power leads in the two-phase converter, one of the leads on one of the phases remains constant at the high voltage, and one of the leads on the other phase is grounded, and the two phases are common to both phases. The third lead is driven to vary the voltage from ground to a high voltage. This enables the initiation of one phase to coincide with the cancellation of the second phase to enhance the snap-through performance of the two-phase actuator. In another variation, the haptic effect on the user interface surface as described herein can be improved by adjusting the mechanical behavior of the user interface surface. For example, in variations of the electroactive polymer converter that drives the touch screen, the tactile signal can eliminate unwanted movement of the user interface surface after the tactile effect. When the device includes a touch screen, the movement of the screen (i.e., the user interface surface) typically occurs in the plane of the touch screen or out of plane (e.g., the z-direction). In either case, as schematically illustrated in Figure 34B, the electroactive polymer converter is driven by pulse 502 to produce a tactile response. However, as shown in the graph of the displacement of the user interface surface (e.g., touch screen) as illustrated in Figure 34A, the resulting movement can be followed by hysteresis mechanical vibration or oscillation 500. To improve the haptic effect, the method of driving the haptic effect may include using a composite waveform to provide electronic damping to produce a realistic 146043.doc -56-201126377 haptic effect. This waveform includes a tactile driving portion 502 and a damping portion 504. In the case where the tactile effect includes a "button" as described above, the electronically damped waveform can eliminate or reduce the hysteresis effect to produce a more realistic feeling. For example, the displacement curves of Figures 34A and 34C illustrate the displacement curve when attempting to emulate a button. However, the electronic damping of the sensation can be used to improve any number of tactile sensations. Figure 3 illustrates the energy used to power an electroactive polymer converter.

路的實例。許多電活性聚合物轉換器需要高電壓電子裝置 以產生電。需要提供功能性及保護之簡單的高電壓電子裝 置。一基本轉換器電路由低電壓引動供應器、連接二極 體、電活性聚合物轉換器、第二連接二極體及高電壓收集 益供應器組成。然而,此電路在按需要每循環俘獲儘可能 多之能量方面可能並非有效的,且需要相對較高電壓之引 動供應器。 圖^說明簡單發電電路設計。此電路之—個優點為設計 之簡單性。使發電機運轉(假定施加機械力)僅需要小之起 動電壓(大約9伏)。無需控制位準電子裝置以控制高電壓至 電:性聚合物轉換器中及外之轉移。藉由電路之輸出端上 月、内一極體來達成被動電壓調節。此電路能夠產生高電 壓DC電力且可在每克約請至請焦耳之能量密度位準下 :作包活性聚合物轉換器。此電路適於產生適度之電力且 :不電活性聚合物轉換器之可行性。所說明之電路使用電 術來最大化電活性聚合物轉換器之每機械循環的 此里轉移同時仍維持簡單性。額外益處包括:允許以極低 146043.doc -57· 201126377 之電麼(例如,9佚1ό 2丨i 者·以1仆 )自引動,·可變頻率及可變衝程操作兩 者,以間化之電子裝置(亦即,不需要控制序列之電 =來最大化每猶環之能量轉移;在可變頻率及可變衝程 應用兩者中操作;及對轉換器提供過電㈣護。 關於本發明之其他細節,如在熟習相關技術者之水平 材料及替代之相關組態。在如-般地使用或在 ^上使用之額外動作方面,關於本發明之基於方法的離 樣,上述情況可保持成立。另外,儘管已參考若干實㈣ == 見情況併有各種特徵),但本發明不限於如關 於本發明之每-變體所涵蓋的所描述或所指示的實例 Ζ離本發明之真實精神及料的情況下,可對所描述之 可取代等效物(無論是敍述於本 中或疋為某簡潔性起見而未包括)。所展示之任何數目 ==零件或子總成在其設計上可整合。可藉由用於裝配 。又。十原理來進行或指導此等改變或其他改變。 又,預期,可獨立地或與本文所述之特徵中之任何一或 夕者組合來闡述及主張所描述的發明性變體之任何可選特 徵。提及單數項目,包括存在複數個相同項目之可能性。 更具體言之’如本文中及所附申請專利範圍中所使用,單 ㈣&amp; ⑽複數個對象’除非另外明確規 定。換言之,使用該等詞語允許上文之描述以及下文之申 清專利範圍中的標的項目中之「至+ — 意,可草擬申請專利範圍以排除任何‘選要二進因 敍述意欲充當諸如「獨自地」、「僅」及其類似者之排他性 146043.doc -58- 201126377 術語與所主張要素之詳述結合使用或「否定」限制之使用 的前提基礎。在不使用此類排他性術語之情況下,申請專 利範圍中之術S吾「包含」應允許包括任何額外要素-不管 是否在請求項中列舉給定數目個要素,或特徵之添加可被 視為轉變申請專利範圍中所闡述之要素的本質。另外規 定’除非本文中明確定義,否則本文中所使用之所有技術 Ο Ο 及科學術語將被給予儘可能廣泛的—般理解之意義,同時 維持請求項有效性。 【圖式簡單說明】 圖以及圖職明使用者介面之—些實例,其在ΕΑΡ轉換 器耦接至顯示營幕或感測器及裝置之主體時可使 饋。 圖2A及圖2B展示使用去介而駐里 饮丁便用耆;丨面裝置之剖面圖,該使用者 介面裝置包括一顯示螢慕,兮蔬 蛍奉及頜不螢幕具有以觸感回饋對 使用者之輸入起反應的表面; 圖3A及圖3B說明使用者介面裝 圖,該使用&amp; m 另變體的剖面 圖域用者介面裝置具有一顯示營幕,該顯示 撓性薄膜遮蓋,其中活性EAp形成為活性塾片· 可 請明使用者介面裝置之額外變體的剖面 者介面裝置具有定位於領罄篡 &quot;使用 ΕΑΡ薄膜; 斤貫偏置 圖5展示使用者介面裝 置之面圖,其中顯示 至使用多個順應墊片愛幕耦接 永且用於顯示器之驅動 個ΕΑΡ致動器膜片; 勒力為多 146043.doc -59· 201126377 圖6A及圖6B展示使用者介面230之剖面圖,使用者介面 230具有耦接至顯示器之波紋ΕΑΡ薄膜或膜; 圖7 Α及圖7Β說明根據本發明之一個實施例的在施加電 壓之前及之後的轉換器之俯視透視圖; 圖8A及圖8B分別展示供用在使用者介面裝置中之感覺 回饋裝置的分解之俯視及仰視透視圖; 圖9 A為本發明之裝配好之電活性聚合物致動器的俯視平 面圖;圖9B及圖9C分別為圖8A之致動器的膜部分之俯視 及仰視平面圖且詳言之說明致動器之雙相組態; 圖9D及圖9E說明用於在與裝置之框架隔開的顯示螢幕 之表面上置放的電活性聚合物轉換器之陣列的實例; 圖9F及圖9G分別為供如本文所揭示用在使用者介面裝 置中的致動器之陣列的分解圖及裝配圖; 圖10說明人類手指與裝置之接觸表面操作接觸的使用者 介面裝置之側視圖; 圖 11A及圖11B分別用圖表說明 在單相模式下操作時圖 9A至圖9C之致動器的力,衝程關係及電壓回應曲線 圖11C及圖11D分別用圖表說明在雙相模★ τ γ a «-又π揭式下钿作時圖 9Α至圖9C之致動器的力_衝程關係及電壓回應曲線; 圖12Α至圖12C說明雙相轉換器之另一變體. 圖12D說明圖12Α至圖12C之雙相轉換考夕a必α 又作将谀益之位移對時間的 圖表; ,該 圖13為用於操作感覺回饋裝置之電子電 的万塊圖 電子電路包括電源供應器及控制電子裝置; 146043.doc •60· 201126377 圖14Α及圖14Β展示耦接至#用去 便用者輸入裝置之ΕΑΡ致動器 的平面陣列之實例的部分横截面圖; 圖15Α及圖15Β示意性地句a曰田从以+ 地說月用作致動器之表面變形EAp 轉換益,其利用聚合物表面往外产站&amp; ^ ^ 乃衣由特徵在啟動該轉換器時提供功 輸出; 的橫截 圖16Α及圖16Β為本發明之致動器之例示性構造 面圖; Ο Ο 圖17Α至圖17D說明用於在標的轉換器内形成電連接以 轉接至印刷電路板(PCB)或撓曲連接器之方法的各個步 驟; 圖1 8 A至圖1 8 D說明用於在標的轉換器内形成電連接以 耦接至電線的方法之各個步驟; 圖19為具有穿孔類型之電觸點的標的轉換器之橫截面 圖; 圖20A及圖2GB分別為供應用於按紐型致動器中的厚度 模式轉換器及電極圖案的俯視圖; 圖21說明使用圖6A及圖6B之按鈕型致動器之陣列的小 鍵盤的俯視剖視圖;An example of a road. Many electroactive polymer converters require high voltage electronics to generate electricity. A simple high voltage electronic device that provides functionality and protection is required. A basic converter circuit consists of a low voltage priming supply, a connecting diode, an electroactive polymer converter, a second connecting diode, and a high voltage collector. However, this circuit may not be effective in capturing as much energy as possible per cycle as needed, and requires a relatively high voltage pilot supply. Figure ^ illustrates the design of a simple power generation circuit. One of the advantages of this circuit is the simplicity of the design. Operating the generator (assuming mechanical force is applied) requires only a small starting voltage (approximately 9 volts). There is no need to control the level electronics to control the transfer of high voltage to electricity: in and out of the polymer converter. Passive voltage regulation is achieved by the upper and lower poles of the output of the circuit. This circuit is capable of generating high voltage DC power and can be used as a packaged active polymer converter at a level of energy density per gram of Joule. This circuit is suitable for generating moderate power and: the feasibility of a non-electroactive polymer converter. The illustrated circuit uses electronics to maximize the transfer of each mechanical cycle of the electroactive polymer converter while still maintaining simplicity. Additional benefits include: Allowing a very low voltage of 146043.doc -57· 201126377 (for example, 9佚1ό 2丨i for 1 servant), self-priming, variable frequency and variable stroke operation, The electronic device (ie, does not require the control sequence's power = to maximize energy transfer per quarantine; operates in both variable frequency and variable-stroke applications; and provides over-current (4) protection to the converter. Further details of the invention, such as the level of material and alternative configuration of those skilled in the art, may be used in connection with the method of the present invention, or in addition to the additional actions used in the present invention. In addition, although reference has been made to a number of real (four) == see cases and various features, the invention is not limited to the described or illustrated examples as encompassed by the per-variant of the invention. In the case of the true spirit and material, the substitutable equivalents described may be substituted (whether described in the text or as a simplification). Any number shown == The part or subassembly can be integrated in its design. Can be used for assembly. also. Ten principles are used to conduct or direct such changes or other changes. Further, it is contemplated that any optional features of the described inventive variations can be set forth and claimed independently or in combination with any one or the features described herein. References to singular items include the possibility of having multiple identical items. More specifically, as used herein and in the appended claims, single (four) &amp; (10) plural objects ' unless expressly stated otherwise. In other words, the use of such words allows the above description and the "to + meaning" in the subject matter in the scope of the patent application below, and the scope of the patent application can be drafted to exclude any 'selective two-way narrative intended to act as such as "alone. Exclusivity of “land”, “only” and the like 146043.doc -58- 201126377 Terminology is used in conjunction with the detailed description of the claimed elements or the use of the “negative” restrictions. In the absence of such exclusive terms, the application of the scope of the patent application shall include any additional elements - whether or not a given number of elements are listed in the claim, or the addition of features may be considered Change the nature of the elements set forth in the scope of the patent application. In addition, 'unless specifically defined herein, all technical and scientific terms used herein will be given the broadest possible meaning of understanding, while maintaining the validity of the claim. BRIEF DESCRIPTION OF THE DRAWINGS The figures and the user interface of the user interface are examples of which can be fed when the ΕΑΡ converter is coupled to the display screen or the body of the sensor and device. 2A and 2B show a cross-sectional view of a squatting device using a sputum; the user interface device includes a display scent, a squid and a jawless screen having a tactile feedback pair The user inputs the reactive surface; FIG. 3A and FIG. 3B illustrate the user interface mounting, and the cross-sectional user interface device using the &amp; m variant has a display screen, the display flexible film is covered, Wherein the active EAp is formed as an active smear. The profiler interface device of the additional variant of the user interface device can be positioned to be positioned in the collar&quot; using a ΕΑΡ film; 斤 偏置 biasing Figure 5 shows the surface of the user interface device Figure, which shows the use of a plurality of compliant gaskets for the curtain coupling and for the display of the drive actuator diaphragm; the force is more 146043.doc -59· 201126377 Figure 6A and Figure 6B show the user interface 230, the user interface 230 has a corrugated film or film coupled to the display; FIG. 7 and FIG. 7B illustrate a top view of the converter before and after voltage application, in accordance with an embodiment of the present invention. Figure 8A and Figure 8B show an exploded top and bottom perspective view, respectively, of a sensory feedback device for use in a user interface device; Figure 9A is a top plan view of an assembled electroactive polymer actuator of the present invention; Figures 9B and 9C are top and bottom plan views, respectively, of the membrane portion of the actuator of Figure 8A and in detail illustrating the two-phase configuration of the actuator; Figures 9D and 9E illustrate the separation from the frame of the device An example of an array of electroactive polymer converters placed on the surface of the display screen; Figures 9F and 9G are exploded views and assemblies of an array of actuators for use in a user interface device as disclosed herein, respectively Figure 10 illustrates a side view of the user interface device in operative contact of the human finger with the contact surface of the device; Figures 11A and 11B graphically illustrate the force of the actuator of Figures 9A through 9C, respectively, when operating in single phase mode , stroke relationship and voltage response curve FIG. 11C and FIG. 11D respectively illustrate the force_stroke relationship and voltage response of the actuator of FIG. 9A to FIG. 9C in the case of the two-phase mode ★ τ γ a «- π 揭 式 钿Curve; Figure 12 12C illustrates another variation of the two-phase converter. FIG. 12D illustrates a two-phase conversion test of FIG. 12A to FIG. 12C, which is a graph of displacement versus time for the benefit; FIG. 13 is for operation feeling. The electronic circuit of the electronic device of the feedback device includes a power supply and control electronics; 146043.doc • 60· 201126377 FIG. 14A and FIG. 14A show the actuator coupled to the #user input device. Partial cross-sectional view of an example of a planar array; Fig. 15A and Fig. 15 Β Β 曰 曰 曰 从 从 从 从 从 从 从 从 从 从 从 从 从 从 从 从 从 从 从 从 从 从 从 从 从 从 从 从 从 从 从 从 从 从 从 从 从^ ^ 衣衣 is characterized by providing a work output when the converter is activated; cross-sectional view 16A and FIG. 16A are exemplary structural views of the actuator of the present invention; Ο Ο FIGS. 17A to 17D illustrate the converter for use in the target Various steps of the method of forming an electrical connection for switching to a printed circuit board (PCB) or flex connector; Figure 1 8 A to Figure 8 D illustrate the use of forming an electrical connection within the target converter to couple to the wire Each step of the method; Figure 19 is worn Cross-sectional view of the target transducer of the hole type electrical contact; FIG. 20A and FIG. 2GB are top views respectively of the thickness mode converter and the electrode pattern supplied for the button type actuator; FIG. 21 illustrates the use of FIG. 6A and FIG. Figure 6B is a top cross-sectional view of the keypad of the array of button actuators;

圖22說明供用在呈人手形式之新穎致動器中的厚度模式 轉換器的俯視圖; ' X 圖23說明呈連續條帶組態的厚度模式轉換器之俯視圖. 圖24說明供應用在墊片型致動器中的厚度模式轉換器之 俯視圖; 圖25 A至圖25D為使用各種類型之墊片型致動器之觸押 146043.doc -61 - 201126377 螢幕的橫截面圖; 圖26A及圖26B為本發明之厚度模式轉換器之另一實施 例的橫截面圖’其中該轉換器之主動區域與被動區域之相 對位置與以上實施例相反; 圖27A至圖27D說明電活性慣性轉換器之實例; 圖28A說明用以調错音訊信號以使其在用於電活性聚合 物致動益之最佳觸感頻率内工作的電路之一個實例; 圖28B說明由圖28A之電路濾波的經修改觸感信號之實 例; 圖28C及圖28D說明用於產生供單相及雙相電活性轉換 器所用之信號的額外電路; 圖28E及圖28F展示具有在裝置主體内且耦接至慣性質量 之一或多個電活性聚合物致動器的裝置之實例; 圖29A至圖29C展示在用於一使用者介面裝置中時之電 活性聚合物轉換器的實例,其中該轉換器及/或使用者介 面表面之一部分完成用以對該轉換器提供電力之開關; 圖30A至圖30B說明經組態以形成用於對轉換器供電之 兩個開關的電活性聚合物轉換器之另一實例; 圖31A至圖31B說明延遲電活性聚合物轉換器之啟動以 產生模仿機械開關效應之觸感效應的各種圖表; 圖32說明用以使用觸發信號(諸如,音訊信號)驅動電活 性聚合物轉換器以傳遞用於產生所要觸感效應的所儲存波 形的電路之實例; 圖33A及圖33B說明用於藉由用單—驅動電路提供雙相 146043.doc -62- 201126377 啟動來驅動電活性聚合物轉換器的另一變體; 圖34A展示位移曲線之實例,其展示在由圖34B之信號 觸發之觸感效應後的殘餘運動; 圖34C展不使用電子阻尼以減小正展示之殘餘運動效應 的位移曲線的實例,其中該觸感效應及阻尼信號說明於圖 34D 中; 圖35說明用於對電活性聚合物轉換器供電之能量收集電 路的實例;及 O m , 涵蓋本發明之不同於諸圖中所展示之内容的變化。 【主要元件符號說明】 2 4 8a 8b 10 ❹ 12 14 16 16a 16b 17a 17b 感覺/觸感回饋裝置 使用者介面墊 剛性框架側 剛性框架側 E A P膜或薄膜/電容性結構/轉換器/表面變形 ΕΑΡ致動器 薄彈性體介電膜或層/ΕΑΡ轉換器 順應或可拉伸電極板或層/電極/薄彈性體介電 聚合物層 順應或可拉伸電極板或層/電極 頂部電極 底部電極 表面特徵 表面特徵 146043.doc •63· 201126377 17c 表面特徵 17d 表面特1 18a 頂部被動層 18b 底部被動層 20 轉換器/輸出圓盤 20a 剛性輪出圓盤/頂部結構 20b 剛性輸出圓盤/底部結構 22 固定或剛性結構 22a 轉換器框架 22b 轉換器框架 24 平面外表面特徵 24a 介電表面特徵 24b 介電表面特徵 24c 介電表面特徵 24d 介電表面特徵 25 非活性區域或間隙 26 彈性體介電聚合物/介電聚合物層 26a 頂部側//外表面//聚合物/被動層表 26b 底部側&quot;外表面&quot;聚合物/被動層表 26c 聚合物/被動層表面特徵 26d 聚合物/被動層表面特徵 28 圓盤 $ 30 致動器 32 致動器之部分/堆叠轉換器 面特徵 面特徵 146043.doc -64 - 201126377 32a 薄彈性電極 32b 薄彈性電極 34 致動器之部分/雙ΕΑΡ膜層 34a 薄彈性電極/頂部膜/介電層 34b 薄彈性電極/頂部電極 - 34c 底部電極 35 電觸點部分 Ο 36a 底部膜/介電層 36b 頂部電極 36c 底部電極 38 使用者之手指 40 方塊圖 40a 黏著層 40b 膜至膜黏著劑 40c 黏著層 Ο 42 電源供應器 42a 頂部匯流條 42b 底部匯流條 - 44 控制電路 44a 頂部匯流條 44b 底部匯流條 46a .開關總成/輸出桿 46b 開關總成/輸出桿 48a 黏著層 146043.doc - 65 - 201126377 48b 黏著層 50 電容性或電阻性感測器 50a 頂部被動層或厚塊 50b 底部被動層 52 電輸出 55 共同節點 60 頂部蓋 60a 輸入力 60b 所感測回饋或輸出力/所要感覺回饋 62 PCB/撓曲連接器 64 底部蓋 66a 罐封材料 66b 罐封材料 68a 導電彈性體通孔 68b 導電彈性體通孔 70 致動器//堆疊之轉換器/致動器結構 72 PCB/撓曲連接器 74 介電層 76a 匯流條 76b 匯流條 78a 被動層 78b 被動層 80 雷射鑽孔 82a 通孔 146043.doc -66- 201126377 82b 通孑L 84a 導電填充通孔/匯流條 84b 導電填充通孔/匯流條 86a 罐封 86b 罐封 - 88a 引線 88b 引線 Ο 90 第一對電極 92 第二對電極 94 桿或機械部件 96 介電膜 100 轉換器 101 線 102 線 103 線 c 104 介電層 106a 電極 106b 電極 108 導電匯流條/匯流條材料 110a 被動聚合物層 110b 被動聚合物層 112 PCB/撓曲連接器 114 導電觸點 116 導電跡線 146043.doc -67- 201126377 120 厚度模式轉換器 122 薄彈性體介電聚合物層/介電材料 124 電極圖案 124a 頂部電極圖案 124b 底部電極圖案 125 短柱部分 126a 電觸點 126b 電觸點 127 指部分 128a 非活性部分 128b 非活性部分 130 小鍵盤致動器 132 轉換器陣列 134 被動層/小鍵盤 136a 互連電極圖案之頂部陣列 136b 電極圖案之底部陣列 138 鍵邊界 140 新穎手裝置 142 呈人手形式之介電材料 144a 頂部電極圖案 144b 底部電極圖案 146a 匯流條 146b 匯流條 150 轉換器膜/條帶 146043.doc -68- 201126377 152 介電材料 154a 頂部電極圖案 154b 底部電極圖案 155 單一化線 156a 頂部電匯流才非/匯流條 156b 底部電匯流為¥/匯流條 158 活性區 G 160 轉換器 162 介電材料 164a 頂部電極/活性區域 164b 底部電極/活性區域 165 開口區域/封閉區域 166a 電匯流排 166b 電匯流排 168a 電接觸點 Ο 168b 電接觸點 169 内及外周邊 170 觸控螢幕裝置 172 液晶顯示器(LCD) 174 觸控感測器板/觸控板 175 箭頭 176 開口空間/間距 178 框架 178' 後壁/框架部件 146043.doc -69- 201126377 178&quot; 頂部肩部/框架部件 180 ΕΑΡ厚度模式致動器 180’ 第二厚度模式致動器 182 介電膜層 184a 電極 184b 電極 185 箭頭 186a 頂部被動層 186b 底部被動層 18 8a 輸出結構/輸出區塊 188a' 輸出區塊 188b 輸出結構/輸出區塊 188b' 輸出區塊 190 使用者輸入裝置/觸控螢幕裝置 195 箭頭 195’ 箭頭 200 ΕΑΡ膜陣列/雙相(雙向)觸控螢幕裝置 200a 電壓側/高電壓側 200b 接地側 202 電極圖案/側壁 202a 高電壓線 202b 高電壓線 204 ΕΑΡ轉換器之陣列/ΕΑΡ致動器 205 箭頭 146043.doc •70- 201126377 206 電極圖案/内框架部件/托架 206a 接地線 206b 接地線 208 介電膜 210 雙相觸摸感測器裝置 - 212 箭頭 214a 框架陣列 Ο 214b 框架陣列 216 個別框架段 218 輸出圓盤 220 轉換器陣列 222 ΕΑΡ轉換器 230 使用者介面/使用者介面裝置/使用者輸入裝置 232 顯示螢幕/觸控螢幕/顯示器 234 裝置之主體或框架/顯示螢幕/框架或外殼/基座 〇 或框架 236 電活性聚合物(ΕΑΡ)轉換器 238 箭頭 - 240 可撓性薄膜 242 ΕΑΡ薄膜 244 被動順應墊片或彈簧 246 箭頭 248 ΕΑΡ致動器膜片 250 偏置彈簧 146043.doc -71 - 201126377 252 接地元件 254 箭頭 256 支座 260 慣性轉換器總成 262 質量或重量/慣性質量 263 成形表面 264 外殼總成 266 中央外殼/外殼總成 268 頂部外殼/外殼總成 270 固定構件或扣件 360 厚度模式致動器/電活个 362 介電層 364a 電極層 364b 電極層 365 膜之中央部分 366 匣式框架 366a 頂部框架部件 366b 底部框架部件 367a 箭頭 367b 箭頭 368a 被動層/被動材料/非可 368b 被動層/被動材料/非可 370 輸出部件 370a 輸出部件 146043.doc -72- 201126377 370b 輸出部件 380 電源供應器/高電壓電源供應器 382 接地匯流排線 400 使用者介面裝置/滑鼠主體 402 電活性聚合物致動器/使用者介面表面 404 慣性質量/導電表面/底盤 406 第一間隙 408 第二間隙 〇 500 滯後之機械振鈴或振盪 502 脈衝/觸感驅動部分 504 阻尼部分 D 距離/位移量 L 長度 T 厚度 W 寬度 146043.doc -73-Figure 22 illustrates a top view of a thickness mode converter for use in a novel actuator in the form of a hand; 'X Figure 23 illustrates a top view of a thickness mode converter in a continuous strip configuration. Figure 24 illustrates a supply for a shim type Top view of the thickness mode converter in the actuator; Fig. 25A to Fig. 25D are cross-sectional views of the screen using the various types of gasket type actuators 146043.doc -61 - 201126377; Fig. 26A and Fig. 26B A cross-sectional view of another embodiment of a thickness mode converter of the present invention wherein the relative positions of the active and passive regions of the converter are opposite to the above embodiment; FIGS. 27A-27D illustrate an example of an electroactive inertial converter. Figure 28A illustrates an example of a circuit for tuning an audio signal to operate within the optimal tactile frequency for electroactive polymer actuation; Figure 28B illustrates a modified touch filtered by the circuit of Figure 28A; Examples of sensible signals; Figures 28C and 28D illustrate additional circuitry for generating signals for single-phase and dual-phase electroactive converters; Figures 28E and 28F are shown in the body of the device and coupled to the inertial mass An example of a device for one or more electroactive polymer actuators; Figures 29A-29C show an example of an electroactive polymer converter when used in a user interface device, wherein the converter and/or One of the user interface surfaces partially completes the switch for powering the converter; Figures 30A-30B illustrate another example of an electroactive polymer converter configured to form two switches for powering the converter 31A-3B illustrate various graphs of delaying the activation of an electroactive polymer converter to produce a tactile effect that mimics a mechanical switching effect; FIG. 32 illustrates driving an electroactive polymer conversion using a trigger signal, such as an audio signal. An example of a circuit for delivering a stored waveform for producing a desired haptic effect; Figures 33A and 33B illustrate driving electroactive polymerization by providing a dual phase 146043.doc -62-201126377 start-up using a single-drive circuit Another variation of the object converter; Figure 34A shows an example of a displacement curve showing residual motion after the tactile effect triggered by the signal of Figure 34B; Figure 34C shows no use of electricity Example of a sub-damping to reduce the displacement curve of the residual motion effect being exhibited, wherein the haptic effect and damping signal are illustrated in Figure 34D; Figure 35 illustrates an example of an energy harvesting circuit for powering an electroactive polymer converter And Om, which encompass variations of the present invention that differ from those shown in the figures. [Main component symbol description] 2 4 8a 8b 10 ❹ 12 14 16 16a 16b 17a 17b Sensor/tactile feedback device user interface pad rigid frame side rigid frame side EAP film or film/capacitive structure/converter/surface deformationΕΑΡ Actuator thin elastomer dielectric film or layer/ΕΑΡ converter compliant or stretchable electrode plate or layer/electrode/thin elastomeric dielectric polymer layer compliant or stretchable electrode plate or layer/electrode top electrode bottom electrode Surface features surface features 146043.doc •63· 201126377 17c Surface features 17d Surface features 1 18a Top passive layer 18b Bottom passive layer 20 Converter/output disc 20a Rigid wheeled disc/top structure 20b Rigid output disc/bottom structure 22 Fixed or rigid structure 22a Converter frame 22b Converter frame 24 Planar outer surface feature 24a Dielectric surface feature 24b Dielectric surface feature 24c Dielectric surface feature 24d Dielectric surface feature 25 Inactive area or gap 26 Elastomer dielectric polymerization / dielectric polymer layer 26a top side / / outer surface / / polymer / passive layer table 26b bottom side &quot; outer surface&quot; polymer / Passive Layer Table 26c Polymer/Passive Layer Surface Features 26d Polymer/Passive Layer Surface Features 28 Disc $30 Actuator 32 Partial/Stacked Converter Surface Feature Features of the Actuator 146043.doc -64 - 201126377 32a Thin Elastic electrode 32b Thin elastic electrode 34 Part of the actuator / Double bismuth film layer 34a Thin elastic electrode / Top film / Dielectric layer 34b Thin elastic electrode / Top electrode - 34c Bottom electrode 35 Electrical contact part Ο 36a Bottom film / Electrical layer 36b top electrode 36c bottom electrode 38 user's finger 40 block diagram 40a adhesive layer 40b film to film adhesive 40c adhesive layer Ο 42 power supply 42a top bus bar 42b bottom bus bar - 44 control circuit 44a top bus bar 44b Bottom bus bar 46a. Switch assembly/output rod 46b Switch assembly/output rod 48a Adhesive layer 146043.doc - 65 - 201126377 48b Adhesive layer 50 Capacitive or resistive sensor 50a Top passive layer or thick block 50b Bottom passive layer 52 electric output 55 common node 60 top cover 60a input force 60b sensed feedback or output force / desired feedback 62 PCB/flex connector 64 bottom cover 66a can sealing material 66b can sealing material 68a conductive elastomer through hole 68b conductive elastomer through hole 70 actuator / / stacked converter / actuator structure 72 PCB / flex Connector 74 Dielectric layer 76a Bus bar 76b Bus bar 78a Passive layer 78b Passive layer 80 Laser drill hole 82a Through hole 146043.doc -66- 201126377 82b Wanted L 84a Conductive filled through hole/bus bar 84b Conductive filled through hole /Bus 86a Can Seal 86b Can Seal - 88a Lead 88b Lead Ο 90 First Pair of Electrodes 92 Second Pair of Electrodes 94 Rod or Mechanical Parts 96 Dielectric Film 100 Converter 101 Line 102 Line 103 Line c 104 Dielectric Layer 106a Electrode 106b electrode 108 conductive bus bar/bus bar material 110a passive polymer layer 110b passive polymer layer 112 PCB/flex connector 114 conductive contact 116 conductive trace 146043.doc -67- 201126377 120 thickness mode converter 122 thin elastic Bulk dielectric layer/dielectric material 124 electrode pattern 124a top electrode pattern 124b bottom electrode pattern 125 stub portion 126a electrical contact 126b electrical contact 127 finger portion 128a inactive portion 128b inactive portion 130 keypad actuator 132 transducer array 134 passive layer/keypad 136a top array of interconnected electrode patterns 136b bottom array of electrode patterns 138 bond boundary 140 novel hand device 142 Dielectric material 144a in human form top electrode pattern 144b bottom electrode pattern 146a bus bar 146b bus bar 150 converter film / strip 146043.doc -68- 201126377 152 dielectric material 154a top electrode pattern 154b bottom electrode pattern 155 singulation line 156a top wire sink/bus bar 156b bottom wire sink is ¥/bus bar 158 active zone G 160 converter 162 dielectric material 164a top electrode / active zone 164b bottom electrode / active zone 165 open zone / closed zone 166a electrical confluence Row 166b Wirebar 168a Electrical Contact Ο 168b Electrical Contact 169 Inner and Outer Peripheral 170 Touch Screen Device 172 Liquid Crystal Display (LCD) 174 Touch Sensor Board / Trackpad 175 Arrow 176 Open Space / Spacing 178 Frame 178' rear wall/frame member 146 043.doc -69- 201126377 178&quot; Top shoulder/frame member 180 ΕΑΡ thickness mode actuator 180' second thickness mode actuator 182 dielectric film layer 184a electrode 184b electrode 185 arrow 186a top passive layer 186b bottom passive layer 18 8a Output Structure/Output Block 188a' Output Block 188b Output Structure/Output Block 188b' Output Block 190 User Input Device/Touch Screen Device 195 Arrow 195' Arrow 200 Diaphragm Array/Biphase (Bidirectional) Touch screen device 200a voltage side / high voltage side 200b ground side 202 electrode pattern / side wall 202a high voltage line 202b high voltage line 204 ΕΑΡ converter array / ΕΑΡ actuator 205 arrow 146043.doc • 70- 201126377 206 electrode pattern / Inner frame part / bracket 206a Ground line 206b Ground line 208 Dielectric film 210 Two-phase touch sensor device - 212 Arrow 214a Frame array 214 214b Frame array 216 Individual frame segment 218 Output disk 220 Converter array 222 ΕΑΡ Conversion Device 230 user interface / user interface device / user input device 232 display screen / touch screen / Display 234 Body or frame/display screen/frame or housing/base 〇 or frame 236 electroactive polymer (ΕΑΡ) transducer 238 arrow - 240 flexible film 242 ΕΑΡ film 244 passive compliant pad or spring 246 arrow 248 ΕΑΡ Actuator diaphragm 250 Offset spring 146043.doc -71 - 201126377 252 Grounding element 254 Arrow 256 Mounting 260 Inertial converter assembly 262 Mass or weight / inertial mass 263 Forming surface 264 Housing assembly 266 Central housing / Housing Assembly 268 Top Housing/Shell Assembly 270 Fixing Member or Fastener 360 Thickness Mode Actuator/Electrical 362 Dielectric Layer 364a Electrode Layer 364b Electrode Layer 365 Central Section of Film 366 匣 Frame 366a Top Frame Member 366b Bottom frame part 367a arrow 367b arrow 368a passive layer / passive material / non-368b passive layer / passive material / non-370 370 output part 370a output part 146043.doc -72- 201126377 370b output part 380 power supply / high voltage power supply 382 Ground Busbar 400 User Interface Device / Mouse Owner 402 Electroactive Polymer Actuator/User Interface Surface 404 Inertial Mass/Conductive Surface/Chassis 406 First Gap 408 Second Gap 〇500 Mechanical Ringing or Oscillation of Hysteresis 502 Pulse/Tactile Drive Section 504 Damping Part D Distance / Displacement L Length T Thickness W Width 146043.doc -73-

Claims (1)

201126377 七、申請專利範圍: ι_ 一種使用者介面裝置,其包含: 一底盤; 一使用者介面表面; 一第一電源供應器; 至;一電活性聚合物轉換器,其鄰近於該使用者介面 表面,該電活性聚合物轉換器進_步包含一導電表面; #中該使用者介面表面之—部分及該導電表面與該第 —電源供應11形成—電路,使得在-正常狀態下,該導 電表面與該使用者介面表面之該部分電氣隔離以斷開該 電路,從而使該電活性聚合物轉換器保持於一無電力狀 態;且 ▲其中該使用者介面表面可撓性地耗接至該底盤,使得 該使用者介面纟面偏轉至該電活性聚合物轉才奐器中閉合 該電路以對該電活性聚合物轉換器供給能量使得一二 〇 供至該電活性聚合物轉換器之信號在該使用者介面表面 處產生一觸感感覺。 2. 如請求们之使用者介面裝置,其t該第—電源供應器 包含一高電壓供應器。 3. 如請求項丨之使用者介面裝置,其中該至少一電活性聚 合物轉換器包含複數個電活性聚合物轉換器,其各自鄰 近於一使用者介面表面且各自具有各別導電表面,使得 一個使用者介面表面偏轉至該導電表面中使該各別電活 f生聚D物轉換ϋ及該各別導電表面形成該閉合電路且盆 146043.doc 201126377 保持於該無電力狀 中該等剩餘之電活性聚合物轉換器 態。 4.如β月求項1之使用.入品抽 Μ ^裝置,其中該使用者介面裝置 鍵般、^ 下各者Μ成之群的裝I—鍵盤、小 鍵皿、遊戲控制器、搖批 任 ° 二窃、一觸控螢幕、一電腦滑 既、—軌跡球、一 土鏊 ,L, ^ 聿、一控制面板及一操縱桿。 5·如請求項1之使用者介面裴置,1中 W 中該使用者介面表面 ' 、—鍵、一遊戲板及一顯示螢幕。 6·::求们之使用者介面裝置,其中該第一電源供應器 ^⑯電壓電源供應器,且其中該使用者介面裝置進 :步包含一耦接至一開關之高電壓電源供應器,使得該 &quot;f聚口物轉換益及該導電表面之偏轉閉合該開關, 從而允許該高電壓電源供應器對該電活性聚合物致動器 供給能量。 7.如請求们之使用者介面農置,其中該使用者介面表面 之該偏轉發生在該使用者介面表面之一法線方向上。 8·如請求们之使用者介面褒置,其中該使用者介面表面 之該偏轉發生在-與該使用者介面表面共面之方向上。 9. 一種使用者介面裝置,其包含: 一底盤; 一第一電源供應器; 一使用者介面表面; 至少一電活性聚合物轉換器’其耦接至該使用者介面 表面,該電活性聚合物轉換器進一步包含一導電表面, 146043.doc 201126377 該導電表面與該第一電源供應器形成一電路,使得在一 正4狀,%、了 a導電表面與該電路電氣隔離以斷開該電 路,使得該電活性聚合物轉換器保持於—無電力狀態; 且 ^中該電活性聚合物轉換器可撓性地耦接至該底盤, 使得該使用者介面表面之偏轉使該電活性聚合物轉換器 偏轉以與該第-電源供應器之該電路接觸關合該電路 且對該電活性聚合物致動器供給能量,使得—提供至該 電活性聚合物轉換器之信號在該使用者介面表面處產生 一觸感感覺。 其中該第一電源供應器 10.如請求項9之使用者介面裝置 包含一高電壓供應器。 〇 11.如請求項9之使用者介面裝置,其中該至少—電活性聚 合物轉換器包含複數個電活性聚合物轉換器,其各自鄰 近於-使用者介面表面且各自具有各別導電表面,使得 個使用者介面表面偏轉至該導電表面中使該各別電活 性聚合物轉換器及該各別導電表面形成該閉合電路且其 中該等剩餘之電活性聚合物轉換器保持於該無電力狀 控制 、·^從用有;丨囟裝置’其中該使用 ^ 3選自一由以下各者組成之群的裝置: 觸控螢幕、一電腦滑鼠、一執跡球、一尖筆 板及—操縱桿。 面 13.如請求項9之使用者介面裝置,#中該使用者介面表 146043.doc 201126377 14. 15. 16. 17. 18. 19. /偏轉發生在該使用者介面表面之-法線方向上。 士 :月求項9之使用者介面裝置,其中該使用者介面表面 ^亥偏轉發生在—與該使用者介面表面共面之方向上。 種在—使用者介面裝^中產生一觸感效應之方法,其 中該觸感效應模仿-雙穩態開關效應,該方法包含〆、 提供—使用者介面表面,該使用者介面表面具有一耦 接至其之電活性聚合物轉換器,其中該電活性聚合物轉 換器包含至少一電活性聚合物膜; 使该使用者介面表面位移一位移量以亦使該電活性聚 合物膜位移及增加由該電活性聚合物膜對該使用者介面 表面施加之一阻力; 使在„亥電活性聚合物膜之位移期間該電活性聚合物轉 換器之啟動延遲; 啟動該電活性聚合物轉換器以在未減小該位移量之情 况下使》亥阻力變化以產生該模仿該雙穩態開關效應之觸 感效應。 如請求項15之方法,其中使該電活性聚合物之該啟動延 遲發生在一預定時間後。 如請求項15之方法,其中使該電活性聚合物之該啟動延 遲發生在該電活性聚合物膜之—預定位移後。 如請求項15之方法,其中該使用者介面裝置不包括—圓 頂致動機構。 一種在一使用者介面裝置中產生一預定觸感效應之方 法’該方法包含: 146043.doc 201126377 提供一波形電路 波形信號; 其經組態以產生至少一預定之觸感 將-信號投送至該波形電路,使得在該信號等於一觸 發值時,該波形電路產生該觸感波形信號;及 將該觸感波形信號提供至一搞接至一電活性聚合物轉 換器之電源供應器,使得該電源供應器驅動該電活性聚 〇物轉換器以產生一藉由該觸感波形信號控制之複合觸 感效應。 20· —種在一具有一使用者介面表面之使用者介面裝置中產 生一觸感回饋感覺之方法,該方法包含: 將一輸入信號自一驅動電路傳輸至一電活性聚合物轉 換器,其中該輸入信號致動該電活性聚合物轉換器且在 該使用者介面表面處提供該觸感回饋感覺;及 傳輸一阻尼信號以在該所要觸感回饋感覺後減少該使 用者介面表面之機械位移。 Q 21.如請求項20之方法,其中該觸感效應感覺模仿一雙穩態 按鍵效應。 22. 如請求項20之方法’其中該使用者介面裝置包含一選自 一由以下各者組成之群的裝置:一鍵盤、小鍵盤、遊戲 控制器、遙控器、一觸控螢幕、一電腦滑鼠、一軌跡 球、一尖筆、一控制面板及一操縱桿。 23. 如請求項2〇之方法,其中該使用者介面表面包含一按 鈕、一鍵、一遊戲板及—顯示螢幕。 24. —種在一使用者介面裝置中產生一觸感回饋之方法該 146043.doc 201126377 方法包含: 向該使用者介面裝置提供一電活性聚合物轉換器’該 電活性聚合物轉換器具有一第一相位且具有一第二相 位’其中該電活性聚合物轉換器包含該第一相位共有之 一第一引線、該第二相位共有之一第二引線,及該第一 相位及該第二相位共有之一第三引線; 使一第一引線維持於一高電壓’同時使該第二引線維 持於一接地;及 驅動該第三引線使其自該接地變化至該高 门電壓以使能 夠在該第一相位或該第二相位之撤銷後即啟 勒該各別另 一相位。 146043.doc 6-201126377 VII. Patent application scope: ι_ A user interface device comprising: a chassis; a user interface surface; a first power supply; to; an electroactive polymer converter adjacent to the user interface a surface, the electroactive polymer converter further comprises a conductive surface; a portion of the user interface surface and the conductive surface forming a circuit with the first power supply 11 such that in a normal state The electrically conductive surface is electrically isolated from the portion of the user interface surface to open the circuit to maintain the electroactive polymer converter in a no-power state; and wherein the user interface surface is flexibly consuming The chassis causes the user interface to deflect into the electroactive polymer converter to close the circuit to supply energy to the electroactive polymer converter such that one or two turns are supplied to the electroactive polymer converter The signal produces a tactile sensation at the surface of the user interface. 2. As requested by the user interface device, the first power supply includes a high voltage supply. 3. The user interface device of claim 3, wherein the at least one electroactive polymer converter comprises a plurality of electroactive polymer converters each adjacent to a user interface surface and each having a respective conductive surface such that Deflection of a user interface surface into the conductive surface causes the respective electrical activity to be converted into a closed circuit and the respective conductive surfaces form the closed circuit and the basin 146043.doc 201126377 remains in the powerless state Electroactive polymer converter state. 4. For example, the use of item 1 of the month of the month. The product is twitched ^ device, wherein the user interface device is like a key, and the group of each of them is assembled into an I-keyboard, a small keyboard, a game controller, and a shaker. The batch is a second steal, a touch screen, a computer slide, a trackball, a bandit, L, ^ 聿, a control panel and a joystick. 5. According to the user interface of claim 1, the user interface surface ', the - key, a game board and a display screen in the W. 6::: the user interface device of the user, wherein the first power supply is a voltage power supply, and wherein the user interface device comprises: a high voltage power supply coupled to a switch, The &quot;f splicing benefit and deflection of the electrically conductive surface closes the switch, thereby allowing the high voltage power supply to energize the electroactive polymer actuator. 7. The user interface of the requester, wherein the deflection of the user interface surface occurs in a normal direction of one of the user interface surfaces. 8. The user interface of the requester, wherein the deflection of the user interface surface occurs in a direction that is coplanar with the surface of the user interface. 9. A user interface device comprising: a chassis; a first power supply; a user interface surface; at least one electroactive polymer converter coupled to the user interface surface, the electroactive polymerization The object converter further includes a conductive surface, 146043.doc 201126377 The conductive surface forms a circuit with the first power supply such that a positive 4, a, a conductive surface is electrically isolated from the circuit to open the circuit Having the electroactive polymer converter maintained in a no-power state; and wherein the electroactive polymer converter is flexibly coupled to the chassis such that deflection of the user interface surface causes the electroactive polymer Transforming the transducer to contact the circuit of the first power supply to close the circuit and energize the electroactive polymer actuator such that a signal provided to the electroactive polymer converter is in the user interface A tactile sensation is produced at the surface. The first power supply device 10. The user interface device of claim 9 includes a high voltage supply. The user interface device of claim 9, wherein the at least electroactive polymer converter comprises a plurality of electroactive polymer converters each adjacent to a user interface surface and each having a respective conductive surface, Deflecting a user interface surface into the conductive surface such that the respective electroactive polymer converters and the respective electrically conductive surfaces form the closed circuit and wherein the remaining electroactive polymer converters remain in the non-powered state The control device is used in the device; wherein the device 3 is selected from the group consisting of: a touch screen, a computer mouse, a remnant ball, a tip pen board, and Joystick. Face 13. The user interface device of claim 9, the user interface table #146043.doc 201126377 14. 15. 16. 17. 18. 19. / deflection occurs in the normal direction of the user interface surface on. The user interface device of item 9 of the present invention, wherein the surface deflection of the user interface occurs in a direction that is coplanar with the surface of the user interface. A method of generating a tactile effect in a user interface device, wherein the tactile effect mimics a bistable switching effect, the method comprising: providing a user interface surface, the user interface surface having a coupling An electroactive polymer converter coupled thereto, wherein the electroactive polymer converter comprises at least one electroactive polymer film; displaceing the surface of the user interface by a displacement to also shift and increase the electroactive polymer film Applying a resistance to the surface of the user interface by the electroactive polymer film; delaying activation of the electroactive polymer converter during displacement of the electroactive polymer film; starting the electroactive polymer converter to Varying the change in the amount of displacement to produce the haptic effect that mimics the bistable switching effect. The method of claim 15 wherein the initiation delay of the electroactive polymer occurs The method of claim 15, wherein the initiation of the electroactive polymer occurs after a predetermined displacement of the electroactive polymer film The method of claim 15, wherein the user interface device does not include a dome actuating mechanism. A method of generating a predetermined tactile effect in a user interface device. The method comprises: 146043.doc 201126377 providing a waveform a circuit waveform signal; configured to generate at least a predetermined tactile sense-signal to the waveform circuit such that when the signal is equal to a trigger value, the waveform circuit generates the tactile waveform signal; and The sense waveform signal is provided to a power supply coupled to an electroactive polymer converter such that the power supply drives the electroactive polymer converter to produce a composite touch controlled by the tactile waveform signal 20. A method of generating a tactile feedback sensation in a user interface device having a user interface surface, the method comprising: transmitting an input signal from a drive circuit to an electroactive polymer converter The input signal actuates the electroactive polymer converter and provides the tactile feedback feel at the user interface surface; A damping signal is transmitted to reduce the mechanical displacement of the user interface surface after the desired sense of feedback. Q 21. The method of claim 20, wherein the haptic effect senses a bistable button effect. The method of claim 20, wherein the user interface device comprises a device selected from the group consisting of: a keyboard, a keypad, a game controller, a remote controller, a touch screen, a computer mouse, A trackball, a stylus, a control panel, and a joystick. 23. The method of claim 2, wherein the user interface surface comprises a button, a button, a game board, and a display screen. Method for generating a tactile feedback in a user interface device. The method of 146043.doc 201126377 includes: providing an electroactive polymer converter to the user interface device. The electroactive polymer converter has a first phase and Having a second phase 'where the electroactive polymer converter includes one of the first leads common to the first phase, one second of the second phase, and the first The phase and the second phase share one of the third leads; maintaining a first lead at a high voltage while maintaining the second lead at a ground; and driving the third lead to change from the ground to the high The gate voltage is such that the other phase can be derived after the first phase or the second phase is revoked. 146043.doc 6-
TW99102024A 2010-01-25 2010-01-25 Electroactive polymer transducers for tactile feedback devices TW201126377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99102024A TW201126377A (en) 2010-01-25 2010-01-25 Electroactive polymer transducers for tactile feedback devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99102024A TW201126377A (en) 2010-01-25 2010-01-25 Electroactive polymer transducers for tactile feedback devices

Publications (1)

Publication Number Publication Date
TW201126377A true TW201126377A (en) 2011-08-01

Family

ID=45024507

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99102024A TW201126377A (en) 2010-01-25 2010-01-25 Electroactive polymer transducers for tactile feedback devices

Country Status (1)

Country Link
TW (1) TW201126377A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI489339B (en) * 2011-12-22 2015-06-21 Nissha Printing Touch sensor with decoration, method for manufacturing the same and touch sensor used in the same
TWI665701B (en) * 2018-07-26 2019-07-11 達方電子股份有限公司 Keyswitch
TWI680018B (en) * 2016-04-19 2019-12-21 日本電信電話股份有限公司 Virtual force sensation generating device
TWI780872B (en) * 2021-08-24 2022-10-11 義隆電子股份有限公司 Touchpad with a force sensing function and method for improving its force sensitivity

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI489339B (en) * 2011-12-22 2015-06-21 Nissha Printing Touch sensor with decoration, method for manufacturing the same and touch sensor used in the same
TWI680018B (en) * 2016-04-19 2019-12-21 日本電信電話股份有限公司 Virtual force sensation generating device
TWI665701B (en) * 2018-07-26 2019-07-11 達方電子股份有限公司 Keyswitch
TWI780872B (en) * 2021-08-24 2022-10-11 義隆電子股份有限公司 Touchpad with a force sensing function and method for improving its force sensitivity

Similar Documents

Publication Publication Date Title
JP2012515987A (en) Electroactive polymer transducer for haptic feedback devices
JP2012520516A (en) Electroactive polymer transducer for haptic feedback devices
US20120126959A1 (en) Electroactive polymer transducers for tactile feedback devices
CN102804104A (en) Flexible assembly and fixture for haptic feedback
TWI527070B (en) Transducer, transducer assembly and method of fabricating a transducer
US20110128239A1 (en) Electroactive polymer transducers for tactile feedback devices
US20110316798A1 (en) Tactile Display for Providing Touch Feedback
US20140368440A1 (en) Electroactive polymer actuator haptic grip assembly
TW201126377A (en) Electroactive polymer transducers for tactile feedback devices
TWI439919B (en) Electroactive polymer transducers for tactile feedback devices
CN105185631B (en) Press-key structure and input unit
Ramstein et al. New Electro-Mechanical Polymer Actuator Technology for Better Interactivity Smart material actuators for haptics may help usher in a “New-Sensory Age. &rdquo