TW201126194A - A method of positioning a RFID tag using spatial mesh algorithm - Google Patents

A method of positioning a RFID tag using spatial mesh algorithm Download PDF

Info

Publication number
TW201126194A
TW201126194A TW99102400A TW99102400A TW201126194A TW 201126194 A TW201126194 A TW 201126194A TW 99102400 A TW99102400 A TW 99102400A TW 99102400 A TW99102400 A TW 99102400A TW 201126194 A TW201126194 A TW 201126194A
Authority
TW
Taiwan
Prior art keywords
error
antennas
grid
distance
positioning
Prior art date
Application number
TW99102400A
Other languages
Chinese (zh)
Other versions
TWI411806B (en
Inventor
Chien-Ho Ko
Original Assignee
Univ Nat Pingtung Sci & Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Pingtung Sci & Tech filed Critical Univ Nat Pingtung Sci & Tech
Priority to TW099102400A priority Critical patent/TWI411806B/en
Publication of TW201126194A publication Critical patent/TW201126194A/en
Application granted granted Critical
Publication of TWI411806B publication Critical patent/TWI411806B/en

Links

Abstract

A method of positioning a RFID tag using spatial mesh algorithm is disclosed. Radio Frequency Identification (RFID) readers are arranged in a space having a RFID tag therein to be positioned. To position the RFID tag, the space is then divided into a plurality of rectangular spatial boxes. Calculating each distance between a center of rectangular spatial box and each RFID reader is followed to obtain a set of distances for each RFID reader. The differences between the set of distances by calculation for each reader and the distance by measurement are compared and analyzed to find a set of rectangular spatial boxes having minimum differences for each reader. By comparing the set of rectangular spatial boxes having minimum differences for each reader, the position of the RFID tag is determined.

Description

201126194 六、發明說明: 【發明所屬之技術領域】 本發明係_於-種鱗射_識_^; Radk)F哪_201126194 VI. Description of the invention: [Technical field to which the invention pertains] The present invention is based on - a type of scale _ _ _ ^; Radk) F which _

Identification)標籤’特別是指—種处仍標藏定位之一種演算 法。 、 【先前技術】The Identification label 'specially refers to a kind of algorithm that still locates the location. [Prior Art]

在21世紀的今日,無線通訊技術廣泛應用於日常生活之 中’帶給我們非常大的便觀,無線技術除通訊外,另一可加 以利用的Τξ:定位技術,常用的定位技術包含Gps、、紅 外線、IEEE 802.n、超音波、超寬頻、钿^與無線射頻辨 識(RFID ; Radio Frequency Identificati〇n)等。Gps 雖可精準定 位且成本低廉,但該技術_於戶外定位;CdnD與超寬頻 適合大範_舰雜;紅輕衫干擾且親縣高;輸 =2.11與2@Bee的定位效果不及翻;超音波纽建置成本 向0 RFID無線酬標籤是—種雜赋自動識㈣統,它是 =無線電波來傳送識別資料,—組射頻識麟統由標鐵與讀 二…组成’標籤上裝有電路,讀寫雜―段麟賴歇發射能 =標籤讀寫ϋ錢訊息,標縣本上是在―切晶片上加裝 間早的天、線’織以麟或歸崎封裝而成。 RFID至内定位系統是由HighT_r與別汀滿於遞 提出,5亥研究發展SpotON定位系統驗證酬^於室内定位 性,在Sp識的方法中’未知物件的定位並沒有經過 糸統中央控管的過程,而是由其他硬體規格相同的感測點,以 201126194 $散式計算的方絲完成,_分散麵观狄巾 訊號強度(RS晴料集合並回報,最後以定位演; 法計异出未知物件的預測位置。 、^' RFID天較倾翻於室虹建 ,採用單-_天線進行定位,所獲得的定^二 ;»=的ϊΓΓΓ"™天線’可將定位目標位置鑛= 表面的父本’即為-個圓弧線,依據無線感測網路增加第三 個天踝,將會與此一圓弧有兩個交點,此兩點代表定位呼的 # _可能位置,為求得合理解,一般需要4個天線的 位晋,位概念至少需要三個訊號發射塔且發射拔 圍,訊號發射塔的座標分料㈣,Y=G)、(χ==2 ㈣,Υ,,三個節點涵蓋範圍為ri、:點 所交叉範圍即可計算出未知物位置 上訊號魏_轉M祕atefati(m讀椒處於四個以 _ 利案97_中提出的演算法是以空間位置 擊 正的概念,先量測各反PID ;始c ‘ 定位空間產生-起始點標籤的距離’接著於 距離。再訃管胼亡° ° 起始點至各RFID天線之直線In the 21st century, wireless communication technology is widely used in daily life, which brings us a very large view. In addition to communication, wireless technology can be used. Positioning technology, commonly used positioning technology includes Gps, , infrared, IEEE 802.n, ultrasonic, ultra-wideband, 钿^ and radio frequency identification (RFID; Radio Frequency Identificati〇n). Although Gps can be accurately positioned and low cost, the technology is _ outdoor positioning; CdnD and ultra-wideband are suitable for large fan _ ship miscellaneous; red light shirt interference and pro-county high; loss = 2.11 and 2@Bee positioning effect is not as good; Ultrasonic New Zealand construction costs to 0 RFID wireless rewards tag is a kind of miscellaneous automatic identification (four) system, it is = radio waves to transmit identification data, - group radio frequency knowledge is composed of standard iron and read two ... 'tag tops There are circuits, reading and writing miscellaneous - Duan Lin Reede launch energy = label reading and writing money messages, the standard county is installed on the "cut wafer" early days, the line 'weaving with Lin or Naosaki package. The RFID internal positioning system is proposed by HighT_r and Bie Ting, and the 5H research and development SpotON positioning system verifies the indoor positioning. In the method of Sp identification, the location of the unknown object has not been controlled by the central control system. The process, but the other sensing points of the same hardware specifications, completed with the 201126194 $ scattered square wire, _ scattered face view Dick signal strength (RS clear material collection and return, and finally with positioning; The predicted position of the unknown object is different. ^' RFID days are tilted over the room rainbow construction, using single-_ antenna for positioning, the obtained ^2;»= ϊΓΓΓ"TM antenna' can locate the target location mine = The parent of the surface is a circle of arcs. Adding a third day to the wireless sensing network will have two intersections with this arc. These two points represent the location of the call # _ possible position In order to understand and understand, it is generally necessary to have 4 antennas. The concept requires at least three signal transmission towers to be launched and the coordinates of the signal transmission tower (4), Y=G), (χ==2 (4) , Υ,, the three nodes cover the range ri, the intersection of the points is Calculate the signal at the unknown location Wei _ turn M secret atefati (m read the pepper in the four _ _ case 97_ proposed algorithm is the concept of space position correction, first measure each anti-PID; start c ' The positioning space is generated - the distance of the starting point label is followed by the distance. Then the line from the starting point to the end of each RFID antenna

Sa F ° 天線與目標標籤之均方根誤差(Root MeanRoot mean square error of Sa F ° antenna and target tag (Root Mean

Sq職E贿,RMSE)。若均方根誤差小 ^ 進行迭代修正,該迭代修正,A,軍田、仏 Ό 、 始座標與調整率運算求得。麵用初始座標值局部梯度、初 接著’再計算所有天線與目標標籤之均方根誤 束,否則持續進行迭代修正。 [S1 5 201126194 【發明内容】 本發明之目的在於提供一種RPID標籤定位演算法,可應 用於二維或三維空間。 本發明是一種無線射頻辨識(RFID)標籤定位之方法,至少 包含以下步驟:(a)提供3個天線,並分別量取該些天線至一目 標標籤之量測距離Sk (k=1_3) ; (b)將一含有該目標標鐵之定位 空間切成η個網格;(c)分別計算該3個天線距n個網格中心點 之直線距離Sjk(H-n ’ k=l-3),可獲得3η個天線至網格中心之 實際距離;(d)計算誤差% ’該賴差係分別為該些天線對該 目標標籤所做之量測距離Sk和該些網格中心之直線距離知之 誤差,即sk- Sjk(j=l-n,k=l_3) ; (e)對於每一天線所計算 出之誤差值進行比較,可得到3組誤差值最小的網格,每一組 中有複數個網格之誤差值同為最小;以及⑺比對不同組中該些 誤差值最小的網格’從其中選擇相互交集之網格為該目標標籤 之位置。 本發明並提供另一種無線射頻辨識(RPJD)標籤定位之方 法’至少包含以下步驟:(a)提供3個天線’並分別量取該些天 線至一目標標籤之量測距離Sk (k=1_3) ; (b)將一定位空間三軸 對切成N塊網格;(c)分別計算該3個天線距n個網格中心點 之直線距離Sjk (H-N,k=l-3),可獲得3N個天線至網格中 二之μ際距離;(d)計算誤差^,該誤差係為該些天線所做之 里測距離Sk和該些網格中心之直線距離之誤差,即 々=VSjk G=i_N ’卜⑼;(e)對於每一天線所計算出之誤差值 進行比較,可得到3組誤差值最小的網格,每一組中有複數個 網袼之誤差值同為最小;(f)比對不同組中該些誤差值最小的網 格從其中選擇相互交集之網格,針對該網格再細切成Μ塊f 6 201126194 網格’重複(c)〜(f)步驟’直到迭代數或/且該選取之網格位置之 平均誤差小於-設定辦,確定該目標標籤之位置。 一關於本發明優點與之精神可以藉由以下發明詳述及所附 圖示詳細描述得到進一步的瞭解。 【實施方式】 —無線射顯識(RFID)讀寫^包含—天線,可用以讀取 RFID標籤之無線電接受訊號強度(以下簡稱Rssi),藉由 可推算出距離’但RHD目標標籤的位置健未知。因此,一 如先前技藝所述’錢輪置,至少要三個天線(但仍會有兩 個可能位置)’為求得合理解,本發明之實施例運 線,求得三較f种定位目標的唯一位置。 本發明之方法稱為空間定位演算法2 〇(SpA2 〇),是以窮 逐-搜尋定位空間,將定位空間切成複數個網格,依序計 算每個網格之誤差後,縣最小者為目標標齡置。本發 明之實施例可參考圖2所示之流程圖。 ^步驟100:佈設複數個參考標籤及4個天線於一含有目標 “籤的定位賴Θ ’為料算過程涵蓋各種喊,謂〇天線 採均勻方式分布’盡量設置於定位空間内的不同位置,以不同 方位獲得RSSI ’減小誤差,此外,天線價格較高,均勻分布 可減少天線佈置數量’降低無線感測網路建置成本。 步驟105 :由於所有參考標籤之位置都是已知,而天線的 ,置也是已知,因此,逐一量測該些天線和已知位置之參考標 鐵的無線電波接收訊號強度(RSSI)值,再依據該等天線之RSSI ,和该些參考標籤距離製作RSSI值-距離關係圖,即無線訊號 衰減曲線。因為咖^訊號受環境因素影響,RSSI與距離之關⑸ 7 201126194 係隨環境餅改變,有必要求得RSSI與麟於特定環境之關 係,並以此曲線量測RFID天線與目標標籤之量測距離Sq job E bribe, RMSE). If the root mean square error is small ^ iteratively modified, the iterative correction, A, military field, 仏 、, starting coordinates and adjustment rate calculation. The surface is initialized with the initial coordinate value local gradient, and then the root mean square error of all antennas and target labels is calculated, otherwise the iterative correction is continued. [S1 5 201126194] SUMMARY OF THE INVENTION It is an object of the present invention to provide an RPID tag positioning algorithm that can be applied to two-dimensional or three-dimensional space. The invention relates to a method for positioning radio frequency identification (RFID) tags, comprising at least the following steps: (a) providing three antennas and respectively measuring the measured distances Sk (k=1_3) of the antennas to a target tag; (b) cutting a positioning space containing the target target into n grids; (c) calculating a linear distance Sjk (Hn ' k=l-3) of the three antennas from the center points of the n grids, The actual distance from the 3n antennas to the center of the grid can be obtained; (d) the calculation error %' is the difference between the measurement distance Sk of the antennas and the linear distance of the grid centers. The error, ie sk-Sjk (j=ln, k=l_3); (e) Comparing the error values calculated for each antenna, three sets of meshes with the smallest error value can be obtained, and there are multiple in each group. The error values of the grid are the same; and (7) aligning the grids with the smallest error values in different groups to select the grid from which the intersections are the positions of the target labels. The invention also provides another method for radio frequency identification (RPJD) tag positioning, which comprises at least the following steps: (a) providing three antennas' and respectively measuring the measured distances Sk of the antennas to a target tag (k=1_3) (b) cutting a three-axis pair of a positioning space into an N-block grid; (c) calculating a straight-line distance Sjk (HN, k=l-3) of the three antennas from the center points of the n grids, respectively. Obtaining 3N antennas to the distance between the two of the grids; (d) calculating the error ^, which is the error between the measured distance Sk of the antennas and the linear distance between the centers of the grids, ie 々 = VSjk G=i_N 'b (9); (e) Comparing the error values calculated by each antenna, three sets of meshes with the smallest error value can be obtained, and the error values of multiple nets in each group are also the minimum. (f) Aligning the grids with the smallest error values in different groups from which the grids intersecting each other are selected, and the grid is further fine-cut into blocks f 6 201126194 Grid 'Repeat (c) ~ (f) The step 'determines the position of the target tag until the number of iterations or / and the average error of the selected grid position is less than - set. A further understanding of the advantages and spirit of the invention will be apparent from [Embodiment] - Wireless radio frequency identification (RFID) reading and writing ^ includes an antenna, which can be used to read the radio receiving signal strength of the RFID tag (hereinafter referred to as Rssi), by which the distance can be derived but the position of the RHD target tag is unknown. Therefore, as in the prior art, the 'money wheel set, at least three antennas (but there are still two possible positions)' is understood to be understood, and the embodiment of the present invention is used to obtain three different types of positioning. The unique location of the target. The method of the present invention is called a spatial positioning algorithm 2 S(SpA2 〇), which is to search for a positioning space by using the contiguous-searching space, and to cut the positioning space into a plurality of grids, and calculate the error of each grid sequentially, the smallest in the county. Set for the target age. The embodiment of the present invention can refer to the flowchart shown in FIG. 2. ^ Step 100: Deploy a plurality of reference labels and 4 antennas in a target-containing "signal positioning Lai" for the calculation process to cover various shouts, that is, the antennas are distributed in a uniform manner as much as possible in different locations within the positioning space. The RSSI 'reduced error is obtained in different directions. In addition, the antenna price is higher, and the uniform distribution can reduce the number of antenna arrangements'. Reduce the cost of wireless sensing network construction. Step 105: Since the positions of all reference labels are known, The antenna is also known. Therefore, the radio wave received signal strength (RSSI) values of the reference antennas of the antennas and known locations are measured one by one, and then based on the RSSI of the antennas and the distances of the reference labels. RSSI value-distance relationship diagram, that is, the wireless signal attenuation curve. Because the coffee signal is affected by environmental factors, RSSI and distance (5) 7 201126194 is changed with the environmental cake, and it is necessary to request the relationship between RSSI and the specific environment. Measuring the measured distance between the RFID antenna and the target tag by using this curve

Sk(k=l-4)。在一實施例中以9個參考標籤繪出Rssi與距離之 特定關係,如圖3所示。 步驟110 :將定位空間三軸等分,切成方體網格, 也可將定位空卩物成η個正立方翻格,若細餘 :格,依觀用者所預設之預定平均誤絲許絲決定η的^ 小’其中預定平均誤差容許值可使用均方根誤差值作為參考; 步驟115 .分別计算4個天線距η個網格中心點之直線距 離Sjk(j=l-n,k=l-4)’可獲得4η個天線至網格中心之距 步驟120 ·計算誤差以,此誤差係分別為該些天線T對該目 標標籤所做之量測距離Sk和該些網格中心之直線距離知之誤 差,即弓Sjk 〇=1·η,k=l-4) 、 步驟125 :對於每—天線所計算出之誤差值進行比較,可 得到4組誤差值最小_格’每—組中可能有複數個網格之誤 差值同為最小;以及 步驟130 :比對不同組中該些誤差值最小的網格,從其中 選擇相互交集之網格為該目標標籤之位置。 ^ 另-可選擇方式是計算平均誤差弓,選擇誤差最小之網格 為目標標雜置,在本發明實施例中,為—均方根誤差(_ mean square error ; RMSE),公式如下: m Σ K j k=\ i S1 8 201126194 線量:二= 直線距離。而事實上,均方根誤 ==即 ‘、、、^方式所述之在比對後相互交集之網格。 21f發明並進—步改良此實施例’衍生空間定位演算法 = 8^2]) ’先前spA2 ()以窮舉方式計算目標標鐵位置, 間較大時將耗費大量時間’雖可透過放大網格的方式 方=時間’但大網格計算結果將使精確度降低,此外窮舉 έ化費大刀時間計异不相關區域,降低搜尋功能。 一因此SPA 2.1之演算改良SPA 2.〇以g舉法搜尋空間所有 可能位置的方式,不同於似2.〇,SPA2.1先將整體空間等分 N塊’N大約為4〜8,計算每個區塊中心點之誤差後,選擇誤 差最小的區塊再等分為Μ塊,其中Μ不-定等於N,在本發 明實施例中將整體空間等分成八塊,流程如圖4所示。 步驟200 :運用如步驟11〇巾所繪之無線訊號衰減曲線得 知第kRFID天線與目標標籤位置之量測距離Sk(k=M); 步驟205 :先將空間三軸對切成八塊網格; 步驟210 :分別計算4個天線距八個網格中心點之直線距 離Sjk〇=l-8 ’k=l-4)’可獲得32個天線至網格中心之實際距離; 步驟215 :計算誤差々,該誤差係為該些天線所做之量 測距離sk和該些網格中心之直線距離知之誤差,即$ (j=l-8,k=l-4); 7 " Jk 步驟220 :對於每一天線所計算出之誤差值進行比較,可 得到4組誤差值最小的網格,每一組中可能有複數個網格之誤 差值同為最小; m 步驟225 :比對不同組中該些誤差值最小的網格,從其中 9 201126194 選擇相互交集之網格,回到步 塊網格,重複上述12Q = 針對該網格再細切成八 格丨中_ =心驟225 ’朗當迭代數她所選取網 繼差㈣—_時,射定該目標標 :,迭之位置,其中均方根誤差之計算同上 式迭代數為重複步驟205〜225之次數。Sk(k=l-4). In one embodiment, a specific relationship of Rssi to distance is plotted with nine reference labels, as shown in FIG. Step 110: Divide the positioning space into three squares and cut into a square grid. The positioning space may also be converted into n square cubes. If the volume is: the predetermined average error preset by the user. The silk filament determines η^小' where the predetermined average error tolerance can be used as a reference using the root mean square error value; Step 115. Calculate the linear distance Sjk of the four antennas from the center point of the η grids respectively (j=ln,k =l-4) 'After obtaining 4n antennas to the center of the grid, step 120 · Calculating the error, the error is the measured distance Sk of the antenna T for the target label and the center of the grid The linear distance is known as the error, that is, the bow Sjk 〇=1·η, k=l-4), Step 125: For each antenna to calculate the error value, the four sets of error values can be obtained. There may be a plurality of grids in the group having the same error value; and step 130: comparing the grids with the smallest error values in the different groups, and selecting the grid of the intersections as the position of the target label. ^ Alternatively - the alternative method is to calculate the average error bow, and the grid with the smallest error is selected as the target miscellaneous. In the embodiment of the present invention, it is - root mean square error (RMSE), and the formula is as follows: m Σ K jk=\ i S1 8 201126194 Line quantity: two = straight line distance. In fact, the root mean square error == is the grid of the intersections of the ‘, , and ^ methods after the comparison. 21f invention advances - step to improve this embodiment 'derived spatial positioning algorithm = 8^2]) 'Previous spA2 () calculates the target target position in an exhaustive manner, which will take a lot of time when it is large. The way of the grid = time 'but the results of the large grid calculation will reduce the accuracy, in addition to the exhaustion of the cost of the time to calculate the irrelevant area, reducing the search function. Therefore, the SPA 2.1 calculus improves the SPA 2. The way to search for all possible locations of the space by g method is different from that of 2. 〇, SPA2.1 first divides the overall space into N blocks 'N is about 4~8, calculate After the error of the center point of each block, the block with the smallest selection error is further divided into the block, wherein Μ is not equal to N. In the embodiment of the present invention, the whole space is equally divided into eight blocks, and the process is as shown in FIG. Show. Step 200: Using the wireless signal attenuation curve drawn in step 11 to find the measurement distance Sk (k=M) of the position of the k-th RFID antenna and the target tag; Step 205: first cut the space three-axis pair into eight networks. Step 210: Calculate the distance between the four antennas and the center point of the eight grids by Sjk〇=l-8 'k=l-4) respectively to obtain the actual distance between the 32 antennas and the center of the grid; Step 215: Calculating the error 々, which is the error between the measured distance sk of the antennas and the linear distance between the centers of the grids, ie, $ (j=l-8, k=l-4); 7 " Jk Step 220: Comparing the error values calculated by each antenna, obtaining four grids with the smallest error value, and the error values of the plurality of grids in each group may be the same; m Step 225: Comparison In the different groups, the grid with the smallest error value, from which 9 201126194 selects the grid of mutual intersections, returns to the step block grid, repeats the above 12Q = and then finely cuts the grid into eight grids _ = heart 225 'Langdang iteration number, she selected the network step (four) - _, when the target is marked: the position of the overlap, where the root mean square error The number of iterations of the same formula is calculated as the number of repetitions of steps 205 to 225.

差最^之^擇方式是直接計算均方根縣,均方根誤 酬步驟挪,針對該網格再細域樣網格, 方^ # ϋ5〜220 ’當迭代數或/且所選取網格j中心位置之均 取網&ST奴值時,财賴目標標狀㈣為所選 &Γ疋迭代數可確保定位於特定時間内完成,而平均誤差小 ;又疋值可確保特疋&位精確度’可由使用者視需求選擇。 為了驗證上述空間定位演算法20及21(SPA 20及SPA 2.1)之可行性’本發明以實際案例模擬演算_,所採用的定 位空間大小為長926cm寬535 cm高211⑽,目標標藥實際位 置為(694 cm,400 cm,75 em)。 當使用SPA 2.0演算時,首先,運用窮舉方式將空間切成 網格,此實驗將每塊網格切割成長3〇 cm、寬3〇⑽、高3〇⑽ 之立方體,定位空間長共切31格、寬18格、高8格,共計 4464,立方體’ §丨算後之最小誤差為Μ ,·若將網格放大可縮 短计异時間,但誤差亦隨之放大,網格長腦⑽、寬謂⑽、 高100 cm之立方體,定位空間長共切1〇格、寬6格、高3格, 共計180個立謂,計算後之最祕差為I.5。 使用SPA 2.1先將定位空間切為八個區塊,以每個區塊令 心點計异誤差值,於這八個區塊選擇一個距離定位目標最近的 201126194 區塊再切八塊’直贿差小於某—數值停止。此演算法可改良 SPAZ0之廣介逮度,因spA2.〗每次只需切八個區塊,所以收 斂的速度比較快。本發明運用spA21將定位空間八個區塊 ^侍到八個工間形心座標’如圖5所示,經誤差計算後求得 停:區誤差率最小,如圖6所示,若誤差滿足停止 条^停 未滿足停止條件,則將第七個區塊再進一步 刀。|J成八個網格分析,直到滿足停止條件為止,spA 2 斂曲線如圖7所示。 .收 以上所述僅為本判之較佳實 =凡其它未脫離本發明所== 等效改變或修飾’均應包含在下述之申請專利範圍内。 【圖式簡單說明】 示卿)三維空間定位的示意圖; ^依據本發明空間定位演算法鄉PA20)演算法流程 圖3顯示天線無線訊號衰減曲線。 圖4依據本發明空間定位渾 圖。 〜以2·1 (SPAZ1)演算法流程 ::示:定位演算法2J各網格座標。 圖頌妓2.1各峨誤差。 盈The most appropriate way to choose the difference is to directly calculate the root mean square county, the root mean square error step is moved, for the grid, then fine-domain-like mesh, square ^ #ϋ5~220 'When iteration number or / and the selected network When the center position of the grid j is taken from the net & ST slave value, the target value of the money (4) is the selected & Γ疋 iteration number to ensure that the positioning is completed within a certain time, and the average error is small;疋 & bit accuracy ' can be selected by the user as needed. In order to verify the feasibility of the above spatial positioning algorithms 20 and 21 (SPA 20 and SPA 2.1) 'The present invention uses the actual case simulation calculus _, the positioning space used is 926 cm long and 535 cm high 211 (10), the actual position of the target standard drug For (694 cm, 400 cm, 75 em). When using SPA 2.0 calculus, first, use the exhaustive method to cut the space into a grid. In this experiment, each grid is cut into cubes of 3〇cm, width 3〇(10), height 3〇(10), and the positioning space is long. 31 grids, width 18 grids, height 8 grids, total 4464, the minimum error of the cube ' § 丨 Μ Μ · · 若 若 若 若 若 若 若 若 若 若 若 若 若 若 若 若 若 若 若 若 若 若 若 若 若 若 网格 若 若 若 若 若The width is (10), the cube is 100 cm high. The positioning space is 1 inch long, 6 squares wide, and 3 square meters high. There are 180 vertical prefixes. The most secret difference after calculation is I.5. Use SPA 2.1 to first cut the positioning space into eight blocks, and use each block to make the heart point different error value. In this eight blocks, select a block that is closest to the target location in 201126194 and then cut eight blocks. The difference is less than a certain value - the value stops. This algorithm can improve the wide-ranging catch of SPAZ0. Because spA2. only needs to cut eight blocks at a time, the convergence speed is faster. The invention uses spA21 to position the eight blocks of the positioning space to the eight centroids of the workpiece, as shown in Fig. 5, and finds the stop after the error calculation: the area error rate is the smallest, as shown in Fig. 6, if the error is satisfied If the stop bar does not satisfy the stop condition, the seventh block is further processed. |J into eight grids until the stop condition is met, and the spA 2 convergence curve is shown in Figure 7. The above is only the preferred embodiment of the present invention. = Others that do not depart from the present invention == Equivalent changes or modifications shall be included in the scope of the following claims. [Simple description of the schema] Schematic diagram of three-dimensional spatial positioning; ^Based on the spatial positioning algorithm of the present invention, PA20) algorithm flow Figure 3 shows the antenna wireless signal attenuation curve. Figure 4 is a perspective view of a spatial orientation in accordance with the present invention. ~ 2 (1) (SPAZ1) algorithm flow :: Show: positioning algorithm 2J grid coordinates. Figure 颂妓 2.1 Errors. Surplus

定位空間之一x角曰疋位演算法Z1收斂軌跡,初始位置在 【主要元件符號說明J 七 、申請專利範圍·· IS]One of the positioning spaces, the x-angle clamp algorithm, the Z1 convergence trajectory, and the initial position is [Main component symbol description J VII, patent application scope · IS]

Claims (1)

201126194 區塊再切八塊’直贿差小於某—數值停止。此演算法可改良 SPAZ0之廣介逮度,因spA2.〗每次只需切八個區塊,所以收 斂的速度比較快。本發明運用spA21將定位空間八個區塊 ^侍到八個工間形心座標’如圖5所示,經誤差計算後求得 停:區誤差率最小,如圖6所示,若誤差滿足停止 条^停 未滿足停止條件,則將第七個區塊再進一步 刀。|J成八個網格分析,直到滿足停止條件為止,spA 2 斂曲線如圖7所示。 .收 以上所述僅為本判之較佳實 =凡其它未脫離本發明所== 等效改變或修飾’均應包含在下述之申請專利範圍内。 【圖式簡單說明】 示卿)三維空間定位的示意圖; ^依據本發明空間定位演算法鄉PA20)演算法流程 圖3顯示天線無線訊號衰減曲線。 圖4依據本發明空間定位渾 圖。 〜以2·1 (SPAZ1)演算法流程 ::示:定位演算法2J各網格座標。 圖頌妓2.1各峨誤差。 盈 定位空間之一x角曰疋位演算法Z1收斂軌跡,初始位置在 【主要元件符號說明J 七 、申請專利範圍·· IS] 201126194 1. 一種無線射頻辨識(RFID)標籤定位之方法,至少包含以下 步驟: (a) 提供3個天線,並分別量取該些天線至一目標標籤之量 測距離 sk (k=l-3); (b) 將一含有該目標標籤之定位空間切成^個網格; (c) 分別計算該3個天線距n個網格中心點之直線距離 SjicCM η ’ k-1-3) ’可獲得3n個天線至網格中心之實際距離;201126194 The block is cut again. The block is less than a certain value. This algorithm can improve the wide-ranging catch of SPAZ0. Because spA2. only needs to cut eight blocks at a time, the convergence speed is faster. The invention uses spA21 to position the eight blocks of the positioning space to the eight centroids of the workpiece, as shown in Fig. 5, and finds the stop after the error calculation: the area error rate is the smallest, as shown in Fig. 6, if the error is satisfied If the stop bar does not satisfy the stop condition, the seventh block is further processed. |J into eight grids until the stop condition is met, and the spA 2 convergence curve is shown in Figure 7. The above is only the preferred embodiment of the present invention. = Others that do not depart from the present invention == Equivalent changes or modifications shall be included in the scope of the following claims. [Simple description of the schema] Schematic diagram of three-dimensional spatial positioning; ^Based on the spatial positioning algorithm of the present invention, PA20) algorithm flow Figure 3 shows the antenna wireless signal attenuation curve. Figure 4 is a perspective view of a spatial orientation in accordance with the present invention. ~ 2 (1) (SPAZ1) algorithm flow :: Show: positioning algorithm 2J grid coordinates. Figure 颂妓 2.1 Errors. One of the locating space x-angle 演 algorithm Z1 convergence trajectory, the initial position is in [main component symbol description J VII, patent application scope · IS] 201126194 1. A method for radio frequency identification (RFID) tag positioning, at least The method includes the following steps: (a) providing three antennas and respectively measuring the measured distances sk (k=l-3) of the antennas to a target label; (b) cutting a positioning space containing the target label into ^c grid; (c) Calculate the straight distance SjicCM η ' k-1-3) of the three antennas from the center point of n grids respectively to obtain the actual distance of 3n antennas to the center of the grid; (d) 言 =算誤差%’該些誤差係分別為該些天線對該目標標籤 所做之里;舰離Sk和該些網格巾^之直線距離~之誤差,即 ejk~~ Sk~ Sjk (j^l-n j k=l-3); (e) 對於母天線所计异出之誤差值進行比較,可得到3组 誤差值最小_格,每—財有複數_格之誤差 最 小;以及 (f)比對不同組巾該些誤差值最小_格,從其巾選擇相互 交集之網格為該目標標籤之位置。 、、 2·如申請專利範圍第丨項所述之方法,其中在 更包含以下步驟: 含她標標藏的 逐-量測該些天線和該些已知位置之參考標鐵之 接收訊號強度(RSSI)值,再依據該些天線之咖值㈣= 考標籤距離製作RSSI值-距離關係圖;以及 依據該些天線所測得該目標標籤之RSSI值,再 線所對應之綱值-距離關係圖得到該目標標_‘巨離。 201126194 3. 如申請專利範圍第2項所述之方法,其+該些天線以均句 =式分布_粒扣内,並設置於獨位置料同方位獲 得έ亥參考標籤或該目標標籤之RSSI值。 4. 如申請專利範圍第!項所述之方法,其中步驟⑷中將該定 位空間切成η個網格時,可選擇將定位空間之三抽等分切成η 個四方體網格’或切成n個正立方體網格,若有繼空間則視 為一格。(d) 言=calculus error%' These errors are respectively made by the antennas to the target tag; the error between the ship Sk and the linear distances of the mesh towels ^, ie ejk~~ Sk~ Sjk (j^ln jk=l-3); (e) Comparing the error values of the parent antennas, the minimum error value of the three sets of error values is obtained, and the error of each of the complex _ lattices is the smallest; (f) Aligning the different sets of the masks with the smallest error value, and selecting the grid from which the intersections intersect is the position of the target label. 2. The method of claim 2, wherein the method further comprises the steps of: measuring the received signal strength of the antenna and the reference target of the known positions by using the label of her label; (RSSI) value, according to the antenna value of the antennas (4) = test label distance to make RSSI value-distance relationship map; and according to the RSSI value of the target tag measured by the antenna, the line corresponding to the value - distance The diagram gets the target _' giant away. 201126194 3. According to the method described in claim 2, the antennas are distributed in a uniform sentence _ granules, and are set in the same position to obtain the 参考海 reference label or the RSSI of the target label. value. 4. If you apply for a patent scope! The method according to the item, wherein in the step (4), when the positioning space is cut into n grids, the three partitions of the positioning space may be equally divided into n square cubes or cut into n square cube grids. If there is a succession space, it is regarded as a grid. ^^申/ΠΓ範圍第1項所述之方法,步驟w中該目標標籤 位置亦同時鱗算均雜誤差後,誤差最小之網格。 專利範圍第i項所述之方法,選擇誤差最小之網格 1置為姻標標籤之位置後,更包括以下步驟: (g)針對所選取之網格再細域m個網格,其中m不 :二::複:驟(cHg),直到該選取之網格位置於空間中的一 十句為差£j或/且迭代數小於一設定值後停止。 == 差6項所述之方法’其中步驟平均 8. 預 其中該預定平均誤差 =如申請專利範圍第8項所述之方法 容許值以一均方根誤差來做參考。 201126194 1〇.如申請專利範圍第1項所述之方法,其+更提供一第4天 線’依照(a)〜(f)之步驟,以更加確定該目標標籤之位置。 11.一種無線射頻辨識(RFID)標籤定位之方法,至少包含以下 步驟: (a) 提供3個天線,並分別量取該些天線至一目標標籤之量 測距離 Sk (k=l-3); (b) 將—定位空間三軸對切成n塊網格; 之直線距離Sjk之誤差,即々=sk-Sjk(j=l-N, (e)對於每一天線所計算出 ___ 和該些網格中心 k=l-3);^^申/ΠΓ The method described in item 1 of the scope, the position of the target label in step w is also the grid with the smallest error after the same scale error. In the method described in the item i of the patent scope, after the grid 1 with the smallest error is set as the position of the marshalling label, the following steps are further included: (g) m meshes for the selected mesh and fine mesh, where m No: two:: complex: (cHg), until the selected grid position in the space is a difference of £j or / and the iteration number is less than a set value and then stops. == The method described in the difference of 6 items, wherein the step is averaged 8. The predetermined average error = the method according to the method of claim 8 is allowed to be referenced by a root mean square error. 201126194 1〇. As claimed in the method of claim 1, the + is further provided with a 4th day line according to the steps (a) to (f) to further determine the position of the target tag. 11. A method for positioning a radio frequency identification (RFID) tag, comprising at least the following steps: (a) providing three antennas and separately measuring a distance Sk of the antennas to a target tag (k=l-3) (b) Cut the three-axis pair of the positioning space into n-grid; the error of the straight-line distance Sjk, ie 々=sk-Sjk (j=lN, (e) for each antenna, calculate ___ and Some grid centers k=l-3); 12.如申請專利範圍第11項之方法, .(c)分別计异該3個天線距N個網格中心點之直線距離知 ,k=l-3) ’可獲得4N個天線至網格中心之實際距離' /d)计异誤差々,該誤祕為該些天線所做之量測距離〜 包含以下步驟: 其中上述之步驟(a)之前更 佈設複數個參考賴及紐個天線於 定位空間内; 含有目標標籤的 201126194 逐-f麟些天線和雜已知位置之參考標籤之無線電 波接收或號強度(RSSI)值’再分別依據每一天線之RSSI值和 該些參考標籤距離製作一卿值_距離關係圖;以及 依據5亥些天線所測得該目標標籤之RSSI值再依據該 RSSI值-距離關係圖得到該目標標籤之量測距離^。 13. 如申請專利範圍第12項之方法,其中該些天線以均句方式 • 分布於,定位空間内’並設置於不同位置,以不同方位獲得該 參考標籤或該目標標籤之RSSI值。 14. 如申請專利範圍第11項之方法,其中Μ不-定等於N, N=4〜8 〇 2 專利細第11項之方法,其中更提供—第4天線, %、、(a) (f)之步驟’以更加確錢目標標籤之位置。 16·如申請補範_ u狀方法, 種均方根誤差。 圍弟11項所述之方法,步驟⑺中該样 位置亦同時為計算均大相吨WT 方根誤差後’誤差最小之網格。 U1 1512. If the method of claim 11 is applied, (c) separately calculate the linear distance of the three antennas from the center point of the N grids, k=l-3) 'Available 4N antennas to the grid The actual distance of the center ' / d ) is the difference of the error 々, the error is the measurement distance of the antennas ~ includes the following steps: wherein the above steps (a) are more than a plurality of reference antennas Within the positioning space; the radio wave reception or strength (RSSI) value of the 201126194 target-specific tags and the reference tags of the known locations are based on the RSSI value of each antenna and the distance of the reference tags, respectively. A clear value_distance relationship diagram is generated; and the RSSI value of the target tag measured according to the 5th antenna is obtained according to the RSSI value-distance relationship graph. 13. The method of claim 12, wherein the antennas are distributed in the location space and are disposed at different locations to obtain the RSSI value of the reference tag or the target tag in different orientations. 14. If the method of claim 11 is applied, the method of claim 11 is equal to N, N=4~8 〇2, and the method of item 11 is further provided - the fourth antenna, %, (a) ( f) Step 'to position the target label more accurately. 16·If applying for the _ u method, the root mean square error. In the method described in item 11 of the encyclopedia, the position in step (7) is also the grid with the smallest error after calculating the error of the WT square root of the large phase. U1 15
TW099102400A 2010-01-28 2010-01-28 A method of positioning a rfid tag using spatial mesh algorithm TWI411806B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099102400A TWI411806B (en) 2010-01-28 2010-01-28 A method of positioning a rfid tag using spatial mesh algorithm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099102400A TWI411806B (en) 2010-01-28 2010-01-28 A method of positioning a rfid tag using spatial mesh algorithm

Publications (2)

Publication Number Publication Date
TW201126194A true TW201126194A (en) 2011-08-01
TWI411806B TWI411806B (en) 2013-10-11

Family

ID=45024436

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099102400A TWI411806B (en) 2010-01-28 2010-01-28 A method of positioning a rfid tag using spatial mesh algorithm

Country Status (1)

Country Link
TW (1) TWI411806B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006009955A2 (en) * 2004-06-23 2006-01-26 Cognio, Inc Self-calibrated path loss position estimation process, device and system
TWI357504B (en) * 2007-12-28 2012-02-01 Prec Machinery Res & Dev Ct Method for real-time positioning by radio frequenc
CN101349745A (en) * 2008-09-06 2009-01-21 黄以华 Wireless radio frequency positioning method using region partitioning algorithm

Also Published As

Publication number Publication date
TWI411806B (en) 2013-10-11

Similar Documents

Publication Publication Date Title
TWI402532B (en) RFID tag positioning and calculus method
JP6408541B2 (en) Position acquisition method and apparatus
TW201128213A (en) A method of positioning a RFID tag using spatial mesh algorithm
CN103402258A (en) Wi-Fi (Wireless Fidelity)-based indoor positioning system and method
CN106093852A (en) A kind of method improving WiFi fingerprint location precision and efficiency
Geng et al. Indoor tracking with RFID systems
CN101587182A (en) Locating method for RFID indoor locating system
CN103969623A (en) RFIC indoor-positioning method based on PSO
CN109511085B (en) UWB fingerprint positioning method based on MeanShift and weighted k nearest neighbor algorithm
Zou et al. An integrative weighted path loss and extreme learning machine approach to RFID based indoor positioning
CN110493869B (en) RSSI-based K-nearest neighbor differential correction centroid positioning method
CN107071898B (en) Mobile communication signal source data domain direct position estimation method and its device
CN109324321A (en) One kind is based on RFID with modified indoor positioning algorithms
Chattopadhyay et al. Analysis of low range indoor location tracking techniques using passive UHF RFID tags
CN116112870A (en) Base station selection method and system based on UWB chain positioning
CN103648080A (en) Method and system for constructing WiFi indoor positioning fingerprint database
CN106162529A (en) Indoor orientation method and device
CN108919182A (en) Object localization method based on supported collection and expectation maximization under a kind of WiFi environment
TW201126194A (en) A method of positioning a RFID tag using spatial mesh algorithm
CN109633531A (en) Wireless sensor network node positioning system under composite noise condition
Keong et al. RFID and ZigBee integrated environment for indoor localization
CN105188035B (en) Indoor WLAN augmentation manifold positioned in alignment method based on the mapping of transition probability hot spot
CN116249087A (en) Positioning method, device, equipment and computer storage medium
Jikyo et al. A study on outdoor localization method based on deep learning using model-based received power estimation data of low power wireless tag
Chen et al. Reliable indoor location sensing technique using active rfid