TW201125837A - Allylamine manufacturing method - Google Patents

Allylamine manufacturing method Download PDF

Info

Publication number
TW201125837A
TW201125837A TW099124548A TW99124548A TW201125837A TW 201125837 A TW201125837 A TW 201125837A TW 099124548 A TW099124548 A TW 099124548A TW 99124548 A TW99124548 A TW 99124548A TW 201125837 A TW201125837 A TW 201125837A
Authority
TW
Taiwan
Prior art keywords
hydrazine
compound
allylamine
producing
amine
Prior art date
Application number
TW099124548A
Other languages
Chinese (zh)
Other versions
TWI413633B (en
Inventor
Hiroshi Uchida
Original Assignee
Showa Denko Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko Kk filed Critical Showa Denko Kk
Publication of TW201125837A publication Critical patent/TW201125837A/en
Application granted granted Critical
Publication of TWI413633B publication Critical patent/TWI413633B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/26Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring
    • C07C211/27Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring having amino groups linked to the six-membered aromatic ring by saturated carbon chains
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/16Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of a saturated carbon skeleton containing rings other than six-membered aromatic rings
    • C07C211/18Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of a saturated carbon skeleton containing rings other than six-membered aromatic rings containing at least two amino groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Provided is an allylamine manufacturing method whereby the reaction efficiency is high even in the absence of a compound containing an alkali metal or an alkaline earth metal. Said method includes a step wherein a carboxylic acid allyl ester compound is reacted with an amino compound containing a primary or secondary amino group, in the presence of a transition metal catalyst but in the absence of a compound containing an alkali metal or an alkaline earth metal. Also provided are novel tetraallyl diamino compounds, N,N,N',N'-tetraallyl-m-xylylenediamine and N,N,N',N'-tetraallyl-1,3-bis(aminomethyl)cyclohexane, manufactured by means of the aforementioned method.

Description

201125837 六、發明說明: 【發明所屬之技術領域】 本發明係有關於烯丙基胺化合物的製造方法。更詳細 爲’本發明係有關含有在過渡金屬觸媒之存在下,但在含 有驗金屬或鹼土金屬化合物之不存在下,使含有1級或2級 胺基的胺化合物與羧酸烯丙酯化合物產生反應步驟之烯丙 基胺化合物製造方法。 【先前技術】 以烯丙基化合物作爲原料,藉由使用過渡金屬化合物 進行觸媒反應,合成各式各樣種類的新烯丙基化合物已爲 周知。 有關於詳細的烯丙基化合物的合成反應,有如以下非 專利文獻1中緒論歸納記載地,藉由選擇如氯丙烯、乙酸 烯丙酯、烯丙基醚、丙烯等含有烯丙基的化合物所衍生之 過渡金屬7T —烯丙基錯合物,與羧酸、酚、醇、1級胺、2 級胺、硫醇、丙二酸酯等含活性氫化合物之種類,可得到 各式各樣的含活性氫化合物被烯丙基化型式的生成物。其 中,若含活性氫化合物爲醇類、酚類、胺類之情形時,分 別會生成烯丙基烷基醚、烯丙基苯基醚、烯丙基胺,爲合 成化學上有用的基本反應(elementary reaction)之一。 然而,對於作爲7Γ —烯丙基錯合物與含活性氫化合物 之反應例,若爲羧酸陰離子之情形時(例如丙烯與乙酸之 反應),雖然爲一般性周知的內容,但在與其他基質之反 -5- 201125837 應例中由於會有造成反應性下降的關係,不太被拿來利用 〇 在以下的專利文獻1中,雖然有報告著在使用水溶性 鈀錯合物作爲觸媒,藉由使烯丙基醇與胺類之二相系反應 ,在不使用碳酸氣體下得到烯丙基胺之內容,但若原料之 胺對於水的溶解度爲低時,收率即不高(參考同書第329 頁)。 在以下的非專利文獻2中,記載著:將烯丙基醇與二 乙胺在無溶劑下,及在0.5 mol% Pd(acac)2與0.5 mol%三 苯膦的存在下使其反應,得到收率爲95%的烯丙基二乙胺 。然而,此反應爲使用均一系的Pd錯合物作爲觸媒,觸媒 之再使用爲困難。 另外,在以下的非專利文獻3中,記載著在烯丙基醇 與二乙胺之反應中使用1,4-雙(二苯基膦基)丁烷配位 基0.16 mol %與乙酸鈀〇.〇8 mol%,藉由在丙二醇溶劑中進 行反應,得到收率爲91 %的目的物。然而,此反應亦爲使 用均一系的Pd錯合物作爲觸媒,觸媒之再使用爲困難。 將羧酸烯丙酯作爲烯丙基化劑使用時,特別是所副生 成的羧酸爲具有反應性高的活性氫化合物,在以醇類、酚 類、胺類作爲基質時,難以得到高的轉換率。爲回避此問 題’以下的專利文獻2、非專利文獻4則爲使用大量過剩的 碳酸鹼金屬鹽,藉由將所生成的乙酸作爲乙酸鹽排出反應 系外’以得到高轉換率,但在此種反應系並不只是回收乙 酸之工作變成困難而已,因無法避免所使用的鹼金屬對生 -6- 201125837 成物的混入,特別是在電氣絶緣用途之使用情形時會成爲 問題。 [先行技術文獻] [專利文獻] [專利文獻1]日本國特開2005 — 75728號公報 [專利文獻2]日本國特表平1 〇 — 5 1 1 721號公報 [非專利文獻] [非專利文獻 1] JIRO TSU JI,“Palladium Reagents and Catalysts-Innovations in Organic Synthesis'published by John Wiley & Sons( 1 99 5 ) [非專利文獻 2] K.E.Atkins,et.Al.,Tetrahedron Lett·, 43,3821 (1970) [非專利文獻3 ]石村善正,et. A1.,日本化學會誌、 3,250 (1996) [非專利文獻4]LaksmikantaAdak,et.al.,J·Org· Chem. 74, 3982-3985 (2009) 【發明內容】 [發明所欲解決的課題] 本發明欲解決之課題係提供即使是在含有鹼金屬或鹼 土金屬化合物不存在之反應下,也能以高反應效率之烯丙 基胺之製造方法。 201125837 [解決課題之手段] 本發明者爲解決前述課題經由專注的檢討、重覆的實 驗結果,將工業上使丙烯與羧酸反應而可容易到手之羧酸 烯丙酯化合物作爲烯丙基化劑使用,藉由將此與1級胺、2 級胺等的胺化合物進行反應,發現即使是在含有鹼金屬或 鹼土金屬化合物不存在之下,也能效率良好的得到烯丙基 胺,遂而完成本發明。 亦即,本發明如同以下。 [1] 一種烯丙基胺之製造方法,其係包含以下步驟: 在過渡金屬觸媒的存在下,但在含有鹼金屬或鹼土金 屬化合物不存在下,使含有1級或2級胺基之胺化合物與竣 酸烯丙酯化合物進行反應的步驟。 [2] 如前述[1]之烯丙基胺之製造方法,其中,在前述 反應步驟中係使水存在於反應系中。 [3] 如前述[1]或[2]之烯丙基胺之製造方法,其中,前 述過渡金屬觸媒爲鉑族之金屬觸媒。 [4] 如前述[1]〜[3]中任一之烯丙基胺之製造方法,其 中’前述過渡金屬觸媒爲被載持於載體上者。 [5] 如前述[4]之烯丙基胺之製造方法,其中,前述過 渡金屬觸媒爲相對於活性碳100質量份時,載持〜2〇質 量份的鈀之觸媒。 [6]如前述[1]〜[5]中任一之烯丙基胺之製造方 法,其 中,前述胺化合物爲至少1種選自苯胺、m — 201125837 苯二胺、m —苯二甲胺、p —苯二甲胺、4,4,·二胺基 基甲烷、1,3-雙(胺基甲基)環己烷、異佛爾酮二胺 六亞甲基二胺(hexamethylene diamine)所成群者。 [7] 如前述[1]〜[6]中任一之烯丙基胺之製造方法 中’前述羧酸烯丙酯化合物爲乙酸烯丙酯。 [8] 如前述[1]〜[7]中任一之烯丙基胺之製造方法 中’在前述反應步驟之反應系中,更存在至少1種選 機單膦、有機二膦、及有機亞膦酸酯所成群的絡合劑 [9] 如前述[8]之烯丙基胺之製造方法,其中,前 合劑爲三苯膦。 [10] 如前述[1]〜[9]中任一之烯丙基胺之製造方 其中,在前述反應步驟之反應系中,相對於前述胺化 之胺基更存在有0.05〜2莫耳當量的3級胺化合物。 [11] 如前述[1]〜[10]中任一之烯丙基胺之製造方 其中,前述羧酸烯丙酯化合物的烯丙基濃度,係以前 化合物之胺基的活性氫作爲基準時在0.8〜5 0莫耳當 範圍內。 [12] 如前述[11]之烯丙基胺之製造方法,其中, 羧酸烯丙酯化合物的烯丙基濃度,係以前述胺化合物 基的活性氫作爲基準時在1〜5莫耳當量之範圍內。 [1 3 ] —種如以下的結構式所示的四烯丙基二胺(1 allyldiamine )化合物。 二苯 '及 ,其 ,其 自有 〇 述絡 法, 合物 法, 述胺 量之 前述 之胺 etra- -9- 201125837 【化1】201125837 6. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a process for producing an allylamine compound. More specifically, 'the present invention relates to an amine compound containing a primary or secondary amine group and an allyl carboxylate in the presence of a transition metal catalyst, but in the absence of a metal or alkaline earth metal compound. The compound produces a method for producing an allylamine compound in a reaction step. [Prior Art] It has been known to synthesize various kinds of neoallyl compounds by using a propylene compound as a raw material by a catalytic reaction using a transition metal compound. The synthesis reaction of the detailed allyl compound is as described in the following Non-Patent Document 1, by selecting an allyl group-containing compound such as chloropropene, allyl acetate, allyl ether or propylene. The derived transition metal 7T-allyl complex, and various types of active hydrogen-containing compounds such as carboxylic acid, phenol, alcohol, primary amine, secondary amine, mercaptan, malonate, etc., can be obtained in various forms. The active hydrogen-containing compound is a product of an allylated form. Wherein, when the active hydrogen-containing compound is an alcohol, a phenol or an amine, an allyl alkyl ether, an allyl phenyl ether or an allylamine is formed, which is a chemically useful basic reaction. One of the elementary reactions. However, in the case of a reaction example of a 7-(allyl-allyl complex) and an active hydrogen-containing compound, in the case of a carboxylic acid anion (for example, a reaction of propylene with acetic acid), although it is generally known, it is The inverse of the matrix - 201125837 In the case of the case, there is a relationship that causes a decrease in reactivity, and it is not used in the following Patent Document 1, although the use of a water-soluble palladium complex as a catalyst has been reported. By reacting allyl alcohol with an amine phase, the content of the allylamine is obtained without using carbonic acid gas, but if the solubility of the amine of the raw material is low, the yield is not high ( Refer to page 329 of the same book). In Non-Patent Document 2 below, it is described that allyl alcohol and diethylamine are reacted in the absence of a solvent and in the presence of 0.5 mol% of Pd(acac) 2 and 0.5 mol% of triphenylphosphine. Allyldiethylamine was obtained in a yield of 95%. However, this reaction is to use a homogeneous Pd complex as a catalyst, and reuse of the catalyst is difficult. Further, in Non-Patent Document 3 below, it is described that 1,4-bis(diphenylphosphino)butane ligand 0.16 mol% and palladium acetate ruthenium are used in the reaction of allyl alcohol and diethylamine. 〇 8 mol%, by reacting in a propylene glycol solvent, a target of 91% yield was obtained. However, this reaction also uses the homogeneous Pd complex as a catalyst, and reuse of the catalyst is difficult. When an allyl carboxylic acid ester is used as an allylation agent, in particular, a by-produced carboxylic acid is an active hydrogen compound having high reactivity, and it is difficult to obtain a high activity when an alcohol, a phenol or an amine is used as a matrix. Conversion rate. In order to avoid this problem, the following Patent Document 2 and Non-Patent Document 4 use a large amount of excess alkali metal carbonate, and the generated acetic acid is taken out of the reaction system as an acetate to obtain a high conversion ratio. It is not only the work of recovering acetic acid that becomes difficult, but the incorporation of the alkali metal pair -6-201125837 which is used, especially in the use of electrical insulation, becomes a problem. [Patent Document] [Patent Document 1] Japanese Patent Laid-Open Publication No. 2005-75728 [Patent Document 2] Japanese Patent Publication No. 1 〇 - 5 1 1 721 [Non-Patent Document] [Non-patent Document 1] JIRO TSU JI, "Palladium Reagents and Catalysts-Innovations in Organic Synthesis'published by John Wiley & Sons (1 99 5 ) [Non-Patent Document 2] KEAtkins, et. Al., Tetrahedron Lett·, 43, 3821 (1970) [Non-Patent Document 3] Ishimura Masaaki, et. A1., J. Am. Chemical Society, 3, 250 (1996) [Non-Patent Document 4] Laksmikanta Adak, et.al., J. Org. Chem. 74, 3982- 3985 (2009) [Problem to be Solved by the Invention] The object of the present invention is to provide an allyl group capable of high reaction efficiency even in the absence of a reaction containing an alkali metal or an alkaline earth metal compound. [Means for Solving the Problem] 201125837 [Means for Solving the Problem] In order to solve the above problems, the inventors of the present invention have industrially reacted propylene with a carboxylic acid to achieve a carboxylic acid allyl ester compound which can be readily obtained by a focused review and repeated experimental results. Used as an allylation agent, By reacting this with an amine compound such as a primary amine or a secondary amine, it was found that the allylamine can be efficiently obtained even in the absence of an alkali metal or alkaline earth metal compound, and the present invention is completed. That is, the present invention is as follows. [1] A method for producing an allylamine, which comprises the steps of: in the presence of a transition metal catalyst, but in the absence of an alkali metal or alkaline earth metal compound, A process for producing an allylamine compound having a primary or secondary amine group, and a method for producing an allylamine compound according to the above [1], wherein the water is used in the aforementioned reaction step. [3] The method for producing an allylamine according to the above [1] or [2] wherein the transition metal catalyst is a platinum group metal catalyst. [4] as described above [1] The method for producing an allylamine according to any one of [3], wherein the "transition metal catalyst is supported on a carrier. [5] The method for producing an allylamine according to the above [4], wherein When the transition metal catalyst is 100 parts by mass relative to the activated carbon, it is carried by ~2〇 [6] The method for producing an allylamine according to any one of the above [1] to [5] wherein the amine compound is at least one selected from the group consisting of aniline, m - 201125837 benzene Amine, m-xylylenediamine, p-xylylenediamine, 4,4,diaminomethane, 1,3-bis(aminomethyl)cyclohexane, isophoronediaminehexa A group of methylenediamine (hexamethylene diamine). [7] The method for producing an allylamine according to any one of the above [1] to [6] wherein the carboxylic acid allyl ester compound is allyl acetate. [8] In the method for producing an allylamine according to any one of the above [1] to [7], in the reaction system of the aforementioned reaction step, at least one selected monophosphine, organic diphosphine, and organic are further present. A complexing agent in which the phosphinate is a group [9] The method for producing an allylamine according to the above [8], wherein the prepolymer is triphenylphosphine. [10] The method for producing an allylamine according to any one of the above [1] to [9] wherein, in the reaction system of the aforementioned reaction step, 0.05 to 2 mol is present in relation to the aminated amine group. Equivalent of a tertiary amine compound. [11] The method for producing an allylamine according to any one of the above [1] to [10] wherein the allylic concentration of the carboxylic acid allyl ester compound is based on the active hydrogen of the amine group of the previous compound. Within the range of 0.8 to 5 0 molar. [12] The method for producing an allylamine according to the above [11], wherein the allylic concentration of the allyl carboxylate compound is 1 to 5 molar equivalents based on the active hydrogen of the amine compound group. Within the scope. [1 3 ] A tetraallyldiamine compound represented by the following structural formula. Diphenyl 'and its own 〇 述 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

[I4]—種如以下的結構式所不的四嫌丙基一肢化合物 【化2】[I4] - a four-fold propyl limb compound as shown in the following structural formula [Chemical 2]

[發明的效果] 藉由本發明,使用工業上容易取得的羧酸烯丙酯化合 物,在完全無使用鹼金屬、鹼土金屬或鹵素下,可效率性 的獲得工業上重要之中間體的烯丙基胺。 [實施發明的最佳型態] 以下爲對於本發明之烯丙基胺之製造方法詳細說明。 本發明之烯丙基胺之製造方法,其特徵係含有在過渡 金屬觸媒的存在下’但在含有鹼金屬或鹼土金屬化合物不 存在下,使含有1級或2級胺基的胺化合物與羧酸烯丙酯化 -10- 201125837 合物產生反應之步驟。 本發明所使用的羧酸烯丙酯化合物爲乙酸烯丙酯、丙 酸烯丙酯、安息香酸烯丙酯、酞酸二烯丙酯、異酞酸二烯 丙酯、對酞酸二烯丙酯等的羧酸之烯丙酯。此等當中,以 容易將生成的烯丙基胺以固形回收之點,較佳爲酞酸二烯 丙酯、異酞酸二烯丙酯、對酞酸二烯丙酯等的二價芳香族 羧酸二烯丙酯。另外,因爲工業上乙酸烯丙酯爲可以廉價 取得,故最佳。 此等羧酸烯丙酯化合物的烯丙基濃度,以含有1級或2 級胺基之胺化合物中所含活性氫原子(1級胺爲二個、2級 胺爲一個)作爲基準,較佳爲0.5〜500莫耳當量、更佳爲 0.8〜50莫耳當量、更更佳爲1〜5莫耳當量。當比率大於1 莫耳當量時,可與溶劑兼用。超過5 00莫耳當量時反應速 度變慢,爲了回收、循環使用剩餘的羧酸烯丙酯,會造成 能源支出增加,故不宜;另一方面,未滿0.5莫耳當量時 ’對於所期望的生成物的轉換率非常低,必須回收未反應 的胺化合物,故不宜。 本發明所使用的含有1級或2級胺基之胺化合物,係每 1分子中至少含有1個的1級或2級胺基。在者,若考量到有 關本發明之反應後對種種衍生體的展開,每1分子當中, 以含有複數個如此的官能基爲宜。作爲此等胺化合物之例 ,可舉例如1種含有單一、二-或多官能脂肪族、脂環族 或芳香族1級或2級胺基之化合物,或此等化合物的所有組 合0 -11 - 201125837 作爲含有1級或2級胺基之胺化合物的具體例,可舉例 含有甲胺、乙胺、η-丙胺、烯丙基胺、η-丁基胺、苯胺、 胺基萘(amine naphthalene )、二甲胺、二乙胺、二烯丙 基胺、m —苯二胺、P—苯二胺、苯二甲胺、二胺基甲 苯、1,7-萘二胺、2,6-萘二胺、p—苯二甲胺、4,4’-二胺基 二苯基甲烷、1,3-雙(胺基甲基)環己烷、異佛爾酮二胺 、六亞甲基二胺之任何1種或2種以上的組合。此等之中, 較佳爲含有苯胺、m —苯二胺、p-苯二胺、m—苯二甲胺 、p—苯二甲胺、4,4’-二胺基二苯基甲烷、i,3-雙(胺基 甲基)環己烷、異佛爾酮二胺、六亞甲基二胺之任何1種 或2種以上的組合。 本發明的烯丙基胺化合物之製造方法,爲在過渡金屬 觸媒的存在下進行。作爲適當的觸媒,可舉例如作爲游離 金屬或錯合物之非氧化狀態的铑、釕、銶、鈀、銥、鎢、 鉬、鉻、鈷、鈾、鎳、銅、餓、鐵,或氧化狀態的此等之 鹽,例如羧酸鹽、鹵素化物、氧化物、硝酸鹽或硫酸鹽。 較佳的觸媒爲鉑族者,含有鈀、鈾、铑、釕、銥、或餓。 最佳的觸媒爲鈀觸媒。 此等過渡金屬觸媒的形態方面,可舉例如乙酸鹽、鹽 化物、硝酸鹽或硫酸鹽等的鹽,或被載持於碳、木碳、活 性碳、二氧化矽、氧化鋁、有機溶膠-凝膠、沸石、黏土 等的載體者。特別以考量與反應液之分離,以載持於載體 上之形態爲佳’例如過渡金屬觸媒爲相對於活性碳i 00質 量份時,載持0.1〜20質量份的鈀的觸媒爲宜。 -12- 201125837 觸媒之使用量,胺化合物中所含有活性氫原子之每1 當量,金屬原子可爲1/1,〇〇〇,〇〇〇〜1/10、較佳爲1/ 10,000〜1/50、更佳爲1/5,000〜1/ 100之比率。 若爲載持觸媒以不均一觸媒使用之情形時,可視情況 所需將反應於固定床或液體反應混合物中使其懸濁而予以 實施。 爲使金屬觸媒之活性安定化,且爲了使其增強的使其 作用作爲配位基,可視情況所需使用絡合劑。藉由在添加 於反應混合物前以絡合劑使觸媒絡合,或分別將觸媒及絡 合劑添加於反應混合物中,可在原處(in situ)生成觸媒 錯合物。 作爲適宜的絡合劑,可舉例如有機單膦、有機二膦、 有機亞膦酸酯、有機輝銻礦、肟、有機胂、二胺、二羰基 化合物。特別適宜的絡合劑方面,可舉例如三苯膦、三-(o,m,p-)甲苯基膦、三-P-甲氧基苯基膦、三環己基膦、 二丁基膦、二苯基對苯乙嫌基膦(diphenylphosphinostyrene )、其聚合體、三苯基亞磷酸酯、三乙基亞磷酸酯、二苯 基甲基膦、二苯基膦基乙烷、二苯基膦基丁烷。更佳的絡 合劑方面,可舉例如三-(o,m,p-)甲苯基膦、三苯膦、三 乙基亞磷酸鹽、二苯基膦基乙烷,其中又以三苯膦爲特佳 °另外,亦可使用水性可溶性絡合劑之例如磺酸化三苯膦 。此爲,此種配位基因爲是水溶性,具有可容易從有機生 成物層予以洗出/分離之優勢。 絡合劑爲相對於1莫耳之過渡金屬觸媒,以0.1〜1 000 -13- 201125837 倍莫耳、較佳爲1〜100倍莫耳、更佳爲2〜20倍莫耳使用 0 在本發明之烯丙基胺之製造方法中的反應溫度,較佳 爲〇°C〜200°c、更佳爲25°c〜180°c的溫度、更更佳可爲 50 °C〜150 °C之範圍。反應溫度若過高,容易產生聚合等 之田!J反應,反應溫度若過低,反應速度則會變慢。 在本發明之烯丙基胺之製造方法中的反應,可爲混合 1級胺、2級胺等的胺化合物與羧酸烯丙酯化合物之均一系 者。作爲更佳的反應形態,特別是原料之胺化合物對水之 溶解度爲低之情形時,舉例如使反應系中存在有水之含有 水相及有機相的二相系反應。作爲有機相,可使用原料之 1級胺、2級胺等的胺化合物、羧酸烯丙酯化合物、及視情 況所需的溶劑。較佳者爲將混合物激烈攪拌,然後使水相 及有機相相互充分地接觸。水相對有機相之質量比,較佳 爲 9 : 1 至 1 : 9。 作爲可在本發明之烯丙基胺之製造方法中使用之溶劑 ,可舉例如芳香族或脂肪族碳化氫、含氧碳化氫(例如, 2級、3級醇、醚、乙二醇、乙二醇醚、酯、酮)。其他的 溶劑方面,可舉例如硝基烷、氰烷烴( cyanoalkane)、院 基硫氧化物(Alkyl Sulfoxide)、醯胺。此等亦可爲2種或 以上之組合使用。 特別適宜作爲溶劑者,可舉例如甲苯、二甲苯、氯甲 垸、1,2 —二氯乙院、乙腈(acetonitrile)、丙酮、甲基 乙基酮、乙酸乙酯 二甲基甲醯胺、二甲亞颯、硝甲院、 -14- 201125837 四氫呋喃、異丙醇、t_ 丁醇、t —戊醇、乙二醇單甲基醚 (ethyleneglycol monomethyl ether )、丙二醇單甲基酸, 或其所有的組合。此等之中,較佳之溶劑爲異丙醇、t _ 丁醇、t -戊醇、乙腈、甲苯。此等亦可爲2種或以上之組 合使用。 溶劑之使用並非一定需要,若爲使用之情形時,以含 有1級或2級胺基之胺化合物1 00重量部作爲基準,較佳使 用範圍爲5〜100質量份 '更佳爲5〜20質量份、更更佳爲5 〜1 0質量份。 另外’爲提升本發明之稀丙基胺之製造方法中反應的 收率,亦可在反應系中使3級胺化合物共存。3級胺之添加 ,以來源自羧酸烯丙酯的羧酸部位與原料胺,對少量副生 成的醯胺化合物的生成具有抑制效果。作爲如此的3級胺 化合物,可舉例如三乙胺、三-η -丙胺、三-n _ 丁胺、三_ n _ 己胺、三-η-辛胺 '三-(2-乙基己基)胺、吡啶、Ν,Ν_: 甲基苯胺等。特佳爲脂肪族的低級胺,以三乙胺、三-η _丙 胺爲宜。此等3級0女化合物之添加量,若太少時則無抑制 醯胺化合物的效果;若太多時,因基質濃度降低而導致生 產性變差,該3級胺化合物較佳爲相對於含有1級或2級胺 基之胺化合物中的胺基以〇.〇5〜2莫耳當量使用。 【實施方式】 [實施例] 以下爲藉由實施例具體地說明本發明,但本發明之範 -15- 201125837 圍不受以下實施例之任何限定。 [實施例1] 將 m-苯二甲胺 6.00 ( 44.1 mmol )、含水 50% 之 5%-Pd/C(相對於Pd與C合計量之Pd爲5質量%) STD型(Ν·Ε· CHEMCAT (股)製)0.093 8g ( 0.0441 mmol )、三苯膦 0.231g ( 0.881 mmol)、乙酸稀丙醋 19.4g ( 0.194 mol)、 及純水1 1.1 g置入200ml茄型燒瓶中,在附有蛇形冷凝管( dimroth condenser)之氮雰圍氣中,以85°C使其反應4小 時。反應結束後,採取部分之反應液作爲試樣,並以己二 酸二甲酯作爲內標物,在如以下的條件下,以氣相層析法 進行分析。m-苯二甲苯二胺之轉換率幾乎爲100%, N,N,N’,N’-四烯丙基-m-苯二甲胺之收率爲85%。結果如以 下之表1所示。 氣相層析裝置:Agilent Technologies公司製6850GC 管柱:HP-1 (膜厚 0/z mx320/z mx30m)[Effects of the Invention] According to the present invention, an allyl group which is industrially important is used, and an allyl group which is an industrially important intermediate can be efficiently obtained without using an alkali metal, an alkaline earth metal or a halogen at all. amine. [Best Mode of Carrying Out the Invention] The following is a detailed description of the production method of the allylamine of the present invention. The method for producing an allylamine of the present invention, characterized in that it contains an amine compound having a primary or secondary amine group in the presence of a transition metal catalyst, but in the absence of an alkali metal or alkaline earth metal compound. The step of reacting a carboxylic acid allyl esterification-10-201125837. The allyl carboxylate compound used in the present invention is allyl acetate, allyl propionate, allyl benzoate, diallyl citrate, diallyl isononate, diallyl phthalate An allyl carboxylic acid ester such as an ester. Among these, a divalent aromatic such as diallyl citrate, diallyl isononate or diallyl citrate is preferable in that it is easy to recover the allylamine formed. Diallyl carboxylate. Further, since allyl acetate is commercially available at a low cost, it is preferable. The allylic concentration of these carboxylic acid allyl ester compounds is based on the active hydrogen atom (the first-order amine is two and the second-order amine is one) contained in the amine compound containing the amine group of the first or second stage. It is preferably 0.5 to 500 mole equivalents, more preferably 0.8 to 50 mole equivalents, still more preferably 1 to 5 mole equivalents. When the ratio is greater than 1 molar equivalent, it can be used together with a solvent. When the reaction rate is slower than 500 volts, the recovery of the remaining carboxylic acid allyl ester will increase the energy expenditure, so it is not suitable; on the other hand, when it is less than 0.5 mole equivalent, it is expected. The conversion rate of the product is very low, and it is not preferable to recover the unreacted amine compound. The amine compound having a primary or secondary amine group used in the present invention contains at least one primary or secondary amine group per molecule. In the case of considering the development of various derivatives after the reaction of the present invention, it is preferred to contain a plurality of such functional groups per molecule. As an example of such an amine compound, for example, one compound containing a single, di- or polyfunctional aliphatic, alicyclic or aromatic first- or second-order amine group, or all combinations of these compounds 0-11 - 201125837 As a specific example of the amine compound having a primary or secondary amine group, it may, for example, contain methylamine, ethylamine, η-propylamine, allylamine, η-butylamine, aniline or amine naphthalene. ), dimethylamine, diethylamine, diallylamine, m-phenylenediamine, P-phenylenediamine, xylylenediamine, diaminotoluene, 1,7-naphthalenediamine, 2,6- Naphthalene diamine, p-xylylenediamine, 4,4'-diaminodiphenylmethane, 1,3-bis(aminomethyl)cyclohexane, isophoronediamine, hexamethylene Any one or a combination of two or more kinds of diamines. Among these, it is preferred to contain aniline, m-phenylenediamine, p-phenylenediamine, m-xylylenediamine, p-xylylenediamine, 4,4'-diaminodiphenylmethane, Any one or a combination of two or more of i,3-bis(aminomethyl)cyclohexane, isophoronediamine, and hexamethylenediamine. The method for producing the allylamine compound of the present invention is carried out in the presence of a transition metal catalyst. As a suitable catalyst, for example, ruthenium, osmium, iridium, palladium, osmium, tungsten, molybdenum, chromium, cobalt, uranium, nickel, copper, hungry, iron, or the like in a non-oxidized state as a free metal or a complex. Such salts in the oxidized state, such as carboxylates, halides, oxides, nitrates or sulfates. The preferred catalyst is a platinum group containing palladium, uranium, thorium, thorium, thorium, or hungry. The best catalyst is palladium catalyst. The form of such a transition metal catalyst may, for example, be a salt such as an acetate, a salt, a nitrate or a sulfate, or may be carried on carbon, wood carbon, activated carbon, cerium oxide, aluminum oxide or an organosol. - Carriers of gels, zeolites, clays, etc. In particular, it is preferable to separate the reaction liquid from the reaction liquid, and it is preferable that the carrier is supported on the carrier. For example, when the transition metal catalyst is 00 parts by mass relative to the activated carbon i, it is preferred to carry 0.1 to 20 parts by mass of palladium. . -12- 201125837 The amount of catalyst used, the amine compound contains 1 equivalent of active hydrogen atoms, and the metal atom may be 1/1, 〇〇〇, 〇〇〇~1/10, preferably 1/10,000~ 1/50, more preferably 1/5,000 to 1/100 ratio. In the case where the catalyst is used as a heterogeneous catalyst, it may be carried out by reacting it in a fixed bed or a liquid reaction mixture as needed. In order to stabilize the activity of the metal catalyst and to enhance its function as a ligand, it is necessary to use a complexing agent as the case may be. The catalyst complex can be formed in situ by complexing the catalyst with a complexing agent prior to addition to the reaction mixture, or by separately adding a catalyst and a complexing agent to the reaction mixture. As a suitable complexing agent, for example, an organic monophosphine, an organic diphosphine, an organic phosphonite, an organic stilbene, cerium, an organic cerium, a diamine or a dicarbonyl compound can be mentioned. Particularly suitable complexing agents include, for example, triphenylphosphine, tris-(o,m,p-)tolylphosphine, tris-P-methoxyphenylphosphine, tricyclohexylphosphine, dibutylphosphine, and Diphenylphosphinostyrene, its polymer, triphenylphosphite, triethylphosphite, diphenylmethylphosphine, diphenylphosphinoethane, diphenylphosphino Butane. A more preferable complexing agent is, for example, tris-(o,m,p-)tolylphosphine, triphenylphosphine, triethylphosphite, diphenylphosphinoethane, wherein triphenylphosphine is used again. In addition, an aqueous soluble complexing agent such as sulfonated triphenylphosphine may also be used. Thus, such a coordinating gene is water-soluble and has an advantage that it can be easily washed out/separated from the organic layer. The complexing agent is a transition metal catalyst relative to 1 mole, and is 0.1 to 1 000 -13 to 201125837 megamoles, preferably 1 to 100 times moles, more preferably 2 to 20 times moles. The reaction temperature in the method for producing allylamine of the invention is preferably from 〇 ° C to 200 ° C, more preferably from 25 ° C to 180 ° C, still more preferably from 50 ° C to 150 ° C. The scope. If the reaction temperature is too high, it tends to cause polymerization or the like. J reaction, if the reaction temperature is too low, the reaction rate becomes slow. The reaction in the method for producing an allylamine of the present invention may be a homogenous system in which an amine compound such as a primary amine or a secondary amine is mixed with an allyl carboxylate compound. As a more preferable reaction form, in particular, when the solubility of the amine compound of the raw material in water is low, for example, a two-phase reaction containing an aqueous phase and an organic phase of water in the reaction system is present. As the organic phase, an amine compound such as a primary amine or a secondary amine of a raw material, an allyl carboxylate compound, and a solvent required as the case may be used. Preferably, the mixture is vigorously stirred, and then the aqueous phase and the organic phase are sufficiently brought into contact with each other. The mass ratio of water to the organic phase is preferably from 9:1 to 1:9. Examples of the solvent which can be used in the method for producing an allylamine of the present invention include aromatic or aliphatic hydrocarbons and oxygenated hydrocarbons (for example, secondary, tertiary alcohol, ether, ethylene glycol, and ethyl alcohol). Glycol ethers, esters, ketones). Examples of other solvents include nitroalkane, cyanoalkane, Alkyl Sulfoxide, and decylamine. These may also be used in combination of two or more. Particularly suitable as a solvent, for example, toluene, xylene, chloroformin, 1,2-dichloroethane, acetonitrile, acetone, methyl ethyl ketone, ethyl acetate dimethylformamide, Dimethyl sulfoxide, nitrite, -14- 201125837 tetrahydrofuran, isopropanol, t-butanol, t-pentanol, ethyleneglycol monomethyl ether, propylene glycol monomethyl acid, or all of them The combination. Among these, preferred solvents are isopropanol, t-butanol, t-pentanol, acetonitrile, and toluene. These may also be used in combination of two or more. The use of the solvent is not necessarily required, and in the case of use, it is preferably used in the range of 5 to 100 parts by mass, more preferably 5 to 20, based on 100 parts by weight of the amine compound having a grade 1 or 2 amine group. The mass fraction is more preferably 5 to 10 parts by mass. Further, in order to increase the yield of the reaction in the method for producing a diluted propylamine of the present invention, a tertiary amine compound may be allowed to coexist in the reaction system. The addition of a tertiary amine has been derived from the carboxylic acid moiety of the allyl carboxylate and the starting amine, which has an inhibitory effect on the formation of a small amount of by-produced guanamine compound. As such a tertiary amine compound, for example, triethylamine, tri-n-propylamine, tri-n-butylamine, tri-n-hexylamine, tri-n-octylamine tris-(2-ethylhexyl) Amine, pyridine, hydrazine, hydrazine _: methyl aniline, and the like. Particularly preferred are aliphatic lower amines, preferably triethylamine or tri-n-propylamine. If the amount of the tertiary compound is too small, the effect of inhibiting the guanamine compound is not inhibited; if too much, the productivity is deteriorated due to a decrease in the concentration of the substrate, and the tertiary amine compound is preferably relative to The amine group in the amine compound having a grade 1 or 2 amine group is used in an amount of 〇 5 2 2 molar equivalent. [Embodiment] [Examples] Hereinafter, the present invention will be specifically described by way of examples, but the invention is not limited to the following examples. [Example 1] m-xylyleneamine 6.00 (44.1 mmol), water-containing 50% 5%-Pd/C (Pd with respect to Pd and C is 5 mass%) STD type (Ν·Ε· CHEMCAT (stock)) 0.093 8g (0.0441 mmol), triphenylphosphine 0.231g (0.881 mmol), acetic acid propylene sulfate 19.4g (0.194 mol), and pure water 1 1.1 g were placed in a 200ml eggplant type flask, attached The reaction was carried out at 85 ° C for 4 hours in a nitrogen atmosphere having a dimroth condenser. After the completion of the reaction, a part of the reaction liquid was taken as a sample, and dimethyl adipate was used as an internal standard, and analyzed by gas chromatography under the following conditions. The conversion ratio of m-phenylenediamine was almost 100%, and the yield of N, N, N', N'-tetraallyl-m-xylylenediamine was 85%. The results are shown in Table 1 below. Gas Chromatography Apparatus: 6850GC, manufactured by Agilent Technologies, Column: HP-1 (film thickness 0/z mx320/z mx30m)

檢測器:氫火燄離子檢測器 注入口溫度:300°C 管柱溫度:60°C (保持3min)—昇溫速度20°C/min — 300°C (保持 2min)Detector: Hydrogen flame ion detector Injection inlet temperature: 300 ° C Column temperature: 60 ° C (for 3 min) - Heating rate 20 ° C / min - 300 ° C (for 2 min)

檢測器溫度:3 0 0 °CDetector temperature: 3 0 0 °C

試樣注入量:1.0 // L 分流比(Split ratio ) :30.0:1 -16- 201125837 [實施例2〜9 ] 除將實施例1中的m -苯二甲胺,使用如以下表1所示化 合物予以取代,另外同時以表1所示之莫耳比之比例置入 外,其他與實施例1進行同樣的反應。結果如以下表1所示 [表1] -17- 201125837 生成物 褂 in oo σ\ 00 00 00 _ 1 VO CO VO &lt;N 寸 襲s ϊ 11 r· t z ε g m N,N-二烯丙苯胺 I越 'J m 穸a fi S i c〇3 2權 1E 褰遯 I 1 E- Z 11 II i 寸 三烯丙胺 二丁基烯丙胺 N-烯丙基嗎福林 N,N’-二烯丙基哌拼 N-烯丙基哌啶 1 100% 100% 100% 100% VO VO yn 00 ΓΟ 囊 m m 騷 ilmll P m 窠 m m m m * m 窠 m 莫耳比 烯丙基 化合物 寸· 寸· CN &lt;N — — 1—Η CN CS ι·~Η ο 1/100 Ο 〇 § ο Ο jn 〇 1〇 Ο 1/1000 1/2000 1_ 1/1000 1/1000 1/1000 1/1000 1/1000 1/1000 1/1000 補 r-H umr 烯丙基 化合物 乙酸烯丙酯 乙酸烯丙酯 乙酸烯丙酯 乙酸烯丙酯 乙酸烯丙酯 乙酸烯丙酯 乙酸烯丙酯 乙酸烯丙酯 乙酸烯丙酯 1絡合劑 三苯膦 三苯膦 三苯膦 HI 謹 浒 111 謹 擀 ni 三苯膦 謹 擗 HI 露 浒 111 m P m 5% Pd-STD 5% Pd-STD 5% Pd-STD 5% Pd-STD 5% Pd-STD 5% Pd-STD 5% Pd-STD 5% Pd-STD 5% Pd-STD m m m-苯二甲胺 1 1,3-雙(胺基甲 基)環己烷 11 補遯 裝fr 11 m 寸 二烯丙基胺 卜 11 嗎福林 哌拼 哌啶 實施例1 實施例2 實施例3 實施例4 實施例5 實施例6 實施例7 實施例8 實施例9 -18 - 201125837 [實施例1 〇〜1 3、比較例1 ] 將實施例1中的置入莫耳比如下表2所示之比例予以取 代,進行實驗。結果如下表2所示。 [表2] -19- 201125837 撒 oo VO Os e鬆 ε鬆 ^ i ί Π ^擀 ψ\ 1 z ε 5 Λ J£ ^ |s ? II r&gt; 1 Z B 5 Λ 1 ^ 1 fr J II ^擀 r» _ Z B 5 m 生成物 名稱 ^&lt;ί〇 m | Eg 繫E· φ j 1 ^Ηπ Φ 'J 1 2 轉換 率 100% 100% 100% JO 京 VO CO in 搂 濃度 1 1 i1ml1 m 麻 窠 m 窠 m μ r &lt;π 寸 襞翠 莫耳比 絡合 劑 〇 ο o i〇 T—^ ο in ο &lt;n 〇 VT) 1—Η 2 1/1000 1/1000 1/1000 1/1000 1/1000 1/1000 稍 鼯 餾 餾 餾 餾 m μ E: IE E: E: IE Ε: ΙΕ &lt;|π 涯 涯 载 涯 趦 趦 氍 m 趦 氍 K] K] K) K] N] Κ) 謹 礬 4π 擀 擀 擀 璀 摧 擀 逛 Π1 Π1 HI U1 驗 tlrnU W m 2 〇 2 Q 2 Q 2 Q 2 〇 ΜΑΊ u in in s? ^ i〇 m m m 鏗 狴 鏗 甾 1¾ s- 1 1 ffi-1 ] s- 1 1 E- i 1 B-1 1 EB-1 1 1 1 擀 1 1 1 1 擗 1 1 1 1 浒 II 擀 B έ S B B a i Ο &gt; Η s (N m S 辑 u 辑 習 習 習 u IK IK Ιμ -20- 201125837 [實施例14] 將 m -苯二甲胺 5 0.0 ( 0.3 67 mol )、含水 50% 之 5%-Pd/C STD 型(N.E. CHEMCAT (股)製)0 · 7 8 1 4 g ( 0 · 1 8 4 mmol )、三苯膦 〇.963g(3.67mmol)、乙酸烯丙酯 161.7g (1.62 mol)、及純水91.5g置入1000ml茄型燒瓶中,在附 有蛇形冷凝管之氮雰圍氣中,以8 5 °C使其反應6小時。 反應後,經由過濾將Pd/C分離後,加入乙酸乙酯l〇〇g ,並以飽和碳酸氫鈉水溶液l〇〇g 2次、純水l〇〇g 1次將有 機相予以洗淨。分液後以蒸發器將溶劑餾去後,再以精密 蒸餾裝置製得11『,&amp;-四烯丙基-!11-苯二甲胺84.98(離 析收率78%)。所得到的Ν,Ν,Ν’,Ν’-四烯丙基-m-苯二甲胺 之沸點爲158〜162°C /ltorr,所得到的Ν,Ν,Ν’,Ν’-四烯丙 基-m-苯二甲胺的1H-NMR光譜如圖1,l3C-NMR光譜如圖2 ,IR光譜如圖3分別所示。 [實施例15] 將1,3-雙(胺基甲基)環己烷50.0 (0.351 mol)、含 水 50% 之 5%-Pd/C STD 型(N.E. CHEMCAT (股)製) 0.7481g ( 0.176 mmol)、三苯鱗 〇.922g ( 3.51 mmol)、 乙酸烯丙酯211.lg( 2.11 mol)、及純水112.6g置入於 1 000ml茄型燒瓶中,在附有蛇形冷凝管氮雰圍氣中,以85 °C使其反應6小時。 反應後,經由過濾將Pd/C分離後,加入乙酸乙酯100g ’再以飽和碳酸氫鈉水溶液1 〇 〇 g 2次、純水1 0 0 g 1次將有 -21 - 201125837 機相予以洗淨。分液後以蒸發器將溶劑餾去後,再以精密 蒸餾裝置製得1^,&gt;1,;^’,?^-四烯丙基-1,3-雙(胺甲基)環己 院56.4g (離析收率53%)。所得到的N,N,N’,N,-四烧丙基_ 1,3 -雙(胺甲基)環己院的沸點爲165〜167°C/ltorr〇所得 到的化&gt;1,&gt;1’,:^’-四烯丙基-1,3-雙(胺甲基)環己院的4_ NMR光譜如圖4,13C-NMR光譜如圖5,IR光譜如圖6分別 所示。 [實施例16] 將 m -苯二甲胺 6.00 ( 44.1 mmol)、含水 50% 之 5%-Pd/C STD型(N.E. CHEMCAT (股)製)0.093 8g ( 0.0441 mmol)、三苯膦 〇.231g( 0.881 mmol)、乙酸烯丙酯 19.4g (0.194 mol)、及三乙基胺 7.67g( 0.0881 mol)置入於 2 00ml茄型燒瓶中,在附有蛇形冷凝管氮雰圍氣中,以85 °C使其反應4小時。反應結束後,採取部分之反應液作爲 試樣’並以己二酸二甲酯作爲內標物,與實施例1於同樣 的條件下以氣相層析法進行分析之結果,m-苯二甲胺之轉 換率爲100%,N,N,N,,N,-四烯丙基-m -苯二甲胺之收率爲 98_6%。 [比較例2 ] 將 m -苯二甲胺 6,00 ( 44.1 mmol)、含水 50% 之 5%-Pd/C STD型(N.E. CHEMCAT (股)製)〇.〇938g ( 0.0441 mmol)、三苯膦 〇.231g ( 0.881 mmol )、乙酸烯丙酯 19,4g -22- 201125837 (0.194 mol)、及碳酸鉀 8.73g( 0.0881 mol)置;λ 茄型燒瓶中,在附有蛇形冷凝管氮雰圍氣中,以8 5 反應4小時。但,因透過反應碳酸鉀並無溶解,以 困難。反應結束後,採取部分之反應液作爲試樣, 二酸二甲酯作爲內標物,與實施例1於同樣的條件 相層析法進行分析之結果,m-苯二甲胺之轉換率爲 N,N,N’,N’-四烯丙基-m-苯二甲胺之收率爲63%。 [產業利用性] 關於本發明之烯丙基胺之製造方法,係將工業 烯與羧酸反應生成可容易得到之羧酸烯丙酯化合物 丙基化劑使用,藉將此與1級胺、2級胺等的胺化合 反應,因爲即使在含有鹼金屬或鹼土金屬化合物不 也能效率良好的得到烯丙基胺,可避免所使用的含 屬化合物等的對生成物之混入。進而,關於本發明 基胺之製造方法可適當地利用,特別是在電氣絶緣 使用的情形時,可提供適合的化學合成基本反應之 胺。 【圖式簡單說明】 [圖1]實施例14所得到Ν,Ν,Ν’,Ν’-四烯丙基-m-胺的1H-NMR光譜。 [圖2]實施例14所得到N,N,N’,N’-四烯丙基-m-胺的13 C - N M R光譜。 、2 0 0 m 1 °c使其 至攪拌 並以己 下以氣 8 1%, 上使丙 作爲嫌 物進行 存在下 有鹼金 之烯丙 用途之 烯丙基 苯二甲 苯二甲 -23 - 201125837 [圖3]實施例14所得到N,N,N’,N’-四烯丙基-m-苯二甲 胺的IR光譜。 [圖4]實施例15所得到N,N,N’,N’-四烯丙基-1,3-雙(胺 基甲基)環己烷的1H-NMR光譜。 [圖5]實施例15所得到Ν,Ν,Ν’,Ν’-四烯丙基-1,3-雙(胺 基甲基)環己烷的13C-NMR光譜。 [圖6]實施例15所得到N,N,N’,N’-四烯丙基-1,3-雙(胺 基甲基)環己烷的IR光譜。 -24-Sample injection amount: 1.0 // L Split ratio: 30.0: 1 - 16 to 201125837 [Examples 2 to 9] Except that m-xylylenediamine in Example 1 was used, as shown in Table 1 below. The compound was substituted, and at the same time, the ratio of the molar ratio shown in Table 1 was placed, and the same reaction as in Example 1 was carried out. The results are shown in Table 1 below [Table 1] -17- 201125837 Product 褂 in oo σ\ 00 00 00 _ 1 VO CO VO &lt;N Inch s ϊ 11 r· tz ε gm N,N-Diene The aniline I is more 'J m 穸a fi S ic〇3 2 weight 1E 褰遁I 1 E- Z 11 II i-trienylamine dibutyl allylamine N-allyl morphine N,N'-diene Propyl piperazine N-allyl piperidine 1 100% 100% 100% 100% VO VO yn 00 ΓΟ sac mm sing ilmll P m 窠mmmm * m 窠m Mobi ally propyl compound inch · inch · CN &lt ;N — — 1—Η CN CS ι·~Η ο 1/100 Ο 〇§ ο Ο jn 〇1〇Ο 1/1000 1/2000 1_ 1/1000 1/1000 1/1000 1/1000 1/1000 1 /1000 1/1000 Supplementary rH umr allyl compound allyl acetate allyl acetate allyl acetate allyl acetate allyl acetate allyl acetate allyl acetate allyl acetate allyl acetate 1 network Mixture Triphenylphosphine Triphenylphosphine Triphenylphosphine HI 浒 三 ni Triphenylphosphine 擗 擗 浒 浒 111 m P m 5% Pd-STD 5% Pd-STD 5% Pd-STD 5% Pd-STD 5 % Pd-STD 5% Pd-STD 5% Pd-STD 5% Pd-STD 5% Pd-STD mm m- Dimethylamine 1 1,3-bis(aminomethyl)cyclohexane 11 遁 fr fr fr 11 m 二烯 diallylamine </ br> 11 florin piperidine Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Example 9 -18 - 201125837 [Example 1 〇~1 3, Comparative Example 1] The insertion of the moir in Example 1 is as shown in Table 2 below. The proportion is replaced and the experiment is carried out. The results are shown in Table 2 below. [Table 2] -19- 201125837 oo VO Os e 松松松^ i ί Π ^擀ψ\ 1 z ε 5 Λ J£ ^ |s ? II r&gt; 1 ZB 5 Λ 1 ^ 1 fr J II ^擀r» _ ZB 5 m Product name^&lt;ί〇m | Eg system E· φ j 1 ^Ηπ Φ 'J 1 2 Conversion rate 100% 100% 100% JO Beijing VO CO in 搂 concentration 1 1 i1ml1 m Hemp窠m 窠m μ r &lt;π inch jadeite molar complexing agent 〇ο oi〇T—^ ο in ο &lt;n 〇VT) 1—Η 2 1/1000 1/1000 1/1000 1/1000 1 /1000 1/1000 鼯 鼯 Distillation m μ E: IE E: E: IE Ε: ΙΕ &lt;|π 涯 涯 趦趦氍 趦趦氍 ] K] K] K) K] N] Κ)矾 4π 擀擀擀璀 擀 擀 Π 1 Π 1 HI U1 test tlrnU W m 2 〇 2 Q 2 Q 2 Q 2 〇ΜΑΊ u in in s? ^ i〇mmm 铿狴铿甾13⁄4 s- 1 1 ffi-1 ] s- 1 1 E- i 1 B-1 1 EB-1 1 1 1 擀1 1 1 1 擗1 1 1 1 浒II 擀B έ SBB ai Ο &gt; Η s (N m S series u u IK IK Ιμ -20- 201125837 Example 14] m-xylylenediamine 5 0.0 (0.367 mol), 50% aqueous 5%-Pd/C STD type (manufactured by NE CHEMCAT Co., Ltd.) 0 · 7 8 1 4 g (0 · 1) 8 4 mmol ), triphenylphosphine ruthenium.963 g (3.67 mmol), allyl acetate 161.7 g (1.62 mol), and pure water 91.5 g were placed in a 1000 ml eggplant flask in a nitrogen atmosphere with a serpentine condenser In the gas, the reaction was carried out at 85 ° C for 6 hours. After the reaction, the Pd/C was separated by filtration, and ethyl acetate (100 g) was added thereto, and the organic phase was washed with a saturated aqueous solution of sodium hydrogencarbonate (1 g) twice and purified water (1 g). After the liquid separation, the solvent was distilled off by an evaporator, and then 11', &amp;-tetraallyl-! 11-xylyleneamine 84.98 (yield 78%) was obtained by a precision distillation apparatus. The obtained ruthenium, osmium, Ν', Ν'-tetraallyl-m-xylylenediamine has a boiling point of 158 to 162 ° C / ltorr, and the obtained ruthenium, osmium, iridium, Ν'-tetraene The 1H-NMR spectrum of propyl-m-xylylenediamine is shown in Fig. 1, the l3C-NMR spectrum is shown in Fig. 2, and the IR spectrum is shown in Fig. 3, respectively. [Example 15] 1,3-bis(aminomethyl)cyclohexane 50.0 (0.351 mol), 50% aqueous 5%-Pd/C STD type (manufactured by NE CHEMCAT Co., Ltd.) 0.7481 g (0.176 Methyl), triphenylsulfonium 922 922g (3.51 mmol), allyl acetate 211.lg ( 2.11 mol), and pure water 112.6 g were placed in a 1 000 ml eggplant flask with a serpentine condenser nitrogen atmosphere The gas was reacted at 85 ° C for 6 hours. After the reaction, the Pd/C was separated by filtration, and then 100 g of ethyl acetate was added. Then, 1 〇〇g of saturated sodium hydrogencarbonate solution was used twice, and 100 g of pure water was used once, and the phase of -21 - 201125837 was washed. net. After the liquid separation, the solvent is distilled off by an evaporator, and then a fine distillation apparatus is used to prepare 1^,&gt;1,;^',?--tetraallyl-1,3-bis(aminomethyl)cyclohexane 56.4 g (isolation yield 53%). The obtained N, N, N', N, - tetra-propyl propyl 1, 1, 3-bis (aminomethyl) cyclohexan has a boiling point of 165 to 167 ° C / ltorr 〇 obtained > 1 &gt;1',:^'-Tetraallyl-1,3-bis(aminomethyl)cyclohexene 4_NMR spectrum is shown in Fig. 4, 13C-NMR spectrum is shown in Fig. 5, and IR spectrum is shown in Fig. 6 Show. [Example 16] m-xylyleneamine 6.00 (44.1 mmol), 50% aqueous 5%-Pd/C STD type (manufactured by NE CHEMCAT Co., Ltd.) 0.093 8 g (0.0441 mmol), triphenylphosphine ruthenium. 231 g (0.881 mmol), allyl acetate 19.4 g (0.194 mol), and triethylamine 7.67 g (0.0881 mol) were placed in a 200 ml eggplant flask in a nitrogen atmosphere with a serpentine condenser. The reaction was allowed to proceed at 85 ° C for 4 hours. After the completion of the reaction, a part of the reaction liquid was taken as the sample 'and dimethyl adipate was used as an internal standard, and the result was analyzed by gas chromatography under the same conditions as in Example 1, m-benzene. The conversion of methylamine was 100%, and the yield of N,N,N,N,-tetraallyl-m-xylylenediamine was 98-6%. [Comparative Example 2] m-xylylenediamine 6,00 (44.1 mmol), 50% aqueous 5%-Pd/C STD type (manufactured by NE CHEMCAT Co., Ltd.) 〇. 938 g (0.0441 mmol), three Benzene phosphine.231g (0.881 mmol), allyl acetate 19,4g -22- 201125837 (0.194 mol), and potassium carbonate 8.73 g (0.0881 mol); λ eggplant flask with serpentine condenser In a nitrogen atmosphere, the reaction was carried out at 8 5 for 4 hours. However, it is difficult to dissolve because the potassium carbonate is not dissolved by the reaction. After the completion of the reaction, a part of the reaction liquid was used as a sample, and dimethyl dicarboxylate was used as an internal standard, and the same conditional phase chromatography as in Example 1 was carried out, and the conversion ratio of m-xylylenediamine was obtained. The yield of N,N,N',N'-tetraallyl-m-xylylenediamine was 63%. [Industrial Applicability] The method for producing an allylamine according to the present invention is a method in which an industrial alkene is reacted with a carboxylic acid to form an easily obtainable allylic carboxylate compound propylating agent, which is used together with a primary amine. In the amination reaction of a quaternary amine or the like, the allylamine can be efficiently obtained even if an alkali metal or an alkaline earth metal compound is contained, and the incorporation of the product containing the genus compound or the like can be avoided. Further, the method for producing the amine of the present invention can be suitably used, and in particular, in the case of electrical insulation, an amine capable of providing a basic reaction for chemical synthesis can be provided. BRIEF DESCRIPTION OF THE DRAWINGS [Fig. 1] 1H-NMR spectrum of ruthenium, rhodium, iridium, Ν'-tetraallyl-m-amine obtained in Example 14. Fig. 2 is a 13 C - N M R spectrum of N, N, N', N'-tetraallyl-m-amine obtained in Example 14. 2, 0 0 m 1 °c to agitate and use 8 1% of gas to make propylene as a suspected allylic benzene xylene dimethyl phthalate 201125837 [Fig. 3] IR spectrum of N,N,N',N'-tetraallyl-m-xylylenediamine obtained in Example 14. Fig. 4 is a 1H-NMR spectrum of N,N,N',N'-tetraallyl-1,3-bis(aminomethyl)cyclohexane obtained in Example 15. Fig. 5 is a 13C-NMR spectrum of ruthenium, osmium, iridium, Ν'-tetraallyl-1,3-bis(aminomethyl)cyclohexane obtained in Example 15. Fig. 6 is an IR spectrum of N,N,N',N'-tetraallyl-1,3-bis(aminomethyl)cyclohexane obtained in Example 15. -twenty four-

Claims (1)

201125837 七、申請專利範圍: ι_ 一種烯丙基胺之製造方法,其係包含以下之步驟: 在過渡金屬觸媒的存在下,但在含有鹼金屬或鹼土金 屬化合物的不存在下,使含有1級或2級胺基之胺化合物與 羧酸烯丙酯化合物進行反應之步驟。 2 ·如申請專利範圍第1項之烯丙基胺之製造方法,其 中’在前述反應步驟中係使水存在於反應系中。 3 ·如申請專利範圍第1項之烯丙基胺之製造方法,其 中,前述過渡金屬觸媒爲鉑族之金屬觸媒。 4 ·如申請專利範圍第1項之烯丙基胺之製造方法,其 中,前述過渡金屬觸媒爲被載持於載體上者。 5 ·如申請專利範圍第4項之烯丙基胺之製造方法,其 中,前述過渡金屬觸媒爲相對於活性碳1 00質量份時,載 持0.1〜20質量份的鈀之觸媒。 6. 如申請專利範圍第1項之烯丙基胺之製造方法,其 中’前述胺化合物爲至少1種選自苯胺,m—苯二胺、p — 苯二胺、m-苯二甲胺、p—苯二甲胺' 4,4’-二胺基二苯 基甲烷、1,3-雙(胺基甲基)環己烷、異佛爾酮二胺、及 六亞甲基二胺(hexamethylene diamine)所成群者。 7. 如申請專利範圍第1項之烯丙基胺之製造方法,其 中,前述羧酸烯丙酯化合物爲乙酸烯丙酯。 8 ·如申請專利範圍第1項之烯丙基胺之製造方法,其 中,在前述反應步驟之反應系中,更存在至少1種選自有 機單膦、有機二膦、及有機亞膦酸酯所成群的絡合劑。 -25- 201125837 9 ·如申請專利範圍第8項之烯丙基胺之製造方 中,前述絡合劑爲三苯膦。 10.如申請專利範圍第1項之烯丙基胺之製造方 中,在前述反應步驟之反應系中,相對於該胺化合 基更存在有0.05〜2莫耳當量的3級胺化合物。 1 1.如申請專利範圍第1項之烯丙基胺之製造方 中,前述羧酸烯丙酯化合物的烯丙基濃度,係以前 合物之胺基的活性氫作爲基準時在〇·8〜5〇莫耳當 圍內。 12. 如申請專利範圍第11項之烯丙基胺之製造 其中,前述羧酸烯丙酯化合物的烯丙基濃度,係以 化合物之胺基的活性氣作爲基準時在1〜5莫耳當量 內。 13. —種如以下的結構式所示的Ν,Ν,Ν’,Ν,-四失 m-苯二甲胺 【化1】 &amp; ’其 法,其 物之胺 法,其 述胺化 量之範 方法, 前述胺 之範圍 I丙基-201125837 VII. Patent application scope: ι_ A method for producing allylamine, which comprises the steps of: in the presence of a transition metal catalyst, but in the absence of an alkali metal or alkaline earth metal compound, A step of reacting an amine compound of a grade or a second amine with an allyl carboxylate compound. 2. The method for producing an allylamine according to the first aspect of the invention, wherein in the preceding reaction step, water is present in the reaction system. 3. The method for producing an allylamine according to the first aspect of the invention, wherein the transition metal catalyst is a platinum group metal catalyst. 4. The method for producing an allylamine according to the first aspect of the invention, wherein the transition metal catalyst is supported on a carrier. (5) The method for producing an allylamine according to the fourth aspect of the invention, wherein the transition metal catalyst is a catalyst for supporting palladium in an amount of 0.1 to 20 parts by mass based on 100 parts by mass of the activated carbon. 6. The method for producing an allylamine according to the first aspect of the invention, wherein the 'the aforementioned amine compound is at least one selected from the group consisting of aniline, m-phenylenediamine, p-phenylenediamine, m-xylylenediamine, P-xylylenediamine 4,4'-diaminodiphenylmethane, 1,3-bis(aminomethyl)cyclohexane, isophoronediamine, and hexamethylenediamine ( Hexamethylene diamine). 7. The method for producing an allylamine according to the first aspect of the invention, wherein the allyl carboxylate compound is allyl acetate. 8. The method for producing an allylamine according to the first aspect of the invention, wherein, in the reaction system of the aforementioned reaction step, at least one selected from the group consisting of organic monophosphines, organic diphosphines, and organic phosphonites Groups of complexing agents. -25- 201125837 9 - The above complexing agent is triphenylphosphine as in the manufacture of the allylamine of claim 8 of the patent application. 10. In the process for producing an allylamine according to the first aspect of the patent application, in the reaction system of the above reaction step, a tertiary amine compound having 0.05 to 2 molar equivalents is present in the reaction system. 1 1. In the production of the allylamine of the first application of the patent scope, the allylic concentration of the above-mentioned carboxylic acid allyl ester compound is based on the active hydrogen of the amine group of the precursor compound at 〇·8 ~5〇莫耳当围. 12. The manufacture of an allylamine according to claim 11 wherein the allylic concentration of the carboxylic acid allyl ester compound is 1 to 5 moles based on the active gas of the amine group of the compound. Inside. 13. An amine, hydrazine, hydrazine, hydrazine, hydrazine, hydrazine, hydrazine, hydrazine, hydrazine, hydrazine, hydrazine, hydrazine, hydrazine, hydrazine, hydrazine, hydrazine, hydrazine, hydrazine A method of quantity, the range of the aforementioned amine I propyl- 丙基- M.一種如以下的結構式所示的N,N,N,,N,-四 1,3-雙(胺基甲基)環己院 -26- 201125837 【化2】Propyl-M. An N,N,N,,N,-tetra-1,3-bis(aminomethyl)cyclohexyl as shown in the following structural formula -26- 201125837 [Chem. 2] -27--27-
TW099124548A 2009-07-27 2010-07-26 Method for producing allylamine TWI413633B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009174607 2009-07-27

Publications (2)

Publication Number Publication Date
TW201125837A true TW201125837A (en) 2011-08-01
TWI413633B TWI413633B (en) 2013-11-01

Family

ID=43529216

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099124548A TWI413633B (en) 2009-07-27 2010-07-26 Method for producing allylamine

Country Status (3)

Country Link
JP (1) JP5762288B2 (en)
TW (1) TWI413633B (en)
WO (1) WO2011013557A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017175741A1 (en) * 2016-04-06 2017-10-12 三菱瓦斯化学株式会社 Polyamine compound, polyamine composition, and epoxy resin curing agent

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3493617A (en) * 1967-03-20 1970-02-03 Shell Oil Co Production of allylic-substituted secondary and tertiary amines
US3888928A (en) * 1972-07-31 1975-06-10 Ici Australia Ltd 1,4-bis(diallylaminomethyl)-benzene
GB9211291D0 (en) * 1992-05-28 1992-07-15 British Tech Group Antifungal compounds
JPH10226715A (en) * 1997-02-17 1998-08-25 Showa Denko Kk Microparticulate crosslinked n-vinylamide resin
JP2001131115A (en) * 1999-11-05 2001-05-15 Mitsubishi Gas Chem Co Inc Method of manufacturing for adipate of 1,3- bis(aminomethyl)cyclohexane
JP4804965B2 (en) * 2006-03-10 2011-11-02 ダイセル化学工業株式会社 Method for producing vinyl or allyl group-containing compound
CN101426851A (en) * 2006-04-19 2009-05-06 旭硝子株式会社 Fluoroelastomer composition and molded fluororubber article

Also Published As

Publication number Publication date
JP5762288B2 (en) 2015-08-12
WO2011013557A1 (en) 2011-02-03
TWI413633B (en) 2013-11-01
JPWO2011013557A1 (en) 2013-01-07

Similar Documents

Publication Publication Date Title
US8835691B2 (en) Process for homogeneously catalyzed, highly selective direct amination of primary alcohols with ammonia to primary amines with a high volume ratio of liquid phase to gas phase and/or high pressures
KR100765550B1 (en) Carbonylation Method of Pentennitrile
JP5560715B2 (en) Selective reduction of nitro group by metal catalyst supported carbon
TW476753B (en) Preparation of substituted olefins
CA2513979C (en) Cross-coupling reactions
WO2008018148A1 (en) Process for producing amino compound
US20150232412A1 (en) Process for the reduction of nitro derivatives to amines
JPH0517235B2 (en)
JP2007063275A (en) Allyl-type alkylation by iron catalyst action
TW201125837A (en) Allylamine manufacturing method
KR101615157B1 (en) Production method for 2-alkenylamine compound
US10947170B2 (en) Process for the preparation of deuterated ethanol from D2O
JP2019210274A (en) Method for producing 3-acetoxystyrene
JP4524365B2 (en) Method for producing asymmetric aliphatic tertiary amine
KR101660390B1 (en) Production method for 2-alkenylamine compound
JP7509573B2 (en) Method for producing oxystyrene compounds having polysubstituted ether substituents
TW406069B (en) Process for the preparation of a linear formyl compound
JP4268424B2 (en) Method for producing 2-oxazolidinones
JP5254264B2 (en) Method for allylation of sulfonylimidate
JPWO2003000645A1 (en) Method for producing aminostilbene derivative
JP2005263687A (en) Method for producing aromatic secondary amine

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees