TW201125308A - Reverse link data rate indication for satellite-enabled communication systems - Google Patents
Reverse link data rate indication for satellite-enabled communication systems Download PDFInfo
- Publication number
- TW201125308A TW201125308A TW099141534A TW99141534A TW201125308A TW 201125308 A TW201125308 A TW 201125308A TW 099141534 A TW099141534 A TW 099141534A TW 99141534 A TW99141534 A TW 99141534A TW 201125308 A TW201125308 A TW 201125308A
- Authority
- TW
- Taiwan
- Prior art keywords
- rate
- frame
- data
- reverse
- code
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0023—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
- H04L1/0025—Transmission of mode-switching indication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0075—Transmission of coding parameters to receiver
Landscapes
- Engineering & Computer Science (AREA)
- Quality & Reliability (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
201125308 、 六、發明說明: 【發明所屬之技術領域】 本教示大體而言係關於通訊系統,且更特定言之,係關 於支援衛星的通訊系統中的反向鏈路資料速率指示。 【先前技術】 許多當前的無線通訊系統涉及無線蜂巢網路。該等網路 一般是由多個細胞服務區構成的陸地射頻(RF)網路,每 個細胞服務區由稱作基地台的至少一個固定位置的收發 機來進行服務i等基地台向經過特定基地台所服務的細 胞服務區的各種行動設備或使用者裝備(UE)提供無線通 訊鏈路。陸地RF系統的進展已經允許無線語音和資料通 訊的急劇增長’並允許人們存取無線語音和資料通訊,並 且由於各種標準化的無線駿1於提供此種無線服務和 使用者裝備的成本相對較低。 無線蜂巢網路的-個缺點是覆蓋區域。為了使任何給哀 細胞服務區區域的可服務容量最大化,將固定位置的基却 台配置為僅具有一定的有限範圍。有限的範圍顧及了可用 通道的重用’此增加了網路的整體容量。由於固定位置的 基地口用於提供到通訊系統的無線存取,所以,在、々有其201125308, VI. Description of the invention: [Technical field to which the invention pertains] The present teachings relate generally to communication systems and, more particularly, to reverse link data rate indications in communication systems supporting satellites. [Prior Art] Many current wireless communication systems involve wireless cellular networks. The network is generally a terrestrial radio frequency (RF) network composed of a plurality of cell service areas, each of which is served by a transceiver called at least one fixed location of the base station. Various mobile devices or user equipment (UE) of the cell service area served by the base station provide a wireless communication link. Advances in terrestrial RF systems have allowed for dramatic growth in wireless voice and data communications' and allowed people to access wireless voice and data communications, and because of the relatively low cost of providing standard wireless services and user equipment. . A disadvantage of wireless cellular networks is the coverage area. In order to maximize the serviceable capacity of any area of the cell service area, the fixed position base station is configured to have only a limited range. The limited range allows for the reuse of available channels. This increases the overall capacity of the network. Since the fixed-position base port is used to provide wireless access to the communication system,
2的地方可能就沒有服務。此外,各種地形特點I諸: 樹木、山脈、建築物等等)可能阻擋RF信號或者林止A 地台的安裝’因此’實際上減少了覆蓋區域。因此Γ結 地台不可能安裝或者安 基 贫女裳不可仃的遙遠位置’行動設備或 201125308 使用者裝備在處於無覆蓋區域中時實際上變成一個鎮 、·-氏,其具有複雜、但完全沒有用的電子設備。 為了解決一些覆蓋限制,已經開發出了個人衛星通訊系 統儘&衛星在後端或者主幹通訊傳輸中已經使用了許多 年但疋個人通訊系統的使用最近才得以實施。在此種衛 星系統中,衛星電話或者衛星通訊設備充當一種行動電 話其連接到軌道衛星而不是陸地細胞服務區位置。根據 特定系統的架構,覆蓋可以包括整個地球或者僅包括特定 的區域。 衛星通訊系統經歷與陸地通訊系統相同的一些缺點,諸 如信號受到樹木、建築物等等的阻擋。然而’衛星通訊系 統通常可以在非常遙遠的位置提供通訊存取,只要該位置 對於-定數量的軌道衛星可見即可。因此,在陸地通訊系 統通常不能在海洋中或者特定的沙漠或山地區域中提供 存取的情形中,衛星通訊系統將通常經由UE和一或多個 軌道通訊衛星之間直接傳輸的信號來提供通訊。 儘管陸地無線通訊系統已經發展起來並且在全世界各 地變得非常普4 ’但是因為通訊公司需要大量的初始啟動 成本來將必要數量的衛星部署到軌道中,並且對於使用者 而言,因為相關聯的行動設備/UE的相對較高的成本以及 高的使用成本有時增加到每分鐘若干美元,所以衛星通訊 系統未能同樣獲得類似的成功。然而,隨著無線技術的進 展,共享行動硬體來處理陸地和衛星通訊已經變為可行。 此外,已經提出了提供行動電話或使用者裝備在可行時使 201125308 f陸地基地台’但是在行動電話或使用者I備不再能夠可 #地耗合到陸地基地台時切換到衛星站的混合陸地_衛星 通訊系統。 θ在純衛星系統或混合陸地_衛星系統中出現的一個問題 疋調適各種陸地無線標準以適應於衛星操作。該等標準的 調適允許直接使用更多相同使用者裝傷技術,或者僅需要 進行很小的改變以便在陸地和衛星系統兩者之間相容。較 ::改變或者沒有改變相當於降低了衛星系統的成本並 U了衛星系統的存取。然而,因為衛星與陸地基地台相 比離平均的使用者要遠得多,所以調適陸地標準以適應 於衛星操作的過程中常常會出現問題。純距離經由信號強 度和長的往返延遲而影響衛星信號。較弱的信號相當於較 低的資料速率,且盥诵赍 _ 干且一通吊小於1 ms的陸地往返延遲相比, 衛星往返延遲約為5〇〇 ms。 【發明内容】 本教示的各個實施例針對無線通訊系統中的反向鏈路 資料速率指示。利用引導頻信號的存在來降低用於辨識和 選擇該反向鏈路資料速率的管理負擔。定義了至少兩個可 辨別的引導頻^號’其中基於發送的訊框中存在的特定引 導頻信號’可以從多個可用的速率集合中決定至少一個速 率集合。隨後使用發送的訊框中的反向速率資訊來辨識使 用所決定的速率集合中的哪個特定資料速率。基於所辨識 的資料速率,該接收機隨後可以對發送的訊框中的有效負 201125308 荷資料進行解碼。 本教示的額外的代表性實施 鲚中發详/5 Α μ A 对對用於在無線通訊系 流中發歧向鏈路資料速率資訊的方法。料 決定反向鏈路傳輸的資料速 匕 及從至少兩個可辨別的引 導頻u中選擇第一引導頻信號 頻信號從-組速率隼人中&力丨5|、斤選擇的第一引導 區別的速率m合⑽所 -中所 貝付迷率。該等方法進一步 包括:推導辨識所決定的資料速 ,進, 故2丨播虹 +的遑率碼,至少使用該 第一引導頻信號和所推導的速 f ’采組合成反向鏈路訊 框;及將該反向鏈路訊框發送給該無線通訊系統的存取節 點0 本教不的又-代表性實施例針對用於在無線通訊系統 中對反向鏈路資料傳輸崎料㈣法。料方法包括·· 接收由行動設備發送的訊框;㈣該訊框内的引導頻信 號;及基於所偵測到的引導頻信號來區別若干個可用的速 率集合中的至少一個速率集合。該等方法進_步包括·對 該訊框内的反向速率資訊進行解碼;基於解碼後的反向速 率資訊來選擇所區別的速率集合中的資料速率;及根據所 選擇的資料速率對該訊框内的資料進行解碼。 本教示的又一代表性實施例針對用於無線通訊系統的 存取節,點。該等存取節.點包括:處理器;調制器/解調器, 其耦合到該處理器’·收發機,其耦合到該處理器;天線陣 列’其搞合到該收發機;及儲存記憶體,其耦合到該處理 器。速率偵測模組儲存在該儲存記憶體中。當由該處理器 201125308 執行時,該速率制模組將該存取節點配置為:相 到的訊框中的引導頻信號;及辨識與所偵測到的弓I導頻广 號相關聯的至少-個速率集合。該等存取節點亦包括料 在該储存記憶體中的解碼器模組。當由該處理器執行時^ 該解碼器模組進-步將該存取節點配置為:對所接收到的 訊框中的反向速率資訊進行解碼。執行的逮率谓測模组進 -步將該等存取節點配置為:使用解碼後的反向速率資訊 來辨識該(該等)速率集合中的資料速率;及使用所辨識 的資料速率對該訊框内的資料進行解碼。 本教示的又-代表性實施例針對電腦可讀取媒體,包括 其上儲存的程式碼。該電腦可讀取媒體包括:用於接收由 行動設備發送的訊框的程式碼;用則貞測該訊框内的引導 頻信號的程式碼;及用於基於所偵測到的引導頻信號來區 別若干個可用的速率集合中的至少—個速率集合的程式 碼。該電腦可讀取媒體亦包括:用於對該訊框内的反向速 率資訊進行解碼的程式碼;用於基於解碼後的反向速率資 訊來選擇所區別的速率集合中的資料速率的程式碼;及用 於根據所選擇的資料速率對該訊框内的資料進行解碼的 程式碼。 本教示的又一代表性實施例針對用於在無線通訊系統 十對反向鏈路資料傳輸進行解碼的系統。該等系統包括: ㈣㈣設備發送的訊框的構件;用於㈣該訊框 内的引導頻信號的構件;及用於基於所偵測到的引導頻信 號來區別若干個可用的速率集合中的至少—個速率集合 201125308 的構件。該等系統進_步包括:用於對該訊框内的反向速 I資訊進行解碼的構件;用於基於解碼後的反向速率資訊 來選擇所區別的速率隹入> 早集口中的資料速率的構件;及用於根 所選擇的資料速率對該訊框内的資料進行解碼的構件。 文已經相备寬泛地略述了本發明的特徵和技術優 點’以使後述的詳細指述可以被更好地理解。下文將描述 額外特徵和優點,装报士、? +於 . 、形成了本發明的請求項的主題。本領 域技藝人士應該瞭解的是,所揭示的概念和特定實施例可 以容易地用作修改或設計用於實現本發明相同目的的其 他結構的基礎。本領域技藝人士亦應該認識到的是,該等 等效的解釋不脫離所附請求項中提供的本發明的技術。就 本發明的組織和操作方法而言,當結合附圖考慮時,根據 下文的描述可以更好地理解新練特徵以及進—步的目 的和優點’新賴性特徵被認為是本發明的特點。然而,要 明確理解的是,所提供的每個附圖僅僅是用於說明和描述 的目的’而非意欲作為限制本發明的定義。 【實施方式】 現在參照圖1,圖示用於阁- 圖用於圖不不例性混合陸地-衛星通訊 系統(HCS) 10的方塊圖’在混合陸地_衛星通訊系統1〇 中可以使用本教示的實施例。混合陸地·衛星通訊系統10 包括多個存取網路,多個存取網路的安排方式使得除了提 供由多個轨道衛星提供的多個存取波束模式以外,亦提供 由多個地理上間隔開的陸地基地台定義的多個鄰近陸地 201125308 細胞服務區。圖1中的混合陸地衛星通訊系統1〇的圖示 部分僅提供了構成混合陸地_衛星通訊系統10的許多陸地 基地台中的一個(陸地基地台101)以及構成混合陸地-衛 星通訊系統10的許多軌道衛星中的一個(衛星1〇2)。 存取終端(AT) 1〇〇經由在陸地基地台1〇1及/或衛星 102之間交換的射頻(RF )信號與混合陸地-衛星通訊系統 10建立通訊。混合陸地_衛星通訊系統1〇的該等部件經由 雙向訊7來進行通訊。陸地基地台經由前向鏈路 103向存取終端100進行通訊,並經由反向鏈路(rl) 1〇4 從存取終端100接收返回的通訊。由於混合陸地_衛星通訊 系統1 0中單個細胞服務區的配置方式,至少相對於衛星 102的距離而言,陸地基地台1〇1的位置相距存取終端 不是很遠。存取終端100和陸地基地台1〇1之間相對較短 的距離在經由FL 103和RL 104的通訊中產生短的往返延 遲時間。S轉換到經由衛星1 02來存取混合陸地_衛星通訊 系統ίο時,存取終端100再使用凡106和RL1〇5傳輸與 衛星102進行通訊。然而,由於存取終端1〇〇和混合陸地 -衛星通訊系統10之間的距離,往返延遲可能會比在陸地 通訊中經歷到的要高得多。 衛星和混合陸地-衛星通訊系統的潛力隨著用於調適衛 星通訊的實體規範得以精化而變得更大。正在考慮中的 組規範是當前高通股份有限公司正在開發的GE〇行動衛 星空中介面(gmSA)dGMSA協定定義了用於控制和管: 行動設備和衛星基地台或存取網路之間的空中介面的 10 201125308 組標準。該專協定專門被調適以處理在與軌道地球衛星進 行通訊時存在的獨特的情況。 GMSA協定提出的新的規範中的一個規範是返回鏈路 (RL)通訊的窄頻實體層。該窄頻實體層是針對功率受限 的衛星通訊系統而特別設計的。該窄頻實體層的若干關鍵 特徵在定義高效和可靠的通訊中起著重要作用。 RL訊務通道被定義為使用窄頻實體層’其中對存取使用 者進行分頻多工(FDM)。將RL頻譜的1.23兆赫茲(MHz) 區填劃分成192個窄頻頻率通道,其中該等通道中的每個 通道具有6.4千赫茲(kHz)的頻寬。根據頻率重用模式、 通道可用性和系統負載,可以向存取使用者分配一個或兩 個單獨的FDM通道用於RL訊務。考慮衛星波束的大小和 典型的頻率重用模式,通常不會將兩個使用者分配到相同 的頻率通道。因此,相同波束内的存取使用者一般不會相 互干擾。 每個存取使用者分配最多兩個通道的靈活性顧及了多 種行動設備類型的高效服務。例如,具有基本行動設備的 典型存取使用者可能僅僅能夠以2.4千位元每秒和4.8千 位元每秒(kbps)之間的速率進行發送,而仍然維持足夠 的鏈路裕度。對於此種可用的傳輸速率,任何高於64 kHz 的傳輸頻寬提供的益處微不足道。相反,具有較高發射機 功率預算及/或高增益天線的行動設備可能能夠容許減少 的鏈路裕度,因此,能夠以高達19 2和38 4 kbps之間的 速率進行發送。強行將此種較高的傳輸速率置於6.4kHz 11 201125308 頻寬是非常低效的。實際上彡 ^ . 際 從編碼和調制的角度看,將 此種較向資料速率的發射功率 ‘ 力早在較大的帛帶上進行展頻 吊常可以獲得多1 - 2分貝(dB )的祕φ 、效率。因此,在可能時 將兩個單獨的通道(一共128 kK7此命、 .kHz頻寬)分配給較高資料 速率使用者可以增加此種使用者的整體效率。 反向訊務通道當前支援十種不同的資料料(亦即,〇 ^^it^. 640 bps ^1.28 kbps,24 kbps.48kbps^6 ’、12.81^、19.2如、25 6 ¥和 38 4 咖小使 每個資料速率由系、統獨立地進行管理導致使用更多的管 理負擔來直接處理每個狀的料。與使每個速率獨立不 同的是’ GMSA將資料速率分組成多個速率集合。在其當 前狀態T,將十種所支援的資料速率分組成三個速率: 合:速率集合0 ( 640 _和1_281^一),速率集合1(24 kbps、4,8kbps 和 9.6kbpS),以及速率集合 2( 12 8kbps、 19.2 kbps、25.6kbps* 38.4kbps)。gmsa 標準規定使用 該等速率集合中的與用於發送高速率的封包資料不同的 速率集合來發送低位元速率的語音/訊令訊息。此外,可以 使用可以針對不同大小的封包進行最佳化的兩種不同的 編碼方法或方案。例如,在具有諸如48或96位元大小的 較小有效負荷封包中,可以使用標準編碼方案(諸如高效 截尾迴旋編碼)。截尾迴旋編碼是常見的編碼實例,其已 被採納作為北美數位蜂巢無線電通訊的標準。在本領域中 其被稱為IS-130,其已被國際電信聯盟所採納。然而,應 當注意的是’在較小的有效負荷的情形中亦可以使用其他 12 201125308 類型的編碼方案。相反,較大的有效負荷封包可以使用更 複雜的編碼方案,諸如格狀編碼或渦輪編碼。 GMSA標準亦定義了窄頻存取通道。在衛星波束中搜尋 具有低信號與干擾加雜訊比(SINR )和大的延遲變化的展 頻信號的過程可能是一項極具挑戰性的任務.例如,美國 大陸地區(CONUS)可以使用36個衛星波束模式來進行 覆蓋’其中當在地球表面量測時,每個波束的直徑大約為 5 00公里(km)。為了覆蓋該500 km的波束直徑範圍内不 同位置處的使用者進行的所有存取嘗試,閘道的存取通道 搜尋訊窗將需要大約3毫秒(mi;該大小的搜尋訊窗將 轉換成每個1.25 MHz展頻信號的大約3687個碼片。相 反,選擇窄頻存取和6.4 kHz的訊務通道將延遲不確定性 訊窗減少為針對5.6 kHz符號速率的約π個符號。其亦顧 及了更大的波束寬度和非常低的存取通道資料速率該等 在衛星通訊中是普遍存在的,但是若使用分碼多工存取 (CDMA )展頻方法則難以支援。 向衛星通訊系統提供有益調適的一種協定是由高通股 份有限公司開發的、經由無線電信號對資料進行無線傳輸 的進化資料最佳化(EVDO )標準。此協定使用包括cdma 以及分時多工存取(tdma )的多工技術來使單獨使用者 的傳輸量和整體系統傳輸量最大化。其由第三代合作夥伴 计晝2 ( 3GPP2)標準化為CDMA2〇〇〇標準族的一部分, 並已經被全世界的許多行動電話服務提供商所採納,特別 是先前利用CDMA網路的服務提供商。 13 201125308 採用EVDO標準的一個益處是基於預測的傳輸通道品質 來調整傳輸資料速率的能力。該機制的用於控制資料速率 的部分來自於反向訊務通道。在典型的陸地lx EVDO系統 中’反向鏈路通道使用正交編碼(諸如華許編碼),其被 發送回基地台用以使用正交移相鍵控(qPSK )調制進行解 碼。然而,考慮到衛星通訊系統常見的功率限制和大的延 遲變化,陸地EVDO系統中使用的過程並未提供將反向鍵 路速率控制實施在衛星通訊中的最高效方式。 圖2是圖示根據本教示的一個實施例配置的、用在衛星 通訊系統中的反向訊務通道(RTC ) 20的結構的方塊圖。 RTC 20包括不同子通道的劃分,每個子通道攜帶具有特定 任務的資料或信號資訊。RTC 20包括引導頻通道200 ^接 收設備處的解調器(未圖示)出於相位/增益估計和追蹤的 目的而使用引導頻通道200。媒體存取控制(MAC )通道 201包括兩個子通道,反向速率指示符(RRI)通道202 和品質控制量測(QCM)索引203。QCM索引203的一個 實例是用於辨識特定前向鏈路通道的品質的通道品質指 示符(CQI )。基於該品質索引,設備可以選擇該品質將會 可靠支援的適當的前向鏈路資料速率。此兩個子通道攜帶 對支援衛星的行動設備(諸如存取終端1〇〇 (圖1))和衛 星存取節點(AN )(諸如例衛星AN 102 (圖1 ))用以通 訊的速率進行設置的過程中所使用的資訊。RRI通道202 辨識進行發送的行動設備或使用者裝備在RL上進行發送 的資料速率。組成給定資訊封包的每個訊框在RRI通道 14 201125308 * 202上將包含相同的RR][資訊。相同RRI資訊的此種重複 由接收機在決定進入資訊的準確資料速率的過程中使 用。QCM索引203向衛星存取網路指示行動設備或使用者 裝備能夠在前向鏈路(FL)上進行接收的資料速率。最後, RTC 20包括在RL上攜帶資料有效負荷的資料通道。 使用分時多工(TDM)將引導頻通道200、RRI通道2〇2、 QCM索引203和資料通道2〇4中的每一個調制到RTC 2〇 中。 封包是用於發送資料的邏輯單元。藉由將資訊或資料分 解成各種大小的封包來發送資訊或資料,隨後經由通訊網 路發送封包。RTC 20上傳輸時間的基本單元是訊框。根據 RTC 20的配置,每個訊框持續2〇 ms並攜帶引導頻符號、 資料符號、RRI符號和QCM索引符號。該等符號具有相 同的持續時間並以相同的功率位準進行發送。單個封包可 以包含足夠的資訊,使得多個訊框將用於發送整個資訊封 包。因此,根據資訊封包的大小,可以使用一或多個訊框 來發送封包。 圖3A是圖示根據本教示的一個實施例配置的訊框%的 方塊圖。在分配了具有6.4 kHz的頻寬的一個FDM通道的 情況下,訊框30在20 ms的持續時間内包括112個複同相 /正交(ι/Q)符號。此種符號與訊框比產生5.6kHz的符號 . 速率。如訊框3〇所示,在時間上安排各個符號。訊框30 • 以具有兩個RRI符號的區塊300開始,之後是具有兩個資 • 料符號的區塊30卜隨後,14個具有單個引導頻符號的區 15 201125308 塊與13個具有七個資料符號的區塊交替。出於簡單和方 便的目的’將14個單引導頻符號區塊簡化為單引導頻符 號區塊302、單引導頻符號區塊3〇4、單引導頻符號區塊 3 06、單引導頻符號區塊308、單引導頻符號區塊310和單 引導頻符號區塊312,並且將13個七符號資料區塊簡化為 七符號資料區塊303、七符號資料區塊3〇5、七符號資料 區塊307、七符號資料區塊3 〇9和七符號資料區塊3 11。第 14個單引導頻符號區塊312之後為單資料符號區塊313, 訊框30結束於具有兩個CQ;[符號的區塊314。接收機已知 該配置’接收機使用已知的配置來對各種單獨的符號進行 解碼。接收機知道期待前兩個符號為RRI符號,接下來的 兩個符號為資料符號等。 當特定的UE能夠使用兩個FI)M通道,並且衛星網路可 用於將兩個此種FDM通道分配給UE時,組合訊框的頻寬 現在是12.8 kHz (亦即,訊框30的頻寬的兩倍),使得訊 框具有224個複ι/Q符號。圖3b是圖示根據本教示的一 個實施例配置的訊框3 1的方塊圖。在兩倍頻寬的情況下, 訊框31攜帶兩倍的符號,亦即,224個符號。以與訊框 30 (圖3A )相同的基本配置來劃分並安排該等224個符 號。二-FDM通道訊框3 1中的每個符號的持續時間與訊框 30 (圖3A)的單FDM通道情形相比減少了 一半。然而, 母種類型的符號總數亦增加了一倍。因此,即使訊框31 的整體谷量是訊框3〇(圖3A)的兩倍,訊框31的整體持 續時間與訊框30 (圖3 A )的持續時間相比亦保持不變。 16 201125308 訊框3 1以具有四個RRI符號的區塊3丨5開始。接收機 亦已知該配置,接收機使用該已知配置來對各種單獨的符 號進行解碼。隨後,27個具有單引導頻符號的區塊與26 個具有七個資料符號的區塊交替。出於簡單和方便的目 的’將27個單引導頻符號區塊簡化為單引導頻符號區塊 316、單引導頻符號區塊318、單引導頻符號區塊320、單 引導頻符號區塊322和單引導頻符號區塊324,並且將26 個七符號資料區塊簡化為七資料符號區塊3 17、七資料符 號區塊319、七資料符號區塊32丨和七資料符號區塊323。 在第27個單引導頻符號區塊324之後是最後的具有六個 資料符號的區塊325。隨後,六資料符號的區塊325之後 疋具有一個CQI符號的區塊3 26和另一單引導頻符號區塊 327。訊框31結束於具有三個CQI符號的區塊328。 應當注意的是,圖3A和圖3B中提供的訊框配置僅僅是 可以用在本教示的各個實施例中的訊框配置的實例。在不 偏離本教示的範疇的情況下,可以使用額外的配置。例 如,在本教示的額外及/或替代的實施例中,單FDM通道2 places may not have services. In addition, various topographical features I: trees, mountains, buildings, etc.) may block the RF signal or the installation of the A platform. 'Thus' actually reduces the coverage area. Therefore, it is impossible to install the platform or the remote location of Anji’s poor women’s mobile device or the 201125308 user equipment actually becomes a town when it is in the uncovered area, which has complex but complete Unused electronic devices. In order to address some of the coverage limitations, personal satellite communication systems have been developed that have been used for many years in back-end or backbone communication transmissions, but the use of personal communication systems has only recently been implemented. In such a satellite system, a satellite telephone or satellite communication device acts as a mobile telephone that is connected to an orbiting satellite rather than a land cell service area. Depending on the architecture of a particular system, coverage can include the entire planet or only specific regions. Satellite communication systems experience some of the same shortcomings as terrestrial communication systems, such as signals being blocked by trees, buildings, and the like. However, satellite communication systems typically provide communication access at very remote locations as long as the location is visible to a fixed number of orbiting satellites. Thus, in situations where terrestrial communication systems typically do not provide access in the ocean or in a particular desert or mountain area, the satellite communication system will typically provide communication via signals transmitted directly between the UE and one or more orbital communication satellites. . Although terrestrial wireless communication systems have evolved and become very popular around the world, but because communication companies require a large initial startup cost to deploy the necessary number of satellites into the orbit, and for users, because of the association The relatively high cost of mobile devices/UEs and the high cost of use sometimes increase to a few dollars per minute, so satellite communication systems have failed to achieve similar success. However, with the advancement of wireless technology, it has become feasible to share mobile hardware to handle terrestrial and satellite communications. In addition, it has been proposed to provide a mobile phone or user equipment to make the 201125308 f land base station when feasible, but to switch to a satellite station when the mobile phone or user I can no longer be used to land the base station. Terrestrial_satellite communication system. A problem that arises in θ pure satellite systems or hybrid terrestrial _ satellite systems 疋 adapts various terrestrial wireless standards to accommodate satellite operations. The adaptation of these standards allows for the direct use of more of the same user injury techniques, or only minor changes are required to be compatible between terrestrial and satellite systems. Compared to :: change or no change is equivalent to reducing the cost of the satellite system and U access to the satellite system. However, because satellites are much farther away from average users than terrestrial base stations, problems often arise in adapting land standards to satellite operations. Pure distance affects satellite signals via signal strength and long round trip delay. A weaker signal is equivalent to a lower data rate, and the satellite round trip delay is approximately 5 〇〇 ms compared to a land round trip delay of less than 1 ms. SUMMARY OF THE INVENTION Various embodiments of the present teachings are directed to reverse link data rate indications in a wireless communication system. The presence of pilot signals is used to reduce the administrative burden for identifying and selecting the reverse link data rate. At least two discernable pilot frequencies are defined in which at least one rate set can be determined from a plurality of available rate sets based on a particular pilot signal present in the transmitted frame. The reverse rate information in the transmitted frame is then used to identify which of the determined data sets is used. Based on the identified data rate, the receiver can then decode the valid negative 201125308 data in the transmitted frame. An additional representative implementation of the present teachings 鲚中发/5 Α μ A pairs of methods for ambiguous link data rate information in a wireless communication system. Determining the data speed of the reverse link transmission and selecting the first pilot frequency signal frequency signal from at least two discernable pilot frequencies u from the first group rate & force 丨 5 | The rate of difference is m (10) - the rate of paying in the middle. The method further includes: deriving and identifying the data rate determined by the identification, so that the rate code of the second broadcast frequency is combined with at least the first pilot frequency signal and the derived speed f' to form a reverse link signal. Blocking; and transmitting the reverse link frame to the access node of the wireless communication system. A further representative embodiment is directed to transmitting the reverse link data in the wireless communication system (4) law. The method includes: receiving a frame transmitted by the mobile device; (d) directing the pilot signal in the frame; and distinguishing at least one of the plurality of available rate sets based on the detected pilot signal. The method includes: decoding the reverse rate information in the frame; selecting the data rate in the differentiated rate set based on the decoded reverse rate information; and selecting the data rate according to the selected data rate The data in the frame is decoded. Yet another representative embodiment of the present teachings is directed to access points, points for wireless communication systems. The access points include: a processor; a modulator/demodulator coupled to the processor ' transceiver, coupled to the processor; the antenna array' engaging the transceiver; and storing Memory that is coupled to the processor. The rate detection module is stored in the storage memory. When executed by the processor 201125308, the rate module configures the access node as: a pilot signal in the incoming frame; and identifies the associated channel associated with the detected probe I. At least - a set of rates. The access nodes also include decoder modules that are expected to be in the storage memory. When executed by the processor, the decoder module further configures the access node to decode the reverse rate information in the received frame. The executed capture rate predicate module further configures the access nodes to: use the decoded reverse rate information to identify the data rate in the set of rates; and use the identified data rate pair The data in the frame is decoded. Yet another representative embodiment of the present teachings is directed to computer readable media, including code stored thereon. The computer readable medium includes: a code for receiving a frame sent by the mobile device; a code for detecting a pilot signal in the frame; and a signal based on the detected pilot signal A code that distinguishes at least one of a plurality of available rate sets. The computer readable medium also includes: a code for decoding the reverse rate information in the frame; a program for selecting a data rate in the different rate set based on the decoded reverse rate information a code; and a code for decoding the data in the frame according to the selected data rate. Yet another representative embodiment of the present teachings is directed to a system for decoding ten pairs of reverse link data transmissions in a wireless communication system. The systems include: (d) (d) components of the frame transmitted by the device; means for (iv) pilot signal signals within the frame; and means for distinguishing among a plurality of available rate sets based on the detected pilot frequency signals At least one component of the rate set 201125308. The system includes: means for decoding the reverse speed I information in the frame; and selecting the differentiated rate intrusion based on the decoded reverse rate information > a component of the data rate; and means for decoding the data in the frame for the data rate selected by the root. The features and technical advantages of the present invention are set forth in the <RTIgt; Additional features and advantages will be described below, for the clerk,? The subject matter of the claims of the present invention is formed. It will be appreciated by those skilled in the art that the concept and specific embodiments disclosed may be readily utilized as a basis for modifying or designing other structures for the same purpose. Those skilled in the art will also appreciate that such equivalent interpretations do not depart from the techniques of the invention as set forth in the appended claims. With regard to the organization and method of operation of the present invention, the novel features and advantages and advantages of the present invention will be better understood from the following description when considered in conjunction with the appended claims. . It is to be expressly understood, however, that the claims [Embodiment] Referring now to Figure 1, there is shown a block diagram for a non-existent hybrid terrestrial-satellite communication system (HCS) 10, which can be used in a hybrid terrestrial satellite communication system. An embodiment of the teachings. The hybrid terrestrial satellite communication system 10 includes a plurality of access networks arranged in a manner that provides multiple geographical separations in addition to multiple access beam patterns provided by multiple orbiting satellites. The open terrestrial base station defines multiple adjacent terrestrial 201125308 cell service areas. The illustrated portion of the hybrid terrestrial satellite communication system 1 of Figure 1 provides only one of a number of terrestrial base stations (terrestrial base station 101) that make up the hybrid terrestrial-satellite communication system 10 and many of the hybrid terrestrial-satellite communication systems 10 One of the orbiting satellites (satellite 1〇2). The access terminal (AT) 1 establishes communication with the hybrid terrestrial-satellite communication system 10 via radio frequency (RF) signals exchanged between the terrestrial base station 101 and/or the satellite 102. These components of the hybrid terrestrial communication system 1 are communicated via the two-way communication 7. The terrestrial base station communicates with the access terminal 100 via the forward link 103 and receives the returned communication from the access terminal 100 via the reverse link (rl) 1〇4. Due to the configuration of the single cell service area in the hybrid terrestrial-satellite communication system 10, the location of the terrestrial base station 1〇1 is not very far from the access terminal, at least relative to the distance of the satellite 102. A relatively short distance between the access terminal 100 and the terrestrial base station 101 produces a short round trip delay in communication via the FL 103 and the RL 104. When S is switched to access the hybrid terrestrial satellite communication system via satellite 102, the access terminal 100 uses the 106 and RL1〇5 transmissions to communicate with the satellite 102. However, due to the distance between the access terminal 1 and the hybrid terrestrial-satellite communication system 10, the round trip delay may be much higher than experienced in terrestrial communications. The potential of satellite and hybrid terrestrial-satellite communication systems has grown larger as the physical specifications used to adapt satellite communications have been refined. The group specification under consideration is currently being developed by Qualcomm Inc. The GE® Mobile Satellite Space Intermediary (gmSA) dGMSA agreement defines control and management: the air interface between mobile devices and satellite base stations or access networks The 10 201125308 group standard. The special agreement was specifically adapted to handle the unique situation that existed when communicating with orbiting earth satellites. One of the new specifications proposed by the GMSA Agreement is the narrow-band entity layer of Return Link (RL) communications. The narrowband physical layer is specifically designed for power limited satellite communication systems. Several key features of this narrowband physical layer play an important role in defining efficient and reliable communications. The RL traffic channel is defined as the use of a narrowband physical layer' where frequency division multiplexing (FDM) is performed for access users. The 1.23 megahertz (MHz) region of the RL spectrum is divided into 192 narrow frequency frequency channels, with each of the channels having a bandwidth of 6.4 kilohertz (kHz). Depending on the frequency reuse mode, channel availability, and system load, one or two separate FDM channels can be assigned to the access user for RL traffic. Considering the size of the satellite beam and the typical frequency reuse mode, two users are usually not assigned to the same frequency channel. Therefore, access users within the same beam generally do not interfere with each other. The flexibility of assigning up to two channels per access user allows for efficient service of multiple mobile device types. For example, a typical access user with a basic mobile device may only be able to transmit at a rate between 2.4 kilobits per second and 4.8 kilobits per second (kbps) while still maintaining sufficient link margin. For this available transmission rate, any transmission bandwidth above 64 kHz provides negligible benefits. Conversely, mobile devices with higher transmitter power budgets and/or high gain antennas may be able to tolerate reduced link margins and, therefore, can transmit at rates between up to 19 2 and 38 4 kbps. Forcing this higher transmission rate to 6.4 kHz 11 201125308 bandwidth is very inefficient. In fact, from the point of view of coding and modulation, the spread power of such a relatively high data rate can be obtained by spreading the frequency as early as possible on a larger sling band, which can often achieve 1-2 decibels (dB). Secret φ, efficiency. Therefore, assigning two separate channels (a total of 128 kK7 this life, .kHz bandwidth) to higher data rate users when possible can increase the overall efficiency of such users. The reverse traffic channel currently supports ten different data materials (ie, 〇^^it^. 640 bps ^1.28 kbps, 24 kbps.48kbps^6 ', 12.81^, 19.2, 25 6 ¥ and 38 4 The smuggling of each data rate by the system and the system independently results in the use of more management burden to directly process each material. Different from each rate, 'GMSA divides the data rate into multiple rate sets. In its current state T, the ten supported data rates are grouped into three rates: combined: rate set 0 (640 _ and 1_281^1), rate set 1 (24 kbps, 4, 8 kbps, and 9.6 kbpS), And rate set 2 (12 8 kbps, 19.2 kbps, 25.6 kbps * 38.4 kbps). The gmsa standard specifies the use of a set of rates in the set of rates that are different from the packet data used to transmit the high rate to transmit low bit rate speech/messages. In addition, two different encoding methods or schemes that can be optimized for different sized packets can be used. For example, in a smaller payload packet with a size of 48 or 96 bits, standard encoding can be used. Solution (such as Truncated whirling coding. truncated convolutional coding is a common coding example that has been adopted as the standard for North American digital cellular radio communications. It is known in the art as IS-130, which has been adopted by the International Telecommunication Union. However, it should be noted that other 12 201125308 type coding schemes may be used in the case of smaller payloads. Conversely, larger payload packets may use more complex coding schemes, such as trellis coding or turbines. The GMSA standard also defines a narrowband access channel. The process of searching for a spread spectrum signal with low signal to interference plus noise ratio (SINR) and large delay variation in satellite beams can be challenging. Tasks. For example, the US mainland region (CONUS) can use 36 satellite beam patterns for coverage' where the diameter of each beam is approximately 500 km (km) when measured on the Earth's surface. To cover the 500 km All access attempts by users at different locations within the beam diameter range, the access channel search window of the gateway will take approximately 3 milliseconds (mi; The size of the search window will be converted to approximately 3,687 chips per 1.25 MHz spread spectrum signal. Conversely, the choice of narrowband access and 6.4 kHz traffic channel reduces the delay uncertainty window to a symbol rate of 5.6 kHz About π symbols. It also takes into account the larger beamwidth and very low access channel data rate. These are common in satellite communications, but if you use a code division multiplex access (CDMA) spread spectrum method. It is difficult to support. An agreement to provide beneficial adaptation to satellite communication systems is the Evolutionary Data Optimization (EVDO) standard developed by Qualcomm Incorporated for wireless transmission of data via radio signals. This protocol uses multiplex technology including cdma and time-division multiplex access (tdma) to maximize the throughput of individual users and the overall system throughput. It is standardized by the 3rd Generation Partnership Project 2 (3GPP2) as part of the CDMA2〇〇〇 standard family and has been adopted by many mobile phone service providers around the world, especially service providers that previously used CDMA networks. . 13 201125308 One benefit of adopting the EVDO standard is the ability to adjust the transmission data rate based on the predicted transmission channel quality. The part of the mechanism that controls the data rate comes from the reverse traffic channel. In a typical terrestrial lx EVDO system, the 'reverse link channel uses orthogonal coding (such as HUAWEI coding), which is sent back to the base station for decoding using quadrature phase shift keying (qPSK) modulation. However, the process used in terrestrial EVDO systems does not provide the most efficient way to implement reverse link rate control in satellite communications, given the power limitations and large delay variations common to satellite communication systems. 2 is a block diagram illustrating the structure of a reverse traffic channel (RTC) 20 for use in a satellite communication system configured in accordance with one embodiment of the present teachings. The RTC 20 includes partitioning of different subchannels, each carrying data or signal information with a particular task. The RTC 20 includes a pilot channel (not shown) at the pilot channel 200^ receiving device for use with the pilot channel 200 for phase/gain estimation and tracking purposes. Media Access Control (MAC) channel 201 includes two sub-channels, a reverse rate indicator (RRI) channel 202 and a quality control measurement (QCM) index 203. One example of a QCM index 203 is a channel quality indicator (CQI) for identifying the quality of a particular forward link channel. Based on this quality index, the device can select the appropriate forward link data rate that the quality will reliably support. The two sub-channels carry the rate of communication between the mobile device supporting the satellite (such as the access terminal 1 (Fig. 1)) and the satellite access node (AN) (such as the satellite AN 102 (Fig. 1)) for communication. The information used during the setup process. The RRI channel 202 identifies the data rate at which the mobile device or user equipment that is transmitting is transmitting on the RL. Each frame that makes up a given message packet will contain the same RR][information on RRI channel 14 201125308 * 202. This repetition of the same RRI information is used by the receiver in determining the exact data rate of incoming information. The QCM Index 203 indicates to the satellite access network the rate of data that the mobile device or user equipment is capable of receiving on the forward link (FL). Finally, the RTC 20 includes a data channel carrying a data payload on the RL. Each of the pilot channel 200, the RRI channel 2〇2, the QCM index 203, and the data channel 2〇4 is modulated into the RTC 2〇 using Time Division Multiplexing (TDM). A packet is a logical unit used to send data. Information or data is sent by breaking the information or data into packets of various sizes, and then sending the packets via the communication network. The basic unit of transmission time on RTC 20 is the frame. According to the configuration of the RTC 20, each frame lasts 2 〇 ms and carries pilot symbols, data symbols, RRI symbols, and QCM index symbols. The symbols have the same duration and are transmitted at the same power level. A single packet can contain enough information so that multiple frames will be used to send the entire message packet. Therefore, depending on the size of the information packet, one or more frames can be used to send the packet. FIG. 3A is a block diagram illustrating a frame % configured in accordance with an embodiment of the present teachings. In the case of an FDM channel with a bandwidth of 6.4 kHz assigned, frame 30 includes 112 complex in-phase/orthogonal (ι/Q) symbols for a duration of 20 ms. This symbol produces a 5.6 kHz symbol with the frame ratio. Rate. Arrange the symbols in time as shown in frame 3〇. Frame 30 • Start with block 300 with two RRI symbols, followed by block 30 with two resource symbols, followed by 14 regions with a single pilot symbol, 201125308 blocks and 13 with seven The blocks of data symbols alternate. For the sake of simplicity and convenience, the 14 single pilot symbol blocks are reduced to a single pilot symbol block 302, a single pilot symbol block 3〇4, a single pilot symbol block 3 06, a single pilot symbol. Block 308, single pilot symbol block 310 and single pilot symbol block 312, and simplifying the seven seven-symbol data blocks into seven-symbol data block 303, seven-symbol data block 3〇5, and seven symbol data. Block 307, seven-symbol data block 3 〇9 and seven-symbol data block 3 11 . The 14th single pilot symbol block 312 is followed by a single data symbol block 313, and the frame 30 ends with a block 314 having two CQs; The receiver is known to use the known configuration to decode various individual symbols using known configurations. The receiver knows that the first two symbols are expected to be RRI symbols, and the next two symbols are data symbols and the like. When a particular UE is able to use two FI) M channels, and the satellite network can be used to assign two such FDM channels to the UE, the bandwidth of the combined frame is now 12.8 kHz (ie, the frequency of frame 30) Twice the width), the frame has 224 complex ι/Q symbols. FIG. 3b is a block diagram illustrating a frame 31 configured in accordance with an embodiment of the present teachings. In the case of twice the bandwidth, the frame 31 carries twice the symbol, that is, 224 symbols. The 224 symbols are divided and arranged in the same basic configuration as frame 30 (Fig. 3A). The duration of each symbol in the two-FDM channel frame 3 1 is reduced by half compared to the single FDM channel case of frame 30 (Fig. 3A). However, the total number of symbols for the parent type has also doubled. Therefore, even if the overall valley amount of the frame 31 is twice that of the frame 3 (Fig. 3A), the overall duration of the frame 31 remains unchanged from the duration of the frame 30 (Fig. 3A). 16 201125308 Frame 3 1 begins with block 3丨5 with four RRI symbols. This configuration is also known to receivers, which use the known configuration to decode various individual symbols. Subsequently, 27 blocks with a single pilot symbol alternate with 26 blocks with seven data symbols. For simplicity and convenience, the 27 single pilot symbol blocks are reduced to a single pilot symbol block 316, a single pilot symbol block 318, a single pilot symbol block 320, and a single pilot symbol block 322. And a single pilot symbol block 324, and the 26 seven-symbol data blocks are reduced to seven data symbol blocks 3 17, seven data symbol blocks 319, seven data symbol blocks 32, and seven data symbol blocks 323. Following the 27th single pilot symbol block 324 is the last block 325 having six data symbols. Subsequently, block 325 of six data symbols is followed by block 3 26 having one CQI symbol and another single pilot symbol block 327. Frame 31 ends at block 328 having three CQI symbols. It should be noted that the frame configurations provided in Figures 3A and 3B are merely examples of frame configurations that may be used in various embodiments of the present teachings. Additional configurations may be used without departing from the scope of the present teachings. For example, in additional and/or alternative embodiments of the present teachings, a single FDM channel
If形可以藉由如下方式劃分其訊框:以具彳12個資料符 號的區塊開始和結束,並隨後將具有四個符號的區塊(該 區塊在三個引導頻符號和一個RRI符號或—個⑽符號之 間進灯劃分)與具有24個資料符號的區塊進行交替。 與圖3A和圖3B的系統類似的系統中,在2〇咖的訊框 。除了使每個區塊中的 減半以維持20 ms的訊 將該等區塊安排成總共丨12個符號 特定符號增倍而將符號的持續時間 17 201125308 框以外,雙FDM通道情形將採用相同的配置,但是擁有 具有224個符號的兩倍頻寬。 大多數當前的無線通訊系統被設計成具有存在於每個 信號中的引導頻信號。引導頻信號用作網路中的已知信 號,其用於促進同調調制。因此,接收機處的解調器知道 對於RL訊框中發送的引導頻符號要期待什麼。在現有系 統中,具有通常由24個連續的二元值「〇」組成的單個引 導頻符號。然而,為了減少處理GMSA標準中定義的多個 速率集合的管理負擔,本教示的各個實施例定義了至少兩 個不同的引導頻符號。由於引導頻信號意欲總是存在的, 所以其存在提供了空閒的位元或更多的資訊。藉由定義至 少兩個不㈣弓丨導頻信號/符號,本教示的各個實施例能夠 定義該資訊的至少兩個可能的值。 在當前考慮的GMSA標準,連同本教示的各個實施例一 起,定義了兩個可辨別的引導頻信號。第一引導頻符號是 標準引導頻符號’其稱作正常引導頻。正常引導頻可以與 現有引導頻符號的配置相同,亦即,24個連續的二元值 「0」。第二引導頻被配置為與正常引導頻可辨別地不同的 24個一凡值。該第二引導頻稱作標記引導頻。該標記引導 頻的配置將依賴於本教示的特定的實施例。示例性配置將 匕括24個父替的二元值,諸如。和1的交替或者1和〇 的交替等。此兩個可辨別地不同的引導頻符號提供了 可乂用於在速率集合a速率集合2之間進行區別或選擇 的位凡合J如’在本教示的一個實施例中,當在接收機處 18 201125308 偵測到標記引導頻時,接收機知道當前資料速率處於速率 集合2内β隨後’使用來自訊框中剩餘資訊的RRI符號來 選擇特定速率集合内的特定的資料速率。 在給進行通訊的行動設備分配了單FDM通道的情形 下,可能的速率集合限於速率集合〇和速率集合1。在此 情形下’由於較低的可用資料速率,引導頻可能不夠強大 以可靠地攜帶速率集合資訊。在該情形下,接收機則使用 盲偵測來在兩個速率集合之間進行區分。一旦發現了適當 的速率集合,單FDM通道訊框的接收機將隨後使用RRI 符號來辨識速率集合〇或速率集合1内的精確速率。由於 在速率集合0内只有兩種不同的速率,所以只使用一個 RRI位元,而使用兩個RRI位元來偵測速率集合i内的三 種不同的速率。當辨識出速率集合〇時,在訊框内重複單 個RRI位元以保持與其他速率集合和訊框結構的相容性。 應▲注意的是’在本教示的各個實施例中,在操作中, 由於鏈路預算的限制,速率集合〇和速率集合丨的資料速 率無法基於單個訊框來可靠地辨識。因此,當試圖辨識速 率集合〇和速率集合1内的特定速率時,接收機對多訊框 封包中的所有訊框上的RRI符號使用盲偵測以及一些形式 的、技術(諸如同調組合)兩者,以解決資料速率的辨 識。同調組合是一種常見的技術,其用於增加符號偵測的 可罪II。當接收到每個符號時,接收機保存符號並將該等 符號值與在下一訊框中接收到的相同符號中的值進行組 合。組合執行的方式使得消除每個信號中的明顯的雜訊和 201125308 干擾。對於相同符號的每個連續接收到的版本,接收機將 能夠進-步消除雜訊和干擾’並在之後更可靠地決 的符號值是什麼。 應當注意的是,儘管將同調組合辨識為一種類型的組合 方法’但是’在不脫離本教示的料的情況下,亦可以使 用其他的類型,包括非同調組合技術。 圖4是圖示在本教示的—個實施例中實施的示例性操作 :塊的操作方塊圖。在方塊儀+,決定反向鍵路傳輸的 資枓速率。在方塊嶺巾,從至少兩個可辨別的引導頻中 選擇第-引導頻,纟中第一引導頻區別'组速率集合中的 至少-個速率集合,並^區別的速率集合包括所決定的 資料速率。在方塊4〇2+,推導速率碼,速率碼從所決定 的資料速率的速率集合_識所決定㈣料速率。在方塊 4〇3中,至少使用第一引導頻信號和所推導的速率碼來组 合成反向祕訊框。在方塊404+,將反向鏈路訊框以所 決定的資料速率發㈣無料H㈣存取節點。 圖5是圖示根據本教示的一個實施例配置的存取終端 (AT) 50的方塊圖。存取終端5Q包括處理器刚、調制 器/解調器—mo1、與天線陣列503協同操作的收 發機502以及儲存記憶體州。處理器5。。直接或間接地 輕合到m〇/dem501、收發機5〇2、天線陣列如和儲存記 憶體綱’並控制該等構成零件的操作以促進存取終端⑼ 的功能。信號分析器模組5〇5儲存在儲存記憶體5〇4上。 §由處理器500執行時,作缺八> 時t唬分析器模組505使用各種信 20 201125308 號與雜訊的量測來執行反向鏈路通道上的信號分析。基於 該等通道量測’執行的信號分析器選擇反向鏈路通道品質 在未來的反向鏈路傳輸中將會支援的適當資料速率。基於 當前的品質量測使用已知的預測過程來決定計劃的通道 品質。 健存記憶體504亦儲存訊框組合器模組 器5 00執行時,訊框組合器模組5〇8收集適當的資料來組 合將發送給存取節點(AN )的訊框,不論該存取節點是陸 地AN還是衛星AN。基於先前所選資料速率,執行的訊框 組合器模組508存取儲存在儲存記憶體5〇4中的速率集合 表509,以選擇所選資料速率所落入的特定的速率集合。 旦已知了特定的速率集合,執行的訊框組合器模組 就存取亦儲存在儲存記憶體5〇4中的引導頻信號表5〇6, 來決定引導頻信號表506中的哪一個引導頻信號與所選的 速率集合相關聯。執行的訊框組合器模組508存取儲存在 儲存。己It體5G4中的速率碼表5Q7,|決定哪個速率碼對 應於該速率集合内所選資料速率。速率碼的實例是在各種 第三代(3G)無線通訊網路中使用的反向速率指示符(刪) 資訊。最終訊框的接收機將使用該速率碼作為反向速率資 訊’以從所辨識的速率集合中選擇特定的資料速率。隨 後,執行的訊框組合器模組5G8至少使用相關聯的引導頻 率碼來組合訊框,並以所選f料速率將該訊框發 送給適當的存取節點。若 麵外的純1作為同一 資訊封包的—部分或者針㈣的資訊封包,來為新訊框重 21 201125308 複該過程。 一旦行動設備(諸如存取終端5〇)發送根據圖5所示的 本教不的實施例配置的訊框,接收存取節點將接收該訊框 並開始處理。圖6是圖示在本教示的一個實施例中實施的 不例性操作方塊的操作方塊圖。在方塊600中,接收從行 動设備發送的訊框。在方塊6〇丨中,偵測該訊框内的引導 頻k號。在方塊602中,使用引導頻信號來區別多個速率 集合中的至少一個。在方塊603中,對該訊框内的反向速 率資訊進行解碼。在方塊6〇4中,使用所解碼的反向速率 資訊在所區別的速率集合内選擇資料速率^在方塊6〇5 中,根據所選擇的資料速率對該訊框内的資料進行解碼。 圖7是圖示根據本教示的一個實施例配置的存取節點 (AN) 70的方塊圖。存取節點7〇包括處理器7〇〇、調制 器/解調胃(mo/dem) 701、與天線陣列7〇3協同操作的收 發機702以及儲存記憶體7〇4。處理器7〇〇直接或間接地 耦合到mo/dem 701、收發機7〇2、天線陣列7〇3和儲存記 憶體704,並控制該等構成零件的操作以促進存取節點7〇 的功能。存取節點70可以是任何類型的存取節點,包括 陸地節點或衛星節點。 速率偵測模組705儲存在儲存記憶體7〇4中。當由處理 器700執行時,速率偵測模紐7〇5處理從相關聯的行動設 備接收到的訊框。執行的速率偵測模組7〇5針對接收到的 訊框的引導頻信號來分析接收到的訊I執行的速率偵測 模組705使用儲存在儲存記憶體7〇4中的引導頻信號表 22 201125308 ,來決定哪個速率集合與特定的债測到的引導頻信號 相關聯’其中接收到的訊框的資料逮率位於該速率集合 内。 儲存記憶體704亦儲存解碼器模組7〇9,當由處理器7〇〇 執行時’該料H模組·詩對切送的訊財得到的 反向速率資錢行解碼。#反向料冑訊看來是可靠的 時,執行的速率偵測模組705存取均儲存在儲存記憶體7〇4 中的反向速率纟707和速率集合表,卩選擇所辨識速 率集合内的特定資料速率。一旦建立了資料速率,執行的 解碼器模組709則使用所辨識的資料速率來對來自於該訊 框内的資訊進行解碼。 圖8是圖示根據本教示的一個實施例配置的存取節點8〇 的方塊圖。存取節點80經由硬體和軟體部件的組合來執 行其根據本教示的實施例的操作。例如,無線訊框信號8〇〇 ”’呈由工中進行發送。無線訊框信號8〇〇的該等RF信號與 硬體天線陣列80丨碰撞,產生流經天線陣列8〇1的各種模 式的電流及/或電壓,該等模式包括接收到的無線訊框信號 800。收發機電路802偵測並放大天線陣列8〇1上存在的 電信號,並將調節後的無線訊框信號8〇〇傳遞給混頻器 8〇3。混頻器803藉由將無線訊框信號8〇〇與來自信號產 生器804的特定參考信號進行混頻,來針對無線訊框信號 800内的引導頻信號對該信號進行調制。當與來自網路的 傳輸信號進行混頻時,特定的參考信號是已知的,以用於 產生引導頻信號。 23 201125308 在混頻器803產生引導頻信號之後’將引導頻信號儲存 在若干個暫存器8 05中的一個暫存器中。處理器8 07存取 暫存器805以取得引導頻信號,並使用比較器電路812來 將所積測到的引導頻信號與儲存在記憶體8〇8内的引導頻 信號表809中的引導頻信號資料進行比較。引導頻信號表 809維護相對於特定速率集合進行索引的不同引導頻信號 的列表。速率集合是對於無線通訊網路可用的特定資料速 率的集合。一旦比較器電路812和處理器807已經決定了 匹配的引導頻信號,就將特定速率集合的標記儲存在暫存 器805中的一個暫存器中。此種標記可以是標誌、變數值 等等。 收發機電路802將接收到的無線訊框信號8〇〇的複本提 供給一或多個解碼器電路806 ^特定的解碼器電路8〇6接 收無線訊框信號8〇〇的該複本,並從處理器8〇7接收基於 所辨識的速率集合中提供的資料速率的用於解碼的信 號該等L號在解碼器電路8〇6中的組合引起對在無線訊 框信號巾編碼的反向速率資訊進行解碼。隨後將獲得的反 向速率資訊亦儲存在暫存器8G5中的—個暫存器中。處理 器807從暫存器8〇5取得解碑後的反向速率資訊,並使用 該資訊來存取儲存在記憶體808中的速率集合資料庫 810。速率集合資料庫810將對無線通訊網路可用的每個 ^率集σ 〃、包含在此種速率集合内的每個單獨的資料速 率一起進行維護。處理器m首絲得基於㈣到的引導 頻符號而選擇哪個速率集合的標記。例如,處理器807使 24 201125308 用該速率集合資訊來選擇速率集合資料庫8ig内的特定速 率集合(速率集合表8〇9)。當處理器決定所辨識的速率集 合表809的位置時,其隨後使用由解碼器電路_解瑪的 反向速率資訊來作為用於辨識由速率集合表809所包含的 特定資料速率的素引。—旦處理器8G7辨識了特定的資料 速率’就將基於該特定資料速率的用於解碼的信號提供給 解碼器電路806, 資料進行解碼。 以對來自無線訊框信號800的有效負荷 應當注意的是,本教示的額外及/或替代的實施例可以在 軟體中實施存取節.點80的全部或任何數量的硬體功能。 例如,軟體可以用於實施解碼器電路8〇6、比較器電路Μ〕 的功能^在軟體中對信號進行解碼時,將執行代碼,以將 待解碼信號的電信號轉換成其數學表示,此在本領域中是 熟知的。隨後,可以將各種數學處理應用於該信號表示, 以得到解碼後的信號值。該解碼後的值可以作為資料儲存 在記憶體808上,或者轉換成電信號以進行進一步的硬體 處理類似地,比較邏輯在本領域是熟知的。在將電信號 轉換成其數學表示將該表#與儲存在記憶冑綱中的 其他數學表示進行比較。因此,該等額外及/或替代的實施 例並不僅限於經由硬體電路進行解碼和比較。 可以根據應用藉由各種方式來實施本文描述的方法。例 如,該等方法可以在硬體、韌體、軟體或以上各項的任何 組合中實施。對於硬體實施而言,可以藉由執行定義該等 力旎的程式碼而將處理單元實施在一或多個特殊應用積 25 201125308 體電路(ASICs)、數位传 1口破處理器(DSPs )、數 理設備(DSPDs )、可葙々w 數位k號處 閘陣列(FPGAs )、處理器、 現% 了程式 雷子崎借^控制器、微控制器、微處理器、 冤子设備、被設計用於勃The If shape can be divided into its frame by starting and ending with a block of 12 data symbols, and then a block with four symbols (the three pilot symbols and one RRI symbol) Or - (10) sign between the lights divided) and the block with 24 data symbols alternate. In a system similar to the system of Figures 3A and 3B, in the frame of the 2 coffee. The dual FDM channel case will be the same except that the halving in each block is maintained for 20 ms and the blocks are arranged to a total of 个12 symbol-specific symbols multiplied by the duration of the symbol 17 201125308 Configuration, but with twice the bandwidth of 224 symbols. Most current wireless communication systems are designed to have pilot frequency signals present in each signal. The pilot signal is used as a known signal in the network to facilitate coherent modulation. Therefore, the demodulator at the receiver knows what to expect for the pilot symbols transmitted in the RL frame. In existing systems, there is a single pilot symbol that is typically composed of 24 consecutive binary values "〇". However, in order to reduce the administrative burden of processing multiple rate sets defined in the GMSA standard, various embodiments of the present teachings define at least two different pilot frequency symbols. Since the pilot frequency signal is intended to always exist, its presence provides free bits or more information. By defining at least two no (four) bow pilot signals/symbols, various embodiments of the present teachings are capable of defining at least two possible values of the information. In the currently considered GMSA standard, along with the various embodiments of the present teachings, two discernable pilot frequency signals are defined. The first pilot frequency symbol is the standard pilot frequency symbol 'which is referred to as the normal pilot frequency. The normal pilot frequency can be the same as the configuration of the existing pilot symbols, that is, 24 consecutive binary values "0". The second pilot frequency is configured to be 24 different values that are discernible from the normal pilot frequency. This second pilot frequency is referred to as the marker pilot frequency. The configuration of the marker pilot frequency will depend on the particular embodiment of the present teachings. An exemplary configuration would include a binary value of 24 parent substitutions, such as. Alternation with 1 or alternating between 1 and 〇. The two discernibly different pilot frequency symbols provide a bit that can be used to distinguish or select between the rate set a rate set 2 as in the embodiment of the present teachings, when in the receiver At 2011 25308, when the marker pilot is detected, the receiver knows that the current data rate is in rate set 2 and then 'uses the RRI symbols from the remaining information in the frame to select a particular data rate within the particular rate set. In the case where a single FDM channel is assigned to a mobile device for communication, the set of possible rates is limited to the rate set 速率 and the rate set 1. In this case, the pilot frequency may not be powerful enough to reliably carry the rate aggregate information due to the lower available data rate. In this case, the receiver uses blind detection to distinguish between the two rate sets. Once the appropriate set of rates is found, the receiver of the single FDM channel frame will then use the RRI symbols to identify the rate set or the exact rate within rate set 1. Since there are only two different rates in rate set 0, only one RRI bit is used, and two RRI bits are used to detect three different rates in rate set i. When the rate set 辨识 is identified, a single RRI bit is repeated within the frame to maintain compatibility with other rate sets and frame structures. It should be noted that in the various embodiments of the present teachings, in operation, due to the limitation of the link budget, the data rate of the rate set 速率 and the rate set 无法 cannot be reliably identified based on a single frame. Therefore, when attempting to identify a specific rate in the rate set 速率 and rate set 1, the receiver uses blind detection of RRI symbols on all frames in the multi-frame packet and some forms of techniques (such as coherent combination). To solve the identification of the data rate. Coherent combination is a common technique used to increase the sin II of symbol detection. When each symbol is received, the receiver saves the symbols and combines the symbol values with the values in the same symbol received in the next frame. The combination is performed in such a way as to eliminate significant noise and 201125308 interference in each signal. For each successively received version of the same symbol, the receiver will be able to step-by-step to eliminate noise and interference' and then more reliably determine what the symbol value is. It should be noted that although the coherent combination is recognized as a type of combination method 'but' other types, including non-coherent combination techniques, may be used without departing from the teachings of the present teachings. 4 is an operational block diagram illustrating an exemplary operation implemented in an embodiment of the present teachings. In the block meter +, the rate of the reverse key transmission is determined. In the square ridge, selecting a first pilot frequency from at least two discernable pilot frequencies, wherein the first pilot frequency distinguishes at least one of the set of rate rates in the group rate set, and the determined rate set includes the determined Data rate. At block 4 〇 2+, the rate code is derived and the rate code is determined from the rate set of the determined data rate (four) material rate. In block 4〇3, the reverse secret frame is synthesized using at least the first pilot frequency signal and the derived rate code. At block 404+, the reverse link frame is sent (four) to the H (four) access node at the determined data rate. FIG. 5 is a block diagram illustrating an access terminal (AT) 50 configured in accordance with one embodiment of the present teachings. The access terminal 5Q includes a processor just, a modulator/demodulator - mo1, a transceiver 502 that operates in conjunction with the antenna array 503, and a memory state. Processor 5. . Directly or indirectly coupled to m〇/dem501, transceiver 5〇2, antenna arrays such as and memory elements' and controls the operation of such component parts to facilitate the function of the access terminal (9). The signal analyzer module 5〇5 is stored in the storage memory 5〇4. § When executed by the processor 500, the t唬 analyzer module 505 performs signal analysis on the reverse link channel using various signals 20 201125308 and noise measurements. Based on these channel measurements, the implemented signal analyzer selects the reverse link channel quality at the appropriate data rate that will be supported in future reverse link transmissions. A known prediction process is used based on current quality measurements to determine the planned channel quality. When the memory combo 504 is also stored, the frame combiner module 5 00 executes, the frame combiner module 5 〇 8 collects the appropriate data to combine the frames to be sent to the access node (AN ), regardless of the memory. Whether the node is a terrestrial AN or a satellite AN. Based on the previously selected data rate, the executed frame combiner module 508 accesses the rate set table 509 stored in the storage memory 5〇4 to select a particular rate set into which the selected data rate falls. Once a particular set of rates is known, the executed frame combiner module accesses the pilot signal table 5〇6, also stored in the memory memory 5〇4, to determine which of the pilot signal tables 506. The pilot signal is associated with the selected set of rates. The executed frame combiner module 508 is stored and stored in the storage. The rate code table 5Q7, in the ItG 5G4, determines which rate code corresponds to the selected data rate within the rate set. An example of a rate code is reverse rate indicator (delete) information used in various third generation (3G) wireless communication networks. The receiver of the final frame will use the rate code as the reverse rate message' to select a particular data rate from the identified set of rates. The executed frame combiner module 5G8 then combines the frames using at least the associated pilot frequency code and sends the frame to the appropriate access node at the selected f rate. If the plain 1 is used as the information packet of the same information packet or the pin (4), the process will be repeated for the new frame. Once the mobile device (such as access terminal 5) transmits the frame configured in accordance with the teachings shown in Figure 5, the receiving access node will receive the frame and begin processing. Figure 6 is an operational block diagram illustrating an exemplary operational block implemented in one embodiment of the present teachings. In block 600, a frame transmitted from the mobile device is received. In block 6〇丨, the pilot frequency k number in the frame is detected. In block 602, a pilot frequency signal is used to distinguish at least one of the plurality of rate sets. In block 603, the reverse rate information within the frame is decoded. In block 6.4, the decoded data rate is selected within the differentiated rate set using the decoded reverse rate information. In block 〇5, the data in the frame is decoded based on the selected data rate. FIG. 7 is a block diagram illustrating an access node (AN) 70 configured in accordance with one embodiment of the present teachings. The access node 7A includes a processor 7A, a modulator/demodulation stomach (mo/dem) 701, a transceiver 702 that operates in conjunction with the antenna array 7A, and a storage memory 7〇4. The processor 7 is coupled, directly or indirectly, to the mo/dem 701, the transceiver 7〇2, the antenna array 7〇3, and the storage memory 704, and controls the operation of the component parts to facilitate the function of the access node 7〇 . Access node 70 can be any type of access node, including terrestrial nodes or satellite nodes. The rate detection module 705 is stored in the storage memory 7〇4. When executed by the processor 700, the rate detection module 7〇5 processes the frames received from the associated mobile device. The executed rate detecting module 7〇5 analyzes the received signal by using the pilot signal of the received frame, and the rate detecting module 705 executes the pilot signal table stored in the storage memory 7〇4. 22 201125308, to determine which rate set is associated with a particular pilot-measured pilot signal. The data capture rate of the received frame is within the rate set. The storage memory 704 also stores the decoder module 7〇9, which, when executed by the processor 7〇〇, decodes the reverse rate money line obtained by the tangled message. When the reverse message appears to be reliable, the executed rate detection module 705 accesses the reverse rate 纟 707 and the rate set table stored in the storage memory 7 〇 4, and selects the identified rate set. The specific data rate within. Once the data rate is established, the executed decoder module 709 uses the identified data rate to decode the information from the frame. FIG. 8 is a block diagram illustrating an access node 8A configured in accordance with one embodiment of the present teachings. Access node 80 performs its operations in accordance with embodiments of the present teachings via a combination of hardware and software components. For example, the radio frame signal 8"" is transmitted by the worker. The RF signals of the radio frame signal 8〇〇 collide with the hardware antenna array 80丨 to generate various modes flowing through the antenna array 8〇1. The current and/or voltage, the modes include the received radio frame signal 800. The transceiver circuit 802 detects and amplifies the electrical signal present on the antenna array 8.1 and adjusts the adjusted radio frame signal to 8 The 〇 is passed to the mixer 8〇 3. The mixer 803 is directed to the pilot signal in the radio frame signal 800 by mixing the radio frame signal 8〇〇 with a specific reference signal from the signal generator 804. The signal is modulated. When mixed with the transmitted signal from the network, a specific reference signal is known for generating the pilot signal. 23 201125308 After the pilot 803 generates the pilot signal, 'will The pilot signal is stored in a register of a plurality of registers 850. The processor 708 accesses the register 805 to obtain the pilot signal and uses the comparator circuit 812 to direct the accumulated measurements. Frequency signal and stored in The pilot frequency signal data in the pilot frequency signal table 809 is compared in the memory 8-8. The pilot frequency signal table 809 maintains a list of different pilot frequency signals indexed relative to a particular rate set. The rate set is available for the wireless communication network. A set of specific data rates. Once comparator circuit 812 and processor 807 have determined the matched pilot signal, the flag for the particular rate set is stored in a register in register 805. Is a flag, variable value, etc. The transceiver circuit 802 provides a copy of the received radio frame signal 8 给 to one or more decoder circuits 806. The specific decoder circuit 8 〇 6 receives the radio frame signal 8 The replica of the UI, and receiving, from the processor 8〇7, a signal for decoding based on the data rate provided in the identified set of rates, the combination of the L numbers in the decoder circuit 8〇6 causing the pair to be in the wireless The reverse rate information encoded by the frame signal towel is decoded. The obtained reverse rate information is also stored in a temporary register in the register 8G5. The processor 807 is temporarily suspended. The device 8〇5 obtains the reverse rate information after the solution, and uses the information to access the rate set database 810 stored in the memory 808. The rate collection database 810 will be available to each wireless communication network. The set σ 〃, each individual data rate contained within such a rate set is maintained together. The processor m first selects which rate set flag to be selected based on the (four) leading frequency symbols. For example, processor 807 makes 24 201125308 uses the rate aggregation information to select a particular rate set (rate set table 8〇9) within the rate set database 8ig. When the processor determines the location of the identified rate set table 809, it is subsequently used by the decoder circuit _ The inverse rate information of the solution is used as a prime for identifying the specific data rate contained by the rate set table 809. Once the processor 8G7 recognizes the particular data rate, the signal for decoding based on the particular data rate is provided to the decoder circuit 806 for decoding the data. In view of the payload from the radio frame signal 800, it should be noted that additional and/or alternative embodiments of the present teachings may implement all or any number of hardware functions of the access point. For example, the software can be used to implement the functions of the decoder circuit 〇6, the comparator circuit ^]. When the signal is decoded in the software, the code is executed to convert the electrical signal of the signal to be decoded into its mathematical representation. It is well known in the art. Various mathematical processing can then be applied to the signal representation to obtain the decoded signal value. The decoded value can be stored as data on memory 808 or converted to an electrical signal for further hardware processing. Similarly, comparison logic is well known in the art. The conversion of the electrical signal to its mathematical representation compares the table # with other mathematical representations stored in the memory module. Thus, such additional and/or alternative embodiments are not limited to decoding and comparison via hardware circuitry. The methods described herein can be implemented in a variety of ways depending on the application. For example, the methods can be practiced in hardware, firmware, software, or any combination of the above. For the hardware implementation, the processing unit can be implemented in one or more special application products by executing the code defining the force. 201125308 body circuits (ASICs), digital one-port broken processors (DSPs) , Mathematical Devices (DSPDs), 葙々w digital k-gate arrays (FPGAs), processors, now % program Leizizaki borrowing controllers, microcontrollers, microprocessors, tweezers, Designed for Bo
本文所述功能的其他電子置士 中或者上述各項的組合中。 丹他電子皁7C 對於勒體及/或軟體實祐二〜 ^ + "實知而言’該等方法可以藉由執行本 文所述功能的程式碼模組Γ 棋、,且(例如,程序、函數等)來實施。 有形地實施程式碼指令的 ?的任何機器可讀取媒體皆可以用Other electronic devices of the functions described herein or combinations of the above. Danta Electronic Soap 7C for Lexus and / or Soft Body 2~ ^ + " In fact, these methods can be performed by means of a code module that performs the functions described herein, and (for example, programs, Function, etc.) to implement. Any machine readable medium that tangibly implements code instructions can be used
於實施本文描述的方法β彻L L 击例如,程式碼可以儲存在儲存記 憶體中,並由處理器單亓舢> 早兀執仃。記憶體可以實施在處理器 單元内,亦可以實施在處㈣單元外。本文使料術語「記 憶體」代表任何類型的長期的、短期的、揮發性的、非揮 發性的或其他記憶體’並且不限於任何特定類型的記憶體 或》己隱體的數里’亦不限於儲存該記憶體的媒體類型。 若在勒體及/或軟體中實施,該等功能可以作為一或多個 指令或程式碼儲存在電腦可讀取媒體上。實例係包括用資 料結構進行編碼的電腦可讀取媒體和用電腦程式進行編 碼的電腦可讀取媒體。電腦可讀取媒體包括實體電腦儲存 媒體。儲存媒體可以是電腦可以存取的任何可用媒體。舉 例而言(但並非限制),此種電腦可讀取媒體可以包括 RAM、ROM、EEPROM、CD-ROM或其他光碟記憶體、磁 碟儲存器或其他磁性儲存設備,或者可以用於以指令或資 料結構的形式儲存期望的程式碼並可由電腦存取的任何 其他媒體;本文所使用的磁碟和光碟包括壓縮光碟(CD)、 26 201125308 鐳射光碟、也掛 、先碟、數位多功能光碟(DVD)、軟碟和藍光 尤碟,其φ # . π , ”、常以磁的方式再現資料,而光碟採用鐳 ^ 式再現資料。上述的組合亦應當包括在電腦 可讀取媒體的範疇内。 =除了儲存在電腦可讀取媒體上以外,可以作為包括在通 訊裝置内的傳輸媒體上的信號來提供指令及/或資料。例 通訊裝置可以包括具有表示指令和資料的信號的收發 機。該等指令和資料被配置為使—或多個處理器實施請求 項中概括的功能。 圖9圖示示例性電腦系統9〇〇,其可以用於實施根據某 些實施例的基地台以及基地台中的操作。中央處理單元 (「cpu」或「處理器」)901耦合到系統匯流排9〇2。cpu 9〇1可以是任何的通用處理器。本案内容並不受cpu 9〇ι (或示例性電腦系統900的其他部件)的體系結構的限 制,只要CPU 901 (以及電腦系統900的其他部件)支援 本文描述的發明操作即可。因此,cpu 9〇1可以經由一或 多個處理器或處理器核心向電腦系統9〇〇提供處理。 9〇1可以執行本文描述的各種邏輯指令。例如,cpu 9〇1 可以執行根據上文結合圖4和圖6描述的示例性操作方塊 的機器層次指令。當執行表示圖4和圖6中所示的操作方 塊的指令時,CPU 901成為專用計算平臺的專用處理器, 其專門被配置為根據本文描述的教示的各個實施例來進 行操作。 電腦系統900亦包括隨機存取記憶體(RAM ) 9〇3,其 27 201125308For example, the method described herein can be stored in a memory file and executed by the processor unit > The memory can be implemented in the processor unit or outside the unit (4). The term "memory" is used herein to mean any type of long-term, short-term, volatile, non-volatile or other memory' and is not limited to any particular type of memory or "in the case of a hidden body" It is not limited to the type of media in which the memory is stored. If implemented in a Lecture and/or Software, these functions may be stored as one or more instructions or code on a computer readable medium. Examples include computer readable media encoded with a data structure and computer readable media encoded with a computer program. Computer readable media includes physical computer storage media. The storage medium can be any available media that the computer can access. By way of example, but not limitation, such computer readable medium may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage or other magnetic storage device, or may be used for instruction or The data structure is used to store the desired code and any other media that can be accessed by the computer; the disks and CDs used in this article include compact disc (CD), 26 201125308 laser disc, also hanging, first disc, digital versatile disc ( DVD), floppy disk and Blu-ray disc, φ # . π , ", often reproduces data in magnetic form, and the disc uses radium to reproduce data. The above combination should also be included in the scope of computer readable media. In addition to being stored on a computer readable medium, instructions and/or data may be provided as signals on a transmission medium included in the communication device. The communication device may include a transceiver having signals indicative of instructions and data. The instructions and materials are configured to enable - or multiple processors to implement the functions outlined in the claims. Figure 9 illustrates an exemplary computer system 9 that can be used The operations in the base station and the base station in accordance with certain embodiments are implemented. A central processing unit ("cpu" or "processor") 901 is coupled to the system bus 9s2. Cpu 9〇1 can be any general purpose processor. The present disclosure is not limited by the architecture of the CPU 9 (or other components of the exemplary computer system 900) as long as the CPU 901 (and other components of the computer system 900) support the inventive operations described herein. Thus, cpu 9〇1 can provide processing to computer system 9 via one or more processors or processor cores. The various logic instructions described herein can be executed. For example, cpu 9〇1 may execute machine level instructions in accordance with the exemplary operational blocks described above in connection with Figures 4 and 6. When executing instructions representing the operational blocks shown in Figures 4 and 6, the CPU 901 becomes a dedicated processor of a dedicated computing platform that is specifically configured to operate in accordance with various embodiments of the teachings described herein. Computer system 900 also includes random access memory (RAM) 9〇3, which 27 201125308
可以是SRAM、DRAM、SDRAM等等。電腦系統9〇〇包括 唯瀆§己憶體(R〇M)904,其可以是pR〇M、EpR〇M、EEpR〇M 等等。RAM 903和R〇M 904保存使用者和系統資料和程 式’此在本領域中是熟知的。 電腦系統900亦包括輸入/輸出(1/〇)配接器9〇5、通訊 配接器91卜使用者介面配接器9〇8以及顯示配接器9〇9。 I/O配接器905、使用者介面配接器9〇8及/或通訊配接器 911在某些實施例中可以使使用者能夠與電腦系統9〇〇進 行互動以輸入資訊。 I/O配接器905將儲存設備9〇6 (諸如硬碟、壓縮光碟 (CD)驅動器、軟碟驅動器、磁帶驅動器等等中的一或多 個)連接到電腦系統900。除了 RAM 9〇3以外,針對與保 存檢視表速率偵測模組等相關聯的記憶體要求亦利用了 儲存设備。通訊配接器911用於將電腦系統9〇〇耦合到網 路912,通訊配接器911可以使資訊能夠經由網路912(例 如,網際網路或其他廣域網路、區域網路、公共或私有交 換電話網路、無線網路、前述的任何組合)輸人到電腦系 統900及/或從電腦系統9〇〇輸出。使用者介面配接器9〇8 將使用者輸入設備(諸如鍵盤913、指點設備9〇7和麥克 風9U)及/或輸出設備(諸如揚聲器915)耦合到電腦系 統900。顯示配接器9〇9由cpU9〇1或圖形處理單元(Gpu) 916來驅動以控制顯示設備91〇上的顯示。Gpu 9i6可以 是專用於圖形處理的任何各種數量的處理器,並且如所圖 示的GPU 916可以由—或多個單獨的圖形處理器組成。 28 201125308 ㈣916處理圖形指令並將該等指令發送到顯示配接器 9〇9。顯示配接器909進-步發送該等指令,肖以對顯示 設備91〇使用的各種數量的圖元的狀態進行轉換或操作, 從而向使用者可視地呈現期望的資訊。該等指令包括用於 將狀態從開改變為關、設置特定顏色、強度、持續時間等 的指令。每個此種指令組成了控制在顯示設備910上如何 進行顯示以及顯示什麼内容的圖形顯示指令。 儘管已經詳細描述了本教示及其優點,但是,應當理解 的是,可以對本文進行各種變化、替換和修改,而不脫離 所附請求項所定義的教示的技術。此外,本案的範嘴並非 意欲限於說明書中描述的過程、機器、製品、物質組合、 構件、方法和步驟㈣冑實施 <列。如本領域一般技藝人士 將從揭示内容中容易瞭解的,可以根據本教示來利用現有 或7後開發的、執行與本文描述的相應實施例相同的功能 或基本上獲得相同結果的過程、機器、製品、物質組合、 構件、方法或步驟。因此,所附請求項意欲包括將此種過 程、機器、製品、物質組合、構件、方法或步驟包括在其 範鳴内。 【圖式簡單說明】 為了更徹底地理解本發明,上文結合附圓參考上文的描 述。 圖1圖示可以利用本教示的實施例的示例性混合陸地_ 衛星通訊系統(HCS)的方塊圖。 29 201125308 - 圖2是圖示根據本教示的一個實施例配置的在衛星通訊 . 系統中使用的反向訊務通道(RTC )的結構的方塊圖。 圖3A是圖示根據本教米的一個實施例配置的訊框的方 塊圖。 圖3B是圖示根據本教示的一個實施例配置的訊框的方 塊圖。 圖4是圖示在本教示的/個實施例中實施的示例性操作 方塊的操作方塊圖。 圖5是圖示根據本教示的一個實施例配置的存取終端 (AT )的方塊圖。 圖6是圖示在本教示的/個實施例中實施的示例性操作 方塊的操作方塊圊。 圖7是圖示根據本教示的一個實施例配置的存取節點 (AN )的方塊圖。 圖8是圖示根據本教示的一個實施例配置的存取節點 (AN )的方塊圖。 圖9圖示可以用於實施根據某些實施例的基地台以及基 地台中的操作的示例性電腦系統。 【主要元件符號說明】 10 20 30 31 混合陸地-衛星通訊系統(HCS ) 反向訊務通道(RTC ) 訊框 訊框 30 201125308 50 70 80 100 101 102 103 104 105 106 200 201 202 203 204 300 301 302 303 304 305 306 307 308 存取終端(AT ) 存取節點(AN ) 存取節點 存取終端(AT ) 陸地基地台 衛星 前向鏈路(FL) 反向鍵路(RL )It can be SRAM, DRAM, SDRAM, etc. The computer system 9 includes a 〇 己 体 (R〇M) 904, which may be pR 〇 M, EpR 〇 M, EEpR 〇 M, and the like. RAM 903 and R〇M 904 store user and system data and procedures' which are well known in the art. The computer system 900 also includes an input/output (1/〇) adapter 9〇5, a communication adapter 91, a user interface adapter 9〇8, and a display adapter 9〇9. I/O adapter 905, user interface adapter 9 8 and/or communication adapter 911 may, in some embodiments, enable a user to interact with computer system 9 to enter information. I/O adapter 905 connects storage device 〇6 (such as one or more of a hard disk, compact disc (CD) drive, floppy disk drive, tape drive, etc.) to computer system 900. In addition to RAM 9〇3, storage devices are also utilized for memory requirements associated with saving view rate detection modules and the like. Communication adapter 911 is used to couple computer system 9 to network 912, and communication adapter 911 can enable information to be transmitted via network 912 (eg, the Internet or other wide area network, regional network, public or private) The switched telephone network, the wireless network, any combination of the foregoing) are input to and/or output from the computer system 900. The user interface adapter 9〇8 couples user input devices (such as keyboard 913, pointing device 9〇7 and microphone 9U) and/or output devices (such as speaker 915) to computer system 900. Display adapter 9〇9 is driven by cpU9〇1 or graphics processing unit (Gpu) 916 to control the display on display device 91〇. The Gpu 9i6 can be any of a variety of processors dedicated to graphics processing, and the GPU 916 as illustrated can be comprised of - or a plurality of separate graphics processors. 28 201125308 (d) 916 processes the graphics instructions and sends them to the display adapter 9〇9. The display adapter 909 sends the instructions in a step-by-step manner to convert or operate the states of the various numbers of primitives used by the display device 91 to visually present the desired information to the user. The instructions include instructions for changing the state from on to off, setting a particular color, intensity, duration, and the like. Each such instruction constitutes a graphical display instruction that controls how the display device 910 displays and displays what content. Although the present teachings and the advantages thereof have been described in detail, it is understood that various changes, substitutions and modifications can be made herein without departing from the teachings of the invention as defined in the appended claims. In addition, the scope of the present disclosure is not intended to be limited to the processes, machines, articles, combinations of materials, components, methods and steps described in the specification. As will be readily appreciated by those of ordinary skill in the art from this disclosure, the processes, machines, and processes developed in the present or later, which perform the same functions or substantially the same results as the embodiments described herein, can be utilized in accordance with the present teachings. Article, substance combination, component, method or procedure. Accordingly, the appended claims are intended to include such a process, machine, article, material combination, component, method, or step. BRIEF DESCRIPTION OF THE DRAWINGS For a more complete understanding of the present invention, reference is made to the above description in conjunction with the accompanying drawings. 1 illustrates a block diagram of an exemplary hybrid terrestrial-satellite communication system (HCS) that may utilize embodiments of the present teachings. 29 201125308 - FIG. 2 is a block diagram illustrating the structure of a reverse traffic channel (RTC) used in a satellite communication system in accordance with an embodiment of the present teachings. Figure 3A is a block diagram illustrating a frame configured in accordance with one embodiment of the present teachings. Figure 3B is a block diagram illustrating a frame configured in accordance with one embodiment of the present teachings. 4 is an operational block diagram illustrating exemplary operational blocks implemented in the embodiments of the present teachings. FIG. 5 is a block diagram illustrating an access terminal (AT) configured in accordance with one embodiment of the present teachings. Figure 6 is an operational block diagram illustrating exemplary operational blocks implemented in the embodiments of the present teachings. Figure 7 is a block diagram illustrating an access node (AN) configured in accordance with one embodiment of the present teachings. FIG. 8 is a block diagram illustrating an access node (AN) configured in accordance with one embodiment of the present teachings. Figure 9 illustrates an exemplary computer system that can be used to implement operations in a base station and a base station in accordance with certain embodiments. [Main component symbol description] 10 20 30 31 Hybrid terrestrial-satellite communication system (HCS) Reverse traffic channel (RTC) frame 30 201125308 50 70 80 100 101 102 103 104 105 106 200 201 202 203 204 300 301 302 303 304 305 306 307 308 Access Terminal (AT) Access Node (AN) Access Node Access Terminal (AT) Land Base Station Satellite Forward Link (FL) Reverse Key (RL)
RLRL
FL 引導頻通道 媒體存取控制(MAC )通道 反向速率指示符(RRI )通道 品質控制量測(QCM)索引 資料通道 具有兩個RRI符號的區塊 具有兩個資料符號的區塊 單引導頻符號區塊 七符號資料區塊 單引導頻符號區塊 七符號資料區塊 單引導頻符號區塊 七符號資料區塊 單引導頻符號區塊 31 201125308 309 3 10 311 312 3 13 314 315 316 3 17 318 319 320 321 322 323 324 325 326 327 328 400 401 402 403 七符號資料區塊 單引導頻符號區塊 七符號資料區塊 單引導頻符號區塊 單資料符號區塊 具有兩個CQI符號的區塊 具有四個RRI符號的區塊 單引導頻符號區塊 七資料符號區塊 單引導頻符號區塊 七資料符號區塊 單引導頻符號區塊 七資料符號區塊 單引導頻符號區塊 七資料符號區塊 單引導頻符號區塊 具有六個資料符號的區塊 具有一個CQI符號的區塊 單引導頻符號區塊 具有三個CQI符號的區塊 方塊 方塊 方塊 方塊 32 201125308 404 500 501 502 503 504 505 506 507 508 509 600 601 602 603 604 605 700 701 702 703 704 705 706 方塊 處理器 調制器/解調器(mo/dem ) 收發機 天線陣列 儲存記憶體 信號分析器模組 引導頻信號表 速率碼表 訊框組合器模組 速率集合表 方塊 方塊 方塊 方塊 方塊 方塊 處理器 調制器/解調器(mo/dem ) 收發機 天線陣列 儲存記憶體 速率偵測模組 引導頻信號表 33 201125308 707 708 709 800 801 802 803 804 805 806 807 808 809 810 812 900 901 903 904 905 906 907 908 909 反向速率表 速率集合表 解碼器模組 無線訊框信號 硬體天線陣列 收發機電路 混頻器 信號產生器 暫存器 解碼器電路 處理器 記憶體FL pilot channel media access control (MAC) channel reverse rate indicator (RRI) channel quality control measurement (QCM) index data channel block with two RRI symbols block with two data symbols single pilot frequency Symbol block seven symbol data block single pilot frequency symbol block seven symbol data block single pilot frequency symbol block seven symbol data block single pilot frequency symbol block 31 201125308 309 3 10 311 312 3 13 314 315 316 3 17 318 319 320 321 322 323 324 325 326 327 328 400 401 402 403 Seven-symbol data block single pilot frequency symbol block seven symbol data block single pilot frequency symbol block single data symbol block block with two CQI symbols Block with single RRI symbol single pilot frequency symbol block seven data symbol block single pilot frequency symbol block seven data symbol block single pilot frequency symbol block seven data symbol block single pilot frequency symbol block seven data symbols Block single pilot symbol block, block with six data symbols, block with one CQI symbol, single pilot symbol block, block with three CQI symbols Square block 32 201125308 404 500 501 502 503 504 505 506 507 509 509 600 601 602 603 604 605 700 701 702 703 704 705 706 Square processor modulator / demodulator (mo / dem) transceiver antenna array storage memory signal Analyzer Module Pilot Signal Table Rate Code Table Frame Combiner Module Rate Set Table Block Square Block Square Block Processor Modulator/Demodulator (mo/dem) Transceiver Antenna Array Memory Memory Rate Detection Mode Group pilot signal table 33 201125308 707 708 709 800 801 802 803 804 805 806 807 808 809 810 812 900 901 903 904 905 906 907 908 909 Reverse rate table rate set table decoder module radio frame signal hardware antenna array Transceiver circuit mixer signal generator register decoder circuit processor memory
引導頻信號表 速率集合資料庫 比較器電路 電腦系統 CPU 隨機存取記憶體(RAM ) 唯讀記憶體(ROM) 輸入/輸出(I/O)配接器 儲存設備 指點設備 介面配接器 顯示配接器 34 201125308 . 910 顯示設備 911 通訊配接器 912 網路 913 鍵盤 914 麥克風 915 揚聲器 916 圖形處理單元(GPU) 35Pilot signal table rate set database comparator circuit computer system CPU random access memory (RAM) read-only memory (ROM) input / output (I / O) adapter storage device pointing device interface adapter display Connector 34 201125308 . 910 Display Device 911 Communication Adapter 912 Network 913 Keyboard 914 Microphone 915 Speaker 916 Graphics Processing Unit (GPU) 35
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/627,946 US8588086B2 (en) | 2009-11-30 | 2009-11-30 | Reverse link data rate indication for satellite-enabled communications systems |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201125308A true TW201125308A (en) | 2011-07-16 |
Family
ID=43589561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW099141534A TW201125308A (en) | 2009-11-30 | 2010-11-30 | Reverse link data rate indication for satellite-enabled communication systems |
Country Status (3)
Country | Link |
---|---|
US (1) | US8588086B2 (en) |
TW (1) | TW201125308A (en) |
WO (1) | WO2011066514A1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201302414D0 (en) | 2013-02-12 | 2013-03-27 | Sepura Ltd | Mobile communication system |
US9450797B2 (en) | 2013-02-12 | 2016-09-20 | Sepura Plc | Mobile communications system |
US10524266B2 (en) | 2017-10-20 | 2019-12-31 | Google Llc | Switching transmission technologies within a spectrum based on network load |
US11006413B2 (en) | 2017-12-06 | 2021-05-11 | Google Llc | Narrow-band communication |
US10608721B2 (en) | 2017-12-14 | 2020-03-31 | Google Llc | Opportunistic beamforming |
CN111480305B (en) * | 2017-12-15 | 2022-04-19 | 谷歌有限责任公司 | Satellite-based narrowband communications |
US11246143B2 (en) | 2017-12-15 | 2022-02-08 | Google Llc | Beamforming enhancement via strategic resource utilization |
US11251847B2 (en) | 2018-03-28 | 2022-02-15 | Google Llc | User device beamforming |
EP3844893B1 (en) | 2018-09-10 | 2024-05-29 | Google LLC | Fast beam tracking |
US10886877B2 (en) | 2018-12-18 | 2021-01-05 | Viasat, Inc. | Adaptive microphonics noise cancellation |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5912921A (en) * | 1997-08-20 | 1999-06-15 | Intermec Ip Corp. | Concurrent multiple data rate communications in a wireless local area network |
US5978365A (en) * | 1998-07-07 | 1999-11-02 | Orbital Sciences Corporation | Communications system handoff operation combining turbo coding and soft handoff techniques |
US6597705B1 (en) * | 1998-09-10 | 2003-07-22 | Qualcomm Incorporated | Method and apparatus for distributed optimal reverse link scheduling of resources, such as a rate and power in a wireless communication system |
US6490270B1 (en) | 1999-07-27 | 2002-12-03 | Lucent Technologies Inc. | Modulation method for transmitter |
US6400928B1 (en) | 1999-11-19 | 2002-06-04 | Telefonaktiebolaget L M Ericsson (Publ) | Method and system for blind detection of modulation |
FR2802371B1 (en) | 1999-12-10 | 2003-09-26 | Matra Nortel Communications | SIGNALING METHOD IN A RADIO COMMUNICATION SYSTEM, TRANSMITTERS, RECEIVERS AND REPEATERS FOR IMPLEMENTING THE METHOD |
US6859466B1 (en) | 2000-02-29 | 2005-02-22 | Hughes Electronics Corporation | Physical layer header for packet data |
IT1318053B1 (en) | 2000-06-27 | 2003-07-21 | Siemens Inf & Comm Networks | TRANSMISSION METHOD IN ADAPTIVE MODULATION SYSTEMS |
US20040179493A1 (en) | 2003-03-14 | 2004-09-16 | Khan Farooq Ullah | Methods of transmitting channel quality information and power allocation in wireless communication systems |
CA2489265C (en) * | 2003-04-29 | 2016-12-20 | Youn-Sun Kim | Reverse power control method and apparatus in a mobile communication system in which mobile station determines reverse data rate |
US20060209970A1 (en) | 2005-01-11 | 2006-09-21 | Emmanuel Kanterakis | Adaptive transmission rate communication system |
-
2009
- 2009-11-30 US US12/627,946 patent/US8588086B2/en active Active
-
2010
- 2010-11-29 WO PCT/US2010/058247 patent/WO2011066514A1/en active Application Filing
- 2010-11-30 TW TW099141534A patent/TW201125308A/en unknown
Also Published As
Publication number | Publication date |
---|---|
US8588086B2 (en) | 2013-11-19 |
US20110128866A1 (en) | 2011-06-02 |
WO2011066514A1 (en) | 2011-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201125308A (en) | Reverse link data rate indication for satellite-enabled communication systems | |
Queralta et al. | Comparative study of LPWAN technologies on unlicensed bands for M2M communication in the IoT: Beyond LoRa and LoRaWAN | |
RU2417526C2 (en) | Allocating extra carriers for return line in multiple-carrier wireless system | |
KR100831189B1 (en) | Asynchronous inter-piconet routing | |
TW408555B (en) | A method for selecting a link protocol for a transparent data service in a digital communication system | |
RU2359417C2 (en) | Method for presentation of directive for pause during "stuck" assignment (of resource) | |
AU777687B2 (en) | Method and apparatus for performing handoff in a high speed communication system | |
US20200212956A1 (en) | Backscatter devices and network systems incorporating backscatter devices | |
US6732163B1 (en) | System for selecting the operating frequency of a communication device in a wireless network | |
US20060133332A1 (en) | Method and apparatus for providing radio configuration parameters to mobile access points | |
US6320843B1 (en) | Wireless communications systems with standard and robust services and methods of operation thereof | |
US8730835B2 (en) | Multi-dimensional resource management in a wireless network | |
TW200814803A (en) | Communication methods and apparatus related to wireless terminal monitoring for and use of beacon signals | |
JP5766837B2 (en) | Signaling separation between unicast information and broadcast information using common pilot | |
US8315212B2 (en) | Energy based communication path selection | |
CN101390298A (en) | Method and apparatus for channel estimation | |
JP2004527966A (en) | Method and system for utilizing repeated use of polarization in wireless communication | |
JP4878626B2 (en) | Transmission method, transmission system, and receiver | |
WO2006042217A2 (en) | Method and apparatus for least congested channel scan for wireless access points | |
KR100993751B1 (en) | Method and apparatus for a reverse link supplemental channel scheduling | |
KR20080043468A (en) | A method and apparatus for transmitting signal in communication system | |
TW411668B (en) | Reducing peak to average ratio of transmit signal by intentional phase rotating among composed signals | |
CN106452505B (en) | A kind of carrier wave and wireless MAC layer converged communication method and apparatus | |
US20110128867A1 (en) | Forward link data rate control and rate indication for satellite-enabled communications systems | |
CN116056174A (en) | Wireless fidelity Wi-Fi roaming switching method and device |