TW201124722A - Preparation method of antibody probe chip with electron-conducting molecule - Google Patents

Preparation method of antibody probe chip with electron-conducting molecule Download PDF

Info

Publication number
TW201124722A
TW201124722A TW99129508A TW99129508A TW201124722A TW 201124722 A TW201124722 A TW 201124722A TW 99129508 A TW99129508 A TW 99129508A TW 99129508 A TW99129508 A TW 99129508A TW 201124722 A TW201124722 A TW 201124722A
Authority
TW
Taiwan
Prior art keywords
organic
antibody probe
molecule
group
antibody
Prior art date
Application number
TW99129508A
Other languages
Chinese (zh)
Inventor
Shi-Ming Lin
Original Assignee
Shi-Ming Lin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shi-Ming Lin filed Critical Shi-Ming Lin
Priority to TW99129508A priority Critical patent/TW201124722A/en
Publication of TW201124722A publication Critical patent/TW201124722A/en

Links

Landscapes

  • Peptides Or Proteins (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

A method is disclosed for preparation of an antibody probe chip having organic electron-conducting anchoring molecules covalently bound to the metal film on the chip substrate. The antibody probe with covalent bonding organic electron-conducting anchoring molecules allows for fast and efficient molecular sample detection, characterization and measurement via binding to corresponding target molecule in a sample. Covalent bonding of the probes with the organic electron-conducting anchoring molecules on the chip substrate improves the stability and conductivity of the antibody probe chip. Due to such stability improved, a test chip can be washed with adequate solution without substantial lost of molecules already bound to the probes. Due to such electronic conductivity improved, the probes bound to the organic electron-conducting anchoring molecules can be applied in field of electrosensing chips. Thorough cleaning of the chip reduces to minimum the interference from debris to the test, which leads to improved precision in the detection and characterization results. Moreover, an electron-conducting antibody probe chip comprises a substrate having coated with a surface thereof a layer of metal film. First end of each of a number of organic electron-conducting anchoring molecules being directly bound to the metal film on the substrate, or being indirectly bound to the metal film with a linking compound, and an electron-conducting antibody molecule as the probe, which has been modified with organic electron-conducting molecules, is covalently bound to the second end of a corresponding one of the elongated anchoring molecules.

Description

201124722 六、發明說明: 【發明所屬之技術領域】 本發明係有關於電導抗體探針晶片(electron-conducting antibody probe chip),特別是一種基本抗體探針晶片製作方法,其 金屬基板(substrate)上共價鍵結(covalent bonding)有機電導定錨分 子(organic electron-conducting anchoring molecule),之夕f,其基本 抗體探針上亦共價鍵結佈覆有機電導分子(electron-conducting • molecule) 〇因此,可增加了晶片基板表面固定化探針的穩定性及 電子傳導之能力,可快速靈敏進行樣本電感測之抗體探針晶片之製 作方法。 【先前技術】 利用定錨分子(anchoring molecule)將選定的抗體探針(antibody probe)固定化(immobilization)在具有伸展表面的基板(substrate) • 上,可以製成抗體探針晶片(antibody probe chips)。針對特定標的 物(target)的檢測感測用途,所設計製作的抗體探針晶片具有廣泛 用途。例如,在基礎醫學及臨床醫學的領域之中,一般習知為生 物晶片(biochip)或生物感測晶片(biological sensor chips)的抗體探 針晶片,可以快速地進行生物醫學樣本(biological sample)的檢測定 性與偵測(characterization and detection)。在醫療用途中,進行檢 測判斷的目標物(target)可能是存在於樣本中的生物分子,病毒, 201124722 細菌或細胞。在其他非醫學領域的產業用途之中,所牽涉到的則 可能是諸如食品或環境取樣等的工業檢測定性定量之樣本。201124722 VI. Description of the Invention: [Technical Field] The present invention relates to an electron-conducting antibody probe chip, and more particularly to a method for fabricating a basic antibody probe wafer on a metal substrate thereof. Covalent bonding (organic electron-conducting anchoring molecule), which is also covalently bonded to the organic-conducting molecule (electron-conducting • molecule) Therefore, the stability of the wafer substrate surface-immobilized probe and the ability of electron conduction can be increased, and the method for fabricating the antibody probe wafer for rapid measurement of the sample inductance can be quickly and sensitively performed. [Prior Art] An antibody probe chip (antibody probe chips) can be prepared by immobilizing a selected antibody probe with an anchoring molecule on a substrate having an extended surface. ). The antibody probe wafers designed for a wide range of applications are used for detection sensing purposes of specific targets. For example, in the field of basic medicine and clinical medicine, an antibody probe wafer, which is generally known as a biochip or a biological sensor chip, can quickly perform a biological sample. Detect and characterization. In medical use, the target for detection and judgment may be a biomolecule present in the sample, virus, 201124722 bacteria or cells. Among other industrial uses in the non-medical field, it may involve qualitative qualitative quantification of industrial tests such as food or environmental sampling.

在生物晶片(biochip)或生物感測晶片(biosensor chips)的用途之 中,固定化在基板表面的抗體探針分子(antibody probe),可與檢測 樣本溶液中的目標物(target)進行親合作用(affinity reaction)。根據 反應的結果可以偵測特定存在的生物分子。基板表面固定化的探 針可以是抗體(antibody)或其片斷(fragments),諸如免疫球蛋白G • (Immunoglobulin G)、免疫球蛋白 M (Immunoglobulin M)、免疫球 蛋白 A (Immunoglobulin A)> 免疫球蛋白 E (Immunoglobulin E)> 免 疫球蛋白 D (Immunoglobulin D)或其 Fab 片斷(antigen-binding fragments), 或其他可以和待測目標物(target)發生親合(affinity)反應或催化 作用的病毒,細胞或組織表面生物分子。此種利用基板表面聯結固 定化抗體(antibody)或其片斷(fragments)作為探針(probe>以便與生 * 物醫學樣本中的生物分子(即待分析目標物(targe切發生親合作 用,藉由檢測兩者之間相互作用的結合量(binding concentration)或 結合常數(binding constant),便可以提供一種基本的數據化診斷與 實驗參數。兩者之間的高親合性(high affinity)^高結合容量(binding capacity)與生物穩定度,在生物晶片的檢測應用上是非常重要的特 性。 目前有多種生物鑑定的作法,需要將生物分子如蛋白質直接固 201124722 定化在基板上。例如,西方點漬(western blotting)係將蛋白質吸附 在聚活化亞乙稀(polyvinylidene fluoride, PVDF)或硝化纖維素 (nitrocellulose)薄膜基板上當作探針,可與抗體或抗原蛋白質上的 表面各官能基互相作用,以測量樣品中是否含有此種蛋白質。此 外,另一個例子是酵素連結免疫吸附分析法(enZyme-linked immuno-sorbent assay, ELISA),其係將特定抗體(或抗原)先吸附在 聚苯乙烯(polystyrene)基板上,再將基板暴露在檢體中。若此檢體 • 含有對該些抗體(或抗原)具高親和性的特定抗原(或抗體),便會與 之結合而被光輸出偵測出來。 例如,Rampal 等人於 U.S. Pat. No. 6,013,789,"Covalent attachment of biomolecules to derivatized polypropylene supports''^ 中揭不,聚丙烯薄膜先經過氨化,之後再與其末端含有憐咪挫焼 (phosphorimidazolide)的聚核甘酸反應,如此,聚核甘酸便可經由 磷咪唑烷(phosphoramidate)鍵結而與聚丙烯產生共價連結。 ^ 另外,利用在氧化銦錫(indium tin oxide, ITO)表面上進行分子 的自組裝而形成單層薄膜(self-assembled monolayers),亦可以提供 一種新的界面,可用以探討某些生物分子特殊的氧化還原反應。 有機矽可以和表面具有氫氧基的基板反應(例如二氧化矽> 形成單 層或雙層的有機矽薄膜。例如,Chrisey等人於U.S. Pat. No.5,688,642 號”Selective attachment of biomolecules to patterned self-assembled surfaces”案中提出具有兩個活性基的有機砂化合 201124722 物,利用一端的活性基和基板表面的氫氧基產生連結,再由另一 端的活性基連結生物分子,以使生物分子得以被固定化在基板上。 這些方法雖然已有廣泛應用,但卻有生物分子探針製備繁瑣費 時不導電及光輸出性差不穩定等缺點,及商業大量製備 (commercial mass production)上的限制。這些生物分子探針製備常 是使用烷基長鏈化合物兩端來鏈結基板與探針,其難於進行π共軛 系統(π-conjugated system)電子傳遞與導電等性質,難於應用在電 • 學生物感測技術上。並且,由於要在諸如PVDF,硝化纖維素或顯 微玻璃(microscopic glass)等常見較適用的基板上固定化生物分子 探針分子,通常所依賴的物理吸附(physical adsorption)作用乃是一 種不穩定而且耗時的過程。整個固定化處理程序通常需要至少六 至八小時的安置(incubation)時間。其典型的處理方法,係先將生物 分子探針加至晶片基板上並靜置晶片。待生物分子探針與基材之 間進行一定長時間(通長約三至四小時)的物理吸附反應之後,連續 ® 操作數次的清洗程序。清洗之後再加入填補物(blocking reagent), 並再靜置一段長時間(通常約三至四小時)後此晶片才得以作為生 物分子探針晶片使用。 【發明内容】 因此有需要提供一種生物分子探針晶片(biomolecular probe chip),特別是抗體探針晶片(antibody probe chip)之製作方法,具有 共價鍵結有機電導定錨分子(electron-conducting anchoring 201124722 molecules),或抗體其上佈覆有機電導分子(electron-conducting molecules),晶片其擁有傳導電子(conduction electrons)具備電子傳 導之能力,其製備簡單且快速,具有儲存及使用上之高穩定性及 專一性,並可快速準確進行樣本之電學檢測之製作方法。 為達成前述及其他目的,本發明提供一種基本抗體探針晶片製 作方法,具有共價鍵結有機電導定錨分子,其包括有:一基板, 該基板一表面上佈覆有一金屬薄膜層;與複數個的有機電導定錨 ® 分子,大致具有π共軛系統電子傳遞能力之環狀鏈分子結構,主要 爲寡苯(oligophenyl),寡噻吩(oligothiophene),寡卩比略(oligopyrrol) 及寡卩比咯淀(oligopyridine)環狀鏈分子結構^每一個該些有機電導 定錨分子,各係以環狀鏈分子結構之一第一端直接共價鍵結於該金 屬薄膜層上,或透過聯結分子間接共價鍵結於該金屬薄膜層上與 單數個的探針分子,每一個該基本抗體探針各係共價鍵結於該些 定錨分子中對應一定錨分子反對於環狀鏈分子結構之該第一端之 ^ 一第二端。本發明亦提供一種電導抗體探針晶片之製作方法,其 中係將複數個有機電導分子,大致具有延伸且實質為環狀鏈之分 子,共價鍵結佈覆到基本抗體探針上,每一個該電導抗體探針各係 共價鍵結於該些有機電導定錨分子中對應一定錨分子反對於環狀 鏈分子結構之該第一端之一第二端。 本發明並提供抗體探針晶片之一種無探針半成品晶片基板製 作方法,可預先儲存以在需要時聯結該抗體探針晶片進行檢測感 201124722 測所需之探針分子,該無探針半成品晶片基板包括有:一基板, 該基板一表面上佈覆有一金屬薄膜層;與複數個的有機電導定錨 分子,大致具有π共軛系統電子傳遞能力之環狀鏈分子結構,每一 個該些定錨分子各係以其環狀鏈分子之一第一端直接共價鍵結於 該金屬薄膜層上,或透過聯結分子間接共價鍵結於該金屬薄膜層 上;且其反對於該環狀鏈分子構形之該第一端之一第二端,可於 該需要情況下與該探針分子共價鍵結,以完整形成該分子探針晶 • 片。本發明亦提供一種電導抗體探針晶片之製作方法,其中係將 複數個有機電導分子,大致具有延伸且實質為環狀鏈之分子,共價 鍵結佈覆到基本抗體探針上,每一個該電導抗體探針各係共價鏈 結於該些有機電導定錨分子中對應一定錨分子反對於環狀鏈分子 結構之該第一端之一第二端。 本發明並提供一種抗體探針晶片之製作方法,其步驟包括有先 於一基板之一表面上佈覆一金屬薄膜層;再將複數個大致具有延 *伸且實質為環狀鏈分子之有機電導定錨分子,其各自環狀鏈形結 構之一第〜端直接共價鍵結於該金屬薄膜層上,或透過聯結分子 間接共價鍵結於該金屬薄膜層上。本發明之方法亦可再於每一個 該些定錨分子對應於該第一端之第二端分別共價鍵結一抗體探 針。本發明亦提供一種電導抗體探針晶片之製作方法,其中係將 複數個有機電導分子,大致具有延伸且實質為環狀鏈之分子,共價 鍵結佈覆到基本抗體探針上,每一個該電導抗體探針各係共價鍵 201124722 結於該些有機電導定錨分子中對應一定錨分子反對於環狀鏈分子 結構之該第一端之一第二端。 【實施方式】 本發明爲製備具有共價鍵結定錨分子之抗體探針晶片,其晶片 之基材(substrate)係可使用一般的砂(Si, silicon),氮化砂(Si02, silicon nitride),石英(quartz,氧化矽成份),玻璃(glass,砂酸鹽類) • 或雲母(含KAlSi04)的平板材料。基材表面上佈覆一層金屬,其最 佳係利用,例如,熱蒸鍍(thermal evaporation)或電子束蒸鍍(e_ beam evaporation)的方式進行單層或複數層金屬薄膜層的佈覆。適用的 金屬包含金(Au(III),銀(Ag),銅(Cu),鉑(Pt),鎳(Ni),鋅(Zn),鍺 (Ge),汞(Hg),鈀(Pd)等。以抗體探針晶片之用途為例,較佳之金 屬為金或銀。一般採用金是由於Au晶格排列中以Au(III)之表面 能量最低且較易製備 • 本發明之抗體探針晶片若作為感測晶片之用途,可適用於諸如 電學感測分析方式的偵測,例如,作為電學電流(current)感測晶片 及電學阻抗(impedance)感測晶片之用途。也作為電化學電容 (capacitance)及法拉第感測器(faradaic sensor)之用途。於另一種用 途之中,本發明之抗體探針晶片係被當作場效電晶體(field effect transistor)晶片使用,可應用於諸如生物場效電晶體感測分析方式 的偵測。在另一種用途之中,本發明之探針晶片係被當作振盪晶 m 11 201124722 片使用,可應用於諸如壓電(piezoelectric)生物感測分析方式的偵 測,例如,石英振遺微質坪(quartz crystal microbalance)。本發明之 最佳實施例,係使用電學生物感測分析方式的偵測,作為電學電 流感測晶片及電學阻抗感測晶片之用途。 依據本發明,晶片基板上所佈覆之金屬薄膜層若依特別設計並 經特定製程處理之後可以成為依特定陣列(array)方式排列的微陣 列金屬基板。此種具陣列金屬薄膜電極排列之金屬佈覆電感測元 • 件,可使用於應用電感測原理的生物感測系統上。 依據本發明,晶片基材(substrate)上所佈覆之金屬薄膜層(metal film),其化學修飾係採用具sp3(金與硫原子)或sp(銀與硫原子)混 成軌域共價鍵結(covalent bonding)的形式,因此增加了抗體探針晶 片基材表面上,被固定化的基本抗體或電導抗體分子探針的穩定 性。在生物晶片的應用用途之中,抗體探針分子可爲抗體分子 (antibody molecules)或是活性抗體分子片斷分子(antigen-binding ® fragment,Fab)。在生物晶片的應用用途之中,本發明共價鍵結所 達成的基本抗體或電導抗體探針固定化可在晶片以緩衝液(buffer) 進行處理,於晶片表面上探針(probe)與檢體中的標的物(target)間 進行相互作用過程中的結合(association),平衡(equilibrium),解離 (dissociation),與再生(regeneration)步驟時,晶片上以共價鍵結方 式所固定化的抗體探針,即不致因強酸緩衝液的沖洗而脫落流失。 依據本發明,晶片基材上所佈覆之金屬薄膜層,其化學鍵結方 m 12 201124722 式提供一種新的形式,可將抗體探針迅速地固定化於晶片基板表 面上,縮短探針的固定化所需時間。本發明係具有共價鍵結有有 機電導(電子傳導)定錨分子之抗體探針晶片,定鋪分子大致具有π 共軛系統電子傳遞能力之環狀鏈分子結構,在某些生物晶片的應 用用途之中,生物分子探針的固定化所需時間,可從習知技術依 賴傳統物理吸附(physical adsorption)作用進行處理所需的三至六 小時,大幅縮減到三至五分鐘的程度。 • 本發明之有機電導抗體探針晶片,典型係可適用於即時感測晶 片之用途。依據本發明之方法所製備之抗體探針晶片能專一性地 與受檢分子(target),例如胜肽、蛋白質、病毒表面抗原、核酸分 子中的某些特定官能基進行親合性結合,形成具有導電能力專一 性的抗體探針。利用此等具導電能力之專一性抗體探針,可針對 特定的生物醫學檢測樣品進行專一性快速電性感測與量測。 依據本發明製備一較佳實施例,抗體探針晶片基材可以是微機 籲電(microelectronic mechanic system, MEMS)製程所使用的玻璃晶 圓(glass wafer)或一般光學儀器所使用的載玻片,其上覆佈蒸鍍諸 如金,銀,銅,鈾,鎳,鋅,鍺,汞或IG等之一層金屬薄層。此種塗佈有金屬 的抗體探針晶片基板,本身可以當作電極片使用。由於晶片基板 材質屬於導電元件,因此可以應用於一般以電學檢測原理為基礎 的偵測儀器上。例如,適用於電學,電化學電極,及電晶體電極分析 形式的偵測。 [S] 13 201124722 依據本發明之製備方法,抗體探針晶片基板上的有機電導定錨 分子係以共價鍵結的形式聯結基板及探針並具有電子傳導之能 力,因此增加了晶片基板表面固定化探針的穩定性及電導性。因 探針的穩定性及電導性,進行樣品檢測時,晶片上未經結合的分子 可利用緩衝液沖洗移除,降低雜質對檢測結果的干擾,以提高探 針和生物醫學檢測樣品恤液、尿液、體液、精液、鼻液、喉液檢 體)中之標的物(target)兩者間之親合性(affinity)與結合容量(binding • capacity),,並應用在與電感測相關的抗體探針晶片上。 依據本發明,要在抗體探針晶片上聯結固定化的抗體探針,首 先須令選定的有機電導定錨分子晶片基板上的金屬,兩者之間生 成共價鍵結,直接連接於該金屬薄膜層上,或透過聯結分子間接共 價鍵結於該金屬薄膜層上。有機電導定錨分子另外必須預留一官 能基,其可以和欲連結的抗體探針分子進行化學共價鍵結反應。 例如,依據本發明之數種製備較佳實施例,於塗佈有金或銀的晶 * 片基板上,可以採用有機硫化物(R-SH)作為主要的定錨分子。這 是由於硫原子極易與金或銀等過渡金屬表面形成強的親合力。其 中,有機硫化物可爲⑴烷基㈣㈣)硫化物、(2傷苯(olig〇benzene) 硫化物及(3)寡噻吩(oligothiophenes)硫化物。在本發明中,後兩者 又爲有機電導定錨分子之兩種較佳製備實施例,其主要爲具有π共 軛系統電子傳導能力之環狀鏈分子結構主要爲寡苯(oiigopheny1), 寡噻吩(oligothiophene),寡吡咯(〇lig〇Pyrr〇l)及寡吡咯碇 201124722 (oligopyridine)環狀鏈分子結構。 在本發明之一製備較佳實施例之中,首先可在基板上放置焼基 硫化物當作聯結分子間接將有機電導定錨分子連結到該金屬薄膜 層上。例如,以直鍵焼基爲主幹的氫硫基焼胺(mercaptoalkylamine), 其分子結構為[HS(CH2)nNH2],其中n=2〜16。其中做爲錨基(anchor group)的硫原子會與金金屬表面形成類似sp3的鍵結形態。而硫原 子會與銀金屬表面形成類似sp的鍵結。而有機分子末端的胺基 • (-NH2)則可保留,作為親核劑以利於進行有機電導定錨分子的鍵結, 進而進行抗體探針衍生鍵結。 利用前述以金或銀金屬塗佈為基礎的抗體探針感測晶片,進行 檢測時由於晶片是固態而待檢測物則為液態(諸如血液尿液,體液, 唾液,喉液,或陰道液等)因此偵測的靈敏度和極限係依晶片上固定 化探針分子的立體障礙性(steric hindrance)與自由度而定。定錨分 子原子間除需保持良好的自由度之外,定錨分子和探針兩者之間 * 亦必須維持一良好的自由度,以模擬探針分子與待測物在液-液相 中的真實相互作用。 另夕利用前述以有機電導定鋪分子為基礎的抗體探針感測晶 片進行檢測時,因定錨分子具有π共軛系統電子傳導能力之環狀鏈 分子結構,因此偵測的電訊號(電流或阻抗値)靈敏度和極限,係依 金屬薄膜上電導定錨分子及固定化抗體探針的導電性(electrical conductivity)而定。定鋪分子各個碳原子八軌域需重暨以進丫了線性 15 201124722 電子傳導外,抗體探針巨分子,例如,抗體分子免疫球蛋白G分子 (immunoglobulin (¾ IgG)亦需被電子工程化,即將有機電導分子,共 價鍵結佈覆到基本抗體探針上,便形成一條從底層金屬薄膜直串 至抗體探針(IgG)的頂層抗原結合部位(antigen-binding site)的整條 線性垂直導電電極,以便應用在電訊號的抗體探針感測晶片裡。 可聯結杭體探針之基本有機雷導分子金屬基板之製備方法 圖1,2及3之化學反應分別顯示依據本發明數種製備較佳實 施例,於蒸鍍覆佈有金(Au),銀(Ag)或銅(Cu),鈾(Pt),鎳(Ni)的金屬薄 膜基板(substrate)表面上,逐步利用化學修飾處理可固定化之基本 有機電導分子。 在本發明有關第一種使用有機電導定錨分子製備較佳實施例 裡,圖1之化學反應所得結果,為可聯結各式抗體探針之基本有機 電導晶片基板101。其可供連結用來偵測各種特定物(target)所需用 之抗體探針分子(probe),以進行相關生物,醫學,食品或環境樣本之 檢測。在本發明一較佳實施例之中,如圖1之化學反應所顯示的, 先在覆佈蒸鍍金(Au)金屬薄膜層120之晶片基板110上,固定有機 電導分子噻吩(thiophene)硫化物:5’ -(甲基)硫醇基-5-醛基-2,2’ -二噻吩。此可以利用將蒸鍍有金或銀之晶片基板浸入濃度約為10 mM的5’ -(甲基)硫醇基-5-醛基-2,2’ -二噻吩水溶液,或者浸入含 201124722 有約10 mM的5’ -(甲基)硫醇基-5-酸基-2,2’ -二噻吩的中性磷酸 鹽緩衝溶液(PBS,PH=7.2)之中,均勻震盪反應大約二小時。使晶 片上的金與5’ -(甲基)硫醇基-5-醛基-2,2’ -二噻吩產生自我組裝 之排列。之後,利用諸如乙醇(ethanol)和蒸餾水(distilled water)清 洗基板,即可得到具有5’ -(甲基)-5-醛基-2,2’ -二噻吩表面修飾的 有機電導基板基板。 在本發明有關在第二種使用有機電導定錨分子製備較佳實施 • 例裡,圖2之一步化學反應所得結果,為可聯結各式抗體探針之基 本有機電導晶片基板102〇其可供連結用來偵測各種特定物(target) 所需用之抗體探針分子(probe),以進行相關生物醫學,食品或環境 樣本之檢測。在本發明一較佳實施例之中,如圖2之化學反應所 顯示的,先在覆佈蒸鍍金(Au)金屬薄膜層120之晶片基板110上, 固定有機電導分子寡苯(oligophenyl)硫化物:/>4’ -硫醇基-4-醒基 -1,1-二苯。此可以利用將蒸鍍有金或銀之晶片基板浸入濃度約為 籲 10 mM的;>4’ -硫醇基-4-醒基-1,1-二苯在四氫峡喃(tetrahydrofuran) 溶液裡,均勻震盪反應大約二小時。使晶片上的金與-硫醇基 -4-醛基-1,1-二苯產生自我組裝之排列。之後利用諸如乙醇(ethan〇l) 和蒸餾水(distilled water)清洗基板,即可得到具有Μ-硫醇基-4-醛 基-U-二苯表面修飾的有機電導基板。 在本發明有關在第三,四種使用有機電導定錨分子製備較佳實 施例裡,圖3之逐步化學反應所得結果(圖3Β與圖3C),為可聯結 17 201124722 各式抗體探針之基本有機電導晶片基板。其可供連結用來偵測各 種特定物(target)所需用之抗體探針分子(probe),以進行相關生物 醫學,食品或環境樣本之檢測。 首先,在本發明一製備較佳實施例之中,如圖3A之化學反應 所顯示的,先在覆佈蒸鍍金或銀金屬薄膜層120之晶片基板110 上,固定焼基(alkyl)硫化物:2-硫基乙胺(2-thiol-ethanolamine))。此 可以利用將蒸鍍有金或銀之晶片基板浸入濃度約為1〇〇 mM的2- • 硫基乙胺水溶液,或者浸入含有約1〇〇 mM的2-硫基乙胺的中性 磷酸鹽緩衝溶液(PBS) (pH=7.2)之中,均勻震盪反應大約二小時。 使晶片上的金與cysteamine產生自我組裝(self assembly)之排列。 之後,利用諸如乙醇(ethanol)和蒸飽水(distilled water)清洗基板 103,即可得到具有2-硫基乙胺表面修飾的基板103。 接著,在本發明有關第三種使用有機電導定錨分子製備較佳實 施例裡,圖3B之晶片化學反應顯示,圖3A修飾反應所得基板 • 103,與本發明第一種有機電導分子噻吩(oligothiophene)硫化物衍 生物:5”-醛基-5-羧基-2,2’,5’,2”-三噻吩 (5”-aldehyde-5-carboxyl-2,2’,5’,2”-trithiophene,簡稱 AC-TTP,結構 為CHO(C4H2S)2COOH)水溶液(100 mM),震盪均勻反應2小時 後,如此便可獲得如圖3B中所顯示反應結果之基板104。AC-TTP 其一末端的醛基(-CH0)可與基板上一級胺基(-NH2)進行偶合反 應,另一末端的殘基(-COOH)可預留作為親和劑,保留供反應後進 201124722 行生物分子探針的衍生。之後,分別各以二氯甲烷與離子水清洗 晶片10分鐘,以便除去晶片表面多餘的AC-ΤΤΡ分子。 接著,在本發明有關第四ί重使用有機電導定錨分子製備較佳實 施例裡,圖3C之晶片化學反應顯示,圖3Α修飾反應所得基板 103,與本發明第二種有機電導分子寡苯(oligobenzene)硫化物衍生 物:4'-醒基-4-竣基二聯苯(4'aldehyde-4-carboxyl dibenzene,簡稱 AC-DBZ,結構為CHO(C6H6)2COOH)水溶液(100 mM),震盪均勻 •反應2小時後,如此便可獲得如圖3C中所顯示反應結果之基板 105。AC-DBZ其一末端的醛基(-CHO)可與基板上一級胺基(-NH2) 進行偶合反應,另一末端的竣基(-COOH)可預留作為親和劑,保留 供反應後進行生物分子探針的衍生。之後,分別各以二氯甲院與 離子水清洗晶片10分鐘,以便除去晶片表面多餘的AC-DBZ分 子。 注意到圖3A中之基板1〇3係屬抗體探針晶片之一種半成品晶 ^ 片。以圖3B與圖3C中之有機電導定錨化合物而言,其係為末端 為羧基[-COOH]的一種衍生化合物,亦即,其環狀鏈形分子構形遠 離基板110之金屬佈覆層120之末端是為一羧基。依據本發明, 基板104及105係為抗體探針晶片的一種半成品。這是由於此基 板104及105上的每一定錨分子的羧基,尚未聯結任何感測用途所 需的抗體探針(probe)。此種半成品基板1〇4及105可以在適當的 條件之下儲存一段長時間。典型可達至少三個月之久。當有需要 201124722 時,半成品基板104及105便可以進一步快速地進行處理,聯結 適合與羧基共價鍵結的多種抗體探針中的任何一種,以應用於特 定的偵測用途。 依據本發明,半成品基板聯結抗體探針所需的共價鍵結處理可 以極為快速。典型的處理可以快至約三分鐘的共價鍵結反應時間 的範圍。在醫學用途之中,當如新型流感(H1N1)類型的疫病爆發 時,依據本發明之抗體探針設計觀念,諸如圖3B與圖3C中所顯 • 示之半成品基板104及105即可由庫存之中取出,快速進行探針 聯結處理,以便快速而大量地產出電學檢測抗體晶片,應用於疫 病病毒的即時追蹤。 例1: 圖4之化學反應顯示,係為可適於連結各式抗體探基本有機電 導基板101,可供連結至各種特定抗原(target)檢測所需用之抗體探 針(probe)製備方法,以進行相關生物醫學樣本(血液、尿液、體液、 精液、唾液、喉液檢體)中之lll(target)檢測。 圖4之化學反應即顯示,在本發明一實施例之中,圖1之基本 晶片基板101表面固定有有機電導分子寡噻吩(thiophene)硫化物: 5’ -(甲基)硫醇基-5-醛基-2,2’ ·二噻吩 (5”-mercaptomethyl-5-aldehyde-2,2’-dithiophene,簡稱 MMAD)。此 有機電導分子之醛基[-CHO]可與抗體探針(probe)上的胺基[-NH2] 20 201124722 進行亞胺鍵鍵結(imine bonding, shiff base)反應,以便將抗體探針 共價鍵結到有機電導基板101上。之後,形成具有與標的物(target) 專一性結合的能力的電感測晶片基板111。 a. 以 HBS 緩衝液(10mM HEPES pH 7.4, 150 mM NaCl,3.4mM EDTA,0.005% surfactant P20)或 PBS (Phosphate buffered saline pH 7.4)緩衝液(137 mM NaCl,2.7 mM KC1,10 mM Na2HP04, 2 mM KH2P04)恒定流速(5微升/分鐘)進入流道,流經含有噻吩硫化物 ® MMAD的晶片基板101,清洗晶片基板105。 b. 將50微升濃度約為200微克/毫升具有胺基的抗體探針分 子溶液,注射進入流道,流經晶片基板101,使其與醛基[-CHO] 進行亞胺鍵鍵結(imine bonding, shiff base)反應,形成共價鍵結 (_CH=N-)〇將抗體探針(probe)共價鍵結到有機電導基板101上 c. 反應完成後,使用HBS緩衝液恒流清洗平衡基板111,以便 將未反應的抗體探針流出晶片基板。此時即可獲得圖4中所顯示 * 末端共價鍵結有抗體探針衍生化合物的基板111。 此類型的生物感測晶片,其定錨有機電導分子末端所聯結之抗 體探針(antibody probe),諸如免疫球蛋白(3 (Immunoglobulin G)、 免疫球蛋白M (Immunoglobulin Μ)、免疫球蛋白A (^Immunoglobulin A)、免疫球蛋白 E (Immunoglobulin E)、免疫球蛋 白D (Immunoglobulin D)具有與標的物(target)專一性結合的能九 利於曰後電學感測相關之生物醫學檢驗。 21 201124722 例2·· 圖5之化學反應顯示,係為可適於連結各式抗體探針之基本有 機電導基板102,可供連結至各種特定分子(target)檢測所需用之抗 體探針(probe)製備方法,以進行相關生物醫學樣本恤液、尿液、 體液、精液、唾液、喉液檢體)中之標的物(target)檢測。 圖5之化學反應即顯示,在本發明一實施例之中,圖2之基本 晶片基板102表面,固定有有機電導分子寡苯(phenyl)硫化物: ^>4’ -硫醇基-4-醒基-1,1-二苯(p-f-mercapto-laldehyde dibenzene, 簡稱MA-DBZ,結構為CHO(C6H6)2COOH)。此有機電導分子之醛 基[-CH0]可與抗體探針(pr〇be)上的胺基[-NH2]進行亞胺鍵鍵結 (imine bonding,shiff base)反應,以便將抗體探針共價鍵結到有機 電導基板102上。之後,形成具有與標的物(target)專一性結合的能 力的電感測晶片基板112。 a. 以 HBS 緩衝液(10mM HEPES pH 7.4, 150 mM NaCl,3.4mM EDTA,0.005% surfactant P20)或 PBS (Phosphate buffered saline pH 7.4)緩衝液(137 mM NaCl,2.7 mM KC1,10 mM Na2HP04, 2 mM KH2P04)恒定流速(5微升/分鐘)進入流道,流經含有噻吩硫化物 MMAD的晶片基板102,清洗晶片基板102。 b. 將50微升濃度約為200微克/毫升具有胺基的抗體探針溶 液,注射進入流道,流經晶片基板102,使其與醒基[-CHO]進行 m 22 201124722 亞胺鍵鍵結(imine bonding, shiff base)反應,形成共價鍵結 (-CH=N-)。將抗體探針(probe)共價鍵結到有機電導基板102上 c.反應完成後,使用HBS緩衝液恒流清洗平衡基板112以便 將未反應的抗體探針流出晶片基板。此時即可獲得圖5中所顯示 末端共價鍵結有抗體探針衍生化合物的基板112。 此類型的生物感測晶片,其定錨有機電導分子末端所聯結之抗 體探針(antibody probe),諸如免疫球蛋白 G (Immunoglobulin G)、 ® 免疫球蛋白M (Immunoglobulin Μ)、免疫球蛋白A (Immunoglobulin A)、免疫球蛋白 E (Immunoglobulin E)、免疫球蛋 白D (Immunoglobulin D)具有與標的物(target)專一性結合的能力, 利於日後電學感測相關之生物醫學檢驗。 例3: 圖6之化學反應顯示,係為可適於連結各式抗體探針之基本有 機電導基板103,可供連結至各種特定分子(target)檢測所需用之抗 體探針(probe)製備方法,以進行相關生物醫學樣本(血液、尿液、 體液、精液、唾液、喉液檢體)中之標的物(target)檢測。 圖6之化學反應即顯示,在本發明一實施例之中,圖3B之基 本晶片基板104表面具有有機電導寡噻吩(〇iig0thi〇phene)硫化物 5”- 醛基 -5- 羧基 -2,2’,5,,2”- 三噻吩 (5”-aldehyde-5-carboxyl-2,2,,5,,2,,-trithiophene,簡稱 AC-TTP,結構 23 201124722 為CHO(C4H2S)2COOH)所構成之有機電導分子,在圖6之化學 反應裡,利用1-(3-二甲氨基丙基)-3-乙基碳二亞胺 (N-ethyl-N’-(dimethylaminopropyl)carbodiimide,簡稱 E-DAPC),與 N-徑基號拍亞胺(N-hydroxysuccinimide,簡稱 HIS), [HO-N-(CO)2(CH2)2)]對定錨有機電導分子之羧酸基[-COOH]進行 醯胺化(amidation)反應,以便將抗體探針(probe)共價鍵結到有機電 導基板104上。HIS與E-DAPC之分子結構係分別如圖6之反應 • 式中所顯示。此HIS/E-DAPC混合物將先活化有機電導分子之羧 酸基[-COOH],之後再與具有胺基的抗體探針等結合: a.以 HBS 緩衝液(10mM HEPES pH 7.4, 150 mM NaCl, 3.4mM EDTA, 0.005% surfactant P20)或 PBS (Phosphate buffered saline pH 7.4)緩衝液(137 mM NaCl,2.7 mM KC1, 10 mM Na2HP04, 2 mM KH2P〇4)恒定流速(5微升/分鐘)進入流道,流經含有噻吩硫化物 AC-TTP的晶片基板104,清洗晶片基板104。 ® b.將50微升的0.1 M HIS/0.4M E-DAPC (1:1)混合溶液,注射 進入流道,流經晶片基板104,使其活化AC-TTP之羧酸基。 c. 將50微升濃度約為200微克/毫升具有胺基的抗體分子溶 液,注射進入流道,流經晶片基板104,使其與羧基的活化基 (-CO-O-C4O2H4N)進行醯胺化(amidation)反應,形成共價鍵結 (-CONH·)。將抗體探針(probe)共價鍵結到有機電導基板上。 d. 反應完成後,使用HBS緩衝液恒流清洗基板,之後使用5〇 m 24 201124722 微升濃度約為 1M 的乙醇胺(ethanolamine hydrochloride pH 8.5)溶 液,注射進入流道,流經晶片基板114,以便將未反應的活化基 (-CO-0-C4〇2H4N)完全醯胺化(amidation)。此時即可獲得圖6中所 顯示末端共價鍵結有抗體分子衍生化合物的基板114。 此類型的生物感測晶片,其定錨有機電導分子末端所聯結之抗 體探針(antibody probe),諸如免疫球蛋白 G (Immunoglobulin G)、 免疫球蛋白M (Immunoglobulin Μ)、免疫球蛋白A Φ (^Immunoglobulin Α)、免疫球蛋白 E (Immunoglobulin Ε)、免疫球蛋 白D (Immunoglobulin D)具有與標的物(target)專一性結合的能力, 利於日後電學感測相關之生物醫學檢驗。 例4: 圖7之化學反應顯示,係為可適於連結各式生物探針之基本有 機電導基板105,可供連結至各種特定分子(target)檢測所需用之抗 ^ 體探針(probe)製備方法,以進行相關生物醫學樣本(血液、尿液、 體液、精液、唾液、喉液檢體)中之標的物(target)檢測。圖7之化 學反應即顯示,在本發明一較佳實施例之中,圖3C之基本生物晶 片基板105表面,具有寡苯(phenyl)硫化物醛基-4-羧基二聯苯 (4'-aldehyde-4-carboxyl dibenzene,簡稱 AC-DBZ,結構為 CHO(C6H6)2COOH)所構成之有機電導分子,在圖7之化學反應裡, 利 用 N- 徑基琥 珀亞胺 m 25 201124722 N-ethyl-N’-(dimethylaminopropyl)carbodiimide,簡稱 Ε-DAPC,與 N-徑基號拍亞胺(N-hydroxysuccinimide),簡稱 HSI, [HO-N-(CO)2(CH2)2)]對定錨有機電導分子AC-DBZ之羧酸基 [•COOH]進行醯胺化(amidation)反應,以便將抗體探針(probe洪價 鍵結到有機電導基板105上。HSI與E-DAPC之分子結構係分別 如圖7之反應式中所顯示。此HSI/E-DAPC混合物將先活化有機 電導分子AC-DBZ之羧酸基[-COOH],之後再與具有胺基的抗體 • 探針等結合: a. 以 HBS 緩衝液(10mM HEPES pH 7.4, 150 mM NaCl, 3.4mM EDTA, 0.005% surfactant P20)或 PBS (Phosphate buffered saline pH 7.4)緩衝液(137 mM NaCl, 2.7 mM KC1,10 mM Na2HP04, 2 mM KH2PO4)恒定流速(5微升/分鐘)進入流道,流經含有寡苯硫化物 AC-DBZ的晶片基板105,清洗晶片基板105。 b. 將50微升的0.1 M HIS/0.4M E-DAPC (1:1)混合溶液,注射 ^ 進入流道,流經晶片基板105,使其活化AC-DBZ之羧酸基。 c. 將50微升濃度約為200微克/毫升具有胺基的生物分子溶 液,注射進入流道,流經晶片基板105,使其與羧基的活化基 (-CO-O-C4O2H4N)進行醯胺化(amidation)反應,形成共價鍵結 (•CONH-)。將抗體探針(probe)共價鍵結到有機電導基板105上。 d. 反應完成後,使用HBS緩衝液恒流清洗基板,之後使用50 微升濃度約為 1M 的乙醇胺(ethanolamine hydrochloride pH 8.5)溶 m 26 201124722 液,注射進入流道,流經晶片基板115,以便將未反應的活化基 (-CO-0-C4〇2H4N)完全醯胺化(amidation)。此時即可獲得圖7中所 顯示末端共價鍵結有抗體探針衍生化合物的基板115。 此類型的生物感測晶片,其定錨有機電導分子末端所聯結之抗 體探針(antibody probe),諸如免疫球蛋白 G (Immunoglobulin G)、 免疫球蛋白M (Immunoglobulin Μ)、免疫球蛋白A (Immunoglobulin A)、免疫球蛋白 E (Immunoglobulin E)、免疫球蛋 白D (Immunoglobulin D)具有與標的物(target)專一性結合的能力, 利於日後電學感測相關之生物醫學檢驗。 雖然本發明已配合圖式以較佳實施例揭示如上,然其並非用以 限定本發明。例如,本發明之說明雖然係以電感測生物晶片製備 方法為例進行詳細說明,但本發明具有共價鍵結有機電導定錨化 合物之抗體探針晶片,如同可以理解的,同樣亦可適用於其他使 用了金,銀,銅,鉑,鎳,鋅,鍺,汞或鈀當作生物晶片上感測薄膜之不同 用途的處理。其應用係例如電學感測晶片,電化學感測晶片,場效 電晶體感測晶片,壓電感測晶片及光學感測晶片等。因此,任何熟 習此技藝者,在不脫離本發明之精神和範圍之情況下,當可進行 此類更動與變化,因此本發明之保護範圍當以後附之申請專利範 圍所界定者為準。 例5: 27 201124722 圖8之化學反應顯示,係為製備表面佈覆有傳導電子 (conduction electrons)之抗體探針(antibody probe)501 所需之本發明 實施例之一,以進行相關電感測生物醫學樣本(血液、尿液、體液、 精液、唾液、喉液檢體)中之標的物(target)親和性電學檢測。 圖8之化學反應即顯示,在本發明一實施例之中,圖8之基本 免疫球蛋白G (Immunoglobulin G)抗體分子200,表面共價鍵結佈 覆具有傳導電子(conduction electrons)能力之有機電導寡分子 • (organic electron-conducting oligomer)301,例如,其最佳實施例爲 3-(噻吩-2-基)丙醒 (3-(thiophen-2-yl) propanal) [(C4H3S)-(CH2)-CHO ]。此有機電導寡分子之醛基[-CHO]可與抗體 探針(antibody probe),諸如免疫球蛋白 G (Immunoglobulin G)、免 疫球蛋白 M (Immunoglobulin M)、免疫球蛋白 A (Immunoglobulin A)、免疫球蛋白E (Immunoglobulin E)、免疫球蛋白D (Immunoglobulin D)上的胺基[-NH2]進行亞胺鍵鍵結(imine bonding, • shiff-base reaction)反應,以便將有機電導寡分子301共價鍵結到抗 體探針200上。之後,形成具有與標的物(target)專一性結合 (specific binding)能力的電感測抗體探針501。 a.以 HBS(10mM HEPES pH 7.4)緩衝液(150 mM NaCl,3.4mM EDTA,0.005。/。surfactant P20)或 PBS (Phosphate buffered saline pH 7.4)緩衝液(137 mM NaCl,2.7 mM KC1,10 mM Na2HP04, 2 mM KH2P〇4)恒定流速(5微升/分鐘)進入流道,流經並清洗固定有抗體 [S] 28 201124722 探針的晶片200。 b. 將50微升濃度約為10 mM具有醒基的3-(噻吩-2-基)丙醛有 機電導寡分子溶液301,注射進入流道,緩慢流經抗體探針晶片 200,持續24小時,使其與抗體分子表面四處胺基進行亞胺鍵鍵結 反應,將3-(噻吩-2-基)丙醛共價鍵結佈滿到抗體探針分子上。 c. 反應完成後,使用HBS或PBS緩衝液恒流清洗平衡抗體探 針晶片基板501,以便將未反應的3-(噻吩-2-基)丙醛寡分子301流 ® 出晶片基板。此時即可獲得圖8中所顯示,表面佈滿3-(噻吩-2-基) 丙醛有機電導寡分子301的抗體探針晶片基板501。 此類型的電導抗體感測晶片,具有與抗原標的物(target)專一性 結合的能力,利於日後電學感測相關之生物醫學檢驗。 例6: $ 圖9之化學反應顯不,係為製備具有導電電子(conduction electrons)抗體探針(antibody probe)502所需之本發明實施例之一, 以進行相關電感測生物醫學樣本(血液、尿液、體液、精液、唾液、 喉液檢體)中之標的物(target)親和性電學檢測。 , 圖9之化學反應即顯示,在本發明一製備實施例之中,圖9之 基本免疫球蛋白G (Immunoglobulin G)抗體分子200,共價鍵結表 面佈覆擁有導電電子(conduction electrons)之有機電導寡分子 (organic electron-conducting oligomer)302,例如,其最佳實施例爲 29 201124722 3-苯基丙醛(3-phenylpropanal) [(C6H5)-(CH2)-CHO ]。此有機電導 寡分子之醛基[-CHO]可與抗體探針(antibody probe)諸如免疫球蛋 白 G (Immunoglobulin G)、免疫球蛋白 M (Immunoglobulin M)、免 疫球蛋白 A (Immunoglobulin A)、免疫球蛋白 E (Immunoglobulin E)、免疫球蛋白D (Immunoglobulin D)上的胺基[-NH2]進行亞胺鍵 鍵結(imine bonding,shiff-base reaction)反應,以便將有機電導寡分 子302共價鍵結到抗體探針200上之後,形成具有與標的物(target) • 專一性結合(specific binding)能力的電感測抗體探針502。 a. 以 HBS(10mM HEPES pH 7.4)緩衝液(150 mM NaCl,3.4mM EDTA,0.005% surfactant P20)或 PBS (Phosphate buffered saline pH 7.4)緩衝液(137 mM NaCl,2.7 mM KC1, 10 mM Na2HP04, 2 mM KH2P04)恒定流速(5微升/分鐘)進入流道,流經並清洗固定有抗體 探針的晶片200。 b. 將50微升濃度約為10 mM具有醛基的3-苯基丙醛有機電 ® 導寡分子溶液302,注射進入流道,緩慢流經抗體探針晶片200, 持續24小時,使其與抗體分子表面四處胺基進行亞胺鍵鍵結反應, 將3-苯基丙醛共價鍵結佈滿到抗體探針分子上。 c. 反應完成後,使用HBS或PBS緩衝液恒流清洗平衡抗體探 針晶片基板502以便將未反應的3·苯基丙醛寡分子302流出晶片 基板。此時即可獲得圖9中所顯示,表面佈滿3-苯基丙醛有機電導 寡分子302的抗體探針晶片基板502 〇 201124722 此類型的電導抗體感測晶片,具有與抗原標的物(target)專一性 結合的能力,利於日後電學感測相關之生物醫學檢驗。 例7: 圖10之化學反應顯不,係為製備具有導電電子(conduction electrons)抗體探針(antibody probe)503所需之本發明實施例之一, 以進行相關電感測生物醫學樣本(血液、尿液、體液、精液、唾液、 _ 喉液檢體)中之標的物(target)親和性電學檢測。 圖10之化學反應即顯示,在本發明一製備實施例之中,圖10 之基本免疫球蛋白G (Immunoglobulin G)抗體分子200,共價鍵結 表面佈覆擁有導電電子(conduction electrons)之有機電導寡分子 (organic electron-conducting oligomer)303,例如,其最佳實施例爲 3-(1- D比咯-2-基)丙醛 (3-(l-pyrrol-2-yl) propanal P-(C4H4N)-(CH2)-CHO ]。此有機電導寡分子之醛基[-CHO]可與抗 體探針(antibody probe),諸如免疫球蛋白(3 (Immunoglobulin G)、 免疫球蛋白M (Immunoglobulin Μ)、免疫球蛋白A (Immunoglobulin A)、免疫球蛋白 £ (Immunoglobulin E)、免疫球蛋 白D (Immunoglobulin D)上的胺基[-NH2]進行亞胺鍵鍵結(imine bonding,shiff-base reaction)反應,以便將有機電導寡分子303共價 鍵結到抗體探針200上。之後,形成具有與標的物(target)專一性結 合(specific binding)能力的電感測抗體探針5〇3。 [S1 31 201124722 a. 以 HBS(10mM HEPES pH 7.4)緩衝液(150 mM NaCl,3.4mM EDTA, 0.005% surfactant P20)或 PBS (Phosphate buffered saline pH 7.4)緩衝液(137 mM NaCl,2.7 mM KC1,10 mM Na2HP04, 2 mM KH2P04)恒定流速(5微升/分鐘)進入流道,流經並清洗固定有抗體 探針的晶片200。 b. 將50微升濃度約為10 mM具有醒基的3-(1-卩比咯-2-基)丙醛 有機電導寡分子溶液303,注射進入流道,緩慢流經抗體探針晶片 • 200,持續24小時,使其與抗體分子表面四處胺基進行亞胺鍵鍵結 反應,將3-(1-吡咯-2-基)丙醛共價鍵結佈滿到抗體探針分子上。 c. 反應完成後,使用HBS或PBS緩衝液恒流清洗平衡抗體探 針晶片基板503,以便將未反應的3-(1-吡略-2-基)丙醒寡分子303 流出晶片基fc此時即可獲得圖1〇中所顯示,表面佈滿3-(1-吡略-2-基)丙醛有機電導寡分子303的抗體探針晶片基板503。 此類型的電導抗體感測晶片,具有與抗原標的物(target)專一性 * 結合的能力,利於日後電學感測相關之生物醫學檢驗。 例8: 圖11之化學反應顯不,係為製備具有導電電子(conduction electrons)抗體探針(antibody probe)504所需之本發明實施例之―, 以進行相關電感測生物醫學樣本(血液、尿液、體液、精液、唾液、 喉液檢體)中之標的物(target)親和性電學檢測。 32 201124722 圖11之化學反應即顯示,在本發明一實施例之中,圖11之基 本免疫球蛋白G (Immunoglobulin G)抗體分子200,共價鍵結表面 佈覆擁有導電電子(conduction electrons)之有機電導寡分子(organic electron-conducting oligomer)304,例如,其最佳實施例爲3-(卩比略 碇-2-基)丙醛(3-(pyridin-2-yl) propanal) [2-(C5H4N)-(CH2)-CHO ]。 此有機電導寡分子之醛基[-CHO]可與抗體探針(antibody pr〇be>諸 如免疫球蛋白G (Immunoglobulin G)、免疫球蛋白Μ (Immunoglobulin Μ)、免疫球蛋白 A (Immunoglobulin Α)、免疫球 蛋白 E (Immunoglobulin E)、免疫球蛋白 D (Immunoglobulin D)上 的胺基[-NH2]進行亞胺鍵鍵結(imine bonding,shiff-base reaction)反 應,以便將有機電導寡分子304共價鍵結到抗體探針200上之後, 形成具有與標的物(target)專一性結合(specific binding)能力的電感 測抗體探針504。 a. 以 HBS(10mM HEPES pH 7.4)緩衝液(150 mM NaCl,3.4mM EDTA,0.005¾ surfactant P20)或 PBS (Phosphate buffered saline pH 7.4)緩衝液(137 mM NaCl,2.7 mM KC1,10 mM Na2HP04, 2 mM KH2P〇4)恒定流速(5微升/分鐘)進入流道,流經並清洗固定有抗體 探針的晶片200。 b. 將50微升濃度約為10 mM具有醒基的3-(P比咯碇-2-基)丙醛 有機電導寡分子溶液304,注射進入流道,緩慢流經抗體探針晶片 2〇〇,持續24小時,使其與抗體分子表面四處胺基進行亞胺鍵鍵結 [S] 33 201124722 反應,將3-(吡咯碇-2-基)丙醛共價鍵結佈滿到抗體探針分子上。 c.反應完成後,使甩HBS或PBS緩衝液恒流清洗平衡坑體探 針晶片基板504,以便將未反應的3-(吡咯碇-2-基)丙醛寡分子304 流出晶片基板。此時即可獲得圖11中所顯示,表面佈滿3-(吡咯石定 -2-基)丙醛有機電導寡分子304的抗體探針晶片基板504。 此類型的電導抗體感測晶片,具有與抗原標的物(target)專一性 結合的能力,利於日後電學感測相關之生物醫學檢驗。 雖然本發明已配合圖式以較佳製備實施例揭示如上圖8-11,然 其並非用以限定本發明。例如,本發明之說明雖然係以電導抗體 探針晶片為例進行詳細說晛但本發明表面佈覆有機電導寡分子(1) 3-(噻吩-2-基)丙酸,⑵3-苯基丙醛,⑶3-(1-吡咯-2-基)丙醒,⑷ 3-(U比咯碇-2-基)丙醛之抗體探針,如同可以理解的,如圖12-15所 示,同樣亦可適用於其他上述四種有機電導寡分子之衍生物,以 製備具有導電電子(conduction electrons)之抗體探針。 再則,雖然本發明已配合圖式以較佳製備實施例揭示如上圖 8-11,然其並非用以限定本發明。如同可以理解的,如圖16-21所 示,同樣亦可適用於擁有導電電子(conduction electrons)之其他有 機電導寡分子暨其衍生物,以製備具有導電電子(conduction electrons)之抗體探針。其應用係例如電學感測晶片,電化學感測晶 片,場效電晶體感測晶片,壓電感測晶片等。因此,任何熟習此技 34 201124722 藝者,在不脫離本發明之精神和範圍之情況下,當可進行此類更 動與變化,因此本發明之保護範圍當以後附之申請專利範圍所界 定者為準。In the use of biochips or biosensor chips, an antibody probe immobilized on the surface of the substrate can be affinity-activated with a target in the test sample solution. Use (affinity reaction). Specific biomolecules can be detected based on the results of the reaction. The probe immobilized on the surface of the substrate may be an antibody or a fragment thereof, such as immunoglobulin G, immunoglobulin M, immunoglobulin A, and immunoglobulin A (Immunoglobulin A). Immunoglobulin E (Immunoglobulin D) or its immuno-binding fragments, or other affinity reaction or catalysis with the target to be tested a biomolecule of a virus, cell or tissue surface. Such a substrate is coupled with an immobilized antibody or a fragment thereof as a probe (probe> for biosynthesis in a medical sample of a biomedical sample (ie, a target to be analyzed (targe cut occurs for affinity, borrowing By examining the binding concentration or binding constant of the interaction between the two, a basic data diagnosis and experimental parameters can be provided. High affinity between the two^ High binding capacity and biostability are very important features in the detection of biochips. There are a variety of bioassays that require biomolecules such as proteins to be directly immobilized on the substrate. For example, Western blotting adsorbs proteins on polyvinylidene fluoride (PVDF) or nitrocellulose membrane substrates as probes, which can interact with surface functional groups on antibodies or antigenic proteins. Function to measure whether the sample contains such protein. In addition, another example is enzyme-linked immunosorbent assay The method (enZyme-linked immuno-sorbent assay, ELISA) is to adsorb a specific antibody (or antigen) on a polystyrene substrate, and then expose the substrate to the sample. If the sample contains These antibodies (or antigens) have high affinity specific antigens (or antibodies) that are combined with them to be detected by light output. For example, Rampal et al. S.  Pat.  No.  6,013,789,"Covalent attachment of biomolecules to derivatized polypropylene supports''^ The polypropylene film is first aminated, and then reacted with the polynucleotide containing the phosphoricidazolide at the end, thus, the polynucleotide Covalent attachment to polypropylene can be achieved via phosphoamidate bonding. ^ In addition, the use of self-assembly of molecules on the surface of indium tin oxide (ITO) to form self-assembled monolayers can also provide a new interface for exploring certain biomolecule specificities. Redox reaction. The organic ruthenium may be reacted with a substrate having a hydroxyl group on the surface (for example, ruthenium dioxide) to form a single or double layer organic ruthenium film. For example, Chrisey et al. S.  Pat.  No. In the case of "Selective attachment of biomolecules to patterned self-assembled surfaces", No. 5,688,642, an organic sand compound 201124722 having two active groups is proposed, which uses a reactive group at one end to form a linkage with a hydroxyl group on the surface of the substrate, and then the activity at the other end. The base links the biomolecule so that the biomolecule can be immobilized on the substrate. Although these methods have been widely used, there are disadvantages such as cumbersome and time-consuming non-conductivity of biomolecular probe preparation and unstable optical output, and limitations on commercial mass production. These biomolecular probes are often prepared by using a long chain of alkyl long-chain compounds to link substrates and probes, which are difficult to perform π-conjugated system electron transfer and conduction properties, and are difficult to apply in electricity and electronics. Biosensing technology. Moreover, due to the immobilization of biomolecule probe molecules on commonly used substrates such as PVDF, nitrocellulose or microscopic glass, the physical adsorption effect that is usually relied on is an instability. And a time consuming process. The entire immobilization process typically requires at least six to eight hours of incubation time. A typical treatment method is to first add a biomolecule probe to a wafer substrate and place the wafer. After a physical adsorption reaction between the biomolecule probe and the substrate for a certain period of time (about three to four hours), the ® procedure is repeated several times. After the cleaning, the blocking reagent is added, and after standing for a long time (usually about three to four hours), the wafer can be used as a biomolecular probe wafer. SUMMARY OF THE INVENTION Therefore, there is a need to provide a biomolecular probe chip, particularly an antibody probe chip, having a covalently bonded electron-conducting anchoring molecule. 201124722 molecules), or antibodies coated with organic-conducting molecules, which have the ability to conduct electrons with conduction electrons, which are simple and fast to prepare, and have high stability in storage and use. And specificity, and can quickly and accurately produce the electrical test of the sample. In order to achieve the foregoing and other objects, the present invention provides a method for fabricating a basic antibody probe wafer, comprising: a covalently bonded organic electrically conductive anchor molecule comprising: a substrate having a metal film layer disposed on a surface thereof; A plurality of organic conductance anchors, molecules having a cyclic chain molecular structure with an electron transfer capability of a π-conjugated system, mainly oligophenyl, oligothiophene, oligopyrrol, and oligosaccharide Oligopyridine cyclic chain molecular structure ^ each of these organic conducting anchor molecules, each of which is directly covalently bonded to the metal thin film layer at one end of the cyclic chain molecular structure, or through a coupling The molecule is indirectly covalently bonded to the metal thin film layer and a plurality of probe molecules, each of the basic antibody probes is covalently bonded to the anchor molecules, and the corresponding anchor molecules are opposed to the cyclic chain molecules. a second end of the first end of the structure. The invention also provides a method for fabricating a conductive antibody probe wafer, wherein a plurality of organic conducting molecules, substantially having an extended and substantially circular chain molecule, are covalently bonded to the basic antibody probe, each of which Each of the electrically conductive antibody probes is covalently bonded to the second end of the first end of the organic chain of the molecular structure. The invention also provides a probeless semi-finished wafer substrate manufacturing method for an antibody probe wafer, which can be pre-stored to couple the antibody probe wafer to detect the probe molecules required for the detection of 201124722, the probeless semi-finished wafer The substrate comprises: a substrate, a surface of which is covered with a metal thin film layer; and a plurality of organic conductive anchor molecules, the cyclic chain molecular structure having an electron transfer capability of the π conjugate system, each of which is determined Each of the anchor molecules is directly covalently bonded to the metal thin film layer by one end of one of its cyclic chain molecules, or indirectly covalently bonded to the metal thin film layer through a linking molecule; and it is opposed to the ring The second end of the first end of the chain molecular configuration can be covalently bonded to the probe molecule if necessary to form the molecular probe crystal. The invention also provides a method for fabricating a conductive antibody probe wafer, wherein a plurality of organic conducting molecules, substantially having an extended and substantially circular chain molecule, are covalently bonded to the basic antibody probe, each of which The electrically conductive antibody probes are each covalently linked to the second end of the first end of the cyclic chain molecular structure corresponding to a certain anchor molecule in the organic conductance anchor molecules. The invention also provides a method for fabricating an antibody probe wafer, the method comprising the steps of: coating a metal film layer on a surface of a substrate; and further comprising a plurality of organic molecules having substantially extended and substantially cyclic chain molecules The electrically conductive anchor molecule, wherein the first end of each of the cyclic chain structures is directly covalently bonded to the metal thin film layer, or indirectly covalently bonded to the metal thin film layer through a linking molecule. The method of the present invention may further covalently bond an antibody probe to each of the anchor molecules corresponding to the second end of the first end. The invention also provides a method for fabricating a conductive antibody probe wafer, wherein a plurality of organic conducting molecules, substantially having an extended and substantially circular chain molecule, are covalently bonded to the basic antibody probe, each of which The conductance antibody probes each of the covalent bonds 201124722 are associated with the second end of the first end of the organic chain of the anchoring molecule corresponding to a certain anchor molecule. [Embodiment] The present invention is to prepare an antibody probe wafer having a covalently bonded anchor molecule, and the substrate of the wafer can use general sand (Si, silicon), silicon nitride (SiO 2, silicon nitride). ), quartz (quartz, yttrium oxide), glass (glass, sulphate) • or mica (including KAlSi04) flat material. The surface of the substrate is coated with a layer of metal, which is preferably applied by, for example, thermal evaporation or e_beam evaporation. Suitable metals include gold (Au (III), silver (Ag), copper (Cu), platinum (Pt), nickel (Ni), zinc (Zn), germanium (Ge), mercury (Hg), palladium (Pd) For example, in the case of the application of the antibody probe wafer, the preferred metal is gold or silver. Gold is generally used because the surface energy of Au(III) in the Au lattice arrangement is the lowest and easier to prepare. If the wafer is used as a sensing wafer, it can be applied to detection such as electrical sensing analysis, for example, as an electrical current sensing chip and an electrical impedance sensing chip. Also as an electrochemical capacitor. The use of (capacitance) and faradaic sensors. In another application, the antibody probe wafer of the present invention is used as a field effect transistor wafer, and can be applied to, for example, a living organism. Detection of Field Effect Transistor Sensing Analysis Method. In another application, the probe wafer of the present invention is used as an oscillating crystal m 11 201124722 sheet, which can be applied to, for example, piezoelectric biosensing analysis. Method detection, for example, quartz vibration micro-plate (quartz cry Stal microbalance. The preferred embodiment of the present invention uses the detection of an electrical material sensing analysis method as an electrical current sensing wafer and an electrical impedance sensing wafer. According to the present invention, the wafer substrate is covered. The metal film layer can be used as a microarray metal substrate arranged in a specific array according to a special design and a specific process. The metal-coated electrode element with the array metal film electrode arrangement can be used for In the biosensing system using the principle of inductance measurement, according to the present invention, a metal film coated on a wafer substrate is chemically modified to have sp3 (gold and sulfur atoms) or sp ( Silver and sulfur atoms are mixed in the form of covalent bonding, thus increasing the stability of the immobilized basic antibody or conducting antibody molecular probe on the surface of the antibody probe wafer substrate. Among the applications, the antibody probe molecule can be an antibody molecule or an antigen-binding ® fragment (Fab). For the application of the wafer, the immobilization of the basic antibody or the conductive antibody probe achieved by the covalent bonding of the present invention can be performed on the wafer in a buffer, and the probe and the sample on the surface of the wafer. An antibody immobilized by covalent bonding on a wafer during the interaction, equilibrium, dissociation, and regeneration steps of the target in the interaction The probe, that is, does not fall off due to the flushing of the strong acid buffer. According to the present invention, the metal film layer coated on the wafer substrate has a new form of chemical bonding, m 12 201124722, which can rapidly immobilize the antibody probe on the surface of the wafer substrate and shorten the fixing of the probe. Time required. The present invention relates to an antibody probe wafer having a covalently bonded organic conductivity (electron conduction) anchor molecule, and the fixed molecular molecule has a cyclic chain molecular structure having an electron transfer capability of a π conjugate system, and is applied to some biochips. Among the uses, the time required for the immobilization of the biomolecule probe can be greatly reduced to three to five minutes from the three to six hours required for the conventional technique to rely on the conventional physical adsorption. • The organic conductivity antibody probe wafer of the present invention is typically applicable to the use of instant sensing wafers. The antibody probe wafer prepared according to the method of the present invention can specifically bind to a specific target functional group in a target molecule, such as a peptide, a protein, a viral surface antigen, or a nucleic acid molecule, to form an affinity probe. An antibody probe having conductivity specificity. Using these conductive specific antibody probes, specific rapid biosensing and measurement can be performed for specific biomedical test samples. According to the preferred embodiment of the present invention, the antibody probe wafer substrate can be a glass wafer used in a microelectronic mechanic system (MEMS) process or a slide used in general optical instruments. The upper cover is vapor deposited with a thin layer of a metal such as gold, silver, copper, uranium, nickel, zinc, bismuth, mercury or IG. Such a metal coated antibody probe wafer substrate can be used as an electrode sheet itself. Since the material of the wafer substrate is a conductive element, it can be applied to a detection instrument generally based on the principle of electrical detection. For example, it is suitable for the detection of electrical, electrochemical electrodes, and transistor electrode analysis formats. [S] 13 201124722 According to the preparation method of the present invention, the organic electrically conductive anchor molecule on the antibody probe wafer substrate bonds the substrate and the probe in a covalently bonded manner and has the ability of electron conduction, thereby increasing the surface of the wafer substrate The stability and electrical conductivity of the immobilized probe. Due to the stability and conductivity of the probe, when the sample is detected, the unbound molecules on the wafer can be washed and removed by buffer to reduce the interference of the impurities on the detection results, so as to improve the probe and the biomedical test sample, Affinity and binding capacity of the target in urine, body fluids, semen, nasal fluid, and laryngeal fluids, and applied to inductance measurements The antibody probe is on the wafer. According to the present invention, in order to bind an immobilized antibody probe on an antibody probe wafer, the selected organic conductivity is first determined to form a covalent bond between the metal on the anchor molecular wafer substrate and directly connected to the metal. The thin film layer is indirectly covalently bonded to the metal thin film layer via a linking molecule. The organic conducting anchor molecule must additionally have a functional group that can undergo a chemical covalent bonding reaction with the antibody probe molecule to be linked. For example, in accordance with several preferred embodiments of the present invention, an organic sulfide (R-SH) can be employed as the primary anchoring molecule on a substrate coated with gold or silver. This is because the sulfur atom easily forms a strong affinity with the transition metal surface such as gold or silver. Wherein, the organic sulfide may be (1) alkyl (tetra) (tetra) sulfide, (2 olig benzene sulphide and (3) oligothiophenes sulfide. In the present invention, the latter two are organic conductance Two preferred preparation examples of anchoring molecules, which are mainly cyclic chain molecular structures having electron conductivity of π-conjugated systems, are mainly oiigopheny1, oligothiophene, oligopyrrole (〇lig〇Pyrr) 〇l) and oligopyrrole 201124722 (oligopyridine) cyclic chain molecular structure. In a preferred embodiment of the invention, firstly, the sulfhydryl sulfide can be placed on the substrate as a binding molecule to indirectly anchor the organic conductance The molecule is bonded to the metal thin film layer. For example, a mercaptoalkylamine having a direct bond thiol group as its main structure has a molecular structure of [HS(CH2)nNH2], wherein n=2 to 16. The sulfur atom of the anchor group forms a sp3-like bond with the surface of the gold metal, while the sulfur atom forms a sp-like bond with the surface of the silver metal. The amine group at the end of the organic molecule (-NH2) Can be retained as a nucleophile For the bonding of the organic conductive anchor molecules, and then the antibody probe-derived bonding. The antibody probe is used to sense the wafer based on the gold or silver metal coating, and the detection is performed because the wafer is solid. It is liquid (such as blood urine, body fluids, saliva, laryngeal fluid, or vaginal fluid, etc.). Therefore, the sensitivity and limit of detection depend on the steric hindrance and degree of freedom of the immobilized probe molecules on the wafer. In addition to maintaining a good degree of freedom between the anchor molecules, the anchor molecule and the probe must also maintain a good degree of freedom to simulate the probe molecule and the analyte in the liquid-liquid phase. The real interaction in the middle. In the case of using the above-mentioned antibody probe-based sensing probe based on the organic conductivity-preserving molecule, the anchor molecule has a cyclic chain molecular structure with electron conduction capability of the π-conjugated system, so The sensitivity and limit of the measured electrical signal (current or impedance ,) depends on the electrical conductivity of the anchoring molecule and the immobilized antibody probe on the metal film. The carbon orbital eight-track domain needs to be re-entered for linearity. 15 201124722 Electron conduction, antibody probe macromolecules, for example, antibody molecule immunoglobulin G molecules (immunoglobulin (3⁄4 IgG) also need to be electronically engineered, soon to be organic The electrically conductive molecule, covalently bonded to the base antibody probe, forms a linear vertical conductive electrode that runs straight from the underlying metal film to the top antigen-binding site of the antibody probe (IgG). For application in the antibody probe sensing chip of the electrical signal. The preparation method of the basic organic light-guided molecular metal substrate capable of bonding the probes of the present invention, the chemical reactions of the first, second and third embodiments respectively show that the preferred embodiment is prepared according to the invention, and the gold-plated (Au) is deposited on the vapor-deposited cloth. On the surface of a metal film substrate of silver (Ag) or copper (Cu), uranium (Pt), and nickel (Ni), the basic organic conducting molecules that can be immobilized are gradually treated by chemical modification. In the preferred embodiment of the present invention relating to the preparation of the first organic conducting anchor molecule, the result of the chemical reaction of Figure 1 is a basic organic conducting wafer substrate 101 which can be coupled to various antibody probes. It can be used to link to the probe probes needed to detect various specific targets for the detection of relevant biological, medical, food or environmental samples. In a preferred embodiment of the present invention, as shown in the chemical reaction of FIG. 1, the organic conductive molecule thiophene sulfide is first fixed on the wafer substrate 110 coated with the gold (Au) metal thin film layer 120. : 5' -(Methyl)thiol-5-aldehyde-2,2'-dithiophene. This can be done by immersing a wafer substrate plated with gold or silver in a 5'-(methyl)thiol-5-aldehyde-2,2'-dithiophene solution at a concentration of about 10 mM, or by immersing it in 201124722. A neutral phosphate buffer solution of about 10 mM 5'-(methyl)thiol-5-acid-2,2'-dithiophene (PBS, pH=7. In 2), the shock is evenly oscillated for about two hours. The gold on the wafer is self-assembled with 5'-(methyl)thiol-5-aldehyde-2,2'-dithiophene. Thereafter, the substrate is cleaned with, for example, ethanol and distilled water to obtain an organic conductive substrate having a surface modification of 5'-(methyl)-5-aldehyde-2,2'-dithiophene. In the present invention, in the second preferred embodiment of the use of organic conductivity-determining anchor molecules, the results of one of the chemical reactions of FIG. 2 are available for the basic organic conductivity wafer substrate 102 which can be coupled to various antibody probes. Link the antibody probes required to detect various specific targets for detection of relevant biomedical, food or environmental samples. In a preferred embodiment of the present invention, as shown in the chemical reaction of FIG. 2, the organic conductive molecular oligophenyl sulfide is fixed on the wafer substrate 110 coated with the gold (Au) metal thin film layer 120. Compound: /> 4'-thiol-4-pylinyl-1,1-diphenyl. This can be achieved by immersing a wafer substrate evaporated with gold or silver at a concentration of about 10 mM; > 4'-thiol-4-keto-1,1-diphenyl in tetrahydrofuran In the solution, the reaction was evenly oscillated for about two hours. The arrangement of gold and -thiol-4-aldehyde-1,1-diphenyl on the wafer is self-assembled. Thereafter, the substrate is washed with, for example, ethanol (ethan〇l) and distilled water to obtain an organic conductive substrate having a surface-modified fluorenyl-thiol-4-aldehyde-U-diphenyl. In the preferred embodiment of the present invention relating to the preparation of the third and fourth organic-conducting anchor molecules, the results of the stepwise chemical reaction of Figure 3 (Fig. 3A and Fig. 3C) are conjugated to each of the 17 201124722 antibody probes. A basic organic conductivity wafer substrate. It can be used to link the antibody probes required to detect various specific targets for the detection of relevant biomedical, food or environmental samples. First, in a preferred embodiment of the present invention, as shown in the chemical reaction of FIG. 3A, an alkyl sulfide is first fixed on the wafer substrate 110 on which the gold or silver metal thin film layer 120 is coated. : 2-thiol-ethanolamine). This can be achieved by immersing a wafer substrate evaporated with gold or silver in a 2-ethylthioethylamine aqueous solution having a concentration of about 1 mM, or immersing in a neutral phosphoric acid containing about 1 mM of 2-thioethylamine. Salt buffer solution (PBS) (pH=7. In 2), the shock is evenly oscillated for about two hours. The arrangement of gold and cysteamine on the wafer is self assembled. Thereafter, the substrate 103 is washed with, for example, ethanol and distilled water to obtain a substrate 103 having a surface modification of 2-thioethylamine. Next, in the preferred embodiment of the present invention relating to the preparation of a third organic-conducting anchor molecule, the wafer chemical reaction of FIG. 3B shows that the substrate obtained by the modification of FIG. 3A is 103, and the first organic conductivity molecule thiophene of the present invention ( Oligothiophene) sulfide derivative: 5"-aldehyde-5-carboxy-2,2',5',2"-trithiophene (5"-aldehyde-5-carboxyl-2,2',5',2" -trithiophene, abbreviated as AC-TTP, having a structure of CHO(C4H2S)2COOH) (100 mM), after shaking for 2 hours, the substrate 104 as shown in Fig. 3B was obtained. The aldehyde group (-CH0) at one end of AC-TTP can be coupled with the primary amine group (-NH2) on the substrate, and the residue at the other end (-COOH) can be reserved as an affinity agent, which is reserved for reaction and then into 201124722. Derivation of biomolecule probes. Thereafter, the wafers were each washed with dichloromethane and ionized water for 10 minutes to remove excess AC-ΤΤΡ molecules on the surface of the wafer. Next, in the preferred embodiment of the present invention for the preparation of the fourth organically used anchoring anchor molecule, the wafer chemical reaction of FIG. 3C shows that the substrate 103 obtained by the modification reaction of FIG. 3 and the second organic conductivity molecular oligobenzene of the present invention. (oligobenzene) sulfide derivative: 4'-wound 4-carboxyl diphenyl (4'aldehyde-4-carboxyl dibenzene, AC-DBZ for short, structure CHO(C6H6)2COOH) aqueous solution (100 mM), Uniform oscillation • After 2 hours of reaction, the substrate 105 as shown in Fig. 3C was obtained. The aldehyde group (-CHO) at one end of AC-DBZ can be coupled with the primary amine group (-NH2) on the substrate, and the thiol group (-COOH) at the other end can be reserved as an affinity agent and retained for the reaction. Derivation of biomolecular probes. Thereafter, the wafers were each washed with a solution of dichlorocarbazine and ionized water for 10 minutes to remove excess AC-DBZ molecules on the surface of the wafer. It is noted that the substrate 1〇3 in Fig. 3A is a semi-finished wafer of the antibody probe wafer. In the organic conductive anchor compound of FIGS. 3B and 3C, it is a derivative compound having a terminal carboxyl group [-COOH], that is, a metal chain coating having a cyclic chain molecular configuration away from the substrate 110. The end of 120 is a carboxyl group. In accordance with the present invention, substrates 104 and 105 are a semi-finished product of an antibody probe wafer. This is due to the carboxyl groups of each anchor molecule on the substrates 104 and 105, and the antibody probes required for any sensing application have not yet been coupled. Such semi-finished substrates 1〇4 and 105 can be stored under appropriate conditions for a long period of time. Typical for at least three months. When required, 201124722, the semi-finished substrates 104 and 105 can be further processed quickly, and any of a variety of antibody probes suitable for covalent bonding with a carboxyl group can be coupled for specific detection applications. According to the present invention, the covalent bonding treatment required for the semi-finished substrate to bind the antibody probe can be extremely fast. Typical treatments can range up to about three minutes of covalent bonding reaction time. Among medical uses, when a new influenza (H1N1) type of disease erupts, the antibody probe design concept according to the present invention, such as the semi-finished substrates 104 and 105 shown in Figures 3B and 3C, can be stocked. The medium is taken out and the probe coupling process is quickly performed to quickly and massively produce an electrical detection antibody wafer for real-time tracking of the disease virus. Example 1: The chemical reaction shown in Fig. 4 shows that it is suitable for linking various types of antibody-detecting basic organic conductive substrate 101, and is capable of linking to various specific antigens for detecting target probes. For the detection of lll (target) in relevant biomedical samples (blood, urine, body fluid, semen, saliva, laryngeal samples). The chemical reaction of Fig. 4 shows that, in an embodiment of the invention, the surface of the base wafer substrate 101 of Fig. 1 is fixed with an organic conductive molecular thiophene sulfide: 5'-(methyl)thiol-5 -Aldehyde-2,2'-mercaptomethyl-5-aldehyde-2,2'-dithiophene (MMAD). The aldehyde group [-CHO] of this organic conductivity molecule can be combined with an antibody probe (probe) The amine group [-NH2] 20 201124722 is subjected to an imine bonding (shiff base) reaction to covalently bond the antibody probe to the organic conductive substrate 101. Thereafter, the composition and the target are formed ( Target) The ability to integrate the ability to measure the wafer substrate 111. a.  In HBS buffer (10 mM HEPES pH 7. 4, 150 mM NaCl, 3. 4mM EDTA, 0. 005% surfactant P20) or PBS (Phosphate buffered saline pH 7. 4) Buffer (137 mM NaCl, 2. 7 mM KC1, 10 mM Na2HP04, 2 mM KH2P04) A constant flow rate (5 μl/min) was introduced into the flow path, and passed through a wafer substrate 101 containing thiophene sulfide ® MMAD to clean the wafer substrate 105. b.  50 μl of a solution of the antibody probe molecule having an amine group concentration of about 200 μg/ml was injected into the flow channel and passed through the wafer substrate 101 to carry out imine bonding with the aldehyde group [-CHO]. , shiff base) reaction, forming a covalent bond (_CH=N-), covalently bonding the antibody probe to the organic conductivity substrate 101 c.  After the reaction is completed, the balance substrate 111 is washed with a constant flow of HBS buffer to flow the unreacted antibody probe out of the wafer substrate. At this time, the substrate 111 to which the antibody probe-derived compound is covalently bonded to the * terminal shown in Fig. 4 can be obtained. This type of biosensing wafer, which anchors an antibody probe linked to the end of an organic conducting molecule, such as immunoglobulin G, immunoglobulin M, immunoglobulin A (^Immunoglobulin A), immunoglobulin E (Immunoglobulin E), immunoglobulin D (Immunoglobulin D) have a specificity that can be combined with the target to biomedical tests related to post-sputum electrical sensing. 21 201124722 Example 2·· The chemical reaction of Figure 5 shows that the basic organic conductivity substrate 102 can be adapted to link various antibody probes, and can be used to link to various target probes for specific target detection. The preparation method is to perform target detection in relevant biomedical sample shirts, urine, body fluids, semen, saliva, and throat samples. The chemical reaction of Fig. 5 shows that, in one embodiment of the invention, the surface of the base wafer substrate 102 of Fig. 2 is fixed with an organic conductive molecular oligobenzene sulfide: ^>4'-thiol-4 - pf-mercapto-laldehyde dibenzene (MA-DBZ, structure CHO(C6H6)2COOH). The aldehyde group [-CH0] of the organic conductivity molecule can be subjected to an imine bonding (shiff base) reaction with an amine group [-NH2] on the antibody probe (pr〇be) to share the antibody probe. The valence is bonded to the organic conductivity substrate 102. Thereafter, an inductive wafer substrate 112 having the ability to specifically bind to the target is formed. a.  In HBS buffer (10 mM HEPES pH 7. 4, 150 mM NaCl, 3. 4mM EDTA, 0. 005% surfactant P20) or PBS (Phosphate buffered saline pH 7. 4) Buffer (137 mM NaCl, 2. 7 mM KC1, 10 mM Na2HP04, 2 mM KH2P04) A constant flow rate (5 μl/min) was introduced into the flow path, and passed through the wafer substrate 102 containing the thiophene sulfide MMAD to clean the wafer substrate 102. b.  50 μl of an antibody probe solution having an amine group concentration of about 200 μg/ml was injected into the flow channel and passed through the wafer substrate 102 to carry out m 22 201124722 imine bond bonding with the awake base [-CHO] ( Imine bonding, shiff base) reaction, forming a covalent bond (-CH=N-). The antibody probe is covalently bonded to the organic conductivity substrate 102 c. After the reaction is completed, the equilibrium substrate 112 is washed with a constant flow of HBS buffer to flow unreacted antibody probes out of the wafer substrate. At this time, the substrate 112 having the antibody probe-derived compound covalently bonded to the terminal shown in Fig. 5 was obtained. This type of biosensing wafer, which anchors antibody probes linked to the ends of organic conducting molecules, such as immunoglobulin G, immunoglobulin M, immunoglobulin A (Immunoglobulin A), immunoglobulin E (Immunoglobulin E), and immunoglobulin D (Immunoglobulin D) have the ability to specifically bind to the target, which is beneficial to biomedical tests related to electrical sensing in the future. Example 3: The chemical reaction of Figure 6 shows that the basic organic conductivity substrate 103, which can be adapted to link various antibody probes, can be prepared for attachment to various target probes for specific target detection. The method is for detecting a target in a relevant biomedical sample (blood, urine, body fluid, semen, saliva, laryngeal sample). The chemical reaction of FIG. 6 shows that, in one embodiment of the present invention, the surface of the base wafer substrate 104 of FIG. 3B has an organic conductive oligothiophene sulfonate 5"-aldehyde-5-carboxy-2. 2',5,,2"-trithiophene (5"-aldehyde-5-carboxyl-2,2,,5,,2,,-trithiophene, abbreviation AC-TTP, structure 23 201124722 for CHO(C4H2S)2COOH) The organic conductivity molecule is composed of N-ethyl-N'-(dimethylaminopropyl)carbodiimide (referred to as N-ethyl-N'-(dimethylaminopropyl)carbodiimide in the chemical reaction of Figure 6. E-DAPC), with N-hydroxysuccinimide (HIS), [HO-N-(CO)2(CH2)2)] for the anchoring of carboxylic acid groups of organic conducting molecules [- COOH] performs an amidation reaction to covalently bond an antibody probe to the organic conductivity substrate 104. The molecular structures of HIS and E-DAPC are shown in the reaction of Figure 6, respectively. The HIS/E-DAPC mixture will first activate the carboxylic acid group [-COOH] of the organic conducting molecule, and then combine with an antibody probe having an amine group, etc.: a. In HBS buffer (10 mM HEPES pH 7. 4, 150 mM NaCl, 3. 4mM EDTA, 0. 005% surfactant P20) or PBS (Phosphate buffered saline pH 7. 4) Buffer (137 mM NaCl, 2. 7 mM KC1, 10 mM Na2HP04, 2 mM KH2P〇4) A constant flow rate (5 μl/min) was introduced into the flow path, and passed through a wafer substrate 104 containing thiophene sulfide AC-TTP to clean the wafer substrate 104. ® b. Will be 50 microliters of 0. 1 M HIS/0. A 4M E-DAPC (1:1) mixed solution was injected into the flow path and passed through the wafer substrate 104 to activate the carboxylic acid group of the AC-TTP. c.  50 μl of a solution of antibody molecules having an amine group concentration of about 200 μg/ml was injected into the flow channel and passed through the wafer substrate 104 to be amidated with the carboxyl group activation group (-CO-O-C4O2H4N) ( Amidation) reaction to form a covalent bond (-CONH.). The antibody probe is covalently bonded to the organic conductivity substrate. d.  After the reaction is completed, the substrate is washed with HBS buffer at a constant current, followed by 5 〇 m 24 201124722 microliters of ethanolamine hydrochloride pH 8. 5) The solution, which is injected into the flow path, flows through the wafer substrate 114 to completely amidate the unreacted activating group (-CO-0-C4〇2H4N). At this time, the substrate 114 to which the terminal molecule is covalently bonded with the antibody molecule-derived compound shown in Fig. 6 can be obtained. This type of biosensing wafer, which anchors an antibody probe linked to the end of an organic conducting molecule, such as immunoglobulin G, immunoglobulin M, immunoglobulin A Φ (^Immunoglobulin Α), immunoglobulin E (Immunoglobulin Ε), immunoglobulin D (Immunoglobulin D) have the ability to specifically bind to the target, which is conducive to biomedical testing related to electrical sensing in the future. Example 4: The chemical reaction of Figure 7 shows that the basic organic conductivity substrate 105, which can be adapted to link various biological probes, can be used to link to various specific target probes for probe detection (probe). A method of preparation for detecting a target in a relevant biomedical sample (blood, urine, body fluid, semen, saliva, laryngeal sample). The chemical reaction of Figure 7 shows that, in a preferred embodiment of the invention, the surface of the basic biochip substrate 105 of Figure 3C has oligo(phenyl) sulfide aldehyde-4-carboxydiphenyl (4'- Aldehyde 4-carboxyl dibenzene, abbreviated as AC-DBZ, is an organic conductivity molecule composed of CHO(C6H6)2COOH). In the chemical reaction of Figure 7, N-diabase succinimide m 25 201124722 N-ethyl- N'-(dimethylaminopropyl)carbodiimide, abbreviated as Ε-DAPC, and N-hydroxysuccinimide, referred to as HSI, [HO-N-(CO)2(CH2)2)] The carboxylic acid group [•COOH] of the conductive molecule AC-DBZ undergoes an amidation reaction to bond the probe probe to the organic conductivity substrate 105. The molecular structures of HSI and E-DAPC are respectively As shown in the reaction scheme of Figure 7, this HSI/E-DAPC mixture will first activate the carboxylic acid group [-COOH] of the organic conductivity molecule AC-DBZ, and then combine with an antibody/probe having an amine group: a .  In HBS buffer (10 mM HEPES pH 7. 4, 150 mM NaCl, 3. 4mM EDTA, 0. 005% surfactant P20) or PBS (Phosphate buffered saline pH 7. 4) Buffer (137 mM NaCl, 2. 7 mM KC1, 10 mM Na2HP04, 2 mM KH2PO4) A constant flow rate (5 μl/min) was introduced into the flow path, and passed through a wafer substrate 105 containing oligobenzene sulfide AC-DBZ to clean the wafer substrate 105. b.  Will be 50 microliters of 0. 1 M HIS/0. A 4M E-DAPC (1:1) mixed solution was injected into the flow channel and passed through the wafer substrate 105 to activate the carboxylic acid group of AC-DBZ. c.  50 microliters of a biomolecule solution having an amine group concentration of about 200 micrograms/ml was injected into the flow channel and passed through the wafer substrate 105 to be amidated with the carboxyl group activation group (-CO-O-C4O2H4N) ( Amidation) reaction to form a covalent bond (•CONH-). An antibody probe is covalently bonded to the organic conductivity substrate 105. d.  After the reaction is completed, the substrate is washed with a constant flow of HBS buffer, followed by 50 μl of ethanolamine hydrochloride pH 8. 5) Dissolving m 26 201124722 liquid, injected into the flow path, flowing through the wafer substrate 115 to completely amidate the unreacted activating group (-CO-0-C4〇2H4N). At this time, the substrate 115 to which the antibody probe-derived compound covalently bonded to the terminal shown in Fig. 7 was obtained was obtained. This type of biosensing wafer, which anchors antibody probes linked to the ends of organic conducting molecules, such as immunoglobulin G, immunoglobulin M, immunoglobulin A (immunoglobulin G) Immunoglobulin A), Immunoglobulin E, and Immunoglobulin D have the ability to specifically bind to the target, which is beneficial for biomedical testing related to electrical sensing in the future. Although the present invention has been described above in connection with the preferred embodiments, it is not intended to limit the invention. For example, although the description of the present invention is described in detail by taking an inductive biofilm preparation method as an example, the present invention has an antibody probe wafer having a covalently bonded organic conductivity anchoring compound, and as can be understood, it can also be applied to Others used gold, silver, copper, platinum, nickel, zinc, bismuth, mercury or palladium as treatments for different uses of sensing films on biochips. Applications include, for example, electrical sensing wafers, electrochemical sensing wafers, field effect transistor sensing wafers, piezoelectric sensing wafers, and optical sensing wafers. Therefore, those skilled in the art will be able to make such changes and modifications without departing from the spirit and scope of the invention, and the scope of the present invention is defined by the scope of the appended claims. Example 5: 27 201124722 The chemical reaction of Figure 8 shows one of the embodiments of the invention required to prepare an antibody probe 501 having a surface coated with conduction electrons for related inductivity measurement. Electrical detection of target affinity in medical samples (blood, urine, body fluids, semen, saliva, laryngeal samples). The chemical reaction of Figure 8 shows that, in one embodiment of the present invention, the basic immunoglobulin G antibody molecule 200 of Figure 8 has a surface covalently bonded organic material having the ability to conduct electrons. An organic electron-conducting oligomer 301, for example, a preferred embodiment thereof is 3-(thiophen-2-yl) propanal [(C4H3S)-((C4H3S)-( CH2)-CHO]. The aldehyde group [-CHO] of the organic conductivity oligo molecule can be combined with an antibody probe such as immunoglobulin G, immunoglobulin M, immunoglobulin A, The amine group [-NH2] on immunoglobulin E (Immunoglobulin E) and immunoglobulin D (Immunoglobulin D) undergoes an imine bonding (shiff-base reaction) reaction to modulate the organic conducting oligo molecule 301. Covalently bonded to antibody probe 200. Thereafter, an inductance measuring antibody probe 501 having a specific binding ability to a target is formed. a. With HBS (10 mM HEPES pH 7. 4) Buffer (150 mM NaCl, 3. 4mM EDTA, 0. 005. /. Surfactant P20) or PBS (Phosphate buffered saline pH 7. 4) Buffer (137 mM NaCl, 2. 7 mM KC1, 10 mM Na2HP04, 2 mM KH2P〇4) A constant flow rate (5 μl/min) was introduced into the flow channel, and the wafer 200 to which the antibody [S] 28 201124722 probe was immobilized was flowed and washed. b.  50 microliters of a 3-(thiophen-2-yl)propanal organic conducting oligo molecule solution 301 having a concentration of about 10 mM was injected into the flow channel and slowly flowed through the antibody probe wafer 200 for 24 hours. It carries out an imine bond reaction with four amine groups on the surface of the antibody molecule, and covalently bonds 3-(thiophen-2-yl)propanal to the antibody probe molecule. c.  After the completion of the reaction, the balanced antibody probe wafer substrate 501 was washed with a constant flow of HBS or PBS buffer to flow unreacted 3-(thiophen-2-yl)propanal oligo molecule 301 out of the wafer substrate. At this time, an antibody probe wafer substrate 501 having a surface covered with 3-(thiophen-2-yl)propanal organic conductance oligo molecule 301 as shown in Fig. 8 was obtained. This type of conductance antibody sensing wafer has the ability to specifically bind to an antigen target, facilitating biomedical testing associated with future electrical sensing. Example 6: $Chemical reaction of Figure 9 is shown as one of the embodiments of the invention required to prepare a conductive electrons antibody probe 502 for performing a related biometric medical sample (blood) , urine, body fluid, semen, saliva, laryngeal fluid) in the target (affinity) electrical detection. The chemical reaction of FIG. 9 shows that, in a preparation example of the present invention, the basic immunoglobulin G antibody molecule 200 of FIG. 9 has a covalently bonded surface covering with conduction electrons. An organic electron-conducting oligomer 302, for example, a preferred embodiment thereof is 29 201124722 3-phenylpropanal [(C6H5)-(CH2)-CHO]. The aldehyde group [-CHO] of the organic conducting oligo molecule can be combined with an antibody probe such as immunoglobulin G, immunoglobulin M, immunoglobulin A, and immunization. The amine group [-NH2] on globulin E (Immunoglobulin E) and immunoglobulin D (Immunoglobulin D) undergoes an imine bonding (shiff-base reaction) reaction to covalently bond the organic conducting oligo molecule 302 After binding to the antibody probe 200, an inductive antibody probe 502 having the ability to specifically bind to the target is formed. a.  With HBS (10 mM HEPES pH 7. 4) Buffer (150 mM NaCl, 3. 4mM EDTA, 0. 005% surfactant P20) or PBS (Phosphate buffered saline pH 7. 4) Buffer (137 mM NaCl, 2. 7 mM KC1, 10 mM Na2HP04, 2 mM KH2P04) A constant flow rate (5 μl/min) was introduced into the flow path, and the wafer 200 to which the antibody probe was immobilized was flowed and washed. b.  50 μl of a 3-phenylpropionaldehyde organic electro- oligo molecule solution 302 having an aldehyde group of about 10 mM was injected into the flow channel and slowly flowed through the antibody probe wafer 200 for 24 hours to make it and the antibody The amine group on the surface of the molecule undergoes an imine bond-bonding reaction, and 3-phenylpropanal is covalently bonded to the antibody probe molecule. c.  After the reaction is completed, the balanced antibody probe wafer substrate 502 is washed with a constant flow of HBS or PBS buffer to flow unreacted phenylpropanal oligo molecule 302 out of the wafer substrate. At this time, an antibody probe wafer substrate 502 having a surface filled with 3-phenylpropanal organic conductive oligo molecule 302 can be obtained as shown in FIG. 〇 247 201124722 This type of conductivity antibody sensing wafer has an antigen target (target) The ability to combine specificity is conducive to biomedical testing related to electrical sensing in the future. Example 7: The chemical reaction of Figure 10 is not shown as one of the embodiments of the invention required to prepare a conductive electrons antibody probe 503 for performing a related biometric medical sample (blood, Affinity electrical detection in urine, body fluids, semen, saliva, _ throat fluid samples. The chemical reaction of Fig. 10 shows that, in a preparation example of the present invention, the basic immunoglobulin G antibody molecule 200 of Fig. 10 is covalently bonded to the surface and has an organic layer of conduction electrons. An organic electron-conducting oligomer 303, for example, a preferred embodiment thereof is 3-(1-D-pyrrol-2-yl)propanal (3-(l-pyrrol-2-yl) propanal P- (C4H4N)-(CH2)-CHO]. The aldehyde group [-CHO] of this organic conductivity oligo molecule can be combined with an antibody probe such as immunoglobulin (3 (Immunoglobulin G), immunoglobulin M (Immunoglobulin) Μ), Immunoglobulin A, Immunoglobulin E, Immunoglobulin D (Immunoglobulin D), amine group [-NH2] for imine bonding (shiff-base) The reaction is carried out to covalently bond the organic conducting oligo molecule 303 to the antibody probe 200. Thereafter, an inductive antibody probe 5〇3 having a specific binding ability to a target is formed. [S1 31 201124722 a.  With HBS (10 mM HEPES pH 7. 4) Buffer (150 mM NaCl, 3. 4mM EDTA, 0. 005% surfactant P20) or PBS (Phosphate buffered saline pH 7. 4) Buffer (137 mM NaCl, 2. 7 mM KC1, 10 mM Na2HP04, 2 mM KH2P04) A constant flow rate (5 μl/min) was introduced into the flow path, and the wafer 200 to which the antibody probe was immobilized was flowed and washed. b.  50 μl of a 3-(1-pyridyl-2-yl)propanal organic conductance oligo molecule solution 303 having a concentration of about 10 mM was injected into the channel and slowly flowed through the antibody probe wafer. The imine bond reaction with the four amine groups on the surface of the antibody molecule was carried out for 24 hours, and 3-(1-pyrrol-2-yl)propanal was covalently bonded to the antibody probe molecule. c.  After the reaction is completed, the equilibrium antibody probe wafer substrate 503 is washed with a constant flow of HBS or PBS buffer to flow the unreacted 3-(1-pyridyl-2-yl) agoxylate molecule 303 out of the wafer base fc. An antibody probe wafer substrate 503 having a surface covered with 3-(1-pyridyl-2-yl)propanal organic conductive oligo molecule 303 as shown in Fig. 1A can be obtained. This type of conductance antibody sensing wafer has the ability to bind to antigen target specificity* for biomedical testing associated with future electrical sensing. Example 8: The chemical reaction of Figure 11 is apparent for the preparation of a bioinductor sample (blood, for the purpose of preparing an embodiment of the invention with a conducting electrons antibody probe 504). Affinity electrical detection in urine, body fluids, semen, saliva, and laryngeal fluids. 32 201124722 The chemical reaction of Figure 11 shows that, in one embodiment of the invention, the basic immunoglobulin G antibody molecule 200 of Figure 11 has covalently bonded surface coatings with conducting electrons. An organic electron-conducting oligomer 304, for example, a preferred embodiment thereof is 3-(pyridin-2-yl)propanal [2- (C5H4N)-(CH2)-CHO]. The aldehyde group [-CHO] of the organic conductivity oligo molecule can be combined with an antibody probe (antibody pr〇be> such as immunoglobulin G, immunoglobulin 、, immunoglobulin A (Immunoglobulin Α) The immunoglobulin E (Immunoglobulin E), the amine group [-NH2] on the immunoglobulin D (Immunoglobulin D) undergoes an imine bonding (shiff-base reaction) reaction to expose the organic conducting oligo molecule 304 After covalently bonding to the antibody probe 200, an inductive antibody probe 504 having the ability to specifically bind to a target is formed. a.  With HBS (10 mM HEPES pH 7. 4) Buffer (150 mM NaCl, 3. 4mM EDTA, 0. 0053⁄4 surfactant P20) or PBS (Phosphate buffered saline pH 7. 4) Buffer (137 mM NaCl, 2. 7 mM KC1, 10 mM Na2HP04, 2 mM KH2P〇4) A constant flow rate (5 μl/min) was introduced into the flow path, and the wafer 200 to which the antibody probe was immobilized was flowed and washed. b.  50 μl of a 3-(P-pyrrolidin-2-yl)propanal organic conductance oligo molecule solution 304 having a concentration of about 10 mM was injected into the flow channel and slowly flowed through the antibody probe wafer 2〇〇. For 24 hours, it is reacted with four amine groups on the surface of the antibody molecule by imine bond [S] 33 201124722, and 3-(pyrrole-2-yl)propanal is covalently bonded to the antibody probe molecule. on. c. After the reaction is completed, the balance pit body probe wafer substrate 504 is continuously purged with 甩HBS or PBS buffer to flow unreacted 3-(pyrrole-2-yl)propanal oligo molecule 304 out of the wafer substrate. At this time, an antibody probe wafer substrate 504 having a surface covered with 3-(pyrrolidin-2-yl)propanal organic conductive oligo molecule 304 as shown in Fig. 11 can be obtained. This type of conductance antibody sensing wafer has the ability to specifically bind to an antigen target, facilitating biomedical testing associated with future electrical sensing. Although the present invention has been described above with reference to the drawings in the preferred embodiments, it is not intended to limit the invention. For example, although the description of the present invention is exemplified by a conductive antibody probe wafer, the surface of the present invention is coated with an organic conductive oligo molecule (1) 3-(thiophen-2-yl)propionic acid, (2) 3-phenylpropene. An aldehyde, (3) 3-(1-pyrrol-2-yl)propanoid, (4) 3-(U-pyridin-2-yl)propanal antibody probe, as can be understood, as shown in Figure 12-15, It can also be applied to other derivatives of the above four organic conducting oligo molecules to prepare antibody probes having conduction electrons. Further, although the present invention has been described above with reference to the drawings in the preferred embodiments, it is not intended to limit the invention. As can be appreciated, as shown in Figures 16-21, the same can be applied to other electromechanical oligo-oligo molecules and derivatives thereof having conducting electrons to prepare antibody probes with conduction electrons. Applications include, for example, electrical sensing wafers, electrochemical sensing wafers, field effect transistor sensing wafers, piezoelectric sensing wafers, and the like. Therefore, any such modifications and variations can be made by those skilled in the art without departing from the spirit and scope of the invention, and the scope of the invention is defined by the scope of the appended claims. quasi.

[si 35 201124722 【圖式簡單說明】 圖1, 2及3之化學反應分別顯示依據本發明一較佳製備實施 例,於覆佈蒸鍍有金或銀的基板表面上利用化學修飾(chemieal • modification)處理之後,將特定長度之環狀有機電導寡噻吩及寡苯 分子固定化,以供連結需用之抗體(antibody)之基本抗體探針晶片 基板。 • 圖1之化學反應顯示,在覆佈蒸鑛金(Au)金屬薄膜層之晶片基 板上,其化學修飾係採用具sp3(金與硫原子)混成軌域共價鍵結的 形式將有機電導分子寡噻吩(oligothiophene)硫化物:例如5’ -(甲 基)硫醇基-5-醛基_2,2’ -二噻吩,固定到金屬薄膜上。 圖2之化學反應顯示,在覆佈蒸鍍金金屬薄膜層之晶片基板上, 其化學修飾係採用具sp3(金與硫原子)混成軌域共價鍵結的形式將 有機電導分子寡苯(oligophenyl)硫化物:例如;>4’ -硫醇基-4-醛基 φ -1,1-二苯。,固定到金屬薄膜上。 圖3A之化學反應顯示,在覆佈蒸鍍金或銀金屬薄膜層之晶片 基板上,固定烧基(alkyl)硫化物:2-硫基乙胺〇thiol-ethanolamine)。 圖3B之晶片化學反應顯示,在圖3A之抗體探針晶片基板表 面,利用有機電導分子噻吩(oHgothiophene)硫化物衍生物:5”-醒基 -5- 羧 基 -2,2’,5’,2”- 三噻吩 (5”-aldehyde-5-carboxyl-2,2’,5’,2”_trithiophene),其一末端的醒基 (-CHO)可與基板上一級胺基(-NH2)進行偶合反應,另一末端的羧 36 201124722 基(-COOH)可預留作為親和劑保留供反應後進行抗體分子探針的 衍生。 圖3C之晶片化學反應顯示,在圖3A之抗體探針晶片基板表 面,利用有機電導分子寡苯硫化物衍生物:4'-醛基-4-羧基二聯苯 (4’_aldehyde-4-carboxyl dibenzene),其一末端的醒基(-CHO)可與基 板上一級胺基(-NH2)進行偶合反應,另一末端的羧基(-COOH)可預 留作為親和劑,保留供反應後進行抗體探針的衍生。 圖4之化學反應即顯示,在圖1之基本抗體晶片基板表面,固 定有有機電導分子寡噻吩(oligothiophene)硫化物衍生物。此有機電 導分子之醛基[-CHO]可與抗體探針(probe)上的胺基[-NH2]進行亞 胺鍵鍵結(imine bonding)反應,以便將抗體探針共價鍵結到有機電 導基板上。 圖5之化學反應即顯示,在圖2之基本抗體晶片基板表面,固 定有有機電導分子寡苯(oligophenyl)硫化物衍生物。此有機電導分 子之醛基[-CHO]可與抗體探針(Ab probe)上的胺基[-NH2]進行亞胺 鍵鍵結(imine bonding)反應,以便將抗體探針共價鍵結到有機電導 基板上。 圖6之化學反應即顯示,在圖3B之基本抗體晶片基板表面, 固定有有機電導分子寡噻吩(oligothiophene)硫化物衍生物。此有機 電導分子之羧酸基[-COOH]可與抗體探針(probe)上的胺基[-Nm], 進行醯胺化(amidation)反應,以便將抗體探針(probe)共價鍵結到有 37 201124722 機電導基板上。 圖7之化學反應即顯示,在圖3C之基本抗體晶片基板表面, 固定有有機電導分子寡苯(oligobenzene)硫化物衍生物。此有機電 導分子之羧酸基[-COOH]可與基本抗體探針(probe)上的胺基 [-NH2],進行醯胺化(amidation)反應,以便將基本抗體探針(probe)共 價鍵結到有機電導基板上。 圖8之化學反應即顯示電導抗體探針,在基本抗體探針晶片基 鲁板表面,流經擁有導電電子(conduction electrons)之有機電導分子 (organic electron-conducting moleecule) 3-(噻吩-2-基)丙醛及其衍生 物(3-(thiophen-2-yl) propanal and derivatives》此有機電導分子之醒 基[-CH0]可與抗體探針上的胺基[-NH2]進行亞胺鍵(imine bonding) 共價鍵結反應,以便將有機電導分子佈覆到抗體探針上。 圖9之化學反應即顯示電導抗體探針,在基本抗體探針晶片基 板表面,流經擁有導電電子之有機電導分子3-苯基丙醛及其衍生 •物(3-phenylpropanal and derivatives)。此有機電導分子之醒基[-CH0] 可與抗體探針上的胺基[-NH2]進行亞胺鍵(imine bonding)共價鍵結 反應,以便將有機電導分子佈覆到基本抗體探針上。 圖10之化學反應即顯示電導抗體探針,在基本抗體探針晶片 基板表面,流經擁有導電電子之有機電導分子3-(1-吡咯-2-基)丙醛 及其衍生物(3-(l-pyir〇l-2-yl)propanal and derivatives)。此有機電導 分子之酸基[-CH0]可與抗體探針上的胺基[-NH2]進行亞胺鍵(imine 38 201124722 bonding)共價鍵結反應,以便將有機電導分子佈覆到抗體探針上。 圖11之化學反應即顯示,在基本抗體探針晶片基板表面,流 經擁有導電電子之有機電導分子3-(吡咯碇-2-基)丙醛及其衍生物 (3-(pyridin-2-yl)propanal and derivatives)。此有機電導分子之醒基 [-CH0]可與抗體探針上的胺基[_腿2]進行亞胺鍵(imine bonding)共 價鍵結反應,以便將有機電導分子佈覆到抗體探針上。 圖12-21分別為可適用於上述本發明之電導抗體探針用途之 摩有機電導分子暨其衍生物之結構式,以製備具有傳導電子之電導 抗體探針。其化學式分別為: (1) . 3-(噻吩-2-基)丙醒及其衍生物 3-(thiophen-2-yl)propanal and derivatives 〇 見圖 12。 (2) . 3-苯基丙酸及其衍生物 3-phenylpropanal and derivatives。見圖 13。 (3) . 3-(l-D比略-2-基)丙醒及其衍生物 3-(l-pyrrol-2-yl)propanal and 鲁 derivatives。見圖 14。 (4) . 3-(卩比略破-2-基)丙醒及其衍生物 3-(pyridin-2-yl)propanal and derivatives 〇 見圖 15〇 (5) .順式-4-苯基-3-丁儲醒及其衍生物⑹-4_phenylbut-3-enal and derivatives。見圖 16。 (6) .順式_4-(吡啶-2-基)-3- 丁烯醛及其衍生物 (£)-4,(pyridin-2-yl)but-3-enal and derivatives。見圖 17。 39 201124722 ⑺.順式-七-4,6-二稀醛及其衍生物⑹-hepta-4,6-dienal and derivatives。見圖 18。 ⑻.反式-七-4,6-二嫌醒及其衍生物(Z)-hepta-4,6-dienal and derivatives。見圖 19。 (9) .順式-4-(環己-2-烯基)丁醛及其衍生物 (五)-4-(cyclohex-2-enylidene)butanal and derivatives。見圖 20。 (10) . 2-(環烴_2-基)乙醒及其衍生物 2-(naphthalen-2-yl)acetaldehyde and derivatives。見圖 21。 應注意的是,對於本發明之新穎性重點而言,以上配合所附 圖式所說明之各種較佳製備實施例,僅只詳細描述了本發明於感 測晶片系統中,施行電子傳導的數種可能作法之其中一種,亦即, 將有機電導分子亦同時作為抗體對電極的連結物,即圖4,5, 6及7 中所描繪者。不過,如同習於本技藝者所可以理解的,有機電導 • 分子(導電性誘昇分子)於本發明系統中的其他應用安排,亦同樣 是可能且可行的。例如,其中稍有不同的安排,包含了利用有機 電導分子來電子工程化抗體,即圖8, 9, 10及11中所描繪者。將 有機電導分子加入至流經感測晶片表面的緩衝液中,或於檢體樣 本之中加入使用有機電導分子。甚或上述此些安排的任何組合, 其如同己經實驗所證實者全皆是屬可行的作法。 201124722 【主要元件符號說明】[si 35 201124722 [Simplified illustration of the drawings] The chemical reactions of Figures 1, 2 and 3 respectively show the use of chemical modification on the surface of a substrate coated with gold or silver coated according to a preferred preparation example of the present invention (chemieal • After the treatment, a cyclic organic conductive oligothiophene and an oligobenzene molecule of a specific length are immobilized for attachment to a basic antibody probe wafer substrate of an antibody to be used. • The chemical reaction in Figure 1 shows that on the wafer substrate coated with the metal film of Au (metal) gold, the chemical modification is carried out by covalent bonding with sp3 (gold and sulfur atoms). A molecular oligothiophene sulfide: for example, 5'-(methyl)thiol-5-aldehyde-2-,2'-dithiophene, attached to a metal film. The chemical reaction of Figure 2 shows that on the wafer substrate coated with the vapor deposited gold metal thin film layer, the chemical modification is carried out by covalent bonding of sp3 (gold and sulfur atom) mixed domains to the organic conductive molecular oligophenyl (oligophenyl). Sulfide: for example; > 4'-thiol-4-aldehyde group φ-1,1-diphenyl. , fixed to the metal film. The chemical reaction of Fig. 3A shows that an alkyl sulfide: thiol-ethanolamine is immobilized on a wafer substrate on which a gold or silver metal thin film layer is coated. The wafer chemical reaction of Fig. 3B shows that on the surface of the antibody probe wafer substrate of Fig. 3A, the organic conductive molecule thiophene (oHgothiophene) sulfide derivative: 5"-awake-5-carboxy-2, 2', 5', 2"-trithiophene (5"-aldehyde-5-carboxyl-2,2',5',2"-trithiophene), the awake group (-CHO) at one end can be carried out with the primary amine group (-NH2) on the substrate. The coupling reaction, the carboxyl group 36 201124722 base (-COOH) at the other end can be reserved as a affinity agent for the derivatization of the antibody molecule probe after the reaction. The wafer chemical reaction of Figure 3C shows the use of the organic conductivity molecular oligobenzene sulfide derivative on the surface of the antibody probe wafer substrate of Figure 3A: 4'-aldehyde-4-carboxydiphenyl (4'-aldehyde-4-carboxyl) Dibenzene), one end of the wake-up (-CHO) can be coupled with the primary amine group (-NH2) on the substrate, the other end of the carboxyl group (-COOH) can be reserved as a affinitive agent, reserved for the reaction after the antibody Derivatization of the probe. The chemical reaction of Fig. 4 shows that an organic conductive molecular oligothiophene sulfide derivative is immobilized on the surface of the basic antibody wafer substrate of Fig. 1. The aldehyde group [-CHO] of the organic conductivity molecule can be imine-bonded with the amine group [-NH2] on the antibody probe to covalently bond the antibody probe to the organic On the conductivity substrate. The chemical reaction of Fig. 5 shows that an organic conductive molecular oligophenyl sulfide derivative is immobilized on the surface of the basic antibody wafer substrate of Fig. 2. The aldehyde group [-CHO] of the organic conductivity molecule can be subjected to an imine bonding reaction with an amine group [-NH2] on an antibody probe (Ab probe) to covalently bond the antibody probe to On the organic conductivity substrate. The chemical reaction of Fig. 6 shows that an organic conductive molecular oligothiophene sulfide derivative is immobilized on the surface of the basic antibody wafer substrate of Fig. 3B. The carboxylic acid group [-COOH] of the organic conductivity molecule can be subjected to an amidation reaction with an amine group [-Nm] on an antibody probe to covalently bond the antibody probe. To have 37 201124722 on the electromechanical guide substrate. The chemical reaction of Fig. 7 shows that an organic conductive molecular oligobenzene sulfide derivative is immobilized on the surface of the basic antibody wafer substrate of Fig. 3C. The carboxylic acid group [-COOH] of the organic conductivity molecule can be subjected to an amidation reaction with an amine group [-NH2] on a basic antibody probe to covalently bind a basic antibody probe (probe) Bonded to the organic conductivity substrate. The chemical reaction of Figure 8 shows that the conductive antibody probe flows through the surface of the basic antibody probe wafer on the surface of the substrate, through an organic electron-conducting moleecule 3- (thiophene-2-) having conducting electrons. 3-(thiophen-2-yl) propanal and derivatives The awake base of the organic conducting molecule [-CH0] can be imidized with the amine group [-NH2] on the antibody probe. (imine bonding) covalent bonding reaction to coat the organic conductive molecules onto the antibody probe. The chemical reaction in Figure 9 shows that the conductive antibody probe flows through the surface of the basic antibody probe wafer substrate and has conductive electrons. The organic conductive molecule 3-phenylpropanal and derivatives. The organically conductive molecule of the awake base [-CH0] can be imidized with the amine group [-NH2] on the antibody probe. (imine bonding) covalent bonding reaction to coat the organic conductive molecules onto the basic antibody probe. The chemical reaction in Figure 10 shows the conductivity antibody probe flowing through the surface of the basic antibody probe wafer substrate. Organic Conductance Molecules 3- (1-pyrrol-2-yl)propanal and its derivatives (3-(l-pyir〇l-2-yl)propanal and derivatives). The acid group [-CH0] of this organic conductivity molecule can be combined with an antibody probe. The amine group [-NH2] is subjected to a covalent bonding reaction of imine bond (imine 38 201124722 bonding) to coat the organic conductive molecule onto the antibody probe. The chemical reaction of Fig. 11 shows that the basic antibody probe The surface of the wafer substrate flows through 3-(pyridin-2-yl)propanal and its derivatives (3-(pyridin-2-yl)propanal and derivatives), which have conductive electrons. The base [-CH0] can be subjected to a covalent bonding reaction with an amine group [_ leg 2] on the antibody probe to coat the organic conductive molecule onto the antibody probe. They are respectively applicable to the structural formula of the organic conducting molecule and its derivative which can be used for the above-mentioned electrical conductivity antibody probe of the present invention to prepare a conducting antibody probe having conduction electrons, and the chemical formulas thereof are: (1) . 3-( Thiophen-2-yl) propylene and its derivatives 3-(thiophen-2-yl)propanal and derivatives 〇 see Figure 12. (2). 3-Phenylpropionic acid and its derivatives Bio 3-phenylpropanal and derivatives. See Figure 13. (3) 3-(l-D than alk-2-yl) adenine and its derivatives 3-(l-pyrrol-2-yl)propanal and lu derivatives. See Figure 14. (4). 3-(p-pyridyl-2-yl) azepine and its derivative 3-(pyridin-2-yl)propanal and derivatives 〇 Figure 15〇(5) .cis-4-phenyl -3- Ding waking and its derivatives (6)-4_phenylbut-3-enal and derivatives. See Figure 16. (6) cis-4-(pyridin-2-yl)-3-butenal and its derivatives (£)-4, (pyridin-2-yl)but-3-enal and derivatives. See Figure 17. 39 201124722 (7). cis-seven-4,6-di-dialdehyde and its derivatives (6)-hepta-4,6-dienal and derivatives. See Figure 18. (8). Trans-seven-4,6-two awake and its derivatives (Z)-hepta-4,6-dienal and derivatives. See Figure 19. (9) . cis-4-(cyclohex-2-enyl)butanal and its derivatives (5)-4-(cyclohex-2-enylidene) butanal and derivatives. See Figure 20. (10) 2-(cyclohydrocarbon-2-yl) acetonide and its derivatives 2-(naphthalen-2-yl)acetaldehyde and derivatives. See Figure 21. It should be noted that, for the novelty of the present invention, the various preferred preparation examples described above in conjunction with the drawings only describe in detail the several types of electron conduction performed by the present invention in a sensing wafer system. One of the possible practices, that is, the organic conductivity molecule is also used as a linker for the antibody counter electrode, ie, as depicted in Figures 4, 5, 6 and 7. However, as will be appreciated by those skilled in the art, other arrangements of organic conductance molecules (conductive attractants) in the system of the present invention are equally possible and feasible. For example, a slightly different arrangement involves the use of organic conductivity molecules to electronically engineer antibodies, i.e., those depicted in Figures 8, 9, 10 and 11. The organic conducting molecule is added to the buffer flowing through the surface of the sensing wafer, or an organic conducting molecule is added to the sample of the sample. Or even any combination of these arrangements, as it has been experimentally proven, is a viable practice. 201124722 [Main component symbol description]

Claims (1)

201124722 七、申請專利範圍: 1. 一種電導抗體探針晶片製作方法,其包括有: 一基板,該基板一表面上覆佈蒸鍍有一金屬薄膜層; 複數個的有機電導定錨分子,大致具有延伸且實質為環狀鏈分 子,每一個該些有機電導定錨分子各係以其環狀鏈分子結構之一 第一端直接共價鍵結於該金屬薄膜層上,或透過聯結物間接共價 • 鍵結於該金屬薄膜層上;與 複數個的基本抗體探針,每一個該基本抗體探針各係共價鍵結 於該些有機電導定錨分子中對應一定錨分子反對於環狀鏈分子結 構之該第一端之一第二端;與 複數個的電導抗體探針,其中係將複數個有機電導分子,大致 具有延伸且實質為環狀鏈之分子,共價鍵結佈覆到基本抗體探針 上,每一個該電導抗體探針各係共價鍵結於該些有機電導定錨分 * 子中對應一定錨分子反對於環狀鏈分子結構之該第一端之一第二 端。 2. 如申請專利範圍第1項之基本抗體探針晶片製作方法其中 可直接以第一端共價鍵結於金屬薄膜層上之該定錨分子,其環狀 鏈分子結構係為有機寡噻吩(oligo-thiophene)硫化物,結構爲 [HS-(CH2)n-(C4H2SHC4H2S)m-CHO],其中n = 0 〜12,m = 0〜6。 3. 如申請專利範圍第2項之定錨分子 [S] 42 201124722 [HS-(CH2)n-(C4H2S)-(C4H2S)m-Xl·其中可直接以其第二端與抗體探 針共價鏈結,該第二端官能基-X係為醛基[-CHO],羧酸基 [COOH],雙硫鍵[_S-S-],胺基[媽],或硫醇基[-SH] 〇 4. 如申請專利範圍第1項之基本抗體探針晶片製作方&其中 可直接以第一端共價鍵結於金屬薄膜層上之該定錨分子,其環狀 鏈分子結構係為有機寡苯(oligo-benzene)硫化物,結構爲 [HS-(CH2)n-(C6H4HC6H4)m-CHO],其中n = 0 〜12,m = 0 〜6。 5. 如申請專利範圍第4項之定錨分子 其中可直接以其第二端與抗體探針 共價鍵結,該第二端官能基-X係為醛基[-CHO],羧酸基[-COOH], 雙硫鍵[-S-S-],胺基[-NH2],或硫醇基[-SH]。 6. 如申請專利範圍第1項之基本抗體探針晶片製作方法其中 可透過聯結物間接將定鋪分子共價鍵結於該金屬薄膜層上,其中 該聯結物係為有機烷基硫化物,結構爲[HS-(CH2)n-NH2],其中n = 1〜7 7. 如申請專利範圍第1項之基本抗體探針晶片製備方法其中 可透過聯結物間接將定錨分子之第一端共價鍵結於該金屬薄膜層 上,其中該定錨分子係為有機寡噻吩硫化物衍生物,結構爲 [CHCKCHA-CC^SMCftSVCOOH],其中η = 0〜12, m = 0〜6。 8. 如申請專利範圍第7項之定錨分子 [CHO-(CH2)n-(C4H2S)-(C4H2S)m-X],其中可以其第二端與基本抗體 43 201124722 探針共價鏈結,該第二端官能基-X係為醛基[-CHO],羧酸基 [-COOH],雙硫鍵[-S-S-],胺基[-NH2],或硫醇基[-SH] 〇 9. 如申請專利範圍第1項之基本抗體探針晶片製作方&其中 可透過聯結物間接將定錨分子之第一端共價鍵結於該金屬薄膜層 上,其中該定錨分子係為有機寡苯硫化物衍生物,結構爲 [CHO-(CH2)n-(C6H4)-(C6H4)m-COOH],其中η = 0 〜12, m = 0 〜6。 10. 如申請專利範圍第9項之定錨分子 • [CHO-(CH2)n-(C6H4)_(C6H4)m-X],其中可以其第二端與基本抗體探 針共價鏈結,該第二端官能基-X係為醛基[-CHO],羧酸基 [-COOH],雙硫鍵[-S-S-],胺基[·ΝΗ2],或硫醇基剛。 11. 如申請專利範圍第1項之電導抗體探針晶片製作方法,其 中係將複數個有機電導分子,共價鍵結佈覆到基本抗體探針上, 其中該有機電導分子係為有機3-(噻吩-2-基)丙醛及其衍生物 3-(thiophen-2-yl)propanal and derivatives,結構爲[H-(C4H2S)n-(CH2)m-X],其中η = 1,2,3,4, m = 0 〜12。 12. 如申請專利範圍第11項之有機電導分子[H-(C4H2S)n-(CH2)m-X],其中可以其一端官能基-X與基本抗體探針共價鍵結, 該官能基-X係為醛基[-CHO],羧酸基[-COOH],雙硫鍵[-S-S-],胺 基[-NH2],或硫醇基[-SH]。 13. 如申請專利範圍第1項之電導抗體探針晶片製作方法,其 中係將複數個有機電導分子,共價鍵結佈覆到基本抗體探針上, [S] 44 201124722 其中該有機電導分子係為有機3-苯基丙醛及其衍生物 (3-phenylpropanal and derivatives),結構爲[H-(C6H4)n- (CH2)m-X], 其中η = 1,2,3,4, m = 0 〜12。 14. 如申請專利範圍第13項之有機電導分子[H-(C6H4)n-(CH2)m-X],其中可以其一端官能基-X與基本抗體探針共價鍵結, 該官能基-X係為醛基[-CHO],羧酸基[-COOH],雙硫鍵[-S-S-],胺 基[-NH2],或硫醇基[-SH]。 15. 如申請專利範圍第1項之電導抗體探針晶片製作方法,其 中係將複數個有機電導分子,共價鍵結佈覆到基本抗體探針上, 其中該有機電導分子係為有機3-(1-吡咯-2_基)丙醛及其衍生物 (3-(l-pyrrol-2-yl) propanal and derivatives),結構爲 [H-(C4H3N)n-(CH2)m-X],其中η = 1,2,3,4, m = 0 〜12。 16. 如申請專利範圍第15項之有機電導分子 [H-(C4H3N)n-(CH2)m-X}其中可以其一端官能基-X與抗體探針共價 鍵結,該官能基-X係為醛基[-CHO],羧酸基[-COOH],雙硫鍵 [-S-S-],胺基[-NH2],或硫醇基[-SH] 〇 17. 如申請專利範圍第1項之電導抗體探針晶片製作方法,其 中係將複數個有機電導分子,共價鍵結佈覆到基本抗體探針上, 其中該有機電導分子係為有機3-(吡咯碇-2-基)丙醛及其衍生物 (3-(pyridin-2-yl)propanal and derivatives), 結構爲 [H-(C5H3N)n-(CH2)m-X],其中η = 1,2,3,4, m = 0 〜12。 [SI 45 201124722 18. 如申請專利範圍第17項之有機電導分子 [H-(C5H3N)n-(CH2)m-X}其中可以其一端官能基-X與抗體探針共價 鍵結,該官能基-X係為醛基[-CHO],羧酸基[-COOH],雙硫鍵 [-S-S-],胺基[媽],或硫醇基[_SH] 〇 19. 如申請專利範圍第1項之電導抗體探針晶片製作方法,其 中係將複數個有機電導分子,共價鍵結佈覆到基本抗體探針上, 其中該有機電導分子係為,分別爲⑴順式-4-苯基-3-丁烯醛及其衍 擊生物 (£)-4-phenylbut-3-enal and derivatives [H-(C6H4-C2H2)n-(CH2)m-X],(2)順式-4-(吡啶-2·基)-3-丁烯醛及其衍 生物 (&)-4-(pyridin-2-yl)but-3-enal and derivatives [H-(C5H3N_C2H2)n-(CH2)m-X],⑶順式·七-4,6-二烯醛及其衍生物 (£)-hepta-4,6-dienal and derivatives [H-(C2H2_C2H2)n-(CH2)m-X],⑷ 反式-七-4,6-二稀醒及其衍生物(2)-1^1&-4,6-(^1^1&11(1(161'^1^5 [H-(C2H2-C2H2)n-(CH2)m-X],(5)順式-4-(環己-2-烯基)丁醛及其衍 鲁生物(£)-4-(cyclohex-2-enylidene)butanal and derivatives [H-(C6H7=CH)n-(CH2)m-X],(6) 2-(環烴-2-基)乙醛及其衍生物 2-(naphthalen-2-yl)acetaldehyde and derivatives, [H-(C4H4_C6H3)n-(CH2)m-X],其中η = 1,2,3,4, m = 0 〜12。 20. 如申請專利範圍第19項之有機電導分子分別爲 [H-(C6H4-C2H2)n-(CH2)m-X], [H-(C5H3N-C2H2)n-(CH2)m-X], [H-(C2H2-C2H2)n-(CH2)m-X] , [H-(C2H2-C2H2)n-(CH2)m-X], [S) 46 201124722 [H-(C6H7=CH)n-(CH2)m-X]及[H-(C4H4-C6H3)n-(CH2)m-X],其中可以 其一端官能基-x與抗體探針共價鏈結,該官能基-x係為醛基 [-CHO],羧酸基[-COOH],雙硫鍵[-S-S-],胺基[-NH2],或硫醇基 [-SH]。 21. 如申請專利範圍第1至10項中任一項之抗體探針晶片製作 方法,其中該金屬薄膜層係為金,銀,銅,鉑,錬,鋅,鍺,汞或钯 薄膜層。 22. 如申請專利範圍第1至20項中任一項之抗體探針晶片製作 方法,其中該金屬薄膜層係為陣列式金屬薄膜層。 23. 電導抗體探針晶片之一種無探針半成品晶片基板》可預先 儲存以在需要時聯結該晶片進行偵檢感測所需之探針分子,該無 探針之半成品晶片基板包括有: 一基板,該基板一表面上佈覆有一金屬薄膜層,其中該金屬薄 膜層係為金,銀,銅,鉑,鎳,鋅,鍺,汞,鈀薄膜層;與 複數個大致具有延伸且實質為環狀鏈分子結構的定錨分子,其 各自環狀鏈分子結構之一第一端,直接共價鍵結於該金屬薄膜層 上,或透過聯結物間接共價鏈結於該金屬薄膜層上;與 於每一個該些定錨分子對應於該第一端之第二端分別共價鍵 結一基本抗體探針。可於該需要情況下與該基本抗體探針共價鍵 結,以完整形成該基本抗體探針晶片,·與 複數個的電導抗體探針,其中係將複數個有機電導分子,大致 47 201124722 具有延伸且實質為環狀鏈之分子,共價鍵結佈覆到基本抗體探針 上,每一個該電導抗體探針各係共價鍵結於該些有機電導定錨分 子中對應一定錨分子反對於環狀鏈分子結構之該第一端之一第二 端。201124722 VII. Patent application scope: 1. A method for fabricating a conductive antibody probe wafer, comprising: a substrate having a metal film layer deposited on a surface of the substrate; and a plurality of organic conductance anchor molecules having substantially Extending and substantially in the form of a cyclic chain molecule, each of the organic electrically conductive anchor molecules is directly covalently bonded to the metal thin film layer by one of the first ends of the cyclic chain molecular structure, or indirectly through the linker The price is bonded to the metal thin film layer; and a plurality of basic antibody probes, each of the basic antibody probes are covalently bonded to the organic conductive anchor molecules corresponding to certain anchor molecules against the ring a second end of the first end of the chain molecular structure; and a plurality of electrically conductive antibody probes, wherein the plurality of organic conducting molecules, the molecules having substantially extended and substantially cyclic chains, are covalently bonded On the basic antibody probe, each of the conductive antibody probes is covalently bonded to the organic conductive derivative anchors* corresponding to a certain anchor molecule against the molecular structure of the cyclic chain One end of the second end. 2. The method for preparing a basic antibody probe wafer according to claim 1, wherein the anchor molecule is covalently bonded to the metal thin film layer at the first end, and the cyclic molecular structure is an organic oligothiophene. (oligo-thiophene) sulfide having the structure [HS-(CH2)n-(C4H2SHC4H2S)m-CHO], wherein n = 0 to 12, m = 0 to 6. 3. For example, the anchor molecule [S] 42 201124722 [HS-(CH2)n-(C4H2S)-(C4H2S)m-Xl· can be directly used with the antibody probe at its second end. The valence chain, the second terminal functional group -X is an aldehyde group [-CHO], a carboxylic acid group [COOH], a disulfide bond [_S-S-], an amine group [m], or a thiol group [- SH] 〇4. The basic antibody probe wafer maker according to item 1 of the patent application scope & wherein the anchor molecule can be directly bonded to the metal thin film layer at the first end, and the cyclic chain molecular structure thereof It is an organo oligo-benzene sulfide with a structure of [HS-(CH2)n-(C6H4HC6H4)m-CHO], where n = 0~12, m = 0~6. 5. The anchor molecule according to item 4 of the patent application can be directly covalently bonded to the antibody probe at its second end, and the second terminal functional group -X is an aldehyde group [-CHO], a carboxylic acid group. [-COOH], disulfide bond [-SS-], amine group [-NH2], or thiol group [-SH]. 6. The method of fabricating a basic antibody probe wafer according to claim 1, wherein the anchoring molecule is indirectly bonded to the metal thin film layer through a linker, wherein the linker is an organoalkyl sulfide, The structure is [HS-(CH2)n-NH2], wherein n = 1~7 7. The basic antibody probe wafer preparation method according to claim 1, wherein the first end of the anchor molecule can be indirectly transmitted through the linker Covalently bonded to the metal thin film layer, wherein the anchoring molecule is an organic oligothiophene sulfide derivative having the structure [CHCKCHA-CC^SMCftSVCOOH], wherein n = 0~12, m = 0~6. 8. For example, the anchor molecule [CHO-(CH2)n-(C4H2S)-(C4H2S)mX] of claim 7 may be covalently linked to the base antibody 43 201124722 probe at the second end thereof. The second terminal functional group -X is aldehyde group [-CHO], carboxylic acid group [-COOH], disulfide bond [-SS-], amine group [-NH2], or thiol group [-SH] 〇9 The basic antibody probe wafer maker according to claim 1 of the patent application, wherein the first end of the anchor molecule is covalently bonded to the metal thin film layer through a linker, wherein the anchor molecule is An organic oligobenzene sulfide derivative having the structure [CHO-(CH2)n-(C6H4)-(C6H4)m-COOH], wherein η = 0 〜12, m = 0 〜6. 10. For example, the anchor molecule of the ninth application patent [CHO-(CH2)n-(C6H4)_(C6H4)mX], wherein the second end thereof can be covalently linked with the basic antibody probe, the first The terminal functional group -X is an aldehyde group [-CHO], a carboxylic acid group [-COOH], a disulfide bond [-SS-], an amine group [·ΝΗ2], or a thiol group. 11. The method for fabricating a conductive antibody probe wafer according to claim 1, wherein a plurality of organic conducting molecules are covalently bonded to the basic antibody probe, wherein the organic conducting molecular system is organic 3- (thiophen-2-yl)propanal and its derivative 3-(thiophen-2-yl)propanal and derivatives, the structure is [H-(C4H2S)n-(CH2)mX], where η = 1,2,3 , 4, m = 0 to 12. 12. The organic conductivity molecule [H-(C4H2S)n-(CH2)mX] as claimed in claim 11 wherein one end functional group -X can be covalently bonded to a basic antibody probe, the functional group -X It is an aldehyde group [-CHO], a carboxylic acid group [-COOH], a disulfide bond [-SS-], an amine group [-NH2], or a thiol group [-SH]. 13. The method of fabricating a conductive antibody probe wafer according to claim 1, wherein a plurality of organic conducting molecules are covalently bonded to the basic antibody probe, [S] 44 201124722 wherein the organic conducting molecule The structure is 3-phenylpropanal and derivatives, and the structure is [H-(C6H4)n-(CH2)mX], where η = 1,2,3,4, m = 0 to 12. 14. The organic conductivity molecule [H-(C6H4)n-(CH2)mX] as claimed in claim 13 wherein one end functional group -X can be covalently bonded to a basic antibody probe, the functional group -X It is an aldehyde group [-CHO], a carboxylic acid group [-COOH], a disulfide bond [-SS-], an amine group [-NH2], or a thiol group [-SH]. 15. The method of fabricating a conducting antibody probe wafer according to claim 1, wherein a plurality of organic conducting molecules are covalently bonded to the basic antibody probe, wherein the organic conducting molecular system is organic 3- (1-(l-pyrrol-2-yl) propanal and derivatives), the structure is [H-(C4H3N)n-(CH2)mX], wherein η = 1,2,3,4, m = 0 to 12. 16. The organic conductivity molecule [H-(C4H3N)n-(CH2)mX} of claim 15 wherein the one-end functional group -X can be covalently bonded to the antibody probe, the functional group -X is Aldehyde [-CHO], carboxylic acid group [-COOH], disulfide bond [-SS-], amine group [-NH2], or thiol group [-SH] 〇 17. As in the scope of claim 1 A method for fabricating a conductive antibody probe wafer, wherein a plurality of organic conductivity molecules are covalently bonded to a basic antibody probe, wherein the organic conductivity molecule is an organic 3-(pyrrole-2-yl)propanal And its derivatives (3-(pyridin-2-yl)propanal and derivatives), the structure is [H-(C5H3N)n-(CH2)mX], where η = 1,2,3,4, m = 0 〜 12. [SI 45 201124722 18. The organic conductivity molecule [H-(C5H3N)n-(CH2)mX} as claimed in claim 17 wherein the one-end functional group -X can be covalently bonded to the antibody probe, the functional group -X is an aldehyde group [-CHO], a carboxylic acid group [-COOH], a disulfide bond [-SS-], an amine group [m], or a thiol group [_SH] 〇 19. The method for producing a conductive probe probe wafer, wherein a plurality of organic conductive molecules are covalently bonded to a basic antibody probe, wherein the organic conductive molecular system is (1) cis-4-phenyl 3-butenal and its derivative organisms (£)-4-phenylbut-3-enal and derivatives [H-(C6H4-C2H2)n-(CH2)mX], (2) cis-4-(pyridine -2·yl)-3-butenal and its derivatives (&)-4-(pyridin-2-yl)but-3-enal and derivatives [H-(C5H3N_C2H2)n-(CH2)mX], (3) cis-seven-4,6-dienal and its derivatives (£)-hepta-4,6-dienal and derivatives [H-(C2H2_C2H2)n-(CH2)mX], (4) trans-seven- 4,6-two awake and its derivatives (2)-1^1&-4,6-(^1^1&11(1(161'^1^5 [H-(C2H2-C2H2)n- (CH2)mX], (5) cis-4-(cyclohex-2-enyl)butanal and鲁 生物 (£)-4-(cyclohex-2-enylidene) butanal and derivatives [H-(C6H7=CH)n-(CH2)mX], (6) 2-(cycloalkyl-2-yl)acetaldehyde And its derivative 2-(naphthalen-2-yl)acetaldehyde and derivatives, [H-(C4H4_C6H3)n-(CH2)mX], where η = 1,2,3,4, m = 0~12. For example, the organic conductivity molecules in the 19th article of the patent application are [H-(C6H4-C2H2)n-(CH2)mX], [H-(C5H3N-C2H2)n-(CH2)mX], [H-(C2H2) -C2H2)n-(CH2)mX] , [H-(C2H2-C2H2)n-(CH2)mX], [S) 46 201124722 [H-(C6H7=CH)n-(CH2)mX] and [H -(C4H4-C6H3)n-(CH2)mX], wherein one end functional group -x can be covalently linked to an antibody probe, the functional group -x is an aldehyde group [-CHO], a carboxylic acid group [- COOH], disulfide bond [-SS-], amine group [-NH2], or thiol group [-SH]. The method of producing an antibody probe wafer according to any one of claims 1 to 10, wherein the metal thin film layer is a gold, silver, copper, platinum, rhodium, zinc, ruthenium, mercury or palladium film layer. The method of producing an antibody probe wafer according to any one of claims 1 to 20, wherein the metal thin film layer is an array metal thin film layer. 23. A probeless semi-finished wafer substrate of a conductive antibody probe wafer can be pre-stored to couple the wafer for probe sensing when needed, the probeless semi-finished wafer substrate comprising: a substrate having a metal film layer on a surface thereof, wherein the metal film layer is a gold, silver, copper, platinum, nickel, zinc, lanthanum, mercury, palladium film layer; and the plurality of substantially extending and substantially The anchoring molecule of the cyclic chain molecular structure, the first end of one of the respective cyclic chain molecular structures, is directly covalently bonded to the metal thin film layer, or indirectly covalently linked to the metal thin film layer through the linker. And a basic antibody probe covalently bonded to each of the anchor molecules corresponding to the second end of the first end. The basic antibody probe can be covalently bonded to the need to form the basic antibody probe wafer, and a plurality of electrically conductive antibody probes, wherein the plurality of organic conductivity molecules are substantially 47 201124722 a molecule extending and substantially in the form of a cyclic chain, covalently bonded to the basic antibody probe, each of the conductive antibody probes being covalently bonded to the corresponding organic anchoring anchor molecule A second end of the first end of the cyclic chain molecular structure. [[ 4848
TW99129508A 2010-01-05 2010-09-01 Preparation method of antibody probe chip with electron-conducting molecule TW201124722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99129508A TW201124722A (en) 2010-01-05 2010-09-01 Preparation method of antibody probe chip with electron-conducting molecule

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW99100057 2010-01-05
TW99129508A TW201124722A (en) 2010-01-05 2010-09-01 Preparation method of antibody probe chip with electron-conducting molecule

Publications (1)

Publication Number Publication Date
TW201124722A true TW201124722A (en) 2011-07-16

Family

ID=45047187

Family Applications (3)

Application Number Title Priority Date Filing Date
TW99127624A TW201142290A (en) 2010-01-05 2010-08-18 Preparation method of molecular probe chip with organoconductive anchoring compound
TW099128622A TWI475227B (en) 2010-01-05 2010-08-26 Antibody probe chip with covalent bonding electron-conducting molecule
TW99129508A TW201124722A (en) 2010-01-05 2010-09-01 Preparation method of antibody probe chip with electron-conducting molecule

Family Applications Before (2)

Application Number Title Priority Date Filing Date
TW99127624A TW201142290A (en) 2010-01-05 2010-08-18 Preparation method of molecular probe chip with organoconductive anchoring compound
TW099128622A TWI475227B (en) 2010-01-05 2010-08-26 Antibody probe chip with covalent bonding electron-conducting molecule

Country Status (1)

Country Link
TW (3) TW201142290A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10502707B1 (en) 2018-05-31 2019-12-10 Taiwan Semiconductor Manufacturing Co., Ltd. Differential sensing with bioFET sensors
US20210011012A1 (en) * 2019-07-12 2021-01-14 Phoenix Silicon International Corp. Linker of bioprobes
EP4012409A1 (en) * 2020-12-09 2022-06-15 Phoenix Silicon International Corp. Linker of bioprobes
CN114660139A (en) * 2020-12-23 2022-06-24 昇阳国际半导体股份有限公司 Linker for biological probes
TWI812059B (en) * 2022-03-11 2023-08-11 凌陽科技股份有限公司 Biosensor chip

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI770836B (en) * 2021-02-25 2022-07-11 銘傳大學 Biological sensing apparatus, biological sensing system, and method of using the same
US11692936B2 (en) 2021-05-05 2023-07-04 Ming Chuan University Biological sensing apparatus, biological sensing system, and method of using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI270673B (en) * 2004-04-09 2007-01-11 Shi-Ming Lin Molecular probe chip with covalent bonding anchoring compound

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10502707B1 (en) 2018-05-31 2019-12-10 Taiwan Semiconductor Manufacturing Co., Ltd. Differential sensing with bioFET sensors
US10866209B2 (en) 2018-05-31 2020-12-15 Taiwan Semiconductor Manufacturing Co., Ltd. Differential sensing with bioFET sensors
TWI723321B (en) * 2018-05-31 2021-04-01 台灣積體電路製造股份有限公司 Biofet sensor, microfluidic system and using method thereof
US20210011012A1 (en) * 2019-07-12 2021-01-14 Phoenix Silicon International Corp. Linker of bioprobes
EP4012409A1 (en) * 2020-12-09 2022-06-15 Phoenix Silicon International Corp. Linker of bioprobes
CN114660139A (en) * 2020-12-23 2022-06-24 昇阳国际半导体股份有限公司 Linker for biological probes
TWI812059B (en) * 2022-03-11 2023-08-11 凌陽科技股份有限公司 Biosensor chip

Also Published As

Publication number Publication date
TW201142291A (en) 2011-12-01
TWI475227B (en) 2015-03-01
TW201142290A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
Ben-Dov et al. Piezoelectric immunosensors for urine specimens of Chlamydia trachomatis employing quartz crystal microbalance microgravimetric analyses
TWI475227B (en) Antibody probe chip with covalent bonding electron-conducting molecule
Kim et al. Development of indirect-competitive quartz crystal microbalance immunosensor for C-reactive protein
CN102112877B (en) Sensor
Nirschl et al. Film bulk acoustic resonators for DNA and protein detection and investigation of in vitro bacterial S-layer formation
Gobi et al. Highly sensitive regenerable immunosensor for label-free detection of 2, 4-dichlorophenoxyacetic acid at ppb levels by using surface plasmon resonance imaging
US10983117B2 (en) Carbon nanotube biosensors and related methods
CA2227281C (en) Determination of an analyte in a liquid medium
TWI475228B (en) Antibody probe chip linking with electron-conducting anchoring molecule
KR20190049223A (en) Nano-biosensor with electrode for enhanced sensing TNF-alpha by deposition of gold nanoparticle and covalent TNF-alpha antibody binding
JP2023175818A (en) Bioactive coating for surface acoustic wave sensor
Vikholm-Lundin Immunosensing based on site-directed immobilization of antibody fragments and polymers that reduce nonspecific binding
Islam et al. Effects of composition of oligo (ethylene glycol)-based mixed monolayers on peptide grafting and human immunoglobulin detection
AU6127899A (en) Immuno-diagnostic test method for veterinary disease
JP4768417B2 (en) Biosensor
Xu et al. Label-free microcantilever-based immunosensors for highly sensitive determination of avian influenza virus H9
Brightbill et al. Preblocking procedure to mitigate nonselective protein adsorption for Carboxyl-SAMs used in biosensing
Montoya et al. Fundamentals of piezoelectric immunosensors
KR101048478B1 (en) Biosensor for ultra trace sample detection and its manufacturing method
Stefan-van Staden et al. Immunosensors in clinical and environmental analysis
Dutta et al. Antibody-based sensors for pathogen detection
TWI270673B (en) Molecular probe chip with covalent bonding anchoring compound
KR100785655B1 (en) Self-assembled monolayers prepared by using a aminocalixarene derivatives, and protein chip using the self-assembled monolayers
US20170030907A1 (en) Tlr-4 based electrochemical biosensor
Caiazzo et al. A highly selective, biofunctional surface for molecule/cell sorting