201124506 六、發明說明: 【發明所屬之技術領域】 本發明有關在由聚(甲基)丙烯酸甲酯所構成之已成 形聚合物體中結合螢光轉換染料,其係用以將天然太陽輻 射轉換成太陽能電池可用之光。該已成形聚合物體係藉由 擠製從聚合物模製材料所製造。 【先前技術】 光伏打電池僅能將某些入射日光轉換成可用電能;該 能量大部分係以熱形式損失掉。例如,矽太陽能電池可吸 收所有能量高於晶體矽之1 · 1 eV能帶邊緣的光子。此相當 於波長<1100 nm。被吸收之光子的剩餘能係轉換成熱,且 導致該光電池發熱;降低該光電池之效率。 從 US 4,110,123 (Fraunhofer)或從 Appl. Phys. 14,123 ff ( 1 977)知曉螢光轉換型太陽能電池的構造與效果。 WO 2007/03 1 446 (BASF AG)描述從一或多片塗布螢光 染料之玻璃板或聚合物厚板形成的螢光轉換型太陽能電池 。所使用之螢光染料係以三瑞啉羧酸 ( terrylenecarboxylic acid )衍生物爲底質之染料或該等染 料與其他螢光染料之組合。此處之缺點係以包含該染料之 調配物塗布玻璃板需要個別分開步驟。 包含透鏡或鏡子之聚光器系統 已習知用於將光聚集在太陽能電池之以透鏡或鏡子爲 -5- 201124506 基礎之光學系統:其聚光係數至高達1000倍。然而該光學 解決方法的缺點係聚集整體電磁譜之光,使得不僅聚集有 效光,亦聚集了無光伏打效用之光。此在該等太陽能電池 上造成不希望得到的熱應力,且降低效率。爲了不使溫度 變得過高,可主動或被動冷卻該等太陽能電池。此外,該 等透鏡或透鏡系統必須以複雜方式機械性地追踪太陽的位 置;此外,彼等僅能呈現直接入射光影像。漫射光對於能 量生產若有任何貢獻的話僅有少許貢獻(詳見US-A 5,489,297 ) 〇 難題 有鑒於前文討論之先前技術,所針對之難題係發展太 陽之光輻射的聚光方法,該方法可 • 利用漫射光,因此不需要複雜之追踪機械, • 提供調整至太陽能電池(例如Si或GaAs )所利用 的吸收光譜之光, • 獲致與光學聚光器相當之聚光作用, • 容易且價格低廉地製造, • 減少太陽能電池上之熱應力以及相關之效率損失 9 • 縮減有效太陽能電池面積, • 抗天候影響,且在操作期間光學性質實質上保持 未改變。 -6- 201124506 【發明內容】 解決方法 藉由使用光譜彼此匹配之在已成形聚合物體中的不同 營光轉換染料’使得入射光以受控制方式發射且具有與特 定太陽能電池匹配之波長而解決前文詳述之難題。 該等染料可以(例如)經由母料、經由著色劑製備方 法而以粉末形式添加,或以液態劑型添加於該聚合物。較 佳係在母料中結合該染料或該染料混合物,然後其係與模 製材料混合且擠製或共擠製以製造已成形聚合物體。 該已成形聚合物體可具有單層或多層結構,且包含數 層不含染料或染料混合物或含相同或不同染料或染料混合 物之層。可以固定方式將個別層彼此接合,例如藉由共擠 製或積層接合。 然而,該成層作用亦可藉由將該等已成形聚合物體鬆 散堆疊於另一者之上而達成。 本發明之解決方法提供下列優點: - 將該入射日光轉換成矽光伏打電池之最適波長, - 可藉由習知程序製造螢光轉換型太陽能電池, - 防止該太陽能電池受到損壞, - 轉換率出乎意料地高, - 該已成形聚合物體可以簡單方式與該太陽能電池 的幾何和靜態需求匹配, - 該已成形聚合物體比從無機玻璃所製成之相當配 置輕, 201124506 - 該已成形聚合物體可經耐衝擊改良,以保護該太 陽能電池配置免受冰雹破壞。 已成形聚合物體之製造 單體 (甲基)丙烯酸酯 特佳之單體群組爲(甲基)丙烯酸酯。「(甲基)丙 烯酸酯」一辭包含甲基丙烯酸酯與丙烯酸酯及此二者之混 合物。 此等單體已廣爲人知。彼等包括從飽和醇衍生之(甲 基)丙烯酸酯,例如(甲基)丙烯酸甲酯、(甲基)丙烯 酸乙酯、(甲基)丙烯酸丙酯、(甲基)丙烯酸異丙酯、 (甲基)丙烯酸正丁酯、(甲基)丙烯酸第三丁酯、(甲 基)丙烯酸丁氧基甲酯、(甲基)丙烯酸戊酯、(甲基) 丙烯酸己酯、(甲基)丙烯酸庚酯、(甲基)丙嫌酸辛酯 、(甲基)丙烯酸異辛酯、(甲基)丙烯酸異癸醋、(甲 基)丙烯酸四氫呋喃甲酯、(甲基)丙烯酸環己醋及(甲 基)丙烯酸2 -乙基己酯;從不飽和醇衍生之(甲基)丙稀 酸酯,例如(甲基)丙烯酸油酯、(甲基)丙綠酸2-快丙 酯、(甲基)丙烯酸烯丙酯、(甲基)丙烯酸乙稀醋;( 甲基)丙烯酸芳酯’例如(甲基)丙烯酸苯甲醋或(甲基 )丙烯酸苯酯’其中該等芳基可各自爲未經取代或至多達 四元取代;(甲基)丙烯酸環烷酯,例如(甲基)丙稀酸 3 -乙嫌基環己醋、(甲基)丙稀酸坎醋、(甲基)丙燃酸 -8 - 201124506 異莰酯;(甲基)丙烯酸羥基烷酯,例如(甲基)丙烯酸 3 -羥基丙酯、(甲基)丙烯酸3,4 -二羥基丁酯、(甲基) 丙烯酸2 -羥基乙酯、(甲基)丙烯酸2 -羥基丙酯;二(甲 基)丙烯酸乙二醇酯,例如(甲基)丙烯酸1,4 -丁二醇酯 、醚醇之(甲基)丙烯酸酯’例如(甲基)丙烯酸四氫呋 喃甲酯、(甲基)丙烯酸乙烯氧基乙氧基乙酯;(甲基) 丙烯酸之醯胺與腈,例如N - ( 3 -二甲基胺基丙基)(甲基 )丙烯醯胺、N-(二乙基膦)(甲基)丙烯醯胺、1-甲基 丙烯醯基醯胺基-2 -甲基-2-丙醇;含硫甲基丙烯酸酯,例 如(甲基)丙烯酸乙基亞磺醯基乙酯、(甲基)丙烯酸4-氰硫基丁酯、(甲基)丙烯酸乙基磺醯基乙酯、(甲基) 丙烯酸氰硫基甲酯、(甲基)丙烯酸甲基亞磺醯基甲酯、 硫化雙((甲基)丙烯醯氧基乙基):多官能基(甲基) 丙烯酸酯,例如三羥甲基丙烷三(甲基)丙烯酸酯。 該等單體可個別使用或作爲混合物使用。此處之特佳 者爲包含甲基丙烯酸酯與丙烯酸酯之混合物。 自由基形成劑 該聚合作用通常係藉由習知之自由基起始劑引發。較 佳之起始劑包括本技術領域中廣爲人知之偶氮起始劑,諸 如AIBN與1,1-偶氮雙環-己腈,及過氧化物,諸如過氧化 甲基乙基酮、過氧化乙醯丙酮、過氧化二月桂醯、過·2·乙 基己酸第三丁酯、過氧化酮、過氧化甲基異丁酮、過氧化 環己酮、過氧化二苯甲醯、過氧苯甲酸第三丁酯、第三丁 -9- 201124506 基過氧異丙基碳酸酯、2,5-雙(2-乙基己醯基過氧)-2,5-二甲基己烷、過氧-2-乙基己酸第三丁酯、過氧-3,5,5-三甲 基己酸第三丁酯、過氧化二異丙苯、1,1-雙(第三丁基過 氧)環己烷、1,1-雙(第三丁基過氧)-3,3,5-三甲基環己 烷、氫過氧化異丙苯基、氫過氧化第三丁基、過氧二碳酸 雙(4-第三丁基-環己)酯、前述化合物其中之二或更多者 與彼此之混合物,及前述化合物與未提及且同樣可形成自 由基之化合物的混合物。 該等化合物之常用用量以該等單體重量計爲0.01至1.0 重量%,較佳爲0 · 02 5至0.3重量%。 耐衝擊改良劑 本發明一特定樣態中,該模製材料可隨意地藉由耐衝 擊改良劑改質以便更具機械安定性。用於聚甲基丙烯酸酯 聚合物之此等耐衝擊改良劑充分爲人熟知;例如,經耐衝 擊改良之聚甲基丙烯酸酯模製材料的製備及形成係描述( 尤其是)於 EP-A 0 113 924、EP-A 0 522 351、ΕΡ-Α 0 465 049及 ΕΡ-Α 0 683 028。 較佳之耐衝擊模製材料具有70至99重量%之聚(甲基 )丙烯酸甲酯。該等聚(甲基)丙烯酸甲酯已於前文描述 〇 在本發明特定樣態中,用以製造經耐衝擊改良之模製 材料的聚(甲基)丙烯酸甲酯係藉由自由基聚合包含80重 量%至100重量%,較佳爲90重量%至98重量%之甲基丙烯 •10- 201124506 酸甲酯及隨意的〇重量%至20重量%,較佳爲2重量%至10重 量%之其他可自由基聚合共聚單體(其同樣已於前文描述 )之混合物而獲得。特佳之共聚單體包括(甲基)丙烯酸 C!-至C4-烷酯,尤其是丙烯酸甲酯、丙烯酸乙酯或甲基丙 烯酸丁酯。 用於製造特定耐衝擊模製材料之聚(甲基)丙烯酸甲 酯的平均分子量Mw較佳係在90000 g/mol至200000 g/mol 範圍內,尤其是 1 00000 g/mol至 1 50000 g/mol。 較佳耐衝擊模製材料含有1重量%至60重量%,較佳爲 2重量%至50重量%,更佳爲3重量%至45重量%,尤其是5 重量%至42重量%之耐衝擊改良劑,其構成由交聯聚合物 粒子所構成的彈性體相。 該耐衝擊改質劑可以本身已爲人習知之方式藉由粒狀 聚合或乳液聚合而得。 較佳之耐衝擊改良劑爲平均粒徑在50至1 000 nm,較 佳爲60至500 nm,且更佳爲80至450 nm範圍內之交聯粒子 〇 此等粒子可藉由自由基聚合例如通常含有至少40重量 %且較佳爲50重量%至70重量%之甲基丙稀酸甲醋,20重量 %至5 0重量%且較佳爲2 5重量%至4 5重量%之丙烯酸丁酯, 及0.1重量%至2重量%且較佳爲0.5重量%至1重量%之交聯 單體(例如多官能基(甲基)丙烯酸酯,例如甲基丙烯酸 烯丙酯)及可與前述乙烯基化合物共聚合的共聚單體之混 合物而獲得。 -11 - 201124506 較佳之共聚單體包括(甲基)丙烯酸Ci-C4 -烷酯,諸 如丙烯酸乙酯或甲基丙烯酸丁酯,較佳爲丙烯酸甲酯,或 其他乙烯基可聚合單體,例如苯乙烯。用於製備前述粒子 的混合物較佳可包含0重量%至30重量%,且較佳爲0.5重量 %至15重量%之共聚單體。 特佳之耐衝擊改良劑爲具有兩層內核-外殼結構,更 佳係三層內核-外殼結構的聚合物粒子。此等內核-外殼聚 合物係描述於文件 EP-A 0 113 924、EP-A 0 522 351、EP-A 0 465 049與 EP-A 0 683 028。 以丙烯酸酯橡膠爲底質之特佳耐衝擊改良劑的結構之 一如下: 內核: 甲基丙烯酸甲酯含量以內核之重量計爲至少 9〇重量%的聚合物。 外殼1: 丙烯酸丁酯含量以第一外殼之重量計爲至少 80重量%的聚合物。 外殼2: 甲基丙烯酸甲酯含量以第二外殼之重量計爲 至少90重量%的聚合物。 該內核與外殻以及所提及之單體可各自包含其他單體 〇 例如,較佳之丙烯酸酯橡膠改良劑可具有以下結構: 內核: 甲基丙烯酸甲酯(95.7重量% )、丙烯酸乙 酯(4重量% )及甲基丙烯酸烯丙酯(0.3重量% )之共聚物 -12- 201124506 si:丙烯酸丁酯(81.2重量%)、苯乙烯(17.5重量% )及甲基丙烯酸烯丙酯(1.3重量% )之共聚物’ S2:甲基丙烯酸甲酯(96重量% )與丙烯酸乙酯(4 重量% )之共聚物。 該丙烯酸酯橡膠改良劑之內核對外殼的比可在廣泛範 圍內變化。在具有一層外殼之改良劑的情況下’內核對外 殼之重量比C/S較佳係在20 : 8 0至8 0 : 20之範圍內’較佳 爲3 0 : 70至70 : 3 0,或者在具有兩層外殼之改良劑的情況 下,內核對外殻1對外殼2之比C/S1/S2係在10: 80: 10至 40: 20: 40 之範圍,更佳爲 20: 60: 20 至 30: 40: 30。 內核-外殼改良劑之粒徑通常在50至1 000 nm範圍內, 較佳爲1〇〇至500 nm,且更佳爲150至450 nm,但不希望此 範圍成爲限制。 此等耐衝擊改良劑可從三菱(Mitsubishi )購得,其 商品名爲METABLEN® IR 441。此外,亦可獲得經耐衝擊 改良之模製材料。其包括得自製造商CYRO Industries之 ACRYLITE PLUS®。 該已成形聚合物體亦可從聚碳酸酯(pc)、聚苯乙烯 (PS)、聚醯胺(PA)、聚酯(PE)、熱塑性聚胺甲酸 酯(PU) '聚醚颯、聚颯 '乙烯基聚合物,例如聚氯乙烯 (PVC )形成。 光安定劑 所使用之光安定劑爲U V - A及/或u V - B吸收劑。可使用 -13- 201124506 之物質種類的實例包括HALS化合物。應暸解HALS化合物 意指例如J P 0 3 4 7 8 5 6所述之位阻胺。該等「受阻胺光安定 劑」清除在輻射應力下形成之基團。該等產物係由Ciba所 售,商標爲 TINUVIN® 123、TINUVIN® 571、TINUVIN® 770與 TINUVIN® 622。 此外,可能使用以二苯甲酮衍生物爲底質之光安定劑 。該等產物係由BASF所售,商標爲UVINUL® 541 1。 亦可使用以苯並三唑爲底質之光安定劑。該等產物係 由Cytec所售,商標爲CYASORB® UV 5411,或由Ciba所售 ,商標爲 TINUVIN® P、Tinuvin® 571 與 TINUVIN® 234。 氧化安定劑 所使用之氧化安定劑可爲位阻酚或亞磷酸鹽或膦酸鹽 。該等產物係由Ciba所售,商標爲Irganox®與Irgaf0S®。 此外,該模製材料可包含其他聚合物以修改性質。該 等聚合物包括聚丙烯腈、聚苯乙烯、聚醚、聚酯、聚碳酸 酯,及聚氯乙烯。該等聚合物可單獨使用或作爲混合物使 用,亦可能使用可從前述聚合物衍生之共聚物。 用於模製材料之同元聚合物及/或共聚物的重量平均 分子量Mw可在廣泛範圍內變化,該分子量通常與最終用 途及該模製材料之處理方法配合。然而,其通常在介於 20000 與 1 000000 g/mol,較佳係 50000 至 500000 g/mol,且 更佳係8 0000至3 00000 g/mol之範圍內,不希望此範圍強加 任何限制。 -14- 201124506 用於製造模製品之模製材料可包括所有種類之常用添 加劑。其包括染料、抗靜電劑'抗氧化劑、脫模劑、阻燃 劑、潤滑劑、流動性改進劑'塡料、光安定劑及有機磷化 合物’諸如亞磷酸酯或膦酸酯、顏料、抗風化劑,及增塑 劑。然而’添加之量受最終用途限制。例如,該模製材料 之光傳導性質及其透明度不應因添加劑而大幅削弱。 在本發明一特定具體實例中,該模製材料具有以該模 製材料之重量計至少7 0 %,較佳爲至少8 0 %且更佳爲至少 90重量%之聚(甲基)丙烯酸甲酯。 擠製 本發明薄板可以本身爲人習知之方式藉由擠製或共擠 製來製造。 爲此’在簡單擠製情況中係藉由擠製機產生熱塑性熔 體,或在共擠製情況中係藉由複數台擠製機產生熱塑性熔 體’且進料至擠製工具。在擠製機與擠製噴嘴之間可以本 身已爲人習知之方式配置額外裝置,例如熔體泵及/或熔 體過濾器。隨後可將該擠製之網供應至拋光堆架或校正單 元。 根據該聚合物,大部分情況中之處理溫度係在1 5 0 °c 至3 20°C範圍內。聚甲基丙烯酸甲酯聚合物可在例如220 °C 至3 00°C範圍內予以處理。 薄板可例如具有在1.0 mm至100 mm範圍內之厚度。該 擠製之薄板的寬度可爲例如100 mm至4000 mm。 -15- 201124506 擠製或共擠製之膜或薄板可由例如聚甲基丙烯酸酯聚 合物(PMMA)、經耐衝擊改良之聚甲基丙嫌酸甲醋(im-PMMA)、聚碳酸酯聚合物、聚苯乙烯聚合物、苯乙烯-丙 烯腈聚合物、聚對苯二甲酸乙二酯聚合物、經乙二醇改質 之聚對苯二甲酸乙二酯聚合物、聚氯乙烯聚合物、透明聚 烯烴聚合物、丙烯腈-丁二烯-苯乙烯(ABS )聚合物組成 ’或由所提及之聚合物的組合或混合物(摻合物)組成。 該PMMA型之分子量介於20000與500000 g/mol之間,較佳 爲 70000 至 250000 g/mol 且更佳爲 1 00000 至 200000 g/mol, 不希望此範圍成爲限制。 共擠製 在共擠製情況中,將二或更多種熔體物流合倂,額外 熔體層之鋪設通常係借助於歧管口型來調節。此可經由例 如已習知爲適配器或歧管共擠製技術的技術來執行。適配 器係從例如DE-A 3 7 4 1 793而得知。彼等爲可交換單一部 件或多部件滑件,其外形可事先經調整成所希望之分布外 形。層狀適配器係從例如EP 0 4 1 8 6 8 1 A2得知。此處之擠 製外形的寬度可被許多控制元件(習知爲薄層)所影響。 該調節係經由根據層厚及在該擠製產品上所測得之鋪設寬 度調節該等薄層之位置及通過該擠製機之產出的控制電路 來進行。 藉由歧管口型調整分布係使用可通達該擠製口型頂部 的控制元件(其爲該歧管口型一部分)進行。該等元件可 -16- 201124506 爲例如螺检、熱fei膜螺检或壓電轉換器(piez〇translator )(詳見例如 EP0418681 A2)。 在該口型出口區中,可借助於外形口型另外調節該擠 製物穿過部分’該等外形口型習知爲撓性唇件或超撓性( super flex)唇件(詳見例如 EP-A 435 078、EP-A 367 022 ' EP-A 484 841)。 該PMMA聚合物模製材料之分子量可藉由例如凝膠層 析術使用聚甲基丙烯酸甲酯校正標準或以數條與黏度値相 關之校正線來測定。 較佳之聚合物基材可從Evonik R6hm GmbH購得,係 商品名爲Plexiglas®之聚合物模製材料。 所使用之染料 螢光染料 所使用之染料可爲以下之染料:得自BASF之 Lumogen®系列的茈、三瑞啉與瑞啉(rylene)衍生物類型 ’若明丹(Rhodamine )、得自Exciton之LDS®系列、經取 代吡喃(例如DCM )、香豆素(例如,香豆素30 ( Coumarin 3 0)、香豆素 1 (Coumarin 1)、香豆素 102( Coumarin 102 )等)、噚哄(例如尼羅河藍,亦稱爲尼羅 河藍A )、吡啶、苯乙烯基衍生物、二噚畊、萘二甲醯亞 胺、噻畊、二苯乙烯及花青(例如DODC 1 ),其係得自例 如Lambdachrome®與Exciton®。茈、三瑞啉與瑞啉衍生物 類型之染料係描述於WO 2007/031446。 -17- 201124506201124506 VI. Description of the Invention: [Technical Field] The present invention relates to the incorporation of a fluorescent conversion dye in a shaped polymer body composed of poly(methyl) acrylate, which is used to convert natural solar radiation into The light available for solar cells. The formed polymer system is produced by extrusion from a polymeric molding material. [Prior Art] A photovoltaic cell can only convert some incident sunlight into usable electrical energy; most of this energy is lost in the form of heat. For example, a solar cell can absorb all photons with an energy higher than the edge of the 1 1 eV band of the crystal 矽. This is equivalent to the wavelength < 1100 nm. The remaining energy of the absorbed photons is converted into heat and causes the photovoltaic cell to heat up; reducing the efficiency of the photovoltaic cell. The construction and effect of a fluorescent conversion type solar cell are known from US 4,110,123 (Fraunhofer) or from Appl. Phys. 14,123 ff (1 977). WO 2007/03 1 446 (BASF AG) describes a fluorescent conversion type solar cell formed from one or more sheets of glass sheets or polymer slabs coated with fluorescent dyes. The fluorescent dye used is a dye based on a terrylene carboxylic acid derivative or a combination of these dyes with other fluorescent dyes. The disadvantage here is that the coating of the glass sheets with the formulation comprising the dye requires separate steps. A concentrator system comprising a lens or a mirror It is known that an optical system based on a lens or a mirror for collecting light in a solar cell has a condensing coefficient of up to 1000 times. However, the disadvantage of this optical solution is to concentrate the light of the overall electromagnetic spectrum so that not only the effective light is concentrated, but also the light without photovoltaic effect is concentrated. This causes undesirable thermal stress on the solar cells and reduces efficiency. In order not to make the temperature too high, the solar cells can be actively or passively cooled. Moreover, the lenses or lens systems must mechanically track the position of the sun in a complex manner; in addition, they can only present direct incident light images. Diffuse light contributes little to the energy production (see US-A 5,489,297 for details). The problem is based on the prior art discussed above, and the problem is to develop a concentrating method for solar radiation. • Uses diffused light, so no complicated tracking machinery is required, • Provides light that is tuned to the absorption spectrum used by solar cells (such as Si or GaAs), • Concentrates light with optical concentrators, • Easy and affordable Low cost manufacturing, • Reduce thermal stress on solar cells and associated efficiency losses 9 • Reduce effective solar cell area, • Weather resistance, and virtually unchanged optical properties during operation. -6- 201124506 SUMMARY OF THE INVENTION The solution solves the foregoing problem by using different camping light-converting dyes that are matched to each other in the shaped polymer body to cause incident light to be emitted in a controlled manner and having a wavelength matched to a particular solar cell. Detail the puzzle. The dyes may be added in powder form, for example, via a masterbatch, via a color former preparation process, or added to the polymer in a liquid dosage form. Preferably, the dye or the dye mixture is combined in a masterbatch which is then mixed with a molding material and extruded or coextruded to produce a shaped polymer body. The shaped polymeric body can have a single or multi-layer structure and comprises several layers that are free of dyes or dye mixtures or layers that contain the same or different dyes or dye mixtures. The individual layers can be joined to one another in a fixed manner, such as by coextrusion or laminate bonding. However, the layering action can also be achieved by loosely stacking the formed polymer bodies on top of the other. The solution of the present invention provides the following advantages: - converting the incident sunlight into an optimum wavelength of the photovoltaic cell, - manufacturing a fluorescent conversion type solar cell by a conventional procedure, - preventing the solar cell from being damaged, - conversion rate Unexpectably high, - the shaped polymer body can be matched in a simple manner to the geometric and static requirements of the solar cell, - the shaped polymer body is lighter than the equivalent configuration made from inorganic glass, 201124506 - the shaped polymerization The object can be modified by impact resistance to protect the solar cell configuration from hail damage. Production of Shaped Polymer Body Monomer (Meth) acrylate A particularly preferred monomer group is (meth) acrylate. The term "(meth) acrylate" includes methacrylate and acrylate and a mixture of the two. These monomers are well known. These include (meth) acrylates derived from saturated alcohols such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, ( N-butyl methacrylate, tert-butyl (meth)acrylate, butoxymethyl (meth)acrylate, amyl (meth)acrylate, hexyl (meth)acrylate, (meth)acrylic acid Heptyl ester, (meth) propyl octanoate, isooctyl (meth) acrylate, isophthalic acid (meth) acrylate, tetrahydrofuran methyl (meth) acrylate, cyclohexane vinegar (meth) acrylate and (a) 2-ethylhexyl acrylate; (meth) acrylate derived from an unsaturated alcohol, such as (meth) acrylate, (methyl) chlorophyllin 2- propyl acrylate, (methyl) Alkenyl acrylate, ethyl methacrylate (meth) acrylate; aryl (meth) acrylate such as benzyl methacrylate or phenyl (meth) acrylate, wherein the aryl groups may each be Substituted or up to four-membered; cycloalkyl (meth)acrylate, (methyl)acrylic acid 3-ethyl sulfonate, (meth)acrylic acid vinegar, (meth)propionic acid-8 - 201124506 isodecyl ester; hydroxyalkyl (meth) acrylate, For example, 3-hydroxypropyl (meth)acrylate, 3,4-dihydroxybutyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate; Ethylene glycol ethyl methacrylate, such as 1,4-butylene glycol (meth)acrylate, (meth) acrylate of ether alcohol such as tetrahydrofuran methyl (meth) acrylate, ethylene (meth) acrylate Oxyethoxyethyl ester; (meth)acrylic acid decylamine and nitrile, such as N-(3-dimethylaminopropyl)(meth)acrylamide, N-(diethylphosphine) ( Methyl) acrylamide, 1-methylpropenyl decylamino-2-methyl-2-propanol; sulfur-containing methacrylate, such as ethyl sulfinamide ethyl (meth)acrylate, 4-cyanothiobutyl (meth)acrylate, ethylsulfonylethyl (meth)acrylate, cyanothiomethyl (meth)acrylate, methylsulfinic acid (meth)acrylate Ylmethyl ester sulfide bis ((meth) Bing Xixi oxyethyl): (meth) acrylate polyfunctional groups, such as trimethylol propane tri (meth) acrylate. These monomers can be used individually or as a mixture. A particularly preferred herein is a mixture comprising methacrylate and acrylate. Free Radical Forming Agents The polymerization is usually initiated by conventional free radical initiators. Preferred starters include azo starters which are well known in the art, such as AIBN and 1,1-azobiscyclohexane, and peroxides such as methyl ethyl ketone peroxide, peroxidation. Acetylacetone, dilaurin peroxide, tert-butyl 2-ethylhexanoate, ketone peroxide, methyl isobutyl ketone, cyclohexanone peroxide, benzophenone peroxide, peroxygen Tert-butyl benzoate, tert-butyl-9- 201124506-based peroxyisopropyl carbonate, 2,5-bis(2-ethylhexylperoxy)-2,5-dimethylhexane, Tert-butyl peroxy-2-ethylhexanoate, tert-butyl peroxy-3,5,5-trimethylhexanoate, dicumyl peroxide, 1,1-bis(t-butyl Peroxy)cyclohexane, 1,1-bis(t-butylperoxy)-3,3,5-trimethylcyclohexane, cumene hydroperoxide, tert-butyl hydroperoxide, Bis(4-tert-butyl-cyclohexyl)peroxydicarbonate, a mixture of two or more of the foregoing compounds with each other, and a mixture of the foregoing compounds with a compound which is not mentioned and which forms a radical. The usual amounts of the compounds are from 0.01 to 1.0% by weight, preferably from 0. 02 to 0.3% by weight, based on the weight of the monomers. Impact Resistant Improver In a particular aspect of the invention, the molding material is optionally modified by impact modifiers for greater mechanical stability. Such impact modifiers for polymethacrylate polymers are well known; for example, the preparation and formation of impact-modified polymethacrylate molding materials (especially) in EP-A 0 113 924, EP-A 0 522 351, ΕΡ-Α 0 465 049 and ΕΡ-Α 0 683 028. The preferred impact resistant molding material has from 70 to 99% by weight of poly(methyl) acrylate. The poly(methyl) acrylates have been described above. In a particular aspect of the invention, the poly(methyl) acrylate used to make the impact modified modified molding material is comprised by free radical polymerization. 80% by weight to 100% by weight, preferably 90% by weight to 98% by weight of methacrylic acid·10-201124506 methyl ester and optionally 〇% by weight to 20% by weight, preferably 2% by weight to 10% by weight It is obtained as a mixture of other free-radically polymerizable comonomers (which are also described above). Particularly preferred comonomers include C!- to C4-alkyl esters of (meth)acrylic acid, especially methyl acrylate, ethyl acrylate or butyl methacrylate. The average molecular weight Mw of the poly(methyl) acrylate used for the manufacture of the specific impact-resistant molding material is preferably in the range of from 90,000 g/mol to 200,000 g/mol, especially from 100,000 g/mol to 150,000 g/ Mol. Preferably, the impact resistant molding material contains from 1% by weight to 60% by weight, preferably from 2% by weight to 50% by weight, more preferably from 3% by weight to 45% by weight, especially from 5% by weight to 42% by weight, of impact resistance. A modifier which constitutes an elastomer phase composed of crosslinked polymer particles. The impact modifier can be obtained by particle polymerization or emulsion polymerization in a manner known per se. Preferred impact modifiers are crosslinked particles having an average particle diameter of from 50 to 1 000 nm, preferably from 60 to 500 nm, and more preferably from 80 to 450 nm. Such particles may be polymerized by free radical polymerization, for example. Usually containing at least 40% by weight and preferably 50% to 70% by weight of methyl methacrylate, 20% to 50% by weight and preferably 25 to 45% by weight of butyl acrylate An ester, and 0.1% by weight to 2% by weight and preferably 0.5% by weight to 1% by weight of a crosslinking monomer (for example, a polyfunctional (meth) acrylate such as allyl methacrylate) and may be as described above Obtained as a mixture of comonomers copolymerized with a vinyl compound. -11 - 201124506 Preferred comonomers include Ci-C4-alkyl esters of (meth)acrylic acid, such as ethyl acrylate or butyl methacrylate, preferably methyl acrylate, or other vinyl polymerizable monomers, for example Styrene. The mixture used to prepare the aforementioned particles may preferably comprise from 0% by weight to 30% by weight, and preferably from 0.5% by weight to 15% by weight, based on the comonomer. A particularly good impact modifier is a polymer particle having a two-layer core-shell structure, preferably a three-layer core-shell structure. Such core-shell polymers are described in the documents EP-A 0 113 924, EP-A 0 522 351, EP-A 0 465 049 and EP-A 0 683 028. One of the structures of a particularly good impact modifier based on acrylate rubber is as follows: Core: A polymer having a methyl methacrylate content of at least 9% by weight based on the weight of the inner core. Housing 1: The butyl acrylate content is at least 80% by weight of the polymer based on the weight of the first outer shell. Housing 2: A polymer having a methyl methacrylate content of at least 90% by weight based on the weight of the second outer shell. The core and the outer shell and the monomers mentioned may each comprise other monomers. For example, a preferred acrylate rubber modifier may have the following structure: Core: methyl methacrylate (95.7 wt%), ethyl acrylate ( 4% by weight) and copolymer of allyl methacrylate (0.3% by weight) -12- 201124506 si: butyl acrylate (81.2% by weight), styrene (17.5 % by weight) and allyl methacrylate (1.3 Copolymer of weight %) 'S2: a copolymer of methyl methacrylate (96% by weight) and ethyl acrylate (4% by weight). The core to shell ratio of the acrylate rubber modifier can vary over a wide range. In the case of a modifier having a shell, the core-to-shell weight ratio C/S is preferably in the range of 20:80 to 80:20, preferably 3 0:70 to 70:30. Or in the case of a modifier having two outer shells, the core to shell 2 to shell 2 ratio C/S1/S2 is in the range of 10:80:10 to 40:20:40, more preferably 20:60: 20 to 30: 40: 30. The particle size of the core-shell modifier is usually in the range of 50 to 1 000 nm, preferably 1 to 500 nm, and more preferably 150 to 450 nm, but this range is not intended to be a limitation. These impact modifiers are commercially available from Mitsubishi under the trade name METABLEN® IR 441. In addition, a molded material improved by impact resistance can also be obtained. It includes ACRYLITE PLUS® from the manufacturer CYRO Industries. The shaped polymer body can also be obtained from polycarbonate (pc), polystyrene (PS), polydecylamine (PA), polyester (PE), thermoplastic polyurethane (PU), polyether oxime, poly A vinyl polymer such as polyvinyl chloride (PVC) is formed. Light stabilizer The light stabilizer used is U V - A and / or u V - B absorbent. Examples of the substance types which can be used -13- 201124506 include HALS compounds. It is understood that the HALS compound means a hindered amine such as described in J P 0 3 4 7 8 5 6 . The "hindered amine light stabilizers" remove groups formed under radiation stress. These products are sold by Ciba under the trademarks TINUVIN® 123, TINUVIN® 571, TINUVIN® 770 and TINUVIN® 622. In addition, it is possible to use a light stabilizer which is based on a benzophenone derivative. These products are sold by BASF under the trademark UVINUL® 541 1. A light stabilizer based on benzotriazole can also be used. These products are sold by Cytec under the trademark CYASORB® UV 5411 or sold by Ciba under the trademarks TINUVIN® P, Tinuvin® 571 and TINUVIN® 234. Oxidation stabilizers Oxidation stabilizers used may be hindered phenols or phosphites or phosphonates. These products are sold by Ciba under the trademarks Irganox® and Irgaf0S®. Additionally, the molding material can include other polymers to modify properties. Such polymers include polyacrylonitrile, polystyrene, polyether, polyester, polycarbonate, and polyvinyl chloride. These polymers may be used singly or as a mixture, and it is also possible to use a copolymer which can be derived from the aforementioned polymer. The weight average molecular weight Mw of the homopolymer and/or copolymer used in the molding material can vary over a wide range, and the molecular weight is usually compounded with the final use and the treatment of the molding material. However, it is usually in the range of from 20,000 to 1,000,000 g/mol, preferably from 50,000 to 500,000 g/mol, and more preferably from 80,000 to 300,000 g/mol, and it is not desired to impose any limitation on this range. -14- 201124506 Molding materials for the manufacture of molded articles may include all kinds of commonly used additives. It includes dyes, antistatic agents 'antioxidants, mold release agents, flame retardants, lubricants, flow improvers' dips, light stabilizers and organophosphorus compounds such as phosphites or phosphonates, pigments, anti-drugs Weathering agent, and plasticizer. However, the amount added is limited by the end use. For example, the light-conducting properties of the molding material and its transparency should not be greatly impaired by the additives. In a particular embodiment of the invention, the molding material has at least 70%, preferably at least 80%, and more preferably at least 90% by weight, based on the weight of the molding material, of poly(meth)acrylic acid. ester. Extrusion The sheets of the present invention can be made by extrusion or coextrusion in a manner known per se. For this purpose, in the case of simple extrusion, a thermoplastic melt is produced by an extruder, or in the case of coextrusion, a thermoplastic melt is produced by a plurality of extruders and fed to an extrusion tool. Additional means, such as melt pumps and/or melt filters, may be provided between the extruder and the extrusion nozzle in a manner known per se. The extruded web can then be supplied to a polishing stack or calibration unit. According to the polymer, the treatment temperature in most cases is in the range of from 150 ° C to 32 ° C. The polymethyl methacrylate polymer can be treated, for example, at a temperature ranging from 220 ° C to 300 ° C. The sheet can for example have a thickness in the range from 1.0 mm to 100 mm. The extruded sheet may have a width of, for example, 100 mm to 4000 mm. -15- 201124506 Extruded or coextruded film or sheet can be polymerized, for example, from polymethacrylate polymer (PMMA), impact modified polymethyl methacrylate (im-PMMA), polycarbonate , polystyrene polymer, styrene-acrylonitrile polymer, polyethylene terephthalate polymer, ethylene glycol modified polyethylene terephthalate polymer, polyvinyl chloride polymer A transparent polyolefin polymer, an acrylonitrile-butadiene-styrene (ABS) polymer composition' or consists of a combination or mixture (blend) of the polymers mentioned. The PMMA type has a molecular weight of between 20,000 and 500,000 g/mol, preferably from 70,000 to 250,000 g/mol and more preferably from 100,000 to 200,000 g/mol, which is not intended to be a limitation. Coextrusion In the case of coextrusion, two or more melt streams are combined and the laying of the additional melt layer is typically adjusted by means of a manifold shape. This can be performed, for example, by techniques that are conventionally known as adapter or manifold coextrusion techniques. Adapters are known, for example, from DE-A 3 7 4 1 793. They are interchangeable single-part or multi-part slides whose shape can be adjusted to the desired distribution profile in advance. Layered adapters are known, for example, from EP 0 4 1 8 6 8 1 A2. The width of the extruded profile here can be affected by many control elements (known as thin layers). The adjustment is made by adjusting the position of the layers and the control circuitry produced by the extruder based on the layer thickness and the width of the layup measured on the extruded product. The manifold profile is distributed using a control element that is accessible to the top of the extruded port, which is part of the manifold. These components may be -16-201124506 for example, screw inspection, thermal fei film inspection or piezo transducer (see, for example, EP0418681 A2). In the mouth-shaped exit region, the extruded passage portion can be additionally adjusted by means of a profiled mouth shape as a flexible lip or a super flex lip (see, for example, EP-A 435 078, EP-A 367 022 'EP-A 484 841). The molecular weight of the PMMA polymer molding material can be determined, for example, by gel chromatography using a polymethyl methacrylate calibration standard or by a plurality of calibration lines associated with viscosity 値. A preferred polymeric substrate is commercially available from Evonik R6hm GmbH under the trade name Plexiglas®. The dye used in the dye fluorescent dye used may be the following dyes: 茈, trisporine and rylene derivatives of the Lumogen® series from BASF 'Rhodamine, available from Exciton LDS® series, substituted pyrans (such as DCM), coumarin (for example, Coumarin 3 0, Coumarin 1 , Coumarin 102, etc.),噚哄 (eg, Nile Blue, also known as Nile Blue A), pyridine, styryl derivatives, diterpene, naphthyl imine, tigate, stilbene, and cyanine (eg, DODC 1 ), Available from, for example, Lambdachrome® and Exciton®. Dyestuffs of the ruthenium, tribromide and ruthenium derivative types are described in WO 2007/031446. -17- 201124506
鑭系元素之錯合物與奈米級半導體結構(習知爲量子 點),例如,除了其他化合物外,以硒化鎘、硫化鎘、硫 化鋅、硒化鉛、硫化鉛爲底質者亦適用於本目的。量子點 之製造與用途係描述於US 2007/01 32052 、 US 2007/01 74939 、 WO 02291 40 、 WO 2004022637 、 WO 2006065054及 WO 2007073467 » 鑭系元素之錯合物係描述於CA 20072589575、EP 076791 2以及描述於WO 9839822,亦描述於Appl. Phys. Lett. 91,0 5 1 9 0 3 (2007),2 3rd European Photovoltaic Solar Energy Conference, Valencia, 7 00 (2008),Am. Chem. Soc. (2007),DOI 1 0.1 02 1/ja070058e ° 光子層 該光子層係配置在該已成形聚合物體上,以使得曰光 在該已成形聚合物體中之螢光染料可被引發螢光之前必須 先穿透該層。 習知之光子層或波長相依性鏡子係例如干擾濾光片( 堆疊濾光片、具皺紋之濾光片、凹口濾光片等),其可建 構爲帶通濾光片或邊緣濾光片。該等濾光片可藉由將複數 層具有不同折射指數之薄介電層沉積在基板上而製造(詳 見,Olaf Stenzel, "The Physics of Thin Film Optical Spectra", Springer-Verlag 及 Ν· Kaiser, H.K. Pulker,Complexes of lanthanides and nano-scale semiconductor structures (known as quantum dots), for example, in addition to other compounds, cadmium selenide, cadmium sulfide, zinc sulfide, lead selenide, lead sulfide Suitable for this purpose. The manufacture and use of quantum dots are described in US 2007/01 32052, US 2007/01 74939, WO 02291 40, WO 2004022637, WO 2006065054 and WO 2007073467. The complexes of lanthanides are described in CA 20072589575, EP 076791 2 And described in WO 9839822, also described in Appl. Phys. Lett. 91, 0 5 1 9 0 3 (2007), 2 3rd European Photovoltaic Solar Energy Conference, Valencia, 7 00 (2008), Am. Chem. Soc. 2007), DOI 1 0.1 02 1/ja070058e ° Photonic layer The photonic layer is disposed on the shaped polymer body such that the fluorescent dye must be worn before the fluorescent dye in the shaped polymer body can be induced to fluoresce Through this layer. Conventional photonic layer or wavelength dependent mirrors are, for example, interference filters (stacked filters, wrinkled filters, notch filters, etc.) that can be constructed as band pass filters or edge filters . The filters can be fabricated by depositing a plurality of thin dielectric layers having different refractive indices on a substrate (see, Olaf Stenzel, " The Physics of Thin Film Optical Spectra", Springer-Verlag and Ν· Kaiser, HK Pulker,
Optical Interference Coatings", Springer-Verlag ) 個別層之層厚度通常小於該光波長。 201124506 另一選擇係使用光子晶體,其係描述於下列申請案( DE 1 0024466、DE 1 02043 3 8、DE 1 022707 1、DE 1 0228228 、DE 1 02004055303、US 6,8 63,847、WO 024430 1、DE 1 03 5 768 1、DE 1 02004009569、DE 1 02004032 1 20、WO 2006045567、 DE 10245848、 DE 102006017163)。 該等光子晶體爲小型透明球狀無機或有機體,其係以 儘可能最緊密之球狀裝塡方式配置。根據該等球體之大小 與間隔,其反射所界定範圍內之光且剩餘的光實質上完全 透射通過該層。亦可能使用中空球形結構。該等中空球形 結構爲反蛋白石。該個別球形或中空結構的直徑約爲待反 射之光波長的1 /3 (視該光的入射角度及球體之間隔而定 反光片 在已成形聚合物體下方,通常可隨意地配置光學反射 成形體(例如鏡子或白色膜或板)以加強產率。 太陽能電池 該太陽能電池可從慣用材料構成,例如 • 矽太陽能電池 單晶體矽(c-Si )、多晶體矽(mc-Si )、非晶形矽( a-Si ),以及由多晶體與非晶形矽所構成之串列電池 • III-V半導體太陽能電池 砷化鎵(GaAs )、磷化鎵銦(GalnP )、砷化鎵銦( -19- 201124506Optical Interference Coatings", Springer-Verlag) The layer thickness of individual layers is typically less than the wavelength of the light. 201124506 Another option is to use photonic crystals, which are described in the following applications (DE 1 0024466, DE 1 02043 38, DE 1 022 707 1, DE 1 0228228, DE 1 02004055303, US 6,8 63,847, WO 024430 1 , DE 1 03 5 768 1, DE 1 02004009569, DE 1 02004032 1 20, WO 2006045567, DE 10245848, DE 102006017163). These photonic crystals are small transparent spherical inorganic or organic materials which are arranged in the most compact spherical arrangement possible. Depending on the size and spacing of the spheres, it reflects light within the defined range and the remaining light is substantially completely transmitted through the layer. It is also possible to use a hollow spherical structure. The hollow spherical structures are inverse opals. The diameter of the individual spherical or hollow structure is about 1/3 of the wavelength of the light to be reflected (depending on the angle of incidence of the light and the spacing of the spheres, the retroreflective sheeting is below the formed polymer body, and the optically reflective shaped body can usually be disposed at will. (for example, mirror or white film or plate) to enhance the yield. Solar cell The solar cell can be composed of conventional materials, such as • solar cell single crystal germanium (c-Si), polycrystalline germanium (mc-Si), amorphous germanium. (a-Si), and a tandem battery consisting of polycrystalline and amorphous germanium • III-V semiconductor solar cells gallium arsenide (GaAs), gallium indium phosphide (GalnP), gallium indium arsenide (-19- 201124506
GalnAs )、砷磷化鎵銦(GalnAsP )、磷化鎵銦(GalnP ) 、銻化鎵(GaSb )。又,以及由磷化鎵銦與砷化鎵所構成 、由砷化鎵銦與砷磷化鎵銦所構成、由磷化鎵銦與砷化鎵 銦所構成、由砷化鎵與銻化鎵所構成或由砷化鎵與鍺所構 成的串列太陽能電池(多重太陽能電池(multiple solar cell ),或由磷化鎵銦、砷化鎵與鍺所構成,或由磷化鎵 銦、砷化鎵銦與銻化鎵所構成之三重電池(triple cell ) (三重太陽能電池(triple solar cell)) • II-VI半導體太陽能電池 碲化鎘(CdTe )、硫化鎘(CdS ) • I-III-V半導體太陽能電池 CIS電池:二硒化銅銦(CuInSe2 )或二硫化銅銦( CuInS2) CIGS電池:二硒化銅銦鎵(CuInGaSe2)、二硒化銅 鎵(CuGaSe2 )、二硫化銅鎵(CuGaS2 ) • 此外,亦有更新發展的以有機材料爲底質之太陽 能電池。 下表顯示太陽能電池用之半導體的某些實例。所報告 之波長對應於與該半導體之能隙的能量相等之能量所提供 的光之波長,即,使用該光之半導體作爲太陽能電池運作 得最有效率(將螢光轉換電池調整至該波長)。 -20- 201124506 電池材料 能隙[eV] 波長[nm] Ge 0.66 1879 GaSb 0.73 1708 CuInSe2 1,0 1240 Si 1.12 1107 GalnAs 1.24-1.39 998-891 GaAs 1.42 873 CuInS2 1.55 800 CdTe 1.56 795 GalnP 1.64 - 1.81 756-687 CuGaSe2 1.68 738 a-Si:H 1.7 729 Cu GaS2 2.30 539 CdS 2.42 512 【實施方式】 本發明之表現 實施例 實施例1 :製造均勻著色之射出成形物 將0.3 4重量份之過氧化二月桂醯基及 3.0重量份之2·乙基己基锍乙酸酯溶解於 940重量份之甲基丙烯酸甲酯與 60重量份之丙烯酸甲酯中。 然後,添加由以下所組成之混合物: 0.15重量份之 Lumogen Yellow 083(BASF) 0.16重量份之 Lumogen Orange 240(BASF) 0.40重量份之 Lumogen Red 305(BASF)。 劇烈攪拌該混合物,將之塡充至聚酯膜袋、密封且在 6(TC水浴中聚合24小時。在12(TC之加熱箱中進行最終聚合 -21 - 201124506 作用約1 〇小時。所形成之材料隨後在粉碎機中製成九粒。 藉由擠製從該形成之九粒製造厚度10 mm之薄板。 獲得厚度爲10 mm之均勻發出紅色螢光薄板。 實施例2:藉由射出成形法製造具有三層之裝置 綠色九粒: 將0.3 4重量份之過氧化二月桂醯基及 3.0重量份之2-乙基己基锍乙酸酯溶解於 940重量份之甲基丙烯酸甲酯與 60重量份之丙烯酸甲酯中。 然後,添加 0.15 重量份之 Lumogen Yellow 083(BASF)。 劇烈攪拌該混合物,將之塡充至聚酯膜袋、密封且在 60°C水浴中聚合24小時。在120°C之加熱箱中進行最終聚合 作用約1 〇小時。所形成之材料隨後在粉碎機中製成九粒。 紅色九粒: 將0.34重量份之過氧化二月桂醯基及 3.0重量份之2-乙基己基锍乙酸酯溶解於 940重量份之甲基丙烯酸甲酯與 60重量份之丙烯酸甲酯中。 然後,添加 0.40重量份之 Lumogen Red 305(BASF)。 劇烈攪拌該混合物,將之塡充至聚酯膜袋、密封且在 -22- 201124506 6 0 °C水浴中聚合2 4小時。在1 2 0 °C之加熱箱中進行最終聚合 作用約1 0小時。所形成之材料隨後在粉碎機中製成九粒。 橙色九粒: 將0.3 4重量份之過氧化二月桂醯基及 3.0重量份之2-乙基已基锍乙酸酯溶解於 94 0重量份之甲基丙烯酸甲酯與 60重量份之丙烯酸甲酯中。 然後,添加 0·16重量份之 Lumogen Orange 240(BASF)。 劇烈攪拌該混合物,將之塡充至聚酯膜袋、密封且在 6 〇°C水浴中聚合24小時。在120 °C之加熱箱中進行最終聚合 作用約1 〇小時。所形成之材料隨後在粉碎機中製成九粒。 將該三種丸粒類型(綠色、紅色、橙色)各者在獨立 擠製機中熔融。使用共擠製適配器合倂此三種熔體,且配 置成一層層相疊之層。然後,使用縫模將該混合物成形爲 薄板。每一個別著色層之厚度爲3 mm。該紅色或綠色層係 位於外側;內層爲橙色。 獲得總厚度爲9 mm之三層螢光薄板。 結果 裁切根據實施例1與2之實驗所得之尺寸爲約5 0 x 5 0 mm 的樣本且拋光所有邊緣。然後’在LS-55螢光光譜儀( Perkin Elmer )上測量該螢光強度。使用類似日光之氙光 -23- 201124506 源以供激發。 最大強度與對應波長係記錄於表1。 表1 _ 實驗 波長,nra 反射強度 實施例1 632 54 實施例2 577 487 實施例2之實驗顯示明顯較高之強度。 【圖式簡單說明】 圖1:實施例1之具有藉由擠製製造之均勻著色螢光收 集器的太陽能電池之構造 圖2:實施例2之具有藉由共擠製製造之多層著色螢光 收集器的太陽能電池之構造 圖1與2顯示在上側隨意地裝配光子成形體(1 )且底 側隨意地裝配反光片(例如鏡子或白色板(3 ))的螢光 收集器(2, 21-23)上之太陽能電池的圖解配置。 圖3 :螢光測量之基本圖 3.1 光源 3.2 樣本表面 3-3樣本邊緣 3-4 偵測器 【主要元件符號說明】 1 :光子層 -24- 201124506 2:均勻著色之發光螢光收集器 2 1,22,23:多層著色發光螢光收集器 3 :反光片,例如鏡子或白色板 4,41,42,43:調整至螢光轉換收集器之太陽能電池 3 . 1 :光源 3.2 :樣本表面 3.3 :樣本邊緣 3.4 :偵測器 -25-GalnAs), gallium indium phosphide indium (GalnAsP), gallium indium phosphide (GalnP), gallium antimonide (GaSb). And a combination of gallium arsenide and gallium arsenide, consisting of gallium arsenide and arsenic gallium arsenide, consisting of gallium phosphide indium and gallium arsenide, and gallium arsenide and gallium antimonide. A tandem solar cell (multiple solar cell composed of gallium arsenide and germanium), or composed of gallium phosphide indium, gallium arsenide and germanium, or gallium indium phosphide, arsenic Triple cell composed of gallium indium and gallium antimonide (triple solar cell) • II-VI semiconductor solar cell cadmium telluride (CdTe), cadmium sulfide (CdS) • I-III-V Semiconductor solar cell CIS battery: CuInSe2 or CuInS2 CIGS battery: CuInGaSe2, CuGaSe2, CuGaS2 • In addition, there are new and developed organic materials-based solar cells. The following table shows some examples of semiconductors used in solar cells. The reported wavelength corresponds to the energy equivalent to the energy of the semiconductor's energy gap. The wavelength of the light provided, ie, using the The semiconductor operates as the most efficient solar cell (adjust the fluorescence conversion cell to this wavelength). -20- 201124506 Cell material energy gap [eV] Wavelength [nm] Ge 0.66 1879 GaSb 0.73 1708 CuInSe2 1,0 1240 Si 1.12 1107 GalnAs 1.24-1.39 998-891 GaAs 1.42 873 CuInS2 1.55 800 CdTe 1.56 795 GalnP 1.64 - 1.81 756-687 CuGaSe2 1.68 738 a-Si: H 1.7 729 Cu GaS2 2.30 539 CdS 2.42 512 [Embodiment] Implementation of the present invention EXAMPLES Example 1: Production of uniformly colored injection molded articles 0.34 parts by weight of dilauroyl peroxide and 3.0 parts by weight of 2·ethylhexyl fluorene acetate were dissolved in 940 parts by weight of methyl methacrylate and 60 parts by weight of methyl acrylate. Then, a mixture consisting of 0.15 parts by weight of Lumogen Yellow 083 (BASF) 0.16 parts by weight of Lumogen Orange 240 (BASF) 0.40 parts by weight of Lumogen Red 305 (BASF) was added. The mixture was stirred vigorously, filled into a polyester film bag, sealed and polymerized in a 6 (TC water bath for 24 hours. Final polymerization in 12 (TC heating box - 21 - 201124506) Hour. The resulting material was then made into nine pellets in a pulverizer. A sheet having a thickness of 10 mm was produced by extrusion from the formed nine pellets. A uniform red fluorescent sheet with a thickness of 10 mm was obtained. Example 2: A green nine-piece device having three layers was produced by injection molding: 0.34 parts by weight of dilauroyl peroxide and 3.0 parts by weight of 2-ethylhexylindole acetate were dissolved in 940 parts by weight. Methyl methacrylate and 60 parts by weight of methyl acrylate. Then, 0.15 parts by weight of Lumogen Yellow 083 (BASF) was added. The mixture was stirred vigorously, filled into a polyester film bag, sealed and polymerized in a 60 ° C water bath for 24 hours. The final polymerization was carried out in a heating cabinet at 120 ° C for about 1 hour. The resulting material was then made into nine pellets in a pulverizer. Red nine particles: 0.34 parts by weight of dilauroyl peroxide and 3.0 parts by weight of 2-ethylhexylindole acetate were dissolved in 940 parts by weight of methyl methacrylate and 60 parts by weight of methyl acrylate. Then, 0.40 parts by weight of Lumogen Red 305 (BASF) was added. The mixture was stirred vigorously, filled into a polyester film bag, sealed and polymerized in a water bath at -22-201124506 60 ° C for 24 hours. The final polymerization was carried out in a heating cabinet at 120 ° C for about 10 hours. The resulting material was then made into nine pellets in a pulverizer. Orange nine: 0.34 parts by weight of dilauroyl peroxide and 3.0 parts by weight of 2-ethylhexyl fluorene acetate were dissolved in 94 parts by weight of methyl methacrylate and 60 parts by weight of acrylic acid In the ester. Then, 0.16 parts by weight of Lumogen Orange 240 (BASF) was added. The mixture was stirred vigorously, filled into a polyester film bag, sealed and polymerized in a 6 ° C water bath for 24 hours. The final polymerization was carried out in a heating oven at 120 °C for about 1 hour. The resulting material was then made into nine pellets in a pulverizer. The three pellet types (green, red, orange) were each melted in a separate extruder. The three melts were combined using a co-extruded adapter and configured as a layer of layers. Then, the mixture was formed into a thin plate using a slit die. Each individual colored layer has a thickness of 3 mm. The red or green layer is on the outside; the inner layer is orange. A three-layer fluorescent sheet with a total thickness of 9 mm was obtained. Results The samples obtained according to the experiments of Examples 1 and 2 were cut to a size of about 50 x 50 mm and all edges were polished. This fluorescence intensity was then measured on an LS-55 fluorescence spectrometer (Perkin Elmer). Use a light similar to daylight -23- 201124506 source for excitation. The maximum intensity and corresponding wavelength are reported in Table 1. Table 1 _ Experimental Wavelength, nra Reflectance Intensity Example 1 632 54 Example 2 577 487 The experiment of Example 2 showed significantly higher strength. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration of a solar cell having a uniform colored fluorescent collector manufactured by extrusion according to Embodiment 1. FIG. 2 is a multilayer colored fluorescent lamp produced by co-extrusion of Example 2. Configuration of Solar Cell of Collector FIGS. 1 and 2 show a fluorescent collector in which a photonic molded body (1) is randomly assembled on the upper side and a reflective sheet (for example, a mirror or a white plate (3)) is randomly assembled on the bottom side (2, 21) -23) Graphical configuration of the solar cell. Figure 3: Basic diagram of fluorescence measurement 3.1 Light source 3.2 Sample surface 3-3 Sample edge 3-4 Detector [Main component symbol description] 1 : Photonic layer-24- 201124506 2: Uniformly colored luminescent fluorescent collector 2 1,22,23: Multi-layered colored luminescent fluorescent collector 3: Reflective sheet, such as mirror or white plate 4, 41, 42, 43: Solar cell adjusted to the fluorescent conversion collector 3. 1 : Light source 3.2: Sample surface 3.3: Sample Edge 3.4: Detector-25-