TW201123914A - Method of improving motion blur of display and display thereof - Google Patents

Method of improving motion blur of display and display thereof Download PDF

Info

Publication number
TW201123914A
TW201123914A TW98145433A TW98145433A TW201123914A TW 201123914 A TW201123914 A TW 201123914A TW 98145433 A TW98145433 A TW 98145433A TW 98145433 A TW98145433 A TW 98145433A TW 201123914 A TW201123914 A TW 201123914A
Authority
TW
Taiwan
Prior art keywords
function
sub
ratio
image brightness
brightness
Prior art date
Application number
TW98145433A
Other languages
Chinese (zh)
Other versions
TWI408968B (en
Inventor
Eddy Giing-Lii Chen
Sheng-Tien Cho
Original Assignee
Innolux Display Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innolux Display Corp filed Critical Innolux Display Corp
Priority to TW98145433A priority Critical patent/TWI408968B/en
Publication of TW201123914A publication Critical patent/TW201123914A/en
Application granted granted Critical
Publication of TWI408968B publication Critical patent/TWI408968B/en

Links

Landscapes

  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

For improving introduced flickers while using black frame insertion technology on a display, each motion image luminance functions for respectively displaying light sub-frames or dark sub-frames, which are used for the black frame insertion technology, is respectively determined according to two motion image luminance sub-functions, which are respectively corresponding to optimization of motion blurs and optimization of flickers. By determining a ratio of both the motion image luminance sub-functions in each the motion image luminance function, both light sub-frames and dark sub-frames having gradually-adjusted luminance may be generated, and as a result, the flickers are relieved so as to improve image displaying quality.

Description

201123914 ' 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明係揭露一種改善顯示器拖影現象之方法及相關之 顯示器,尤指一種藉由決定動態影像亮度函數中所包含 之二動態影像亮度子函數之間的比例以避免拖影現象發 生之顯示方法及相關之顯示器。 [先前技術] [0002] 一般的顯示面板包含液晶面板與有機發光二極體 (Organic Light Emitting Diode,OLED)面板,且 〇 這些顯示面板在顯示動態影像常出現品質不佳的現象, 產生上述現象的主要原因是反應速度不足。通常來說, 一般顯示面板使用之穩態(Hold-type)發光方式也會產 生拖影(Motion Blur)現象,從而降低顯示面板的動態 - 影像品質。請參閱第1圖,其為一般顯示面板使用穩態發 - 光方式運作時的時間與亮度關係圖。第1圖所示之實線係 為一般顯示面板以穩態進行發光時的曲線 > 而虛線係代 表人類肉眼觀看以穩態顯示之顯示面板時所感受到之亮 Ο 度,其中第1圖傳輸顯示晝面所使用之幀頻率係假設為 60Hz。觀察第1圖可以發現,人類的肉眼會自動的對所感 受到之亮度變化進行積分,導致人類肉眼容易感受到之 前幀畫面留下的亮度而產生視覺暫留,並與顯示面板實 際顯示之亮度產生了疊加效應,因而肉眼會感受到拖影 現象。 [0003] 為了解決顯示面板以穩態發光方式進行顯示時產生的拖 影現象的問題,脈衝形式(Pulse-type)的發光方式被應 098145433 表單編號A0101 第3頁/共43頁 0982077613-0 201123914 用於一般的顯示面板上。請參閱第2圖,其為一般顯示面 板使用脈衝形式之發光方式運作時的時間與亮度關係圖 ,其中顯示畫面所使用之幀頻率係假設為與第i圖相同的 60Hz。第2圖所示之實線係為一般顯示面板以脈衝型式進 行發光時的曲線,而虛線係代表人類肉眼觀看以脈衝形 式顯示之顯示面板時所感受到之亮度,一般顯示面板以 脈衝形式來進行發光顯示時,人類肉眼所感受到的平均 党度較接近顯示面板的實際亮度,因而一般不會發生拖 影現象。 [0004] [0005] 一般脈衝形式的發光方式主要係包含俗稱插黑的黑畫面 〇 插入技術(Black Frame Insertion Technology)» 插黑技術的主要特徵在於以雙倍幀頻奉^〇ub 1 e Frame Rate)來將原本以單倍幀頻率傳輸之每一幀晝面改為連續 傳輸二個子幀畫面(Sub-frame),其中較晚出現的子幀 , 畫面係為一黑晝面。 請參閱第3圖及第4圖。第3圖係為使用插黑技術將單一幀 畫面置換為二姻相鄰之子幀畫面以;進行顯示的簡略示意 u 圖。在第3圖中係圖示有三個幀晝面F(n)、F(n+1)、 F(n+2),以表示三個連續時間點中被連續顯示之三個幀 畫面。每一幀畫面係對應於二個子幀畫面,例如幢畫面 F(n)係對應於子幀畫面F(n)_l與F(n)_2、(>貞畫面 F(n + 1)係對應於子幀畫面F(n + l)_l與F(n + 1)_2、Ί貞畫 面F(n+2)係對應於子ψ貞畫面F(n+2)_1與F(n+2) 2。子 幀畫面F(n)_l、F(n + 1)一1、F(n + 2)_1分別含有幀晝面 F(n)、F(n + 1)、F(n + 2)的影像,只是其亮度會高於幀 098145433 表單編號A0101 第4頁/共43頁 0982077613-0 201123914 畫面F(n)、F(n + 1)、F(n + 2)的影像,以避免插入子幀 畫面F(n)_2、F(n + 1)_2、F(n+2)_2後造成亮度不如幀 晝面F(n)、F(n+l)、F(n+2)的亮度;子幀畫面F(n)_2 、F(n+1)_2、F(n+2)_2係各自對應於幀畫面F(n)、 F(n + 1)、F(n + 2)中插黑的黑色子幀畫面(即黑畫面), 然子幀晝面F(n)_2、F(n+1)_2、F(n+2)_2亮度並非一 疋為全黑’其會根據每一幢畫面F(n)、F(n + l)、 F(n + 2)的亮度來決定,且其亮度會低於幀畫面F(n)、 F(n + 1)、F(n + 2)的亮度。 Ο [0006] 第4圖係顯示第3圖所示之各幀畫面與子幀畫面所使用之 亮度的簡略示意圖;其中顯示幀畫面F(n)、F(n + 1)、 F(n + 2)之幀頻率係假設為60Hz,而以插黑技術顯示子鴨 畫面F(n)一1 與F(n)_2、F(n+l)_l與F(n+1)_2、 F(n + 2)_1與F(n + 2)一2的幀頻率係假設為60Hz之二倍的 120Hz。觀察第4圖可發現,黑色子幢畫面F(n)_2、 Ο ?(11 + 1)_2、?(11+2)_2皆為在夸’自對;^乏幀畫面卩(11)、 F(n + 1)、F(n + 2)中亮度較低巧子幀畫面;且每一黑色子 "* I i *- 巾貞畫面必定被夾在二個亮度較亮的子巾貞畫面中間,使得 顯示面板以原來幀頻率之二倍及明暗相間的子幅晝面來 進行顯示’並藉此改善如之前所述之拖影現象。 [0007] 然而,如第4圖所示,由於顯示單一幀畫面時係以同時顯 示一明一暗之二子幀晝面的方式進行,所以肉眼容易明 顯感受到畫面的亮度差異,即產生所謂的閃爍現象 (Flicker)。如此一來’插黑雖然改善了拖影現象,但 是因為引進了閃爍現象而仍然會降低顯示畫面的品質。 098145433 表單编號A0101 第5頁/共43頁 0982077613-0 201123914 [0008] 098145433 先前技術另揭露有另外一種以插黑技術改善顯示畫面品 質之方法。在該方法中,代表t貞畫面之平均灰階值與亮 度之間關係的函數會拆解成二個子函數。請參閱第5圖, 其為先前技術中應用插黑技術時將代表)>貞畫面之平均灰 階值與亮度之間關係的函數拆解成二個子函數的示意圖 。在第5圖中,幀畫面之平均灰階值與亮度的關係會建立 為一原始動態影像亮度函數f(g),並儲存於一查詢表中 :其中g係代表一 Ψ貞畫面的平均灰階值,而原始動態影像 亮度函數f(g)的值即為平均灰階值g所對應之亮度;對於 熟習顯示器相關領域者而言,原始動態影像亮度函數 f ( g )即為一伽馬曲線(Gam雜.Cqrve ),故其定義不再多 加贅述。原始動態影像亮度么數f ( @):會根據灰階值g的不 同值被拆解成二個相異的動^影^亮度子函數f 1 ( g )與 f2(g),其中動態影像亮度子函數fl(g)係代表一亮度較 高的函數,動態影像亮度子函數f2(g)係代表一亮度較低 的函數’以使動態影像亮度年函數fl(、g)及f2(g)所模擬 出來的影像之亮度較為接近'相對ξ於原始動態影像亮度函 數f ( g )的衫像之亮度,在第Κ圖所不之平均灰階值g的有 效區間0至S内,動態影像亮度子函數丨1(§)與f2(g)沒有 交點。第5圖所示之例子中,原始動態影像亮度函數f(g) 係根據平均灰階值η拆解成動態影像亮度子函數f 1(g)與 f2(g) ’且隨著平均灰階值η的值不同,原始動態影像亮 度函數f(g)也會被拆解成不同軌跡的動態影像亮度子函 數fl(g)與f2(g),其中動態影像亮度子函數fl(g)係對 應於顯示畫素時亮度較亮之子幀畫面,而動態影像亮度 子函數f2(g)係對應於顯示畫素時亮度較暗之子幀畫面 表單編號A0101 第6頁/共43頁 0985 201123914 或上述之黑色子幀畫面。然而,觀察第5圖可知,即使應 用第5圖所述之子函數來進行顯示畫面時的插黑,但是二 個連續播放之相鄰子幀晝面在大部分的狀況下仍然具有 相當明顯的亮度差距,如當平均灰階值g等於η時,動態 影像亮度子函數fl(g)與f2(g)的差異極大,因此會在顯 示器造成閃爍現象。 【發明内容】 [0009] 有鑑於此,提供一種改善顯示器拖影現象之方法及相關 顯示器實為必要。 [0010] 本發明係揭露一種改善顯示器拖影現象之方法。該方法 包括如下步驟:統計每一幀畫面的所有畫素的灰階值信 息;根據該灰階值信息產生一比率:根據該比率及一第 一動態影像亮度函數公式確定一第一動態影像亮度函數 ,並根據該比率及一第二動態影像亮度函數公式確定一 第二動態影像亮度函數;根據每一幀畫面數據及該第一 動態影像亮度函數產生一第一子幀畫面數據;根據該每 一幀畫面數據及該第二動態影像亮度函數產生一第二子 幀晝面數據;及根據該第一子幀晝面數據顯示一第一子 幀畫面,並根據該第二子幀畫面數據顯示一第二子幀畫 面。該第一動態影像亮度函數公式為201123914 ' VI. Description of the invention: [Technical field of the invention] [0001] The present invention discloses a method for improving the smear phenomenon of a display and related display, and more particularly to determining the dynamics included in the dynamic image brightness function. The ratio between the image brightness sub-functions to avoid the display method of the smear phenomenon and the related display. [Prior Art] [0002] A general display panel includes a liquid crystal panel and an Organic Light Emitting Diode (OLED) panel, and these display panels often exhibit poor quality in displaying moving images, and the above phenomenon occurs. The main reason is that the reaction speed is insufficient. In general, the use of a constant-type (Hold-type) illumination method for a display panel also causes a Motion Blur phenomenon, thereby reducing the dynamic-image quality of the display panel. Please refer to FIG. 1 , which is a diagram showing the relationship between time and brightness when the general display panel is operated in a steady state light-emitting mode. The solid line shown in Fig. 1 is a curve when the general display panel emits light in a steady state> and the broken line represents the brightness perceived by the human eye when the display panel is displayed in a steady state, wherein the first image is transmitted. The frame frequency used to display the face is assumed to be 60 Hz. Observing the first picture, it can be found that the human eye automatically integrates the perceived brightness change, which causes the human eye to easily feel the brightness left by the previous frame and cause visual persistence, and the brightness of the actual display of the display panel is generated. The superposition effect, so the naked eye will feel the phenomenon of smear. [0003] In order to solve the problem of the smear phenomenon which occurs when the display panel is displayed in a steady-state light-emitting manner, the pulse-type illuminating mode is 098,145,433, form number A0101, page 3/total, page 43,09877677613-0, 201123914 Used on general display panels. Please refer to Fig. 2, which is a graph showing the relationship between time and brightness when the general display panel operates in a pulsed illumination mode, wherein the frame frequency used for displaying the picture is assumed to be the same 60 Hz as that of the i-th picture. The solid line shown in FIG. 2 is a curve when a general display panel emits light in a pulse pattern, and the broken line represents a brightness perceived by a human human eye when the display panel is displayed in a pulse form, and the general display panel is performed in a pulse form. When the light is displayed, the average party perceived by the human eye is closer to the actual brightness of the display panel, and thus the smear phenomenon generally does not occur. [0004] [0005] The general pulse form of the light-emitting method mainly includes the black frame insertion technology (Black Frame Insertion Technology). The main feature of the black insertion technology is that the frame is double-framed. Rate) to change the frame of each frame originally transmitted at a single frame frequency to two sub-frames (Sub-frame), wherein the frame that appears later is a black frame. Please refer to Figures 3 and 4. Fig. 3 is a simplified schematic diagram showing the use of the black insertion technique to replace a single frame picture with a sub-frame picture adjacent to the two marriages; In Fig. 3, there are shown three frame planes F(n), F(n+1), and F(n+2) to represent three frame pictures that are successively displayed among three consecutive time points. Each frame of picture corresponds to two sub-frame pictures. For example, the block picture F(n) corresponds to the sub-frame picture F(n)_l and F(n)_2, and (>贞 picture F(n + 1) corresponds to The sub-frame pictures F(n + l)_l and F(n + 1)_2, and the Ί贞 picture F(n+2) correspond to the sub-pictures F(n+2)_1 and F(n+2). 2. Sub-frame pictures F(n)_l, F(n + 1)-1, F(n + 2)_1 contain frame planes F(n), F(n + 1), F(n + 2), respectively. The image is only brighter than the frame 098145433 Form No. A0101 Page 4 / Total 43 Page 0982077613-0 201123914 Image of F(n), F(n + 1), F(n + 2) to avoid insertion The sub-frame pictures F(n)_2, F(n + 1)_2, F(n+2)_2 cause the brightness to be inferior to the frames F(n), F(n+l), F(n+2) Luminance; sub-frame pictures F(n)_2, F(n+1)_2, F(n+2)_2 correspond to frame pictures F(n), F(n + 1), F(n + 2), respectively. Insert black black sub-frame picture (ie black picture), then the sub-frame F(n)_2, F(n+1)_2, F(n+2)_2 brightness is not all black, it will be based on The brightness of each frame F(n), F(n + l), F(n + 2) is determined, and its brightness is lower than the frame pictures F(n), F(n + 1), F(n + 2) Brightness. Ο [0006] 4th A schematic diagram showing the brightness used in each frame picture and sub-frame picture shown in FIG. 3; wherein the frame frequency assumptions of the frame pictures F(n), F(n + 1), F(n + 2) are displayed It is 60Hz, and the sub-duck picture F(n)-1 and F(n)_2, F(n+l)_l and F(n+1)_2, F(n + 2)_1 and F are displayed by the black insertion technique. The frame frequency of (n + 2) - 2 is assumed to be 120 Hz twice that of 60 Hz. Observing Fig. 4, it can be found that the black sub-pictures F(n)_2, Ο(11 + 1)_2, ?(11+ 2) _2 are all in the self-right; ^ lack of frame picture 卩 (11), F (n + 1), F (n + 2) in the lower brightness sub-frame picture; and each black sub-quot; I i *- The frame of the frame must be sandwiched between two brightly-lit sub-frames, so that the display panel is displayed at twice the original frame frequency and the sub-frame of the light and dark areas. The smear phenomenon described above. [0007] However, as shown in FIG. 4, since the display of a single frame picture is performed by simultaneously displaying the two sub-frames of one bright and one dark, the naked eye can easily feel the picture. The difference in brightness is the so-called flicker phenomenon (Flicker). As a result, the insertion of black has improved the smear phenomenon, but the introduction of the flicker phenomenon will still degrade the quality of the display. 098145433 Form No. A0101 Page 5 of 43 0982077613-0 201123914 [0008] 098145433 The prior art further discloses another method for improving the quality of display pictures by inserting black technology. In this method, a function representing the relationship between the average grayscale value and the luminance of the t贞 picture is split into two subfunctions. Please refer to FIG. 5, which is a schematic diagram of a function of disassembling a function of the relationship between the average grayscale value and the brightness of the picture in the prior art when the black insertion technique is applied into two sub-functions. In Figure 5, the relationship between the average grayscale value of the frame picture and the brightness is established as an original dynamic image brightness function f(g) and stored in a lookup table: where g is the average gray of a frame. The value of the original dynamic image brightness function f(g) is the brightness corresponding to the average gray level value g; for those familiar with the display field, the original dynamic image brightness function f(g) is a gamma The curve (Gam miscellaneous. Cqrve), so its definition will not be repeated. The original dynamic image brightness number f ( @): will be disassembled into two different dynamic shadows ^ luminance sub-functions f 1 ( g ) and f2 (g) according to the different values of the gray scale value g, where the motion image The luminance sub-function fl(g) represents a function with a higher luminance, and the dynamic image luminance sub-function f2(g) represents a lower-luminance function 'to make the dynamic image luminance annual functions fl(, g) and f2(g The brightness of the simulated image is closer to the brightness of the shirt image relative to the brightness function f ( g ) of the original motion picture. In the effective interval 0 to S of the average gray level value g of the second graph, dynamic The image brightness subfunction 丨1 (§) has no intersection with f2(g). In the example shown in Figure 5, the original motion picture luminance function f(g) is split into the motion picture luminance sub-functions f 1(g) and f2(g) ' according to the average gray level value η and along with the average gray level The value of the value η is different, and the original dynamic image brightness function f(g) is also disassembled into the dynamic image brightness sub-functions fl(g) and f2(g) of different tracks, wherein the dynamic image brightness sub-function fl(g) is Corresponding to the sub-frame picture with brighter brightness when the pixel is displayed, and the dynamic image brightness sub-function f2(g) corresponds to the sub-frame picture of the darker picture when the pixel is displayed. Form number A0101 Page 6 of 43 page 0985201123914 or the above Black sub-frame picture. However, observing FIG. 5, even if the sub-function described in FIG. 5 is applied to perform black insertion when displaying a picture, the adjacent sub-frames of two consecutive playbacks still have considerable brightness in most cases. The difference, such as when the average grayscale value g is equal to η, the difference between the dynamic image luminance sub-functions fl(g) and f2(g) is extremely large, thus causing flicker on the display. SUMMARY OF THE INVENTION [0009] In view of the above, it is necessary to provide a method and related display for improving the smear phenomenon of a display. [0010] The present invention discloses a method of improving the smear phenomenon of a display. The method includes the following steps: counting grayscale value information of all pixels of each frame picture; generating a ratio according to the grayscale value information: determining a first dynamic image brightness according to the ratio and a first dynamic image brightness function formula a function, and determining a second motion picture brightness function according to the ratio and a second motion picture brightness function formula; generating a first subframe picture data according to each frame picture data and the first motion picture brightness function; a frame data and a second motion image brightness function generate a second subframe face data; and display a first subframe picture according to the first subframe face data, and display according to the second subframe picture data A second sub-frame picture. The first dynamic image brightness function formula is

二動態影像亮度函數公式為 表該比率。Fl(g)代表該第一動態影像亮度函數。F2(g) 098145433 表單編號A0101 第7頁/共43頁 0982077613-0 201123914 代表該第二動態影像亮度函數。fl(g)與f2(g)代表根據 一第一預定平均灰階值將顯示一幀畫面時所使用之一原 始動態影像亮度函數分解成的一第一動態影像亮度子函 數與一第二動態影像亮度子函數。第一動態影像亮度子 函數f 1(g)與第二動態影像亮度子函數f 2(g)在該原始動 態影像亮度函數之一有效灰階值範圍内沒有交點。第一 動態影像亮度子函數f 1 (g)之亮度係高於第二動態影像亮 度子函數f2(g)之亮度。fl(g)’與f2(g)’代表根據該 第一預定平均灰階值將該原始動態影像亮度函數分解成 的一第三動態影像亮度子函數一第四動態影像亮度子函 數。第三動態影像亮度子函轉f 1(g),,與第四動態影像亮 度子函數f2(g)’在該有效灰階值範面内僅於該第一預定 灰階值上有交點。 [0011] —種顯示器,包括一畫素統計模組、一比率產生模組、 一第一動態影像亮度函數模組、一第二動態影像亮度函 數模組及一顯示面板。該畫素統計模組用於統計每幀畫 面的所有畫素的灰階俾信息。該比率產生模組用於根據 每Φ貞畫面的所有畫素的灰階值信息產生一比率。該第一 動態影像亮度函數模組包括一第一動態影像亮度函數公 式。該第一動態影像亮度函數模組用於根據該比率確定 一第一動態影像亮度函數,並進一步根據每一幀畫面數 據及該第一動態影像亮度函數產生一第一子丨貞畫面數據 。該第二動態影像亮度函數模組包括一第二動態影像亮 度函數公式。該第二動態影像亮度函數模組用於根據該 比率確定一第二動態影像亮度函數,並進一步根據該每 098145433 表單蹁號Α0101 第8頁/共43頁 201123914 一幀畫面數據及該第二動態影像亮度函數產生一第二子 幀畫面數據。該顯示面板根據該第一子幀晝面數據顯示 第一子幀晝面及根據該第二子幀畫面數據顯示該第二子 幀畫面。該第一動態影像亮度函數公式為 。該第二動態影像亮度函數公式為 KCg)w/2(g)+(l- Ο X代表該比率。Fl(g)代表該第一動態影像亮度函數。 F2(g)代表該第二動態影像亮度函數。fl(g)與f2(g)代 表根據一第一預定平均灰階值將顯示一幀畫面時所使用 之一原始動態影像亮度函數分解成的一第一動態影像亮 度子函數與一第二動態影像亮度子函數。該第一動態影 像亮度子函數fl(g)與該第二動態影像亮度子函數f 2(g) ❹ 在該原始動態影像亮度函數之一有效灰階值範圍内沒有 交點。第一動態影像亮度子函教fl(g)之亮度係高於第二 動態影像亮度子函數f2(g)之亮度。fl(g)’與f2(g)’ 代表根據該第一預定平均灰階值將該原始動態影像亮度 函數分解成的一第三動態影像亮度子函數一第四動態影 像亮度子函數。該第三動態影像亮度子函數fl(g)’與該 第四動態影像亮度子函數f2(g)’在該有效灰階值範圍内 僅於該第一預定灰階值上有交點。 [0012] 098145433 與先前技術相比較,本發明所揭露的改善顯示器拖影現 象之方法與相關之顯示器,除了可直接改進顯示器的拖 影現象以外,亦同時改進先前技術中顯示器使用插黑技 表單編號A0101 第9頁/共43頁 0982077613-0 201123914 術時會引進閃爍現象的問題。在本發明所揭露之方法中 ,用來顯示亮子幀畫面與用來插黑之暗子幀晝面的動態 影像亮度函數各自被切割為二個動態影像亮度子函數。 藉由統計單一幀畫面中灰階值較低的畫素數量多募,可 決定動態影像亮度函數中二個動態影像亮度子函數各自 的比例,並據此輸出亮度呈現平穩改變的亮子幀畫面與 暗子幀畫面,同時減輕閃爍現象,以達成影像顯示品質 的最佳化。 【實施方式】 [0013] 請參閱第6圖,其為本發明在插黑技術中為了避免閃爍現 象所使用之一種切割伽馬(Gamma)曲線的方式之簡略示意 圖。如第6圖所示,原始動態影像亮度函數f(g)係以平均 灰階值η來做切割,並切割為動態影像亮度子函數fl(g) ’與f2(g)’ ,動態影像亮度子函數f 1(g)’所對應的子 幀畫面F(n)_l含有原始動態影像亮度函數f (g)所對應的 幀畫面F(n)的影像,動態影像亮度子函數f2(g)’所對 應的子幀晝面F(n)_2係為幀畫面F(n)中插黑的黑色子幀 畫面(即黑畫面)。如第6圖所示,在平均灰階值g之值 小於η時,動態影像亮度子函數fl(g)’所對應之子幀畫 面的亮度係高於動態影像亮度子函數f2(g)’所對應之子 幀畫面的亮度;而平均灰階值g之值大於η時,動態影像 亮度子函數fl(g)’所對應之子幀畫面的亮度係低於動態 影像亮度子函數f2(g)’所對應之子幀畫面的亮度。 [0014] 根據第6圖所示,動態影像亮度子函數fl(g)’與f2(g) ’係在灰階值η處有一交點,使得動態影像亮度子函數 098145433 表單編號Α0101 第10頁/共43頁 0982077613-0 201123914 Ο [0015] [0016] Ο fl(g)’與f2(g)’兩者之間的亮度差在平均灰階值為η1 至η2的區間内具有幅度較小的亮度差’即相鄰二子幀畫 面的亮度差異較小,也因此可將第5圖會產生的閃燦現象 大幅度改善。請注意,第6圖中所示之平均灰階值η的可 设定範圍係可根據顯示器之顯示面板的不同而有所變化 ,例如可為0至255(亦即灰階值S之值為255),然亦可將 其調整為小於0至255的範圍。在設定好η之後,η即已固 定’因此在顯示器工作時,η不會自動改變,然而使用者 仍可根據其個人偏好及顯示器的使..用狀況在η的可設定範 圍内重新設定η的值。在理想狀態中,η的值大約為3的_ 半,nl大約為π的一半,η2大約為11及5吨:;平均值,如此在 大部份的顯示狀況下,顯示器的閃爍狀況皆可避免。 ^ 1 Μ 泰暴趨賴 齡涵ti 本發明另外揭露一種改善拖影現象的方法,以使顯示器 的顯示狀況得以最佳化。 請參閱第7圖,其為實施本聲明硪碍琿確定動態影像亮度 函數之方法的一顯示器1〇〇丨之簡略示名圖。如第7圖所示 ,顯示器100包含一畫素統計模組11 〇、_比率產生模組 120、一第一動態影像亮度函數模組130、一第二動態影 像亮度函數模組140、及一顯示面板150。 [0017] 晝素統計模組110係用來檢測顯示器1〇〇所接收之每一幢 畫面所包含之複數個畫素各自所使用之灰階值,以產生 該幀晝面所包含之該複數個畫素之灰階值的灰階值統計 曲線。畫素統計模組110並可根據該灰階值統計曲線來檢 測該幀畫面中灰階值小於一預定灰階值y之所有畫素的總 畫素個數’並據以判斷所檢測之該總畫素個數是否小於 098145433 表·單編號;A0101 第II頁/共43頁 0982077613-0 201123914 一臨界畫素個數Z以決定一比率X的值,其中檢測或判斷 的方式將於之後介紹比率產生模組120之運作時再一併說 明。 [0018] 請參閱第8圖與第9圖,其為第7圖所示之晝素統計模組 110所產生之二種灰階值統計曲線的簡略範例示意圖。舉 例來說,如第8圖所示之灰階值統計曲線,其係表示在單 一幀晝面中,灰階值為y的畫素總共有a個,灰階值為(y + △ y)的畫素總共有(a + Asl)個,灰階值為(y-Ay)的晝 素總共有(a - △ s 2)個;如第9圖所示之灰階值統計曲線, 其係表示在單一幘畫面中,灰階值為y的畫素總共有b個 ,灰階值為(y + Ay)的畫素總共有(b + As3)個,灰階值 為(y-Z\y)的晝素總共有(b-As4)個。 [0019] 第一動態影像亮度函數模組130係儲存有一動態影像亮度 函數Fl(g),且動態影像亮度函數Fl(g)係根據第5圖所 示之動態影像亮度子函數f 1(g)與第6圖所赤之動態影像 亮度子函數fl(g)’之間的一比率X所決定,其中比率X係 為比率產生模組120所確定。 [0020] 請參閱第10圖,其為確定第5圖所示之動態影像亮度子函 數fl(g)及第6圖所示之動態影像亮度子函數fl(g)’之 間的比率X以產生動態影像亮度函數F1 ( g )時以函數曲線 具體說明的示意圖。如第10圖所示,A、B、C、D、E所加 以標示的五條路徑即代表動態影像亮度子函數f 1 (g)與 f 1(g)’兩者之間至少五種可能的比率X之值及可能產生 的動態影像亮度函數Fl(g)的轨跡。將動態影像亮度函數 Fl(g)以代數表示時,可更進一步具體表示如下: 098145433 表單編號A0101 第12頁/共43頁 0982077613-0 201123914 . [0021] H(g)i /%) + (1 —♦(1); [0022] Ο [0023] ❹ [0024] 098145433 X係為動態影像亮度子函數f 1(g)在動態影像亮度函數 Fl(g)中所佔之比率,而U-x)即為fl(g)’在動態影像 亮度函數Fl(g)中所佔之比率。換言之,當比率X之值為0 時,輸出動態影像亮度函數Fl(g)即為E路徑所代表之動 態影像亮度子函數f 1(g)’ :且當比率X之值為1時,輸出 動態影像亮度函數Fl(g)即為A路徑所代表之動態影像亮 度子函數f 1 (g)。 同理,第二動態影像亮度函數模組140係儲存有一動態影 像亮度函數F2(g),且動態影像亮度函數F2(g)係根據第 5圖所示之動態影像亮度子函數f 2(g)與第6圖所示之動態 影像亮度子函數f2(g)’之間的一比率所決定,亦即上述 由比率產生模組120所確定之比率X。請參閱第11圖,其 為確定動態影像亮度子函數f2(g)及f 2(g)’之間比率以 產生動態影像亮度函數F2(g)時以函數具體進行說明的示 意圖。在第11圖中,不同的路徑A、B、C、D、E亦對應於 動態影像亮度子函數f 2(g)與f 2(g)’兩者之間至少五種 可能的比率及可能產生的動態影像亮度函數F2(g)的軌跡 。動態影像亮度子函數F2(g)可表示如下:F2(君)= χ·/2 ㈤+(2) X係為動態影像亮度子函數f 2(g)在動態影像亮度函數 表單編號A0101 第13頁/共43頁 0982077613-0 [0025] 201123914 F2(g)中所佔之比率’而(卜χ)即為動態影像亮度子函數 在動態影像亮度函數F2(g)中所佔之比率。舉例 來說,當比率X之值為〇時,輪出動態影像亮度函數叫) 即為E路徑所代表之動態影像亮度子函數f2(g),;且當 比率X之值為1時,輸出動態影像亮度函數F2(g)即為A路 徑所代表之動態影像亮度子函數f2(g)。 [0026] [0027] 比率產生模組120會根據畫素統計模組丨所統計出來之 灰階值曲線與一臨界畫素個數2來確定比率χ之值。由上 述之公式(1)、(2)可知,在動態影像亮度子函數fl(g) 、fl(g)’ 、f2(g)、f2(g)’係為已知的情況下,比率 X係用來調整動態影像亮度函數!?1(2)中動態影像亮度子 函數f 1(g)及f 1(g)’各自的比例,並用來調整動態影像 亮度函數F2(g)中動態影像亮度子函數|2(^)及士2(2), 各自的比例。 確定比率X的目的包括兩個:第一個目的是當某一幀畫面 ..... ': :. \ . ;!: 具有較多低灰階值畫素(如第r8圓的狀沉)時,肉眼對閃爍 現象較不敏感,施影現象變成.較需要處理的問題,由於 第5圖會造成的閃爍現象在平均灰階值較低的情況下並不 嚴重,因此可藉由第5圖所示之方式來解決拖影現象;藉 由調高比率X之值以增加動態影像亮度子函數f 1(g)在動 態影像亮度函數Fl(g)中的比例,並增加動態影像亮度子 函數f2(g)在動態影像亮度函數F2(g)中的比例;換言之 ,比率(1-x)被調低,動態影像亮度子函數fl(g)’在動 態影像亮度函數Fl(g)的比例會減少,且動態影像亮度子 函數f 2(g)’在動態影像亮度函數F2(g)的比例也會減少 098145433 表單編號A0101 第14頁/共43頁 0982077613-0 201123914 ;如此一來,在連續播放一對應於動態影像亮度函數 Fl(g)的一第一子幀畫面與一對應於動態影像亮度函數 F2(g)的一第二子幀畫面的情況下,由於幀晝面大多數畫 素之灰階值較低,閃爍現象不會對使用者造成困擾,並 且拖影現象由於本實施例較接近第5圖的顯示方法而得以 解決。第二個目的是在一幀畫面具有較少低灰階值畫素 並使用插黑技術的情況下,如平均灰階值係大於第6圖所 示之nl時,閃爍現象會對使用者造成很大的困擾,藉由 調低比率X之值以減少動態影像亮度子函數fl(g)在動態 〇 影像亮度函數Fl(g)中的比例,也減少動態影像亮度子函 數i2(g)在動態影像亮度函教j?2(g)t的比例;換言之, 調高比率(1-x),以增加動態影像亮度子函數fl(g),在 動態影像亮度函數Fl(g)的比例’且增加動態影像亮度子 函數f2(g)’在動態影像亮度函數F2(g)的比例;如此一 來’在連續播放對應於動態影像亮度函數Fi(g)的第一子 幀畫面與對應於動態影像亮度函數F:2(g)的第二子幀畫面 的情況下,便可如第13圖所示七動態_像亮度函數F1(g) Ο 與F2(g)以較小的亮度差碰避免閃爍現象。舉例來說,若 一幀畫面的平均灰階值為191時,利用原來插黑技術的二 子幢晝面的亮度大概為255及127,而利用本實施例技術 的二子幀晝面的亮度的大概為220及170,很明顯,本實 施例會有效地改善閃爍現象。 [0028]確定比率X之方式係以第8圖與第9圖來進行說明。畫素統 計模組110中係儲存有一預定灰階值y與一臨界畫素個數z 。當畫素統計模組110讀取單一幀畫面並產生如第8圖或 098145433 表單編號A0101 第15頁/共43頁 0982077613-0 201123914 第9圖所不之灰階值曲線時,畫素統計模組11〇會將灰階 值小於預定灰階值y之所有畫素當成灰階值偏低的畫素, 並將灰階值小於預定灰階值y之所有晝素當作灰階值偏高 的畫素。當灰階值小於預定灰階值y之所有畫素的個數( 亦即第8圖或第9圖中被灰階值曲線、灰階值§之軸、及灰 階值為y對應之虛直線三者所涵蓋起來的面積)少於臨界 畫素個數z時,畫素統計模組11()會認定該幀畫面包含低 灰階值的晝素個數偏多,並通知比率產生模組12〇進行如 以上所述調低比率X的操作,使F1(g)朝向fl(g),的方 向調整;反之,當灰階值小於預定灰階值y之所有畫素的 個數多於臨界晝素個數z時,畫素統計橋組11〇會認定該 幀畫面包含低灰階值的畫素個數偏少,並通知比率產生 模組120進行如以上所述調高比率X的操作,使F1(g^ 向f 1(g)的方向調整。 [0029] 在第8圖與第9圖所示之實施例中,雖然僅以〇至255當作The second dynamic image brightness function formula is the ratio. Fl(g) represents the first dynamic image brightness function. F2(g) 098145433 Form No. A0101 Page 7 of 43 0982077613-0 201123914 Represents the second motion picture brightness function. Fl(g) and f2(g) represent a first motion picture luminance sub-function and a second dynamic which are used to decompose one of the original motion picture luminance functions used to display one frame according to a first predetermined average gray level value. Image brightness subfunction. The first motion image luminance sub-function f 1(g) and the second motion image luminance sub-function f 2(g) have no intersections within one of the effective grayscale values of the original dynamic image luminance function. The luminance of the first dynamic image luminance sub-function f 1 (g) is higher than the luminance of the second motion image luminance sub-function f2 (g). Fl(g)' and f2(g)' represent a third motion picture luminance sub-function-fourth motion picture luminance sub-function that is decomposed into the original motion picture luminance function according to the first predetermined average gray level value. The third dynamic image luminance sub-function f1(g), and the fourth dynamic image luminance sub-function f2(g)' have an intersection only on the first predetermined grayscale value within the effective grayscale value plane. [0011] A display includes a pixel statistics module, a ratio generation module, a first motion image brightness function module, a second motion image brightness function module, and a display panel. The pixel statistics module is used to count the gray scale information of all pixels in each frame of the picture. The ratio generation module is configured to generate a ratio based on grayscale value information of all pixels of each Φ贞 picture. The first dynamic image brightness function module includes a first motion picture brightness function formula. The first motion picture brightness function module is configured to determine a first motion picture brightness function according to the ratio, and further generate a first child picture data according to each frame picture data and the first motion picture brightness function. The second dynamic image brightness function module includes a second dynamic image brightness function formula. The second motion picture brightness function module is configured to determine a second motion picture brightness function according to the ratio, and further according to the 098145433 form Α Α 0101 page 8 / total 43 page 201123914 frame data and the second dynamic The image brightness function produces a second sub-frame picture data. The display panel displays the first sub-frame surface according to the first sub-frame data and displays the second sub-frame picture according to the second sub-frame picture data. The first dynamic image brightness function formula is . The second dynamic image brightness function formula is KCg)w/2(g)+(l- Ο X represents the ratio. Fl(g) represents the first motion picture brightness function. F2(g) represents the second motion picture. The brightness function fl(g) and f2(g) represent a first motion picture luminance sub-function and one of the original motion picture brightness functions used to decompose a original picture brightness function according to a first predetermined average gray level value. a second motion image luminance sub-function, the first motion image luminance sub-function fl(g) and the second motion image luminance sub-function f 2(g) ❹ within one of the effective grayscale values of the original motion image luminance function There is no intersection. The brightness of the first dynamic image brightness sub-fun g(g) is higher than the brightness of the second dynamic image brightness sub-function f2(g). fl(g)' and f2(g)' represent according to the first The predetermined average grayscale value is used to decompose the original motion image luminance function into a third motion image luminance sub-function-fourth motion image luminance sub-function. The third motion image luminance sub-function fl(g)' and the fourth The dynamic image luminance sub-function f2(g)' is only the first in the range of the effective grayscale value There is an intersection point on the gray scale value. [0012] 098145433 Compared with the prior art, the method for improving the smear phenomenon of the display and the related display disclosed by the present invention can not only directly improve the smear phenomenon of the display, but also improve the previous In the technology, the display uses the blackout form number A0101. Page 9/43 page 0982077613-0 201123914 The problem of flicker phenomenon is introduced during the operation. In the method disclosed by the present invention, the bright sub-frame picture is displayed and used to insert black. The dynamic image brightness functions of the dark sub-frames are each cut into two dynamic image brightness sub-functions. By counting the number of pixels with lower gray-scale values in a single frame picture, the dynamic image brightness function can be determined. The ratio of each of the dynamic image brightness sub-functions, and according to the output, the brightness of the bright sub-frame picture and the dark sub-frame picture are smoothly changed, and the flicker phenomenon is reduced to achieve image display quality optimization. [Embodiment] [0013] Please refer to FIG. 6 , which is a cutting gamma curve used in the black insertion technique to avoid flickering. A schematic diagram of the mode. As shown in Fig. 6, the original dynamic image brightness function f(g) is cut with the average gray level value η and cut into the dynamic image brightness sub-functions fl(g) 'and f2(g). ', the sub-frame picture F(n)_l corresponding to the dynamic image brightness sub-function f 1(g)' contains the image of the frame picture F(n) corresponding to the original moving picture brightness function f (g), and the dynamic image brightness sub- The sub-frame F(n)_2 corresponding to the function f2(g)' is a black sub-frame picture (ie black picture) inserted in the frame picture F(n). As shown in Fig. 6, the average gray is When the value of the order value g is smaller than η, the brightness of the sub-frame picture corresponding to the dynamic image brightness sub-function fl(g)' is higher than the brightness of the sub-frame picture corresponding to the dynamic image brightness sub-function f2(g)'; When the value of the order value g is greater than η, the brightness of the sub-frame picture corresponding to the dynamic image brightness sub-function fl(g)' is lower than the brightness of the sub-frame picture corresponding to the dynamic image brightness sub-function f2(g)'. [0014] According to FIG. 6, the dynamic image luminance sub-functions fl(g)' and f2(g)' have an intersection point at the grayscale value η, so that the dynamic image luminance subfunction 098145433 form number Α0101 page 10/ A total of 43 pages 0982077613-0 201123914 Ο [0016] The luminance difference between Ο fl(g)′ and f2(g)′ has a smaller amplitude in the interval of the average grayscale value η1 to η2 The difference in luminance, that is, the difference in luminance between adjacent two sub-frames is small, and thus the flashing phenomenon generated in FIG. 5 can be greatly improved. Please note that the settable range of the average grayscale value η shown in FIG. 6 may vary depending on the display panel of the display, and may be, for example, 0 to 255 (that is, the value of the grayscale value S is 255), but it can also be adjusted to a range of less than 0 to 255. After setting η, η is fixed' so η does not change automatically when the display is working, but the user can still reset η according to his personal preference and the display status of η within the settable range of η Value. In the ideal state, the value of η is about _ half of 3, nl is about half of π, and η2 is about 11 and 5 tons: average value, so that in most of the display conditions, the blinking state of the display can be avoid. ^ 1 Μ The typhoon tends to age ti The present invention additionally discloses a method for improving the smear phenomenon to optimize the display condition of the display. Please refer to Fig. 7, which is a simplified representation of a display 1 实施 for implementing the method of determining the dynamic image brightness function. As shown in FIG. 7 , the display 100 includes a pixel statistics module 11 , a ratio generation module 120 , a first motion image brightness function module 130 , a second motion image brightness function module 140 , and a The display panel 150. [0017] The pixel statistical module 110 is configured to detect gray scale values used by each of the plurality of pixels included in each frame received by the display 1 to generate the complex number included in the frame The gray scale value statistical curve of the gray scale value of the pixels. The pixel statistics module 110 can detect the total number of pixels of all the pixels whose grayscale value is less than a predetermined grayscale value y according to the grayscale value statistical curve and determine the detected Whether the total number of pixels is less than 098145433 table and single number; A0101 page II / page 43 0982077613-0 201123914 A critical number of elements Z to determine the value of a ratio X, the way of detection or judgment will be introduced later The operation of the ratio generation module 120 will be described together. [0018] Please refer to FIG. 8 and FIG. 9 , which are schematic diagrams showing a simplified example of two gray scale value statistical curves generated by the halogen statistical module 110 shown in FIG. 7 . For example, the gray-scale value statistical curve shown in Fig. 8 indicates that in a single frame, there are a total of gray pixels with a gray-scale value of y, and the gray-scale value is (y + Δ y). There are a total of (a + Asl) pixels, and a total of (a - Δ s 2) vowels with a gray-scale value of (y-Ay); a gray-scale statistical curve as shown in Fig. 9 It is indicated that in a single frame, there are a total of b pixels with a grayscale value of y, and a total of (b + As3) pixels with a grayscale value of (y + Ay), and the grayscale value is (yZ\y). There are a total of (b-As4) alizarins. [0019] The first dynamic image brightness function module 130 stores a dynamic image brightness function F1(g), and the dynamic image brightness function F1(g) is based on the dynamic image brightness sub-function f 1 (g) shown in FIG. It is determined by a ratio X between the dynamic image luminance sub-function fl(g)' of Fig. 6 which is determined by the ratio generation module 120. [0020] Please refer to FIG. 10, which is to determine the ratio X between the motion picture luminance sub-function fl(g) shown in FIG. 5 and the motion picture luminance sub-function fl(g)' shown in FIG. A schematic diagram specifically illustrated by a function curve when the dynamic image brightness function F1 ( g ) is generated. As shown in Fig. 10, the five paths indicated by A, B, C, D, and E represent at least five possible possibilities between the dynamic image luminance sub-functions f 1 (g) and f 1 (g) ' The value of the ratio X and the trajectory of the dynamic image brightness function Fl(g) that may be generated. When the dynamic image brightness function Fl(g) is expressed in algebra, it can be further expressed as follows: 098145433 Form No. A0101 Page 12 of 43 0982077613-0 201123914 . [0021] H(g)i /%) + ( 1 —♦(1); [0022] ❹ [0024] 098145433 X is the ratio of the dynamic image luminance sub-function f 1(g) in the dynamic image luminance function Fl(g), and Ux) That is, the ratio of fl(g)' in the dynamic image brightness function Fl(g). In other words, when the value of the ratio X is 0, the output dynamic image luminance function Fl(g) is the dynamic image luminance sub-function f 1(g)' represented by the E path: and when the ratio X is 1, the output is The dynamic image brightness function Fl(g) is the dynamic image brightness sub-function f 1 (g) represented by the A path. Similarly, the second dynamic image brightness function module 140 stores a dynamic image brightness function F2(g), and the dynamic image brightness function F2(g) is based on the dynamic image brightness sub-function f 2 (g) shown in FIG. ) is determined by a ratio between the dynamic image luminance sub-function f2(g)' shown in FIG. 6, that is, the ratio X determined by the ratio generation module 120. Please refer to Fig. 11, which is a schematic illustration of the function when determining the ratio between the dynamic image luminance sub-functions f2(g) and f2(g)' to generate the dynamic image luminance function F2(g). In Figure 11, the different paths A, B, C, D, E also correspond to at least five possible ratios between the dynamic image luminance subfunctions f 2 (g) and f 2 (g) 'and possible The resulting trajectory of the dynamic image brightness function F2(g). The dynamic image brightness sub-function F2(g) can be expressed as follows: F2 (Jun) = χ · /2 (5) + (2) X is the dynamic image brightness sub-function f 2 (g) in the dynamic image brightness function form number A0101 13 Page / Total 43 page 0982077613-0 [0025] 201123914 The ratio of 'F2(g)' is the ratio of the dynamic image brightness subfunction in the dynamic image brightness function F2(g). For example, when the value of the ratio X is 〇, the dynamic image brightness function is called) is the dynamic image brightness sub-function f2(g) represented by the E path; and when the ratio X is 1, the output is The dynamic image brightness function F2(g) is the dynamic image brightness sub-function f2(g) represented by the A path. [0027] The ratio generation module 120 determines the value of the ratio 根据 based on the grayscale value curve and the number of critical pixels 2 counted by the pixel statistics module. It can be seen from the above formulas (1) and (2) that the ratio X is known when the motion image luminance sub-functions fl(g), fl(g)', f2(g), and f2(g)' are known. It is used to adjust the ratio of the dynamic image brightness sub-functions f 1(g) and f 1(g)' in the dynamic image brightness function !?1(2), and is used to adjust the motion picture in the dynamic image brightness function F2(g). The luminance sub-functions |2(^) and ±2(2), the respective ratios. The purpose of determining the ratio X includes two: the first purpose is to when a certain frame picture ..... ': :. \ . ;!: has more low gray level values pixels (such as the r8 circle) When the naked eye is less sensitive to flickering, the phenomenon of shadowing becomes a problem that needs to be dealt with. The flicker phenomenon caused by Fig. 5 is not serious in the case where the average grayscale value is low, so Figure 5 shows the way to solve the smear phenomenon; by increasing the value of the ratio X to increase the proportion of the dynamic image brightness sub-function f 1 (g) in the dynamic image brightness function Fl (g), and increase the dynamic image brightness The ratio of the sub-function f2(g) in the dynamic image brightness function F2(g); in other words, the ratio (1-x) is lowered, and the dynamic image brightness sub-function fl(g)' is in the dynamic image brightness function Fl(g) The ratio will be reduced, and the ratio of the dynamic image brightness sub-function f 2(g)' in the dynamic image brightness function F2(g) will also be reduced by 098145433 Form No. A0101 Page 14 of 43 page 0982077613-0 201123914; Corresponding to playing a first sub-frame corresponding to the dynamic image brightness function F1(g) In the case of a second sub-picture picture of the dynamic image brightness function F2(g), since the gray scale value of most pixels of the frame is low, the flicker phenomenon does not cause trouble to the user, and the smear phenomenon is This embodiment is solved by being closer to the display method of FIG. The second purpose is to use a black background technique when the frame picture has fewer low gray scale values and use the black insertion technique. If the average gray scale value is larger than the nl shown in Fig. 6, the flicker phenomenon will cause the user to cause A big problem is that by reducing the value of the ratio X to reduce the proportion of the dynamic image brightness sub-function fl(g) in the dynamic image brightness function Fl(g), the dynamic image brightness sub-function i2(g) is also reduced. The ratio of dynamic image brightness to j?2(g)t; in other words, the ratio (1-x) to increase the dynamic image brightness sub-function fl(g), the ratio of the dynamic image brightness function Fl(g) And increasing the ratio of the dynamic image brightness sub-function f2(g)' in the dynamic image brightness function F2(g); thus, the first sub-frame picture corresponding to the dynamic image brightness function Fi(g) is continuously played and corresponds to In the case of the second sub-frame picture of the dynamic image brightness function F: 2 (g), as shown in Fig. 13, the seven dynamic_image brightness functions F1(g) Ο and F2(g) have a small difference in brightness. Touch to avoid flickering. For example, if the average grayscale value of one frame is 191, the brightness of the two sub-frames using the original black insertion technique is approximately 255 and 127, and the brightness of the two sub-frames using the technique of the embodiment is approximated. For 220 and 170, it is apparent that this embodiment will effectively improve the flicker phenomenon. The method of determining the ratio X will be described with reference to FIGS. 8 and 9. The pixel module 110 stores a predetermined gray scale value y and a critical pixel number z. When the pixel statistics module 110 reads a single frame picture and generates a gray scale value curve as shown in FIG. 8 or 098145433 Form No. A0101, page 15/43 page 0982077613-0 201123914, Figure 9, the pixel statistical mode Group 11 will treat all pixels whose grayscale value is smaller than the predetermined grayscale value y as a pixel with a lower grayscale value, and treat all the pixels whose grayscale value is smaller than the predetermined grayscale value y as the grayscale value is too high. The pixels. When the grayscale value is smaller than the predetermined grayscale value y, the number of all pixels (that is, the grayscale value curve in Fig. 8 or Fig. 9, the axis of the grayscale value §, and the grayscale value corresponding to y) When the area covered by the straight line is less than the number of critical pixels z, the pixel statistical module 11() will determine that the number of pixels containing the low gray level value of the frame picture is too large, and notify the ratio generation mode. Group 12〇 performs the operation of lowering the ratio X as described above to adjust the direction of F1(g) toward fl(g); otherwise, when the grayscale value is smaller than the predetermined grayscale value y, the number of all pixels is larger. When the number of threshold elements is z, the pixel statistical bridge group 11认定 determines that the number of pixels including the low gray level value of the frame picture is too small, and notifies the ratio generation module 120 to increase the ratio X as described above. The operation is to adjust the direction of F1 (g^ to f 1 (g). [0029] In the embodiments shown in FIGS. 8 and 9, although only 〇 to 255 is used

* . . ... I 灰階值g的有效範圍,但在本發明之其他實施例中,畫素 統計模組110亦可根據顯示器100在規格上的不同實際需 要,統計不同灰階值範圍的畫素個數,例如可僅統計灰 階值5 0至2 0 0中各灰階值對應的畫素個數。預定灰階值y 在取值上係以灰階值g之有效範圍内為準,換言之,以第 8圖與第9圖來說,預定灰階值y可為〇至255(但不等於〇 或255)的任何有效灰階值。 舉例來說,在本發明之一實施例中,預定灰階值y之值可 設定為80,且臨界畫素個數2可設定為單一幀畫面中所有 畫素個數(亦即上述第8圖或第9圖中被灰階值曲線、灰階 098145433 表單編號A0101 第16頁/共43頁 0982077613-0 [0030] 201123914 =之輔、及畫素個數軸三者所涵蓋起來的面積)的⑽,· 二信來,當單―㈣面中有7()%以上的畫素Μ在預定 ^白值y所對應之虛直線的左方時,即代表灰階值小於預 疋灰階值y之所有畫素的個數多於臨界畫素個^時的狀 况’此時畫素統計模組110會通知比率產生模組12〇進行 ^上所述調高比率X的操作,以使F1(g)根據公式⑴ 向n(g)的方向調整,並使”⑷根據公式⑺朝向 mg)的方向調整;反之,當單—㈣面中有少於7〇%的 晝素集中在預定灰階值7所對應之虛直線的右方時,即代 表畫素統計模組110會認定該賴晝面包含低灰階值的畫素 個數偏夕’並通知比率產生模組120進行如以上所述調低 •比率x的操作,以使F1(g)根據公式⑴朝向fl(g),的方 向調整,並使F2(g)根據公式(2)朝向f2(g),的方向調 整。 剛然而’根據本發明之各料例,料灰階,y的取值亦可 視顯示器100在不同規格上的需要為考量(例如面板的尺 寸或疋所需的解析度大小等因素),而並未被限定於以上 所舉例之取值方式,且預定灰階值y之值僅需位於 畫素統 计模組110在統計畫素灰階值的有效灰階值範圍内即可。 而臨界畫素個數2之值可如以上舉例為一百分比數值,例 如上述單i畫面中所包含之總畫素個數的等。 闕請㈣第12®,其為本發明所揭露改善顯示器拖影現象 及閃爍現象之方法的流程圖。如第12圖所示,本發明所 揭露之方法係包含步驟如下: [0033] 098145433 步驟202:在顯示器1〇〇所接收之一幀畫面中 表單編號A0101 第Π頁/共43頁 畫素統計 0982077613-0 201123914 模組110檢測顯示之灰階值小於一預定灰階值y之所有畫 素的一總畫素個數; [0034] 步驟204 :晝素統計模組110判斷該總畫素個數是否小於 一臨界畫素個數z,其中臨界畫素個數z係代表單一晝面 中灰階值低於預定灰階值y的預定晝素個數;當該總畫素 個數係小於臨界畫素個數z時,執行步驟205 ;否則執行 步驟208 ; [0035] 步驟205 : 比率產生模組120確認一比率X是否等於一比 率上限(例如為1,且比率X係為上一幀畫面所使用之比率 );當比率X未等於該比率上限時,執行步驟206 ;否則, 執行步驟207 ; [0036] 步驟206 :比率產生模組120將比率X遞增一單位比率, 並執行步驟210 ; [0037] 步驟207 :比率產生模組120保持比率X不變,並執行步 驟210 ; [0038] 步驟208 : 比率產生模組120確認比率X是否到達一比率 下限(例如為0);當比率X未到達該比率下限時,執行步 驟209 ;否則,執行步驟207 ; [0039] 步驟209 : 比率產生模組120將比率X遞減該單位比率, 並執行步驟210 ; [0040] 步驟210 :動態影像亮度函數模組130根據比率X確定一 第一動態影像亮度子函數f 1 (g)及一第二動態影像亮度子 函數fl(g)’在一第一動態影像亮度函數Fl(g)中各自所 098145433 表單編號A0101 第18頁/共43頁 0982( 201123914 佔之比例,以確定第一動態影像亮度函數Fl(g); [0041] 步驟212 :動態影像亮度函數模組140根據比率X,確定 一第三動態影像亮度子函數f 2(g)及一第四動態影像亮度 子函數f2(g)’在一第二動態影像亮度函數F2(g)中各自 所佔之比例,以確定第二動態影像亮度函數F2(g);及 [0042] Ο [0043] 步驟214 :顯示器100根據被確定之第一動態影像亮度函 數Fl(g)與第二動態影像亮度函數F2(g),在顯示面板 150上依序顯示第一動態影像亮度函數F 1(g)所對應之一 第一子幀畫面及第二動態影像亮度函數F2(g)所對應之一 第二子幀畫面。 以下係以結合第7圖所示之顯示器100與第12圖所示之流 程圖的方式來完整說明本發明所揭露之顯示方法以及應 用該方法之顯示器100,其中顯示器100所包含之各元件 的功能中已揭露的部分不再另行說明。 [0044] ❹ 首先,在步驟202中,畫素統計模組110係先行檢測顯示 器100所接收之單一幀畫面中所有畫素的灰階值,以產生 如第8圖或第9圖所示之灰階值曲線,並根據該灰階值曲 線來判斷該幀畫面中灰階值小於預定灰階值y的總畫素個 數。接著在步驟204中,晝素統計模組110係將步驟202 中統計得到的總畫素個數與上述之臨界畫素個數z比較, 以判斷該總晝素個數是否少於臨界畫素個數z。 當步驟204中畫素統計模組110判斷該總畫素個數多於臨 界畫素個數z時,即代表該單一幀晝面中灰階值偏低的晝 素較少,因此具有降低亮度的空間。此時在步驟205中, 098145433 表單編號A0101 第19頁/共43頁 0982077613-0 [0045] 201123914 比率產生模組120會先行判斷目前顯示器100所使用之比 率X的值是否已經到達1,若比率X已到達0,則執行步驟 207以使比率X維持在1 ;若比率X尚未到達0,則執行步驟 206以將比率X增加一個單位,且在本發明之一較佳實施 例中該單位係為〇. 〇1,但在本發明之其他實施例中則未 將該單位限定於0.01,而可視顯示器100在規格上的實際 需要加以調整。 [0046] 當步驟204中畫素統計模組110判斷該總畫素個數少於臨 界畫素個數z時,即代表該單一幀畫面中灰階值偏低的畫 素較多,因此具有提高亮度的空間。此時在步驟208中, 比率產生模組120會先行判斷目前顯示器100所使用之比 率X的值是否已經到達0,若比率X已到達0,則執行步驟 207以使比率X維持在0 ;若比率X尚未到達0,則執行步驟 206以將比率X減少一個單位,該單位之數值與上述比率 增加之情況相同,此處不再多加贅述。 [0047] 當執行到步驟210時,動態影像亮度函數模組130會根據 步驟206、207、或209中比率產生模組120所決定之比率 X來調整動態影像亮度子函數fl(g)、fl(g)’兩者在動 態影像亮度函數Fl(g)中的比例,以確定動態影像亮度函 數F 1(g)當下的軌跡,確定的方式已於第10圖的相關敘述 中描述,此處不再重複敘述。同理,在執行步驟212時, 動態影像亮度函數模組140會根據步驟206、207、或209 中比率產生模組120所決定之比率X來調整動態影像亮度 子函數f2(g)、f2(g)’兩者在動態影像亮度函數F2(g) 中的比例,以確定動態影像亮度函數F2(g)當下的軌跡, 098145433 表單編號A0101 第20頁/共43頁 0982077613-0 201123914 確定的方式亦已於第11圖的相關敘述中描述,故此處亦 不再重複論述。除此以外,在同一時間内,動態影像亮 度函數模組130與140所使用之比率X必定相同,以使得根 據動態影像亮度函數Fl(g)與F2(g)所顯示的兩個連續子 幀晝面在亮度上的變化較為平緩而不易被肉眼所查覺。 [0048] ❹ 〇 最後,在執行步驟214時,顯示器100會在顯示面板150 上依序顯示一第一子幀畫面及一第二子幀畫面,其中該 第一子幀畫面之顯示亮度係根據動態影像亮度函數模組 130在步驟210中所決定之動態影像亮度函數Fl(g)所決 定,而該第二子幀畫面之顯示亮度係根據動態影像亮度 函數模組140在步驟21 2中所決定之動態影像亮度函數 F2(g)所決定;換言之,該第一子幀畫面係為一亮子幀畫 面,且該第二子幀畫面係為一插黑畫面,亦即一暗子幀 畫面。請參閱第13圖,其為執行第12圖所示步驟214時, 以對應於動態影像亮度函數F 1(g)及F2(g)來決定播放之 該第一子幀晝面及該第二子幀畫面之亮度的函數示意圖 ,其中在第1^圖中,係假設在第10圖與第11圖中同時以 路徑D對應之比率X來確定動態影像亮度函數Fl(g)及 F2(g)。觀察第13圖可知,在選擇路徑D時,在灰階值g 由0到S的任一灰階值上,動態影像亮度函數Fl(g)及 F2(g)之間的亮度差均不明顯,使得肉眼不會明顯感覺到 顯示亮度上的差異,並可據此減輕顯示畫面時的閃爍現 象。而當同時選擇路徑A、B、C、或E時,所產生之亮度 差亦不會使肉眼明顯感覺到顯示亮度上的差異。 [0049] 請注意,將第12圖所示之各步驟以本發明所揭示之其他 098145433 表單編號A0101 第21頁/共43頁 0982077613-0 201123914 方式進行的合理替換或是附加本發明以上所揭露之其他 限制條件所產生之其他實施例,或是將第12圖所示之各 v驟進行合理之排列組合所產生之其他實施例仍應視 為本發明之範_。 [0050] [0051] 明再參閱第14圖,其為第7圖所示之比率產生模組12〇在 決定比率X之值時一理想過程的示意圖。如第14圖所示, 在時區11中,由於單一幀畫面中包含較低灰階值的畫素 數量較多,因此執行了許多次第12圖中步驟2〇2、204、 206、210、212、214的反覆(Iterative)過程,使得比 率X在過程中遞增;而在時區七2中,由於箪一幀畫面中包 含較低灰階值的畫素數量較少,因此執行了''許多次第i 2 圖中步驟202、204、208、209、210、212、214的反覆 過程’使仔比率X在過程中遞減。然而,在一般實際以第 7圖所不之顯不1〇〇應用第12圖所述之方法時,比率X通 常會頻繁的被改變其遞增或遞減韵動向,雨不會如第14 圖所示直接由其下限0遞增到其上限i,或是直接由其上 限1遞減至下限0,此係因實際被晝素統計模組11〇所偵測 之單一幀晝面所包含之畫素的灰階值分布亦易不穩定之 故。 本發明係揭露一種確定動態影像亮度函數之顯示方法與 相關之顯示器,以改進先前技術中顯示器使用插黑技術 .時會引進閃燦現象的問題。在本發明所揭露之方法中, 係將用來顯示亮子幀畫面與用來插黑之暗子幅畫面的動 態影像亮度函數各自切割為二個動態影像亮度子函數。 藉由統計單一幀畫面中灰階值較低的晝素數量多募,決 098145433 表單編號A0101 第22頁/共43頁 0982077613-0 201123914 [0052]The effective range of the gray scale value g, but in other embodiments of the present invention, the pixel statistics module 110 may also calculate different gray scale value ranges according to the actual needs of the display 100 in terms of specifications. For the number of pixels, for example, only the number of pixels corresponding to each grayscale value in the grayscale value of 50 to 2000 can be counted. The predetermined gray scale value y is taken as the value within the effective range of the gray scale value g. In other words, in the eighth and ninth diagrams, the predetermined gray scale value y may be 〇 to 255 (but not equal to 〇 Or any effective grayscale value of 255). For example, in an embodiment of the present invention, the value of the predetermined grayscale value y can be set to 80, and the number of critical pixels 2 can be set to the number of all pixels in a single frame picture (ie, the above 8th Figure or Figure 9 is the grayscale value curve, grayscale 098145433 Form No. A0101 Page 16 of 43 page 0982077613-0 [0030] 201123914 = the auxiliary, and the area covered by the number of axes (10), · Two letters, when there are 7 ()% of the pixels in the single (4) plane, when the left side of the virtual line corresponding to the white value y is reserved, the gray level value is smaller than the pre-dark gray level value y The number of all pixels is greater than the condition of the critical pixels. At this time, the pixel statistics module 110 notifies the ratio generation module 12 to perform the operation of increasing the ratio X to make F1 (g) Adjust according to the formula (1) to the direction of n(g), and adjust the direction of "(4) according to formula (7) toward mg); conversely, when there are less than 7〇% of the elements in the single-(four) plane, concentrate on the predetermined gray When the order value 7 corresponds to the right side of the imaginary line, the representative pixel statistic module 110 determines that the rye surface contains the number of pixels of the low gray level value. The notification ratio generation module 120 performs an operation of lowering the ratio x as described above so that F1(g) is adjusted in accordance with the direction of the formula (1) toward fl(g), and the F2(g) is oriented according to the formula (2) F2 (g), the direction adjustment. Just according to the various examples of the present invention, the gray scale of the material, the value of y can also be considered according to the needs of the display 100 in different specifications (such as the size of the panel or the required The resolution magnitude and the like are not limited to the value mode exemplified above, and the value of the predetermined grayscale value y only needs to be in the effective grayscale of the pixel pixel grayscale value in the pixel statistics module 110. The value of the critical pixel number 2 can be exemplified as a percentage value, for example, the total number of pixels included in the single i-picture, etc. 阙 (4) 12®, which is The present invention discloses a flow chart for improving the smear phenomenon and the flicker phenomenon of the display. As shown in Fig. 12, the method disclosed in the present invention comprises the following steps: [0033] 098145433 Step 202: Receiving at the display 1 One frame picture form number A0101 page / total 43 page pixel statistics 0982077613-0 201123914 The module 110 detects a total number of pixels of all the pixels whose gray scale value is less than a predetermined gray scale value y; [0034] Step 204: The pixel statistics module 110 determines the total pixels Whether the number is less than a critical number of elements z, wherein the number of critical pixels z represents a predetermined number of pixels in which a gray level value is lower than a predetermined gray level value y; when the total number of pixels is smaller than When the number of critical pixels is z, step 205 is performed; otherwise, step 208 is performed; [0035] Step 205: The ratio generation module 120 determines whether a ratio X is equal to a ratio upper limit (for example, 1 and the ratio X is the previous frame) When the ratio X is not equal to the upper limit of the ratio, step 206 is performed; otherwise, step 207 is performed; [0036] step 206: the ratio generation module 120 increments the ratio X by a unit ratio, and executes step 210. [0037] Step 207: The ratio generation module 120 keeps the ratio X unchanged, and performs step 210; [0038] Step 208: The ratio generation module 120 confirms whether the ratio X reaches a lower limit of the ratio (for example, 0); When X does not reach the lower limit of the ratio, step 209 is performed; Step 209: The ratio generation module 120 decrements the ratio X by the unit ratio, and performs step 210. [0040] Step 210: The dynamic image brightness function module 130 determines a first dynamic according to the ratio X. The image brightness sub-function f 1 (g) and a second motion picture brightness sub-function fl(g)' are respectively in a first dynamic image brightness function Fl(g) 098145433 Form No. A0101 Page 18/43 Page 0982 (201123914) to determine the first dynamic image brightness function Fl(g); [0041] Step 212: The dynamic image brightness function module 140 determines a third motion picture brightness sub-function f 2(g) according to the ratio X And a ratio of a fourth dynamic image luminance sub-function f2(g)' in a second dynamic image luminance function F2(g) to determine a second dynamic image luminance function F2(g); and [0042] [0043] Step 214: The display 100 sequentially displays the first dynamic image brightness function F on the display panel 150 according to the determined first dynamic image brightness function F1(g) and the second dynamic image brightness function F2(g). 1(g) corresponds to one of the first subframe picture and the second motion picture The brightness function F2(g) corresponds to one of the second subframe pictures. The display method disclosed in the present invention and the display 100 using the same are described in the following with reference to the display 100 shown in FIG. 7 and the flowchart shown in FIG. 12, wherein the components included in the display 100 are The parts that have been exposed in the function are not explained separately. [0044] First, in step 202, the pixel statistics module 110 first detects the grayscale values of all the pixels in the single frame picture received by the display 100 to generate the image as shown in FIG. 8 or FIG. And a gray scale value curve, and determining, according to the gray scale value curve, a total number of pixels whose gray scale value is smaller than a predetermined gray scale value y in the frame picture. Next, in step 204, the pixel statistics module 110 compares the total number of pixels obtained in step 202 with the number of critical pixels z to determine whether the total number of pixels is less than the critical pixel. Number z. When the pixel statistics module 110 determines in step 204 that the total number of pixels is more than the number of critical pixels z, it means that the number of gray levels in the single frame is lower, so the brightness is reduced. Space. At this time, in step 205, 098145433 Form No. A0101 Page 19 / Total 43 page 0982077613-0 [0045] 201123914 The ratio generation module 120 first determines whether the value of the ratio X used by the display 100 has reached 1 or not. X has reached 0, then step 207 is performed to maintain the ratio X at 1; if the ratio X has not yet reached 0, step 206 is performed to increase the ratio X by one unit, and in a preferred embodiment of the invention the unit is It is 〇1, but in other embodiments of the invention, the unit is not limited to 0.01, and the visual display 100 is adjusted to the actual needs of the specifications. [0046] When the pixel statistics module 110 determines in step 204 that the total number of pixels is less than the number of critical pixels z, that is, the pixels of the single frame have lower grayscale values, so Increase the brightness of the space. At this time, in step 208, the ratio generation module 120 first determines whether the value of the ratio X used by the display 100 has reached 0. If the ratio X has reached 0, step 207 is performed to maintain the ratio X at 0; If the ratio X has not yet reached 0, step 206 is performed to reduce the ratio X by one unit, and the value of the unit is the same as the above ratio increase, and no further description is provided here. [0047] When the process proceeds to step 210, the dynamic image brightness function module 130 adjusts the dynamic image brightness sub-function fl(g), fl according to the ratio X determined by the ratio generation module 120 in steps 206, 207, or 209. (g) 'The ratio of the two in the dynamic image brightness function Fl(g) to determine the current trajectory of the dynamic image brightness function F 1(g), the manner of determination is described in the relevant description of Figure 10, here The description will not be repeated. Similarly, when step 212 is performed, the dynamic image brightness function module 140 adjusts the dynamic image brightness sub-functions f2(g), f2 according to the ratio X determined by the ratio generation module 120 in steps 206, 207, or 209. g) 'The ratio of the two in the dynamic image brightness function F2(g) to determine the current image of the dynamic image brightness function F2(g), 098145433 Form No. A0101 Page 20 of 43 page 0982077613-0 201123914 Determining the way It has also been described in the related description of Fig. 11, and therefore will not be repeated here. In addition, at the same time, the ratio X used by the dynamic image brightness function modules 130 and 140 must be the same so that two consecutive subframes are displayed according to the dynamic image brightness functions F1(g) and F2(g). The change in brightness of the face is relatively flat and not easily detectable by the naked eye. [0048] Finally, when performing step 214, the display 100 sequentially displays a first subframe picture and a second subframe picture on the display panel 150, wherein the display brightness of the first subframe picture is based on The dynamic image brightness function module 130 is determined by the dynamic image brightness function F1(g) determined in step 210, and the display brightness of the second frame picture is based on the dynamic image brightness function module 140 in step 21 2 The determined dynamic image brightness function F2(g) is determined; in other words, the first subframe picture is a bright subframe picture, and the second subframe picture is a black insertion picture, that is, a dark subframe picture. Referring to FIG. 13 , when the step 214 shown in FIG. 12 is performed, the first subframe and the second are played corresponding to the dynamic image brightness functions F 1(g) and F2(g). A function diagram of the brightness of the sub-frame picture, wherein in the first picture, it is assumed that the dynamic image brightness functions Fl(g) and F2(g) are determined by the ratio X corresponding to the path D in both the 10th and 11th pictures. ). Looking at Figure 13, we can see that when the path D is selected, the brightness difference between the dynamic image brightness functions Fl(g) and F2(g) is not obvious at any gray level value of the gray level value g from 0 to S. Therefore, the naked eye does not obviously feel the difference in display brightness, and the flicker phenomenon when the screen is displayed can be reduced accordingly. When the path A, B, C, or E is selected at the same time, the difference in luminance produced does not cause the naked eye to clearly perceive the difference in display brightness. [0049] Please note that the steps shown in FIG. 12 are reasonably replaced by the other 098145433 Form No. A0101, page 21/43 pages 0982077613-0 201123914 disclosed in the present invention. Other embodiments resulting from other limitations, or other embodiments resulting from the reasonable arrangement of the various steps shown in FIG. 12, should still be considered as a form of the invention. [0051] Referring again to FIG. 14, which is a schematic diagram of an ideal process of the ratio generation module 12 shown in FIG. 7 when determining the value of the ratio X. As shown in Fig. 14, in the time zone 11, since the number of pixels including lower grayscale values in a single frame picture is large, steps 2〇2, 204, 206, 210, 212 in Fig. 12 are performed many times. The 214's Iterative process causes the ratio X to increase in the process; in the time zone 7.2, since the number of pixels containing lower grayscale values in a frame is small, the ''many times' The repetitive process of steps 202, 204, 208, 209, 210, 212, 214 in the figure 2 causes the ratio X to be decremented in the process. However, when the method described in Fig. 12 is generally applied to the method shown in Fig. 7, the ratio X is usually changed frequently by increasing or decreasing the rhythm, and the rain is not as shown in Fig. 14. The indication is directly incremented from its lower limit 0 to its upper limit i, or directly from its upper limit 1 to the lower limit 0, which is due to the pixels contained in the single frame detected by the pixel measurement module 11〇. Gray scale value distribution is also prone to instability. The present invention discloses a display method for determining a dynamic image brightness function and a related display to improve the prior art display using a black insertion technique. In the method disclosed in the present invention, the dynamic image brightness functions for displaying the bright sub-frame picture and the dark sub-picture for black insertion are each cut into two dynamic image brightness sub-functions. By counting the number of pixels with lower grayscale values in a single frame, the number of elements is 098145433. Form number A0101 Page 22 of 43 0982077613-0 201123914 [0052]

[0053] [0054] 定動態影像亮度函數巾二個動態影像亮度子函數各自的 比例,可以輸出亮度呈現平穩改變的亮子幀畫面與暗子 中貞晝面’ ϋ減輕閃燦|象’以達成影像顯示品質的最佳 化。 綜上所述,本發明確已符合發明專利之要件,爰依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施方 式,本發明之範圍並不以上述實施例為限,該舉凡熟悉 本案技藝之人士援依本發明之精神所作之等效修飾或變 化,皆應涵蓋於以下申請專利範圍内? 【圖式簡單說明】 第1圖為一般顯示面帑使用穩態發光方式運作時的時間與 亮度關係圖。 第2圖為一般顯示面板使用脈衝形式之發光方式運作 時間與亮度關係圈。 時的 [0055][0054] The ratio of the two dynamic image brightness sub-functions of the dynamic image brightness function towel can output a bright sub-frame image with a smooth change in brightness and a shadow in the dark sub-surface Image display quality is optimized. In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only the preferred embodiment of the present invention, and the scope of the present invention is not limited to the above-described embodiments, and those skilled in the art will be able to make equivalent modifications or variations in accordance with the spirit of the present invention. It should be covered in the scope of the following patent application. [Simple description of the diagram] Figure 1 is a diagram showing the relationship between time and brightness when the display panel is operated in steady state illumination mode. Figure 2 shows the relationship between the operation time and the brightness of the general display panel using the pulse mode. Time [0055]

GG

[0056] 第3圖係為使用插黑技術將單一幀畫面置換為二個相鄰之 子幀畫面以進行顯示的簡略未意圖。f 第4圖係為顯示第3圖所示之各幀畫面與子幀晝面所使用 之亮度的簡略示意圖。 [0057]第5圖為先前技術中應用插黑技術時將代表幀晝面中各晝 素之灰階值與亮度之間關係的函數拆解成二個子函數以 改善拖影現象的簡略示意圖。 [0058]第6圖為本發明在插黑技術中為了改善閃爍現象所弓丨用之 一種切割伽馬曲線的方式之簡略示意圖。 098145433 表單编號A0101 第23頁/共43頁 °982〇77613-〇 201123914 [0059] 第7圖為實施本發明所揭露改善顯示器拖影現象之方法的 一顯示器之簡略示意圖。 [0060] 第8圖與第9圖為第7圖所示之畫素統計模組所產生之二種 灰階值統計曲線的簡略範例示意圖。 [0061] 第10圖為確定第5圖所示之動態影像亮度子函數fl(g)& 第6圖所示之動態影像亮度子函數丨1(§),之間的比率又以 產生動態影像壳度函數Fi(g)時以函數曲線具體說明的示 意圖。 _2]第1 1圖為確定動態影像亮度子函數f 2 ( g )及f 2 ( g ),之間 比率以產生動態影像亮度函_F2(;g)時以函數具體進行說 明的示意圖。 Aa [0063] 第1 2圖為本發明所揭露改善顯示器拖影現象之方法的流 程圖。 [0064] 第13圖為執行第12圖所示步麟214時,以對應於動態影像 亮度函數Fl(g)及F2(g)來決定播放之該第一子幀畫面及 該第二子幀畫面之亮度的襄數示意_。 [0065] 第14圖為第7圖所示之比率產生模組在決定比率X之值時 一理想過程的示意圖。 【主要元件符號說明】 [0066] 巾貞畫面 F(n)、F(n+1)、F(n+2) [0067] 子幢畫面 F(n)_l 、 F(n)_2 、 F(n + 1)_1 ' F(n + 1)_2 ' F(n+2)_1 ' F(n+2)_2 [0068] 動態影像亮度函數 Fl(g)、F2(g)、f(g) 表單編號A0101 第24頁/共43頁 098145433 0982077613-0 201123914 [0069] 動影像亮度子函數 f2(g)’ fl(g) ' fl(g)* [0070] 顯示器 100 [0071] 畫素統計模組 110 [0072] 比率產生模組 120 [0073] 動態影像受度函數模組 130 、 140 [0074] 顯示面板 150 [0075] 步驟 202、204、205 、208、209、210、212 ' 214 、f2(g)、 206 ' 207 098145433 表單編號A0101[0056] Figure 3 is a schematic illustration of the use of black insertion techniques to replace a single frame picture with two adjacent sub-frame pictures for display. f Fig. 4 is a schematic diagram showing the brightness used for each frame picture and sub-frames shown in Fig. 3. [0057] Fig. 5 is a schematic diagram showing the function of disassembling a function representing the relationship between the gray scale value and the luminance of each pixel in the frame surface into two sub-functions to improve the smear phenomenon when the black insertion technique is applied in the prior art. Fig. 6 is a schematic view showing the manner of cutting a gamma curve used for the purpose of improving the flicker phenomenon in the black insertion technique of the present invention. 098145433 Form No. A0101 Page 23 of 43 °982〇77613-〇 201123914 [0059] FIG. 7 is a schematic diagram of a display embodying the method of improving the smear phenomenon of the display of the present invention. 8 and 9 are schematic diagrams showing a simplified example of two gray scale value statistical curves generated by the pixel statistical module shown in FIG. 7. [0061] FIG. 10 is a diagram showing the ratio between the dynamic image luminance sub-function fl(g)& shown in FIG. 5 and the dynamic image luminance sub-function 丨1 (§) shown in FIG. The image shell function F(g) is a schematic diagram specifically illustrated by a function curve. _2] Figure 1 1 is a schematic diagram illustrating the dynamic image luminance sub-functions f 2 ( g ) and f 2 ( g ), with a ratio between them to produce a dynamic image luminance function _F2(;g). Aa [0063] Figure 12 is a flow diagram of a method of improving the smear of a display disclosed in the present invention. [0064] FIG. 13 is a diagram showing the first subframe picture and the second subframe determined to be played in response to the motion picture luminance functions F1(g) and F2(g) when the step 214 shown in FIG. 12 is executed. The number of turns of the brightness of the picture is _. [0065] FIG. 14 is a schematic diagram showing an ideal process of the ratio generation module shown in FIG. 7 when determining the value of the ratio X. [Description of Main Component Symbols] [0066] Frames F(n), F(n+1), F(n+2) [0067] Sub-pictures F(n)_l, F(n)_2, F( n + 1)_1 ' F(n + 1)_2 ' F(n+2)_1 ' F(n+2)_2 [0068] Dynamic image brightness functions Fl(g), F2(g), f(g) Form No. A0101 Page 24 of 43 098145433 0982077613-0 201123914 [0069] Moving Image Luminance Subfunction f2(g)' fl(g) ' fl(g)* [0070] Display 100 [0071] Pixel Statistical Mode Group 110 [0072] Ratio Generation Module 120 [0073] Dynamic Image Receptual Function Modules 130, 140 [0074] Display Panel 150 [0075] Steps 202, 204, 205, 208, 209, 210, 212 '214, f2 (g), 206 ' 207 098145433 Form No. A0101

第25頁/共43頁 0982077613-0Page 25 of 43 0982077613-0

Claims (1)

201123914 七、申請專利範圍: 1 . 一種改善顯示器拖影現象之方法,其包括如下步驟: a. 統計每一幀畫面的所有畫素的灰階值信息; b. 根據該灰階值信息產生一比率; c. 根據該比率及一第一動態影像亮度函數公式確定一第一 動態影像亮度函數,並根據該比率及一第二動態影像亮度 函數公式確定一第二動態影像亮度函數; d. 根據每一幀畫面數據及該第一動態影像亮度函數產生一 第一子t貞畫面數據; e. 根據該每一幀畫面數據及該第二動態影像亮度函數產生 一第二子幀畫面數據;及 f. 根據該第一子幀畫面數據顯示一第一子幀畫面,並根據 該第二子幀畫面數據顯示一第二子幀畫面;其中,該第一 動態影像亮度函數公式為 孤⑵=X /%) + (1 - X) _ /1(g)’,該第 二動態影像亮度函數公式為 柯(茗)=1· /2齡 + (I —叉) /2 ⑵’; 其中X代表該比率,Fl(g)代表該第一動態影像亮度函數 ;F2(g)代表該第二動態影像亮度函數;fl(g)與f2(g) 代表根據一第一預定平均灰階值將顯示一幀畫面時所使用 之一原始動態影像亮度函數分解成的一第一動態影像亮度 子函數與一第二動態影像亮度子函數,並且該第一動態影 像亮度子函數fl(g)與該第二動態影像亮度子函數f2(g) 098145433 表單編號A0101 第26頁/共43頁 0982077613-0 201123914 在該原始動態影像亮度函數之一有效灰階值範圍内沒有交 點,該第一動態影像亮度子函數fl(g)之亮度係高於該第 二動態影像亮度子函數f2(g)之亮度;fl(g)’與f2(g) ’代表根據該第一預定平均灰階值將該原始動態影像亮度 函數分解成的一第三動態影像亮度子函數一第四動態影像 亮度子函數,並且該第三動態影像亮度子函數fl(g)’與 該第四動態影像亮度子函數f2(g)’在該有效灰階值範圍 内僅於該第一預定灰階值上有交點。 2 .如申請專利範圍第1項所述之改善顯示器拖影現象之方法 Q ,其中,該步驟b包括一步驟g :根據該灰階值信息中所記 錄該幀畫面中顯示的灰階值小於一臨界灰階值之所有畫素 的一總畫素個數是否小於一臨界畫素個數,決定該比率。 3 .如申請專利範圍第2項所述之改善顯示器拖影現象之方法 ,其中,該步驟g中,根據該幀畫面所對應之一灰階值統 計曲線,決定顯示之灰階值小於該臨界灰階值之所有畫素 的該總畫素個數;其中該灰階值信息係包含該灰階值統計 曲線,該灰階值統計曲線係記錄有該幀畫面中顯示每一畫 〇 素所使用之一灰階值,且該灰階值統計曲線係對應於該幀 畫面所包含之該複數個晝素各自之灰階值。 4 .如申請專利範圍第2項所述之改善顯示器拖影現象之方法 ,其中步驟g係包含當該總畫素個數係小於該臨界畫素個 數時,將該比率增加一單位。 5 .如申請專利範圍第2項所述之改善顯示器拖影現象之方法 -,其中步驟g係包含當該總畫素個數係大於該臨界畫素個 數時,將該比率減少一單位。 6 . —種顯示器,其包括: 098145433 表單編號A0101 第27頁/共43頁 0982077613-0 201123914201123914 VII. Patent application scope: 1. A method for improving display smear phenomenon, comprising the following steps: a. Statistic gray scale value information of all pixels of each frame picture; b. generating one according to the gray scale value information a ratio; c. determining a first dynamic image brightness function according to the ratio and a first dynamic image brightness function formula, and determining a second dynamic image brightness function according to the ratio and a second dynamic image brightness function formula; d. Each frame data and the first motion image brightness function generate a first sub-picture data; e. generating a second sub-frame picture data according to the frame picture data and the second motion picture brightness function; and f. displaying a first subframe picture according to the first subframe picture data, and displaying a second subframe picture according to the second subframe picture data; wherein the first motion picture brightness function formula is orphan (2)=X /%) + (1 - X) _ /1(g)', the second dynamic image brightness function formula is 柯(茗)=1· /2 age + (I-fork) /2 (2)'; where X represents The ratio, Fl (g) generation The first dynamic image brightness function; F2(g) represents the second motion picture brightness function; fl(g) and f2(g) represent one of the frames used when displaying a frame according to a first predetermined average gray level value. The first moving image brightness function is decomposed into a first moving image brightness sub-function and a second moving image brightness sub-function, and the first moving image brightness sub-function fl(g) and the second moving image brightness sub-function f2 ( g) 098145433 Form No. A0101 Page 26 of 43 0982077613-0 201123914 There is no intersection in the effective gray scale value range of one of the original motion picture brightness functions, and the brightness of the first motion picture brightness sub-function fl(g) Higher than the brightness of the second motion picture luminance sub-function f2(g); fl(g)' and f2(g)' represent a first decomposition of the original motion picture luminance function according to the first predetermined average gray level value a third motion image luminance sub-function-fourth motion image luminance sub-function, and the third motion image luminance sub-function fl(g)′ and the fourth motion image luminance sub-function f2(g)′ are at the effective grayscale value Within the scope only for the first pre There are intersection points on the gray scale value. 2. The method Q for improving display smear phenomenon according to claim 1, wherein the step b comprises a step g: the gray scale value displayed in the frame picture recorded in the gray scale value information is smaller than Whether the total number of pixels of all pixels of a critical gray scale value is less than a critical number of pixels determines the ratio. 3. The method for improving the smear phenomenon of the display according to the second aspect of the patent application, wherein, in the step g, determining that the gray scale value of the display is smaller than the critical value according to a gray scale value statistical curve corresponding to the frame picture The total number of pixels of all the pixels of the grayscale value; wherein the grayscale value information includes the grayscale value statistical curve, and the grayscale value statistical curve records the display of each pixel in the frame picture One gray scale value is used, and the gray scale value statistical curve corresponds to the gray scale value of each of the plurality of pixels included in the frame picture. 4. The method of improving display smear phenomenon according to claim 2, wherein the step g comprises increasing the ratio by one unit when the total number of pixels is less than the number of critical pixels. 5. The method of improving display smear phenomenon as described in claim 2, wherein the step g comprises reducing the ratio by one unit when the total number of pixels is greater than the number of critical pixels. 6. A display comprising: 098145433 Form number A0101 Page 27 of 43 0982077613-0 201123914 一畫素統計模組、一比率產生模組、一第一動態影像亮度 函數模組、一第二動態影像亮度函數模組及一顯示面板, 該畫素統計模組用於統計每幀畫面的所有晝素的灰階值信 息,該比率產生模組用於根據每幀晝面的所有畫素的灰階 值信息產生一比率,該第一動態影像亮度函數模組包括一 第一動態影像亮度函數公式,該第一動態影像亮度函數模 組用於根據該比率確定一第一動態影像亮度函數,並進一 步根據每一幀畫面數據及該第一動態影像亮度函數產生一 第一子幀畫面數據,該第二動態影像亮度函數模組包括一 第二動態影像亮度函數公式,該第二動態影像亮度函數模 組用於根據該比率確定一第二動態影像亮度函數,並進一 步根據該每一幀畫面數據及該第二動態影像亮度函數產生 一第二子幀畫面數據,該顯示面板根據該第一子幀畫面數 據顯示第一子幀畫面及根據該第二子幀畫面數據顯示該第 二子幀畫面,其中,該第一動態影像亮度函數公式為 吨)=X /1匕)+ (1 - X) 爾)’;該第a pixel statistics module, a ratio generation module, a first motion image brightness function module, a second motion image brightness function module, and a display panel, wherein the pixel statistics module is used to count each frame of the image. The grayscale value information of all the pixels, the ratio generation module is configured to generate a ratio according to the grayscale value information of all the pixels of each frame, the first dynamic image brightness function module includes a first dynamic image brightness a function formula, the first dynamic image brightness function module is configured to determine a first dynamic image brightness function according to the ratio, and further generate a first subframe image data according to each frame image data and the first dynamic image brightness function. The second dynamic image brightness function module includes a second dynamic image brightness function formula, and the second dynamic image brightness function module is configured to determine a second dynamic image brightness function according to the ratio, and further according to the frame The screen data and the second motion image brightness function generate a second subframe picture data, and the display panel displays the first subframe data according to the first subframe data. a sub-frame picture and displaying the second sub-frame picture according to the second sub-frame picture data, wherein the first dynamic picture brightness function formula is ton)=X /1匕)+ (1 - X) er)'; The first 二動態影像亮度函數公式為 ^ f2(g) + (1 - x) /2(g)F; * 中X代表該比率,Fl(g)代表該第一動態影像亮度函數; F2(g)代表該第二動態影像亮度函數;fl(g)與f2(g)代 表根據一第一預定平均灰階值將顯示一幀晝面時所使用之 一原始動態影像亮度函數分解成的一第一動態影像亮度子 函數與一第二動態影像亮度子函數,並且該第一動態影像 亮度子函數f 1(g)與該第二動態影像亮度子函數f 2(g)在 098145433 表單編號A0101 第28頁/共43頁 0982077613-0 201123914 該原始動態影像亮度函數之一有效灰階值範圍内沒有交點 ,該第一動態影像亮度子函數fl(g)之亮度係高於該第二 動悲影像冗度子函數f2(g)之亮度;fi(g)’與f2(g), 代表根據該第一預定平均灰階值將該原始動態影像亮度函 數刀·解成的第二動si影像免度子函數一第四動態影像亮 度子函數,並且该第二動癌影像亮度子函數fl(g),與該 第四動態影像亮度子函數f2(g),在該有效灰階值範圍内 僅於該第一預定灰階值上有交點。 7 .如申請專利範圍第6項所述之顯示器,其中,該比率產生 〇 模組係根據該灰階值信息中所記錄該幀畫面中顯示的灰階 值小於一臨界表階值之所有畫素畤一總畫素個數是否小於 一臨界畫素個數,決定該比率。Λ 8 .如申請專利範圍第7項所述之顯示器,其中,該灰階值信 息係包含該楨晝面所對應之一灰階值統計曲線,該灰階值 統計曲線係§己錄有該t貞畫面中顯示每一畫素所使用之一灰 階值;其中該灰階值統計曲線係姅應於畫面所包含之 該複數個畫素各自之灰階值';其中該比率產生模組係根據 〇 該灰階值統計曲線,決定顯示之灰階值小於該臨界灰階值 之所有畫素的該總畫素個數。 9 .如申請專利範圍第7項所述之顯示器,其中,當該總晝素 個數係小於該臨界畫素個數時,該比率產生模組將僉比率 增加一單位。 10 .如申請專利範圍第7項所述之顯示器,其中,當該總書素 個數係大於該臨界畫素個數時,該比率產生模組係將該比 率減少一單位。 098145433 表單煸號A0101 第29頁/共43頁 0982077613-0The second dynamic image brightness function formula is ^ f2(g) + (1 - x) /2(g)F; * where X represents the ratio, Fl(g) represents the first dynamic image brightness function; F2(g) represents The second dynamic image brightness function; fl(g) and f2(g) represent a first dynamic decomposition of one of the original motion image brightness functions used to display one frame of the face according to a first predetermined average gray level value. An image brightness sub-function and a second motion picture brightness sub-function, and the first motion picture brightness sub-function f 1(g) and the second motion picture brightness sub-function f 2(g) are at 098145433 Form No. A0101 Page 28 / Total 43 pages 0982077613-0 201123914 There is no intersection point in the effective gray scale value range of one of the original motion image brightness functions, and the brightness of the first motion image luminance sub-function fl(g) is higher than the second motion image redundancy. The brightness of the sub-function f2(g); fi(g)' and f2(g) represent the second motion si image extricon obtained by solving the original motion image brightness function knife according to the first predetermined average gray level value a fourth motion picture luminance sub-function, and the second motion image luminance sub-function fl(g And the fourth dynamic image luminance sub-function f2(g) has an intersection point only on the first predetermined grayscale value within the effective grayscale value range. 7. The display of claim 6, wherein the ratio generating module is based on all the pictures in which the grayscale value displayed in the frame picture recorded in the grayscale value information is less than a critical table value. Whether the number of prime pixels is less than a critical number of pixels, determines the ratio.显示器 8. The display of claim 7, wherein the grayscale value information includes a grayscale value statistical curve corresponding to the facet, the grayscale value statistical curve is recorded by the The grayscale value used by each pixel is displayed in the screen, wherein the grayscale value statistical curve is the grayscale value of the plurality of pixels included in the screen; wherein the ratio generation module Based on the grayscale value statistical curve, the total number of pixels of all the pixels whose grayscale value is less than the critical grayscale value is determined. 9. The display of claim 7, wherein the ratio generation module increases the chirp ratio by one unit when the total number of pixels is less than the number of critical pixels. 10. The display of claim 7, wherein the ratio generation module reduces the ratio by one unit when the total number of books is greater than the number of critical pixels. 098145433 Form nickname A0101 Page 29 of 43 0982077613-0
TW98145433A 2009-12-29 2009-12-29 Method of improving motion blur of display and display thereof TWI408968B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98145433A TWI408968B (en) 2009-12-29 2009-12-29 Method of improving motion blur of display and display thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98145433A TWI408968B (en) 2009-12-29 2009-12-29 Method of improving motion blur of display and display thereof

Publications (2)

Publication Number Publication Date
TW201123914A true TW201123914A (en) 2011-07-01
TWI408968B TWI408968B (en) 2013-09-11

Family

ID=45046881

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98145433A TWI408968B (en) 2009-12-29 2009-12-29 Method of improving motion blur of display and display thereof

Country Status (1)

Country Link
TW (1) TWI408968B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111340730A (en) * 2020-02-26 2020-06-26 Oppo广东移动通信有限公司 Smear phenomenon eliminating method, terminal and storage medium

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3808788B2 (en) * 2002-03-12 2006-08-16 株式会社東芝 Liquid crystal display method
US7581841B2 (en) * 2004-03-19 2009-09-01 Nec Display Solutions, Ltd. Luminance correcting apparatus, luminance correcting method, and projector
WO2006025021A1 (en) * 2004-09-03 2006-03-09 Koninklijke Philips Electronics N.V. Cheap motion blur reduction (eco-overdrive) for lcd video/graphics processors
US20080170126A1 (en) * 2006-05-12 2008-07-17 Nokia Corporation Method and system for image stabilization
KR101301770B1 (en) * 2008-01-23 2013-09-02 엘지디스플레이 주식회사 Liquid Crystal Display and Dimming Controlling Method thereof
DE112008003758T5 (en) * 2008-03-05 2010-12-30 Hewlett-Packard Development Co., L.P., Houston Uniformity of a liquid crystal display

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111340730A (en) * 2020-02-26 2020-06-26 Oppo广东移动通信有限公司 Smear phenomenon eliminating method, terminal and storage medium
CN111340730B (en) * 2020-02-26 2023-05-09 Oppo广东移动通信有限公司 Method for eliminating smear phenomenon, terminal and storage medium

Also Published As

Publication number Publication date
TWI408968B (en) 2013-09-11

Similar Documents

Publication Publication Date Title
JP4979776B2 (en) Image display device and image display method
CN102110403B (en) Method for improving motion blur phenomenon of display and related display
CN102483899B (en) Image display device and image display method
US20070103418A1 (en) Image displaying apparatus
US7667720B2 (en) Image display device, driving circuit and driving method used in same
US9071800B2 (en) Display unit and displaying method for enhancing display image quality
US20060202945A1 (en) Image display device with reduced flickering and blur
JPWO2009054223A1 (en) Image display device
WO2010126103A1 (en) Display control device, liquid crystal display device, program and recording medium on which the program is recorded
JP2011053264A (en) Liquid crystal display device
JP2009198530A (en) Image display device and method
JP2011138105A (en) Liquid crystal display device and method of driving the same
US20090102771A1 (en) Image processing apparatus, image display and image processing method
CN103069478B (en) Video display control apparatus
JP2014098890A (en) Display device, light emission device, and control method of display device
JP5039566B2 (en) Method and apparatus for improving visual perception of image displayed on liquid crystal screen, liquid crystal panel, and liquid crystal screen
TW201401259A (en) Image display device
JP2011028107A (en) Hold type image display device and control method thereof
JP2005321423A (en) Image display device
JP2005266752A (en) Device and method for video display
TW200926116A (en) Method of processing LCD images according to the content of the images
JP2013222081A (en) Liquid crystal display device
JP2007322942A (en) Backlight driving device, display device, and backlight driving method
JP2005070690A (en) Liquid crystal display device
JP2006317660A (en) Image display controller, display device and image display method