TW201123482A - Thin film solar cell and fabrication method thereof - Google Patents

Thin film solar cell and fabrication method thereof Download PDF

Info

Publication number
TW201123482A
TW201123482A TW098145654A TW98145654A TW201123482A TW 201123482 A TW201123482 A TW 201123482A TW 098145654 A TW098145654 A TW 098145654A TW 98145654 A TW98145654 A TW 98145654A TW 201123482 A TW201123482 A TW 201123482A
Authority
TW
Taiwan
Prior art keywords
photovoltaic
layer
thin film
solar cell
transparent electrode
Prior art date
Application number
TW098145654A
Other languages
Chinese (zh)
Inventor
Chien-Sheng Yang
Original Assignee
Auria Solar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Auria Solar Co Ltd filed Critical Auria Solar Co Ltd
Priority to TW098145654A priority Critical patent/TW201123482A/en
Publication of TW201123482A publication Critical patent/TW201123482A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

A thin film solar cell including a substrate, a plurality of photovoltaic cells and a wavelength-converting layer is provided. The photovoltaic cells disposed on the substrate individually include a first transparent conductive layer disposed on the substrate, a plurality of photovoltaic layers and a second transparent conductive layer. The photovoltaic layers stacked on the first transparent conductive layer are electrically tandem and have an opening exposing the first transparent conductive layer. The second transparent conductive layer disposed on the photovoltaic layers is electrically connected with the first transparent conductive layer of the adjacent photovoltaic cell through the opening. The wavelength-converting layer disposed on the second transparent conductive layer converts the light having a first wavelength range into the light having a second wavelength range, so as to make the photocurrent resulted from each photovoltaic layer being matched. A fabrication method of the thin film solar cell is also provided.

Description

201123482 28 31723twf.doc/n 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種太陽能電池及其製作方法 別是有關;^一種薄膜太陽能電池及g製作方法。、且特 【先前技術】 在太陽能t池市場t,使財晶㊉财㈣ 占百分之九十以上。然而,這也太陽 ^电池,、、 15〇Μψ^ .、一太險此電池吊使用厚度笑 15〇射至35〇射的⑦晶#作騎料,其縣較 夕ί陽能電池的雜料採用高品質⑽轉,近年來2 Ϊ=;成長,已曰漸不足。因此,具有低成3 th· 製程簡單等優點的薄臈太陽能電池 (thmfllmsolarcell)乃成為新的發展方向。 電 -般而言’習知薄膜太陽 序全面堆疊有電極狀基板上依 膜声的過尸中,先伏層以及電極層,其中堆疊這些 化f而可^、仃雷射切割製程以將這些膜層圖案 1作夕個串聯的光伏單元(sub_ 。 外側照射至薄膜太陽能番、a 士 — ;田九線由 於受光浐而甚外& 電池時,母一光伏單元的光伏層適 所形成^内雷尸由電子'電洞對,並藉由PN或PIN接面 二而使電子與電洞分別往兩層移動,進而形 戚一種電能的儲;^报能 置,便可提供絲外加貞載電路或電子裝 秋而…電路或裝置進行驅動。 換效率上仍科㈣^^電池在提升其整_光電轉 田w二間。因此,如何提升習知薄膜太 201123482 28 31723twf.doc/n =:=轉換率與電性表現以提高產品的競爭力-為眾人所關注的課題。 j规宁·刀汽 【發明内容】 右、;轉明提供—㈣社陽能電池,並設置 有波長轉換層而可具有較佳的光電轉換效率 …又置 ⑽ί發明另提供—種薄膜太陽能電池的製作方法,# 製作出上膜域能魏。 叩财法其可 本發明提出-種薄膜太陽能電池 波長轉換層。光伏單元二ΐΐ上: :透==電:置=個光伏層以" 第-透明電極上並電性串:=;土思光伏層堆疊於 產峰—伞雷、&丄 串接且攻些光伏層受光後會分別 明雷搞,:層具有一開口’其令開口曝露第1 ㈣^ 明電極配置於光伏層上並透過開口而與相 伙:兀的第—透明電極電性連接。波長轉換 於各光伏早元㈣二制電極上顧簡—第—波長範= 2光線轉換成-第二波長範圍内的光線,以使光伏層所 產生的光電流匹配(current matching)。 在本發明之-實施例中,薄膜太陽能電池更包括 射層’配置於波長轉換層上,用以將被轉換的第二波 圍内的光線反射回光伏層中。 在本發明之-實施例中,第一波長範圍内的光線 長大於第二波長範圍内的光線之波長。在本發明之一實施 201123482 28 3I723twf.doc/n 例中,第一波長範圍實質上介於llOOnm〜3000nm,而第 一波長範圍實質上介於300nm〜1100nm。 在本發明之一實施例中,波長轉換層的材質包括多個 螢光粉、多個磷光粉或是上述之疽合。 在本發明之一實施例中,各光伏層為一 IV族薄膜、 一III-V族化合物半導體薄膜、一 n_VI族化合物半導體薄 膜或一有機化合物半導體薄膜。在本發明之一實施例中, IV族薄膜包含有單晶相、多晶相、非晶相與微晶相之碳元 素薄膜、矽元素薄膜、鍺元素薄膜、碳化矽薄膜、矽化鍺 薄膜至少其一或其組合。在本發明之一實施例中,III-V族 化合物半導體薄膜包含有;g申化镓(GaAs)或麟化铟 (InGaP)。 在本發明之一實施例中,II-VI族化合物半導體薄膜包 含有銅銦硒(CIS)、銅銦鎵硒(CIGs)、鎘化碲(Ccrre)或其組 合。在本發明之一實施例中,有機化合物半導體薄膜包含 3-己烷噻吩(p〇iy(3_hexylthiophene),P3HT)與奈米碳破 (PCBM)混合物。 、/、、人來 本發明另提出一種薄膜太陽能電池的製作方法,其包 括下列步驟。首先,提供一基板。接著,形成多個光 兀於基板上,其中各光伏單元包括一第一透明電極、多 光伏層以及一第二透明電極。第一透明電極配置於基 上,而光伏層堆疊於第一透明電極上並電性串接。光= 受光後會分別產生-光電流,且光伏層具有一曝露第 明電極的開口。第二透明電極配置於光伏層上並透過開口 201123482 28 31723twf.doc/n 而與相鄰的光伏單元的第—透 :各光伏單元的這些光伏層所分别產生的Uf: :;2轉:=光伏單元的第二‘極:: 更包括形成-反射層於波長轉=„池的製作方.法 換層的光線反射回光伏層中。、9上’用以將來自波長轉 在本發明之另-實施例中… 括下列步驟。首先,於基板上 早凡的方法包 電極。接著,光伏單元的第-透明 光伏單元的第Ϊ 材料層於基板上,以覆蓋這此 成各光伏單元的光伏#,1 匕光伏材料層以形 伏單元的第-透明“。接ΐ 2具Γ口以曝露各光 伏單元的第弟:透明電極透過開口而舆相鄰的光 ^透明電極電性連接。 下列ίΐ發i月實施例中’形成波長轉換層的方法包括 電極上。然後捧護層於各光伏單元的第二透明 内。在本御L $光粉、填光粉或上述組合於保護層 括形成-‘有螢J二實,例中、’、形成波長轉換層的方法包 伏單元的第二透明:=光:、=述組合的材料層於各光 逍月屯極上。在本發明之另一實施例中,;^ 材質、介電材質、或有機材質。、 發明之一實施例中,圖案化第—透明導電層、光 201123482 28 31723twf.doc/n 伏材料層與第二透明導電層的方式包括使用一雷射製程。 在本發明之一實施例中,形成光伏材料層的方法包括 射頻電絮:辅助化學氣相沉積法(Radio Frequency Plasma Enhancdi Chemical Vapor Depositiori; RP PEGVD )、超高頻電裝 輔助化學氣相沉積法(Very High Frequency Plasma Enhanced Chemical Vapor Deposition,VHF PECVD)或者是微波電漿辅 助化學氣相沉積法(Microwave Plasma Enhanced Chemical Vapor Deposition,M W PECVD )。 基於上述*本實施例之薄膜太陽能電池將波長轉換層 配置於第二透明電極上,並藉由將第一波長範圍内的光線 轉換成第二波長範圍内的光線,使得每一光伏單元的多個 光伏層所分別產生的光電流能匹配(current matching),進 而可提高薄膜太陽能電池的光電轉換效率。再者,於製程 方法上,可藉由採用不同的方法形成波長轉換層於第一透 明電極上,使每一光伏單元的多個光伏層所分別產生的光 電流能匹配,而同樣具有上述的優點。 為讓本發明之上述特徵和優點能更明顯易懂,下文特 舉實施例,並配合所附圖式作詳細說明如下。 、 【實施方式】 圖1為本發明—實施例之薄膜太陽能電池的局 ^。請參考圖1,本實施例之薄膜太陽能電池1〇〇包括― =板=、多個光伏單元102以及一波長轉換層15〇。在本 實施例中,基板1K)可以是—透明基板,> :玻璃基板本 201123482 28 31723twf.doc/n 夕個光伏单元102配置於基板11〇上,且每一光伏單 元102包括一第一透明電極120、一第一光伏層132、一第 二光伏層134以及一第二透明電極14〇,如圖1所示。第 一透明電極120配置於基板上。在本實施例中,第一 透月電極120的材質例如是銦錫氧化物(in(jium tin⑽丨心, IT0)、銦鋅氧化物(indium zinc oxide,IZO)、銦錫辞氧化物 (indium tin zinc 0Xide,ITZO)、氧化鋅(zinc oxide)、鋁錫氧 鲁 化物(aluminum tin oxide,ΑΤΟ)、銘鋅氧化物(aiuminum zinc oxide,AZO)、録銦氧化物(cadmium indium 〇xide,CI〇)、錫 鋅氧化物(cadmium zinc oxide,CZO)、鎵鋅氧化物(GZO)及 錫氟氧化物(FTO)至少其一。 請繼續參考圖1,在每一光伏單元1〇2中,第一光伏 層132與第二光伏層134堆疊於第一透明電極12〇上並彼 此電性串接,且第一光伏層132與第二光伏層134受光後 會分別產生一光電流。這些光伏層具有一開口 132a,其中 開口 130a曝露第一透明電極120。在本實施例中,每一光 伏層130的膜層材質可以是一 IV族薄膜、一m_v族化合 物半導體»膜、-II—VI族化合物半導麟麟—有機化 合物半導體薄膜。詳細而言,IV族薄膜例如是包含有單晶 相、多晶相、非晶相與微晶相之碳元素薄膜、矽元素薄膜、 鍺元素薄膜、碳化矽薄膜、矽化鍺薄膜至少其一或其組合。 此外’ III-V族化合物半導體薄膜例如是包含有砷化镓 (GaAs)、磷化銦鎵(inGap)或其組合,而π_νι族化合物半 導體薄膜例如是包含有銅錮硒(CIS)、銅銦鎵硒(CIGS)、鎘 201123482 28 31723twf.doc/n 化碲(CdTe)或其組合。有機化合物半導體薄膜則可以是包 含有3-己烷噻吩(P〇ly(3-hexylthiophene),P3HT)與奈米碳球 (PCBM)混合物的結構。 在本實施例:中,第二光伏層-*134堆疊於第一光伏層132 上,因此,可知本實施例之光伏單元1〇2是採用雙層接面 (tandem junction)的設計,在其他實施例中,光伏單元 102更可以包括其他光伏層,而形成另一.種三層接面(丨邱卜 junction )或多層接面(muiti-junction)的膜層。本實施例僅 是以雙層接面作為舉例說明,但並不限於此。換言之,本 實施例之光伏層132、134的數量與材質可視使用考的需求 而定,以上僅為舉例說明。 另外,在每一光伏單元102令,第二透明電择14〇配 置於光伏層130上並透過開口 i30a而電性連接相鄰的光伏 單元/02的第一.透明電極12〇,如圖j所示。在本實施例 中,第二透明電極140例如是採用第一透明電極12〇所提 及的材質,在此不再贅述。 請繼續參考圖1,波長轉換層15〇配置於各光伏單元 102的第二透明電極14〇上,並用以將一第一波長範圍内 的光線轉換成一笫二波長範圍内的光線,以使光伏單元 〇2的光伏層132、134所產生的光電流匹配 她hing)。在本實施例中,第一波長範圍内的光線之波長 長範圍内的光線之波長’意即第—波長範圍實 ^上可,A ll〇〇nm〜3000nm,而第二波長範圍實質上可 "於 300nm〜ii〇()nm。 201123482 28 31723twf.doc/n 詳細而言,若第一光伏層132是採用非晶石夕的材質, 而第一光伏層134是採用微晶梦或多晶秒的材質時,則光 線L1的短波長部分(約3〇〇nm〜700nm)大部分會被第一 光伏層132吸收而:產生光電流,而光線li的長波長部分 (約700nm〜U〇〇nm)則大部分會被第二光伏層134吸收 而產生光電流。一般來說,第一光伏層132所產生的光電 流會大於第二光伏層134所產生的光電流,而造成光電流 不匹配的情況。此時,本實施例之薄膜太陽能電池可藉由 上述波長轉換層150的設計,便可將波長範圍約為11〇(Jnm 〜3000nm的光線L1轉換成波長範圍約為30〇nm〜i 100nm 的光線L2,較佳為7〇〇mn〜llOOnm,且至少部分被轉換的 光線L2會傳遞至第二光伏層134,進而可提高第二光伏層 134產生的光電流。換言之,適當地調整傳 層則光㈣之強度,將可使第二光伏U = 的光電流與第一光伏層132所產生的光電流匹配,如此, 則可提升薄膜太陽能電池100整體的光電轉換效率。 _值得一提的是,上述的波長轉換層150的材質例如是 含有多個螢光粉、多個磷光粉或是上述之組合。意即波長 轉換層15G可利用螢光激發或魏激發的原理,藉以調制 光波長轉換的範圍。在本實施例中,波長轉換層15〇是將 長波長轉換為短波長,藉以使得第一光伏層132與第二光 伏層134所產生光電流匹配。在其他可能的實施例中,波 長轉換層15G也可以視情況而將短波長職成長波長,藉 以達到上述之目的與功效。換言之,利用波長轉換層15〇 11 201123482 28 31723twf.doc/n 轉換入射光或反射光的光波長,藉以使各光伏單元的多個 光伏層分別產生的光電流能匹配,此為本發明所欲保護的 範圍與概念。 ^ 』另外,本發明亦提供一種製作上述薄膜太陽能愈池 100的方法,其說明如下。 圖2A〜圖2D為本發明一實施例之薄膜太 局部剖示流程四。請參考圖2A,首先嘯供上^基^ u〇,其中關於基板U0的描述可參考上述,在此不贅言。201123482 28 31723twf.doc/n VI. Description of the Invention: [Technical Field] The present invention relates to a solar cell and a method of fabricating the same, and relates to a thin film solar cell and a method for fabricating the same. And special [previous technology] In the solar energy t-pool market, make Caijing Tencai (four) account for more than 90%. However, this is also the sun ^ battery,,, 15 〇Μψ ^., a too dangerous battery hangs the thickness of the 15 〇 〇 至 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 , , , , , , , , , , , , , , , , The material is made of high quality (10), and in recent years 2 Ϊ =; growth, has gradually become insufficient. Therefore, a thin silicon solar cell (thmfllmsolarcell) having the advantages of low 3 th · simple process and the like is a new development direction. Electro-in general, the conventional thin-film solar order is fully stacked with a film-like substrate on the electrode-like substrate, the first volt layer and the electrode layer, wherein these f are stacked and the laser cutting process can be used to The film pattern 1 is used as a photovoltaic unit in series (sub_. The outer side is irradiated to the thin film solar fan, ashi-; the Tianjiu line is exposed by the light and the battery is formed, and the photovoltaic layer of the mother-photovoltaic unit is formed. The corpse is made up of electronic 'holes, and the PN or PIN is connected to the surface to move the electrons and the holes to the two layers respectively, thereby forming a kind of storage of electric energy. The circuit or the electronics is installed in the autumn...the circuit or the device is driven. The conversion efficiency is still in the section (4)^^ The battery is in the lift of its whole _ photoelectric to field w. Therefore, how to upgrade the conventional film too 201123482 28 31723twf.doc/n = :=Conversion rate and electrical performance to improve the competitiveness of products - a topic of concern to everyone. jJing Ning·Knife [invention] Right, turn to provide - (4) social solar battery, and set with wavelength conversion Layer can have better photoelectric conversion efficiency...reset发明Inventively provides a method for fabricating a thin film solar cell, #制作制作上膜域能魏. The method of the invention can be proposed as a thin film solar cell wavelength conversion layer. Photovoltaic unit on the second layer: : through == electricity : Set = a photovoltaic layer to " the first - transparent electrode on the electric string: =; Tusi photovoltaic layer stacked in the production peak - umbrella Lei, & 丄 丄 且 且 攻 攻 攻 攻 光伏 光伏 光伏 光伏 光伏 光伏 光伏 光伏 光伏 光伏 光伏 光伏 光伏 光伏 光伏 光伏 光伏 光伏 光伏 光伏 光伏, the layer has an opening which exposes the opening to the first (four) electrode. The electrode is disposed on the photovoltaic layer and is electrically connected to the first transparent electrode through the opening. The wavelength is converted to each photovoltaic early (four) two system The light is converted into light in the second wavelength range to match the photocurrent generated by the photovoltaic layer. In the embodiment of the invention, the thin film solar cell Further, the emitter layer is disposed on the wavelength conversion layer for reflecting the light in the converted second wave square back into the photovoltaic layer. In the embodiment of the invention, the light length in the first wavelength range is longer than the first The wavelength of light in the two wavelength range. In one embodiment of the invention, the first wavelength range is substantially between llOOnm and 3000nm, and the first wavelength range is substantially between 300nm and 1100nm. In one embodiment of the invention, the wavelength The material of the conversion layer comprises a plurality of phosphors, a plurality of phosphors or a combination thereof. In one embodiment of the invention, each of the photovoltaic layers is a Group IV film, a III-V compound semiconductor film, and a The n-VI compound semiconductor film or an organic compound semiconductor film. In one embodiment of the invention, the group IV film comprises a single crystal phase, a polycrystalline phase, a carbon phase film of an amorphous phase and a microcrystalline phase, a germanium element film, At least one of or a combination of a ruthenium element film, a tantalum carbide film, and a bismuth telluride film. In one embodiment of the invention, the III-V compound semiconductor thin film comprises: g GaAs or InGaP. In one embodiment of the invention, the Group II-VI compound semiconductor film comprises copper indium selenide (CIS), copper indium gallium selenide (CIGs), cadmium cadmium (Ccrre) or a combination thereof. In one embodiment of the invention, the organic compound semiconductor film comprises a mixture of 3-hexane thiophene (P3H) and a carbon breakdown (PCBM). The present invention further provides a method of fabricating a thin film solar cell comprising the following steps. First, a substrate is provided. Next, a plurality of light is formed on the substrate, wherein each of the photovoltaic units includes a first transparent electrode, a plurality of photovoltaic layers, and a second transparent electrode. The first transparent electrode is disposed on the substrate, and the photovoltaic layer is stacked on the first transparent electrode and electrically connected in series. Light = Photocurrent is generated separately after receiving light, and the photovoltaic layer has an opening that exposes the first electrode. The second transparent electrode is disposed on the photovoltaic layer and passes through the opening 201123482 28 31723twf.doc/n and the first photovoltaic unit of the adjacent photovoltaic unit: Uf of each photovoltaic layer of each photovoltaic unit: 2; The second 'pole of the photovoltaic unit: further includes a formation-reflection layer at the wavelength of the cell. The light of the layer is reflected back into the photovoltaic layer. 9 is used to transfer the wavelength from the wavelength of the present invention. In another embodiment, the following steps are included. First, the electrode is coated on an early method on the substrate. Then, the second layer of the first transparent photovoltaic unit of the photovoltaic unit is layered on the substrate to cover the photovoltaic cells. Photovoltaic #,1 匕 Photovoltaic material layer with the first transparent of the volt-volt unit. Two sputum ports are connected to expose the second brother of each photovoltaic unit: the transparent electrode is electrically connected through the opening and adjacent to the light transparent electrode. The following method for forming a wavelength converting layer in the embodiment of the present invention includes on the electrode. The layer is then held in the second transparency of each photovoltaic unit. In the present Royal L L light powder, fill powder or the above combination in the protective layer to form - the second transparent, in the case, the formation of the wavelength conversion layer of the second transparent: = light: = The combined material layer is on each of the pupils. In another embodiment of the present invention, ^ material, dielectric material, or organic material. In one embodiment of the invention, patterning the first transparent conductive layer, the light 201123482 28 31723 twf.doc/n volt material layer and the second transparent conductive layer comprises using a laser process. In an embodiment of the invention, the method for forming a photovoltaic material layer comprises a radio frequency electric flocculation method (Radio Frequency Plasma Enhanci Chemical Vapor Depositiori; RP PEGVD), and a UHF electric auxiliary-assisted chemical vapor deposition method. (Very High Frequency Plasma Enhanced Chemical Vapor Deposition, VHF PECVD) or Microwave Plasma Enhanced Chemical Vapor Deposition (MW PECVD). The thin film solar cell according to the above embodiment of the present invention configures the wavelength conversion layer on the second transparent electrode, and converts the light in the first wavelength range into the light in the second wavelength range, so that each photovoltaic unit is The photocurrents generated by the respective photovoltaic layers can be current matched, thereby improving the photoelectric conversion efficiency of the thin film solar cells. Furthermore, in the process method, the wavelength conversion layer can be formed on the first transparent electrode by using different methods, so that the photocurrents generated by the plurality of photovoltaic layers of each photovoltaic unit can be matched, and the same advantage. The above described features and advantages of the present invention will become more apparent from the description of the appended claims. [Embodiment] FIG. 1 is a view of a thin film solar cell according to an embodiment of the present invention. Referring to FIG. 1, the thin film solar cell 1 of the present embodiment includes a “= plate=, a plurality of photovoltaic units 102, and a wavelength conversion layer 15”. In this embodiment, the substrate 1K) may be a transparent substrate, >: a glass substrate, 201123482 28 31723twf.doc/n, a photovoltaic unit 102 is disposed on the substrate 11 , and each photovoltaic unit 102 includes a first The transparent electrode 120, a first photovoltaic layer 132, a second photovoltaic layer 134, and a second transparent electrode 14A are as shown in FIG. The first transparent electrode 120 is disposed on the substrate. In this embodiment, the material of the first moon-transparent electrode 120 is, for example, indium tin oxide (in (jium tin (10) ,, IT0), indium zinc oxide (IZO), indium tin oxide (indium) Tin zinc 0Xide,ITZO), zinc oxide, aluminum tin oxide, aiuminum zinc oxide (AZO), indium oxide (cadmium indium 〇xide, CI 〇), at least one of cadmium zinc oxide (CZO), gallium zinc oxide (GZO) and tin oxyfluoride (FTO). Please continue to refer to Figure 1, in each photovoltaic unit 1〇2, The first photovoltaic layer 132 and the second photovoltaic layer 134 are stacked on the first transparent electrode 12 并 and electrically connected to each other, and the first photovoltaic layer 132 and the second photovoltaic layer 134 respectively generate a photocurrent after being received by the light. The layer has an opening 132a, wherein the opening 130a exposes the first transparent electrode 120. In this embodiment, the film material of each photovoltaic layer 130 may be a group IV film, a m_v compound semiconductor film, -II-VI. Group compound semi-conductive linlin-organic compound semiconductor film. The Group IV film is, for example, at least one or a combination of a carbon element film including a single crystal phase, a polycrystalline phase, an amorphous phase and a microcrystalline phase, a ruthenium element film, a ruthenium element film, a tantalum carbide film, and a bismuth telluride film. Further, the 'III-V compound semiconductor thin film includes, for example, gallium arsenide (GaAs), indium gallium phosphide (inGap), or a combination thereof, and the π_νι compound semiconductor thin film includes, for example, copper germanium selenide (CIS), copper indium. Gallium selenide (CIGS), cadmium 201123482 28 31723twf.doc/n bismuth (CdTe) or a combination thereof. The organic compound semiconductor film may be comprised of 3-hexylthiophene (P3HT) and The structure of the nano carbon sphere (PCBM) mixture. In this embodiment, the second photovoltaic layer -* 134 is stacked on the first photovoltaic layer 132. Therefore, it can be seen that the photovoltaic unit 1 〇 2 of the embodiment is double-layered. In other embodiments, the photovoltaic unit 102 may further include other photovoltaic layers to form another three-layer junction (丨邱卜junction) or a multilayer junction (muiti-junction). Membrane layer. This embodiment is only a double junction as an example Unknown, but is not limited thereto. In other words, the present embodiment the number and material of the photovoltaic layer 132 Example visual examination of the needs and set, this is only illustrative. In addition, in each photovoltaic unit 102, the second transparent electrode is disposed on the photovoltaic layer 130 and electrically connected to the first transparent electrode 12 of the adjacent photovoltaic unit 02 through the opening i30a, as shown in FIG. Shown. In this embodiment, the second transparent electrode 140 is made of, for example, the first transparent electrode 12, and will not be described again. Referring to FIG. 1 , the wavelength conversion layer 15 is disposed on the second transparent electrode 14 各 of each photovoltaic unit 102 and configured to convert light in a first wavelength range into light in a wavelength range of one to two wavelengths to enable photovoltaic The photocurrent generated by the photovoltaic layers 132, 134 of the cell 匹配 2 matches her hing). In this embodiment, the wavelength of the light in the long wavelength range of the light in the first wavelength range means that the first wavelength range is practical, A ll 〇〇 nm 〜 3000 nm, and the second wavelength range is substantially " at 300nm~ii〇()nm. 201123482 28 31723twf.doc/n In detail, if the first photovoltaic layer 132 is made of amorphous material, and the first photovoltaic layer 134 is made of microcrystalline dream or polycrystalline second, the light L1 is short. Most of the wavelength portion (about 3 〇〇 nm to 700 nm) is absorbed by the first photovoltaic layer 132: photocurrent is generated, and the long wavelength portion of the ray li (about 700 nm to U 〇〇 nm) is mostly second. Photovoltaic layer 134 absorbs to produce photocurrent. In general, the photocurrent generated by the first photovoltaic layer 132 may be greater than the photocurrent generated by the second photovoltaic layer 134, resulting in a photocurrent mismatch. At this time, the thin film solar cell of the present embodiment can convert the light L1 having a wavelength range of about 11 〇 (Jnm to 3000 nm into a wavelength range of about 30 〇 nm to 100 nm by the design of the wavelength conversion layer 150 described above. The light ray L2, preferably 7 〇〇 mn to llOO nm, and the at least partially converted light ray L2 is transmitted to the second photovoltaic layer 134, thereby improving the photocurrent generated by the second photovoltaic layer 134. In other words, appropriately adjusting the layer. Then, the intensity of the light (4) will match the photocurrent of the second photovoltaic U= with the photocurrent generated by the first photovoltaic layer 132, thus improving the photoelectric conversion efficiency of the thin film solar cell 100 as a whole. The material of the wavelength conversion layer 150 is, for example, a plurality of phosphor powders, a plurality of phosphor powders, or a combination thereof, which means that the wavelength conversion layer 15G can utilize the principle of fluorescence excitation or Wei excitation to modulate the wavelength of light. The range of conversion. In this embodiment, the wavelength conversion layer 15 〇 converts the long wavelength into a short wavelength, thereby matching the photocurrent generated by the first photovoltaic layer 132 and the second photovoltaic layer 134. Among other possible realities In the example, the wavelength conversion layer 15G may also use the short-wavelength growth wavelength to achieve the above purpose and effect. In other words, the wavelength conversion layer 15〇201123482 28 31723twf.doc/n is used to convert the incident light or the reflected light. The wavelength of light, so that the photocurrents generated by the plurality of photovoltaic layers of each photovoltaic unit can be matched, which is the scope and concept of the invention to be protected. ^ In addition, the present invention also provides a method for fabricating the above-mentioned thin film solar reactor 100. 2A to 2D are a partial cross-sectional view of a thin film according to an embodiment of the present invention. Referring to FIG. 2A, the first step is to provide a reference to the substrate U0. , no rumors here.

然後,形成第一透明導電層(未繪示)於基板110"上 並圖案化第-透明導電層12G以形成上述的第—透明電極 120,如圖2B所示。在本實施例中,形成第一透明電極12〇 的方式例如是使用濺鍍法(sputtering)、金屬有機化學氣相 沈積(metal organic chemical vapor deposition,MOCVD) 法、或蒸鍍法(evaporation)全面地形成第一透明導電層於基 板110上。而後,再使用第一道雷射製程圖案化第一透明 導電層以形成如圖2B所繪示的第一透明電極12〇,用以作 為後續形成多個串聯光伏單元(photovoltaic cell)的前電Then, a first transparent conductive layer (not shown) is formed on the substrate 110" and the first transparent conductive layer 12G is patterned to form the above-described first transparent electrode 120, as shown in FIG. 2B. In this embodiment, the first transparent electrode 12 is formed by, for example, sputtering, metal organic chemical vapor deposition (MOCVD), or evaporation. The first transparent conductive layer is formed on the substrate 110. Then, the first transparent conductive layer is patterned by using a first laser process to form a first transparent electrode 12A as shown in FIG. 2B, which is used as a front electricity for subsequently forming a plurality of photovoltaic cells.

極其中此部分為本領域之通常知識者所熟知之技術,在 此不資述。 接著,堆疊至少二層光伏材料層(未繪示)於第一透 明電極120上,並圖案化這些光伏材料層以形成上述的第 光伏層132與第二光伏層134,其中這些光伏層132、134 具有多個暴露出上述第一透明電極120的開口 i3〇a,如圖 2C所示。在本實施例中’形成上述第一光伏層132與第二 光伏層134的方法可以是採用射頻電漿輔助化學氣相沉積法 12 201123482 28 31723twf.doc/n (Radio Frequency Plasma Enhanced Chemical Vapor Deposition, RF PECVD)、超尚頻電漿辅助化學氣相沉積法(Vefy Frequency Plasma Enhanced Chemical Vapor Deposition, VHF PECVD)或者是微波電漿輔助化學氣相沉積法(Mier〇waveThis part of the technology is well known to those of ordinary skill in the art and is not mentioned here. Then, at least two layers of photovoltaic material (not shown) are stacked on the first transparent electrode 120, and the photovoltaic material layers are patterned to form the above-mentioned photovoltaic layer 132 and the second photovoltaic layer 134, wherein the photovoltaic layers 132, 134 has a plurality of openings i3a, which expose the first transparent electrode 120, as shown in FIG. 2C. In the present embodiment, the method of forming the first photovoltaic layer 132 and the second photovoltaic layer 134 may be a radio frequency plasma-assisted chemical vapor deposition method (20112482 28 31723 twf.doc/n (Radio Frequency Plasma Enhanced Chemical Vapor Deposition, RF PECVD), Vefy Frequency Plasma Enhanced Chemical Vapor Deposition (VHF PECVD) or Microwave Plasma Assisted Chemical Vapor Deposition (Mier〇wave)

Plasma Enhanced Chemical Vapor Deposition,MW PECVD ),以 全面地>儿積至少二層光伏材料層於第一透明電極12〇上。其 中根據光伏層132、134是採用何種膜層設計(如IV族薄膜Plasma Enhanced Chemical Vapor Deposition (MW PECVD), to fully integrate at least two layers of photovoltaic material on the first transparent electrode 12A. Which film layer design is used according to the photovoltaic layers 132, 134 (such as a group IV film)

或II-VI化合物半導體薄膜的結構),而可調整其膜層的形 成方法’上述僅為舉例說明。同樣地,完成上述光伏材料 層的形成步驟後,通常會再使用第二道雷射製程以同時圖 案化光伏材料層,以形成如圖2C所示的第—絲層132 與第-光伏層134,此部分同樣為本領域之通常知識者所 熟知之技術與步驟,在此不贊述。 然後,形成第二透明導電層(未繪示)於光伏層13〇 上,並同時圖案化第二透明導電層與上賴光伏層132、 134以形成上述的第二透明電極14〇,如圖2D所示。在本 實施例中’形成第二透明電極刚的方式相似於形成第一 透明電極m的方式,意即會再使用第三道雷射製程圖案 化第一透明導電層與光伏層132、134以形成如圖奶所^ 示的第二透明電極14G’其中圖案化後的第二透明電極^ 主要是用以㈣多個_光伏單元lG2(_o讀aic _ 的前電極,此部分崎為本倾找f减 術與步驟,在此不贅述。 .、、、夭之技 接著’形成上述的波長轉換層150於第二透明電極14〇 201123482 ii7^3t\vf.d〇c/n 示。在本實施例中,形成波長轉換層150於 上的方法至少可以有兩種。舉例而言, ί ί 護層/未繪示)於各光伏單元102的第二透 保靜內,;:然後’摻歸麵、蛛光粉或上述組合於 二“丨⑶即可—種如上述的波長轉換層150。另— 的波長轉換層150的方法,則是直接地形成-二第或上述組合的材料層於各光伏單元 質、介電:質1= &顆材質而根據材質可以採用-沉積 ί:―?印、—乾膜壓合、—塗佈製程、-喷墨製程戍 的I作方式’但本發明並不限於此。 至此,大致完成上述的薄膜太陽能電池100的製 法。 另外,圖3為本發明另一實施例之薄膜太陽能電池的 局部剖不®。請參考圖3 ’薄膜太陽能m⑻相似於上 述的薄膜太陽能電池應,惟不同處在於,薄膜太陽能電 池200更包括了 _、反射層160,其中此反射層16〇配置於 波長轉換層150上,用以將被轉換的第二波長範圍内的光 線L2反射回光伏層132、134中。也就是說,當波長轉換 層150對第一波長範圍内的光線L1進行波 、 部分被轉換的猶L2便可被反射们5G反射而傳^回^ 伏層132、134中,並藉由調整反射後的光線12之光強度 而可具有上述薄膜太陽能電池100所提到的優點,在= 再贅述。 ’ 不 14 201123482 2Ϊ5 3i/23twf.doc/n 綜上所述,本發明之薄膜太陽能電池及其製作方法至 少具有下=優點。首先,將波長轉換層配置於第二透明電 極上’並藉由將第-波長範圍内的光線轉換成第二波長範 ‘ ‘· 光線’麟每—光伏單元❹编.伏層所分別產生 ,光電流能匹配(current matching),進而可提高薄膜太陽 旎電池的光電轉換效率。此外,也可藉由設置一反射層於 波長轉換層上,以將大多數被轉換的光線反射回光伏層 • 内,而更進一步地使每一光伏單元的多個光伏層所分別產 生的光電流能匹配(current matching),從而具有上述的優 點。再者,=製程實務上,可採用不同的方式形成波長轉 換層,以使每一光伏單元的多個光伏層所分別產生的光電 机月b匹配(current matching) ’而同樣具有上述的優點。 雖然本發明已以實施例揭露如上,然其並非用以限定 本發明’任何所屬技術領域中具有通常知識者,在不脫離 本發明之精神和範圍内,當可作些許之更動與潤飾,故本 ^ 發明之保護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 圖1為本發明一實施例之薄膜太陽能電池的局部剖示 圖0 圖2A〜圖2D為本發明一實施例之薄膜太陽能電池的 局部剖示流程圖。 ' _ 圖3為本發明另一實施例之薄膜太陽能電池的局部剖 不圖。 15 201123482 28 31723t\vf.doc/n 【主要元件符號說明】 100、200 :薄膜太陽能池 102 :光伏單元 二110:基板 … 120 :第一透明電極 132 :第一光伏層 134 :第二光伏層 130a :開口 140 :第二透明電極 150 :波長轉換層 160 :反射層 16Or the structure of the II-VI compound semiconductor film, and the method of forming the film layer can be adjusted. The above is merely illustrative. Similarly, after the forming step of the above-mentioned photovoltaic material layer is completed, a second laser process is usually used to simultaneously pattern the photovoltaic material layer to form the first wire layer 132 and the first-photovoltaic layer 134 as shown in FIG. 2C. This part is also a technique and step well known to those of ordinary skill in the art and is not mentioned here. Then, a second transparent conductive layer (not shown) is formed on the photovoltaic layer 13 ,, and the second transparent conductive layer and the upper photovoltaic layer 132, 134 are simultaneously patterned to form the second transparent electrode 14 上述 as shown in the figure. 2D shown. In the present embodiment, the manner of forming the second transparent electrode is similar to the manner of forming the first transparent electrode m, that is, the first transparent conductive layer and the photovoltaic layers 132, 134 are patterned by using the third laser process. Forming a second transparent electrode 14G' as shown in the figure of the milk, wherein the patterned second transparent electrode ^ is mainly used for (four) a plurality of photovoltaic cells lG2 (_o read the front electrode of aic _, this part is Saki Looking for f reduction and steps, no further description here. The technique of ., , and 接着 then 'forms the above-mentioned wavelength conversion layer 150 on the second transparent electrode 14〇201123482 ii7^3t\vf.d〇c/n. In this embodiment, there may be at least two methods of forming the wavelength conversion layer 150. For example, ίί 层/not shown in the second permeable static of each photovoltaic unit 102; The method of blending the surface, the arachnid, or the combination of the above-mentioned wavelength conversion layer 150, which is the same as the above-mentioned wavelength conversion layer 150, is a material directly forming the second or the above combination. Layer in each photovoltaic unit, dielectric: quality 1 = & material and can be used according to the material - 1. The printing method, the dry film pressing, the coating process, and the ink jet process are the same. However, the present invention is not limited thereto. Thus, the above-described method of manufacturing the thin film solar cell 100 is substantially completed. 3 is a partial cross-sectional view of a thin film solar cell according to another embodiment of the present invention. Please refer to FIG. 3 'Thin film solar m(8) is similar to the above thin film solar cell, except that the thin film solar cell 200 further includes _ a reflective layer 160, wherein the reflective layer 16 is disposed on the wavelength conversion layer 150 for reflecting the light L2 in the converted second wavelength range back into the photovoltaic layers 132, 134. That is, when the wavelength conversion layer 150 pairs of light L1 in the first wavelength range, and partially converted Y2 can be reflected by the reflection 5G and transmitted back to the volt layers 132, 134, and by adjusting the light intensity of the reflected light 12 The advantages mentioned in the thin film solar cell 100 described above may be further described in the following description. 'No 14 201123482 2Ϊ5 3i/23twf.doc/n In summary, the thin film solar cell of the present invention and the method of fabricating the same have at least the following = excellent First, the wavelength conversion layer is disposed on the second transparent electrode and generated by converting the light in the first wavelength range into the second wavelength range. The photocurrent can be matched to improve the photoelectric conversion efficiency of the thin film solar cell. In addition, a reflective layer can be disposed on the wavelength conversion layer to reflect most of the converted light back to the photovoltaic layer. • Internally, and further enabling the photocurrents generated by the plurality of photovoltaic layers of each photovoltaic unit to be current matching, thereby having the advantages described above. Furthermore, in the process of the process, the wavelength conversion layer can be formed in different ways so that the photovoltaics produced by the plurality of photovoltaic layers of each photovoltaic unit respectively have current matching '', and the above advantages are also obtained. The present invention has been disclosed in the above embodiments, and it is not intended to limit the invention to those skilled in the art, and it is possible to make some modifications and refinements without departing from the spirit and scope of the invention. The scope of protection of this invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partial cross-sectional view showing a thin film solar cell according to an embodiment of the present invention. FIG. 2 FIG. 2A to FIG. 2D are partial cross-sectional views showing a thin film solar cell according to an embodiment of the present invention. 3 is a partial cross-sectional view of a thin film solar cell according to another embodiment of the present invention. 15 201123482 28 31723t\vf.doc/n [Description of main component symbols] 100, 200: Thin film solar cell 102: Photovoltaic cell II 110: Substrate... 120: First transparent electrode 132: First photovoltaic layer 134: Second photovoltaic layer 130a: opening 140: second transparent electrode 150: wavelength conversion layer 160: reflective layer 16

Claims (1)

201123482 28 31723twf.doc/n 七、申請專利範固: 1. 一種薄膜太陽能電池,包括: 一基板; '多個光伏单元,甿皇於該基板上〆真中每一羌伏單元 包括: 一第一透明電極,配置於該基板上; 多個光伏層,堆疊於該第一透明電極上並電性串 Φ 接’、該些光伏層受光後會分別產生一光電流,且該些 光伏層具有一開口,其中該開口曝露該第一透明電 極; 一第二透明電極,配置於該些光伏層上並透過該 開口而與相鄰的該光伏單元的該第一透明電極電性 連接;以及 一波長轉換層,配置於各該些光伏單元的該第二透 電極上並用以將—第—波長範_的綠轉換成-第二波201123482 28 31723twf.doc/n VII. Application for patents: 1. A thin film solar cell comprising: a substrate; 'a plurality of photovoltaic cells, each of which on the substrate is: each first a transparent electrode disposed on the substrate; a plurality of photovoltaic layers stacked on the first transparent electrode and electrically connected to each other, and the photovoltaic layers respectively generate a photocurrent, and the photovoltaic layers have a photocurrent An opening, wherein the opening exposes the first transparent electrode; a second transparent electrode disposed on the photovoltaic layer and electrically connected to the first transparent electrode of the adjacent photovoltaic unit through the opening; and a wavelength a conversion layer disposed on the second transmissive electrode of each of the photovoltaic units and configured to convert the green of the -first wavelength range into a second wave 長範圍⑽光線’以使魅光伏層所纽的光電流匹配 (current matching) ° 2.如申請專利範圍第i項所述之薄膜太陽能電 〇括反射層’配置於該波長轉換層上,用以 該第二波長顧_光敍如祕光伏㈠。轉換的 中^ 範圍第1項所述之薄膜太陽能電池,其 ==圍内的光線之波長大於該第二波長範圍内 4.如申請專利範㈣3項所述之薄膜太陽能電池,其 17 201123482 28 31723twf.doc/n 中該第-波長關實質上介於u⑻nm〜3_nm,而該第 二波長範圍實f上介於300mn〜丨〗00nm。 5.如中請專職㈣丨項所述之薄膜太陽能電池,其 中該波長轉制㈣質包形㈣絲、乡觸光粉或是 上述之纟日各。 6.如申請專·㈣丨賴述之_太陽能電池,盆 ^各該些光伏料-IV族_、―耶v族化合物半導體 薄,、—II-V1族化合物半導體薄膜或一有機化合物半導Long-range (10) light ray to match the current current of the glare photovoltaic layer. 2. The thin-film solar electric reflective layer as described in claim i is disposed on the wavelength conversion layer. Taking the second wavelength, the light is as good as the photovoltaic (1). The thin film solar cell of the first aspect of the present invention, wherein the wavelength of the light in the range of == is greater than the wavelength in the second wavelength range. 4. The thin film solar cell according to claim 4, wherein the semiconductor solar cell is as described in claim 3, 2011. In the 31723twf.doc/n, the first-wavelength is substantially between u(8) nm and 3_nm, and the second wavelength range is between 300 nm and 0000 nm. 5. For example, please refer to the thin-film solar cell described in the full-time (4) item, in which the wavelength is converted into (4) mass-coated (four) wire, township touch powder or the following day. 6. If you apply for special (4) 丨 之 _ _ solar cells, pots each of these photovoltaic materials - group IV, y y y compound semiconductor thin, -II-V1 compound semiconductor film or an organic compound semi-conductive 7. 如申請專利範圍第6項所述之薄膜太陽能電池,其 中IV奴薄膜包含有單晶相、多晶相、非晶相與微晶相之 碳元素薄膜、矽元素薄膜、鍺元素薄膜、碳 化錯薄膜至少其一或其組合。 夕 8. 如申請專利範圍第6項所述之薄膜太陽能電池,其 中該III-V族化合物半導體薄膜包含有坤化嫁(GaAs)或磷 化銦鎵(InGaP)。7. The thin film solar cell according to claim 6, wherein the IV film comprises a single crystal phase, a polycrystalline phase, a carbon film of an amorphous phase and a microcrystalline phase, a tantalum thin film, a tantalum thin film, At least one of the carbonized fault films or a combination thereof. 8. The thin film solar cell of claim 6, wherein the III-V compound semiconductor thin film comprises GaAs or InGaP. 9. 如申請專利範圍第6項所述之薄臈太陽能電池,其 中該ii-vi族化合物半導體薄膜包含有銅銦硒(CIS)、銅銦 鎵硒(CIGS)、鎘化碲(CdTe)或其組合。 10. 如申請專利範圍第6項所述之薄臈太陽能電池, 其中該有機化合物半導體薄膜包含3_己烧售吩 (P〇ly(3-hexylthiophene),P3HT)與奈米碳球(pCBM)混合物。 Π. —種薄膜太陽能電池的製作方法,包括: 提供一基板;/ 形成多個光伏單元於§亥基板上,其中各該些光伏單元 18 201123482 28 31723twf.doc/n iC透明電極、多個光伏層以及-第二透明電極, 二读明Μ電極配置㈣基板上’該些光伏層堆疊於該第 '生並紐串接,且·絲層受光後會分別產 Π,該第:、:該5光伏層具有-曝露讓第-透'明1:極的開 與相i的;光:些光伏層上並透過該開口而 1的該先伙早兀的該第一透明電極電性連接; 流大:測^^光伏單元的該些光伏層所分別產生的光電 電極Γ成—縣轉換層於各該些統單元的該第二透明 的穿】方t申利範圍第U項所述之薄膜太陽能電池 、作方法’更包括形成—反射層於該波長轉換層上,用 乂將來自該波長轉換層的光線反射回該些光伏層中 的制it如申請專利範圍第11項所述之薄膜太陽能電池 乍方法,其中形成各該些光伏單元的方法包括: 於該基板上形成一第一透明導電層; 圖案化該第-透明導電層以形成各該些光伏單 5亥第一透明電極; „形成多個光伏材料層於該基板上,以覆蓋該些光伏星 元的該第一透明電極; 圖案化該光伏材料層以形成各該些光伏單元的該此 光伏層,其中該些光伏層具有該開口以曝露各該此 ; 元的該第一透明電極; 二九仇早 形成一第二透明導電層於該基板上,以覆蓋該光伏材 201123482 以 /zjtwf.doc/n 料層;以及 同時圖案化該第二透明導電層與該些光伏層以形成 各該些光伏單元的一第二透明電極,其中每—光伏單^的 '該第一透’日月電極透過該開,.口而與相:鄰的該光伏單宛的該第 一透明電極電性連接。 .14·如申請專利範圍第13項所述之薄膜太陽能電池 的製造方法,其中形成該光伏材料層的方法包括射頻電漿 輔助化學氣相沉粒法(Radio Frequency Plasma Enhanced Chemical Vapor Deposition,RP PECVD)、超高頻電漿輔助化學 _ 氣相沉積法(Very High Frequency Plasma Enhanced Chemical Vapor Deposition,VI3F PECVD )或者是微波電漿辅助化學氣相 沉積法(Microwave Plasma Enhanced Chemical Vapor Deposition,MW PECVD )。 15. 如申請專利範圍第n項所述之薄膜太陽能電池 的製作方法’其中形成該波長轉換層的方法包括: 形成一保護層於各該些光伏單元的該第二透明電極 i ’ · 摻雜螢光粉、磷光粉或上述組合於該保護層内。 16. 如申請專利範圍第π項所述之薄膜太陽能電池 的製作方法,其中形成該波長轉換層的方法包括: 形成一含有蜜·光粉、鱗光粉或上述組合的材料層於各 該些光休單元的該第二透明電極上。 17. 如申請專利範圍第u項所述之薄膜太陽能電池 的製作方法,其中該材料層為絕緣材質、介電材質、或有 機材質。 20 201123482 ζ,ο οι /23twf.doc/n 18.如申請專利範圍第11項所述之薄膜太陽能電池 的製作方法,其中圖案化該第一透明導電層、該光伏材料 層與該第二透明導電層的方式包括使用一雷射製程。9. The thin tantalum solar cell of claim 6, wherein the ii-vi compound semiconductor thin film comprises copper indium selenide (CIS), copper indium gallium selenide (CIGS), cadmium telluride (CdTe) or Its combination. 10. The thin tantalum solar cell according to claim 6, wherein the organic compound semiconductor film comprises P-lysed (3-hexylthiophene, P3HT) and nanocarbon sphere (pCBM) mixture. Π. A method for fabricating a thin film solar cell, comprising: providing a substrate; forming a plurality of photovoltaic units on a substrate, wherein each of the photovoltaic units 18 201123482 28 31723twf.doc/n iC transparent electrode, a plurality of photovoltaics Layer and - second transparent electrode, second read alum electrode configuration (four) on the substrate 'the photovoltaic layers are stacked in the first 'sin and the new series are connected, and the silk layer will be separately produced after receiving light, the first:: 5 the photovoltaic layer has - exposure to let the first - through the first: the pole opening and phase i; light: the photovoltaic layer and through the opening and the first transparent electrode of the first transparent electrode is electrically connected; The flow is large: the photoelectric electrodes generated by the photovoltaic layers of the photovoltaic unit are respectively formed into the second transparent wear layer of each of the units, and the U The thin film solar cell, the method of forming a reflective layer on the wavelength conversion layer, and reflecting the light from the wavelength conversion layer back into the photovoltaic layers, as described in claim 11 Thin film solar cell crucible method in which each of these forms The method of the photovoltaic unit includes: forming a first transparent conductive layer on the substrate; patterning the first transparent conductive layer to form each of the photovoltaic single 5 transparent electrodes; „ forming a plurality of photovoltaic material layers on the substrate The first transparent electrode is covered to cover the photovoltaic cells; the photovoltaic material layer is patterned to form the photovoltaic layer of each of the photovoltaic cells, wherein the photovoltaic layers have the opening to expose each of the photovoltaic layers; The first transparent electrode; a second transparent conductive layer is formed on the substrate to cover the photovoltaic material 201123482 with a /zjtwf.doc/n layer; and simultaneously patterning the second transparent conductive layer and The photovoltaic layers are formed to form a second transparent electrode of each of the photovoltaic units, wherein each of the first and second photovoltaic electrodes of the photovoltaic unit passes through the opening, the phase and the phase: the adjacent photovoltaic unit The method of manufacturing the thin film solar cell of claim 13, wherein the method of forming the photovoltaic material layer comprises radio frequency plasma assisted chemical vapor deposition Radio Frequency Plasma Enhanced Chemical Vapor Deposition (RP PECVD), Very High Frequency Plasma Enhanced Chemical Vapor Deposition (VI3F PECVD) or Microwave Plasma Assisted Chemical Vapor Deposition (Microwave Plasma Enhanced Chemical Vapor Deposition, MW PECVD). 15. The method of fabricating a thin film solar cell according to claim n, wherein the method of forming the wavelength conversion layer comprises: forming a protective layer on the second transparent electrode i' of each of the photovoltaic cells. Fluorescent powder, phosphor powder or the combination described above is incorporated in the protective layer. 16. The method of fabricating a thin film solar cell according to claim pi, wherein the method of forming the wavelength conversion layer comprises: forming a material layer containing honey, light powder, scale powder or the combination thereof The second transparent electrode of the light-sink unit. 17. The method of fabricating a thin film solar cell according to claim 5, wherein the material layer is an insulating material, a dielectric material, or an organic material. The method for fabricating a thin film solar cell according to claim 11, wherein the first transparent conductive layer, the photovoltaic material layer and the second transparent layer are patterned The manner of conducting the layer includes using a laser process. 21twenty one
TW098145654A 2009-12-29 2009-12-29 Thin film solar cell and fabrication method thereof TW201123482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098145654A TW201123482A (en) 2009-12-29 2009-12-29 Thin film solar cell and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098145654A TW201123482A (en) 2009-12-29 2009-12-29 Thin film solar cell and fabrication method thereof

Publications (1)

Publication Number Publication Date
TW201123482A true TW201123482A (en) 2011-07-01

Family

ID=45046694

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098145654A TW201123482A (en) 2009-12-29 2009-12-29 Thin film solar cell and fabrication method thereof

Country Status (1)

Country Link
TW (1) TW201123482A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110226237A (en) * 2016-09-26 2019-09-10 荷兰应用科学研究组织 Thin film photovoltaic module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110226237A (en) * 2016-09-26 2019-09-10 荷兰应用科学研究组织 Thin film photovoltaic module
CN110226237B (en) * 2016-09-26 2023-12-15 荷兰应用科学研究组织 Thin film photovoltaic module

Similar Documents

Publication Publication Date Title
Cheng et al. Perovskite/Si tandem solar cells: Fundamentals, advances, challenges, and novel applications
US10043929B1 (en) Spectrally adaptive multijunction photovoltaic thin film device and method of producing same
CN108140735B (en) Multi-junction photoelectric conversion device and photoelectric conversion module
CN103107228B (en) Photoelectric conversion device
US20130206219A1 (en) Cooperative photovoltaic networks and photovoltaic cell adaptations for use therein
US20100224244A1 (en) Photovoltaic converter device and electronic device
KR102100105B1 (en) Hetero junction tandem solar cell and manufacturing method
JP2009529236A (en) Thin film solar cell and method for manufacturing the same
CN102931267B (en) A kind of silicon based hetero-junction solaode and preparation method thereof
TW200908364A (en) Method for manufacturing thin film type solar cell, and thin film type solar cell made by the method
US20140060639A1 (en) Copper oxide core/shell nanocrystals for use in photovoltaic cells
WO2012055302A1 (en) Electrode and manufacturing method thereof
CN107112376A (en) Double-deck photovoltaic apparatus
CN106025087A (en) Tandem solar cell and manufacturing method thereof
WO2013002102A1 (en) Photoelectric conversion device
JP2017520928A (en) Solar cells
TW201432967A (en) Excitonic energy transfer to increase inorganic solar cell efficiency
US20110120534A1 (en) Thin film solar cell and manufacturing method thereof
EP2341547A2 (en) Thin film solar cell and manufacturing method thereof
Fan et al. Perovskite/silicon-based heterojunction tandem solar cells with 14.8% conversion efficiency via adopting ultrathin Au contact
Chauhan et al. A Review on perovskite/silicon Tandem solar cells
TW201123482A (en) Thin film solar cell and fabrication method thereof
CN106409961B (en) n-Si/CdSSe laminated solar cell and preparation method thereof
Piralaee et al. Nitride/perovskite tandem solar cell with high stability: Analytical study of adjusting current matching condition
de Vrijer et al. Application of metal, metal‐oxide, and silicon‐oxide based intermediate reflective layers for current matching in autonomous high‐voltage multijunction photovoltaic devices