TW201123133A - Display and its driving method thereof - Google Patents

Display and its driving method thereof Download PDF

Info

Publication number
TW201123133A
TW201123133A TW98146258A TW98146258A TW201123133A TW 201123133 A TW201123133 A TW 201123133A TW 98146258 A TW98146258 A TW 98146258A TW 98146258 A TW98146258 A TW 98146258A TW 201123133 A TW201123133 A TW 201123133A
Authority
TW
Taiwan
Prior art keywords
pixel
sub
display
common potential
data
Prior art date
Application number
TW98146258A
Other languages
Chinese (zh)
Other versions
TWI417831B (en
Inventor
Ya-Ting Hsu
Chi-Mao Hung
Ken-Ming Chen
Yao-Jen Hsieh
Original Assignee
Au Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Au Optronics Corp filed Critical Au Optronics Corp
Priority to TW98146258A priority Critical patent/TWI417831B/en
Publication of TW201123133A publication Critical patent/TW201123133A/en
Application granted granted Critical
Publication of TWI417831B publication Critical patent/TWI417831B/en

Links

Landscapes

  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

A display and its driving method thereof are provided. The display includes a pixel matrix, a data drive line, a gate line, and a common electrode. The pixel matrix includes a first pixel, a second pixel, and a third pixel. Every pixel comprises a plurality of subpixels and every subpixel is represented a corresponding color. Wherein, the data drive line transmits a data signal to the second pixel and the third pixel for making the subpixel of the first pixel and the subpixel of the second pixel which having the same corresponding color have different polarity in contrast with the common electrode. The subpixel of the first pixel and the subpixel of the third pixel which having the same corresponding color have same polarity in contrast with the common electrode.

Description

201123133 六、發明說明: 【發明所屬之技術領域】 本發明是有關於-種顯示器,且特別是有關於—種 轉的顯示器及其驅動方法。 深反 【先前技術】 請參照圖卜其係繪示習知顯示器之電路示意圖 之技術中,顯示器励包括畫素陣列102、資料驅動電路^ 掃描驅動電路106、資料驅動線1〇8、掃描驅動線ιι〇201123133 VI. Description of the Invention: [Technical Field] The present invention relates to a display, and more particularly to a display and a method of driving the same. Deep Reverse [Prior Art] Please refer to the technique of drawing a schematic circuit diagram of a conventional display. The display excitation includes a pixel array 102, a data driving circuit, a scan driving circuit 106, a data driving line 1〇8, and a scan driving. Line ιι〇

用電^m。其中,資料驅動電路1()4係透過多條資料驅動ς 晝素陣列搬,以提供資料訊號。掃描驅動電路咖 係透過^歸描,鶴線UG,啸供翻 U4係電性輕接至晝素陣列1〇2,以提供共用電位V、用電極 在圖1中’資料驅動線108與掃描驅動線11〇共同的 ^皮定AM個子晝素’而四個子晝相可構成晝素陣歹^ 中的-個畫素112。其中,如圖2所示,四個子書 2〇4、2〇6與施之顏色分別依序為綠色⑹、藍[⑻、 jU)與白色(W)(排列成2χ2的矩陣)。在顯示器ι〇〇 被f入資料時,掃描驅動電路1〇6係用來開啟整列(r〇w)的 、二^ (尺平方向卜以讓資料驅動電路104之資料訊號可以 L晝素之電容(未繪示)的一端’電容的另-端則為 用雷二傳來之共用電位。因此,根據資料訊號與共 用電位間^㈣則可用來定義子晝素的極性。 金I Γ目别㊉使用之列反轉(騰^1^011)為例,在圖1之 三列的子畫素被定義㈣性(資料 Π! ?電位),第二、四列的子畫素被定義為負 電麗小於共用電位)。在-畫面時間中,若 各旦素中的子畫素排列為田字型時,第-列中的第-個子晝素m 3 201123133 與第三列中的第一子個畫素的顏色是相同的,但第一列的第一 個子晝素與第二列的第一個子晝素的顏色並不相同。依此類 推’在畫素陣列102中,相鄰晝素中相同顏色之子畫素的極性 將會是相同。亦即’對於同一個顏色而言,以列反轉的技術來 進行驅動時,將使此顏色的驅動方式成為圖框反轉(frame inversion)的驅動方式(也就是同一個顏色在一個圖框中呈現 完全相同的極性’而在下一個圖框中完全改變為另一種極 性)。此種驅動方法將使得晝面產生閃爍的情形。 請參照圖3A,其係繪示習知之顯示器為常態黑色模式時 之灰階示意圖。在圖3A之常暗型(normally black mode)顯 示器中,假設在整個圖框中包括有灰階區塊(受驅動狀態)3〇〇 與黑色區塊(非驅動狀惡)306,第一資料驅動線302通過部 分之灰階區塊300與部分之黑色區塊306,第二資料驅動線3〇4 則僅通過灰階區塊300。 請接著參照圖3B〜3C,其係分別繪示第一資料線之資料 訊號與共用電位之理想狀態示意圖與串擾狀態示意圖。在圖 3B中,資料訊號310 (粗黑實線)係為由第一資料驅動線3〇2 所提供,共用電位308 (細黑實線)為由圖i之共用電極114 所提供。其中,資料訊號310的更新頻率與共用電位308之轉 換頻率預設為相同頻率。而且,在共用電位3〇8中每個子畫素 的時間週期為T ’也就是說,為使能夠達成列反轉之目的,共 用電位308每隔一個時間T,即需提高或降低其電壓位準。^ 圖3B所示,第一資料驅動線302之受驅動狀態的子畫素中, 資料訊號310與共用電位308之間具有第一壓差312 (可視為 反相)。從第一時間點316開始(灰階區塊3〇〇與里色區 306之交界),資料訊號與共用電位3<Λ被二為^目 201123133 而在第二時間點318之後(黑色區塊306與灰階區塊300之交 界),資料訊號310與共用電位308間之壓差就會變回第一壓 差312。但由於資料訊號310之電壓非常大,因此將使得共用 電位308與資料訊號310產生耦合效應,而使得在第一時間點 316與第二時間點318之間的共用電位308因為資料訊號31〇 的轉換而耦合出如標號320所標示的串擾(crosstalk)區(如 圖3C所示)。 請參照圖3D〜3E,其係分別續示圖3A之第二資料線之 φ 資料訊號與共用電位之理想狀態示意圖與串擾狀態示意圖。在 圖3D中’資料訊號324 (粗黑實線)係為由第二資料驅動線 3〇4所提供,共用電位322 (細黑實線)為由圖丨之共用電極 114所提供。如圖3D所示,第二資料驅動線304之受驅動狀 態的子晝素中’資料訊號324與共用電位322之間具有第一壓 差328。因第二資料驅動線304受第一資料驅動線3〇2之資料 訊號324之轉換的影響,因此第二資料驅動線3〇4上與第一資 料驅動線302之黑色區塊306相鄰之子畫素的共用電位322亦 會受到第一資料驅動線302上之資料訊號31〇的大電壓影響而 產生耦合效應。故,如圖3E所示的共用電位322會出現串擾 區,而在串擾區中的共用電322與資料訊號324之間的電位差 異會比原先設計的標準電位差異來得更大。因此,第二資料驅 動線304上之部分子晝素因受黑色區塊遍上之資料訊號31〇 的衫響’被景〉響之第一資料驅動線3〇4上之部分子畫素的亮度 將比原本晝面之亮度更亮。 —” 在習知之技術中’在田字型的四色子畫素矩陣中使用列反 轉進行驅動時,將會造成在同一畫面時間中相同顏色之子畫素 的極性均相同,而使畫面較容易產生閃燦,而且在與非驅動狀 201123133 -、旦素相鄰的欠驅動子晝素的共用電位將被非驅動狀態 之子晝素的資料訊號影響而造成失真。 【發明内容】 本發明的目的就是在提供一種顯示器,其可以解決因圖框 反轉所造成的閃爍問題。 ~本發明的再-目的是提供—種顯示器驅動方法,其可降低 資料訊號與共用電位間之串擾。 _ 本發明提出-種顯示器,此顯示器包括晝素陣列、資料驅 動線、閘極驅動線與共用電極。上述之晝素陣列具有第一畫 $第一畫素與第二畫素。此第一晝素與第二畫素相鄰第— 且素與第三4素相鄰,每—晝素包括多個子畫素,每一子晝素 均代=-對應齡。上叙資料轉線電_接至第—畫素與 第一晝素。上述之閘極驅動線電性耦接至第一畫素與第三晝 素。上述之共用電極電性祕至第-晝素、第二畫素與第三晝 ΐ,,、以提供共用電位至第—晝素、第二畫素與第三晝素。其中, 負^驅動線》別提供資料訊號至第-畫素與第二晝素,以使第 一晝素與第二畫素中代表同樣之對應顏色之子晝素相對於此 用電極而言具有不同極性,且第-晝素與第三畫素中代表同^ 之對應顏色之子晝素相對於制電極而言具有相同極性。 在本發明的較佳實施例t,上述之對應顏色包括紅色、綠 色、藍色與白色。 在本發明的較佳實施例中,上述之每一畫素中的子像素依 照各自代表之對應顏色的排列係為相同。 在本發明的較佳實施例中,上述之資料訊號之頻率為共用 電位之頻率的兩倍。 在本發明的較佳實施例十,當子晝素之一處於受驅動狀態 201123133 時,提供至子畫素之資料訊號與共同電位間具有第一壓差。 在本發明的較佳實施例中’當子晝素之一處於非驅動狀態 時’提供至子畫素之資料訊號與共同電位間具有第二壓差,且 第一壓差大於第二壓差。 在本發明的較佳實施例中,當第一晝素中耦接至資料驅動 線的兩相鄰子畫素依序分別處於受驅動狀態與非驅動狀,離、 時,資料訊號與共用電位間之壓差係於對應兩相鄰子晝素之共 用電位的二分之一期間時由第一壓差轉為第二壓差。 、 在本發明的較佳實施例中,當第一晝素中麵接至資料驅動 線的兩相鄰子畫素依序分別處於非驅動狀態與受驅動狀態 時’資料訊號與共用電位間之壓差係於對應兩相鄰子晝素之共 用電位的二分之一期間時由第二壓差轉為第一壓差。 本發明再提出一種顯示器驅動方法。此顯示器包括由第一 畫素、第二晝素與第三晝素組成之畫素陣列、電性耦接至第一 S·素與第一晝素之資料驅動線、電性輛接至第一晝素與第三畫 素之閘極驅動線以及電性耦接至第一晝素、第二晝素與第三晝 素之共用電極。其中每一晝素包括多個子畫素,每一子畫素代 表一對應顏色。此顯示器驅動方法為分別提供資料訊號至第一 晝素與第二晝素。其次,分別提供共用電位至第一晝素、第二 晝素與第三晝素。接著,使第一畫素與第二晝素中代表同樣之 對應顏色之子畫素相對於共用電極而言具有不同極性。然後, 使第一晝素與第三晝素中代表同樣之對應顏色之子晝素相對 於共用電極而言具有相同極性。 本發明因採用兩線反轉(tw〇 Hne inversi〇n),因此可以 解决因圖框反轉(frame inversion)所造成的閃蝶問題,並降 低資料訊號與共用電位間之串擾 201123133 為讓本毛明之上述和其他目的、特徵和優點能更明顯易 僅,下文特舉較佳實施例’並配合所附圖式,作詳細說明如下。 【實施方式】Use electricity ^m. The data driving circuit 1 () 4 is driven by a plurality of data-driven 昼 阵列 arrays to provide data signals. The scanning drive circuit is transmitted through the ^, the crane line UG, the whistling U4 series is electrically connected to the halogen array 1〇2 to provide the common potential V, and the electrode is used in FIG. 1 'data drive line 108 and scanning The driving line 11 〇 〇 AM AM AM AM AM 而 而 而 而 而 而 而 而 而 而 而 而 而 而 而 而 而 而 而 而 而 而 而 而 而 而As shown in FIG. 2, the four sub-books 2〇4, 2〇6 and the applied colors are respectively green (6), blue [(8), jU) and white (W) (arranged as a matrix of 2χ2). When the display is loaded into the data, the scan driving circuit 1〇6 is used to turn on the entire column (r〇w), and the data signal of the data driving circuit 104 can be used. The other end of the capacitor (not shown) is the common potential transmitted by Ray 2. Therefore, according to the data signal and the common potential ^ (4) can be used to define the polarity of the sub-halogen. For example, if you use the column inversion (Teng ^1^011) as an example, the sub-pixels in the third column of Figure 1 are defined (four) (data Π! ? potential), and the second and fourth columns of sub-pixels are defined. Negative charge is less than the shared potential). In the picture time, if the sub-pixels in each element are arranged in a field type, the color of the first sub-element m 3 201123133 in the first column and the first sub-pixel in the third column is The same, but the first child of the first column is not the same color as the first child of the second column. In the pixel array 102, the polarities of the sub-pixels of the same color in the adjacent pixels will be the same. That is, for the same color, when driving with the column inversion technique, the driving method of this color will be the driving method of frame inversion (that is, the same color is in a frame). The same polarity is present in 'and completely changed to another polarity in the next frame). This driving method will cause the kneading surface to flicker. Please refer to FIG. 3A, which is a schematic diagram showing the gray scale when the conventional display is in the normal black mode. In the normally black mode display of FIG. 3A, it is assumed that a gray-scale block (driven state) 3〇〇 and a black block (non-driving state) 306 are included in the entire frame, the first data. The drive line 302 passes through a portion of the gray scale block 300 and a portion of the black block 306, and the second data drive line 3〇4 passes only the gray scale block 300. Please refer to FIG. 3B to FIG. 3C respectively, which are schematic diagrams showing the ideal state of the data signal and the common potential of the first data line and the crosstalk state diagram. In Fig. 3B, the data signal 310 (thick black solid line) is provided by the first data driving line 3〇2, and the common potential 308 (thin black solid line) is provided by the common electrode 114 of Fig. i. The update frequency of the data signal 310 and the conversion frequency of the common potential 308 are preset to the same frequency. Moreover, the time period of each sub-pixel in the common potential 3 〇 8 is T 'that is, for the purpose of enabling column inversion, the common potential 308 is raised or lowered every other time T. quasi. As shown in FIG. 3B, in the sub-pixel of the driven state of the first data driving line 302, the data signal 310 and the common potential 308 have a first voltage difference 312 (which can be regarded as an inversion). Starting from the first time point 316 (the boundary between the gray level block 3〇〇 and the inner color area 306), the data signal and the common potential 3<Λ are the second time 201123133 and after the second time point 318 (black block) Between the intersection of the 306 and the gray level block 300, the voltage difference between the data signal 310 and the common potential 308 changes back to the first voltage difference 312. However, since the voltage of the data signal 310 is very large, the common potential 308 and the data signal 310 will be coupled together, so that the common potential 308 between the first time point 316 and the second time point 318 is due to the data signal 31. The conversion is coupled to the crosstalk region as indicated by reference numeral 320 (as shown in Figure 3C). Please refer to FIG. 3D to FIG. 3E , which are respectively a schematic diagram showing an ideal state of the φ data signal and the common potential of the second data line of FIG. 3A and a schematic diagram of the crosstalk state. In Fig. 3D, the 'data signal 324 (thick black solid line) is provided by the second data driving line 3〇4, and the common potential 322 (thin black solid line) is provided by the common electrode 114 of the figure. As shown in FIG. 3D, the data signal 324 of the driven state of the second data driving line 304 has a first voltage difference 328 between the data signal 324 and the common potential 322. Because the second data driving line 304 is affected by the conversion of the data signal 324 of the first data driving line 3〇2, the second data driving line 3〇4 is adjacent to the black block 306 of the first data driving line 302. The common potential 322 of the pixel is also affected by the large voltage of the data signal 31〇 on the first data driving line 302 to cause a coupling effect. Therefore, the crosstalk region appears in the common potential 322 as shown in Fig. 3E, and the potential difference between the shared power 322 and the data signal 324 in the crosstalk region is larger than the difference in the standard potential of the original design. Therefore, part of the sub-pixels on the second data driving line 304 are subjected to the brightness of the partial sub-pixels on the first data driving line 3〇4 of the first data driving line 3' by the data signal 31〇 of the black block. It will be brighter than the original one. —” In the conventional technique, when column inversion is used in the four-color sub-pixel matrix of the field type, the polarity of the sub-pixels of the same color is the same in the same picture time, and the picture is compared. It is easy to produce flashing, and the common potential of the under-driven sub-single adjacent to the non-driving state 201123133-, the dansin is affected by the data signal of the sub-segment of the non-driving state, causing distortion. [Description of the Invention] The object is to provide a display that can solve the flicker problem caused by frame inversion. ~ The re-purpose of the present invention is to provide a display driving method which can reduce crosstalk between a data signal and a common potential. The invention provides a display comprising a pixel array, a data driving line, a gate driving line and a common electrode. The above pixel array has a first picture $1 pixel and a second picture element. Adjacent to the second pixel - and the prime is adjacent to the third four elements, each of the alizae includes a plurality of sub-pixels, each sub-genogen is == corresponding age. First-pixel The first gate element is electrically coupled to the first pixel and the third pixel. The shared electrode is electrically secreted to the first pixel, the second pixel, and the third pixel. To provide a common potential to the first element, the second pixel and the third element. Among them, the negative driving line does not provide a data signal to the first pixel and the second element, so that the first element and The sub-crystals representing the same corresponding color in the second pixel have different polarities with respect to the electrode for use, and the dioxins and the sub-crystals representing the corresponding color of the third pixel are relative to the electrode. In the preferred embodiment t of the present invention, the corresponding colors include red, green, blue, and white. In a preferred embodiment of the present invention, the sub-pixels in each of the above pixels are in accordance with the respective The arrangement of the corresponding colors is the same. In a preferred embodiment of the invention, the frequency of the above-mentioned data signal is twice the frequency of the common potential. In the preferred embodiment of the present invention, when Provided to the sub-pixel when it is in the driven state 201123133 There is a first voltage difference between the data signal and the common potential. In a preferred embodiment of the invention, 'when one of the sub-singers is in a non-driven state, the data signal supplied to the sub-pixel has a second voltage between the common potential and the common potential. Poor, and the first voltage difference is greater than the second voltage difference. In a preferred embodiment of the present invention, two adjacent sub-pixels coupled to the data driving line in the first pixel are sequentially driven and respectively In the non-driving state, the voltage difference between the data signal and the common potential is changed from the first differential pressure to the second differential pressure when the two-period of the common potential of the two adjacent sub-elements are corresponding to each other. In a preferred embodiment of the present invention, when two adjacent sub-pixels of the first pixel connected to the data driving line are sequentially in a non-driving state and a driven state, respectively, a voltage difference between the data signal and the common potential It is converted from the second differential pressure to the first differential pressure during a period corresponding to one half of the common potential of the two adjacent sub-halogens. The invention further proposes a display driving method. The display includes a pixel array composed of a first pixel, a second halogen and a third halogen, a data driving line electrically coupled to the first S and the first pixel, and an electrical device connected to the first a gate driving line of the first pixel and the third pixel and a common electrode electrically coupled to the first halogen, the second halogen and the third halogen. Each of the elements includes a plurality of sub-pixels, each of which represents a corresponding color. The display driving method is to provide data signals to the first and second pixels, respectively. Secondly, a common potential is supplied to the first halogen, the second halogen and the third halogen, respectively. Next, the sub-pixels representing the same corresponding color in the first pixel and the second pixel have different polarities with respect to the common electrode. Then, the first halogen and the third halogen represent the same corresponding color of the sub-halogen with the same polarity with respect to the common electrode. The invention adopts two-line inversion (tw〇Hne inversi〇n), so that the problem of the butterfly caused by the frame inversion can be solved, and the crosstalk between the data signal and the common potential is reduced. The above and other objects, features and advantages of the present invention will become more apparent and obvious. The preferred embodiments of the present invention are described in detail below with reference to the accompanying drawings. [Embodiment]

請參照圖4A,其鱗雜照本發明—實施例之—種頻示 ^之電路示意圖。在圖4中,此顯示器_包括晝素陣列402、 育料驅動電路404、掃指驅動電路槪、資料驅動線儀 描驅動線410以及共用電極414。其中,畫鱗列術係 數個子晝素所構成’且資料驅動線猶與掃描驅 ^交會處蚊義出多個子畫素。而且,—個子晝素的區域^ 由,相鄰資料驅動線彻以及相對應之兩相鄰掃描驅動線41〇 在本實施例中,資料驅動電路侧係藉由多條資料驅編 08電性輕接至晝素陣列4〇2,且每條資料驅動線彻係控讳 :素陣列中相對應的-行(縱向)子晝素,以提供資料訊; 掃描驅動電路406係藉由多條閘極驅動線41〇電性耦接至書u 陣列402,且每條閘極驅動線41〇係控制畫素陣列4〇2 對應的-列(水平方向)子晝素,以提供閘極訊號。共用電」 414係電性輕接至畫素陣列搬,以提供共用電位 。 4〇2中的每個子畫素。 —I暉歹1 在本發明之較佳實施例中,係將各晝素中的子畫素排 2x2的田子型,並以此定義為一個晝素412為例做說明,值^ 際上自當Μ此為限。請參關5 ’其係繪示依照本發明二 施例之-種單-晝素之顏色排列示意圖。此畫素412例如 3四個子畫素502、504、506與508,且其顏色分別是綠色(匕 藍色(Β)、紅色(R)與白色(w)。 )、 請繼續參照圖4A,在顯示器400被寫入資料時,掃插驅 201123133 動電路406係用來開啟整列的子畫素(水平方向),以 料驅動電路404之資料訊號可以被傳送至子晝素之電容(未^ 示)的一端,電容的另一端則為接收共用電極414傳來之共用 電位。其中,共用電極414可以例如是一塊電極板以連接所有 電容的另一端、多個小電極板或是多數個電極條,但均不以 為限。 請接著參照圖4A與4B,圖4B繪示依照本發明一實施例之— 種部分畫素陣列之示意圖。在本實施例中,係以三個相鄰的晝 _ 素430、432與434為例做說明。其中,晝素430中之子書素 430a、430b與畫素434中之子晝素434a、434b係自同一資料 驅動線408接收資料訊號。同理,晝素430中之子畫素43〇c、 430d與晝素434中之子晝素434c、434d係自同一資料驅動線 408接收資料訊號。晝素432中之子晝素432a、432b自同— 資料驅動線408接收資料訊號,畫素432中之子晝素432c、 432d自同一資料驅動線408接收資料訊號。晝素430中之子 晝素430a、430c與晝素432中之子畫素432a、432c係自同一 閘極驅動線410接收閘極訊號。同理,晝素430中之子畫素 • 43〇b、43〇d與畫素432中之子晝素432b、432d係自同一閘極 驅動線410接收閘極訊號。另外,晝素434中之子畫素434a、 434c係自同一閘極驅動線410接收閘極訊號,畫素434中之 子畫素434b、434d係自同一閘極驅動線410接收閘極訊號。 在圖4B中,在提供資料訊號與共用電位給晝素430與434 時’係使畫素430與434中之代表同樣之對應顏色之子晝素相 對於共用電極414而言具有不同極性。另外,在提供資料訊號 與共用電位給晝素430與432時,係使畫素430與432中代表 同樣之對應顏色之子畫素相對於共用電極414而言具有相同 201123133 極性。 在本發明之較佳實施例中’畫素430、432與434的顏色 排列可以均不相同。以圖5為例,晝素430中之子畫素502、 504、506、508之顏色排列可以例如是綠色(G)、藍色(b)、 紅色(R)與白色(W) ’畫素432中之子晝素502、504、506、 508之顏色排列可以例如是綠色(g)、紅色(R)、藍色(B) 與白色(W),晝素434中之子晝素502、504、506、508之 顏色排列可以例如是綠色(G)、藍色(B)、與白色(w) φ 紅色(R)。 一 接著,請參照圖6,其係繪示依照本發明一實施例之一種 顯示器驅動方法之步驟流程圖。請同時參照圖4A與圖6,在 顯示器400中,欲在畫素陣列402中顯示晝面時,則在一畫面 時間中由閘極驅動線路406依序提供閘極訊號至每一列(水平 方向)的每個子畫素,以開啟子畫素。在一列的子晝素被開啟 後,資料驅動電路404將資料訊號傳送每一行(縱向)的第一 個子晝素(步驟S602)。 在本實施例中,當資料訊號被傳送至每一行的第一個子畫 #素時,共用電極414將共用電位傳送至每個子晝素中之電容^ 共正電極4M連接之一端(步驟_4)。其中,在本實施例 中,步驟S602與604可以是先後或同時,並不以本實施例中 所述為限。 在本發明之較佳實施例中,第一列的每個子晝素均被寫入 資料訊號後,則閘極驅動電路406則關閉第一列之子畫素‘,並 開啟第二列之子晝素,以使資料驅動電路404能對第二列的每 個子晝素作寫入。 接著’在資料驅動電路404與共用電極414分別提供資料 201123133 共Λ電位給如圖4B之晝素430與432時,係使晝素430 ΐ有相同樣之對應顏色之子畫素相對於制電極而言 具有相同極性(步驟S606)。 然後,在資料驅動電路404與共用電極414分別提 電位給如圖4B之晝素430與434時,則使晝素430 之代表同樣之對應顏色之子晝素相對於共用電極414 而δ具有不同極性(步驟S608)。 -種與7B,其分別繪示依照本發明一實施例之 •音、圖Lit _資料線之資料訊號與共用電位之理想狀態示 ί去方*域不意圖。在本實施例中,依據上述的顯示器驅 因丄此可將共用電位之轉換頻率調整為資料訊號之更 新頻率的一半。如熟悉該項技藝者可以輕易得知,若單一晝素 ΐ子晝素矩陣構成時’可將共用電位之轉換頻率調整 ;二二:t更新頻率的二分之一。在本發明之較佳實施例 ' 土明為利用兩線反轉(two line inversion),因此, 與圖3A及3B相比,共用電位7〇8每隔兩個 =降低電壓位準。亦即,共用電位7〇8在經過—2^日^ 才需要作電壓轉換,因此可以達到降低功耗的效果。 ^圖7A中,資料訊號710 (粗黑實線)係為由圖3A之 了-貝,驅動線3。2所提供,共用電位顺(細黑實線〕為由 a =電極414所提供。®3A之第一資料驅動線302之 二° :先、的子畫素中,資料訊號710與共用電位708之間具 壓差712 ^從第一時間點716時(灰階區塊3〇〇與黑色 開始’資料訊號710與共用電位708就被調 ΐίί可具有第二壓差)β其中,如熟悉該像技 贫者可讀易知曉’第二麗差可以趨近於0或為等於〇,其得 201123133 視設計時需求而定。 在第二時間點718時(黑色區塊306與灰階區塊300之交 界),資料訊號710與共用電位708間之壓差從第二壓差變為 第一壓差712。如圖7B所示’雖然共用電位708與資料訊號 710仍會產生耦合效應,而造成共用電位708之波形在第一時 間點716與第二時間點718之間因為資料訊號7丨〇的轉換而耦 合出如標號720所標示的串擾(crosstalk)區。但在本實施例 中,本實施例實可降低串擾區的數目。 請參照圖7C〜7D ’其係分別依照本發明一實施例之一種 圖3A之第二資料線之資料訊號與共用電位之理想狀態示意圖 與串擾狀態示意圖。在圖7C中’資料訊號724 (粗黑實線) 係為由第二資料驅動線304所提供,共用電位722(細黑實線) 為由圖4之共用電極414所提供。如圖7C所示,第二資料驅 動線304之受驅動狀態的子晝素中,資料訊號724與共用電位 722之間具有第一壓差728。因第二資料驅動線304受第一資 料驅動線302之資料訊號324之轉換的影響,因此第二資料驅 動線304上與第一資料驅動線3〇2之黑色區塊3〇6相鄰之子晝 素的共用電位722仍會受到資料訊號724的大電壓影響而產生 耦合效應,並使得在第一時間點716與第二時間點718之間的 共用電位722因為資料訊號710的轉換而耦合出如標號72〇所 標示的串擾(crosstalk)區。但在本實施例中,本實施例 降低串擾區的數目。 綜上所述,在本發明之顯示器與顯示器驅動方法,因採用 兩線反轉(two line inversi〇n ),因此可以解決因圖框反轉( inversion)所造成的閃爍問題。另外,本發明還可降低資料1 號與共用電位間之降低串擾區的數目,並達到降低功耗的致 [S} 12 201123133 果。 雖然本發明已以較佳實施例揭露如上,然其並非用以限定 本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍 内,當可作些許之更動與潤飾,因此本發明之保護範圍當視後 附之申請專利範圍所界定者為準。 【圖式fa〗单說明】 圖1繪示習知顯示器之電路示意圖。 圖2繪示習知單一晝素之顏色排列示意圖。 Φ 圖3A繪示習知之顯示器為常態黑色模式時之灰階示意 圖。 圖3B繪示圖3A之第一資料線之資料訊號與共用電位之 理想狀態示意圖。 圖3C繪示圖3A之第一資料線之資料訊號與共用電位之 串擾狀態示意圖。 圖3D繪示圖3A之第二資料線之資料訊號與共用電位之 理想狀態示意圖。 圖3E繪示圖3A之第二資料線之資料訊號與共用電位之 • 串擾狀態示意圖。 圖4 A繪示依照本發明一實施例之一種顯示器之電路示意 圖。 圖4 B繪示依照本發明一實施例之一種部分晝素陣列之示 意圖。 圖5繪示依照本發明一實施例之一種單一畫素之顏色排 列示意圖。 圖6繪示依照本發明一實施例之一種顯示器驅動方法之 步驟流程圖。 201123133 圖7A繪示依照本發明一實施例之一種圖3A之第一資料 線之資料訊號與共用電位之理想狀態示意圖。 圖7B繪示依照本發明一實施例之一種圖3A之第一資料 線之資料訊號與共用電位之串擾狀態示意圖。 圖7C繪示依照本發明一實施例之一種圖3A之第二資料 線之資料訊號與共用電位之理想狀態示意圖。 圖7D %示依照本發明一實施例之一種圖3A之第二資料 線之資料訊號與共用電位之串擾狀態示意圖。 φ 【主要元件符號說明】 100、400 :顯示器 102、402 :晝素陣列 104、404 :資料驅動電路 106、406 :掃描驅動電路 108、408 :資料驅動線 110、410 :閘極驅動線 112、412、430、432、434 :晝素 114、414 :共用電極 • 202、204、206、208、430a、430b、430c、430d、432a、432b、 432c、432d、434a、434b、434c、434d、502、504、506、508 : 子晝素 300 :灰階區塊 302 :第一資料驅動線 304 :第二資料驅動線 306 :黑色區塊 308、322、708、722 :共用電位 310、324、710、724 :資料訊號 201123133 312、328、712、728 :壓差 316、318、716、718 :上升緣 320、326、720、726 :串擾區 S602〜S608 :各個步驟流程 [S]Please refer to FIG. 4A, which is a schematic diagram of a circuit diagram of the present invention. In Fig. 4, the display_ includes a pixel array 402, a feed drive circuit 404, a wiper drive circuit 槪, a data drive line sense drive line 410, and a common electrode 414. Among them, the scales are composed of several sub-successes, and the data-driven line is still connected with the scanning drive. Moreover, the area of the sub-small element, the adjacent data driving line and the corresponding two adjacent scanning driving lines 41 are in the embodiment, and the data driving circuit side is driven by a plurality of data. Lightly connected to the halogen array 4〇2, and each data driving line is controlled to: the corresponding-row (longitudinal) sub-tendin in the prime array to provide data; the scanning driving circuit 406 is provided by multiple The gate driving line 41 is electrically coupled to the book u array 402, and each of the gate driving lines 41 controls the corresponding column (horizontal direction) sub-pixels of the pixel array 4〇2 to provide a gate signal. . The shared power 414 is electrically connected to the pixel array to provide a common potential. Each sub-pixel in 4〇2. -I 歹 歹 1 In the preferred embodiment of the present invention, the sub-pixels in each element are arranged in a 2x2 field type, and this is defined as a pixel 412 as an example, and the value is When this is limited. Please refer to FIG. 5' for a color arrangement diagram of a single-halogen in accordance with the second embodiment of the present invention. The pixels 412 are, for example, three sub-pixels 502, 504, 506, and 508, and their colors are green (indigo (Β), red (R), and white (w), respectively.) Please continue to refer to FIG. 4A. When the display 400 is written with data, the sweeping drive 201123133 is used to turn on the sub-pixels (horizontal direction) of the entire column, so that the data signal of the material driving circuit 404 can be transmitted to the capacitor of the sub-cell (not ^ At one end of the display, the other end of the capacitor is the common potential of the receiving common electrode 414. The common electrode 414 can be, for example, an electrode plate to connect the other end of all the capacitors, a plurality of small electrode plates or a plurality of electrode strips, but not limited thereto. 4A and 4B, FIG. 4B is a schematic diagram of a partial pixel array according to an embodiment of the invention. In the present embodiment, three adjacent elements 430, 432 and 434 are taken as an example for illustration. The sub-studies 430a and 430b in the pixel 430 and the sub-studies 434a and 434b in the pixels 434 receive data signals from the same data driving line 408. Similarly, the sub-pixels 43〇c, 430d in the 430, and the sub-studies 434c and 434d in the alizarin 434 receive data signals from the same data driving line 408. The data elements 432a and 432b of the pixel 432 receive the data signal from the data driving line 408, and the data elements 432c and 432d of the pixel 432 receive the data signal from the same data driving line 408. The sub-pixels 432a and 432c of the halogen elements 430a and 430c and the halogen elements 432 receive the gate signals from the same gate driving line 410. Similarly, the sub-pixels in the alizarin 430 • 43〇b, 43〇d and the sub-forms 432b and 432d of the pixel 432 receive the gate signal from the same gate driving line 410. In addition, the sub-pixels 434a and 434c in the pixel 434 receive the gate signal from the same gate driving line 410, and the sub-pixels 434b and 434d in the pixel 434 receive the gate signal from the same gate driving line 410. In Fig. 4B, when the data signal and the common potential are supplied to the halogens 430 and 434, the sub-element of the corresponding color which is the same as the representative of the pixels 430 and 434 has different polarities with respect to the common electrode 414. Further, when the data signal and the common potential are supplied to the halogens 430 and 432, the sub-pixels representing the same corresponding colors in the pixels 430 and 432 have the same 201123133 polarity with respect to the common electrode 414. In the preferred embodiment of the invention, the color arrangement of the pixels 430, 432 and 434 may be different. Taking FIG. 5 as an example, the color arrangement of the sub-pixels 502, 504, 506, and 508 in the alizarin 430 may be, for example, green (G), blue (b), red (R), and white (W) 'pixels 432. The color arrangement of the scorpion 502, 504, 506, 508 can be, for example, green (g), red (R), blue (B), and white (W), and the morpheme 502, 504, 506 in the 434. The color arrangement of 508 may be, for example, green (G), blue (B), and white (w) φ red (R). Next, please refer to FIG. 6, which is a flow chart showing the steps of a display driving method according to an embodiment of the invention. Referring to FIG. 4A and FIG. 6 simultaneously, in the display 400, when the pupil plane is to be displayed in the pixel array 402, the gate signal is sequentially supplied to each column by the gate driving line 406 in one screen time (horizontal direction). Each sub-pixel of the ) to open the sub-pixel. After the sub-cells of one column are turned on, the data driving circuit 404 transmits the data signal to the first sub-element of each line (vertical) (step S602). In this embodiment, when the data signal is transmitted to the first sub-picture of each row, the common electrode 414 transmits the common potential to one end of the connection of the capacitors of each sub-single (step _ 4). In this embodiment, the steps S602 and 604 may be sequential or simultaneous, and are not limited to the description in this embodiment. In a preferred embodiment of the present invention, after each sub-element of the first column is written with the data signal, the gate driving circuit 406 turns off the sub-pixel of the first column and turns on the sub-pixel of the second column. So that the data driving circuit 404 can write to each sub-cell of the second column. Then, when the data driving circuit 404 and the common electrode 414 respectively provide the data 201123133 conjugate potential to the elements 430 and 432 of FIG. 4B, the pixel 430 has the same corresponding color of the sub-pixel relative to the electrode. The words have the same polarity (step S606). Then, when the data driving circuit 404 and the common electrode 414 respectively raise potentials to the cells 430 and 434 of FIG. 4B, the sub-stimuli of the corresponding color of the halogen element 430 have different polarities with respect to the common electrode 414. (Step S608). And 7B, which respectively illustrate the ideal state of the data signal and the common potential of the sound, the Lit_data line according to an embodiment of the present invention. In this embodiment, the switching frequency of the common potential can be adjusted to be half the update frequency of the data signal in accordance with the display driver described above. If you are familiar with the art, you can easily know that if a single element of the ΐ子昼素 matrix is constructed, the conversion frequency of the common potential can be adjusted; 22: t is one-half of the update frequency. In the preferred embodiment of the present invention, the present invention utilizes two line inversion, and therefore, compared to Figs. 3A and 3B, the common potential 7〇8 is every two = lower voltage level. That is to say, the common potential 7〇8 needs to be voltage-converted after _2^^^, so that the power consumption can be reduced. In Fig. 7A, the data signal 710 (thick black solid line) is provided by the -B, the drive line 3.2 of Fig. 3A, and the common potential (the thin black solid line) is provided by a = electrode 414. The first data driving line 302 of the ®3A is two degrees: in the first sub-pixel, the data signal 710 and the common potential 708 have a voltage difference of 712 ^ from the first time point 716 (gray block 3〇〇) And the black start 'data signal 710 and the shared potential 708 are tuned ί ί can have a second pressure difference) β where, as familiar with the poor, the readable and easy to know 'the second climax can approach 0 or equal to 〇 The 201123133 depends on the design time requirement. At the second time point 718 (the boundary between the black block 306 and the gray level block 300), the voltage difference between the data signal 710 and the common potential 708 changes from the second differential pressure. It is the first voltage difference 712. As shown in FIG. 7B, although the common potential 708 and the data signal 710 still have a coupling effect, the waveform of the common potential 708 is between the first time point 716 and the second time point 718 because of the data. The conversion of the signal 7丨〇 couples the crosstalk region as indicated by reference numeral 720. In this example, the number of crosstalk regions can be reduced in this embodiment. Referring to FIG. 7C to FIG. 7D, FIG. 7 is a schematic diagram showing the ideal state of the data signal and the common potential of the second data line of FIG. 3A according to an embodiment of the present invention. A schematic diagram of the crosstalk state. In Figure 7C, 'data signal 724 (thick black solid line) is provided by second data drive line 304, and common potential 722 (thick black solid line) is provided by common electrode 414 of FIG. As shown in FIG. 7C, in the driven state of the second data driving line 304, the data signal 724 and the common potential 722 have a first voltage difference 728. Since the second data driving line 304 is driven by the first data. The conversion of the data signal 324 of the line 302 is affected. Therefore, the common potential 722 of the sub-element adjacent to the black block 3〇6 of the first data driving line 3〇2 on the second data driving line 304 is still subjected to the data signal 724. The large voltage affects the coupling effect and causes the common potential 722 between the first time point 716 and the second time point 718 to be coupled out of the crosstalk region as indicated by reference numeral 72 by the conversion of the data signal 710. But in In this embodiment, the present embodiment reduces the number of crosstalk regions. In summary, in the display and display driving method of the present invention, since two line inversi〇n is used, it is possible to solve the problem due to frame inversion. The problem of flicker caused by inversion. In addition, the present invention can also reduce the number of reduced crosstalk regions between data number 1 and the common potential, and achieve the effect of reducing power consumption [S} 12 201123133. Although the present invention has The preferred embodiments are disclosed above, but are not intended to limit the present invention. Any one skilled in the art can make some modifications and refinements without departing from the spirit and scope of the present invention. The scope defined in the appended patent application shall prevail. [Description of the drawing fa] FIG. 1 is a schematic circuit diagram of a conventional display. FIG. 2 is a schematic diagram showing the color arrangement of a conventional single element. Φ Figure 3A is a schematic diagram showing the gray scale when the conventional display is in the normal black mode. FIG. 3B is a schematic diagram showing an ideal state of the data signal and the common potential of the first data line of FIG. 3A. FIG. 3C is a schematic diagram showing the crosstalk state of the data signal and the common potential of the first data line of FIG. 3A. FIG. 3D is a schematic diagram showing an ideal state of the data signal and the common potential of the second data line of FIG. 3A. FIG. 3E is a schematic diagram showing the crosstalk state of the data signal and the common potential of the second data line of FIG. 3A. 4A is a schematic circuit diagram of a display in accordance with an embodiment of the invention. 4B is a schematic illustration of a partial pixel array in accordance with an embodiment of the present invention. FIG. 5 is a schematic diagram showing the arrangement of colors of a single pixel according to an embodiment of the invention. FIG. 6 is a flow chart showing the steps of a display driving method according to an embodiment of the invention. 201123133 FIG. 7A is a schematic diagram showing an ideal state of a data signal and a common potential of the first data line of FIG. 3A according to an embodiment of the invention. FIG. 7B is a schematic diagram showing the crosstalk state of the data signal and the common potential of the first data line of FIG. 3A according to an embodiment of the invention. FIG. 7C is a schematic diagram showing the ideal state of the data signal and the common potential of the second data line of FIG. 3A according to an embodiment of the invention. FIG. 7D is a schematic diagram showing the crosstalk state of the data signal and the common potential of the second data line of FIG. 3A according to an embodiment of the invention. Φ [Description of main component symbols] 100, 400: display 102, 402: pixel arrays 104, 404: data driving circuits 106, 406: scan driving circuits 108, 408: data driving lines 110, 410: gate driving lines 112, 412, 430, 432, 434: halogen 114, 414: common electrode • 202, 204, 206, 208, 430a, 430b, 430c, 430d, 432a, 432b, 432c, 432d, 434a, 434b, 434c, 434d, 502 , 504, 506, 508: sub-satellite 300: gray-scale block 302: first data driving line 304: second data driving line 306: black block 308, 322, 708, 722: common potential 310, 324, 710 724: data signal 201123133 312, 328, 712, 728: differential pressure 316, 318, 716, 718: rising edge 320, 326, 720, 726: crosstalk area S602 ~ S608: each step flow [S]

1515

Claims (1)

201123133 七、申請專利範圍: 1. 一種顯示器,包括: 一晝素陣列,具有一第一晝素、一第二晝素與一第三晝 素,該第一晝素與該第二晝素相鄰,該第一畫素與該第三晝素 相鄰,每一該些畫素包括多個子晝素,每一該些子畫素代表一 對應顏色; 至少一資料驅動線,電性耦接至該第一晝素與該第二畫 素; I 至少一閘極驅動線,電性耦接至該第一晝素與該第三畫 素;以及 一共用電極,電性耦接至該第一晝素、該第二畫素與該第 三晝素,以提供一共用電位至該第一晝素、該第二晝素與該第 三晝素; 其中,該資料驅動線分別提供一資料訊號至該第一晝素與 該第二晝素,以使該第一畫素與該第二晝素中代表同樣之該對 應顏色之該些子畫素相對於該共用電極而言具有不同極性,且 該第一晝素與該第三畫素中代表同樣之該對應顏色之該些子 • 畫素相對於該共用電極而言具有相同極性。 2. 如申請專利範圍第1項所述之顯示器,其中該對應顏色 包括紅色、綠色、藍色與白色。 3. 如申請專利範圍第2項所述之顯示器,其中每一該些晝 素中的該些子像素依照各自代表之該對應顏色的排列係為相 同。 4. 如申請專利範圍第1項所述之顯示器,其中該資料訊號 之頻率為該共用電位之頻率的兩倍。 5. 如申請專利範圍第4項所述之顯示器,其中當該些子畫 素之一處於一受驅動狀態時,提供至該子畫素之該資料訊號與m 16 201123133 該共同電位間具有一第一壓差。 6. 如申請專利範圍第5項所述之顯示器,其中當該些子畫 素之一處於一非驅動狀態時,提供至該子畫素之該資料訊號與 該共同電位間具有一第二壓差,且該第一壓差大於該第二壓 差。 7. 如申請專利範圍第6項所述之顯示器,其中當該第一晝 素中耦接至該資料驅動線的兩相鄰子晝素依序分別處於該受 驅動狀態與該非驅動狀態時,該資料訊號與該共用電位間之壓 φ 差係於對應該兩相鄰子晝素之該共用電位的二分之一期間時 由該第一壓差轉為該第二壓差。 8. 如申請專利範圍第6項所述之顯示器,其中當該第一畫 素中耦接至該資料驅動線的兩相鄰子畫素依序分別處於該非 驅動狀態與該受驅動狀態時,該資料訊號與該共用電位間之壓 差係於對應該兩相鄰子晝素之該共用電位的二分之一期間時 由該第二壓差轉為該第一壓差。 9. 一種顯示器驅動方法,該顯示器包括由一第一晝素、一 第二晝素與一第三畫素組成之一畫素陣列、電性耦接至該第一 • 畫素與該第二晝素之至少一資料驅動線、電性耦接至該第一畫 素與該第三晝素之至少一閘極驅動線以及電性耦接至該第一 晝素、該第二畫素與該第三晝素之一共用電極,其中每一該些 晝素包括多個子晝素,每一該些子晝素代表一對應顏色,該顯 示器驅動方法包括: 分別提供一資料訊號至該第一畫素與該第二晝素; 分別提供一共用電位至該第一晝素、該第二晝素與該第三 晝素; 使該第一晝素與該第三畫素中代表同樣之該對應顏色之 [S1 17 201123133 該些子畫素相對於該共用電極而言具有相同極性;以及 使該第一晝素與該第二畫素中代表同樣之該對應顏色之 該些子晝素相對於該共用電極而言具有不同極性。 10.如申請專利範圍第9項所述之顯示器驅動方法,其中 該資料訊號之頻率為該共用電位之頻率的兩倍。 ^ 11.如申請專利範圍第10項所述之顯示器驅動方法,其中 當該些子畫素之—處於一受驅動狀態该 資料訊號與該共同電位間具有-第—壓上供至奸-素201123133 VII. Patent Application Range: 1. A display comprising: a halogen array having a first halogen, a second halogen and a third halogen, the first halogen and the second halogen Adjacent, the first pixel is adjacent to the third pixel, each of the pixels includes a plurality of sub-tenucins, each of the sub-pixels represents a corresponding color; at least one data driving line, electrically coupled Up to the first pixel and the second pixel; I at least one gate driving line electrically coupled to the first pixel and the third pixel; and a common electrode electrically coupled to the first a second pixel, the second pixel and the third pixel to provide a common potential to the first pixel, the second element and the third element; wherein the data driving line respectively provides a data Signaling to the first pixel and the second pixel such that the first pixel and the second pixel representing the corresponding color of the corresponding color have different polarities with respect to the common electrode And the first pixel and the third pixel represent the same color of the corresponding color of the pixel For the common electrodes having the same polarity. 2. The display of claim 1, wherein the corresponding color comprises red, green, blue, and white. 3. The display of claim 2, wherein the sub-pixels of each of the plurality of pixels are identical in accordance with the arrangement of the respective colors represented by the respective ones. 4. The display of claim 1, wherein the frequency of the data signal is twice the frequency of the common potential. 5. The display of claim 4, wherein when one of the sub-pixels is in a driven state, the data signal supplied to the sub-pixel has a common potential between m 16 201123133 The first pressure difference. 6. The display of claim 5, wherein when one of the sub-pixels is in a non-driven state, the data signal supplied to the sub-pixel has a second voltage between the common potential and the common potential Poor, and the first pressure difference is greater than the second pressure difference. 7. The display of claim 6, wherein two adjacent sub-elements coupled to the data driving line of the first pixel are sequentially in the driven state and the non-driving state, respectively. The difference between the data signal and the voltage φ between the common potentials is converted from the first differential pressure to the second differential pressure corresponding to a half period of the common potential of the two adjacent sub-halogens. 8. The display of claim 6, wherein two adjacent sub-pixels coupled to the data driving line in the first pixel are sequentially in the non-driving state and the driven state, respectively. The voltage difference between the data signal and the common potential is converted from the second voltage difference to the first voltage difference when the half of the common potential of the two adjacent sub-cells is corresponding. A display driving method, comprising: a pixel array comprising a first pixel, a second pixel and a third pixel, electrically coupled to the first pixel and the second At least one data driving line of the pixel, electrically coupled to the first pixel and the at least one gate driving line of the third pixel, and electrically coupled to the first pixel, the second pixel and One of the third elements shares a common electrode, wherein each of the plurality of elements includes a plurality of sub-tendins, each of the sub-tenks representing a corresponding color, and the display driving method comprises: respectively providing a data signal to the first a pixel and the second element; respectively providing a common potential to the first element, the second element and the third element; causing the first element to be the same as the representative of the third pixel Corresponding colors [S1 17 201123133] the sub-pixels have the same polarity with respect to the common electrode; and the first pixels are opposite to the sub-genits of the corresponding color represented by the second pixel There are different polarities for the common electrode. 10. The display driving method of claim 9, wherein the frequency of the data signal is twice the frequency of the common potential. The display driving method of claim 10, wherein when the sub-pixels are in a driven state, the data signal and the common potential have a -first pressure supply to the trait 12.如=專利範圍第η項所述之顯轉驅動方法,其中 =忒些子I素之一處於一非驅動狀態時,提供至 該 資料訊號與該共同電位問且右一筮-厭* 于一’、^ 該第二壓差。 間具有壓差,且該第-壓差大於 當該12項所述之顯示器驅動方法,其中 別處於該;料畫素依序分 :位間之壓差係於對應該兩相鄰子;素共: 之一期間時由該第-壓差轉為該第二壓差該共用電位的一刀 當該第Γ項所述之顯示器驅動方法’其中12. The display driving method according to the item n of the patent range, wherein = one of the sub-I elements is in a non-driven state, and the data signal is supplied to the common potential and the right one is - In the first ', ^ the second pressure difference. Having a pressure difference, and the first-pressure difference is greater than the display driving method according to the item 12, wherein the other is in the same; the pixel is sequentially divided: the pressure difference between the bits is corresponding to two adjacent sub-elements; In total, one of the periods is changed from the first differential pressure to the second differential pressure, and the common driving potential is the same as the display driving method described in the third item.
TW98146258A 2009-12-31 2009-12-31 Display and its driving method thereof TWI417831B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98146258A TWI417831B (en) 2009-12-31 2009-12-31 Display and its driving method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98146258A TWI417831B (en) 2009-12-31 2009-12-31 Display and its driving method thereof

Publications (2)

Publication Number Publication Date
TW201123133A true TW201123133A (en) 2011-07-01
TWI417831B TWI417831B (en) 2013-12-01

Family

ID=45046563

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98146258A TWI417831B (en) 2009-12-31 2009-12-31 Display and its driving method thereof

Country Status (1)

Country Link
TW (1) TWI417831B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110444142A (en) * 2019-07-26 2019-11-12 福建华佳彩有限公司 A kind of picture element arrangement architecture and panel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2743841B2 (en) * 1994-07-28 1998-04-22 日本電気株式会社 Liquid crystal display
KR100987589B1 (en) * 2007-10-31 2010-10-12 가시오게산키 가부시키가이샤 Liquid crystal display device and its driving method
TW200931363A (en) * 2008-01-10 2009-07-16 Ind Tech Res Inst Flat display panel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110444142A (en) * 2019-07-26 2019-11-12 福建华佳彩有限公司 A kind of picture element arrangement architecture and panel
CN110444142B (en) * 2019-07-26 2024-04-12 福建华佳彩有限公司 Pixel arrangement structure and panel

Also Published As

Publication number Publication date
TWI417831B (en) 2013-12-01

Similar Documents

Publication Publication Date Title
TWI444959B (en) Cell test method for tri-gate pixel structure
TWI447687B (en) Liquid crystal display
CN107886923B (en) The driving method and display device of display panel
CN100527208C (en) LCD and method of driving the same
TWI261798B (en) Driving circuit for color image display and display device provided with the same
TWI427381B (en) Active matrix display device and method for driving the same
CN101216650A (en) Liquid crystal display device array substrate and driving method thereof
JP2005346037A (en) Liquid crystal display device and its driving method
TWI383357B (en) Liquid crystal display and driving method thereof
JP2004279626A (en) Display device and its driving method
CN104090438A (en) Array substrate, display device and driving method of display device
CN108107634A (en) The driving method and display device of display panel
CN107978287B (en) The driving method and display device of display panel
TW200302369A (en) Liquid crystal display device
CN109215598A (en) Display panel and its driving method
JP2015099200A (en) Display device
TW201033682A (en) High image quality liquid crystal display panel
TW379315B (en) Method for driving liquid crystal display
CN112230484B (en) Pixel arrangement structure, display panel and manufacturing method thereof
JP4387362B2 (en) Pixel matrix and pixel unit thereof
CN107863082B (en) The driving method and display device of display panel
US8982024B2 (en) Liquid crystal display device
CN110164357B (en) Display device and driving method thereof
CN109658893B (en) Driving method and driving device of display panel and display equipment
JPH0869264A (en) Liquid crystal display device and its drive system