201122542 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種成像裝置。 [先前技術3 [賺]習知之成像裝置一般包括複數鏡片以及一個影像感測器 ,所述之成像裝置藉由移動所述複數鏡片間之相對位置 改變成像裝置之對焦位置。如圖1所示為習知之一種成像 裝置100 ’所述成像裝置100包括一個具有正光焦度之第 一鏡片11、一個具有負光焦度之第二鏡片12、一個具有 正光焦度之第三鏡片13、一個具有負光焦度之第四鏡片 14、一個影像感測器16 (圖申以影像感測器16之成像面 表示)以及一個用於驅動鏡片11、12、13、14以改變成 像裝置100之對焦位置之驅動裝豈17。所述第一鏡片u、 第二鏡片12、第三鏡片1 3、第四鏡片14及影像感測器16 係從成像裝置10 0之物侧至像側依次排列。 [0003]由於成像裝置100小型化之需求,所述驅動裝置17採用微 機電系統(Micro-Electro-Mechanical Systems, MEMS)產生驅動力,驅動鏡片移動,其原理為利用平行 板電容器之電容變化驅動鏡片移動,該平板電容器形式 之驅動裝置通電時向單一方向驅動鏡片,不通電時鏡片 回復至初始位置。一般情況下,成像裝置1〇〇位於對焦無 窮遠之狀態下’所述驅動裝置17不通電。當需要近拍時 ’對所述驅動裝置17通電,以驅動鏡片對焦在近拍處。 上述之成像裝置1〇〇係採用移動所述第一鏡片丨丨來改變對 焦位置’需要近拍時,所述驅動裝置17通電後驅動所述 098145695 表單編號A0101 第4頁/共29頁 0982077998-0 201122542 第一鏡片11向所述成像襄置100之物側移動;近拍完成後 ’所述驅動裝置斷電’賴述第—鏡片u向所述成像 裝置100之像側移動至初始位置,所述成像裝置重新 對焦於無窮遠。然而移動第一鏡片使得微塵進入 7像裝置影響成像品質;採祕動第二鏡#12改變對焦 位置之方式可以避免微塵進入成像裝置100,然,由於所 述第二鏡片12與所述第—鏡川具有相反之光焦度。因 2,移動第二鏡片12改變對焦位置時,成像裝置100在對 〇 焦仅置從無11遠處移至近拍處,及從近拍處移至無窮遠 處時第二鏡片12之移動方向分別與第-偏11之移動方 向係相反的。因此,需將所述驅動裝置17反轉,然而反 轉後之驅動裝置17並不適應原來之成像裝置1〇〇之空間配 置’將導致所述成像裝置1〇〇之體積增加,不能夠適應當 前成像裝置100小型化之趨勢。 〜田 【發明内容】 [0004] ❹ [0005] 有鑒於此,有必要提供一種&餐湊體積之成像裝201122542 VI. Description of the Invention: [Technical Field of the Invention] [0001] The present invention relates to an image forming apparatus. [Prior Art 3] The conventional imaging device generally includes a plurality of lenses and an image sensor, and the image forming device changes the in-focus position of the image forming device by moving the relative positions between the plurality of lenses. 1 is a conventional imaging device 100. The imaging device 100 includes a first lens 11 having positive power, a second lens 12 having negative power, and a third having positive power. The lens 13, a fourth lens 14 having a negative power, an image sensor 16 (represented by the imaging surface of the image sensor 16), and one for driving the lenses 11, 12, 13, 14 to change The driving device 17 of the in-focus position of the image forming apparatus 100. The first lens u, the second lens 12, the third lens 13, the fourth lens 14, and the image sensor 16 are sequentially arranged from the object side to the image side of the imaging device 100. [0003] Due to the miniaturization of the imaging device 100, the driving device 17 uses Micro-Electro-Mechanical Systems (MEMS) to generate driving force to drive the lens to move. The principle is to drive the capacitance change of the parallel plate capacitor. When the lens is moved, the driving device in the form of the plate capacitor drives the lens in a single direction when the device is energized, and returns to the initial position when the device is not energized. In general, the imaging device 1 is in a state where the focus is infinite, and the drive device 17 is not energized. The drive unit 17 is energized when a close-up is required to drive the lens to focus on the close-up. The imaging device 1 described above moves the first lens frame to change the in-focus position. When a close-up is required, the driving device 17 drives the 098145695 after the power is turned on. Form No. A0101 Page 4 / Total 29 pages 0992077998- 0 201122542 The first lens 11 moves toward the object side of the imaging device 100; after the completion of the close-up, the driving device is powered off, and the lens u is moved to the image side of the imaging device 100 to the initial position, The imaging device refocuses at infinity. However, moving the first lens causes the dust to enter the 7-image device to affect the imaging quality; the method of changing the focus position by using the second mirror #12 can prevent the dust from entering the imaging device 100, however, since the second lens 12 and the first lens are Jingchuan has the opposite power. 2. When the second lens 12 is moved to change the in-focus position, the imaging device 100 moves to the close-up only when the focus is moved from no distance to 11 and to the infinity when moving from the close-up to the infinity. It is opposite to the moving direction of the first-to-one 11 respectively. Therefore, the driving device 17 needs to be reversed, but the reversed driving device 17 does not adapt to the spatial configuration of the original imaging device 1', which will result in an increase in the volume of the imaging device 1 and cannot be adapted. The current trend of miniaturization of the imaging device 100. 〜田 [Summary of the Invention] [0004] ❹ [0005] In view of this, it is necessary to provide a & meal volume image packaging
Ty» - 夏0 種成像裝置其自物側至像側依次包括一個具有正光 焦度之第一鏡片’一個具有正光焦度之第二鏡片,一個 具有負光焦度之第三鏡片,一個具有負光焦度第四鏡片 ’ 一個影像感測器以及一個驅動裝置1所述成像裝置藉 由移動所述第二鏡片改變對焦位置。所述驅動裝置用於 驅動所述第二鏡片沿該第二鏡片之光軸移動。所述第二 鏡片沿所述第二鏡片之光轴從所述成像裝置之像侧到物 侧方向移動以使該成像裝置由對焦在無窮遠處向對焦在 098145695 表單編號A0101 第5頁/共29頁 201122542 近拍處切換 [0006] [0007] [0008] 所述之成像裳置之一般狀態為對焦在 且藉由從成像|置之像側至物則方向.、'、&處之狀態’ 以調整至近拍狀態,由於所逮第二鏡移動所述第二鏡片 及近拍狀H處切換時之移動方^ #帛、在無窮遠 -鏡片相同,因此無需反轉所述驅動::成像裝置之第 先前之成像裝置之空間配置、’亦無需改變 學元件之緊凑性。 ⑯持成像装置之各光 【實施方式】 下面將結合附圖對本發明作—具體介鲈。 〇 請參閱圖2,所示為本發明之崎—結㈣意圖 ’所述成像裝置200自物侧至像娜依次包括—個具有正光 焦度之第-鏡片2卜-個具有正光焦度之第二鏡片22, -個具有負光焦度之第三鏡片23,-個具有負光焦度第 四鏡片2 4,一個紅外濾光片2 5,一個影像感測器2 6,以 及一個驅動裝置27。所述驅動裝置27與所述第二镜片22 相連,用於驅動所述第二鏡片22沿該第二鏡片22之光軸 ◎ 移動。所述第一鏡片21之光軸、所述第二鏡片22之光軸 、所述第三鏡片23之光軸以及所述第四鏡片24之光轴位 於同一直線上且與所述紅外濾光片25及所述影像感測器 26之中心對正設置。所述第一鏡片21包括一個位於物側 之第一表面S1以及一個位於像侧之第二表面S 2,所述第 二鏡片22包括一個位於物側之第三表面S3以及一個位於 像側之第四表面S4,所述第三鏡片23包括一個位於物侧 之第五表面S5以及一個位於像側之第六表面S6,所述第 098145695 表單煸號A0101 第6頁/共29頁 0982077998-0 201122542 四鏡片24包括一個位於物側之第七表面S7以及一個位於 像侧之第八表面S8,所述紅外濾光片25包括一個位於物 側之第九表面S9以及一個位於像侧之第十表面S10,所述 影像感測器16包括一個第十一表面S11。 [0009] 本實施方式中,所述第一鏡片21、第二鏡片22、第三鏡 片23以及第四鏡片24均為非球面鏡片。具體地,以鏡片 表面中心為原點,光軸為X軸,鏡片表面之非球面面型運 算式為: ◎ [0010] ch 2Ty» - Summer 0 imaging device includes, in order from the object side to the image side, a first lens having a positive power, a second lens having a positive power, and a third lens having a negative power, one having Negative power fourth lens 'An image sensor and a driving device 1 The imaging device changes the in-focus position by moving the second lens. The driving device is configured to drive the second lens to move along an optical axis of the second lens. Moving the second lens along the optical axis of the second lens from the image side to the object side of the imaging device to cause the imaging device to focus at infinity at 098145695 Form No. A0101 Page 5 / Total 29 pages 201122542 Close-up switching [0006] [0007] [0008] The general state of the imaging skirt is to focus on and from the imaging side to the object direction, ', & The state 'to adjust to the close-up state, since the second mirror moves the moving direction of the second lens and the close-up H, the infinity-lens is the same, so there is no need to reverse the driving: The spatial configuration of the first imaging device of the imaging device, 'there is no need to change the compactness of the components. 16 Holding Light of Image Forming Apparatus [Embodiment] The present invention will be described in detail below with reference to the accompanying drawings. Referring to FIG. 2, the present invention shows that the imaging device 200 of the present invention includes, in order from the object side to the image, a first lens having a positive power, and a positive optical power. a second lens 22, a third lens 23 having a negative power, a fourth lens 24 having a negative power, an infrared filter 25, an image sensor 2 6, and a drive Device 27. The driving device 27 is connected to the second lens 22 for driving the second lens 22 to move along the optical axis ◎ of the second lens 22. The optical axis of the first lens 21, the optical axis of the second lens 22, the optical axis of the third lens 23, and the optical axis of the fourth lens 24 are on the same line and the infrared filter The center of the sheet 25 and the image sensor 26 are aligned. The first lens 21 includes a first surface S1 on the object side and a second surface S 2 on the image side. The second lens 22 includes a third surface S3 on the object side and an image side. The fourth surface S4, the third lens 23 includes a fifth surface S5 on the object side and a sixth surface S6 on the image side, the 098145695 form nickname A0101 page 6 / 29 pages 0992077998-0 201122542 The four lens 24 includes a seventh surface S7 on the object side and an eighth surface S8 on the image side, the infrared filter 25 including a ninth surface S9 on the object side and a tenth on the image side. At surface S10, the image sensor 16 includes an eleventh surface S11. In the present embodiment, the first lens 21, the second lens 22, the third lens 23, and the fourth lens 24 are all aspherical lenses. Specifically, the center of the lens surface is the origin and the optical axis is the X-axis. The aspherical surface of the lens surface is: ◎ [0010] ch 2
X 1 + - (k + l)c2h2 [0011] 其中,c為鏡面表面中心之曲率,k係二次曲面係數, f—Z-f為從光轴到鏡片表面之高度, h = ^Y2+Z2 ❹ Y A 表示對A hi累加’ 1為自然數’本實施方 式中 i分別為2、4、6、8 ' 10、12、14、16,a 為第 i階之非球面面型係數 [0012] 所述成像裝置100之各表面之參數如表1所示 [0013]表 1 [0014] 表面 曲率半徑 厚度 直徑 中心曲率c R(mm) T(ram) D(rara) S1 1.731347 0.784621 1.708706 — 098145695 表單編號A0101 第7頁/共29頁 0982077998-0 201122542 2 0.157598 6 S2 5.654134 0.708376 7 1.814889 8.357825 S3 3.165175 0.735347 6 2.000654 6.205366 S4 1.363651 0.379328 7 2.334389 0.070881 22 S5 1.072565 0.451997 7 2.405071 0.355481 6 S6 1.865506 0.099387 43 3.061868 0.503162 2 S7 2.628168 0·568000 2 3.65358 -22.5571 S8 1.780748 1.196108 4.281321 10.82631 S9 無窮大 0.2 5.205832 0 S10 無窮大 0.08 5.289794 0 S11 無窮大 - 5.342397 0 表1中厚度τ為從鏡片中心到鏡片表面中心之距離,中心 曲率c為鏡片表面中心之曲率。 [0015] 所述各個表面之非球面面型係數如表2所示。 098145695 表單編號Α0101 第8頁/共29頁 0982077998-0 201122542 [0016]表 2 表面 非球面面型係數Ai S1 A2=0, A4=0.021217565, A6=-0.028440835, A8=0.024191503, A10:-0.0029946484, A12=0, A14=0, A16=0 S2 A2=0, A4=-0.0099872449, A6=0.065222976, A8 = -0. 10203573, A10=0.048472065, A12=0, A14=0, A16=0 S3 A2=0, A4=-0.0018141629, A6=-0.095881041, A8=0.095679981, A10=-0.031420991, A12=0, A14=0, A16=0 S4 A2=0, A4=-0.0094902021, A6=0.02156301, A8=0.0013965123, A10=0.0090680986, A12=0, A14=0, A16=0 S5 A2=0, A4=0.018061297, A6:0.050131285, A8=0.00034250907, 表單編號A0101 第9頁/共29頁 0982077998-0 098145695 201122542 A10=0.0038501864, A12=0, A14:0, A16=0 S6 A2二0, A4=0.0031926809, A6=-0.0023954768, A8=0.00030728017, A10=0.00055301174, A12=0, A14=0, A16=0 S7 A2=0, A4=-0.05686144, A6=0. 0016092546, A8=0.00065780149, A10=0.00003209607, A12=0, A14=0, A16=0 S8 A2:0, A4:-0.05686144, A6=0.0016092546, A8=0.00065780149, A10=0.00003209607, A12=0, A14-0, A16=0 S9 A2=0, A4=-0.039278385, A6=0.0019164893, A8=0.000087467085, A10=-0.00006602053, A12=0, A14=0, A16=0 所述之成像裝置200藉由移動所述第二鏡片22來改變對焦 位置,當對焦在無窮遠處,所述第二鏡片22位於距離所 述影像感測器較近之位置,當對焦位置由無窮遠處向近 拍切換時,所述第二鏡片22沿所述成像裝置200之光軸向 098145695 表單編號A0101 第10頁/共29頁 0982077998-0 201122542 [0018] [0019] [0020] Ο ο [0021] [0022] 098145695 遠離所述影像感測器2 6之方向移動。 本實施方式中,分別選取波長為656. 3奈米、587. 6奈米 、546. 1奈求、486. 1奈米、436.0奈米之入射光對所述 成像裝置100100之光學性能進行試驗。各光學元件之折 射率大於1. 5,具體地,各光學元件對不同波長之光線之 折射率如表3所示: 表3 光學 元件 對不同波艮光線之折射率 656.3奈米 587.6奈米 546.1奈米 486.1奈米 436.0奈米 第一 鏡爿 1.54120000 1.54410000 1.54650000 1.55090000 1.55637103 第二 銳片 1.54120000 1.54410000 1.54650000 1.55090000 1.55637103 第三 銳片 1.62493710 1.63235424 1.63880640 1.65202356 1.66899669 第四 銳片 1.52835081 1.53115832 1.53341477 1.53783223 1.54314926 紅外 濾光 片 1.52036567 1.52307826 1.52520731 1.52929991 ----- 1.53414920 在上述之鏡片參數條件下,所述成像裝置200能夠實現對 焦在l〇〇mm處之近拍狀態,本實施方式中,所述成像裝置 2〇〇選取對焦在無窮遠處以及對焦在13〇min處之情況作為 參照。 請參閱圖3A及圖3B,所示分別為所述成像裝置2〇〇在對焦 在無窮遠處及13〇mm處之場曲特性曲線圖,圖中曲線七及3 表單編號A0101 第Π頁/共29頁 ' 0982077998-0 201122542 分別為子午場曲特性曲線及弧矢場曲特性曲線,其中ti 至t5分別為波長為436. 0奈米、486. 1奈米、546. 1奈米 、587. 6奈米、656. 3奈米之光線之子午場曲特性曲線, sl-s5分別為波長為436. 0奈米、486. 1奈米、546. 1奈 米、587. 6奈米、656. 3奈米之光線之弧矢場曲特性曲線 。所述成像裝置200之場曲量被控制在-0. 2mm〜0. 2mm之 間。 [0023] 請參閱圖4A及圖4B,所示分別為所述成像裝置200在對焦 在無窮遠處及130mm處之畸變特性曲線圖,其中,(H-d5 分別為波長為436. 0奈米、486. 1奈米、546. 1奈米、 587. 6奈米、656. 3奈米之光線之畸變特性曲線圖。所述 成像裝置100之畸變量被控制在-5%~0之間。 [0024] 請參閱圖5A及圖5B,所示為所述成像裝置200在對焦在無 窮遠處及130mm之相對照度特性曲線圖,本實施方式中, 選取入射光線之波長為546. 1奈米。相對照度被控制在 50%以上。 [0025] 請參閱圖6A及圖6B,所示為所述成像裝置200在對焦在無 窮遠處及130mm之調製傳遞函數(MTF : Modulation Transfer Function)值與空間頻率之關係圖,圖中每 一曲線代表不同光圈對應之MTF值之曲線圖。本實施方式 中,空間頻率表示單位毫米内所具有之光線明暗條紋數 (Cycles Per Millimeter, C/mm),所述成像裝置 200之MTF隨空間頻率之變化較為平緩,因此成像裝置 200能夠維持較理想之解析度及反差。 098145695 表單編號A0101 第12頁/共29頁 0982077998-0 201122542 [0026]請參閱圖7A及圖7B,所示為所述成像裝置200在對焦在無 窮遠處及l3〇mm之MTF值與焦點偏移(Focus Shift)對 應之關係圖’圖中每一曲線代表不同光圈對應之MTF值之 曲線圖。本實施方式中,所述成像裝置200之焦點偏移量 在〜〇. 〇7mm之間。 剛所述之成像裝置之—般狀態為载在絲遠處之狀態, 且藉由從成像裝置之像侧至物則方向移動所述第二鏡片 以調整至近拍狀態’由於所述第二鏡片在對焦在無窮遠X 1 + - (k + l)c2h2 where c is the curvature of the center of the mirror surface, k is the quadric coefficient, f_Zf is the height from the optical axis to the surface of the lens, h = ^Y2+Z2 ❹ YA indicates that '1 is a natural number' for A hi. In the present embodiment, i is 2, 4, 6, 8 '10, 12, 14, and 16, respectively, and a is the aspherical surface coefficient of the i-th order [0012] The parameters of the surfaces of the image forming apparatus 100 are as shown in Table 1. [0013] Table 1 [0014] Surface Curvature Radius Thickness Diameter Center Curvature c R (mm) T(ram) D(rara) S1 1.731347 0.784621 1.708706 — 098145695 Form number A0101 Page 7 of 29 0982077998-0 201122542 2 0.157598 6 S2 5.654134 0.708376 7 1.814889 8.357825 S3 3.165175 0.735347 6 2.000654 6.205366 S4 1.363651 0.379328 7 2.334389 0.070881 22 S5 1.072565 0.451997 7 2.405071 0.355481 6 S6 1.865506 0.099387 43 3.061868 0.503162 2 S7 2.628168 0·568000 2 3.65358 -22.5571 S8 1.780748 1.196108 4.281321 10.82631 S9 Infinity 0.2 5.205832 0 S10 Infinity 0.08 5.289794 0 S11 Infinity - 5.342397 0 The thickness τ in Table 1 is from the lens Distance from the center of the surface of the lens, c is the curvature at the center of the center curvature of the surface of the lens. [0015] The aspherical surface coefficient of each surface is as shown in Table 2. 098145695 Form No. 1010101 Page 8 of 29 0982077998-0 201122542 [0016] Table 2 Surface aspherical surface coefficients Ai S1 A2=0, A4=0.021217565, A6=-0.028440835, A8=0.024191503, A10:-0.0029946484, A12=0, A14=0, A16=0 S2 A2=0, A4=-0.0099872449, A6=0.065222976, A8 = -0. 10203573, A10=0.048472065, A12=0, A14=0, A16=0 S3 A2= 0, A4=-0.0018141629, A6=-0.095881041, A8=0.095679981, A10=-0.031420991, A12=0, A14=0, A16=0 S4 A2=0, A4=-0.0094902021, A6=0.02156301, A8=0.0013965123, A10=0.0090680986, A12=0, A14=0, A16=0 S5 A2=0, A4=0.018061297, A6:0.050131285, A8=0.00034250907, Form No. A0101 Page 9/29 Page 0992077998-0 098145695 201122542 A10=0.0038501864 , A12=0, A14:0, A16=0 S6 A2二0, A4=0.0031926809, A6=-0.0023954768, A8=0.00030728017, A10=0.00055301174, A12=0, A14=0, A16=0 S7 A2=0, A4=-0.05686144, A6=0. 0016092546, A8=0.00065780149, A10=0.00003209607, A12=0, A14=0, A16=0 S8 A2:0, A4:-0.05686144, A6=0.0016092546, A8=0.00065780149, A10= 0.00003209607, A12=0, A14-0, A16=0 S9 A2=0, A4=-0.039278385, A6=0.0019164893, A8=0.000087467085, A10=-0.00006602053, A12=0, A14=0, A16=0 The imaging device 200 is moved by moving the second lens 22 Changing the in-focus position, when the focus is at infinity, the second lens 22 is located closer to the image sensor, and when the focus position is switched from infinity to macro, the second lens 22 is along The optical axis of the image forming apparatus 200 is 098145695. Form No. A0101 Page 10 / 29 pages 0992077998-0 201122542 [0019] [0020] [0020] [0022] 098145695 away from the image sensor 2 Move in the direction of 6. In the present embodiment, the optical properties of the imaging device 100100 are tested by selecting incident light having a wavelength of 656.3 nm, 58. 6 nm, 546.1, 486. 1 nm, and 436.0 nm, respectively. . The refractive index of each optical element is greater than 1.5. Specifically, the refractive indices of the optical elements for different wavelengths of light are as shown in Table 3: Table 3 The refractive index of the optical element for different wavelengths of light 656.3 nm 587.6 nm 546.1 Nano 486.1 nm 436.0 nm first mirror 爿 1.54120000 1.54410000 1.54650000 1.55090000 1.55637103 second sharp film 1.54120000 1.54410000 1.54650000 1.55090000 1.55637103 third sharp film 1.62493710 1.63235424 1.63880640 1.65202356 1.66899669 fourth sharp film 1.52835081 1.53115832 1.53341477 1.53783223 1.54314926 infrared filter 1.52036567 1.52307826 1.52520731 1.52929991 ----- 1.53414920 Under the above-mentioned lens parameter conditions, the imaging device 200 can achieve a close-up state of focusing at l〇〇mm. In the embodiment, the imaging device 2 selects focus at The situation at infinity and the focus at 13 〇 min is used as a reference. Please refer to FIG. 3A and FIG. 3B , which are respectively diagrams of the field curvature characteristics of the imaging device 2 at the infinity and 13 〇 mm, and the curves 7 and 3 are shown in the form number A0101. 29 pages ' 0982077998-0 201122542 are the meridional field curvature curve and the sagittal field curvature characteristic curve, respectively, where ti to t5 are wavelengths of 436. 0 nm, 48. 1 nm, 54. 1 nm, 587. The characteristic curve of the meridian field of the light of 6 nm, 656. 3 nm, sl-s5 is 436. 0 nm, 486. 1 nm, 546. 1 nm, 587. 6 nm, 656 . The curve of the sagittal curvature of the light of 3 nm. 2毫米之间。 Between 0. 2mm~0. 2mm. [0023] Please refer to FIG. 4A and FIG. 4B, which are respectively a distortion characteristic diagram of the imaging device 200 at an infinity and 130 mm, wherein (H-d5 has a wavelength of 436. 0 nm, respectively). Distortion characteristic curve of light of 486. 1 nm, 546. 1 nm, 587. 6 nm, and 656. 3 nm. The distortion of the imaging device 100 is controlled between -5% and 0. [0024] Please refer to FIG. 5A and FIG. 5B, showing the contrast characteristic curve of the imaging device 200 at infinity and 130 mm. In this embodiment, the wavelength of the incident light is selected to be 546. The contrast is controlled to be 50% or more. [0025] Please refer to FIG. 6A and FIG. 6B, which shows the modulation transfer function (MTF: Modulation Transfer Function) value of the imaging device 200 at infinity and 130 mm. In relation to the spatial frequency, each curve in the figure represents a graph of MTF values corresponding to different apertures. In the present embodiment, the spatial frequency represents the number of light and dark stripes (Cycles Per Millimeter, C/mm) in a unit of millimeter. The MTF of the imaging device 200 varies with spatial frequency. The imaging device 200 is capable of maintaining a desired resolution and contrast. 098145695 Form No. A0101 Page 12 of 29 0982077998-0 201122542 [0026] Referring to FIGS. 7A and 7B, the imaging device 200 is illustrated. The relationship between the MTF value and the focus shift (Focus Shift) at the infinity and at the infinity is shown in the graph. Each curve in the graph represents a graph of the MTF values corresponding to different apertures. In the present embodiment, the imaging The focus shift of the device 200 is between ~〇. 〇7mm. The general state of the imaging device just described is in a state of being carried far away from the filament, and is moved from the image side of the imaging device to the object direction. The second lens is adjusted to the macro state 'because the second lens is in focus at infinity
〇 料拍狀態處⑽時之移較式減狀成像裝置之第 鏡片相同,因此無需反轉所述驅動裝置,亦無需改變 先月J之成像裝置之空間配置,可以鑛成像裝置之各光 學元件之緊湊性。 圃虹所述,本判確已符合發料狀要件,遂依法提 =财請^,以上所述者僅為本㈣之較佳實施方 飾或變化 :,自不能以此限制本案之申請專利範團β舉凡熟悉本 •案技藝之人士援依本發明之精神_之等效修4 ,皆應涵蓋於以下中請專利範 【圖式簡單說明】 _圖1係現有之-種成像裝置之結構示意圖 [酬圖2係、本發明成像裝置之結構示意圖。 [0031] 圖3A係圖1之成像|置對焦在無窮 遠處之場曲特性曲線圖 [0032] 圖3B係圖1之成像裝置對焦在13_處之場曲特性曲線圖 098145695 表單編號A0101 第13頁/共29頁 0982077998-0 201122542 [0033] 圖4A係圖1之成像裝置對焦在無窮遠處之畸變特性曲線圖 〇 [0034] 圖4B係圖1之成像裝置對焦在130mm處之畸變特性曲線圖 〇 [0035] 圖5 A係圖1之成像裝置對焦在無窮遠處之相對照度特性曲 線圖。 [0036] 圖5B係圖1之成像裝置對焦在130mm處之相對照度特性曲 線圖。 [0037] 圖6A係圖1之成像裝置對焦在無窮遠處之MTF值與焦點偏 移關係特性曲線圖。 [0038] 圖6B係圖1之成像裝置對焦在130mm處之MTF值與焦點偏 移關係特性曲線圖。 [0039] 圖7 A係圖1之成像裝置對焦在無窮遠處之Μ T F值與空間頻 率關係特性曲線圖。 [0040] 圖7Β係圖1之成像裝置對焦在130mm處之MTF值與空間頻 率關係特性曲線圖。 【主要元件符號說明】 [0041] 成像裝置:100,200 [0042] 第一鏡片:11,21 [0043] 第二鏡片:12,22 [0044] 第三鏡片:13,23 [0045] 第四鏡片:14,24 098145695 表單編號A0101 第14頁/共29頁 0982077998-0 201122542 Ο Ο [0046] 紅外濾光片 :15,: [0047] 影像感測器 :16,: [0048] 驅動裝置: 17,27 [0049] 第一表面: S1 [0050] 第二表面: S2 [0051] 第三表面: S3 [0052] 第四表面: S4 [0053] 第五表面: S5 [0054] 第六表面. S6 [0055] 第七表面: S7 [0056] 第八表面: S8 [0057] 第九表面: S9 [0058] 第十表面:S10 [0059] 第十一表面 :S11 098145695 表單編號Α0101 第15頁/共29頁 0982077998-0When the picking state is (10), the shifting is the same as that of the first reducing mirror, so there is no need to reverse the driving device, and there is no need to change the spatial configuration of the imaging device of the first month J, and the optical components of the mineral imaging device can be Compact. According to Yu Hong, this judgment has indeed met the requirements for the issue of materials, and it is legally required to make money. The above mentioned is only the preferred implementation of this (4) decoration or change: Fan Group β, who is familiar with the skills of this project, according to the spirit of the invention _ equivalent repair 4, should be covered in the following patents [simplified description of the schema] _ Figure 1 is the existing type of imaging device Schematic diagram of the structure of the image forming apparatus of the present invention. [0031] FIG. 3A is a graph of the curvature of field of the image of FIG. 1 at an infinity [0032] FIG. 3B is a graph of the curvature of field of the image forming apparatus of FIG. 1 focusing at 13_ 098145695 Form No. A0101 13 page / 29 pages 0992077998-0 201122542 [0033] FIG. 4A is a distortion characteristic diagram of the imaging device of FIG. 1 focusing on infinity 〇 [0034] FIG. 4B is a distortion characteristic of the imaging device of FIG. 1 focusing at 130 mm Graph 〇 [0035] FIG. 5A is a graph showing the contrast characteristic of the imaging device of FIG. 1 focusing on infinity. [0036] FIG. 5B is a graph showing the relative illuminance characteristic of the imaging apparatus of FIG. 1 focusing on 130 mm. 6A is a graph showing a relationship between an MTF value and a focus shift relationship at an infinity of the imaging apparatus of FIG. 1. FIG. 6B is a graph showing the relationship between the MTF value and the focus shift relationship of the imaging apparatus of FIG. 1 focusing on 130 mm. [0038] FIG. 7A is a graph showing the relationship between the ΜTF value and the spatial frequency at which the imaging device of FIG. 1 focuses on infinity. [0039] FIG. [0040] FIG. 7 is a graph showing the relationship between the MTF value and the spatial frequency at 130 mm of the imaging apparatus of FIG. 1. [Main component symbol description] [0041] Imaging device: 100, 200 [0042] First lens: 11, 21 [0043] Second lens: 12, 22 [0044] Third lens: 13, 23 [0045] Lens: 14, 24 098145695 Form No. A0101 Page 14 of 29 0982077998-0 201122542 Ο Ο [0046] Infrared Filter: 15,: [0047] Image Sensor: 16,: [0048] Drive: 17,27 [0049] First surface: S1 [0050] Second surface: S2 [0051] Third surface: S3 [0052] Fourth surface: S4 [0053] Fifth surface: S5 [0054] Sixth surface. S6 [0055] Seventh surface: S7 [0056] Eighth surface: S8 [0057] Ninth surface: S9 [0058] Tenth surface: S10 [0059] Eleventh surface: S11 098145695 Form number Α 0101 Page 15 / Total 29 pages 0982077998-0