201122506 六、發明說明: 【發明所屬之技術領域】 本發明係有關於一種對至少一太陽能電池模組、或多個相 接成太陽能發電機的太陽能電池模組進行鑑定 (characterizing),特別是材料鑑定的方法。本發明此外亦有 關於一種用於實施該方法的裝置。 【先前技術】 對半導體元件(即’太陽能電池及太陽能電池模組)進行鑑 定與生產控制時,會採用各種量測方法◊適用於二極體及太 陽能電池與模組的標準方法為測定電流-電壓特性曲線 (UI) ’其中可採用或不採用沿電流正向及反向照射之措施, 採用持續照射或閃光模式,在特定光照條件下記錄如太陽能 電池及模組等元件之輸出功率。如此可測定出力不足,但無 法解釋其原因。 太陽能模組須接受使用壽命標準化測試,以確保其能正常 工作20年(保固)。此類測試基於大規模現場測驗,惟在中 緯度使用s亥等太陽能電池,方能獲得可靠結果。 IEC 61215、IEC 61646、IEC 62108、及 UL 1703 等標準, 均係有關於如何實施此類測試以認證新品的規定。然而,該 等測試無法發現太陽能模組所發生之變化,亦無法及時辨識 可能產生之損傷,當此等太陽能模組現場相接成為功率高達 若干兆瓦的太陽能發電機或太陽能電站時,情形尤甚。 099131580 3 201122506 另外,亦可藉光電發光量測,對平面狀半導體元件進行形 貌檢驗,以便指出出力不足或元件出現缺陷之原因所在。此 缺陷尤指半導體元件之體積缺陷或接觸缺陷。但,該種方法 須將元件送人量測實驗室,進行逐個檢驗。亦即,惟花費大 量人力物力(就地拆卸、運至量測實驗室、及在使用地進行 重裝)方能對相接成為發電機或電站的半導體元件(如,太陽 能模組)因時間流逝而發生的變化進行檢驗。 DE-B-H) 2006 052 295 揭示一種藉由在光伏(ph〇t〇v〇itaic) 發電機之連接線中輸入交流電來辨識該電氣安裝系統所發 生之變化的方法。該發明旨在以測得電弧為依據,來推斷安 裝系統内部電氣連接受損,及辨識盜竊行為。藉該方法,可 在夜間發現從太陽能設備中盜竊太陽能模組的行為。 US-A-2007/0159209揭示一種藉阻抗量測以測定m〇s電 晶體閘極氧化物之電容特性的方法。 么開文獻 DE.Z·. Ap3.r3.tivc Micthoden dcr physikslischcn.201122506 VI. Description of the Invention: [Technical Field] The present invention relates to the identification of at least one solar cell module or a plurality of solar cell modules connected to a solar generator, in particular materials Method of identification. The invention further relates to an apparatus for carrying out the method. [Prior Art] When performing identification and production control of semiconductor components (ie, 'solar cells and solar cell modules), various measurement methods are adopted. The standard method for diodes and solar cells and modules is to measure current - Voltage Characteristic Curve (UI) 'With or without the use of positive and negative illumination along the current, continuous illumination or flash mode is used to record the output power of components such as solar cells and modules under specific lighting conditions. This can be used to determine the lack of force, but the reason cannot be explained. Solar modules are subject to standardized service life testing to ensure they are working for 20 years (warranty). Such tests are based on large-scale field tests, but solar cells such as shai are used at mid-latitudes to obtain reliable results. Standards such as IEC 61215, IEC 61646, IEC 62108, and UL 1703 are subject to regulations on how to implement such tests to certify new products. However, these tests cannot detect the changes in the solar modules, and it is impossible to identify the possible damages in time. When these solar modules are connected in the field to become solar generators or solar power plants with a power of up to several megawatts, the situation is particularly very. 099131580 3 201122506 In addition, it is also possible to perform a shape inspection of a planar semiconductor element by means of photoelectric luminescence measurement to indicate the cause of insufficient output or defective components. This defect refers in particular to volume defects or contact defects of semiconductor components. However, this method requires the components to be sent to the measurement laboratory for inspection. That is, it takes a lot of manpower and material resources (disassembly on site, transport to the measurement laboratory, and reloading at the place of use) to be able to connect semiconductor components (such as solar modules) that become generators or power stations due to time. Changes that occur as they pass are tested. DE-B-H) 2006 052 295 discloses a method for identifying changes in an electrical installation system by inputting an alternating current into a photovoltaic (photovoltaic) generator connection. The invention is based on the measurement of an arc to infer damage to the electrical connections within the installation system and to identify theft. By this method, the theft of solar modules from solar devices can be found at night. US-A-2007/0159209 discloses a method for determining the capacitance characteristics of m〇s transistor gate oxide by impedance measurement. Open the document DE.Z.. Ap3.r3.tivc Micthoden dcr physikslischcn.
Chemie」,Impedanzmikroskopie,Funke,Kapitel 2 係有關於 材料鑑定阻抗顯微技術的基本原理。 US-Z.: Journal of Applied Physics, 102, PROSKURYAKOV 等人「Impedance spectroscopy of unetched CdTe/CdS solar cells - equivalent circuit analysis」,描述一種透過阻抗譜測定 太陽能電池性能的方法。Η· BAYHAN及A.S. KAVASOGLU 氏「Study of CdS/Cu(In,Ga)Se2 heterojunction interface using 099131580 4 201122506 admittance and impedance spectroscopy」in: Solar Energy 80 (2006), S. 1160 - 1164,以及,R. KERN 等人「Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions 」 in: Electrochimica Acta 47 (2002),S. 4213 - 4225,亦涉及與此 相關之内容。 【發明内容】 本發明之目的在於提供一種偵測單個及/或相接太陽能模 組中之材料變化的方法與裝置,藉此二者’可對單個及相接 模組之已處理材料隨時間流逝而由内外因引起的變化及時 加以辨識,以免出現更大損傷。除了量測已產生功率外,藉 由本發明,亦可對成品模組及其在太陽能發電機中的安裝情 況’進行定期品質控制。 根據本發明,達成上述目的之解決方案大體如下:選擇多 個太陽能電池模組或多個相接成組的太陽能電池模组',並= 一交流電壓在-較寬頻率範圍内激勵該等太陽能電池模 組,董測其阻抗’作為該頻率回應的函數。以—定之時間/ 隔重複實施該量測。量測時若發現量測資料發生變化 示所用材料或該太陽能發電機之佈線中發生變化。故,此、 以下群組中至少—材料相_量發生變化之訊號:該太2 板組或该寺相接成太陽能發電機之太陽能模組的品所= 缺陷、製造缺陷、狀態、老化十 貝月匕 化险此脫層、腐蝕問題、接觸 099131580 5 201122506 根據由材料組合、老化狀態及外部接線引起的内外部電 感、電容與電阻,會產生表明單個太陽能模組或該太陽能發 電機之特徵的阻抗頻率回應(阻抗譜),該阻抗譜表明了該等 凡件或讀設備現有設計之特徵、及由内外因所引起之相關變 化的特徵。 舉例而言,此内外因係指紫外線輻射、溫度、溫度變化、 水分濃度及其作用時間與變化,以及由此在複合材料内部及 外部元件上引起之化學反應。 内σ卩彳b學反應可理解為如EVA等封裝材料與水分所發生 之父互反應,以及由此而產生的酸(尤指乙酸)與其他模組材 料(如面板)、内嵌太陽能電池或金屬接線之進一步反應。太 陽能電池上的化學反應,可為發生在導電元件(如,太陽能 電池表面之金屬層)上的腐钱過程。外部反應可指模組背面 例如發生在其接線盒内之接觸過程。 本發明出人意料地發現,此等由内外因引發之變化,體現 在該阻抗讀之特性曲線形狀的變化中。該等變化主要為,哕 阻抗譜内特徵性最大值及最小值隨太陽能模組或整個太陽 能發電機之變化進一步發展而產生的頻移及相移。 本發明技術原理之優點主要在於,可在伸展幅度高達好幾 千平米的大面積相連太陽能發電機中,測定材料變化之發展 h况並藉由對表觀電阻之歐姆分量及電感或電容分量進行 099131580 201122506 分析’可推導出特定之指和 、w機理,以及為觀測到的設備功率 損失解釋原因。為此,逢媒刀卞 歲使用本發明之裴置,該裝置可 測定變化中推導出具指標作用_得變量。 了攸 '本發明=技術原理涉及單個域能、相減組、及/ 或採用任意連接方式、社 、°構及貫軛方式且相互作用的太陽能 模組。 月匕 根據本發明,在-較寬頻率範圍内,在多個串聯模組、並 聯模組、或模組矩陣或模組鏈上,以直接接觸方式(圖 在正極與負極之間施加—交流電壓,抑或在相應逆變器之直 流電壓側(圖2b),在正極與負極之間施加-交流電厂堅,量測 該阻抗之舰曲線料财流電敎函數,賴定包含辨識 標誌的特徵回應剖面。 a 車乂佳在於1 kHz與2麵kHz之間的較寬頻率範圍f内, 用-交流電壓UdOV^W^V)激勵該太陽能電池模組 或該等相接太陽能電池模組。 本發明之另一特徵在於,在一較寬頻率範圍内,在該等串 聯模組、並聯模組、或矩陣式模組鏈上,以直接接觸方式在 該太陽能電池模組或料減太陽能電輯组之短接正"、負 極與地之間施加-交流電M,抑或在相應逆.變器之直流電虔 側,在該太陽能電池模組或該等相接太陽能電池模組之 正、負極與地之間施加—交流電壓,量測該阻抗之特性^ 作為該交流電敎函數,並献包含_料_徵回應剖 099131580 7 201122506 面。較佳應在太陽能發電機不發電的夜間實施該方法。亦可 在有陽光照射時應用該方法。但在此情況下,在阻抗譜之特 殊位置上,該回應剖面會受到模組内正在工作的太陽能電池 之系統性影響。此點尤適用於設備產能約為40 kW時的100 kHz至300 kHz頻率範圍,頻率更高時,頻譜所受影響不大。 本發明之另一特徵在於,測定該阻抗之特徵回應剖面(其 辨識標誌),作為該等太陽能模組或太陽能發電機及其佈線 之設計(即幾何結構)及材料成分的函數。 特定言之,測定該阻抗之特徵回應刮面隨時間流逝而發生 的變化,以鑑定該或該等太陽能電池模組或該太陽能發電機 以其初始狀態為參照的老化性能。 特定言之,測定該阻抗之特性曲線,作為溫度及溫度變 化、模組結構内之水分及其濃度變化、以及該或該等太陽能 電池模組内化學分解產物及副產物濃度的函數,並在觀測到 明顯功率損失之前,用此來鑑定品質、功能缺陷及/或製造 缺陷、及該或該等太陽能電池模組之老化狀態。該方法在此 係用於測定早期指標。 本發明之另一特徵在於,測定該阻抗之特性曲線中因溫 度、水分、如受現場氣候因素影響而產生之化學分解產物及 副產物的濃度影響而出現的變化,並對特有變化(例如,該 太陽能電池模組及其佈線中電阻、電容及電感變化、該太陽 能電池模組及/或其佈線中洩漏電流之強度變化)進行分配。 099131580 8 201122506 特疋p之,該或該等太陽能 係用於鑑定所產 ,、、、且之阻抗的特性曲線, 問題、脫層= 及用於早期辨識嫩及接觸 本& 9 由此引起之持續性性能衰退等運行不良。 σ本么月之另一特徵在於’開始該等量測時即測定該回應訊 被之=角相對於初始位置的相對變化,將該相對變化用作該 ~此電’也模組中電容或電感變化的訊號,並使該相對變 化與遠等電容或電感變化相關聯。 根據阻抗邊本身,首先可測定多個太陽能模組之—體式電 σ構内°卩的變化。該等變化可以是因太陽能電池金屬層、 之 或太陽%权組内部佈線及外部接線接觸電阻增大而產生 歐姆電阻變化。 然而’根據以一定時間間隔測得之阻抗譜的變化,首先可 1疋遠等&組之介Ί f數變化。該等變化由水分吸收、溫度 灸化封裝材料絕緣強度變化、或封裝材料電導率增大所引 起。 曰 若將上述兩種 產能下降的有害 方法予以針對性應用’可使主要表現為設備 現象受到限制。 -種用於實施本發明方法的裝置,其特徵在於:—六、μ 壓發生、— 又々丨L电 ° 一阻抗量測儀、一相移量測設備、一用於計算一 測付支里作為已發生變化之減的評價邏輯電路,彼此互 聯’且與—適當的輪tB單元相連。 將在不同時間點上記錄的量測結果予以儲存、比較,並依Chemie", Impedanzmikroskopie, Funke, Kapitel 2 series have basic principles for material identification impedance microscopy. US-Z.: Journal of Applied Physics, 102, PROSKURYAKOV et al., "Impedance spectroscopy of unetched CdTe/CdS solar cells - equivalent circuit analysis", describes a method for determining the performance of a solar cell by impedance spectroscopy. Η· BAYHAN and AS KAVASOGLU “Study of CdS/Cu(In,Ga)Se2 heterojunction interface using 099131580 4 201122506 admittance and impedance spectroscopy” in: Solar Energy 80 (2006), S. 1160 - 1164, and, R. KERN "Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions" in: Electrochimica Acta 47 (2002), S. 4213 - 4225, also relates to this. SUMMARY OF THE INVENTION It is an object of the present invention to provide a method and apparatus for detecting material changes in a single and/or adjacent solar module, whereby both can process the processed material of a single and connected module over time. Changes that occur as a result of internal and external causes are identified in time to avoid further damage. In addition to measuring the generated power, the present invention can also be used for periodic quality control of the finished module and its installation in a solar generator. According to the present invention, the solution to achieve the above object is generally as follows: selecting a plurality of solar cell modules or a plurality of solar cell modules connected in groups, and = an alternating voltage to excite the solar energy in a wide frequency range The battery module, Dong measured its impedance 'as a function of the frequency response. The measurement was repeated at a predetermined time/interval. If the measurement data is found to change during the measurement, the material used or the wiring of the solar generator changes. Therefore, at least the material phase _ quantity changes in this group and below: the Tai 2 board group or the solar module of the temple connected to the solar generator = defect, manufacturing defect, state, aging ten The delamination, corrosion problem, contact 099131580 5 201122506 According to the combination of internal and external inductance, capacitance and resistance caused by material combination, aging state and external wiring, it will indicate the characteristics of a single solar module or the solar generator. The impedance frequency response (impedance spectrum), which indicates the characteristics of the existing design of the workpiece or reading device, and the characteristics of the related changes caused by internal and external factors. For example, this internal and external factor refers to ultraviolet radiation, temperature, temperature changes, moisture concentration and its time and changes, and the resulting chemical reactions on the internal and external components of the composite. The internal σ卩彳b learning reaction can be understood as the mutual interaction between the encapsulating material such as EVA and moisture, and the resulting acid (especially acetic acid) and other module materials (such as panels), embedded solar cells. Or further reaction of the metal wiring. The chemical reaction on the solar cell can be a process of decay that occurs on conductive components (eg, the metal layer on the surface of a solar cell). The external reaction can refer to the contact process of the back side of the module, for example, occurring in its junction box. The present inventors have surprisingly discovered that such changes due to internal and external causes are manifested in changes in the shape of the characteristic curve of the impedance reading. These changes are mainly caused by the frequency shift and phase shift of the characteristic maximum and minimum values in the impedance spectrum as the solar module or the entire solar generator changes. The main advantage of the technical principle of the present invention is that the development of the material change can be measured in a large-area connected solar generator with a stretching range of several thousand square meters and by the ohmic component and the inductance or capacitance component of the apparent resistance. 099131580 201122506 Analysis 'can derive specific finger sums, w mechanisms, and explain the cause of observed device power loss. To this end, the device of the present invention can be used to determine the change in the variable.攸 'The invention=Technical principle relates to a single domain energy, a subtraction group, and/or a solar module that adopts any connection method, social, and yoke mode and interacts. According to the invention, in a wide frequency range, in a plurality of series modules, parallel modules, or module matrices or module chains, in a direct contact manner (the diagram is applied between the positive and negative electrodes - alternating current) The voltage, or on the DC voltage side of the corresponding inverter (Fig. 2b), is applied between the positive and negative poles. The AC power plant is measured, and the impedance curve of the ship's curve is calculated. Responding to the profile. a Car 乂 is in the wider frequency range f between 1 kHz and 2 kHz, and the solar cell module or the connected solar cell modules are excited by the -AC voltage UdOV^W^V). Another feature of the present invention is that in a series of series modules, parallel modules, or matrix module chains, the solar cell modules or materials are reduced in solar energy in a wide frequency range. The short-circuit of the group is “quoting”, the application of the alternating current M between the negative pole and the ground, or the positive and negative poles of the solar cell module or the connected solar cell module on the direct current side of the corresponding inverter. Applying an alternating voltage to the ground, measuring the characteristic of the impedance ^ as a function of the alternating current, and including the _ material_signal response section 099131580 7 201122506 surface. Preferably, the method should be carried out at night when the solar generator does not generate electricity. This method can also be applied when there is sunlight. However, in this case, at a particular location of the impedance spectrum, the response profile is systematically affected by the solar cells being operated within the module. This is especially true for the 100 kHz to 300 kHz frequency range when the equipment has a capacity of approximately 40 kW. At higher frequencies, the spectrum is less affected. Another feature of the invention is the determination of the characteristic response profile of the impedance (the identification mark) as a function of the design (i.e., geometry) and material composition of the solar modules or solar generators and their wiring. In particular, the characteristic of the impedance is measured in response to changes in the wiper surface over time to identify the aging performance of the solar cell module or the solar generator with reference to its initial state. Specifically, the characteristic curve of the impedance is measured as a function of temperature and temperature changes, changes in moisture and concentration in the module structure, and concentrations of chemical decomposition products and by-products in the solar cell module, and This is used to identify quality, functional defects and/or manufacturing defects, and the aging state of the solar cell module or the solar cell modules before significant power loss is observed. This method is used here to determine early indicators. Another feature of the present invention is to measure changes in the characteristic curve of the impedance due to temperature, moisture, and the concentration of chemical decomposition products and by-products generated by the influence of on-site climatic factors, and for characteristic changes (for example, The change in resistance, capacitance, and inductance in the solar cell module and its wiring, and the change in intensity of leakage current in the solar cell module and/or its wiring are distributed. 099131580 8 201122506 In particular, the solar energy system is used to identify the impedance characteristics of the produced,, and, and the delamination = and for early identification of tender and contact & Poor operation such as continuous performance degradation. Another feature of σ本月 is that 'the relative change of the angle of the response to the initial position is measured when the measurement is started, and the relative change is used as the capacitance in the module or The signal of the change in inductance and correlates this relative change to a change in far-away capacitance or inductance. According to the impedance edge itself, it is first possible to measure the variation of the internal electric σ structure of a plurality of solar modules. The change may be due to an increase in ohmic resistance due to an increase in the internal wiring of the solar cell metal layer, or the internal wiring of the solar panel, and the external wiring contact resistance. However, according to the change of the impedance spectrum measured at certain time intervals, it is first possible to change the f-number of the distance & These changes are caused by moisture absorption, changes in the dielectric strength of the temperature moxibustion encapsulating material, or an increase in the electrical conductivity of the encapsulating material.曰 If the above two harmful methods of capacity reduction are targeted, the main phenomenon is that the equipment phenomenon is limited. - Apparatus for carrying out the method of the invention, characterized in that - six, μ pressure occurs, - 々丨 L electricity ° an impedance measuring instrument, a phase shift measuring device, one for calculating a test pay The evaluation logic circuits, which have been reduced as they have changed, are interconnected with each other and connected to the appropriate wheel tB unit. The measurement results recorded at different time points are stored, compared, and
S 099131580 9 201122506 縣測結果縣異_或_域能電 定、或測定其變化。故,量測結果間之差 = 測得變量,即上述指標。 t的 在本發明猶速實 ㈣方法,可對安裝於戶外或作為建該·分之太陽能桓 組或太w發電機,進行材料特性駭及評估。藉由本發明 1法之相關措施及本發明之❹,可對元件製成後、 時、及設備進-步運行時的品質進行預測。其本質在於,在 至少1 _至2〇〇〇他之較寬頻率範圍内,用交流電壓激 勵該或該等太陽能模組,且針對不同材料品質、元件缺陷、 老化階段、及該等太陽能電簡組之其他特徵,以包含特有 阻抗剖面(觸標誌)之特—的形式評價該阻抗。 設備或太陽能模崎畢後所測得之特徵回應剖面及其辨 識標魏係㈣,測雜抗根據該解具有至少—特徵值,該 特徵值隨太陽能電池、或太陽能f池模組、或相接太陽能電 池杈、且^ 1化參數—㈤發生變化,*後便可減該變化進行 材料4α疋1¾方法尤其可較早發現調試後所出現的會導致設 備產此下降之變化。此點尤指基於太陽能電池發射端介電質 雙層所產生之效應,料介電質雙層個來自於玻璃或封裝 材料之錢離子發生遷移而形成,其成因為玻璃組分(特別 疋驗離子;)又源自EVA封|材料之乙酸影響而具可溶性,該 乙g夂係在水分與紫外、軸射仙下產生。該雙層可根據太陽 099131580 201122506 能電池塗層形態,在社陽賴㈣料彳目接成太陽能發電 機的太陽能模組中產生較小的表觀並聯電阻心(圖句,該等 並聯電阻在阻抗譜中體現為相角變化。 本發明其他技術細節、優點、及特徵,不僅可從申請專利 範圍及其所包含之特徵(單項特徵及/或特徵組合)中獲得,亦 可從下文有關圖式實施例之說明中獲得。 【實施方式】 如圖la及圖2a所示,本發明第一實施例係透過交流電壓 發生器111 ’向多個相接太陽能模組114所構成之陣列的端 子112、113饋入變頻交流電壓。在此,所測得以阻抗冗為 頻率f之函數的阻抗譜100顯示在圖3中,其中各最大值及 最小值的位置表明了相關設計、實施方式、及材料成分之特 徵。如曲線102所示,外部或内部因素所引起之變化,合導 致該阻抗譜發生特徵變化。之所以將阻抗譜所發生之變化歸 因於太陽能電池模組發生變化,其原因在於相關材料對該陣 列等效電路圖中的電容分量C及電感分量L產生影響,電 阻心與!^亦發生變化’參見圖4。其中’ iPH為光電流,iD 為二極體電流,Rs為結合所有能增大總阻值之效果的串聯 電阻,RP為並聯電阻,其象徵結晶缺陷、非理想摻雜分佈、 局部短路、及其他會引起漏電流的材料缺陷,I為總電流強 度,U為電壓。 交流電壓ϋ可介於與2000 V之間,頻率範圍f可介 099131580 11 201122506 於1 kHz與2000 kHz之間。 第二實施例與第-實施例之區別在於,將兩端子短接並對 地量測阻抗譜(圖lb),其包括交流電壓發生器211、端子212 與213·、及多個相接太陽能模組214。由此產生如圖*所示 之頻譜114,其中’相關變化(頻譜115)首先取決於電容攻 漏電流及包含在該路財的電感。此點尤適用於封裝材料内 部由於外部因素與太陽能模組射枝互作用、或在相接太陽 能模組之間作用而出現電導率升高之情形。 圖2a及®I 2b為乡個相接成太陽能發電機之太陽能模組 其他電路圖。 圖2a所不為n個串聯太陽能模組。該料聯太陽能模組 之正極與負極連接在—交流電壓發生器上。如圖孔所示 一逆變器之直流電壓側接有-交流電壓發生器。藉由:: 版至2_版之頻率範_在鮮η個串聯太陽能模組 上施加介於1G V與2 G G G V之間的交流電壓,可測定 鍵之特徵回應剖面,即其__。 且 在該應關巾’ _及/或並賴狀連接材料及連 點,亦為引起阻抗譜變化的影響因素。 圖6展示-阻抗量測裝置的一種實施方式。此裳置基本上 由-用於為太陽能電池模組施加㈣交流電壓的交流= 發生器311、一適當的p且仿旦:目丨爲7 ς ' £ “ 田妁阻抗里測儀315、-適當的相移量測 設備316、及-可定量偵測阻抗譜中所發生之變化的評價邏 099131580 12 201122506 輯電路317所構成。所選阻抗最大值及/或阻抗最小值,按 此方法所測定的頻率位置變化,以及,該等阻抗最大值及/ 或阻抗最小值之相位,由該評價邏輯電路處理成具指標作 用,且可對該等變化予以釋由性視覺化的相應訊號。 將在不同時間點上記錄的量測結果予以儲存、比較,並依 據量測結果間差異對該或該等元件進行材料鑑定或測定其 變化,以此來跟蹤上述變化之發展情況。量測結果間之測定 差異為具指標作用的測得變量。將該測得變量與太陽能模組 之測定功率資料或整個太陽能發電機進行比較,並據此分析 產率與預期不符的原因所在。 在此需指出,「太陽能模組」或「太陽能電池模組」之概 念亦包括多個太陽能電池模組,尤其是,多個相接成太陽能 發電機的太陽能電池模組,反之亦然。 【圖式簡單說明】 圖1 a為多個相接成太陽能發電機之太陽能模組的第一電 路圖。 圖lb為多個相接成太陽能發電機之太陽能模組的第二電 路圖。 圖2a為多個相接成太陽能發電機之太陽能模組的第三電 路圖。 圖2b為多個相接成太陽能發電機之太陽能模組的第四電 路圖。 099131580 13 201122506 圖3為第一阻抗譜。 圖4為一等效電路圖。 圖5為第二阻抗譜。 圖6為量測裝置原理圖。 【主要元件符號說明】 100 阻抗譜 102 曲線 111 交流電壓發生器 112 端子 113 端子 114 太陽能模組;頻譜 115 頻譜 211 交流電壓發生器 212 端子 213 端子 214 太陽能模組 311 父流電壓發生裔 314 半導體元件 315 阻抗量測儀 316 相移量測設備 317 評價邏輯電路 C 電容分量 099131580 14 201122506 f 頻率;頻率範圍 I 總電流強度 Id 二極體電流 ipH 光電流 L 電感分量 RP (並聯)電阻 Rs (串聯)電阻 U (交流)電壓 Z 阻抗 s 099131580 15S 099131580 9 201122506 The county test results can be determined or measured by the county _ or _ domain. Therefore, the difference between the measurement results = the measured variable, which is the above indicator. In the present invention, the method (4) can be used to evaluate and evaluate the material properties of solar panels or solar generators installed outdoors or as a built-in. By the related measures of the first method of the present invention and the flaws of the present invention, the quality of the component after the manufacture, the time, and the operation of the device can be predicted. The essence is that the solar module is excited by an alternating voltage in a wide frequency range of at least 1 _ to 2 ,, and for different material qualities, component defects, aging stages, and the solar power Other features of the set are evaluated in the form of a characteristic of a unique impedance profile (touch sign). The characteristic response profile measured by the device or the solar mode is after the identification of the Wei system (4), and the measurement resistance has at least a characteristic value according to the solution, the characteristic value is related to the solar cell, or the solar energy f pool module, or phase After the solar cell is connected, and the parameter (5) changes, the material can be reduced by 4, and the method of 4α疋13⁄4 can be found earlier, especially after the debugging, which will cause the device to produce a decrease. This point is especially caused by the effect of the dielectric double layer of the emitter of the solar cell. The dielectric dielectric is formed by the migration of money ions from the glass or the encapsulating material, which is formed by the glass component (special test). The ion;) is also derived from the EVA seal | the acetic acid effect of the material is soluble, and the bismuth is produced under water and ultraviolet, and axial emission. The double layer can generate a small apparent parallel resistance core according to the solar cell coating form of the sun 099131580 201122506, in the solar module of the solar power generator of the social Yang Lai (four) material (the picture, the parallel resistance is The phase angle variation is embodied in the impedance spectrum. Other technical details, advantages, and features of the present invention can be obtained not only from the scope of the patent application and the features (single features and/or feature combinations) included in the patent application, but also from the related drawings below. As shown in the following description of the embodiment, the first embodiment of the present invention is a terminal of an array of a plurality of solar modules 114 connected to each other through an alternating current voltage generator 111'. 112, 113 fed into the variable frequency AC voltage. Here, the impedance spectrum 100 measured as a function of the impedance redundancy as a function of frequency f is shown in Figure 3, wherein the positions of the maximum and minimum values indicate the relevant design, implementation, and The characteristics of the material composition. As shown by the curve 102, the change caused by the external or internal factors causes the characteristic change of the impedance spectrum. The reason why the impedance spectrum changes is The reason for the change in the solar cell module is that the related material affects the capacitance component C and the inductance component L in the equivalent circuit diagram of the array, and the resistance core and the ?^ also change 'see Fig. 4, where 'iPH is the photocurrent iD is the diode current, Rs is the series resistance that combines all the effects that can increase the total resistance, and RP is the parallel resistance, which symbolizes crystal defects, non-ideal doping profiles, partial short circuits, and other leakage currents. Material defect, I is the total current intensity, U is the voltage. The AC voltage ϋ can be between 2000 V and the frequency range f can be between 0 kHz and 2000 kHz. The second embodiment and the first implementation The difference is that the two terminals are short-circuited and the impedance spectrum (Fig. 1b) is measured, which includes an AC voltage generator 211, terminals 212 and 213·, and a plurality of connected solar modules 214. The spectrum 114 shown in Figure *, where the 'correlation change (spectrum 115) depends first on the capacitance leakage current and the inductance contained in the road. This is especially true for the interior of the package material due to external factors and solar modules. The interaction between the branches or the interaction between the solar modules causes the conductivity to rise. Figure 2a and ®I 2b are other circuit diagrams of the solar modules connected to the solar generators. Figure 2a is not n series solar modules. The anode and cathode of the material-connected solar module are connected to the AC voltage generator. The DC voltage of the inverter is connected to the AC voltage generator as shown in the figure. : The frequency range of the version to the 2_ version _ applies an alternating voltage between 1G V and 2 GGGV on the fresh η series solar modules, and can measure the characteristic response profile of the key, ie its __. The sealing material ' _ and / or the connection material and the connection point are also the factors that cause the impedance spectrum change. Figure 6 shows an embodiment of an impedance measuring device. This skirt is basically composed of - AC for the application of (four) AC voltage to the solar cell module = generator 311, an appropriate p and imitation: the target is 7 ς ' £ " field impedance meter 315, - Appropriate phase shift measurement equipment 316, and - can be quantitatively detected in the impedance spectrum of the evaluation of the logic 099131580 12 201122506 circuit 317. Selected impedance maximum and / or impedance minimum, according to this method The measured frequency position changes, and the phase of the impedance maximum and/or the impedance minimum, are processed by the evaluation logic circuit into corresponding signals that can be visually visualized by the evaluation logic. The measurement results recorded at different time points are stored, compared, and the materials are identified or measured according to the difference between the measurement results to track the development of the above changes. The difference is measured as a measured variable with an indicator effect. The measured variable is compared with the measured power data of the solar module or the entire solar generator, and the yield and the expected result are not analyzed accordingly. The reason for this is that the concept of "solar module" or "solar battery module" also includes a plurality of solar cell modules, in particular, a plurality of solar cell modules connected to a solar generator, and vice versa. Also. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1a is a first circuit diagram of a plurality of solar modules connected to a solar generator. Figure lb is a second circuit diagram of a plurality of solar modules connected to a solar generator. Figure 2a is a third circuit diagram of a plurality of solar modules connected to a solar generator. Figure 2b is a fourth circuit diagram of a plurality of solar modules connected to a solar generator. 099131580 13 201122506 Figure 3 shows the first impedance spectrum. Figure 4 is an equivalent circuit diagram. Figure 5 is a second impedance spectrum. Figure 6 is a schematic diagram of the measuring device. [Main component symbol description] 100 Impedance spectrum 102 Curve 111 AC voltage generator 112 Terminal 113 Terminal 114 Solar module; Spectrum 115 Spectrum 211 AC voltage generator 212 Terminal 213 Terminal 214 Solar module 311 Parent voltage generation 314 Semiconductor components 315 Impedance Meter 316 Phase Shift Measurement Equipment 317 Evaluation Logic Circuit C Capacitance Component 099131580 14 201122506 f Frequency; Frequency Range I Total Current Intensity Diode Current ipH Photocurrent L Inductance Component RP (Parallel) Resistance Rs (Concatenation) Resistance U (AC) Voltage Z Impedance s 099131580 15