TW201121880A - Method for manufacturing nano-sensor - Google Patents

Method for manufacturing nano-sensor Download PDF

Info

Publication number
TW201121880A
TW201121880A TW98143996A TW98143996A TW201121880A TW 201121880 A TW201121880 A TW 201121880A TW 98143996 A TW98143996 A TW 98143996A TW 98143996 A TW98143996 A TW 98143996A TW 201121880 A TW201121880 A TW 201121880A
Authority
TW
Taiwan
Prior art keywords
plastic substrate
nano
manufacturing
sensing material
nanosensor
Prior art date
Application number
TW98143996A
Other languages
Chinese (zh)
Other versions
TWI399337B (en
Inventor
Chie Gau
Huang-Shao Ko
Hung-Ta Chen
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW98143996A priority Critical patent/TWI399337B/en
Publication of TW201121880A publication Critical patent/TW201121880A/en
Application granted granted Critical
Publication of TWI399337B publication Critical patent/TWI399337B/en

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

A method for manufacturing nano-sensor is provided. The method uses microwaves to heat a nano-material which absorbs the microwaves and generates heat energy to melt a surface of a plastic substrate, so that the nano-material can be tight connected to the plastic substrate for increasing the connection strength of the nano-material. Meanwhile, the microwaves only locally and transiently heat the nano-material under a relatively low heating temperature, so that the nano-sensor can be made of the plastic substrate without softening or bending the plastic substrate.

Description

201121880 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種奈米感測器之製造方法,特別是 關於一種藉由微波處理增加奈米感測材料與塑性基板 表面的結合強度之奈米感測器之製造方法。 【先前技術】 現今,因應奈米科技的進步,許多感測器(sensor)逐 漸採用奈米材料並且加以設計成小型化,這些運用奈米 科技製造的感測器可統稱為奈米感測器。奈米感測器具 備快速、準確、靈敏度高等優點,並可應用在醫療檢測、 防疫、環境檢測、污染控制、電性檢測、食品安全、車 用電子等諸多領域。奈米感測器的種類很多,例如:由 奈米碳管製成之氣味感測器,即奈米鼻,其可用以偵測 有害氣體的濃度以及造成溫室效應和酸雨的二氧化氮 及氨氣等特定氣體;奈米麥克風,是由微機電製程製 作,其能用以探測到分子等級化學反應聲響;或是,奈 米秤,其甚至能用以精確的量秤單一病毒的重量。 現有感測器之製程技術基於產品可靠度與精度的考 量,因此大多採用半導體製程設備來加以製作,其製作 過程中需經過高溫沈積多晶矽薄膜,且於離子佈植後需 再以高溫回火使内部離子達到均勻。由於回火溫度高達 攝氏600至950度,因此僅適合使用矽晶圓或玻璃做為 基板,而無法使用軟性塑膠基板材料或不耐低溫的有機 201121880 奈米感測材料,因此不但造成物料成本過高,且無法^吏 感測器具有可撓性質或設計多樣性。此外,製作時均才λ 用光罩黃光微影技術,加工期間所使用之光罩數量至: 需要5道以上,若依製程步驟而言’更需多達3〇個步 驟以上’因此製程時間冗長’耗費之人力物力成本高昂 另一方面’奈米碳管(carbon nanotube)是一種特殊的 奈米級材料’其具有特異的導電、導熱等物理化學性 質’因此奈米碳管常被應用在有機高分子聚合物基材 上,形成可撓性微機電元件或可撓性奈米感測器。習用 將奈米碳管結合至有機高分子聚合物基材上的加工方 法通常是利用高溫熱熔方式使原本固態的有機高分子 聚合物基材表面熔化而使奈米碳管與基材表面相黏 之後再回復至常溫;或者,亦可利用黏著劑在常溫 下將奈米碳管直接黏著在有機高分子聚合物基材表面 上。然而,就高溫熱熔方式而言,其需要使用相對較高 溫之加熱條件烘烤基材使其表面熔化,因此若烘烤過 度則基材可能會翹曲(warpage)變形。另外,奈米碳管 與基材之間必需具備足夠的界面親和性,否則無法有效 溶接。再者,就黏著劑而言,奈米碳管與黏著劑之間同 樣需具備足夠的界面親和性,且黏著劑的流動會造成齐 米碳管無練預定形狀整齊排列於基材表面上。另外, ^於黏者劑固化後體積會目溶劑揮發而縮減且黏著劑 著==基材表面’因此較難以控制黏著後的黏 者劑體積及其表面平垣度。由於上述接合方式皆容易產 201121880 生奈米碳管分散不均、接合強度不佳、精度控制不易等 問題,而影響奈米碳管應用於微機電元件或奈米感測器 的應用價值。 因此,有必要提供一種奈米感測器之製造方法,以 解決習知技術所存在的問題。 【發明内容】 本發明之主要目的在於提供一種奈米感測器之製造 方法,其係藉由微波處理使奈米感測材料吸收微波後產 生熱能而溶化塑性基板表面’使得奈米感測材料可緊密 結合於塑性基板上,因而有利於提升奈米感測材料的結 合強度、結構穩定性及產品使用壽命。 本發明之次要目的在於提供一種奈米感測器之製造 方法’其中微波處理為局部加熱、加熱溫度相對較低且 加工快速’故不會造成塑性基板軟化翹曲,因而有利於 加速奈米感測器的製程速度及提升奈米感測器的製造 良率,並增加基板的材料選擇多樣性。 本發明之另一目的在於提供一種奈来感測器之製造 方法’其中微波處理之相對較低加熱溫度不會改變或破 壞奈米感測材料的材料結構或其在塑性基板上的預定 排列形狀,且塑性基板可取材自可撓式有機高分子聚合 物’因而有利於增加奈米感測器基板的選擇多樣性、設 計多樣性及尺寸設計精度。 為達上述之目的,本發明提供一種奈米感測器之製 201121880 造方法,其包含步驟:提供一塑性基板;在該塑性基板 之表面形成一圖案化導電層,其具有至少二電極部;將 一奈米感測材料配置於該塑性基板之表面,以連接在二 相鄰該電極部之間;以及,微波加熱該奈米感測材料, 使該奈米感測材料產生熱能熔化該塑性基板之表面,以 結合於該塑性基板。 在本發明之一實施例中,該塑性基板為可撓塑性基 板。201121880 VI. Description of the Invention: [Technical Field] The present invention relates to a method for manufacturing a nano sensor, and more particularly to a method for increasing the bonding strength between a nano sensing material and a plastic substrate surface by microwave processing. The method of manufacturing the meter sensor. [Prior Art] Nowadays, in response to the advancement of nanotechnology, many sensors are gradually adopting nano materials and designed to be miniaturized. These sensors manufactured by Nanotechnology can be collectively referred to as nano sensors. . Nano sensing instruments are fast, accurate, and sensitive, and can be used in medical detection, epidemic prevention, environmental testing, pollution control, electrical testing, food safety, automotive electronics and many other fields. There are many types of nano sensors, such as an odor sensor made of carbon nanotubes, which is a nano nose, which can be used to detect the concentration of harmful gases and nitrogen dioxide and ammonia which cause greenhouse effect and acid rain. Specific gases; nano microphones, made by microelectromechanical processes, can be used to detect molecular-level chemical reactions; or nanoscales, which can even be used to accurately weigh the weight of a single virus. The process technology of the existing sensor is based on the consideration of product reliability and precision. Therefore, most of the semiconductor process equipment is used for fabrication. In the process of production, a polycrystalline germanium film is required to be deposited at a high temperature, and the high temperature tempering is required after ion implantation. The internal ions are uniform. Since the tempering temperature is as high as 600 to 950 degrees Celsius, it is only suitable for using silicon wafers or glass as a substrate, and it is not possible to use soft plastic substrate materials or low temperature resistant organic 201121880 nano sensing materials, thus not only causing material cost High, and can not be used for sensory flexibility or design diversity. In addition, the lithography yellow lithography technology is used at the time of production, and the number of reticle used during processing is as follows: 5 or more is required, and if the process steps are more than 3 steps, the process time is long. 'The cost of human and material costs is high. On the other hand, carbon nanotubes are a special kind of nano-materials that have specific physical and chemical properties such as electrical conductivity and thermal conductivity. Therefore, carbon nanotubes are often used in organic A flexible microelectromechanical element or a flexible nanosensor is formed on the polymer substrate. The conventional method for bonding a carbon nanotube to an organic polymer polymer substrate is usually to melt the surface of the original solid organic polymer substrate by a high-temperature hot melt method to form a surface of the carbon nanotube and the substrate. After the adhesion, the surface is returned to the normal temperature; or the carbon nanotubes may be directly adhered to the surface of the organic polymer polymer substrate by using an adhesive at a normal temperature. However, in the case of the high-temperature hot-melt method, it is necessary to bake the substrate to be melted using a relatively high-temperature heating condition, so that if the baking is excessive, the substrate may be warpage-deformed. In addition, there must be sufficient interfacial affinity between the carbon nanotubes and the substrate, otherwise it will not be effectively dissolved. Furthermore, in the case of an adhesive, the carbon nanotubes and the adhesive need to have sufficient interfacial affinity, and the flow of the adhesive causes the aligned carbon nanotubes to be arranged in a neatly arranged shape on the surface of the substrate. In addition, after the adhesive is cured, the volume of the solvent is volatilized and reduced, and the adhesive agent == surface of the substrate. Therefore, it is difficult to control the volume of the adhesive after adhesion and the smoothness of the surface. Because the above-mentioned joining methods are easy to produce 201121880, the carbon nanotubes are unevenly dispersed, the joint strength is not good, and the precision control is not easy, and the application value of the carbon nanotubes applied to the MEMS element or the nano sensor is affected. Therefore, it is necessary to provide a method of manufacturing a nano sensor to solve the problems of the prior art. SUMMARY OF THE INVENTION The main object of the present invention is to provide a method for manufacturing a nanometer sensor, which is characterized in that the nanometer sensing material absorbs microwaves and generates heat energy to dissolve the surface of the plastic substrate by microwave processing, so that the nano sensing material is made. It can be tightly bonded to the plastic substrate, which is beneficial to enhance the bonding strength, structural stability and product life of the nano sensing material. A secondary object of the present invention is to provide a method for manufacturing a nano sensor, in which microwave treatment is local heating, heating temperature is relatively low, and processing is fast, so that the plastic substrate is not softened and warped, thereby facilitating acceleration of the nanometer. The process speed of the sensor and the manufacturing yield of the nano sensor are increased, and the material selection diversity of the substrate is increased. Another object of the present invention is to provide a method for manufacturing a Neil sensor wherein the relatively low heating temperature of the microwave treatment does not change or destroy the material structure of the nano sensing material or its predetermined arrangement shape on the plastic substrate. And the plastic substrate can be obtained from the flexible organic polymer polymer', thereby facilitating the selection diversity, design diversity and dimensional design accuracy of the nano sensor substrate. In order to achieve the above object, the present invention provides a method for manufacturing a nano sensor, which comprises the steps of: providing a plastic substrate; forming a patterned conductive layer on the surface of the plastic substrate, having at least two electrode portions; Configuring a nanometer sensing material on a surface of the plastic substrate to be connected between two adjacent electrode portions; and microwave heating the nano sensing material to cause the nano sensing material to generate thermal energy to melt the plasticity The surface of the substrate is bonded to the plastic substrate. In an embodiment of the invention, the plastic substrate is a flexible plastic substrate.

在本發明之一實施例中,該塑性基板之熔點小於該 奈米感測材料之結構轉變溫度。 +在本發明之一實施例中,該塑性基板之材質選自聚 對苯二甲酸乙二醇酯(PET)、聚碳酸酯(pc)、尼龍 66(Nylon 66)、聚曱基丙烯酸曱酯(PMMA)或聚丙烯 心在本太發Γ之―實施例+,該奈减Μ料包含奈米 Β '丁、米線或奈米柱之奈米結構。 在本發日月之-實施例中,關案㈣電層之材質為 金、銘、銀膠或氧化銦錫。 在本發明之-實施例中,在形成該_案化導電層 ,八包含:在該塑性基板之表面形成〜第〜 對該第-纽層進行目案化;於該圖案、 :裸:的該塑性基板之表面上形成該第 及,去除該第—光阻層。 t導電層’以 在本發明之—實施例中,在配置該奈米感測材料 201121880 時’其包含:在該塑性基板之表面形成一第二光阻層; 對該第二光阻層進行圖案化;以及,於該圖案化之第二 光阻層所裸露的該塑性基板及電極部之表面上塗佈該 奈米感測材料。 在本發明之一實施例中,在塗佈該奈米感測材料 後’選擇去除或保留該第二光阻層。 在本發明之一實施例中,在該奈米感測材料結合於 該塑性基板之表面後,另形成一絕緣保護層於該奈米感 測材料、該圖案化導電層及該塑性基板之上。 在本發明之一實施例中,該絕緣保護層之材質選自 環氧樹酯(epoxy)、苯環丁烯(benzocyclobutene,BCB)、 聚酿亞胺(polyimide,PI)或聚曱基丙烯酸甲酯(pmmA)。 另一方面’本發明提供另一種奈米感測器之製造方 法,其包含步驟:提供一第一塑性基板;在該第一塑性 基板之表面形成一圖案化導電層,其具有至少二電極 部;將一奈米感測材料配置於該第一塑性基板之表面, 以連接在二相_電極部之間;微波加熱該奈城測材 料’使該奈米感測材料產生熱能熔化該第一塑性基板之 表面’以結合於該第—塑性基板;形成_絕緣保護層於 該奈米感測材料、該圖案化導電層及該第一塑性基板之 上;以及,在該絕緣保護層上形成至少一第二塑性基 板,其内部具有至少—腔室。 在本發明之一實施例中,該第一塑性基板之熔點小 於該奈米感測材料之結構轉變溫度。 201121880 在本發明之一實施例中,該第一塑性基板之材質選 自聚對^ —甲酸乙二醇醋(PET)、聚碳酸醋(Pc)、尼龍 66(Nyl〇n 66)、聚甲基丙烯酸甲酯(PMMA)哎平尤& (PP)。 取丙稀 【實施方式】 為了讓本發明之上述及其他目的、特徵、優點能更 明顯易懂,下文將特舉本發明較佳實施例,並配合^附 圖式,作詳細說明如下。 、 請參照第1A至1J圖所示,本發明第一實施例之奈 米感測器之製造方法主要包含下列步驟:提供一塑性二 板1 ;在該塑性基板1之表面形成一圖案化導電層 其具有至少一電極部21 ;將一奈米感測材料3配置於 該塑性基板1之表面,以連接在二相鄰該電極部21 ^ 間;微波加熱該奈米感測材料3,使該奈米感測材料3 • 產生熱能熔化該塑性基板1之表面,以結合於該塑性基 板1;以及,形成一絕緣保護層4於該奈米感測材料 該圖案化導電層2及該紐基板丨之上。本發明將於下 文利用第1A至1J圖詳細說明上述製造方法之各個步驟 及奈米感測器各層構造,其中各圖所繪示之尺寸僅係用 以清楚示意各層之構造及排列關係,其繪示之尺寸並非 用以限制實際各層之長寬尺寸、厚度比例或表面_ 度,於此合先敘明。 請參照第1A圖所示,本發明第一實施例之奈米感 201121880 測器之製造方法第一步驟係:提供一塑性基板1。在本 步驟中,該塑性基板1之材質選擇必需符合其熔點小於 該奈米感測材料3之結構轉變溫度,以免後續熔化該塑 性基板1時破壞該奈米感測材料3之結構,其中該結構 轉變溫度依該奈米感測材料3之材質不同可能係指熔 點、玻璃轉化溫度、熱變形溫度、汽化點或分解溫度等。 在本實施例中,該塑性基板1較佳係選自各種有機高分 子聚合物,特別是可透光之有機高分子聚合物,咖如: 聚對苯二曱酸乙二醇醋(polyethylene terephthalate, PET ’ 溶點約 225 至 265°C)、聚碳酸醋(polycarbonate, PC,熔點約220至230°C)、尼龍66(Nylon 66,溶點約 225至265°C)、聚曱基丙烯酸甲酯(p〇iymethyi methacrylate,PMMA,熔點約 160oC)或聚丙烯 (polypropylene,PP,熔點約 148 至 176〇C)等。依奈米 感測器產品需求’該塑性基板1更可選自上述材質製成 之可撓塑性基板,以使最終製得之奈米感測器具有可撓 性。 3月參照第1B、1C、1D及1E圖所示,本發明第一實 施例之奈米感測器之製造方法第二步驟係:在該塑性基 板1之表面形成一圖案化導電層2,其具有至少二電極 部21。在本實施例中,本發明形成該圖案化導電層2 之步驟較佳包含:在該塑性基板1之表面形成一第一光 阻層1卜其可選自正型或負型液態光阻劑(ph〇t_ist) 或乾膜(dry film);對該第一光阻層u進行光罩曝光及 201121880 顯影液顯影等圖案化製程’以去除一部分的該第一光阻 層11;利用電鍍、無電電鍍、蒸鍍、濺鍍或印刷等方 式於該圖案化之第一光阻層U所裸露的該塑性基板1 之表面上形成該圖案化導電層2,其中該圖案化導電層 2之材質可以選自銅、金、紹、銀膠(snver paste)或氧化 銦錫(ITO);以及’去除該第一光阻層u,如此即可形 成該圖案化導電層2,其通常具有至少二電極部21,以 便做為後續奈米感測器之正極與負極。在另一實施例 中,本發明亦可能選用異方性導電膜(anis〇tr〇pic conductive film,ACF),此時僅需將具有適當形狀之異 方性導電膜直接貼附於該塑性基板丨之表面上,即可做 為該圖案化導電層2。 請參照第IF、1G及1H圖所示,本發明第一實施例 之奈米感測器之製造方法第三步驟係:將—奈米感測材 料3配置於該塑性基板丨之表面,以連接在二相鄰該電 極21之間。在本發明中’奈米感測材料係指其材料 粉末粒徑的分佈範圍大部分在奈米等級之間(ΐχΐ〇_9至 9·99χ1〇 )的感測材料。在本實施例中,該奈米感測材 料3較佳包含奈米管、奈米線或奈米柱之結構,例如夺 j管’或是由氧轉或氧化鈦卿叙奈㈣或奈米 等結構’上述奈米結構具有特殊材料特性,例如優異 之溫度電阻特性、|力阻抗特性、導電 特性等。然而,該奈米感測材料3亦可能取材 推雜或未摻雜之有機或無機奈米級材料,以及可 201121880 能是其他奈米結構 奈米感測材料λ +〜、。在本實施例中,本發明配置該 面形成-第二包含:在該塑性基板w 阻劑或乾膜,例^ττ 可選自正型或負型液態光In one embodiment of the invention, the plastic substrate has a melting point that is less than a structural transition temperature of the nano-sensing material. In an embodiment of the invention, the material of the plastic substrate is selected from the group consisting of polyethylene terephthalate (PET), polycarbonate (pc), nylon 66 (Nylon 66), and polydecyl methacrylate. (PMMA) or polypropylene core is too ambiguous - Example +, the nano-reducing material contains the nano structure of nano-', rice or nano column. In the embodiment of the present invention, the material of the circuit (4) is gold, inscription, silver paste or indium tin oxide. In the embodiment of the present invention, in forming the patterned conductive layer, eight comprises: forming a surface on the surface of the plastic substrate to smear the first-new layer; in the pattern, : bare: The first surface is formed on the surface of the plastic substrate, and the first photoresist layer is removed. The t conductive layer 'in the embodiment of the present invention, when the nano sensing material 201121880 is disposed', comprises: forming a second photoresist layer on the surface of the plastic substrate; performing the second photoresist layer on the second photoresist layer Patterning; and coating the nano-sensing material on the surface of the plastic substrate and the electrode portion exposed by the patterned second photoresist layer. In one embodiment of the invention, the second photoresist layer is selectively removed or retained after coating the nano-sensing material. In an embodiment of the invention, after the nano sensing material is bonded to the surface of the plastic substrate, an insulating protective layer is further formed on the nano sensing material, the patterned conductive layer and the plastic substrate. . In an embodiment of the invention, the material of the insulating protective layer is selected from the group consisting of epoxy, benzocyclobutene (BCB), polyimide (PI) or polyacrylic acid. Ester (pmmA). In another aspect, the present invention provides a method for manufacturing a nano sensor, comprising the steps of: providing a first plastic substrate; forming a patterned conductive layer on the surface of the first plastic substrate, having at least two electrode portions Configuring a nanometer sensing material on a surface of the first plastic substrate to be connected between the two-phase electrode portions; and microwave heating the nano-test material to cause the nano-sensing material to generate thermal energy to melt the first Forming a surface of the plastic substrate to the first plastic substrate; forming an insulating protective layer on the nano sensing material, the patterned conductive layer and the first plastic substrate; and forming on the insulating protective layer At least one second plastic substrate having at least a chamber therein. In one embodiment of the invention, the melting point of the first plastic substrate is less than the structural transition temperature of the nano sensing material. In an embodiment of the present invention, the material of the first plastic substrate is selected from the group consisting of polyethylene terephthalate (PET), polycarbonate (Pc), nylon 66 (Nyl〇n 66), and polymethylation. Methyl methacrylate (PMMA) 哎 尤 & (PP). EMBODIMENT OF THE INVENTION The above and other objects, features and advantages of the present invention will become more apparent and understood. Referring to FIGS. 1A to 1J, the manufacturing method of the nanosensor of the first embodiment of the present invention mainly comprises the following steps: providing a plastic two-plate 1; forming a patterned conductive layer on the surface of the plastic substrate 1. The layer has at least one electrode portion 21; a nanometer sensing material 3 is disposed on the surface of the plastic substrate 1 to be connected between the two adjacent electrode portions 21; microwave heating the nano sensing material 3, so that The nano sensing material 3 • generates thermal energy to melt the surface of the plastic substrate 1 to be bonded to the plastic substrate 1; and an insulating protective layer 4 is formed on the nano-sensing material, the patterned conductive layer 2 and the new Above the substrate. The present invention will be described in detail below with reference to FIGS. 1A to 1J for the steps of the above-described manufacturing method and the structure of each layer of the nanosensor, wherein the dimensions shown in the drawings are only for clearly indicating the structure and arrangement of the layers. The dimensions shown are not intended to limit the length and width dimensions, thickness ratios or surface _ degrees of the actual layers, as described above. Referring to FIG. 1A, the first step of the manufacturing method of the nano-sensing 201121880 detector of the first embodiment of the present invention is to provide a plastic substrate 1. In this step, the material of the plastic substrate 1 must be selected to meet the structure transition temperature of the nanometer sensing material 3, so as to prevent the structure of the nano-sensing material 3 from being destroyed when the plastic substrate 1 is subsequently melted. The structural transition temperature may refer to a melting point, a glass transition temperature, a heat distortion temperature, a vaporization point, or a decomposition temperature depending on the material of the nano sensing material 3. In this embodiment, the plastic substrate 1 is preferably selected from various organic high molecular polymers, especially light transmissive organic high molecular polymers, such as: polyethylene terephthalate. , PET 'melting point about 225 to 265 ° C), polycarbonate (PC, melting point about 220 to 230 ° C), nylon 66 (Nylon 66, melting point about 225 to 265 ° C), polyacrylic acid Methyl ester (p〇iymethyi methacrylate, PMMA, melting point about 160oC) or polypropylene (PP, melting point about 148 to 176〇C). Inami sensor product requirements 'The plastic substrate 1 can be further selected from a flexible plastic substrate made of the above materials to make the nano sensor finally obtained flexible. Referring to FIGS. 1B, 1C, 1D and 1E, the second step of the method for manufacturing a nanosensor according to the first embodiment of the present invention is to form a patterned conductive layer 2 on the surface of the plastic substrate 1. It has at least two electrode portions 21. In this embodiment, the step of forming the patterned conductive layer 2 of the present invention preferably comprises: forming a first photoresist layer 1 on the surface of the plastic substrate 1, which may be selected from a positive or negative liquid photoresist. (ph〇t_ist) or a dry film; a patterning process such as mask exposure and 201121880 developer development for the first photoresist layer u to remove a portion of the first photoresist layer 11; using electroplating, Forming the patterned conductive layer 2 on the surface of the plastic substrate 1 exposed by the patterned first photoresist layer U by electroless plating, evaporation, sputtering or printing, wherein the patterned conductive layer 2 is made of a material It may be selected from copper, gold, gold, silver paste or indium tin oxide (ITO); and 'removing the first photoresist layer u, thus forming the patterned conductive layer 2, which usually has at least two The electrode portion 21 serves as a positive electrode and a negative electrode of the subsequent nano sensor. In another embodiment, an anisotropic conductive film (ACF) may also be used in the present invention. In this case, only an anisotropic conductive film having a proper shape needs to be directly attached to the plastic substrate. On the surface of the crucible, the patterned conductive layer 2 can be used. Referring to the figures IF, 1G, and 1H, the third step of the method for manufacturing the nanosensor of the first embodiment of the present invention is: arranging the nano sensing material 3 on the surface of the plastic substrate Connected between two adjacent electrodes 21. In the present invention, the 'nano sensing material refers to a sensing material whose particle size distribution of the material is mostly between nanometer grades (ΐχΐ〇_9 to 9.99χ1〇). In this embodiment, the nano sensing material 3 preferably comprises a structure of a nanotube, a nanowire or a nanocolumn, such as a tube, or an oxygen-transferred or titanium oxide crystal (n) or nanometer. The structure of the above structure has special material properties such as excellent temperature resistance characteristics, | force resistance characteristics, and electrical conductivity characteristics. However, the nano-sensing material 3 may also be obtained by pushing or undoping organic or inorganic nano-scale materials, and may be other nanostructure nano-sensing materials λ +~. In this embodiment, the present invention configures the surface formation - the second comprises: a resist or a dry film on the plastic substrate, wherein the ^ττ can be selected from positive or negative liquid light.

進行光罩曝光_8光阻劑;對該第二光阻層12 感測材料3,並將顯料圖案化製程;準備該奈米 將上述該太4於水、有機溶液或無機溶液中; 二綠層:所=3之溶液滴定至該㈣ 之部份表面上,:二塑性基板1之表面及電極部21 面;以及,、使m崎料3㈣塗佈於該表 除溶液中的供烤方式進行乾燥處理,以去 骖明可祆:& 在70成配置該奈米感測材料3後,本 綱!=感要:器產/需求選擇去除或保留該第二 上快乾膠^ 在該奈米感測材料3上先滴 ^膠麵氧科1提供好包_裝之保護結 構。Performing a reticle exposure _8 photoresist; sensing the material 3 on the second photoresist layer 12, and patterning the material; preparing the nano in the water, the organic solution or the inorganic solution; a two-green layer: the solution of the =3 is titrated to a part of the surface of the (4), the surface of the second plastic substrate 1 and the surface of the electrode portion 21; and, for the application of the m-substrate 3 (four) in the surface removal solution Drying treatment in the baking method to remove the 骖 祆 祆: & After configuring the nano sensing material 3 in 70%, this class!= Sense: The product/demand selection removes or retains the second upper quick-drying glue ^ On the nano-sensing material 3, the first drop of the rubber surface oxygen 1 provides a good package _ installed protective structure.

U圖所示’本發明第—實施例之奈米感測 Ά方法第四步驟係:微波加熱該奈米感測材料 3使該奈米感測材料3產生熱能熔化該塑性基板1之 表面’以結合於·性基板丨。在本實_中,該微波 加",、使用的微波是指頻率為300 MHz至300 GHz的電 磁波亦即波長在1米到1亳米之間的電磁波,工業上 常用的微波頻率則為433 MHz、915 MHz、2.45 GHz、 58 GHz ' 22.125 GHz等。微波加熱是由於該奈米感測 材料3之電導損耗造成的結果。本發明可依該奈米感測 12 201121880 材料3及該塑性基板1之好 功率值及加熱時間等參數 / ^ _㈣波頻率、 之材質的㈣係㈣為切該奈㈣ 基^ 結構轉變溫度,林發日^^^化點或分解溫度等 到使該奈米感賴3 =,相關參數亦需控制The fourth step of the nanometer sensing enthalpy method of the first embodiment of the present invention is as follows: microwave heating the nano sensing material 3 causes the nano sensing material 3 to generate thermal energy to melt the surface of the plastic substrate 1 To bond to the substrate. In the present embodiment, the microwave is used to refer to electromagnetic waves having a frequency of 300 MHz to 300 GHz, that is, electromagnetic waves having a wavelength of between 1 m and 1 m. The microwave frequency commonly used in the industry is 433 MHz, 915 MHz, 2.45 GHz, 58 GHz ' 22.125 GHz, etc. Microwave heating is a result of the conductance loss of the nano sensing material 3. According to the present invention, according to the nanometer sensing 12 201121880 material 3 and the plastic substrate 1 good power value and heating time parameters / ^ _ (four) wave frequency, the material of the (four) system (four) is the cut (n) base structure transition temperature, Lin Fari ^^^化点 or decomposition temperature wait until the nano-sensitivity 3 =, the relevant parameters also need to be controlled

:1之表面’但卻不致於造成該奈米感測材料: 構㈣化、軟化、汽化或分解。 ==ΓΓ熱取材自奈米碳管之= 材料如此可以輕易使該奈米感測材料3產生足以溶 ^該塑性基板1表面的高溫,該加熱 板1之㈣來做設計,例如控制在瞬間加熱數秒 150至蒙左右’但並不限於此。在本實施例中,為 了:免高溫造成奈米感測器其他部位的結構:二 加熱溫度^佳狀為僅高於該舰基…找點約5至 °如第11圖所示,在微波瞬間加熱時, 感測材料3(奈米碳管)的微波加熱特性及其 與該塑性基板熱導障礙,該奈《測材料3產 生之熱能㈣間熔化該塑性基板1之表面,因而形成了 -=結合面A,使該奈米感測材料3緊密的結合於該 J性基板1而不會分離剝落。當該塑性基板i為可撓塑 ^基板時’即使該塑性基板!受到外力作㈣挽曲,結 °在熔接結合面A上的奈米感測材料3也不致於發生 分離剝落的缺陷。 13 201121880 請參照第1J圖所示,本發明第一實施例之奈米感測 器之製造方法第五步驟係:形成一絕緣保護層4於該奈 米感測材料3、該圖案化導電層2及該塑性基板1之上。 本步驟係可依奈米感測器產品需求選擇實施或不實 施。在本實施例中,該絕緣保護層4之材質較佳選自環 氧樹酯(epoxy)、苯環丁烯(benzocyclobutene,BCB)、聚 醜亞胺(polyimide,PI)或聚甲基丙稀酸曱酯(PMMA), 但並不限於此。該絕緣保護層4主要覆蓋於該奈米感測 材料3及該圖案化導電層2上,以隔絕水氣及提高結構 穩定度,進而保護該奈米感測材料3及圖案化導電層2 之結構不受到外物碰撞接觸或不致氧化變質。在其他實 施方式中,本發明亦可在不影響檢測的情況下使用其他 保護構造’例如將第11圖之奈米感測器半成品封裝在 一具有透明玻璃蓋板之氣密式封裝構造(hermeticThe surface of :1 does not cause the nano-sensing material: structure (four), softening, vaporization or decomposition. ==ΓΓ热取材from the carbon nanotubes = The material can easily make the nano-sensing material 3 produce a high temperature enough to dissolve the surface of the plastic substrate 1, the heating plate 1 (4) to design, for example, control in an instant Heating for a few seconds 150 to the left and right 'but not limited to this. In this embodiment, in order to: avoid the high temperature caused by the structure of other parts of the nano sensor: the heating temperature is preferably only higher than the ship base ... find a point of about 5 to ° as shown in Fig. 11, in the microwave When heated instantaneously, the microwave heating characteristic of the sensing material 3 (nanocarbon tube) and its thermal conduction barrier with the plastic substrate, the heat energy generated by the measuring material 3 (4) melts the surface of the plastic substrate 1, thus forming a surface -= Bonding surface A, the nano sensing material 3 is tightly bonded to the J-shaped substrate 1 without separation and peeling. When the plastic substrate i is a flexible substrate, even the plastic substrate! Under the external force (4), the nano-sensing material 3 on the fusion bonding surface A does not suffer from the separation and peeling defects. 13 201121880 Please refer to FIG. 1J, the fifth step of the manufacturing method of the nano sensor of the first embodiment of the present invention is: forming an insulating protective layer 4 on the nano sensing material 3, the patterned conductive layer 2 and above the plastic substrate 1. This step can be implemented or not implemented based on the Neil sensor product requirements. In this embodiment, the material of the insulating protective layer 4 is preferably selected from the group consisting of epoxy, benzocyclobutene (BCB), polyimide (PI) or polymethyl propylene. Butyl ester (PMMA), but is not limited thereto. The insulating protective layer 4 mainly covers the nano sensing material 3 and the patterned conductive layer 2 to insulate moisture and improve structural stability, thereby protecting the nano sensing material 3 and the patterned conductive layer 2 The structure is not subject to contact by foreign objects or oxidative deterioration. In other embodiments, the present invention may also use other protective structures without affecting detection. For example, the nanosensor of Figure 11 is packaged in a hermetic package with a transparent glass cover (hermetic).

Package ’未繪示)内,其同樣可提供保護效果。在覆蓋 該絕緣保護層4或完成該氣密式封裝構造後,本發明即 可完成該奈米感測H的製做。在本實施财,第1;圖 的奈米感測H成品係—溫度❹核之奈米感測器,但並 不限於此。 :月參照第2A至2E圖所示,本發明第二實施例之夸 器之製造方法係相似於本發明第-實施例,但該 第了實施例之奈米―器之製造方法係進—步涉及感 ’貝’器半成之倒置與塑性基板之堆疊設置,該方含 下列㈣«塑性基板1;在該第—塑性基板 201121880 '之表:形成一圖案化導電層2,其具有至少二電極部 冬奈米感測材料3配置於該第一塑性基板1之表 面威以連接在二相鄰該電極部21之間;微波加熱該奈 米$领材料3,使該奈米感測材料3產生熱能熔化該第 一塑性基板1之表面,以結合於該第一塑性基板丨;形 成、、邑緣保護層4於該奈米感測材料3、該圖案化導電 層2及該第-塑性基板丨之上;以及,在該絕緣保護層 4上形成至少一第二塑性基板5,其内部具有至少一腔 室51 〇 如第2A、2B、2C及2D圖所示,該第二實施例之前 四個主要步驟係實質相同於第一實施例。接著,如第 2D圖所示,在微波加熱該奈米感測材料3時,該第一 塑性基板1之材質的熔點係控制為小於該奈米感測材 料3之熔點、玻璃轉化溫度、熱變形溫度、汽化點或分 解:度等結構轉變溫度,而本發明的微波加熱相關參數 亦需控制到使該奈米感測材料3產生的熱能可以炼化 該第塑性基板1之接觸表面,但卻不致於造成該奈米 感測材料3本身結構的熔化、軟化、汽化或分解。例如, 本發明同樣可以選用2.45 GHz微波來瞬間加熱取材自 奈米碳管之奈米感測材料3,如此可以輕易使該奈米感 ,則材料3產生足以炼化該第—塑性基板^表面的高溫, 該加熱溫度係依該第一塑性基板丨之熔點來做設計,例 如控制在瞬間加熱數秒鐘至約15〇至3〇〇〇(:左右,但並 不限於此《在微波瞬間加熱時,該奈米感測材料3產生 15 201121880 之熱能將瞬間熔化該第一塑性基板丨之表面,因而形成 了 一熔接結合面A,使該奈米感測材料3緊密的結合於 該第一塑性基板1而不會分離剝落。 接著,如第2E圖所示,在本實施例中,該絕緣保護 層4之材質較佳選自環氧樹酯、苯環丁烯(BCB)、聚醯 亞胺(PI)或聚曱基丙烯酸甲醋(PMMA),但並不限於 此。該第一塑性基板5之材質實質相同於該第一塑性基 板1之材質’例如聚對苯二曱酸乙二醇g旨(ΡΕτ)、聚碳 酸酯(PC)、尼龍66(Nylon 66)、聚曱基丙烯酸曱酯 (PMMA)或聚丙烯(PP)等可撓塑性材質,且該第二塑性 基板5可以是由數層相同或不同之材料所堆疊而成,如 此可方便在該第二塑性基板5内部形成至少一腔室 51 ’該腔室51對位於該奈米感測材料3所在位置。在 本實施例中,本發明係在微波加熱步驟之後才配置該第 一塑性基板5 ’但亦可《b改為在微波加熱步驟之前實施 即預先配置該第一塑性基板5。如此,即可製得具有該 腔至51之奈米感測器。在本實施例中,該第一塑性夷 板1之厚度相對較薄並具有可撓特性,且第2£及3圖 的奈米感測器成品係做為一壓力感測用之奈米感測 器,該腔室51係一密閉壓力腔室,但並不限於此。 如上所述,相較於習用奈米感測器之製程技術大多 才木用半導體高溫製程而無法使用軟性塑膠基板材料或 不耐低溫的有機奈米感測材料等缺點,第1A至3圖之 本發明藉由微波處理使該奈米感測材料3吸收微波後 201121880 產生熱能而溶化該塑性基板1 (或該絕緣保護層4)表 面’使得該奈米感測材料3得以緊密結合於該塑性基板 1表面’因而確實有利於提升該奈米感測材料3的結合 強度、結構穩定性及產品使用壽命。再者’本發明製程 中不需或僅少k步驟使用半導體製程設備,而採用之基 板不受限於矽晶圓或玻璃,並可使用可撓塑性基板。此 外,本發明製程步驟與傳統之技術相比,可減少許多沈 積、回火與蝕刻之步驟。而且,由於微波處理為局部加 熱、加熱溫度相對較低且加工快速’故不會造成該塑性 基板1軟化翹曲,因而亦有利於加速奈米感測器的製程 速度及提升奈米感測器的製造良率’並增加基板的材料 選擇多樣性。另外’由於微波處理之相對較低加熱溫度 不會改變或破壞該奈米感測材料3的材料結構或其在 該塑性基板1上的預定排列形狀’且該塑性基板1可取 材自可撓式有機高分子聚合物,故亦可增加該奈米感測 材料3之選擇多樣性、設計多樣性及尺寸設計精度。 雖然本發明已以較佳實施例揭露,然其並非用以限 制本發明,任何熟習此項技藝之人士,在不脫離本發明 之精神和範園内’當可作各種更動與修飾,因此本發明 之保護範園當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 第1Aj_ 1J圖:本發明第一實施例之奈米感測器之 製造方法之流程示意圖。 17 201121880 第2A至2E圖:本發明第二實施例之奈米感測器之 製造方法之流程示意圖。 第3圖:本發明第二實施例之奈米感測器之顯微照 相圖。 【主要元件符號說明】 1 塑性基板 11 第一光阻層 12 第二光阻層 2 圖案化導電層 21 電極部 3 奈米感測材料 4 絕緣保護層 5 第二塑性基板 51 腔室 A 溶接結合面Within Package ‘not shown, it also provides protection. After covering the insulating protective layer 4 or completing the hermetic packaging structure, the present invention can complete the fabrication of the nano sensing H. In the present embodiment, the nanometer of Fig. 1 senses the nano sensor of the H-system-temperature nucleus, but is not limited thereto. Referring to FIGS. 2A to 2E, the manufacturing method of the quarter according to the second embodiment of the present invention is similar to the first embodiment of the present invention, but the manufacturing method of the nano-device of the first embodiment is incorporated. The step involves the stacking of the semi-inverted and the plastic substrate of the 'beauty', the square comprising the following (4) «plastic substrate 1; in the table of the first plastic substrate 201121880': forming a patterned conductive layer 2 having at least The two-electrode portion of the winter nano sensing material 3 is disposed on the surface of the first plastic substrate 1 to be connected between the two adjacent electrode portions 21; the microwave heats the nano-neck material 3 to make the nano sensing The material 3 generates thermal energy to melt the surface of the first plastic substrate 1 to be bonded to the first plastic substrate 丨; forming, the edge protection layer 4 on the nano sensing material 3, the patterned conductive layer 2, and the first Forming at least one second plastic substrate 5 on the insulating protective layer 4, having at least one chamber 51 therein, as shown in Figures 2A, 2B, 2C and 2D, the second The four main steps before the embodiment are substantially the same as the first embodiment. Next, as shown in FIG. 2D, when the nano sensing material 3 is heated by microwaves, the melting point of the material of the first plastic substrate 1 is controlled to be smaller than the melting point, glass transition temperature, and heat of the nano sensing material 3. Deformation temperature, vaporization point or decomposition: degree of structural transformation temperature, and the microwave heating related parameters of the present invention are also controlled so that the thermal energy generated by the nano sensing material 3 can refine the contact surface of the first plastic substrate 1, but However, it does not cause melting, softening, vaporization or decomposition of the structure of the nano sensing material 3. For example, the present invention can also use 2.45 GHz microwave to instantaneously heat the nano sensing material 3 obtained from the carbon nanotubes, so that the nano-sensing can be easily obtained, and the material 3 is generated enough to refine the surface of the first plastic substrate. The high temperature is designed according to the melting point of the first plastic substrate, for example, controlled to be heated for a few seconds to about 15 〇 to 3 〇〇〇 (:, but not limited to, "instantaneous heating in the microwave" When the nanometer sensing material 3 generates 15 201121880, the thermal energy will instantaneously melt the surface of the first plastic substrate, thereby forming a fusion bonding surface A, so that the nano sensing material 3 is tightly coupled to the first In the present embodiment, the material of the insulating protective layer 4 is preferably selected from the group consisting of epoxy resin, benzocyclobutene (BCB), and polyfluorene. Imine (PI) or polyacrylic acid methyl vinegar (PMMA), but is not limited thereto. The material of the first plastic substrate 5 is substantially the same as the material of the first plastic substrate 1 'for example, polyethylene terephthalate B Glycol g (ΡΕτ), polycarbonate (PC), a flexible plastic material such as Nylon 66, styrene acrylate (PMMA) or polypropylene (PP), and the second plastic substrate 5 may be formed by stacking several layers of the same or different materials. Thus, at least one chamber 51' can be conveniently formed inside the second plastic substrate 5. The chamber 51 is located at the position of the nano sensing material 3. In the present embodiment, the present invention is configured after the microwave heating step. The first plastic substrate 5' may be replaced by "b" before the microwave heating step, that is, the first plastic substrate 5 is pre-configured. Thus, a nanometer sensor having the cavity to 51 can be obtained. In the embodiment, the first plastic panel 1 is relatively thin and has flexible properties, and the nano sensor of the second and third graphs is used as a nanometer sensor for pressure sensing. The chamber 51 is a closed pressure chamber, but is not limited thereto. As described above, the process technology of the conventional nanometer sensor is mostly used for the semiconductor high temperature process, and the flexible plastic substrate material cannot be used or Shortcomings such as low temperature resistant organic nano sensing materials, 1A to 3 The present invention dissolves the surface of the plastic substrate 1 (or the insulating protective layer 4) by generating heat energy after the nano sensing material 3 absorbs microwaves by microwave processing, so that the nano sensing material 3 is tightly bonded to the nano sensing material 3 The surface of the plastic substrate 1 is thus beneficial to enhance the bonding strength, structural stability and product life of the nano-sensing material 3. Furthermore, the semiconductor process equipment is not required or only used in the process of the invention. The substrate is not limited to germanium wafer or glass, and a flexible plastic substrate can be used. In addition, the process steps of the present invention can reduce many deposition, tempering and etching steps compared to conventional techniques. Local heating, relatively low heating temperature and fast processing 'will not cause the plastic substrate 1 to soften and warp, which is also beneficial to accelerate the processing speed of the nano sensor and improve the manufacturing yield of the nano sensor'. Increase the material selection diversity of the substrate. In addition, the relatively low heating temperature due to the microwave treatment does not change or destroy the material structure of the nano-sensing material 3 or its predetermined arrangement shape on the plastic substrate 1 and the plastic substrate 1 can be obtained from the flexible The organic high molecular polymer can also increase the selection diversity, design diversity and dimensional design accuracy of the nano sensing material 3. The present invention has been disclosed in its preferred embodiments, and is not intended to limit the invention. Any person skilled in the art can make various modifications and modifications without departing from the spirit and scope of the invention. The protection of Fan Yuan shall be subject to the definition of the scope of the patent application attached. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1Aj_1J is a flow chart showing a method of manufacturing a nanosensor according to a first embodiment of the present invention. 17 201121880 Figs. 2A to 2E are schematic views showing the flow of a method of manufacturing a nanosensor according to a second embodiment of the present invention. Fig. 3 is a photomicrograph of a nanosensor of a second embodiment of the present invention. [Major component symbol description] 1 Plastic substrate 11 First photoresist layer 12 Second photoresist layer 2 Patterned conductive layer 21 Electrode portion 3 Nano-sensing material 4 Insulation protective layer 5 Second plastic substrate 51 Chamber A Fusion bonding surface

Claims (1)

201121880 七、申請專利範圍: 1· 一種奈米感測器之製造方法,其包含: 提供一塑性基板; 在該塑性基板之表面形成—圖案化導電層,其具有至 少二電極部; 將-奈来感測材料配置於該塑性基板之表面,以連接 在二相鄰該電極部之間;及 微波加熱該奈米感測材料,使該奈米感測材料產生孰 能熔化該紐純之表面,以結合於該塑性基板。 2. 如申請專利範圍第1項所述之奈城測器之製造方 法,其中該塑性基板為可撓塑性基板。 3. 如申請專利範圍帛項所述之奈米感測器之製造 方法,其巾該塑性基板之魅小於該奈米感測材料之 結構轉變溫度。 4. 如申請專利範圍帛3項所述之奈米感測器之製造方 _ 法,其中該塑性基板之材質選自聚對笨二曱酸乙二醇 酯、聚碳酸酯、尼龍66、聚曱基丙烯酸曱酯或 烯。 5. 如申請專利範圍帛i㉟所述之奈米感測器之製造方 法,其中該奈米感測材料包含奈米碳管、奈米線或奈 米柱之奈米結構。 不 6. 如申請專利範圍帛i $所述之奈米感測器之製造方 法1其中該圖案化導電層之材質為銅、金、鋁、銀膠 或氧化銦錫。 201121880 7. 如申請專利範圍第1或6項所述之奈米感測器之製造 方法,其中在形成該圖案化導電層時,其包含:在該 塑性基板之表面形成一第一光阻層;對該第一光阻層 進行圖案化;於該圖案化之第一光阻層所裸露的該塑 性基板之表面上形成該圖案化導電層;以及,去除該 第一光阻層。 8. 如申請專利範圍第1項所述之奈米感測器之製造方 法,其中在配置該奈米感測材料時,其包含:在該塑 性基板之表面形成一第二光阻層;對該第二光阻層進 行圖案化;以及,於該圖案化之第二光阻層所裸露的 該塑性基板及電極部之表面上塗佈該奈米感測材料。 9. 如申請專利範圍第8項所述之奈米感測器之製造方 法,其中在塗佈該奈米感測材料後,選擇去除或保留 該第二光阻層。 10. 如申請專利範圍第1或9項所述之奈米感測器之製造 方法,其中在該奈米感測材料結合於該塑性基板之表 面後,另形成一絕緣保護層於該奈米感測材料、該圖 案化導電層及該塑性基板之上。 11. 如申請專利範圍第1項所述之奈米感測器之製造方 法,其中該絕緣保護層之材質選自環氧樹酯、苯環丁 烯、聚醯亞胺或聚甲基丙烯酸曱酯。 12. —種奈米感測器之製造方法,其包含: 提供一第一塑性基板; 在該第一塑性基板之表面形成一圖案化導電層,其具 201121880 有至少二電極部; 將一奈米感測材料配置於該第—塑性基板之表面,以 連接在二相鄰該電極部之間; 微皮加,、,、該不、米感測材料,使該奈米感測材料產生熱 能熔化該第-塑性基板之接觸表面,以結合於該第一 塑性基板; 形成一絕緣保護層於該奈米感測材料、該圖案化導電 層及該第一塑性基板之上;以及 鲁 纟該絕緣保護層上形成至少-第二塑性基板,其内部 具有至少一腔室。 13. 如申明專利範圍第12項所述之奈米感測器之製造方 法,其中該第一及第二塑性基板為可撓塑性基板。 14. 如申請專利範圍第12或13項所述之奈米感測器之製 造方法,其中該第一及第二塑性基板之材質選自聚對 苯二曱酸乙二醇酯、聚碳酸酯、尼龍66、聚曱基丙 φ 烯酸甲酯或聚丙烯。 15. 如申請專利範圍第12項所述之奈米感測器之製造方 法,其中該奈米感測材料包含奈米碳管、奈米線或奈 米柱之奈米結構。 16. 如申請專利範圍第12項所述之奈米感測器之製造方 法,其中該圖案化導電層之材質為銅、金、鋁、銀膠 或氧化銦錫。 17. 如申明專利範圍第12或16項所述之奈米感測器之製 造方法,其中在形成該圖案化導電層時,其包含:在 21 201121880 該第一塑性基板之表面形成一第一光阻層;對該第一 光阻層進行圖案化;於該圖案化之第一光阻層所裸露 的該第一塑性基板之表面上形成該圖案化導電層;以 及,去除該第一光阻層。 18. 如申請專利範圍第12項所述之奈米感測器之製造方 法,其中在配置該奈米感測材料時,其包含:在該第 一塑性基板之表面形成一第二光阻層;對該第二光阻 層進行圖案化;以及,於該圖案化之第二光阻層所裸 露的該第一塑性基板及電極部之表面上塗佈該奈米 感測材料。 19. 如申請專利範圍第18項所述之奈米感測器之製造方 法,其中在塗佈該奈米感測材料後,選擇去除或保留 該第二光阻層。 20. 如申請專利範圍第12項所述之奈米感測器之製造方 法,其中該第一塑性基板之熔點小於該奈米感測材料 之結構轉變溫度。 21. 如申請專利範圍第12項所述之奈米感測器之製造方 法,其中該第一塑性基板之材質選自聚對苯二曱酸乙 二醇酯、聚碳酸酯、尼龍66、聚曱基丙烯酸曱酯或 聚丙烯。 22201121880 VII. Patent application scope: 1. A method for manufacturing a nano sensor, comprising: providing a plastic substrate; forming a patterned conductive layer on the surface of the plastic substrate, having at least two electrode portions; The sensing material is disposed on the surface of the plastic substrate to be connected between the two adjacent electrode portions; and the microwave heats the nano sensing material to cause the nano sensing material to generate a surface capable of melting the new pure surface To bond to the plastic substrate. 2. The method of manufacturing a Naicheng detector according to the first aspect of the invention, wherein the plastic substrate is a flexible plastic substrate. 3. The method of manufacturing a nanosensor as described in the scope of the patent application, wherein the plastic substrate has a charm smaller than a structural transition temperature of the nano sensing material. 4. The method of manufacturing a nano sensor according to claim 3, wherein the plastic substrate is selected from the group consisting of poly(p-ethylene phthalate), polycarbonate, nylon 66, and poly Ethyl decyl acrylate or olefin. 5. The method of manufacturing a nanosensor as described in the patent application 帛i35, wherein the nano-sensing material comprises a nanotube structure of a carbon nanotube, a nanowire or a nanocolumn. 6. The method of manufacturing a nanosensor as described in the patent application 帛i $ wherein the patterned conductive layer is made of copper, gold, aluminum, silver paste or indium tin oxide. The method for manufacturing a nano sensor according to claim 1 or 6, wherein when the patterned conductive layer is formed, the method comprises: forming a first photoresist layer on a surface of the plastic substrate Patterning the first photoresist layer; forming the patterned conductive layer on a surface of the patterned plastic substrate exposed by the patterned first photoresist layer; and removing the first photoresist layer. 8. The method of manufacturing a nanosensor according to claim 1, wherein when the nano sensing material is disposed, the method comprises: forming a second photoresist layer on a surface of the plastic substrate; The second photoresist layer is patterned; and the nano sensing material is coated on the surface of the plastic substrate and the electrode portion exposed by the patterned second photoresist layer. 9. The method of manufacturing a nanosensor according to claim 8, wherein the second photoresist layer is selectively removed or retained after the nano sensing material is coated. 10. The method of manufacturing a nanosensor according to claim 1 or 9, wherein after the nano sensing material is bonded to the surface of the plastic substrate, an insulating protective layer is further formed on the nanometer. A sensing material, the patterned conductive layer, and the plastic substrate are overlying. 11. The method of manufacturing a nanosensor according to claim 1, wherein the material of the insulating protective layer is selected from the group consisting of epoxy resin, benzocyclobutene, polyimine or polymethyl methacrylate. ester. 12. A method of manufacturing a nanosensor, comprising: providing a first plastic substrate; forming a patterned conductive layer on the surface of the first plastic substrate, having at least two electrode portions in 201121880; The rice sensing material is disposed on the surface of the first plastic substrate to be connected between the two adjacent electrode portions; the micro skin is added, and the magnetic sensing material is used to generate heat energy of the nano sensing material. Melting the contact surface of the first plastic substrate to bond to the first plastic substrate; forming an insulating protective layer on the nano sensing material, the patterned conductive layer and the first plastic substrate; At least a second plastic substrate is formed on the insulating protective layer, and has at least one chamber therein. 13. The method of manufacturing a nanosensor according to claim 12, wherein the first and second plastic substrates are flexible plastic substrates. 14. The method of manufacturing a nanosensor according to claim 12, wherein the material of the first and second plastic substrates is selected from the group consisting of polyethylene terephthalate, polycarbonate. , nylon 66, polymethyl propyl acrylate or methyl acrylate. 15. The method of manufacturing a nanosensor according to claim 12, wherein the nano-sensing material comprises a nanotube structure of a carbon nanotube, a nanowire or a nanocolumn. 16. The method of manufacturing a nanosensor according to claim 12, wherein the patterned conductive layer is made of copper, gold, aluminum, silver paste or indium tin oxide. 17. The method of manufacturing the nanosensor of claim 12, wherein when the patterned conductive layer is formed, the method comprises: forming a first surface on the surface of the first plastic substrate at 21 201121880 a photoresist layer; patterning the first photoresist layer; forming the patterned conductive layer on a surface of the first plastic substrate exposed by the patterned first photoresist layer; and removing the first light Resistance layer. 18. The method of manufacturing a nanosensor according to claim 12, wherein when the nano sensing material is disposed, the method comprises: forming a second photoresist layer on a surface of the first plastic substrate Patterning the second photoresist layer; and coating the nano sensing material on the surface of the first plastic substrate and the electrode portion exposed by the patterned second photoresist layer. 19. The method of fabricating a nanosensor of claim 18, wherein after coating the nano-sensing material, the second photoresist layer is selectively removed or retained. 20. The method of manufacturing a nanosensor according to claim 12, wherein a melting point of the first plastic substrate is less than a structural transition temperature of the nano sensing material. The method for manufacturing a nano sensor according to claim 12, wherein the material of the first plastic substrate is selected from the group consisting of polyethylene terephthalate, polycarbonate, nylon 66, and poly Ethyl methacrylate or polypropylene. twenty two
TW98143996A 2009-12-21 2009-12-21 Method for manufacturing nano-sensor TWI399337B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98143996A TWI399337B (en) 2009-12-21 2009-12-21 Method for manufacturing nano-sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98143996A TWI399337B (en) 2009-12-21 2009-12-21 Method for manufacturing nano-sensor

Publications (2)

Publication Number Publication Date
TW201121880A true TW201121880A (en) 2011-07-01
TWI399337B TWI399337B (en) 2013-06-21

Family

ID=45045853

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98143996A TWI399337B (en) 2009-12-21 2009-12-21 Method for manufacturing nano-sensor

Country Status (1)

Country Link
TW (1) TWI399337B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI579559B (en) 2015-10-30 2017-04-21 財團法人工業技術研究院 Sensor device and method of manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100532429B1 (en) * 2003-04-18 2005-11-30 삼성전자주식회사 A byte-operational non-volatile semiconductor memory device
TWI290778B (en) * 2005-12-29 2007-12-01 Ind Tech Res Inst Soft piezoelectric plate structure and synthetic method
TWI353063B (en) * 2007-07-27 2011-11-21 Au Optronics Corp Photo detector and method for fabricating the same
JP2009245770A (en) * 2008-03-31 2009-10-22 Sumitomo Chemical Co Ltd Organic electroluminescent device
US20090293954A1 (en) * 2008-05-30 2009-12-03 Semiconductor Energy Laboratory Co., Ltd. Photoelectric Conversion Device And Method For Manufacturing The Same

Also Published As

Publication number Publication date
TWI399337B (en) 2013-06-21

Similar Documents

Publication Publication Date Title
Chen et al. Patterned, flexible, and stretchable silver nanowire/polymer composite films as transparent conductive electrodes
Chen et al. Wrinkling of two-dimensional materials: methods, properties and applications
Han et al. High‐performance pressure sensors based on 3D microstructure fabricated by a facile transfer technology
You et al. A wearable piezocapacitive pressure sensor with a single layer of silver nanowire-based elastomeric composite electrodes
Hwang et al. Stretchable anisotropic conductive film (S-ACF) for electrical interfacing in high-resolution stretchable circuits
KR101191865B1 (en) Fabrication method of flexible substrate having buried metal electrode and the flexible substrate thereby
US9510457B2 (en) Methods of manufacturing metal wiring buried flexible substrate by using plasma and flexible substrates manufactured by the same
KR101878011B1 (en) Transfer sheet provided with transparent conductive film mainly composed of graphene, method for manufacturing same, and transparent conductor
JP6342405B2 (en) Releasable substrate on carrier
Kim et al. Silver nanowire networks embedded in urethane acrylate for flexible capacitive touch sensor
KR20180019066A (en) Flexible Conductive Diaphragm, Flexible Vibration Sensor, and Its Manufacturing Method and Application
Gutruf et al. Strain response of stretchable micro-electrodes: Controlling sensitivity with serpentine designs and encapsulation
Chen et al. Scalable processing ultrathin polymer dielectric films with a generic solution based approach for wearable soft electronics
CN108831828B (en) Flexible electronic device applicable to various surfaces and preparation method thereof
KR101716468B1 (en) Tranfering method for graphene using self-adhesive film
TW201521984A (en) Method of manufacturing a buried flexible electrode film using thermal lamination transfer
CN107003763A (en) Membrane contact sensor and its manufacture method
TWI395998B (en) Conductive plate and touch plate applied by the same
Yoo et al. Recyclable patterning of silver nanowire percolated network for fabrication of flexible transparent electrode
JP5502980B2 (en) Method for patterning non-metallic conductive layers
JP2018526825A (en) Field effect transistor forming method
Zulfiqar et al. Fabrication of polyimide based microfluidic channels for biosensor devices
TWI487033B (en) Method for making carbon nanotube thin film and thin film transistor
CN108139823B (en) Thin film touch sensor and manufacturing method thereof
Hartmann et al. Scalable microfabrication of folded parylene‐based conductors for stretchable electronics

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees