201121779 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種玻璃基板。 【先前技術】 一般常見的玻璃通常亦會加入其他成份,以改變玻璃 的熱及電等物理性質。例如,於玻璃中加入鋇亦可增加折 • 射指數。製造光學鏡頭的玻璃則是加入钍的氧化物來大幅 增加折射指數。倘若要玻璃吸收紅外線,可以加入鐵。例 如放映機内便有這種隔熱的玻璃。玻璃加入鈽則會吸收紫 外線。 由於玻璃已普遍用於電子工業的基礎材料,常見於用 於生產液晶顯示器件的玻璃基板。由於玻璃基板裡含有的 一價陽離子,如鈉離子(Na+),其所受到矽酸鹽的束缚較 二價或三價陽離子弱,因此會存在鈉離子遷移的問題。尤 * 其在薄膜電晶體·液晶顯示器(TFT-LCD)的製造過程中, 如果從玻璃基板中釋出鹼金屬離子,就有可能會干擾電子 元件的導電性,亦會破壞半導體的正常工作。 【發明内容】 有鑑於此,本發明之首要目的,係提出一種防止玻璃 基板離子釋出的結構,至少包含一玻璃基板以及一隔離結 201121779 構0玻璃基板具有一上表面及一下表面,玻璃基板内含有 複數個金屬離子。隔離結構係透過一煅燒方式,而使不具 晶型的複數個分子經轉化成具有複數個分子晶格的分子晶 格網狀結構,且形成於玻璃基板的上表面或下表面。在隔 離結構經高溫煅燒後,再與空氣接觸產生縮合,而使得隔 離結構形成於玻璃基板上表面,或下表面上的一特定厚 度’且使得隔離結構中之二氧化矽分子晶格之間的間隙小 • 於玻璃基板中的金屬離子。 本發明之次要目的,係提出一種防止玻璃基板離子釋 出的方法,係形成一隔離結構於玻璃基板上,至少包含下 列步驟:提供含有複數個鈉離子的一玻璃基板;形成含有 非晶形過冷液體二氧化矽之一隔離層於該玻璃基板之一表 面;使該隔離層結晶形成具有複數個二氧化石夕晶格之一隔 離結構;以及,使該隔離結構形成一特定厚度而使該些二 氧化矽晶格之間的間隙小於該些鈉離子。 鲁 藉由本發明防止玻璃基板離子釋出的結構與方法,形 成隔離結構於玻璃基板表面上,利用隔離結構中分子晶格 間隙及厚度的設計’即可將玻璃基板中的金屬離子隔離揭 限在玻璃基板中,防止金屬離子從玻璃基板中釋出到外界。 【實施方式】 201121779 請配合參照第1圖,係為防止玻璃基板離子釋出的結 構之一實施例示意圖。本發明所提出之防止玻璃基板離子 釋出的結構,至少包含一玻璃基板200以及一隔離結構 100,透過隔離結構100防止金屬離子201從玻璃基板200 中釋出到外界。 玻璃基板200包含一上表面210及一下表面220,該 玻璃基板200内含有複數個金屬離子201。隔離結構1〇〇201121779 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a glass substrate. [Prior Art] Generally, common glasses are usually added with other ingredients to change the physical properties such as heat and electricity of the glass. For example, adding bismuth to glass can also increase the index. The glass from which the optical lens is made is added with cerium oxide to greatly increase the refractive index. If the glass is to absorb infrared light, iron can be added. For example, there is such insulated glass inside the projector. When glass is added, it will absorb the ultraviolet rays. Since glass has been commonly used as a base material for the electronics industry, it is commonly used in glass substrates for producing liquid crystal display devices. Since monovalent cations contained in the glass substrate, such as sodium ions (Na+), are bound by the bismuth salt to be weaker than the divalent or trivalent cations, there is a problem of migration of sodium ions. In the manufacture of thin film transistor/liquid crystal display (TFT-LCD), if alkali metal ions are released from the glass substrate, it may interfere with the electrical conductivity of the electronic component and may also impair the normal operation of the semiconductor. SUMMARY OF THE INVENTION In view of this, the primary object of the present invention is to provide a structure for preventing ion release of a glass substrate, comprising at least a glass substrate and an isolation junction 201121779. The glass substrate has an upper surface and a lower surface, and the glass substrate It contains a plurality of metal ions. The isolation structure is formed by a calcination method to convert a plurality of molecules having no crystal form into a molecular lattice network having a plurality of molecular lattices, and is formed on the upper surface or the lower surface of the glass substrate. After the isolation structure is calcined at a high temperature, it is condensed by contact with air, so that the isolation structure is formed on the upper surface of the glass substrate, or a specific thickness on the lower surface, and the lattice structure of the cerium oxide molecules in the isolation structure is Small gaps • Metal ions in the glass substrate. A secondary object of the present invention is to provide a method for preventing ion release from a glass substrate by forming an isolation structure on a glass substrate, comprising at least the steps of: providing a glass substrate containing a plurality of sodium ions; forming an amorphous One of the cold liquid cerium oxide is disposed on one surface of the glass substrate; the isolation layer is crystallized to form an isolation structure having a plurality of SiO2 crystal lattices; and the isolation structure is formed to a specific thickness The gap between the ceria lattices is smaller than the sodium ions. By the structure and method for preventing the ion release of the glass substrate by the invention, the isolation structure is formed on the surface of the glass substrate, and the design of the molecular lattice gap and the thickness in the isolation structure can be used to isolate the metal ions in the glass substrate. In the glass substrate, metal ions are prevented from being released from the glass substrate to the outside. [Embodiment] 201121779 Referring to Fig. 1, a schematic diagram of an embodiment for preventing ion release from a glass substrate is shown. The structure for preventing ion release of the glass substrate proposed by the present invention comprises at least a glass substrate 200 and an isolation structure 100, and the metal ion 201 is prevented from being released from the glass substrate 200 to the outside through the isolation structure 100. The glass substrate 200 includes an upper surface 210 and a lower surface 220. The glass substrate 200 contains a plurality of metal ions 201. Isolation structure 1〇〇
係透過一緞燒方式’而使不具晶型的複數個分子經轉化成 具有複數個分子晶格110的分子晶格網狀結構,且形成於 玻璃基板200的上表面210上,或形成於玻璃基板200的 下表面220上。其中,隔離結構1〇〇中的複數個分子晶格 U〇均為透過焉於400。(:的溫度的煅燒方式而經由晶格轉 化而成形之二氣化矽晶格。 0隔離結構100係透過高溫煅燒,使二氧化梦分子晶 格轉化而形成。在隔離結構1GG經高溫锻燒後,再與空氣 接觸產生縮合’而使得隔離結構100中之二氧化石夕分子晶 格之間的卩4隙小於金屬離子训,並且使形成於玻璃基板 200上表面21〇卜, 上’或下表面220上的厚度d介於約100〜 約lOOOnm (奈米)之間。 士#此利用本發明防止玻璃基板離子釋出的結構之隔 U 100的孔隙孔經及厚度的設計,即可將玻璃基板觸 I S1 201121779 中的金屬離子201隔離侷限在玻璃基板200中,防止金屬 離子201從玻璃基板200中釋出到外界。 依據本發明之一實施例,玻璃基板200内含有的金屬 離子201係為鈉離子。 依據本發明之一實施例,將防止玻璃基板離子釋出的 結構應用於玻璃基板200上,其中玻璃基板200係為主要 成分為Na20-Ca0-Si02組成之一鈉弼石夕酸鹽玻璃。 依據本發明之一實施例,將防止玻璃基板離子釋出的 結構應用於玻璃基板200上,其中玻璃基板200係為將石 英熔化或高溫分解四氯化矽而製成,主要成份為Si02之一 石英玻璃。 依據本發明之一實施例,將防止玻璃基板離子釋出的 結構應用於玻璃基板200上,其中玻璃基板200係為在鈉 鈣基或矽硼基基片玻璃的基礎上,鍍上一層氧化銦錫(ITO) 層加工製作而成的一導電玻璃(indium tin oxide glass,ITO glass)。 依據本發明之一實施例,將防止玻璃基板離子釋出的 結構應用於玻璃基板200上,其中玻璃基板200係為在普 通玻璃中加入金、銀、銅等晶核’並精著控制玻璃的結晶 過程及精密的熱處理程序來獲得所欲之結晶類型與含量之 一玻璃陶瓷。 201121779 接下來,请配合參照第2圖,係為本發明之防止玻璃 基板離子釋出的方法之步驟流程圖。本發明之防止玻璃基 板離子釋出的方法300,係形成一隔離結構1〇〇於玻璃基 板200上,首先,提供含有複數個鈉離子的一玻璃基板2〇〇 (步驟310)。接著,形成含有非晶形過冷液體二氧化矽 (Si〇2)之一隔離層於該玻璃基板2〇〇之一表面(步驟 340)。然後,使該隔離層結晶形成具有複數個二氧化矽晶 • 格之一隔離結構1〇〇 (步驟350)。接下來,使該隔離結構 1〇〇形成至一特定厚度d而使該些二氧化矽晶格之間的間 隙小於該些鈉離子(步驟360)。最後,結束本方法流程。 其中’上述步驟340形成含有非晶形過冷液體二氧化 矽(Si〇2)之一隔離層於該玻璃基板之一表面,更包含透 過一浸潰(dipping)方式使該隔離層形成於該表面(步驟 320)。或者,更包含透過一刀刮方式使該隔離層塗佈於該 % 表面(步驟330)。此外,上述步驟350使該隔離層結晶形 成具有複數個二氧化矽晶格之一隔離結構1〇〇,更包含透 過炮燒使非晶形二氧化矽轉化成二氧化矽晶格(步驟 351) ’係將隔離結構1〇〇中的複數個分子晶袼,透過 阿於400C的溫度的煅燒方式而經由晶格轉化成形二 化矽晶格。 ‘一 上述步驟360使該隔離結構1〇〇形成至一特定厚度d 而使該些一氧化矽晶格之間的間隙小於該些鈉離子,係使 201121779 該隔離結構100與空氣接觸而縮合至約100〜約1000奈米 之間。 藉此,利用本發明防止玻璃基板離子釋出的方法,形 成隔離結構100於玻璃基板200表面上,利用隔離結構100 中小於金屬離子201的分子晶格110間隙及隔離結構100 厚度的設計,即可將玻璃基板200中的金屬離子201隔離 侷限在玻璃基板200中,防止金屬離子201從玻璃基板200 中釋出到外界。 雖然本發明已以實施方式揭露如上,然其並非用以限 定本發明,任何熟習此技藝者,在不脫離本發明之精神和 範圍内,當可作各種之更動與潤飾,因此本發明之保護範 圍當視後附之申請專利範圍所界定者為準。 201121779 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、優點與實施例 能更明顯易懂,所附圖式之詳細說明如下: 第1圖,係為本發明之防止玻璃基板離子釋出的結構 之一實施例示意圖;以及 • 第2圖,係為本發明之防止玻璃基板離子釋出的方法 之步驟流程圖。 【主要元件符號說明】 100 :隔離結構 110 :分子晶格 200 :玻璃基板 201 :金屬離子 210 :上表面 220 :下表面 300 :方法 310〜360 :步驟流程 d :厚度The plurality of molecules having no crystal form are converted into a molecular lattice network having a plurality of molecular lattices 110 by a satin burning method, and formed on the upper surface 210 of the glass substrate 200 or formed on the glass. On the lower surface 220 of the substrate 200. Wherein, a plurality of molecular lattices U〇 in the isolation structure 1〇〇 are transmitted through 400. (The temperature of the calcination method is formed by lattice conversion of the two vaporized ruthenium lattice. 0 The isolation structure 100 is formed by high temperature calcination to convert the crystal lattice of the dioxide molecule. The isolation structure 1GG is calcined at a high temperature. Thereafter, the contact with the air generates condensation ′, such that the 卩4 gap between the olivine oxide molecular lattices in the isolation structure 100 is smaller than the metal ion training, and is formed on the upper surface 21 of the glass substrate 200, or The thickness d on the lower surface 220 is between about 100 and about 100 nm (nano). The use of the present invention to prevent the pore-transport and thickness of the U 100 structure of the structure of the ion release of the glass substrate can be The metal ion 201 in the glass substrate contact I S1 201121779 is confined in the glass substrate 200 to prevent the metal ions 201 from being released from the glass substrate 200 to the outside. According to an embodiment of the present invention, the metal ions contained in the glass substrate 200 are contained. 201 is a sodium ion. According to an embodiment of the present invention, a structure for preventing ion release of a glass substrate is applied to a glass substrate 200, wherein the glass substrate 200 is mainly composed of Na20-Ca0-SiO2. Forming a sodium sulphite glass. According to an embodiment of the present invention, a structure for preventing ion release of a glass substrate is applied to a glass substrate 200, wherein the glass substrate 200 is melted or pyrolyzed by quartz. Made of ruthenium, the main component is a quartz glass of SiO 2 . According to an embodiment of the present invention, a structure for preventing ion release of a glass substrate is applied to the glass substrate 200 , wherein the glass substrate 200 is a soda lime base or ruthenium. On the basis of the boron-based glass, an indium tin oxide glass (ITO glass) is formed by coating a layer of indium tin oxide (ITO). According to an embodiment of the present invention, the glass substrate is prevented from being ionized. The released structure is applied to the glass substrate 200, wherein the glass substrate 200 is a crystal nucleus of gold, silver, copper or the like added to ordinary glass, and the crystallization process of the glass is carefully controlled and a precise heat treatment process is performed to obtain the desired crystal. One type and content of glass ceramics 201121779 Next, please refer to Fig. 2, which is the flow chart of the method for preventing ion release of glass substrate of the present invention. The method 300 for preventing ion release of a glass substrate of the present invention forms an isolation structure 1 on the glass substrate 200. First, a glass substrate 2 含有 containing a plurality of sodium ions is provided (step 310). Forming an isolation layer containing an amorphous supercooled liquid cerium oxide (Si〇2) on one surface of the glass substrate 2 (step 340). Then, the isolation layer is crystallized to form a plurality of cerium oxide crystals. One of the isolation structures 1 (step 350). Next, the isolation structure 1 is formed to a specific thickness d such that the gap between the ceria lattices is smaller than the sodium ions (step 360) ). Finally, the process flow is ended. Wherein the above step 340 forms an isolation layer containing an amorphous subcooled liquid ceria (Si〇2) on one surface of the glass substrate, and further comprises forming the isolation layer on the surface by a dipping method. (Step 320). Alternatively, it is further included that the spacer layer is applied to the % surface by a knife-scraping method (step 330). In addition, the above step 350 causes the isolation layer to crystallize to form an isolation structure having a plurality of ceria lattices, and further comprises converting the amorphous ceria into a ceria lattice by firing (step 351). The plurality of molecular crystals in the isolation structure 1 are formed, and the crystal lattice is transformed by lattice transformation through a temperature of 400 C to form a crystal lattice. The above-mentioned step 360 causes the isolation structure 1 to be formed to a specific thickness d such that the gap between the monoxide crystal lattices is smaller than the sodium ions, so that the isolation structure 100 is condensed by contact with air to 201121779. Between about 100 and about 1000 nm. Thereby, the method for preventing ion release of the glass substrate by using the present invention forms the isolation structure 100 on the surface of the glass substrate 200, and utilizes the design of the molecular lattice 110 gap of the metal ion 201 and the thickness of the isolation structure 100 in the isolation structure 100, that is, The metal ions 201 in the glass substrate 200 can be isolated in the glass substrate 200 to prevent the metal ions 201 from being released from the glass substrate 200 to the outside. Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and the present invention can be modified and modified without departing from the spirit and scope of the present invention. The scope is subject to the definition of the scope of the patent application attached. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; A schematic diagram of one embodiment of the structure of ion release; and Fig. 2 is a flow chart showing the steps of the method for preventing ion release of a glass substrate of the present invention. [Main component symbol description] 100: isolation structure 110: molecular lattice 200: glass substrate 201: metal ion 210: upper surface 220: lower surface 300: method 310 to 360: step flow d: thickness