TW201121356A - Alterative current multi-wavelength light-emitting device - Google Patents

Alterative current multi-wavelength light-emitting device Download PDF

Info

Publication number
TW201121356A
TW201121356A TW098142047A TW98142047A TW201121356A TW 201121356 A TW201121356 A TW 201121356A TW 098142047 A TW098142047 A TW 098142047A TW 98142047 A TW98142047 A TW 98142047A TW 201121356 A TW201121356 A TW 201121356A
Authority
TW
Taiwan
Prior art keywords
wavelength
wavelength light
light
emitting device
emitting
Prior art date
Application number
TW098142047A
Other languages
Chinese (zh)
Inventor
Chia-Hui Shen
Tzu-Chien Hong
Chih-Pang Ma
Original Assignee
Advanced Optoelectronic Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Optoelectronic Tech filed Critical Advanced Optoelectronic Tech
Priority to TW098142047A priority Critical patent/TW201121356A/en
Publication of TW201121356A publication Critical patent/TW201121356A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Landscapes

  • Led Device Packages (AREA)

Abstract

An alternative current (AC) multi-wavelength light-emitting device includes a substrate and a plurality of multi-wavelength light-emitting diodes (LEDs) formed on the substrate. Each of the multi-wavelength LEDs includes a plurality of active layers respectively generating different color lights, and the lights are mixed to generate white light or multi-wavelength light. The multi-wavelength LEDs are electrically connected in series and parallel to form at least an electrical bridge and thereby the provided AC multi-wavelength light-emitting device is able to be used in alternative current directly.

Description

201121356 六、發明說明: 【發明所屬之技術領域】 本發明係有關於一種交流驅動多波長發光元件,尤指一種具有 了直接產生白光之多波長發光二極體(light_emitting diode,以下簡稱 為LED)之交流驅動多波長發光元件。 【先前技術】 因應全球石化能源枯竭與環境污染日趨嚴重,同時具有節能與 環保兩種特性的發光二極體(LED),尤其是白光LED ’係持續地在 照明與顯示兩項重要的發展領域中受到重視。 習知白光LED具有數種可行的製作方法,例如直接應用數個紅 色、藍色、綠色等不同光色的LED晶片製作成單體白光201121356 VI. Description of the Invention: [Technical Field] The present invention relates to an AC-driven multi-wavelength light-emitting element, and more particularly to a multi-wavelength light-emitting diode (hereinafter referred to as LED) having direct white light generation. The AC drives a multi-wavelength light-emitting element. [Prior Art] In response to the global petrochemical energy depletion and environmental pollution, LEDs with energy-saving and environmental protection characteristics, especially white LEDs, continue to be in the two important development areas of lighting and display. I am valued. Conventional white LEDs have several possible fabrication methods, such as directly applying a plurality of LED chips of different light colors such as red, blue, and green to form a single white light.

single-package white-LED)或白光 LED 模組、白光 led 陣列(R/G/B white-LED module or array)。但利用調整紅、藍、綠三種LED的亮 度繼而混光獲得白光的最大缺點,在於其成本難以樽節,而不利於 商品化的發展,因此目前多專注在對於顯色指數要求較高的特定應 用市場。另外一種方式,則是利用螢光粉體製作白光LED,例如利 用三五族氮化物半導體材料製作的藍光LED,搭配釔鋁石榴石 (yttrium aluminum garnet ’ YAG)黃光螢光粉體,使藍光LED所發射 的藍光經由黃光螢光粉體混光後產生白光。除了上述藍光LED加上 黃光螢光粉體之製作方式外,亦可以藍光LED加上綠光與紅光或其 201121356 恤合讀光紐’紅料紅ED,LED)加上紅光及藍光勞 光粉體與綠光螢光粉體等組合而製成。但是利用紅、綠、藍勞光粉 體的總體激發效率並不如單—黃光螢光粉體高,且紫外光對於許多 材料的老化破壞也造成後續封裝材料選擇的_。因此利用藍光 =ED加上黃光螢光粉體製作的白光LED就藉其製作及實現方法簡 单、驅動容易、成本低廉、與效率較高等優點,成為白光的主 流。Single-package white-LED or white LED module, R/G/B white-LED module or array. However, the biggest disadvantage of adjusting the brightness of red, blue and green LEDs and then mixing them to obtain white light is that the cost is difficult to cope with, which is not conducive to the development of commercialization. Therefore, more attention is now focused on the specific requirements for the color rendering index. Application market. Another way is to use a phosphor powder to make white LEDs, such as blue LEDs made of tri-five nitride semiconductor materials, and yttrium aluminum garnet 'YAG yellow fluorescent powder, so that blue LEDs The emitted blue light is white light after being mixed by the yellow fluorescent powder. In addition to the above-mentioned blue LED plus yellow light fluorescent powder production, it can also be blue LED plus green light and red light or its 201121356 shirt reading light button 'red material red ED, LED) plus red light and blue light The powder is prepared by combining a green fluorescent powder or the like. However, the overall excitation efficiency of the red, green, and blue lacquer powders is not as high as that of the single-yellow luminescent powder, and the aging damage of many materials causes the selection of subsequent packaging materials. Therefore, white LEDs made of blue light = ED plus yellow fluorescent powder are the mainstay of white light by virtue of their simple fabrication, easy driving, low cost, and high efficiency.

鲁 3外’隨著光電科技的不斷發展,傳統以直流電源驅動的LED 晶片,更被期待能在以交流電為主的一般生活環境中使用。因此, 在2005年韓國漢城半導體與美國ΠΙ-Νtechnology相繼發表交流電 驅動LED (AC LED)之後,擁有先進光電產業的各國莫不將acled 視為極具發展潛力的新元件。AC LED光源的重大技術突破即是在 LED晶粒封裝成晶片時的特殊排列組合:利用LED晶粒中p_n接面 的二極體特性兼做整流,Ac LED晶片係採用了惠斯登電橋 • (WheatSt〇ne bridge)的設計概念,將複數個LH)晶粒串組成一個整 流橋,且晶粒係設置於整流後電流方向恆定之區域,因此無論交流 電偏壓方向為何,晶粒均可發光,是以AC LED晶片可直接使用於 父流電壓。 但值得注意的是,AC LED晶片在白光的應用中卻碰上了限 制:由於習知利用螢光粉體製作的白光LED晶片係在封裝晶粒時將 所需的螢光粉體施加在晶粒上,而AC LED晶片内包含了複數個晶 粒’所以營光粉體係在封裝製程中必需均勻地覆蓋該等晶粒。但是, 201121356 在製作或操作的過程中,ACLED晶片内任—晶粒的失效或效能不 足都會造成AC LED晶 >;亮度的損失;而藍光励加上螢光粉體混 光所產生的白光,尤其是藍光LED加上黃光#光粉體,對於亮度的 變化非常觀’目此晶 >;亮度的敎將會導聽品絲(eh_岭 coordinate)的改變。也就是說,在ACLED晶片作為白光光源的應 用時’必需面對所產钱白光有顏色偏差的問題。 【發明内容】 因此本發明之目的係為提供一種可有效避免白光顏色偏差 問題的交流驅動多波長發光元件。 根據本發明所提供之申請專利範圍,係提供一種交流驅動多波 長發光兀件,包含ϋ材以及紐個纽長發光二鋪(LED)。 該等多波長LED係以串聯與並聯方式相互電性連接而設置於該基 材上,且分別包含複數層活性層。 根據本發明所&供之交流驅動多波長發光元件,係利用該等多 波長LED的不同活性層所產生的不同顏色光直接混色形成白光,並 將5亥等夕波長LED㈣與制電輯接,使交赫動乡波長發光元 件可直接伽於交流電壓。更重要的是,由於本發鴨提供之多波 長LED不需藉由任何螢光粉體進行混光,即可直接混色產生白光, 而作為-白光LED。因此,即較流轉纽長發光元件發生亮度 損失的問題,仍可根本㈣聽§光因亮度科而產生的白光 顏色偏差等問題。 201121356 【實施方式】 /_第i _第2圖’第i _第2圖分別為本發明所提供 之交流驅動多波長發光元件之一第一較佳實施例與一第二較佳實施 例之剖面示意圖。值得注意的是,本發明所提供之交流驅動多波長 發光元件包含有複數個多波長LED,任一多波長led皆包含如第^ 圖所示之結構。如第丨騎^,本發日靖提供之用輯建交流驅動 多波長發光元件之多波長LED100係包含一基板1〇2,如藍寶石 • (sapphire)、碳化石夕(Sic)、砂、氧化鋅(Zn〇)、氧化繼呂_⑽或 石申化鎵(GaAs)等基板上。在基板1〇2上則由下而上依序設置有一第 ^•半導體層iig、-第二型半導體層n6、與設置於第—型半導體 層110及第二型半導體層116之間的複數層活性層(active layer) 112。在本第一較佳實施例中複數層活性層112係以一第一活性層 112a與一第二活性層112b為例示,但不限於此。在本第一較佳實 方匕例中第-型係為n型;而第二型係為p型,但熟知該項技藝之人 φ 士應知第型與第二型等導電類型係可依製程或產品需要而不限於 第一型為ρ型,第二型為11型。此外基板1〇2與第一型半導體層U〇 之間更设置有一緩衝層(圖未示> 但該膜層之設置應為該技術領域 中之人士所熟知者,故於此係不再贅述,亦省略於第丨圖中。第一 型半導體層110、第一活性層112a、第二活性層112b與第二型半導 體層116等臈層係可利用磊晶成長方法形成於基底1〇2上,因此包 含磊晶材料如三五族氮化物半導體材料,例如氮化鎵(GaN)、氮化鋁 嫁(AlGaN)、氮化銦鎵(InGaN)與氮化結銦鎵(A1InGaN)等,且第一活 201121356 性層112a與第二活性層112b可包含多重量子井(mUltiplequantum well,MQW) 〇 值得注意的是,本第一較佳實施例中的多波長LED係利用設置 於第一型半導體層110與第二型半導體層116之間的第一活性層 112a與第二活性層112b混光而直接產生白光,因此本較佳實施例 所提供之多波長LED亦為一白光LE:D :多波長LED 100之第一活 性層112a與第一活性層ii2b分別包含一第一波長光與一第二波長 光,且第一波長光不同於第二波長光。舉例來說,第一波長光之波 長(λ )範圍係在550〜650奈米(nanometer,以下簡稱為nm)之間; 而第二波長光之波長範圍則在450〜510nm之間。由此可知,第一 活性層112a與第二活性層112b可分別產生黃光與藍光’黃光與藍 光混合後即產生白光,因此本發明所提供之任一多波長LEDl〇〇皆 不需在封裝製程中添加螢光粉體,即可由自身產生白光,而作為一 白光LED。 此外,在本第一較佳實施例之一變化型中,第一活性層 所產生的第一波長光之波長可為5〇〇〜6〇〇nm;第二活性層U此所 產生的第一波長光之波長可為340〜430 nme由此可知,第—活性層 112a與第二活性層U2b可分別產生黃綠光與紫外(uv)光,而黃 綠光與UV歧合後即可產生自光。故纽變侧巾,乡波長咖 100亦可作為一白光led。 請繼續參閱第1圖。在第二型半導體層116上另形成有一透明 201121356 導電層120 ’其可為氣化銦錫(in(jium如⑽此,ppo),但不限於此。 透明導電層120制以與第二料導體層116形姐姆接觸(〇hmic contact),並兼作電極。在第一型半導體層u〇與透明導電層12〇上 則为別形成一焊墊130、132,其中設置於第一型半導體層no上的 焊墊130亦兼作電極。 請參閱第2圖。由於第2圖中交流驅動多波長發光元件中除活 性層之外的各元件皆與第一較佳實施例相同,因此相同的元件係採 用相同的標號,且不再贅述。與第一較佳實施例不同的是,第二較 佳實施例中所包含之複數層活性層114係以一第三活性層U4a、一 第四活性層114b與一第五活性層114c為例示,但熟知該技藝之人 士應知該等活性層之設置係不限於此。第三活性層n4a、第四活性 層114b與第五活性層114c亦包含MqW,且第三活性層n4a、第 四活性層114b與第五活性層ii4c分別產生一第三波長光、一第四 波長光與一第五波長光。第三波長光之波長範圍係在560〜600奈米 之間、该第四波長光之波長範圍係在520〜560奈米之間、該第五波 長光之波長範圍係在200〜430奈米之間。由此可知,第三活性層 114a、第四活性層114b與第五活性層丨他可分別產生黃光、綠光 與^光,並藉由黃光、綠光與UV光直接混合後產生白光,因此 本第一較佳實施例所提供之任一多波長LED 1〇〇亦為不需在封裝製 程中添加螢光粉體,即可由自身產生白光之白光LED。 5月參閱第3圖,第3圖係第一與第二較佳實施例所提供之串聯 夕波長LED之剖面示意圖。如前所述,交流驅動發光元件係藉由將 201121356 各LED晶粒以電橋方式串聯與並聯而得,因此在完成多波長㈣ 100之衣作後’更於各多波長LED 100上形成一圖案化絕緣詹刚, 以電! 生隔絕各夕波長LED 1GG,*在相對於各焊塾n()、m處則分 獅成-開π H2以供後續建構電路之用。在第—與第二較佳實施 例中預定以串聯方式電性連接之相鄰二多波長led觸係藉由一 導電層150 ’如一金屬層,電性連接焊塾130與焊势132’完成串聯 電路的建構。 接下^月參閱第4圖與第5圖,第4圖與第5圖分別為第一與 第-較佳實&例所提供之交流驅動發光元件不同實施型態的電路示 意圖。如第4圖所示,本較佳實施例所提供的交流驅動多波長發光 兀件2〇〇係利用上述的多波長LED 1〇〇串聯與並聯形成電橋训、 212並„又置於基材2〇2 (示於第3圖)上。此外,電橋2川、犯 係再串聯,之後麵行難製程,完❹錄發光元件⑼之製作, 而匕夕波長心光凡件200係可直接使用於交流電源4〇〇。請參閱第$ 圖’另外’依據不同產品的需求,在第5圖所示之交流驅動多波長 發光凡件300中,亦可將不同組已串聯的電橋勘、212再以並聯方 式電ί生連接’以增加交流電正負半周點亮的多波長LED丨⑻數量。 之後1 始進行封裝製程,完成交流驅動多波長發光元件^之製作, 驅動夕波長發光元件係可直接使用於交流電源伽。 竹’本翻所提供之交赫動纽紐光元件,可利用 =rrED的複數衫性層所產生的不同顏色光直接混色形 此可直接作為自光咖。並且,藉由串職並聯等方式 201121356 電性連接該等自光led ’形成可直接朗於交流電壓之交流驅動多 波長/白光發光兀件。更重要的是,由於本發明所提供之白光匕^^ 不品藉由任何螢光粉體進行混光,故即使交流驅動白光發光元件中 發生白光LED發光效能不足甚至失效的情形而導致亮度的損失,仍 可根本1±地避免螢光粉體因亮度不均*產生的自光顏色偏差等問 題0 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍 所做之均等變化與修飾,皆闕本發明之涵蓋範圍。 【圖式簡單說明】 第1圖分別為本發明所提供之交流驅動纽長發光元件之—第 一較佳實施例之剖面示意圖; …第2圖分別為本發明所提供之交流鷄多波長發光元件之 二較佳實施例之剖面示意圖;Lu 3 outside' With the continuous development of optoelectronic technology, LED chips driven by DC power supply are expected to be used in the general living environment dominated by AC. Therefore, after Korea's Seoul Semiconductor and US ΠΙ-Νtechnology successively published AC-driven LEDs (AC LEDs) in 2005, countries with advanced optoelectronics industries do not regard acled as a new component with great development potential. A major technological breakthrough in AC LED light source is the special arrangement of LED chips when they are packaged into wafers: the use of the diode characteristics of the p_n junction in the LED die and rectification, the Ac LED chip system uses the Wheatstone bridge • (WheatSt〇ne bridge) design concept, a plurality of LH) die strings are combined into a rectifier bridge, and the die is placed in a constant current direction after rectification, so regardless of the direction of the AC bias, the die can be Illumination is based on the fact that AC LED chips can be used directly in the parent current voltage. However, it is worth noting that AC LED chips have encountered limitations in white light applications: it is known that white LED chips fabricated using phosphor powder are used to apply the required phosphor powder to the crystal when the crystal grains are packaged. On the granules, the AC LED wafer contains a plurality of dies. Therefore, the battalion powder system must uniformly cover the dies in the packaging process. However, during the manufacturing or operation of 201121356, any failure or insufficient performance of the die in the ACLED chip will cause AC LED crystals; loss of brightness; and blue light plus white light generated by phosphor powder mixing In particular, the blue LED plus the yellow light #光粉, for the change of brightness is very close to the 'eyes'; the brightness of the 敎 will listen to the change of the wire (eh_ling coordinate). That is to say, when the ACLED wafer is used as a white light source, it is necessary to face the problem of color deviation of the produced white light. SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide an AC-driven multi-wavelength light-emitting element that can effectively avoid the problem of white color deviation. According to the scope of the invention provided by the present invention, there is provided an AC-driven multi-wavelength light-emitting element comprising a coffin and a neon-long light-emitting two-layer (LED). The multi-wavelength LEDs are electrically connected to each other in series and in parallel to each other and are provided on the substrate, and each of which comprises a plurality of active layers. According to the present invention, the AC-driven multi-wavelength light-emitting element is directly mixed with different color lights generated by different active layers of the multi-wavelength LEDs to form white light, and the LEDs of the four-week wavelength (four) are connected to the power supply. In order to make the wavelength of the light-emitting elements of the mobile home, it can directly converge on the AC voltage. More importantly, since the multi-wavelength LED provided by the hair duck does not need to be mixed by any phosphor powder, it can directly mix and produce white light, and as a white LED. Therefore, even if the brightness loss occurs in the light-emitting element of the flow-through light, it is still possible to fundamentally (4) listen to the problem of white color deviation caused by the light-based section. 201121356 [Embodiment] /_第i_第2图'i> _ 2 are respectively a first preferred embodiment of the AC-driven multi-wavelength light-emitting element provided by the present invention and a second preferred embodiment Schematic diagram of the section. It should be noted that the AC-driven multi-wavelength light-emitting device provided by the present invention comprises a plurality of multi-wavelength LEDs, and any multi-wavelength LED includes a structure as shown in FIG. For example, the first multi-wavelength LED100 provided by Rijing to build an AC-driven multi-wavelength illuminating element includes a substrate 1〇2, such as sapphire, Sic, sand, oxidation. On a substrate such as zinc (Zn〇), oxidized ruthenium (10) or stellite gallium (GaAs). On the substrate 1 2, a semiconductor layer iig, a second type semiconductor layer n6, and a plurality of semiconductor layers 110 and a second type semiconductor layer 116 are disposed in this order from bottom to top. An active layer 112. In the first preferred embodiment, the plurality of active layers 112 are exemplified by a first active layer 112a and a second active layer 112b, but are not limited thereto. In the first preferred embodiment, the first type is n-type; and the second type is p-type, but those skilled in the art should know that the first type and the second type are conductive types. Depending on the process or product requirements, it is not limited to the first type is the p type, and the second type is the 11 type. In addition, a buffer layer is further disposed between the substrate 1〇2 and the first type semiconductor layer U〇 (not shown), but the film layer should be set by those skilled in the art, so the system is no longer The description is also omitted in the second drawing. The first semiconductor layer 110, the first active layer 112a, the second active layer 112b, and the second semiconductor layer 116 can be formed on the substrate by epitaxial growth. 2, therefore, including epitaxial materials such as three or five nitride semiconductor materials, such as gallium nitride (GaN), aluminum nitride (AlGaN), indium gallium nitride (InGaN) and indium nitride gallium (A1InGaN) And the first active 201121356 layer 112a and the second active layer 112b may comprise multiple quantum wells (MQW). 〇 It is noted that the multi-wavelength LED system in the first preferred embodiment is provided in the first The first active layer 112a and the second active layer 112b are mixed with the second active layer 112b to directly generate white light. Therefore, the multi-wavelength LED provided by the preferred embodiment is also a white light LE: D: the first active layer 112a of the multi-wavelength LED 100 and the first active layer ii2b Each of the first wavelength light and the second wavelength light is different from the second wavelength light. For example, the wavelength (λ) of the first wavelength light ranges from 550 to 650 nm (nanometer, The wavelength of the second wavelength light is between 450 and 510 nm. It can be seen that the first active layer 112a and the second active layer 112b can respectively generate yellow light and blue light. When the blue light is mixed, white light is generated. Therefore, any multi-wavelength LED provided by the present invention does not need to add a fluorescent powder in the packaging process, and can generate white light by itself, and as a white LED. In a variation of a preferred embodiment, the wavelength of the first wavelength light generated by the first active layer may be 5 〇〇 6 6 〇〇 nm; the wavelength of the first wavelength light generated by the second active layer U It can be seen that the first active layer 112a and the second active layer U2b can generate yellow-green light and ultraviolet (uv) light, respectively, and the yellow-green light and the UV can be combined to produce self-light. , Township wavelength coffee 100 can also be used as a white led. Please continue to see Fig. 1. A transparent 201121356 conductive layer 120' may be formed on the second type semiconductor layer 116, which may be indium tin oxide (in (j), but not limited thereto.) The transparent conductive layer 120 is formed. It is in contact with the second material conductor layer 116 and serves as an electrode. On the first type semiconductor layer u and the transparent conductive layer 12, a pad 130, 132 is formed, which is disposed on The pad 130 on the first type semiconductor layer no also serves as an electrode. Please refer to Figure 2. Since the elements other than the active layer in the AC-driven multi-wavelength light-emitting element in FIG. 2 are the same as those in the first preferred embodiment, the same elements are designated by the same reference numerals and will not be described again. Different from the first preferred embodiment, the plurality of active layers 114 included in the second preferred embodiment are exemplified by a third active layer U4a, a fourth active layer 114b and a fifth active layer 114c. However, those skilled in the art will appreciate that the arrangement of such active layers is not limited thereto. The third active layer n4a, the fourth active layer 114b and the fifth active layer 114c also include MqW, and the third active layer n4a, the fourth active layer 114b and the fifth active layer ii4c respectively generate a third wavelength light, a fourth Wavelength light and a fifth wavelength light. The wavelength range of the third wavelength light is between 560 and 600 nm, the wavelength range of the fourth wavelength light is between 520 and 560 nm, and the wavelength of the fifth wavelength of light is between 200 and 430 nm. between. It can be seen that the third active layer 114a, the fourth active layer 114b and the fifth active layer can respectively generate yellow light, green light and light, and directly combine with yellow light, green light and UV light to generate white light. Therefore, any of the multi-wavelength LEDs 1 provided in the first preferred embodiment is also a white light LED which can generate white light by itself without adding a phosphor powder in the packaging process. Referring to Figure 3, Figure 3 is a cross-sectional view of the tandem wavelength LEDs provided by the first and second preferred embodiments. As described above, the AC-driven light-emitting element is obtained by connecting and connecting the LEDs of the 201121356 in a bridge manner in series, so that after the completion of the multi-wavelength (four) 100, a light is formed on each of the multi-wavelength LEDs 100. Patterned insulation Zhan Gang, to electricity! Insulation of each night wavelength LED 1GG, * in relation to each solder n (), m is divided into lion - open π H2 for subsequent construction of the circuit. In the first and second preferred embodiments, adjacent two-multi-wavelength LED contacts that are predetermined to be electrically connected in series are electrically connected to the solder fillet 130 and the soldering potential 132' by a conductive layer 150' such as a metal layer. The construction of a series circuit. Referring to Fig. 4 and Fig. 5, Figs. 4 and 5 are circuit diagrams showing different embodiments of the AC-driven light-emitting elements provided by the first and the first preferred embodiments, respectively. As shown in FIG. 4, the AC-driven multi-wavelength light-emitting element 2 provided by the preferred embodiment utilizes the above-mentioned multi-wavelength LEDs 1 〇〇 series and parallel to form a bridge train, 212 and 2〇2 (shown in Figure 3). In addition, the bridge 2, the line is connected in series, and then the process is difficult to complete, the production of the light-emitting component (9) is completed, and the 波长 波长 wavelength heart light 200 It can be used directly on the AC power supply. Please refer to Figure #Figure 'Additional'. According to the requirements of different products, in the AC-driven multi-wavelength light-emitting parts 300 shown in Figure 5, different groups can be connected in series. Bridge survey, 212 and then connect in parallel with the electric connection to increase the number of multi-wavelength LEDs (8) that are lit by the positive and negative half cycles of the AC. After that, the package process is completed to complete the fabrication of the AC-driven multi-wavelength light-emitting device. The component system can be directly used in the AC power supply. Bamboo's 'turned to provide the New Zealand light element, can use the color of the multiple layers of =rrED to directly mix the color of the light directly. This can be directly used as a self-lighting coffee. And, by parallel, etc. Equation 201121356 Electrically connecting the self-lighting LEDs to form an AC-driven multi-wavelength/white light-emitting element that can be directly symmetrical to the AC voltage. More importantly, since the white light 提供^^ provided by the present invention does not pass any firefly The light powder is mixed, so even if the white light emitting device has insufficient or even failed light-emitting performance in the white light-emitting element, the loss of brightness can be avoided, and the fluorescent powder can be prevented from being uneven due to uneven brightness*. The problem of light color deviation and the like is only the preferred embodiment of the present invention, and all the equivalent changes and modifications made by the scope of the present invention are within the scope of the present invention. [Simplified Description] BRIEF DESCRIPTION OF THE DRAWINGS FIG. 2 is a cross-sectional view showing a first embodiment of an alternating current driving light-emitting element provided by the present invention; FIG. 2 is a second preferred embodiment of the alternating chicken multi-wavelength light-emitting element provided by the present invention. Schematic diagram of the section;

圖係本發明所提供之串聯多波長LED之剖面示意圖; 之交流驅動多波長 第4圖與第5圖分別為本較佳實施例所提供 發光元件不同實施型_電路示意圖。 【主要元件符號說明】 100 多波長LED 110 第一型半導體層 102 基板 112、114活性層 201121356 112a 第一活性層 112b 第二活性層 114a 第三活性層 114b 第四活性層 114c 第五活性層 116 第二型半導體層 120 透明導電層 130 > 132 焊墊 140 圖案化絕緣層 142 開口 150 導電層 200 交流驅動波長發光元件 202 基材 210'212 電橋 300 交流驅動多波長發光元件 400 交流電源 12BRIEF DESCRIPTION OF THE DRAWINGS Fig. is a schematic cross-sectional view of a series multi-wavelength LED provided by the present invention; AC-driven multi-wavelengths. Figs. 4 and 5 are respectively schematic views of different embodiments of the light-emitting elements provided in the preferred embodiment. [Main component symbol description] 100 multi-wavelength LED 110 first-type semiconductor layer 102 substrate 112, 114 active layer 201121356 112a first active layer 112b second active layer 114a third active layer 114b fourth active layer 114c fifth active layer 116 Second type semiconductor layer 120 transparent conductive layer 130 > 132 solder pad 140 patterned insulating layer 142 opening 150 conductive layer 200 AC driven wavelength light emitting element 202 substrate 210'212 bridge 300 AC driven multi-wavelength light emitting element 400 AC power supply 12

Claims (1)

201121356 七、申請專利範圍·· 一種交流驅動多波長發光元件,包含有: 一基材;以及201121356 VII. Patent Application Range · An AC-driven multi-wavelength light-emitting element comprising: a substrate; 2.如申請專利範圍第1項所述之交流驅動多波長發光元件,豆中各 =波==3分別包含一第一型半導體層與-第二型半導 層I間 置於該第—型半導縣與鄉二型料體 莖=申μ專利祀瞬2酬述之交趣動乡波長發光元件,直中^ =波„二極體更包含—第—焊墊與—第二焊墊,分別設置2 以第-里半導體層與該第二型轉體層上。 I 專利feu第4項所述之交流驅動多波長發光元件,其中」 2夕波長發光二極體之該第—焊她相鄰之纽長發光二極體: 祕係電性連接以串聯該等發光二極體。 申吻專利袖帛1項職之交越動纽紐光it件,其中i 13 201121356 等多波長發光二極體之該等活性層分別產生一第一波長光與一第二 波長光,且該第一波長光不同於該第二波長光。 7.如申凊專利範圍第6項所述之交流驅動多波長發光元件,其中該 第一波長光之波長範圍係在550〜650奈米(nanometer,nm)之間, 而該第二波長光之波長範圍係在450〜510奈米之間。 8_如申請專利範圍第7項所述之交流驅動多波長發光元件,其中該 多波長發光二極體為一白光發光二極體。 9. 如申請專利範圍第6項所述之交流驅動多波長發光元件,其中該 弟一波長光之波長範圍係在5〇〇〜600奈米(nanometer,nm)之間, 而該第二波長光之波長範圍係在340〜430奈米之間。 10. 如申請專利範圍第9項所述之交流驅動多波長發光元件,其中 5玄多波長發光二極體為一白光發光二極體。 11. 如申請專利範圍第1項所述之交流驅動多波長發光元件,其中 該等多波長發光二極體之該等活性層分別產生一第三波長光、一第 四波長光與一第五波長光,且該等波長光係不同於彼此。 12. 如申請專利範圍第u項所述之交流驅動多波長發光元件,其中 該第三波長光之波長範圍係在56〇〜6〇〇奈米之間、該第四波長光之 波長範圍係在520〜560奈米之間、該第五波長光之波長範圍係在 200〜430奈米之間。 201121356 . 13.如申請專利範圍第12項所述之交流驅動多波長發光元件,其中 該多波長發光二極體為一白光發光二極體。 14. 如申請專利範圍第1項所述之交流驅動多波長發光元件,其中 該等多波長發光二極體係串聯與並聯形成至少一電橋。 15. 如申請專利範圍第14項所述之交流驅動多波長發光元件,其中 該等電橋係以串聯與並聯方式相互電性連接。 # 八、圖式:2. The AC-driven multi-wavelength light-emitting device according to claim 1, wherein each of the beans ==3 includes a first type semiconductor layer and a second type semiconductor layer I are disposed between the first type and the second type. Type semi-conducting county and township two-type material stem = Shen μ patent 祀 2 酬 酬 酬 2 动 动 动 波长 波长 波长 波长 波长 波长 波长 波长 波长 波长 波长 波长 波长 波长 波长 波长 波长 波长 波长 波长 波长 波长 波长 波长 波长 波长 „ „ „ „ Pads, respectively, are provided on the first-inferior semiconductor layer and the second-type rotor layer. I. The AC-driven multi-wavelength light-emitting element described in the fourth item of the feu, wherein the second-wavelength light-emitting diode is soldered. Her adjacent long-length LEDs: The secret is electrically connected to connect the LEDs in series. The application of the patented sleeve armor 1 cross-over button, wherein the active layers of the multi-wavelength light-emitting diodes such as i 13 201121356 respectively generate a first wavelength light and a second wavelength light, and the The first wavelength light is different from the second wavelength light. 7. The AC-driven multi-wavelength light-emitting device of claim 6, wherein the wavelength of the first wavelength light is between 550 and 650 nanometers (nm), and the second wavelength light The wavelength range is between 450 and 510 nm. The AC-driven multi-wavelength light-emitting device of claim 7, wherein the multi-wavelength light-emitting diode is a white light-emitting diode. 9. The AC-driven multi-wavelength light-emitting device of claim 6, wherein the wavelength of the wavelength of the light is between 5 〇〇 and 600 nanometers (nm), and the second wavelength The wavelength range of light is between 340 and 430 nm. 10. The AC-driven multi-wavelength light-emitting device according to claim 9, wherein the five-multi-wavelength light-emitting diode is a white light-emitting diode. 11. The AC-driven multi-wavelength light-emitting device of claim 1, wherein the active layers of the multi-wavelength light-emitting diodes respectively generate a third wavelength light, a fourth wavelength light, and a fifth Wavelength light, and the wavelengths of the light are different from each other. 12. The AC-driven multi-wavelength light-emitting device of claim 5, wherein the wavelength of the third wavelength light is between 56 〇 and 6 〇〇 nanometers, and the wavelength range of the fourth wavelength light is Between 520 and 560 nm, the wavelength of the fifth wavelength light is between 200 and 430 nm. The AC-driven multi-wavelength light-emitting device of claim 12, wherein the multi-wavelength light-emitting diode is a white light-emitting diode. 14. The AC-driven multi-wavelength light-emitting device of claim 1, wherein the multi-wavelength light-emitting diode systems form at least one bridge in series and in parallel. 15. The AC-driven multi-wavelength light-emitting device of claim 14, wherein the bridges are electrically connected to each other in series and in parallel. #八,图: 1515
TW098142047A 2009-12-09 2009-12-09 Alterative current multi-wavelength light-emitting device TW201121356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098142047A TW201121356A (en) 2009-12-09 2009-12-09 Alterative current multi-wavelength light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098142047A TW201121356A (en) 2009-12-09 2009-12-09 Alterative current multi-wavelength light-emitting device

Publications (1)

Publication Number Publication Date
TW201121356A true TW201121356A (en) 2011-06-16

Family

ID=45045538

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098142047A TW201121356A (en) 2009-12-09 2009-12-09 Alterative current multi-wavelength light-emitting device

Country Status (1)

Country Link
TW (1) TW201121356A (en)

Similar Documents

Publication Publication Date Title
TWI414088B (en) Light-emitting device and the manufacturing method thereof
TW591811B (en) Color mixing light emitting diode
EP1935038B1 (en) Light emitting device having vertically stacked light emitting diodes
JP5237566B2 (en) Light emitting device package and manufacturing method thereof
KR102116359B1 (en) Light emitting device
US7994523B2 (en) AC light emitting diode having improved transparent electrode structure
US8188489B2 (en) Light emitting diode for AC operation
KR100974777B1 (en) A light emitting device
TWI445156B (en) Light-emitting device
JP2013012744A (en) Semiconductor light emitting device package
TWM277111U (en) Vertical electrode structure for white-light LED
EP1469516A1 (en) White-light emitting semiconductor device using a plurality of light emitting diode chips
TW201129228A (en) Light emitting diode lighting apparatus
KR100642522B1 (en) Light emitting diode employing a patterned transparent substrate
JP2007188942A (en) Light emitting diode device coupling rectifying circuit to sub-carrier and manufacturing method thereof
TW201121356A (en) Alterative current multi-wavelength light-emitting device
TWI581398B (en) Light-emitting device
TW201403868A (en) Light-emitting device and the manufacturing method thereof
TWI360893B (en) Light emitting diode chip and method for fabricati
TWI528855B (en) Ac led module
CN102086978A (en) Alternating current driving multi-wavelength light-emitting component
TW201003984A (en) Light emitting diode having multiply stacked structure
KR101205529B1 (en) A light emitting device having a plurality of light emitting cells and Menufacturing method thereof
TWI257707B (en) Flip-chip type LED package structure and LED chip
WO2011011902A1 (en) Led illuminating device and chip of led array