TW201121084A - System and method for manufacturing solar cell - Google Patents

System and method for manufacturing solar cell Download PDF

Info

Publication number
TW201121084A
TW201121084A TW098142276A TW98142276A TW201121084A TW 201121084 A TW201121084 A TW 201121084A TW 098142276 A TW098142276 A TW 098142276A TW 98142276 A TW98142276 A TW 98142276A TW 201121084 A TW201121084 A TW 201121084A
Authority
TW
Taiwan
Prior art keywords
substrate
layer
solar cell
electrode layer
cell manufacturing
Prior art date
Application number
TW098142276A
Other languages
Chinese (zh)
Inventor
Wen-Chueh Pan
Feng-Yu Tsai
Zan-Yu Chen
Wen-Kuei Yang
Hsiu-Jung Yeh
Chuan-Chieh Lin
Yang-Jiann Fann
Original Assignee
Chung Shan Inst Of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chung Shan Inst Of Science filed Critical Chung Shan Inst Of Science
Priority to TW098142276A priority Critical patent/TW201121084A/en
Publication of TW201121084A publication Critical patent/TW201121084A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

The invention discloses a system and a method for manufacturing a solar cell. The system for manufacturing the solar cell comprises a first coating device, a second coating device, and a combination device. The first coating device is used to form an absorber layer on a first substrate, having a first surface and a second surface, and the absorber layer is formed on the first surface. The second coating device is used to form a transparent conducting layer on a second substrate, having a third surface and a fourth surface, and the transparent conducting layer is formed on the third surface. The combination device is used to combine the first substrate and the second substrate, where the first surface toward the third surface.

Description

201121084 六、發明說明: 【發明所屬之技術領域】 造系統及製造方法, 型太陽能電池製造系 本發明關於一種太陽能電池製 並且特別地,本發明關於一種薄^ 統及製造方法。 ' 【先前技術】BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell system and, in particular, to a thin film and a method of fabricating the same. 'Prior art

隨著人口的增加與科技的進步, 污染的問題越來越重視。由於對於能源耗盡及環境 料逐年減少,世界各ΐ開=以造與煤等石化燃 使用的再生能源。再生麟的_ 且可水續 力與水力發電皆為再生能源之陽能、風 ^,太陽能發電之架設成本低且不需佔用龐水^ 太%能發電為再生能源主要發展的方向。 工門使付 -般來說,太陽能發電侧用太陽光日s 料上吸收光能後產生電流來發電。上 能之半導體材料,一般被稱為太陽能電池=轉 用材料及技術的不Θ,太陽能電池可細分 ;池=薄膜型太陽能電池。其中,晶片 用Ρ型(p-type)半導體矽晶片進行表面蝕刻、ρ_Ν接面 N junction)擴散、表面抗反射錢膜以及網印製作金屬電極 等製程。 另一方面,薄膜型太陽能電池係藉由不同成分之薄膜 吸收光能後產生電流來發電。舉例來說,請參見圖一,圖 一係繪示先前技術中之太陽能電池的結構示意圖。如圖一 所示,太陽能電池9包含基板90以及在基板90之上的多 201121084 層薄膜。從太陽能電池9 、, 9〇上形成-層鉬_)金屬層兄^先在基板 形成-層吸收層92。接著,於傭μ “目金屬層91上 編(CdS)層93。再於硫化錦声、的收卜曰/2上形成一層硫化 鉍層93上依序形成本質氧化鋅 S fQ)層94與㈣摻雜氧化鋅⑽:A1 AZO)層95。最後於重摻雜氧化辞層& 、= 96與外部電極97。 上形成杬反射層 收M2般ff,基板9〇可為納玻璃(S〇da_lime細),吸 化銅銦(CuInSe2)或者銅銦鎵砸 ί 化鋅層95為N型半導體。也就是 ϊ成的f構可為一種以p_n二極體接面所 外,硫化鎘層93又可稱為緩衝層,為了 ΐ古hi的吸收效率,硫化鑛層93亦可選用其他透光 且’由於半導體表面具有反射性,使得太 陽能電池9而產生損失,可使用氟化 鎂(g 2)作為抗反射層96用以提升太陽光進入太陽能 池9的比例。 請繼續參㈣-,由於太陽光包含的光譜範圍極大, 當太陽能,池9照射太陽光時,其中短波長、中波長、長 波長的太1¼光分別由不同區域吸收,藉以激發出自由電子 形成電流。例如鋁重摻雜氧化辞層95與吸收層92皆可吸 收太陽光,且鋁重摻雜氧化鋅層95與吸收層92分別為N 型與P型半導體,若入射的太陽光之光能大於所述之半導 體的能帶間隙(band gap) ’則可激發所述之半導體的價帶 (valance band)中之電子躍升至導電帶(c〇nducti〇n ban(〇, 成為可自由傳導的電子,藉此產生自由電子與電洞。 也就疋說,當|g重摻雜氧化鋅層95與吸收層92分別 201121084 吸收之太陽光的光能超過對應之能帶間隙,分別可產生大 量自由電子及電洞,且這些自由電子及電洞可由鉬金屬層 91及外部電極97導出以形成電流。如此一來,太陽能電 池9可用以吸收太陽光之光能產生電流來發電。 綜上所述,為了提升太陽能電池的製造效率’目前的 作法仍是以改良各層的鍍膜技術,縮短每一層的製造時 間,以提昇整體太陽能電池的製造效率。然而,儘管可針 對各層的鑛膜技術加以改良,太陽能電池仍必須以依序逐 層向上疊鐘,無法有效縮短製造時間。因此,太陽能電池 需要一種比逐層向上疊鑛的方式更有效率的製造過程,以 縮短製造時間。 【發明内容】 有鑑於此,本發明之一範疇在於提供一種太陽能電池 製造系統,不以依序逐層向上疊鍍的方式製造太陽能電 池,可有效縮短製造時間。 依據一具體實施例,本發明之太陽能電池製造系統包含 第一鍍膜裝置、第二鍍膜裝置以及結合裝置。其中,第一錢 膜襄置用以形成吸收層(absorber layer)於第一基材之上,第一 基材具有第一表面及第二表面’且吸收層位於第一表面之 上。苐一鐘膜裝置用以形成透明電極層於第二基材之上,第 一基材具有第三表面及第四表面,且透明電極層位於第三表 面之上。結合裝置用以結合第一基材與第二基材,其中第一 表面朝向第三表面。 於實際應用中,第一基材可具有背電極層,且第一鍍膜 201121084 裝置形成吸收層於背電極層之上。此外,第—錢 形成緩衝層(buffei* lay啦·層之上 可具有外部電滅抗反射層(anfcefleetiGn丨 ^ 搞/ 另外’弟一鑛膜裝置更可形成緩衝層於透明電 απί)之i。其中’透明電極層可包含㈣摻雜氧化鋅層 ’ AZ〇)以及本質氧化鋅(intrinsic ZnO,i_Zn0)層, 且本質氧化鋅層位於鋁重摻雜氧化辞層之上。 卜’Γφ實,用+,結合裝置可包含定位模組以及 θ賴其中,讀模域行定錄序,肋對準第一基 材與=二基材,並依據定位程序之執行結果輸出定位信息。 ,壓模組連接定賴組’純並依據定健息,執行層壓程 序,用以結合第一基材與第二基材。 、本發明之另一範臂在於提供一種太陽能電池製造方 人依據一具體實施例,本發明之太陽能電池製造方法,包 ^下列步驟:形成吸收層(absorber layer)於第一基材之上,第 一基材具有第一表面及第二表面,且吸收層位於第一表面之 上;形成透明電極層於第二基材之上,第二基材具有第三表 面及第四表面,且透明電極層位於第三表面之上;結合第-基材與第二基材,其中第—表面朝向第三表面。 北於只際應用中,第一基材可具有背電極層,吸收層形成 ;月電極層之上。此外’更可形成緩衝層(buffer layer)於吸收 層之上。另一方面’第二基材可具有外部電極及抗反射層 201121084 (anti-reflecti〇n layer),外部電極盥 上 明電極層形餘抗反射叙上。接’且透 本質氧化鋅層’且本質氧化鋅層位於 之二用中,其中於結合第-基材與第二基材 2 可包含下列步驟:執行定位程序,用以對準第With the increase of population and the advancement of science and technology, the issue of pollution is getting more and more attention. As the energy is depleted and the environmental materials are decreasing year by year, the world is open to the use of renewable energy for the production of petrochemicals such as coal. Reclaimed Lin's _ and water and hydropower are both renewable energy and wind. The cost of solar power generation is low and does not need to occupy Pangshui. The door is paid. Generally speaking, the solar power generation side uses solar energy to absorb light energy and generate electricity to generate electricity. The semiconductor materials of the upper energy, generally referred to as solar cells = the use of materials and technologies, solar cells can be subdivided; pool = thin film solar cells. Among them, the wafer is surface-etched with a p-type semiconductor germanium wafer, a ρ_Ν junction N junction diffusion, a surface anti-reflection film, and a metal electrode for screen printing. On the other hand, a thin film type solar cell generates electricity by absorbing light energy from a film of a different composition to generate electric current. For example, please refer to FIG. 1 , which is a schematic structural view of a solar cell in the prior art. As shown in FIG. 1, the solar cell 9 includes a substrate 90 and a plurality of 201121084 layer films on the substrate 90. A layer of molybdenum is formed on the solar cells 9 and 9 to form a layer of the absorber layer 92 on the substrate. Next, a layer (CdS) layer 93 is formed on the metal layer 91. Then, a layer of the inorganic zinc oxide S fQ layer 94 is sequentially formed on the layer of the antimony sulfide layer 93 formed on the vulcanized layer. (4) Doping zinc oxide (10): A1 AZO) layer 95. Finally, the heavily doped oxidized layer & , = 96 and the external electrode 97. The ytterbium reflective layer is formed on the M2 like ff, and the substrate 9 〇 can be nano glass (S 〇da_lime fine), copper indium (CuInSe2) or copper indium gallium 砸 砸 化 layer 99 is an N-type semiconductor, that is, the f structure of the bismuth can be a p_n diode junction, cadmium sulfide layer 93 may also be referred to as a buffer layer. For the absorption efficiency of the hi古hi, the sulphide ore layer 93 may also be selected to have other light transmission and 'a loss of the solar cell 9 due to the reflective surface of the semiconductor surface, and magnesium fluoride (g) may be used. 2) As the anti-reflection layer 96 is used to increase the proportion of sunlight entering the solar cell 9. Please continue to refer to (4)-, because the solar light contains a large spectral range, when the solar energy, the pool 9 is irradiated with sunlight, among which the short wavelength and the medium wavelength The long wavelength of the 11⁄4 light is absorbed by different regions, thereby exciting the free electron form. For example, the aluminum heavily doped oxidized layer 95 and the absorbing layer 92 can absorb sunlight, and the aluminum heavily doped zinc oxide layer 95 and the absorbing layer 92 are N-type and P-type semiconductors, respectively, if incident sunlight A light energy greater than the band gap of the semiconductor can excite electrons in the valence band of the semiconductor to jump to the conductive band (c〇nducti〇n ban) Conducted electrons, thereby generating free electrons and holes. In other words, when the light energy of the sunlight absorbed by the |g heavily doped zinc oxide layer 95 and the absorption layer 92 201121084 exceeds the corresponding energy band gap, respectively A large amount of free electrons and holes are generated, and these free electrons and holes can be led out by the molybdenum metal layer 91 and the external electrode 97 to form a current. Thus, the solar cell 9 can generate electricity by absorbing light of the sunlight to generate electricity. As mentioned above, in order to improve the manufacturing efficiency of solar cells, the current practice is still to improve the coating technology of each layer and shorten the manufacturing time of each layer to improve the manufacturing efficiency of the overall solar cell. However, although The improvement of the mineral film technology of each layer, the solar cell still has to stack the clocks layer by layer, which can not effectively shorten the manufacturing time. Therefore, the solar cell needs a more efficient manufacturing process than the layer-by-layer cascading method. SUMMARY OF THE INVENTION In view of the above, it is an object of the present invention to provide a solar cell manufacturing system that does not sequentially manufacture a solar cell by layer-by-layer plating, which can effectively shorten the manufacturing time. For example, the solar cell manufacturing system of the present invention comprises a first coating device, a second coating device, and a bonding device, wherein the first film is disposed to form an absorber layer on the first substrate, first The substrate has a first surface and a second surface 'and the absorber layer is above the first surface. The first film device is configured to form a transparent electrode layer on the second substrate, the first substrate has a third surface and a fourth surface, and the transparent electrode layer is located on the third surface. The bonding device is configured to bond the first substrate to the second substrate, wherein the first surface faces the third surface. In a practical application, the first substrate may have a back electrode layer, and the first coating 201121084 device forms an absorber layer over the back electrode layer. In addition, the first money forms a buffer layer (buffei* lays on the layer can have an external electric anti-reflection layer (anfcefleetiGn丨^ engage / in addition, 'di-one membrane device can form a buffer layer in transparent electricity απί) i Wherein the 'transparent electrode layer may comprise (iv) a doped zinc oxide layer 'AZ〇) and an intrinsic zinc oxide (i_Zn0) layer, and the intrinsic zinc oxide layer is located on the aluminum heavily doped oxidized layer.卜'Γφ real, with +, the combination device can include a positioning module and θ, wherein the reading mode field is scheduled, the rib is aligned with the first substrate and the second substrate, and the positioning is output according to the execution result of the positioning program. information. The pressure module is connected to the group and is subjected to a laminating process for bonding the first substrate and the second substrate. Another method of the present invention is to provide a solar cell manufacturing method according to a specific embodiment of the present invention, comprising the steps of: forming an absorber layer on a first substrate, The first substrate has a first surface and a second surface, and the absorption layer is located above the first surface; the transparent electrode layer is formed on the second substrate, the second substrate has a third surface and a fourth surface, and is transparent The electrode layer is located above the third surface; the first substrate and the second substrate are combined, wherein the first surface faces the third surface. In the north-only application, the first substrate may have a back electrode layer, and the absorption layer is formed; above the moon electrode layer. Further, a buffer layer may be formed on the absorption layer. On the other hand, the second substrate may have an external electrode and an anti-reflection layer 201121084 (anti-reflecti layer), and the external electrode layer may be formed on the surface of the electrode layer. Connecting the 'essential zinc oxide layer' and the intrinsic zinc oxide layer is in use, wherein the bonding the first substrate and the second substrate 2 may comprise the following steps: performing a positioning procedure for aligning

土材料—基材;依據定位程序之執行結果,執行層壓程 序,用以結合第一基材與第二基材。 、,紅上所述,本發明之太陽能電池製造系統及太陽能電 池製造方法’將太陽能電池的結齡別纽於複數個基材之 上,再將所述之基材加以疊合,同樣也可達成吸收光能以 轉換成電能之效果。特別的是,本發明之太陽能電池不以 依序逐層向上疊鍍的方式製造太陽能電池,因此可有效縮 短製造時間。 關於本發明之優點與精神可以藉由以下的發明詳述及 所附圖式得到進一步的瞭解。 【實施方式】 本發明提供一種太陽能電池製造系統及太陽能電池製 造方法。關於本發明之若干具體實施例係揭露如下。 請參見圖二,圖二係繪示根據本發明之一具體實施 例之太陽能電池製造系統的方塊圖。如圖所示,太陽能電 池製造系統1包含第一鍍膜裝置1〇、第二鍍膜裝置12以及 201121084 結合裝置14。第一錢膜裝置川田、 layer)於第-騎之上,第―基·*第」表m=0^ber 第一。結= 於實務中’結合裝置14包含定位模組 第+—基材,並依據疋位程序之執行結果輸出定位信息。芦 模組142連接定位模組14〇,接收並依據 ^ 壓程序,肋結合第-基材絲二紐像植I、執仃層 此^ ’第-鍍膜裝置10與第二鍍膜装置12可同時執行 許出〔i膜德執行完成後’分別由第—鐘膜裝置1〇 ΐ出5ίί5ί:基材以及由第二鍍膜裝置12輪出鍍膜後之 第-基材至結合裝置14。在此,以舰後之第—基材為第一 狀第二基材為第二部分。接著,結合裝置14再 池。,-部賴4二部分結合成為具有功朗太陽能電 1分雜結構,以下 詳細來說,請參見圖三A,圖三八係繪示根據本發 明之一具體實施例之第一部分的方塊圖。由圖所示,第 邛为20之中,具有第一基材200、背電極層202以及吸 收層204。背電極層202與吸收層2〇4位於第一基材2〇〇的 同一侧,且依序為第—基材200、背電極層202以及吸收層 204。於實務中’第一基材200可以選用不鏽鋼(stainiess steel)、銘(aluminum)、二氧化鈦(Ti〇2)、鈉玻璃(s〇da lime 201121084 glass)、聚合物(p〇lymer)或者其他適當之材料。 背電極層202可以搭配選用與吸收層204有良好歐姆接 觸的材料,舉例來說,當吸收層204選用二硒化銅銦 (CuInSe2)或疋二砸化銅銦鎵(QGS)時’可以搭配選用鉬(M〇) 金屬薄膜作為背電極層202。一般來說,吸收層204為p型 半導體,並且吸收層204除了上述可選用二硒化銅銦 (CuInSe2)或是二石西化銅銦鎵(CIGS)之外,也可選用二硫化銅 錮(CuInS2)、二硫化銅鎵(cuGaS2)、二硒化銅鎵(cuGaSe2)或 者其他適當之材料。Soil material - substrate; a lamination process is performed to bond the first substrate to the second substrate in accordance with the results of the positioning procedure. According to the invention, the solar cell manufacturing system and the solar cell manufacturing method of the present invention have the same age of the solar cell on a plurality of substrates, and then the substrates are laminated. The effect of absorbing light energy to convert into electrical energy is achieved. In particular, the solar cell of the present invention does not manufacture solar cells in a sequential manner by layer-by-layer plating, so that the manufacturing time can be effectively shortened. The advantages and spirit of the present invention will be further understood from the following detailed description of the invention. [Embodiment] The present invention provides a solar cell manufacturing system and a solar cell manufacturing method. Several specific embodiments of the invention are disclosed below. Referring to FIG. 2, FIG. 2 is a block diagram showing a solar cell manufacturing system according to an embodiment of the present invention. As shown, the solar cell manufacturing system 1 includes a first coating device 1A, a second coating device 12, and a 201121084 bonding device 14. The first money film device Kawada, layer) is above the first ride, and the first - base * table is m = 0^ber first. In the practice, the bonding device 14 includes a positioning module +-substrate, and outputs positioning information according to the execution result of the clamping program. The reed module 142 is connected to the positioning module 14〇, and receives and according to the pressing procedure, the rib is combined with the first-substrate wire two-image I, and the first layer-coating device 10 and the second coating device 12 are simultaneously After the execution of the i film is completed, the first substrate and the bonding device 14 are separated from the substrate by the first filming device 1 and the substrate and the second coating device 12 are rotated. Here, the second substrate having the first substrate and the second substrate is the second portion. Next, the combined device 14 is re-pooled. In the following, please refer to FIG. 3A, which shows a block diagram of the first part of a specific embodiment according to the present invention. As shown in the figure, the first substrate 20 has a first substrate 200, a back electrode layer 202, and an absorption layer 204. The back electrode layer 202 and the absorbing layer 2〇4 are located on the same side of the first substrate 2〇〇, and are sequentially the first substrate 200, the back electrode layer 202, and the absorbing layer 204. In practice, the first substrate 200 may be selected from stainless steel (stainiess steel), aluminum, titanium dioxide (Ti〇2), soda glass (s〇da lime 201121084 glass), polymer (p〇lymer) or other suitable Material. The back electrode layer 202 can be matched with a material having good ohmic contact with the absorbing layer 204. For example, when the absorbing layer 204 is selected from copper indium diselenide (CuInSe2) or bismuth bismuth bismuth hydride (QGS), A molybdenum (M〇) metal film is used as the back electrode layer 202. In general, the absorbing layer 204 is a p-type semiconductor, and the absorbing layer 204 may be selected from copper indium bismuth disulfide (CIInSe2) or copper indium bisphosphide (CIGS). CuInS2), copper bismuth disulfide (cuGaS2), copper gallium diselide (cuGaSe2) or other suitable materials.

另一方面,請參見圖三B,圖三B係繪示根據本發明 之一具體實施例之第二部分的方塊圖。如圖所示,第二 部分22之中,具有第二基材22〇、抗反射層222、透明電 極層224以及緩衝層226。抗反射層222、透明電極層224以 及缓衝層226位於第二基材220的同一侧,且依序為第二基 材220、抗反射層222、透明電極層故以及緩衝層挪了^ 只務中,第二基材220可選用透明之塑膠材料,並於第二基 材220中形成多個外部電極2200,此外部電極⑻為 ⑽或鋁(Α1)。 两呆 透明電極層224可包含銘重摻雜氧化辞層224〇以及 氧化鋅層2242。其中,重摻雜氧化鋅層2·為Ν型半導 化鋅層2242為未受摻雜之半導體。抗反射層 請:11用鼠巧鎮(MgF2)薄膜。緩衝層226可選用硫化锡 匕L、二銦化三硫(ΙηΑ)、二銦化三’决3)或者其他適當 之材料。 /由結合裝置14結合第一部分2〇以及第二部分22之後, 卩士成具有功此的太知能電池。請參見圖三c,圖三◦係 繪示根據本發明之一具體實施例之太陽能電池^方塊 201121084 圖。由圖所示,太陽能電池2包含第—部分2〇以及第二 分22,由下至上依序為第一部分20之第一基材2〇〇、背電極 層202以及吸收層204與第二部分22之緩衝層226、透明 極層224、抗反射層222以及第二基材22〇。 % 與先如技術之太陽能電池相同的是,本發明之太陽 能電池同樣為一種以P-N二極體接面所構成的結構,當入 射的太陽光之被吸收光能大於所述之半導體的能帶間隙, 可激發所述之半導體的價帶中之電子躍升至導電帶,成為 可自由傳導的電子,藉此產生自由電子與電洞。盥先前 技術之太陽能電池不同的是,本發明之太陽能電池係以 組合的方式製造。藉由同時製造第一部分與第二部分,最後 再將第-部分與第二部分結合’本發明之太陽能電池製造系 統可藉此縮短製造時間。 、 以下搭配本發明之一具體實施例之太陽能電池製造 方法’做更詳細的說明。 η月參見圖一、圖三c與圖四,圖四係繪示根據本發 明之一具體實施例之太陽能電池製造方法的流程圖。如圖 ^不,★於步驟S40中,第一鍍膜裝置1〇用以形成吸收層 於第一基材2〇〇之上。於實務中,背電極層2〇2可預先 =於,-基材2。。之上,再由第—鑛膜裝置ω形成吸收層 於为電極層202之上。在此,本發明對於形成吸收層2〇4 式不加以限制,舉例來說,第一鍍膜裝置1〇可使用凹版 P ;法(Gravure)、電沉積金屬法(eiec^r〇(jep〇siti〇n 脱如 ϋΓ)、張力调控狹縫式塗佈(tensi〇ned-Web slot coating, sc)、噴墨式印製法(Ink_jet printing)或者其他適當的方法 形成吸收層204。 於步驟S42中,第二鍍膜裝置12形成透明電極層224 201121084Referring to Figure 3B, Figure 3B is a block diagram of a second portion of an embodiment of the present invention. As shown, the second portion 22 has a second substrate 22, an anti-reflective layer 222, a transparent electrode layer 224, and a buffer layer 226. The anti-reflection layer 222, the transparent electrode layer 224, and the buffer layer 226 are located on the same side of the second substrate 220, and sequentially move the second substrate 220, the anti-reflection layer 222, the transparent electrode layer, and the buffer layer. In the second substrate 220, a transparent plastic material may be used, and a plurality of external electrodes 2200 are formed in the second substrate 220. The external electrode (8) is (10) or aluminum (Α1). The two-dwelling transparent electrode layer 224 may comprise a heavily doped oxidized layer 224 and a zinc oxide layer 2242. Among them, the heavily doped zinc oxide layer 2 is a germanium-type semi-conductive zinc layer 2242 which is an undoped semiconductor. Anti-reflective layer Please: 11 Mouse (MgF2) film. The buffer layer 226 may be selected from the group consisting of tin sulfide 匕L, diindium trisulfide (ΙηΑ), diindium trioxide 3) or other suitable materials. / After the first portion 2〇 and the second portion 22 are joined by the bonding device 14, the gentleman has a good battery. Referring to FIG. 3c, FIG. 3 is a diagram showing a solar cell module 201121084 according to an embodiment of the present invention. As shown in the figure, the solar cell 2 includes a first portion 2 〇 and a second portion 22, and the first substrate 2 第一, the back electrode layer 202, and the absorbing layer 204 and the second portion of the first portion 20 are sequentially arranged from bottom to top. The buffer layer 226 of 22, the transparent electrode layer 224, the anti-reflection layer 222, and the second substrate 22 are. % is the same as the solar cell of the prior art, the solar cell of the present invention is also a structure formed by the junction of the PN diode, when the absorbed light energy of the incident sunlight is larger than the energy band of the semiconductor. The gap, which excites electrons in the valence band of the semiconductor, jumps to the conductive strip and becomes freely conductive electrons, thereby generating free electrons and holes. Unlike the solar cells of the prior art, the solar cells of the present invention are manufactured in a combined manner. By simultaneously manufacturing the first portion and the second portion, and finally combining the first portion with the second portion, the solar cell manufacturing system of the present invention can thereby shorten the manufacturing time. The following is a more detailed description of the method of manufacturing a solar cell according to a specific embodiment of the present invention. Referring to FIG. 1, FIG. 3c and FIG. 4, FIG. 4 is a flow chart showing a method of manufacturing a solar cell according to an embodiment of the present invention. As shown in the figure, in step S40, the first coating device 1 is formed to form an absorbing layer over the first substrate 2A. In practice, the back electrode layer 2〇2 may be pre-, and - substrate 2. . Above, an absorbing layer is formed on the electrode layer 202 by the first film forming apparatus ω. Here, the present invention is not limited to the formation of the absorption layer 2〇4, for example, the first coating device 1〇 can use the intaglio P; the method (Gravure), the electrodeposited metal method (eiec^r〇(jep〇siti) The absorbing layer 204 is formed by tensn removing, tensi〇ned-Web slot coating (sc), inkjet printing (Ink_jet printing) or other suitable method. In step S42, The second coating device 12 forms a transparent electrode layer 224 201121084

於第二基材220之上。於實務中,抗反射層222與多個外 電極2200可預先設置於第二基材22〇之上’再由第二錢膜= 置12形成透明電極層224於抗反射層222之上,並形 層226於透明電極層224之上。在此,本發明對於形成透明 電極層224的方式不加以限制,舉例來說,第二鍍膜裝 可使用喷霧熱解法(spray pyr〇lySis pr〇cess)、化學水浴沉 或者其他適當的方法形成透明電極層224。 IAbove the second substrate 220. In practice, the anti-reflective layer 222 and the plurality of outer electrodes 2200 may be disposed on the second substrate 22A in advance, and then the second electrode film 224 is formed on the anti-reflective layer 222, and The layer 226 is over the transparent electrode layer 224. Herein, the present invention does not limit the manner in which the transparent electrode layer 224 is formed. For example, the second coating package may be formed by spray pyrolysis, chemical water bathing, or other suitable methods. Transparent electrode layer 224. I

一於步驟S44中,結合裝置14結合第一部分2〇以及 二部分22,以形成太陽能電池2。其中第一部分2〇包 基材200 ’並且第二部分22包含第二基材22〇。 在此,步驟S40與步驟S42之順序並不應以此為限 ^中’麵S40與步驟S42往往同時進行,藉以縮陽 能電池2的製造唯短太& 明之圖三C與圖五,圖五麵示根據本發 t 實施例之太陽能電池製造方法的流程圖。如 鐘膜裝置10可依序形成背電極層观與吸收 曰。也就是說,於步驟S500中,首先由第一鍍膜 s5〇m極層202於第一基材2〇0之上。接著,於ίί 2中,再形成吸收層204於背電極層202之上。 =二鑛膜裝置12也可依序形成抗反射層议、透 二2一4以及緩衝層226。也就是說,於步驟S5〇4中, 由第二鍍膜裝置12形成抗反射層222於第二基材22〇 中’再形成透明電極層224於抗反射層如‘ 層上於步驟S5〇8中,再形成緩衝層226於透明電極 用以對 於步驟S510中,定位模組14〇執行定位程序, 11 201121084 Ϊ又22 〇與包含第二基材220之第 …刀22。於實務中,定位程序可包含尋邊及 弟 P_〇n C〇ntr〇1 ’ EPC)之程序,用以對準第-部分20g St二並:3立模組140可依據定位程序之執行結^ =息,執行第-部分2G與第二部分22之層 t 務^層壓程序可包含加熱第一部分2〇與第二部分22= 預设之溫度,接著當定位m示定位^成之後,層 模組142加壓結合第一部分2〇與第二部分22。藉此^ =本發明之太陽能電池製造方法可完成太陽能電池2的製 值得注意的是,緩衝層不限定形成於第二基材之 上’也可以形成於第-基材之上。舉例來說,請參見圖 二、圖六A以及圖六B,圖六A係繪示根據本發明之 另一具體實施例之第一部分的方塊圖。圖六B係繪示根 據^發明之另一具體實施例之第二部分的方塊圖。由圖 所不,第一鍍膜裝置10與第二鍍膜裝置12可分別於第 一基材200以及第二基材22〇之上形成多層薄膜。在 此,以鍍膜後之第一基材為第一部分,鍍膜後之第二基材 第二部分。 ’ 第一部分20之中,具有第一基材200、背電極層 202、吸收層204以及緩衝層206。背電極層2〇2、吸收層 204與緩衝層206位於第一基材200的同一側,且依序為第 一基材200、背電極層202、吸收層204以及緩衝層206。此 外’第二部分22之中,具有第二基材220、抗反射層222 以及透明電極層224。抗反射層222以及透明電極層224位 於第二基材220的同一側,且依序為第二基材22〇、抗反射 層222以及透明電極層224。 12 201121084 22 目合^置14再將上述的第一部分20與第二部分 有舰的太陽能電池。在此,結合裝置的 行尋邊及對位之程序,用以對準第一Ϊ 拙一22 ’並且定位模組14〇可依據定位程序之 仃、',口果輸出疋位信息。層壓模組142 ίΐ⑺「至預設之溫度,接著當定位信息指= 疋成之^,層壓模組142加壓結合第一部分20與第二部分 於貝務中,層壓桓組142不限定使用加熱、加壓的方式In step S44, the bonding device 14 combines the first portion 2A and the second portion 22 to form the solar cell 2. The first portion 2 includes a substrate 200' and the second portion 22 includes a second substrate 22'. Here, the order of step S40 and step S42 should not be limited to this. The surface S40 and the step S42 are often performed at the same time, whereby the manufacturing of the solar cell 2 is only short and the figure 3 C and FIG. Figure 5 is a flow chart showing a method of fabricating a solar cell according to an embodiment of the present invention. For example, the clock film device 10 can sequentially form a back electrode layer view and an absorption 曰. That is, in step S500, first, the first plating film s5 〇 m pole layer 202 is over the first substrate 2 〇 0. Next, in ίί 2, an absorbing layer 204 is formed over the back electrode layer 202. The second mineral film device 12 can also form an anti-reflection layer, a transparent layer 2, and a buffer layer 226 in sequence. That is, in step S5〇4, the anti-reflective layer 222 is formed by the second coating device 12 to “reform the transparent electrode layer 224 into the anti-reflective layer such as the layer” in the second substrate 22〇 in step S5〇8. The buffer layer 226 is further formed on the transparent electrode for performing the positioning procedure for the positioning module 14 in step S510, and the first and second blades 220 are included. In practice, the locating program may include a program for finding edges and brothers P_〇n C〇ntr〇1 'EPC) for aligning the first part with 20g St 2: 3 sets of modules 140 may be executed according to the positioning procedure The layer-forming process of the first portion 2G and the second portion 22 may include heating the first portion 2〇 and the second portion 22 to a preset temperature, and then after positioning m indicates positioning The layer module 142 pressurizes the first portion 2〇 and the second portion 22. Thereby, the solar cell manufacturing method of the present invention can complete the fabrication of the solar cell 2. It is noted that the buffer layer is not limited to be formed on the second substrate, and may be formed on the first substrate. For example, please refer to FIG. 2, FIG. 6A and FIG. 6B. FIG. 6A is a block diagram showing a first part of another embodiment of the present invention. Figure 6B is a block diagram showing a second portion of another embodiment of the invention. As a result, the first coating device 10 and the second coating device 12 can form a multilayer film on the first substrate 200 and the second substrate 22, respectively. Here, the first substrate after the coating is the first portion, and the second portion of the second substrate after the coating. The first portion 20 has a first substrate 200, a back electrode layer 202, an absorbing layer 204, and a buffer layer 206. The back electrode layer 2 〇 2, the absorbing layer 204 and the buffer layer 206 are located on the same side of the first substrate 200, and are sequentially the first substrate 200, the back electrode layer 202, the absorbing layer 204, and the buffer layer 206. Further, the second portion 22 has a second substrate 220, an antireflection layer 222, and a transparent electrode layer 224. The anti-reflective layer 222 and the transparent electrode layer 224 are located on the same side of the second substrate 220, and are sequentially the second substrate 22, the anti-reflective layer 222, and the transparent electrode layer 224. 12 201121084 22 The first part 20 and the second part of the solar cell with the ship are placed. Here, the line edge searching and alignment procedure of the device is used to align the first frame 22' and the positioning module 14 can output the clamp information according to the positioning program. The lamination module 142 ΐ ΐ 7 7 7 7 7 7 7 7 至 至 至 至 至 至 7 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至 至 , , , , , , , Limited use of heating and pressurization

tilt卩分2G與第二部分22。也就是說,本發明之精神 在於…δ弟一部分20與第二部分22,於此領域且具有通常 知識者,可應用其他適當的方法結合第一部分2〇與第二部分 22 °舉例來說,可以沾浸化學溶劑之後,再加壓、i合 分20與第二部分22。 另一方面,緩衝層不限定形成於第一基材或第二基 材其中之一,也可以形成於第一基材與第二基材之上, 舉例來說,請參見圖七Α以及圖七Β,圖七Α係繪示 根據本發明之再一具體實施例之第一部分的方塊圖。圖 七B係繪示根據本發明之再一具體實施例之第二部分的 方塊圖。由圖所示,第一部分20可具有緩衝層2〇6,而第 二部分22同時也具有緩衝層226,同樣也屬於本發明之範 脅。 表亍、上所述,本發明之太陽能電池不以依序逐層向上疊 艘的方式製造太1%能電池。藉由多個鑛膜裝置同時製造太 陽能電池的不同區塊,再將上述的區塊組合起來,同樣也 玎達成吸收光能以轉換成電能之效果,因此可有效縮短製 造時間。 藉由以上較佳具體實施例之詳述,係希望能更加清楚 13 201121084 描述本發明之特徵與精神,而並非以上述所揭露的較佳具 體實施例來對本發明之範私以限制。相反地,其目的&amp; 希望能涵蓋各種改變及具相等性的安排於本發明所欲申請 j利範圍的範知。因此,本發明所巾請之專利範圍的 範脅應該減上述的朗作最寬廣的解釋,讀使其涵蓋 所有可能的改變以及具相等性的安排。 201121084 【圖式簡單說明】 圖 圖一係繪示先前技術中之太陽能電池的結構示意 製J⑽S據本發明之一具體實施例之太陽能電池 分的方塊圖 ^係繪示根據本發明之一具體實施例之第一部The tilt is divided into 2G and the second portion 22. That is, the spirit of the present invention resides in a portion 20 and a second portion 22 of the art, and those skilled in the art, having ordinary knowledge, may employ other suitable methods in conjunction with the first portion 2 and the second portion 22°, for example. After being immersed in the chemical solvent, the pressure is further increased, i is divided into 20 and the second portion 22. On the other hand, the buffer layer is not limited to be formed on one of the first substrate or the second substrate, and may be formed on the first substrate and the second substrate. For example, see FIG. Figure 7 is a block diagram of a first portion of a further embodiment of the present invention. Figure 7B is a block diagram showing a second portion of still another embodiment of the present invention. As shown, the first portion 20 can have a buffer layer 2〇6, while the second portion 22 also has a buffer layer 226, which is also within the scope of the present invention. In the above description, the solar cell of the present invention does not manufacture a too 1% energy battery in such a manner that it is stacked up layer by layer. By simultaneously manufacturing different blocks of the solar cell by a plurality of mineral film devices, and combining the above-mentioned blocks, the effect of absorbing light energy to convert into electric energy is also achieved, thereby effectively reducing the manufacturing time. The features and spirits of the present invention are intended to be more apparent from the detailed description of the preferred embodiments. Rather, its purpose &<RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Therefore, the scope of the patent scope of the present invention should be reduced to the broadest interpretation of the above description, and it is read to cover all possible changes and arrangements of equality. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a structure of a solar cell in the prior art. FIG. 1 is a block diagram of a solar cell according to an embodiment of the present invention. First part of the example

圖二B係繪示根據本發明之一具體實施例之第二部 分的方塊圖。 圖二C係續'示根據本發明之一具體實施例之太陽能 電池的方塊圖。 ' 圖四係繪示根據本發明之一具體實施例之太陽能電池 製造方法的流程圖。 圖五係繪示根據本發明之另一具體實施例之太陽能電 池製造方法的流程圖。 圖六A係繪示根據本發明之另一具體實施例之第一 部分的方塊圖。 / 圖六B係繪示根據本發明之另一具體實施例之第二 部分的方塊圖。 ’ 圖七A係繪示根據本發明之再一具體實施例之第一 部分的方塊圖。 ’ 圖七B係緣示根據本發明之再一具體實施例之第二 部分的方塊圖。 ” 【主要元件符號說明】 [s 15 201121084 1 :太陽能電池製造系統 1Ό :第一鍍膜裝置 12 :第二鍍膜裝置 14 :結合裝置 140 :定位模組 142 :層壓模組 20 :第一部分 200 :第一基材 202 :背電極層 204 :吸收層 206 :緩衝層 22 :第二部分 220 :第二基材 2200 :外部電極 222 :抗反射層 224 :透明電極層 2240 :鋁重摻雜氧化鋅層 2242 :本質氧化鋅層 226 :緩衝層 9:太陽能電池 90 :基板 91 :鉬金屬層 92 :吸收層 93 :硫化鎘層 94 :本質氧化鋅層 95 :鋁重摻雜氧化鋅層 %:抗反射層 97 :外部電極 S40〜S44、S500〜S512 :流程步驟Figure 2B is a block diagram showing a second portion of an embodiment of the present invention. Figure 2C is a block diagram showing a solar cell according to an embodiment of the present invention. Figure 4 is a flow chart showing a method of fabricating a solar cell according to an embodiment of the present invention. Figure 5 is a flow chart showing a method of fabricating a solar cell according to another embodiment of the present invention. Figure 6A is a block diagram of a first portion of another embodiment of the present invention. Figure 6B is a block diagram showing a second portion of another embodiment of the present invention. Figure 7A is a block diagram showing a first portion of still another embodiment of the present invention. Figure 7B is a block diagram showing a second portion of still another embodiment of the present invention. [Description of main component symbols] [s 15 201121084 1 : Solar cell manufacturing system 1 : First coating device 12 : Second coating device 14 : Bonding device 140 : Positioning module 142 : Lamination module 20 : First part 200 : First substrate 202: back electrode layer 204: absorption layer 206: buffer layer 22: second portion 220: second substrate 2200: external electrode 222: anti-reflection layer 224: transparent electrode layer 2240: aluminum heavily doped zinc oxide Layer 2242: Intrinsic zinc oxide layer 226: Buffer layer 9: Solar cell 90: Substrate 91: Molybdenum metal layer 92: Absorbing layer 93: Cadmium sulfide layer 94: Intrinsic zinc oxide layer 95: Aluminum heavily doped zinc oxide layer %: Anti- Reflective layer 97: external electrodes S40 to S44, S500 to S512: process steps

Claims (1)

201121084 七、申請專利範圍: 1、 一種太陽能電池製造系統,包含: ,錢膜裝置,用以形成一吸收層(abs〇rber iayer)於一 第一基材之上,該第一基材具有一第一表面及一第二 表面,且該吸收層位於該第一表面之上; 一第二鍍膜裝置,用以形成一透明電極層於一第二基材 ,上,該第二基材具有一第三表面及一第四表面,且 該透明電極層位於該第三表面之上;以及 一,,裝置,用以結合該第一基材與該第二基材,其中 φ 該第一表面朝向該第三表面,。 2、 ^申請專利範圍第1項所述之太陽能電池製造系統,其中該 第一基材具有一背電極層’且該第一鍍膜裝置形成該吸收層 於該背電極層之上。 3、 如申睛專利範圍第2項所述之太陽能電池製造系統,其中該 背電極層包含鉬(Mo)金屬。 4、 ^申請專利範圍第2項所述之太陽能電池製造系統,其中該 弟鑛膜裝置更形成一緩衝層(buffer layer)於該吸收詹之 • 上。 5、 如申請專利範圍第1項所述之太陽能電池製造系統,其中該 第一鍍膜裝置依序形成一背電極層以及該吸收層,且該吸收 層位於該背電極層之上。 6、 如申請專利範圍第5項所述之太陽能電池製造系統,其中該 背電極層包含鉬金屬。 7、 如申請專利範圍第5項所述之太陽能電池製造系統,其中該 第一鍍膜裝置更形成一缓衝層於該吸收層之上。 17 201121084 、圍第1項所述之太陽能電池製造系統,其中該 連接t ”有—外部電極,該外部電極與該透明電極層電1 性 範圍第8項所述之太陽能電池製造系統,其中該 膜一抗反射層(anti_reflection layer),且該第二鑛 、裒置形成该透明電極層於該抗反射層之上。 ί申f專利範圍第9項所述之太陽能電池製造w,旦中該 第二鑛膜裝置更形成一緩衝層於職明電上充。,、中 圍第9項所述之鳩電池製造系統,其中該 A20)電層之中,包含—紹重掺轉化鋅層(ZnO : A卜 項所述之太?能電池製造系統,其中該 層,且哕二,更包含一本質氧化鋅(intrinsicZn0,i-Zn0) 該本貝氧化辞層位於該鋁重摻雜氧化鋅層之上。 8項所述之太陽能電池製造系統,其中該 二ϊίίί成一抗反射層以及該透明電極層於該第14、 之太陽能電池製造系統,其中該 、又膜裝置更形成一緩衝層於該透明電極層之上。 15、 所述之太陽能電池製造系統,其中該 極層之_,包含一鋁重摻雜氧化鋅層。 16、 $申請專利範圍約5項所述之太陽 透明電極層之令,更包会一太㈣几純表n、死八中該 層位於__=層;!氧麟層,且_氧化鋅 9、 10、 11、 12、 13、 201121084 如申請專利範圍第1項所述之太陽能 17、 結合裝置包含: 電池製造系統,其中該 -定位模組’執行一定位程序 該第二基材,並依據該定位 對,该弟—基材與 定位信息;以及 序之—執行結果輸出一 一層壓模組,連接該定 息,執行-層麵序,㈣結合彳定位信 基材,其中該第-表面朝向該第基材與該第二 18、如申請專利範圍第17項所述之太 定位程序包含該第-基材與該第二基^^尋^對^中該 position control,EPC)之程序。 ί 位(edge 利範圍第17項所述之太陽能電池製造系統,其中該 曰堅釭序包含加熱該第一基材與該苐二基材至一第一&amp;产, 且依據該定位信息加屋結合該第一基材與該第二基材:皿又 2〇、如申請專利範圍第1項所述之太陽能電池製造系統,其中該 吸收層包含P型(p—type)半導體。 Λ 21、 如申請專利範圍第1項所述之太陽能電池製造系統,其中該 透明導電層包含Ν型(N-type)半導體。 22、 如申請專利範圍第丨項所述之太陽能電池製造系統,其中該 吸收層自一晒化銅錮(CuInSe2)、二硫化銅錮(CuInS2)、二硫 化銅鎵(CuGaS2)、二硒化銅鎵(CuGaSe2)、二硒化銅銦鎵 (CIGS)之群組中,擇一或多種所構成。 23、 如申請專利範圍第1項所述之太陽能電池製造系統,其中該 苐二基材為一種透明基材。 24、 一種太陽能電池製造方法,包含下列步驟: 201121084 开&gt;成一吸收層(absorber layer)於一第一基材之上,該第一 基材具有一第一表面及一第二表面,且該吸收層位於 該第一表面之上; 形成一透明電極層於一第二基材之上,該第二基材具有 一第三表面及一第四表面,且該透明電極層位於該第 三表面之上;以及 結合該第一基材與該第二基材,其中該第一表面朝向該 第三表面。 25、 如申請專利範圍第24項所述之太陽能電池製造方法,其中於 形成該吸收層於該第一基材之上的步驟中,該第一基材具有 —背電極層,該吸收層形成於該背電極層之上。 1 26、 如申請專利範圍第25項所述之太陽能電池製造方法,其中該 背電極層包含鈿(Mo)金屬。 27、 如申請專利範圍第25項所述之太陽能電池製造方法,更包含 下列步驟: 形成一緩衝層(buffer layer)於該吸收層之上。 28、 如申請專利範圍第24項所述之太陽能電池製造方法,其中於 形成該吸收層於該第一基材之上的步驟中,更包含下列步φ 驟: 形成一背電極層於該第一基材之上;以及 形成該吸收層位於該背電極層之上。 29、 如申請專利範圍第28項所述之太陽能電池製造方法,其中該 背電極層包含鉬金屬。 30、 如申請專利範圍第28項所述之太陽能電池製造方法,更包含 下列步驟: 形成一緩衝層於該吸收層之上。 20 201121084 31、 32、 33、 34、 35、 • 36、 37、 38、 如申請專概圍第24項所述之太陽能電池製造方法, 形成該透明電極層於該第二基材之上的步驟中,該 具有-外部電極’該外部電極與該透明電極層電性連接。土 如申請專利範圍第31項所述之太陽能電池製造方法,料 =該透明電極層於該第二基材之上的步财,該^基材二層(——ion㈣’且該透明電極層形成 %琢彳几反射層之上。 如申清專利範圍第32項所述之太陽能電池製造方法,更包含 下列步驟: 形成一緩衝層於該吸收層之上。 •^申睛專利細第32項所述之太陽能電池製造方法,其中該 ατΊ電極層之中’包含—㈣摻雜氧化鋅層(Zn0 : A1, AZ(J) 0 ϋ專她11第34項所述之太陽能電池製造方法,其中該 ^月電極層之中,更包含一本質氧化辞(intrinsicZnO,i-ZnO) 層’且該本質氧化觸位於該缝摻純化鋅層之上。 ttr專利圍第31項所述之太陽能電池製造方法,其中於 ^驟為透明電極層於該第二基材之上的步驟中,更包含下列 形成7抗反射層於該第二基材之上;以及 形成該透明電極層於該抗反射層之上。 專利範圍第36項所述之太陽能電池製造方法,更包含 下列步驟: 形成一緩衝層於該透明電極層之上。 如申咕專利範圍第36項所述之太陽能電池製造方法,其中該 21 201121084 透月電極層之中,包食一紹重摻雜氧化鋅層。 处之太陽能電池製造方法,其中該 層位於該“摻雜以。氧化鋅層’且該本質氧化鋅 40、 'tim=24項所述之太陽能電池製造方法’其中於 基材與該第二基材之轉中,更包含下列步驟: II及疋位程序’用以對準該第—基材與該第二基材; 依ίίίϊ程序之一執行結果,執行一層壓程序,用以 二面基材與邊第二基材,其中該第一表面朝向 41、 利範’4G項所述之太陽能電池製造方法,其中於 執仃該疋位辩之步财,更包含下列步驟: 執仃該第-基赎該帛二基狀尋邊輯位(edge position contro卜 EPC)。 、利範圍第4G顿述之太陽能電池製造方法,其中於 執行該層壓程序之步财,更包含下列步驟: 、、 加熱該第一基材與該第二基材至-第-溫度;以及 依據該定_序之錄行結果,加壓結合該第—基材與 該第基材。 43、 如申%專利範圍第41項所述之太陽能電池製造方法,其中該 吸收層包含P型(p-type)半導體。 、 44、 如中请專利範®第24項所述之太陽能電池製造方法,其中該 透明導電層包含N型(N-tyPe)半導體。 45、 如申#專利範圍第24項所述之太陽能電池製造方法,其中該 22 201121084 吸收層自二硒化銅銦(CuInSe2)、二硫化銅銦(CuInS2)、二硫 化銅鎵(CuGaS2)、二石西化銅鎵(CuGaSe2)、二石西化銅銦鎵 (CIGS)之群組中,擇一或多種所構成。 46、如申請專利範圍第24項所述之太陽能電池製造方法,其中該 第二基材為一種透明基材。201121084 VII. Patent application scope: 1. A solar cell manufacturing system comprising: a money film device for forming an absorbing layer on a first substrate, the first substrate having a a first surface and a second surface, and the absorbing layer is located above the first surface; a second coating device for forming a transparent electrode layer on a second substrate, the second substrate having a a third surface and a fourth surface, and the transparent electrode layer is located above the third surface; and a device for bonding the first substrate and the second substrate, wherein φ the first surface faces The third surface, 2. The solar cell manufacturing system of claim 1, wherein the first substrate has a back electrode layer and the first coating device forms the absorber layer over the back electrode layer. 3. The solar cell manufacturing system of claim 2, wherein the back electrode layer comprises molybdenum (Mo) metal. 4. The solar cell manufacturing system of claim 2, wherein the young mineral film device further forms a buffer layer on the absorption. 5. The solar cell manufacturing system of claim 1, wherein the first coating device sequentially forms a back electrode layer and the absorbing layer, and the absorbing layer is located above the back electrode layer. 6. The solar cell manufacturing system of claim 5, wherein the back electrode layer comprises molybdenum metal. 7. The solar cell manufacturing system of claim 5, wherein the first coating device further forms a buffer layer over the absorbing layer. The solar cell manufacturing system of claim 1, wherein the connection t" has an external electrode, the external electrode and the transparent electrode layer, wherein the solar cell manufacturing system of the eighth aspect, wherein An anti-reflection layer, and the second ore deposit forms the transparent electrode layer on the anti-reflection layer. The solar cell manufacturing method according to claim 9 of the patent application, The second mineral film device further forms a buffer layer in the battery manufacturing system of the above-mentioned ninth item, wherein the A20) electrical layer comprises a sauerium-doped zinc layer ( ZnO: A solar cell manufacturing system, wherein the layer, and the second layer, further comprises an intrinsic zinc oxide (intrinsic Zn0, i-Zn0), the bei oxidized layer is located in the aluminum heavily doped zinc oxide The solar cell manufacturing system of claim 8, wherein the anti-reflection layer and the transparent electrode layer are in the solar cell manufacturing system of the fourteenth aspect, wherein the film device further forms a buffer layer The transparent electrode layer 15. The solar cell manufacturing system, wherein the electrode layer comprises an aluminum heavily doped zinc oxide layer. 16. The patent application scope of about 5 solar transparent electrode layers, Will be one (four) a few pure tables n, dead eight in the layer is located in the __= layer;! oxygen layer, and _ zinc oxide 9, 10, 11, 12, 13, 201121084 as described in the scope of claim 1 The solar energy device 17 includes: a battery manufacturing system, wherein the positioning module performs a positioning process on the second substrate, and according to the positioning pair, the brother-substrate and positioning information; and the sequence-executing result output a laminating module connecting the fixed interest, performing a level sequence, and (4) combining the positioning information substrate, wherein the first surface faces the first substrate and the second 18, as described in claim 17 The locating program includes the program of the first substrate and the second substrate, and the position control (EPC) of the second substrate is </ RTI> </ RTI> </ RTI> The rigid sequence includes heating the first substrate and the crucible a substrate to a first &amp; production, and according to the positioning information, the first substrate and the second substrate are combined with the second substrate: the solar cell manufacturing system according to claim 1, The absorbing layer comprises a p-type semiconductor. The solar cell manufacturing system of claim 1, wherein the transparent conductive layer comprises an N-type semiconductor. The solar cell manufacturing system of claim 2, wherein the absorption layer is derived from a copper beryllium (CuInSe2), copper indium bismuth (CuInS2), copper gallium disulfide (CuGaS2), and copper gallium diselide ( Among the group of CuGaSe2) and copper indium gallium diselide (CIGS), one or more of them are formed. 23. The solar cell manufacturing system of claim 1, wherein the second substrate is a transparent substrate. 24. A solar cell manufacturing method comprising the steps of: 201121084 opening &gt; forming an absorber layer on a first substrate, the first substrate having a first surface and a second surface, and The absorbing layer is located on the first surface; forming a transparent electrode layer on a second substrate, the second substrate has a third surface and a fourth surface, and the transparent electrode layer is located on the third surface And bonding the first substrate and the second substrate, wherein the first surface faces the third surface. The method of manufacturing a solar cell according to claim 24, wherein in the step of forming the absorbing layer on the first substrate, the first substrate has a back electrode layer, and the absorbing layer is formed. Above the back electrode layer. The method of manufacturing a solar cell according to claim 25, wherein the back electrode layer comprises ruthenium (Mo) metal. 27. The method of fabricating a solar cell of claim 25, further comprising the step of: forming a buffer layer over the absorber layer. The method of manufacturing a solar cell according to claim 24, wherein in the step of forming the absorbing layer on the first substrate, the method further comprises the step of: forming a back electrode layer on the first Above a substrate; and forming the absorber layer over the back electrode layer. The method of manufacturing a solar cell according to claim 28, wherein the back electrode layer comprises molybdenum metal. 30. The solar cell manufacturing method of claim 28, further comprising the steps of: forming a buffer layer over the absorber layer. 20 201121084 31, 32, 33, 34, 35, • 36, 37, 38. The method for manufacturing the solar cell according to claim 24, the step of forming the transparent electrode layer on the second substrate The external electrode of the external electrode is electrically connected to the transparent electrode layer. The solar cell manufacturing method according to claim 31, wherein the transparent electrode layer is on the second substrate, the substrate is two layers (-ion(four)' and the transparent electrode layer The method for manufacturing a solar cell according to claim 32, further comprising the steps of: forming a buffer layer on the absorbing layer. The method for manufacturing a solar cell according to the invention, wherein the ατΊ electrode layer comprises a solar cell manufacturing method according to the (4)-doped zinc oxide layer (Zn0: A1, AZ(J) 0 ϋ, her 11th item, Wherein the electrode layer further comprises an intrinsic ZnO (i-ZnO) layer and the intrinsic oxidized contact is located on the slit-doped purified zinc layer. The solar cell described in Item 31 of the ttr patent The manufacturing method, wherein the step of forming the transparent electrode layer on the second substrate further comprises: forming the 7 anti-reflection layer on the second substrate; and forming the transparent electrode layer on the anti-reflection Above the layer. Solar energy as described in Article 36 of the patent scope The battery manufacturing method further comprises the steps of: forming a buffer layer on the transparent electrode layer, wherein the solar cell manufacturing method according to claim 36, wherein the 21 201121084 is in the moon electrode layer A solar cell manufacturing method in which a layer is located in the "doped zinc oxide layer" and the essential zinc oxide 40, the solar cell manufacturing method described in the 'tim=24 item In the transition between the substrate and the second substrate, the method further comprises the following steps: II and a clamping program 'for aligning the first substrate with the second substrate; performing the result according to one of the programs, performing a laminating process for a two-sided substrate and a second substrate, wherein the first surface faces the solar cell manufacturing method described in 41, Lifan '4G, wherein the execution of the niche is further The method includes the following steps: Performing the base-based redemption (edge position contro EPC), and the method for manufacturing a solar cell according to the fourth aspect, wherein the step of performing the lamination process is performed Money, more The method comprises the steps of: heating the first substrate and the second substrate to a temperature of the first substrate; and pressurizing and bonding the first substrate and the first substrate according to the recording result of the predetermined order. The solar cell manufacturing method of claim 41, wherein the absorbing layer comprises a p-type semiconductor, 44, and the method for manufacturing a solar cell according to claim 24 The transparent conductive layer comprises an N-type (N-tyPe) semiconductor, wherein the solar cell manufacturing method according to claim 24, wherein the 22 201121084 absorption layer is derived from copper indium diselenide (CuInSe2), One or more of the group consisting of copper indium disulfide (CuInS2), copper gallium disulfide (CuGaS2), copper gallium bismuth (CuGaSe2), and copper indium gallium dichloride (CIGS). The method of manufacturing a solar cell according to claim 24, wherein the second substrate is a transparent substrate. 23twenty three
TW098142276A 2009-12-10 2009-12-10 System and method for manufacturing solar cell TW201121084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098142276A TW201121084A (en) 2009-12-10 2009-12-10 System and method for manufacturing solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098142276A TW201121084A (en) 2009-12-10 2009-12-10 System and method for manufacturing solar cell

Publications (1)

Publication Number Publication Date
TW201121084A true TW201121084A (en) 2011-06-16

Family

ID=45045430

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098142276A TW201121084A (en) 2009-12-10 2009-12-10 System and method for manufacturing solar cell

Country Status (1)

Country Link
TW (1) TW201121084A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI455332B (en) * 2011-12-29 2014-10-01 Advanced Wireless Semiconductor Company Solar cell and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI455332B (en) * 2011-12-29 2014-10-01 Advanced Wireless Semiconductor Company Solar cell and its manufacturing method

Similar Documents

Publication Publication Date Title
Lin et al. Flexible photovoltaic technologies
Başol et al. Brief review of cadmium telluride-based photovoltaic technologies
TWI330891B (en) Thin film solar cell module of see-through type
TW432144B (en) Electromechanical cylinder lock
TWI514598B (en) Photoelectric conversion device and method for manufacturing the same
Wang et al. Development of a 16.8% efficient 18-μm silicon solar cell on steel
US9257284B2 (en) Silicon heterojunction solar cells
US20100059111A1 (en) Solar Cell Module having Multiple Module Layers and Manufacturing Method Thereof
US9691927B2 (en) Solar cell apparatus and method of fabricating the same
JP2013537364A (en) Photovoltaic power generation apparatus and manufacturing method thereof
US20110005585A1 (en) Laser-Scribing Method to Make a Bifacial Thin Film Solar Cell and the Structure Thereof
US20100180927A1 (en) Affixing method and solar decal device using a thin film photovoltaic and interconnect structures
CN102157596B (en) Barrier type silicon-based thin film semi-laminated solar cell
US20140083486A1 (en) Solar cell and method for manufacturing same
JP2011124474A (en) Multi-junction solar cell, solar cell module equipped with multi-junction solar cell, and method of manufacturing multi-junction solar cell
Buecheler et al. Flexible and lightweight solar modules for new concepts in building integrated photovoltaics
JP2012231142A (en) Solar cell
Brémaud Investigation and development of CIGS solar cells on flexible substrates and with alternative electrical back contacts
US8207008B1 (en) Affixing method and solar decal device using a thin film photovoltaic
TWI578553B (en) Crystalline silicon solar cell and method of fabricating the same
TW201121084A (en) System and method for manufacturing solar cell
TW201123483A (en) Thin film solar cell and manufacturing method thereof
US20140246073A1 (en) Solar cell and solar cell module using the same
Paire et al. Thin-film microcells: a new generation of photovoltaic devices
Shamim et al. Design, performance analysis and efficiency optimization of copper indium gallium selenide (CIGS) solar cell