TW201120567A - Radiation-sensitive resin composition and resist pattern formation method - Google Patents

Radiation-sensitive resin composition and resist pattern formation method Download PDF

Info

Publication number
TW201120567A
TW201120567A TW99131251A TW99131251A TW201120567A TW 201120567 A TW201120567 A TW 201120567A TW 99131251 A TW99131251 A TW 99131251A TW 99131251 A TW99131251 A TW 99131251A TW 201120567 A TW201120567 A TW 201120567A
Authority
TW
Taiwan
Prior art keywords
photoresist pattern
group
resin composition
polymer
line width
Prior art date
Application number
TW99131251A
Other languages
Chinese (zh)
Inventor
Gouji Wakamatsu
Hikaru Sugita
Yuusuke Anno
Kouji Itou
Tomohisa Fujisawa
Original Assignee
Jsr Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corp filed Critical Jsr Corp
Publication of TW201120567A publication Critical patent/TW201120567A/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0035Multiple processes, e.g. applying a further resist layer on an already in a previously step, processed pattern or textured surface

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials For Photolithography (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

A radiation-sensitive resin composition which can be used as a radiation-sensitive resin composition for use in a resist pattern formation method, which comprises a polymer (A), a radiation-sensitive acid generator (B), and a solvent (C), wherein the polymer (A) has at least one repeating unit selected from the group consisting of repeating units respectively represented by general formulae (1-1) to (1-4) (wherein R1 represents a hydrogen atom, a trifluoromethyl group, or an alkyl group having 1 to 3 carbon atoms; R2sindependently represent a hydrogen atom or a hydroxy group; R3 represents a hydroxyalkyl group; A represents an alkylene group; and B represents an ester bond, an amide bond, a carbonyl group or an amino group) and a repeating unit having an acid labile group.

Description

201120567 六、發明說明: 【發明所屬之技術領域】 本發明係關於敏輻射線性樹脂組成物及光阻圖型形成 方法,更詳細而言,係關於使用於雙重圖型化製程中之於 水等之液浸曝光製程中亦可適宜使用之敏輻射線性樹脂組 成物及使用彼之光阻圖型形成方法。 【先前技術】 以積體電路元件之製造爲代表之微細加工之領域中, 爲了得到更高之積體化,於最近要求線寬度爲45 nm程度之 微細之光阻圖型。作爲用以形成此般微細之光阻圖型之手 段,則思及將曝光裝置之光源波長予以短波長化,增多透 鏡之開口數(NA )等之手段。然而,光源波長之短波長 化除了需要新增高價之曝光裝置,另外透鏡之開口數( ΝΑ )之增多,亦有解像度與焦點深度之取捨關係,即使 提高解像度尙有焦點深度降低之問題。 最近,作爲可解決此般問題之微影技術,則報告有液 浸曝光法(Liquid Immersion Lithography)之方法。由於 若使用液浸曝光法,使用實裝於現有之裝置上之透鏡,即 可以低成本形成解像性更爲優異且焦點深度亦優異之光阻 圖型,而廣泛受到囑目’同時進行其實用化。 但,液浸曝光法所成之曝光技術之進步,其界限被認 爲僅至45nm hp ( hp :半節距),而進行著朝向更加必要 微細加工之3 2nm hp世代之技術開發。近年來,伴隨此般 201120567 裝置之複雜化、高密度化之要求,而提案有藉由將稱爲雙 重圖型化或雙重曝光之疏線圖型或孤立溝渠圖型予以位移 半周期重疊,而將32nm LS ( LS :線寬和線距圖型)圖型 化之技術(例如,參考非專利文獻1 )。尙,雙重圖型化 (以下,亦稱爲「DP」)係指在藉由第1次之曝光及顯像 所得之第一光阻圖型之上更再形成光阻膜,而形成藉由第 2次之曝光及顯像所得之第二光阻圖型之技術,雙重曝光 (Double Exposure )係指在第1次曝光之後,不進行顯像 而連續進行第2次之曝光,其後藉由顯像而形成光阻圖型 之技術。 將3 2nm LS予以圖型化之技術之一例,如非專利文獻2 中揭示,形成1 : 3之節距之32nm線圖型,藉由蝕刻將Si02 等之硬遮罩(以下,亦稱爲「HM」)加工後,在第一層 之光阻圖型與位移半周期之位置上同樣地形成1 : 3之節距 之3 2nm線圖型,藉由以蝕刻再度將HM加工,而最終地形 成1 : 1之節距(線寬部與線距部之寬度之比爲1 : 1 )之 32nm線圖型(32nm 線寬和線距圖型,Line and Space Pattern)。 〔先行技術文獻〕 〔非專利文獻〕201120567 VI. Description of the Invention: [Technical Field] The present invention relates to a sensitive radiation linear resin composition and a photoresist pattern forming method, and more particularly to a water use method for use in a dual patterning process The sensitized radiation linear resin composition which can be suitably used in the immersion exposure process and the formation method using the photoresist pattern. [Prior Art] In the field of microfabrication represented by the manufacture of integrated circuit elements, in order to obtain higher integration, a fine photoresist pattern having a line width of about 45 nm has recently been required. As a means for forming such a fine photoresist pattern, it is considered that the wavelength of the light source of the exposure device is shortened, and the number of apertures (NA) of the lens is increased. However, in addition to the need to add a high-priced exposure device, and the increase in the number of apertures (ΝΑ) of the lens, there is also a trade-off between the resolution and the depth of focus, even if the resolution is increased and the depth of focus is lowered. Recently, as a lithography technique that can solve such a problem, a method of liquid immersion exposure (Liquid Immersion Lithography) has been reported. When a liquid immersion exposure method is used and a lens mounted on a conventional device is used, a photoresist pattern which is more excellent in resolution and excellent in depth of focus can be formed at a low cost, and it is widely recognized as a simultaneous Practical. However, the advancement of the exposure technology by the liquid immersion exposure method is considered to be only 45 nm hp (hp: half pitch), and the technology development of the 3 2 nm hp generation which is more necessary for microfabrication is being carried out. In recent years, with the demand for the complexity and high density of the 201120567 device, it has been proposed to shift the half-cycle by shifting the line pattern or the isolated channel pattern called double patterning or double exposure. A technique of patterning 32 nm LS (LS: line width and line pattern) (for example, refer to Non-Patent Document 1).尙, double patterning (hereinafter, also referred to as "DP") means that a photoresist film is further formed on the first photoresist pattern obtained by the first exposure and development, and is formed by The second exposure technique and the second photoresist pattern obtained by the development, double exposure (Double Exposure) means that after the first exposure, the second exposure is continuously performed without performing imaging, and then borrowed. A technique for forming a photoresist pattern by development. An example of a technique for patterning a 32 nm LS, as disclosed in Non-Patent Document 2, forms a 32 nm line pattern of a pitch of 1:3, and hard masks such as SiO 2 by etching (hereinafter also referred to as After "HM") processing, a 3 2 nm line pattern of 1: 3 pitch is formed in the same position as the retardation pattern of the first layer, and the HM is processed by etching again. The ground forms a 32 nm line pattern (32 nm line width and line pattern, Line and Space Pattern) with a pitch of 1: 1 (the ratio of the width of the line width to the width of the line portion is 1:1). [prior technical literature] [Non-patent literature]

〔非專利文獻 1〕SPIE2006 61531K 〔非專利文獻 2〕3rd International Symposium on Immersion Lithography PO-1 1 201120567 【發明內容】 然而,雖有提案出數個如上述般之製程,但於現狀中 可適宜用於使用此般液浸曝光製程之雙重圖型化製程之具 體性材料之提案尙未被提出。又,被提案之製程中,形成 第一光阻圖型後,在形成第二光阻圖型時,第一光阻圖型 發生缺損、變形之情況,且有線寬之尺寸精度產生問題之 情況。 本發明係有鑑於具有此般以往技術之問題所完成者, 其課題在於提供不僅可適宜用於液浸曝光製程,且在雙重 圖型化製程中,亦可適宜用於第一光阻層之形成之敏輻射 線性樹脂組成物。 又,其課題亦在於在雙重圖型化製程中,於用以形成 第二光阻圖型之曝光時,第一光阻圖型即使感光亦不成爲 鹼可溶性’而可在保持第一光阻圖型之狀態下形成第二光 阻圖型,並且可抑制第一光阻圖型之線寬度之變動的光阻 圖型形成方法。本發明之光阻圖型形成方法亦可適宜用於 液浸曝光製程。 本發明者們爲了達成上述課題經銳意硏討之結果,發 現藉由抹用下述般之構成,即可達成上述課題,進而完成 了本發明。 即’依據本發明,可提供以下所示之敏輻射線性樹脂 組成物及光阻圖型形成方法。 〔!〕一種敏輻射線性樹脂組成物,其特徵爲含有選 自由下述一般式(1_1)〜(1_4)所表示之重複單位所成 201120567 群之至少一種之重複單位及具有酸不安定基之重複單位之 聚合物(A)、敏輻射線性酸產生劑(B)及溶劑(C), 其中聚合物(A)係在包含使用第一敏輻射線性樹脂 組成物,於基板上形成第一光阻圖型之步驟(1)、使前 述第一光阻圖型相對於第二敏輻射線性樹脂組成物成爲不 溶化之步驟(2)、於形成有前述第一光阻圖型之前述基 板上,使用前述第二敏輻射線性樹脂組成物形成第二光阻 圖型之步驟(3)之光阻圖型形成方法中,作爲前述第一 敏輻射線性樹脂組成物所使用。 【化1】[Non-Patent Document 1] SPIE2006 61531K [Non-Patent Document 2] 3rd International Symposium on Immersion Lithography PO-1 1 201120567 [Summary of the Invention] However, although several processes as described above have been proposed, they are suitable for use in the current situation. A proposal for a specific material for the dual patterning process using the immersion exposure process has not been proposed. Moreover, in the proposed process, after the first photoresist pattern is formed, when the second photoresist pattern is formed, the first photoresist pattern is defective or deformed, and the dimensional accuracy of the line width is problematic. . The present invention has been made in view of the problems of the prior art, and the object thereof is to provide not only a suitable liquid immersion exposure process but also a first photoresist layer in a dual patterning process. A sensitive linear resin composition is formed. Moreover, the problem is that in the double patterning process, when the exposure for forming the second photoresist pattern is used, the first photoresist pattern does not become alkali-soluble even when photosensitive, and the first photoresist can be maintained. A photoresist pattern forming method in which a second photoresist pattern is formed in a pattern state and a variation in line width of the first photoresist pattern can be suppressed. The photoresist pattern forming method of the present invention can also be suitably used in a liquid immersion exposure process. In order to achieve the above-mentioned problems, the inventors of the present invention have found that the above problems can be attained by applying the following constitution, and the present invention has been completed. Namely, according to the present invention, the sensitive radiation linear resin composition and the photoresist pattern forming method shown below can be provided. 〔! A sensitive radiation linear resin composition characterized by containing a repeating unit selected from at least one of the 201120567 group represented by the repeating units represented by the following general formulas (1_1) to (1_4) and a repeating unit having an acid labile group. a polymer (A), a radiation sensitive linear acid generator (B), and a solvent (C), wherein the polymer (A) comprises a first resistive linear resin composition, and a first photoresist pattern is formed on the substrate. a step (1) of forming a first photoresist pattern to insolubilize the second photosensitive radiation linear resin composition (2), and using the foregoing substrate on the substrate on which the first photoresist pattern is formed The second photosensitive radiation linear resin composition is used in the photoresist pattern forming method of the step (3) of forming the second photoresist pattern, and is used as the first photosensitive liquid linear resin composition. 【化1】

上述一般式(1-1) ~(1-4)中、R1各自獨立表示氫 原子、三氟甲基或碳數1~3之烷基,R2各自獨立表示氫原 子或羥基。上述一般式(I-4)中,R3表示碳數1〜5之直鏈 狀或分枝狀之羥基烷基。上述—般式(1-1)中’ A表示亞 甲基或碳數2~5之伸烷基,其氫原子亦可被碳數1~5之烷基 所取代。上述一般式(1-3)中,B表示下述式(B-1) ~( B-6)之任一所示之基團’ η表示1〜3之整數。 6) 201120567 【化2】In the above general formula (1-1) to (1-4), R1 each independently represents a hydrogen atom, a trifluoromethyl group or an alkyl group having 1 to 3 carbon atoms, and R2 each independently represents a hydrogen atom or a hydroxyl group. In the above general formula (I-4), R3 represents a linear or branched hydroxyalkyl group having 1 to 5 carbon atoms. In the above general formula (1-1), 'A' represents a methylene group or an alkylene group having 2 to 5 carbon atoms, and the hydrogen atom thereof may be substituted by an alkyl group having 1 to 5 carbon atoms. In the above general formula (1-3), B represents a group 'n' represented by any one of the following formulas (B-1) to (B-6), and represents an integer of 1 to 3. 6) 201120567 【化2】

(B—1) (B — 2) (B- 3) (B - 4) (B—5) (B 〔2〕一種光阻圖型形成方法,其特徵爲含 前述〔1〕之第一敏輻射線性樹脂組成物於基板 一光阻圖型之步驟(1 )、使前述第一光阻圖型 二敏輻射線性樹脂組成物成爲不溶化之步驟(2 ) 形成有前述第一光阻圖型之前述基板上,使用前纽 輻射線性樹脂組成物形成第二光阻圖型之步驟(3 : 〔3〕前述〔2〕之光阻圖型形成方法,其係節 光阻圖型及前述第二光阻圖型分別具有平行地複_ 凸狀之線寬部,與於鄰接之前述線寬部彼此之間戶J 複數之線距部的光阻圖型,於前述第一光阻圖型5 中,使前述第二光阻圖型之線寬部與前述第一光Ρί 線寬部平行地形成。 〔4〕如前述〔2〕之光阻圖型形成方法,其存 一光阻圖型及前述第二光阻圖型分別具有平行地i 之凸狀之線寬部,與於鄰接之前述線寬部彼此之間 之複數之線距部的光阻圖型,使前述第二光阻圖翌 部與前述第一光阻圖型之線寬部交叉地形成。 〔5〕如前述〔1〕~〔 4〕中任一項之光阻圖S 法,其中前述聚合物(A)含有前述一般式(1-1) 之重複單位。 使用於 形成第 對於第 、於於 第二敏 〇 述第一 排列之 形成之 線距部 圖型之 前述第 數排列 所形成 之線寬 形成方 所表示 -9- 201120567 本發明之敏輻射線性樹脂組成物係爲可奏 宜用於液浸曝光製程,且在雙重圖型化中,亦 於形成第一光阻層之效果。 本發明之光阻圖型形成方法不僅可適宜用 製程,在雙重圖型化中,於用以形成第二光阻 時,第一光阻圖型即使感光亦不成爲鹼可溶性 持第一光阻圖型之狀態下形成第二光阻圖型, 第一光阻圖型之線寬度之變動的光阻圖型形成 【實施方式】 以下,說明關於本發明之實施形態,但應 並非係受限於以下之實施形態者,只要係不脫 主旨之範圍,基於斯業者之通常知識,對以下 加入適宜變更、改良等者亦納入本發明之範圍 I·光阻圖型形成方法: 本發明之光阻圖型形成方法係經由包含步 3)之雙重圖型化之光阻圖型形成方法。以下 說明關於本發明之光阻圖型形成方法之一實施 1·步驟(1 ): 圖1 A〜圖1D係表示本發明之光阻圖型形成 驟(1)之一例的模式圖。步驟(1)中,首先 般’使用第一敏輻射線性樹脂組成物於基板i 效不僅可適 可適宜於用 於液浸曝光 圖型之曝光 ,而可在保 並且可抑制 方法。 理解本發明 離本發明之 之實施形態 內。 驟(1 )〜( ,使用圖式 形態。 方法中之步 如圖1 A所示 上形成第一 -10- 201120567 光阻層2。其次,如圖1B所示般,在第一光阻層2所用之領 域依順序透過既定圖型之遮罩4及透鏡6,任意地經由水等 之液浸曝光用液體3,進行輻射線照射(圖1 B之箭頭)之 曝光,如圖1C所示般,在第一光阻層2所用之領域形成鹼 顯像部5。其後,藉由進行顯像,如圖1 D所示般,在基板1 上形成具有線寬部12a及線距部12b之第一光阻圖型12 ( 1 L3 S :線寬部與線距部之寬度比爲1 : 3 )。 1 -1 ·第一光阻層之形成: 第一光阻層2係可藉由將由第一敏輻射線性樹脂組成 物構成之塗敷液塗佈於基板1上而形成。塗佈之方法並無 特別,可採用旋轉塗佈、流延塗佈、輥塗佈等之適宜之塗 佈方法。且,所形成之第一光阻層之厚度亦無特別限定, 通常爲10〜l,〇〇〇nm,以10〜500nm爲佳。 又,將由第一敏輻射線性樹脂組成物構成之塗敷液塗 佈後,依據需要,亦可藉由進行預烘烤(PB : Pre-Bake。 以下,亦稱爲「PB」)而使塗膜中之溶劑揮發。PB之加 熱條件可依據第一敏輻射線性樹脂組成物之配合組成而適 宜選擇,通常爲以30〜200 °C中30〜120秒,以50〜150 °C中 40〜100秒爲佳。 更且,爲了防止環境雰圍中所含之鹼性雜質等之影響 ,例如,如特開平5 - 1 8 8 5 9 8號公報等所揭示般,亦可在第 一光阻層2上設置保護膜。又,爲了防止由第一光阻層2之 酸產生劑等之流出,例如,如日本特開2005 -3 5 23 84號公 -11 - 201120567 報等所揭示般,亦可在第一光阻層2上設置液浸用保護膜 (上層膜)。且,此等技術可一種單獨使用或將兩者倂用 1 -1 -3 ·第一敏輻射線性樹脂組成物: 第一敏輻射線性樹脂組成物係爲後述之本發明之敏輻 射線性樹脂組成物。又,關於第一敏輻射線性樹脂組成物 所含之聚合物(A)、敏輻射線性酸產生劑(B )、溶劑( C)等亦於後記述。 1-1-2.基板: 作爲基板並無特別限定,例如可使用矽晶圓、以鋁所 被覆之晶圓等之以往公知之基板。又,爲了最大限度地引 出第一敏輻射線性樹脂組成物之潛在能力,例如,如日本 特公平6-12452號公報或特開昭59-93 44 8號公報等所揭示般 ’亦可預先在所使用之基板上形成有機系或無機系之防反 射膜。 1-2.曝光: 如圖1 B所示般,在第一光阻層2之所用領域依順序透 過既定圖型之遮罩4及透鏡6 ’進行以輻射線照射所成之曝 光’如圖1 C所示般,在第一光阻層2形成鹼顯像部5。尙, 曝光時’亦可任意介於塡充於透鏡6與第一光阻層2之間之 水或氟系不活性液體等之液浸曝光用液體3。 -12- 201120567 曝光所使用之輻射線,可依據第一敏輻射線性樹脂組 成物所含有之敏輻射線性酸產生劑(B )之種類,由可視 光線、紫外線、遠紫外線、X線、荷電粒子線等中適宜選 定。此等之中,以ArF準分子雷射(波長I93nm)或KrF準 分子雷射(波長248nm)等所產生之遠紫外線爲佳,以ArF 準分子雷射(波長193 nm )所產生之遠紫外線爲特佳。又 ,曝光量等之曝光條件可依據第一敏輻射線性樹脂組成物 之配合組成或添加劑之種類等而適宜選定。 更進一步,於曝光後以施行加熱處理(PEB : Post-Exposure Bake 。 以下’ 亦稱爲 「 PEB 」) 爲佳 。藉 由施行 P E B,可使第一敏輻射線性樹脂組成物中之酸不安定基之 解離反應圓滑地進行。P E B之加熱條件可依據第一敏輻射 線性樹脂組成物之配合組成而適宜選擇,通常爲3 0~2 00 °C 中30〜120秒,以50~170°C中40〜100秒爲佳。 1-3.第一光阻圖型之形成: 藉由將第一光阻層2以顯像液進行顯像,而鹼顯像部5 溶解,可形成如圖1 D所示般之具有線寬部1 2a及線距部1 2b 之正型之第一光阻圖型12。且,於顯像後通常以水洗淨並 使其乾燥。 1 - 3 -1 .顯像液: 顯像液之適宜例可舉出溶解有氫氧化鈉、氫氧化鉀、 碳酸鈉、矽酸鈉、偏矽酸鈉、氨、乙基胺、η -丙基胺、二 -13- 201120567 乙基胺、二-η-丙基胺、三乙基胺、甲基二乙基胺、乙基二 甲基胺、三乙醇胺、氫氧化四甲基銨、吡咯、哌啶、膽鹼 、1,8-二氧雜雙環-〔5.4.0〕-7-十一烯、1,5-二氧雜雙環-〔4.3.0〕-5-壬烯等之鹼性化合物之鹼性水溶液。此等鹼 性化合物可一種單獨使用或將亦可二種以上混合使用。 顯像液中之鹼性化合物之濃度通常爲1〇質量%以下。 鹼性化合物之濃度若超過1 〇質量%,則有非曝光部亦溶解 於顯像液之虞。 又,顯像液中亦可添有機溶劑。有機溶劑之具體例除 可舉出丙酮、甲基乙基酮、甲基i· 丁基酮、環戊酮、環己 酮、3-甲基環戊酮、2,6-二甲基環己酮等之酮類;甲醇、 乙醇、η-丙醇、i-丙醇、η-丁基醇、t-丁基醇、環戊醇、環 己醇、1,4-己二醇、1,4-己二羥甲醇等之醇類;四氫呋喃 、二噁烷等之醚類;乙酸乙酯、乙酸η· 丁酯、乙酸i-戊酯 等之酯類;甲苯、茬等之芳香族烴類以外,尙有酚、己二 酮、二甲基甲醯胺等。且,此等有機溶劑可一種單獨使用 或亦可將二種以上混合使用。 顯像液中之有機溶劑之使用比例係相對於鹼性水溶液 100體積份爲1〇〇體積份以下。前述有機溶劑之使用比例若 超過1 〇〇體積份,則有顯像性降低且曝光部之顯像殘留變 多之情形。又,顯像液更可適量添加界面活性劑等。尙, 此處體積係指2 5 °C中所測定之體積。 1-3-2.顯像方法: -14- 201120567 顯像方法並無特別限制,可使用以往公知之方法,以 使用盛液式、LD噴嘴式、GP噴嘴式等之顯像方法爲佳。 且,顯像時間以10〜90秒爲佳。 2 ·步驟(2 ): 本發明之光阻圖型形成方法之步驟(2)係爲使第一 光阻圖型1 2相對於第二敏輻射線性樹脂組成物成爲不溶化 之步驟。具體而言,係包含將前述第一光阻圖型12加熱或 照射輻射線之步驟(2 )者。 圖2係表示前述步驟(2)之一例的模式圖。如圖2所 示般,對步驟(1)中所形成之第一光阻圖型12之線寬部 12a,藉由120 °C以上之溫度中之加熱(PDB: Post-Development Bake 。 以下, 亦稱爲 「 PDB 」) 及輻 射線照 射(圖2之箭頭)之一者之處理,而可得到對於在形成第 —光阻圖型1 2之線寬部1 2 a時之加熱(步驟(3 )之P B、 PEB )或輻射線照射(步驟(3 )之曝光)使其成爲不活性 化之對於第二敏輻射線性樹脂組成物爲不溶化之第一光阻 圖型2 2之線寬部2 2 a。 P D B之條件通常係以1 2 〇 以上中3 〇〜1 2 〇秒,以1 4 0 °C 以上中1 5 ~ 1 〇 〇秒爲佳。且,P D B之加熱溫度係以比形成第 一光阻圖型時之PEB溫度還高溫度爲佳。 輻射線照射之條件係以照射波長爲300nm以下之輻射 線爲佳。又’曝先里係以用以形成第一光阻圖型12之最佳 曝光量之2〜20倍之曝光量爲佳。 -15- 201120567 輻射線照射所使用之燈之具體例可舉出Arjf 燈、Kr2燈、XeCl燈、Xe2燈(以上,牛尾電機公司 。且,此等不活性化方法可僅使用一種或亦可使用 上。 又,經由施行輻射線照射,第一光阻圖型1 2之 12a內之後述之聚合物(A)中所含之羥基或酸不安 由因交聯或縮合等所產生之極性變化,亦可形成對 敏輻射線性樹脂組成物變爲不溶化,且對光爲不活 第一光阻圖型22之線寬部22a。 猶,本說明書中「對光爲不活性」係指經由輻 之照射敏輻射線性樹脂組成物仍不會感光。即,第 圖型22之線寬部22a既使曝光,亦不會成爲鹼可溶 ,「對熱爲不活性」係指即將經過使用了第二敏輻 樹脂組成物之第二光阻圖型形成時之加熱,仍不會 解、熔融等之變形,即,即使經過加熱圖型形狀也 化。 3 ·步驟(3 ): 圖3 A〜圖3D係表示本發明之光阻圖型形成方法 驟(3)之一例的模式圖。步驟(3)中,首先如圖 般,使用第二敏輻射線性樹脂組成物在基板1上之 阻圖型22之線距部22b形成第二光阻層32。其次, 所示,在第一光阻圖型22及第二光阻層32之所用之 順序透過既定圖型之遮罩4及透鏡6,任意地經由水 、KrCl 製)等 二種以 線寬部 足基藉 於第二 性化之 射線等 一光阻 性。又 射線性 引起分 不會劣 中之步 3 A所示 第一光 如圖3B 領域依 等之液 -16- 201120567 浸曝光用液體3,進行照射輻射線所成之(圖3B之箭頭) ,如圖3C所示般’在第二光阻層32形成鹼顯像部35。其後 ,藉由進行顯像’如圖3D所示般’在基板1上所形成之第 一光阻圖型22之線距部22b形成第二光阻圖型42之線寬部 4 2 a ° 3-1.第二光阻層之形成: 第二光阻層32係可藉由將由第二敏輻射線性樹脂組成 物構成塗敷液從基板1上所形成之第一光阻圖型22之上進 行塗佈而形成。 塗佈塗敷液之方法並無特別限定,可藉由回轉塗佈、 流延塗佈、輥塗佈等之適宜之塗佈手段而施行。且,第二 光阻層32之厚度並無特別限定,通常爲10〜l,〇〇〇nm,以 1 0~500nm爲佳。 又,將由第二敏輻射線性樹脂組成物構成之塗敷液予 以塗佈後,依據需要,可經由施行PB而塗膜中之溶劑揮發 。PB之加熱條件可依據第二敏輻射線性樹脂組成物之配合 組成而適宜選擇,通常爲30〜200 °C中10〜200秒,以50〜150 °C中15~12〇秒爲佳,以60〜120°C中30〜100秒爲更佳。 第二敏輻射線性樹脂組成物含有聚合物(a )、敏輻 射線性酸產生劑(b )、溶劑(c )等。關於此等聚合物( a )、敏輻射線性酸產生劑(b )、溶劑(c )等於後記述 -17- 201120567 3-2.曝光: 在形成第二光阻層32後,如圖3B及圖3C所示般,在有 形成第二光阻層32基板1上之第一光阻圖型22之線距部22b 上,經由既定圖型之遮罩4,進行輻射線照射(圖之箭頭 )所成之曝光’在第二光阻層32形成鹼顯像部35。且,曝 光時,可任意地經由水或氟系不活性液體等之液浸曝光用 液體3。 尙,關於曝光條件等可記述與步驟(1)中前述之曝 光條件等相同者。 3-3.第二光阻圖型之形成: 其次,如圖3D所示般,藉由進行顯像,在第一光阻圖 型22之線距部形成第二光阻圖型之線寬部42a。 尙,關於顯像方法可記述與步驟(1)中前述之顯像 方法相同者。 如此般,藉由進行步驟(1)〜(3),即藉由雙重圖 型化,在基板1上可形成第一光阻圖型22之線寬部22 a及第 二光阻圖型42之線寬部42a爲等間隔交互並排之1L1S (線 寬部與線距部之寬度之比爲1 : 1 )之光阻圖型。 又,依據雙重圖型化,例如圖4及圖5所示般,可藉由 使步驟(3)中所形成之第二光阻圖型42之線寬部42a與第 —光阻圖型22之線寬部22a呈現垂直而形成在第一光阻圖 型22之線寬部22a上,進而形成光阻圖型(接觸孔圖型15 -18- 201120567 更且’依據雙重圖型化,例如如圖6所示般 驟(3)所形成之第二光阻圖型u形成於第一光 之線距部2 2 b上,則亦可形成經由第一光阻圖型 部22 a與第二光阻圖型42之線寬部42a所形成之經 棋盤網狀之光阻圖型(接觸孔圖型15)。 藉由本發明之光阻圖型形成方法,即使用雙 ,可形成更爲微細之線圖型及更爲微細之接觸孔 將藉由本發明之光阻圖型形成方法(雙重圖型化 光阻圖型(線寬和線距圖型及接觸孔圖型)稱爲 j ) ° 本發明之光阻圖型形成方法,如圖4~圖6所 使第一光阻圖型22之線寬部22a與第二光阻圖型 部42a呈現垂直,且在第一光阻圖型22之上形成 圖型42爲佳。 形成如上述般之接觸孔圖型時之光阻圖型, 及線距部之寬度以同時爲4 0〜lOOnm(lLlS)爲 部及線距部之寬度以同時爲4 0〜6 5nm ( 1L1S )爲 寬部及線距部之寬度以同時爲4〇~5〇nm ( 1L1S ) j II.敏輻射線性樹脂組成物: 本發明之敏輻射線性樹脂組成物藉由曝光由 性酸產生劑所發生之酸之作用,存在於聚合物中 定基解離而產生羧基,其結果,由於對曝光部之 溶解性變高,因鹼顯像液而溶解且被除去,而可 ,若使步 阻圖型22 2 2之線寬 區域化之 重圖型化 (以下, )所得之 「DP圖型 示般,以 4 2之線寬 第二光阻 其線寬部 佳,線寬 更佳,線 #更佳。 敏輻射線 之酸不安 鹼溶液之 形成正型 -19- 201120567 之光阻圖型。即,本發明之敏輻射線性樹脂組成物係藉由 酸之作用成爲鹼可溶性之含有鹼不溶性或難溶性之聚合物 、敏輻射線性酸產生劑及溶劑之組成物。以下,說明關於 在第一光阻層之形成所使用之第一敏輻射線性樹脂組成物 ’與在第二光阻層之形成所使用之第二敏輻射線性樹脂組 成物。 猶,本說明書中所稱之「酸不安定基」亦有稱爲「酸 解離性基」時,係指因酸而解離之基。具有酸不安定基之 鹼不溶性或難溶性之聚合物,由於因酸之作用而聚合物中 之酸不安定基進行解離產生羧基,而成爲可溶於鹼。 又,本說明書中稱之「鹼不溶性或難溶性」係指在將 使用含有聚合物(A )之第一敏輻射線性樹脂組成物所形 成之光阻層予以顯像時之鹼顯像條件下,將取代前述光阻 層而僅使用聚合物(A )所形成之被膜予以顯像時,初期 膜厚之5 0%以上之膜厚之皮膜在顯像後殘留之性質。 1 .第一敏輻射線性樹脂組成物 第一敏輻射線性樹脂組成物係包含含有下述一般式( 1_1)〜(1-4)所表示之重複單位及具有酸不安定基之重 複單位之聚合物(A)(以下,亦單稱爲「聚合物(A) 」)、敏輻射線性酸產生劑(B )(以下,亦單稱爲「酸 產生劑(B)」)及溶劑(C)者。 1-1.聚合物(A): -20- 201120567 聚合物(A)係爲3有下述〜般式(i-i) ~( 1-4)所 表示之重複單位(以下,亦稱爲「重複單位(1)」)、 具有酸不安定基之重複單位(以下,亦稱爲「重複單位( 2 )」)之聚合物。 1 -1 -1 •重複單位(1 ): 聚合物(A)被認爲係藉由含有重複單位(1 )並經由 步驟(2 )中之PDB及輻射線照射之至少一者,而使重複 單位(1 )所具之羥基(例如,一般式〇 -1 ) ~ ( 1 -4 )中 R2或R3所表示之羥基)與聚合物(A)中之羧基或其他羥 基等之間引起縮合反應,進而被交聯。藉此,因聚合物( A )變成不溶於第二敏輻射線性樹脂組成物或鹼顯像液, 且因第二光阻圖型形成時之曝光或加熱而變得難以變成鹼 可溶性,故可在保持第一光阻圖型之狀態下形成第二光阻 圖型。 【化3】(B-1) (B-2) (B-3) (B-4) (B-5) (B [2] A method for forming a photoresist pattern characterized by containing the first sensitivity of the above [1] a step (1) of irradiating the linear resin composition in the resistive pattern of the substrate, and forming the first photoresist pattern in the step (2) of inactivating the first resistive pattern-type di敏 radiation linear resin composition a step of forming a second photoresist pattern on the substrate by using a front-end radiation linear resin composition (3: [3] the photoresist pattern forming method of the above [2], the resistive pattern and the second The photoresist pattern has a line width portion which is parallel to the ridge shape, and a photoresist pattern of the line portion of the plurality of adjacent line width portions adjacent to each other, in the first photoresist pattern 5 The line width portion of the second photoresist pattern is formed in parallel with the first line width portion. [4] The method for forming a photoresist pattern according to the above [2], which has a photoresist pattern And the second photoresist pattern respectively has a line width portion of a convex shape parallel to i, and a photoresist pattern of a plurality of line distance portions between the adjacent line width portions The method of forming the second photoresist pattern portion and the line width portion of the first photoresist pattern are formed. [5] The photoresist pattern S method according to any one of the above [1] to [4], Wherein the polymer (A) contains the repeating unit of the above general formula (1-1). The first number arrangement of the line portion pattern for forming the first alignment of the second alignment is used. The line width formed by the formation is represented by -9-201120567 The sensitive radiation linear resin composition of the present invention is suitable for the liquid immersion exposure process, and in the double patterning, the first photoresist layer is also formed. The method for forming the photoresist pattern of the present invention is not only suitable for the process, but in the double patterning, when the second photoresist is used to form the second photoresist, the first photoresist pattern does not become alkali-soluble even if it is photosensitive. A second photoresist pattern is formed in a state of a photoresist pattern, and a photoresist pattern of a line width of the first photoresist pattern is formed. [Embodiment] Hereinafter, an embodiment of the present invention will be described, but it should not be It is limited to the following embodiments, as long as it is not off The scope of the present invention is based on the general knowledge of the trader, and the following is also incorporated in the scope of the present invention. The method of forming the resist pattern is: The step of forming the photoresist pattern of the present invention includes the step 3) The double-patterned photoresist pattern forming method. The following describes an implementation of the photoresist pattern forming method of the present invention. 1. Step (1): FIG. 1A to FIG. 1D show the photoresist pattern of the present invention. A pattern diagram of one example of the step (1) is formed. In the step (1), first, the use of the first sensitive radiation linear resin composition on the substrate i is suitable not only for the exposure for the immersion exposure pattern, but The method can be guaranteed and can be suppressed. It is understood that the invention is within the embodiments of the invention. Step (1)~(, using the pattern form. The step in the method is as shown in Fig. 1A to form the first -10 201120567 photoresist layer 2. Secondly, as shown in Fig. 1B, in the first photoresist layer The field used in the second embodiment is sequentially exposed through the mask 4 and the lens 6 of the predetermined pattern, and arbitrarily through the liquid immersion exposure liquid 3 such as water, and the radiation is irradiated (arrow of FIG. 1B) as shown in FIG. 1C. In the same manner, the alkali developing portion 5 is formed in the field used for the first photoresist layer 2. Thereafter, by performing development, as shown in FIG. 1D, the line width portion 12a and the line portion are formed on the substrate 1. 12b first photoresist pattern 12 (1 L3 S: width ratio of line width to line spacing is 1:3). 1 -1 · Formation of first photoresist layer: First photoresist layer 2 It is formed by applying a coating liquid composed of a first sensitive radiation linear resin composition onto the substrate 1. The coating method is not particularly limited, and may be suitably applied by spin coating, cast coating, roll coating, or the like. The coating method is not particularly limited, and is usually 10 to 1, and 〇〇〇 nm, preferably 10 to 500 nm. After the coating liquid composed of the sensitive radiation linear resin composition is applied, the solvent in the coating film may be volatilized by prebaking (PB: Pre-Bake, hereinafter also referred to as "PB") as needed. The heating condition of the PB may be appropriately selected depending on the composition of the first sensitive radiation linear resin composition, and is usually 30 to 120 seconds at 30 to 200 ° C, and preferably 40 to 100 seconds at 50 to 150 ° C. Further, in order to prevent the influence of the alkaline impurities and the like contained in the environmental atmosphere, for example, as disclosed in Japanese Laid-Open Patent Publication No. Hei No. Hei-5-8 8 8 9 8 or the like, the first photoresist layer 2 may be provided with protection. Further, in order to prevent the outflow of the acid generator or the like from the first photoresist layer 2, for example, as disclosed in Japanese Laid-Open Patent Publication No. 2005-35, No. A protective film for liquid immersion (upper film) is disposed on the photoresist layer 2. Further, these techniques may be used alone or in combination with 1-1 -3 - first sensitive radiation linear resin composition: first sensitive radiation The linear resin composition is a sensitive radiation linear resin composition of the present invention to be described later. Further, regarding the first sensitive radiation The polymer (A), the radiation sensitive linear acid generator (B), the solvent (C), and the like contained in the resin composition are also described later. 1-1-2. Substrate: The substrate is not particularly limited, and for example, A conventionally known substrate such as a silicon wafer or a wafer coated with aluminum. Further, in order to maximize the potential of the first sensitive radiation linear resin composition, for example, Japanese Patent Publication No. 6-12452 or An organic or inorganic antireflection film may be formed on the substrate to be used in advance, as disclosed in Japanese Laid-Open Patent Publication No. 59-93-44. 1-2. Exposure: As shown in FIG. 1B, in the field of the first photoresist layer 2, the exposure of the radiation pattern is performed through the mask 4 and the lens 6' of the predetermined pattern in sequence. As shown in FIG. 1C, the alkali developing unit 5 is formed in the first photoresist layer 2.尙, at the time of exposure, may be arbitrarily interposed between the liquid immersion exposure liquid 3 such as water or a fluorine-based inactive liquid which is interposed between the lens 6 and the first photoresist layer 2. -12- 201120567 The radiation used for exposure can be based on the type of sensitive radiation linear acid generator (B) contained in the first sensitive radiation linear resin composition, from visible light, ultraviolet light, far ultraviolet light, X-ray, charged particles. It is suitable for selection in lines and the like. Among them, far ultraviolet rays generated by ArF excimer laser (wavelength I93nm) or KrF excimer laser (wavelength 248nm) are preferable, and far ultraviolet rays generated by ArF excimer laser (wavelength 193 nm) are preferable. It is especially good. Further, the exposure conditions such as the amount of exposure can be appropriately selected depending on the compound composition of the first sensitive radiation linear resin composition, the kind of the additive, and the like. Further, it is preferable to perform heat treatment (PEB: Post-Exposure Bake. Hereinafter also referred to as "PEB") after exposure. By carrying out P E B, the dissociation reaction of the acid labile group in the first photosensitive radiation linear resin composition can be smoothly carried out. The heating condition of P E B can be appropriately selected according to the composition of the first sensitive radiation linear resin composition, and is usually 30 to 120 seconds in 30 to 200 ° C, and preferably 40 to 100 seconds in 50 to 170 ° C. 1-3. Formation of First Photoresist Pattern: By developing the first photoresist layer 2 as a developing liquid, the alkali developing portion 5 is dissolved, and a line as shown in FIG. 1D can be formed. The first photoresist pattern 12 of the positive type of the wide portion 1 2a and the line portion 1 2b. Further, it is usually washed with water and dried after development. 1 - 3 -1 . Developing solution: Suitable examples of the developing solution include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium citrate, sodium metasilicate, ammonia, ethylamine, and η-propyl. Amine, II-13- 201120567 ethylamine, di-η-propylamine, triethylamine, methyldiethylamine, ethyldimethylamine, triethanolamine, tetramethylammonium hydroxide, pyrrole , piperidine, choline, 1,8-dioxabicyclo-[5.4.0]-7-undecene, 1,5-dioxabicyclo-[4.3.0]-5-decene, etc. An alkaline aqueous solution of a compound. These basic compounds may be used alone or in combination of two or more. The concentration of the basic compound in the developing solution is usually 1% by mass or less. When the concentration of the basic compound exceeds 1% by mass, the non-exposed portion is also dissolved in the developing solution. Further, an organic solvent may be added to the developing solution. Specific examples of the organic solvent include acetone, methyl ethyl ketone, methyl i. butyl ketone, cyclopentanone, cyclohexanone, 3-methylcyclopentanone, and 2,6-dimethylcyclohexane. Ketones such as ketones; methanol, ethanol, η-propanol, i-propanol, η-butyl alcohol, t-butyl alcohol, cyclopentanol, cyclohexanol, 1,4-hexanediol, 1, Alcohols such as 4-hexanedihydroxymethanol; ethers such as tetrahydrofuran and dioxane; esters of ethyl acetate, η·butyl acetate, i-amyl acetate, etc.; aromatic hydrocarbons such as toluene and hydrazine; In addition, there are phenol, adipone, dimethylformamide and the like. Further, these organic solvents may be used singly or in combination of two or more. The use ratio of the organic solvent in the developing solution is 1 part by volume or less based on 100 parts by volume of the alkaline aqueous solution. When the ratio of use of the organic solvent is more than 1 part by volume, the development property is lowered and the image retention of the exposed portion is increased. Further, a developer or the like may be added in an appropriate amount to the developer.尙, where volume refers to the volume measured at 25 °C. 1-3-2. Development method: -14-201120567 The development method is not particularly limited, and a conventionally known method can be used, and a development method such as a liquid-filled type, an LD nozzle type, or a GP nozzle type is preferably used. Moreover, the development time is preferably 10 to 90 seconds. 2. Step (2): The step (2) of the photoresist pattern forming method of the present invention is a step of insolubilizing the first photoresist pattern 12 with respect to the second radiation-sensitive linear resin composition. Specifically, it includes the step (2) of heating or irradiating the first photoresist pattern 12 to the radiation. Fig. 2 is a schematic view showing an example of the above step (2). As shown in Fig. 2, the line width portion 12a of the first photoresist pattern 12 formed in the step (1) is heated by a temperature of 120 ° C or higher (PDB: Post-Development Bake. Also known as "PDB") and the treatment of one of the radiation (arrows in Fig. 2), heating can be obtained for the width of the line 1 2 a in forming the first photoresist pattern (step ( 3) PB, PEB) or radiation exposure (exposure of step (3)) to make it inactive. The first photoresist pattern of the second sensitive radiation linear resin composition is insoluble. 2 2 a. The condition of P D B is usually 3 〇 to 1 2 〇 seconds in the range of 1 2 〇 or more, and 1 5 ~ 1 〇 〇 second in the range of 1 4 0 °C or more. Further, the heating temperature of P D B is preferably a temperature higher than the PEB temperature at the time of forming the first photoresist pattern. The condition of the radiation irradiation is preferably a radiation having an irradiation wavelength of 300 nm or less. Further, it is preferable that the exposure amount is 2 to 20 times the optimum exposure amount for forming the first photoresist pattern 12. -15- 201120567 Specific examples of the lamp used for radiation irradiation include an Arjf lamp, a Kr2 lamp, a XeCl lamp, and a Xe2 lamp (above, Niu Mei Electric Co., Ltd.), and these inactivation methods may use only one type or Further, by performing radiation irradiation, the hydroxyl group or acid uneasiness contained in the polymer (A) described later in 12a of the first photoresist pattern 12 is changed by polarity due to crosslinking or condensation. It is also possible to form a line width portion 22a which is insoluble to the sensitive radiation linear resin composition and which is inactive to the first photoresist pattern 22. In the present specification, "inactive to light" means passing through the radiation. The radiation-sensitive radiation linear resin composition is still not sensitized. That is, the line width portion 22a of the pattern 22 is neither exposed nor alkali-soluble, and "inactive to heat" means that it is about to be used. The heating of the second photoresist pattern of the second sensitive polymer composition is still not deformed, melted, etc., that is, even after heating the shape of the pattern. 3 · Step (3): Fig. 3 A~ 3D is a view showing an example of the method (3) of forming a photoresist pattern of the present invention; In the step (3), first, as shown in the figure, the second photoresist layer 32 is formed on the line portion 22b of the resist pattern 22 on the substrate 1 by using the second-sensitive radiation linear resin composition. Next, as shown, The order of the first photoresist pattern 22 and the second photoresist layer 32 is transmitted through the mask 4 and the lens 6 of a predetermined pattern, arbitrarily via water, KrCl, etc., by the line width portion. The secondized ray is a photoresist. The ray-induced component is not inferior. Step 3A shows the first light as shown in Figure 3B. The liquid is equal to the liquid-16-201120567 immersion exposure liquid 3, which is made by irradiating radiation (arrow of Fig. 3B). The alkali developing portion 35 is formed in the second photoresist layer 32 as shown in FIG. 3C. Thereafter, the line width portion 4 2 a of the second photoresist pattern 42 is formed by performing the development of the line portion 22b of the first photoresist pattern 22 formed on the substrate 1 as shown in FIG. 3D. 3-1. Formation of the second photoresist layer: The second photoresist layer 32 is a first photoresist pattern 22 formed by forming a coating liquid from the second sensitive radiation linear resin composition from the substrate 1. It is formed by coating on the top. The method of applying the coating liquid is not particularly limited, and can be carried out by a suitable coating means such as rotary coating, cast coating, or roll coating. Further, the thickness of the second photoresist layer 32 is not particularly limited, and is usually 10 to 1, and 〇〇〇 nm, preferably 10 to 500 nm. Further, after the coating liquid composed of the second sensitive radiation linear resin composition is applied, the solvent in the coating film can be volatilized via PB if necessary. The heating condition of PB can be appropriately selected according to the composition of the second sensitive radiation linear resin composition, and is usually 10 to 200 seconds in 30 to 200 ° C, preferably 15 to 12 seconds in 50 to 150 ° C, 60 to 120 ° C in 30 to 100 seconds is better. The second sensitive radiation linear resin composition contains the polymer (a), the sensitive radiation generator (b), the solvent (c) and the like. The polymer (a), the sensitive radiation linear acid generator (b), and the solvent (c) are equal to the following description -17-201120567 3-2. Exposure: After forming the second photoresist layer 32, as shown in FIG. 3B As shown in FIG. 3C, on the line portion 22b of the first photoresist pattern 22 on the substrate 1 on which the second photoresist layer 32 is formed, the radiation is irradiated via the mask 4 of a predetermined pattern (the arrow of the figure) The resulting exposure 'forms the alkali developing portion 35 on the second photoresist layer 32. Further, at the time of exposure, the exposure liquid 3 can be arbitrarily immersed in water or a fluorine-based inert liquid or the like. In other words, the exposure conditions and the like can be described in the same manner as the above-described exposure conditions and the like in the step (1). 3-3. Formation of the second photoresist pattern: Next, as shown in FIG. 3D, the line width of the second photoresist pattern is formed at the line portion of the first photoresist pattern 22 by performing development. Part 42a. That is, the development method can be described in the same manner as the above-described development method in the step (1). Thus, by performing steps (1) to (3), the line width portion 22a and the second photoresist pattern 42 of the first photoresist pattern 22 can be formed on the substrate 1 by double patterning. The line width portion 42a is a photoresist pattern in which 1L1S (the ratio of the width of the line width portion to the width of the line portion is 1:1) which are alternately arranged at equal intervals. Further, according to the double patterning, for example, as shown in FIG. 4 and FIG. 5, the line width portion 42a and the first photoresist pattern 22 of the second photoresist pattern 42 formed in the step (3) can be obtained. The line width portion 22a is formed vertically on the line width portion 22a of the first photoresist pattern 22, thereby forming a photoresist pattern (contact hole pattern 15 -18-201120567 and more based on double patterning, for example As shown in FIG. 6, the second photoresist pattern u formed in the step (3) is formed on the line distance portion 2 2 b of the first light, and may be formed via the first photoresist pattern portion 22 a and the first The pattern of the checkerboard pattern formed by the line width portion 42a of the two photoresist pattern 42 (contact hole pattern 15). The method for forming the photoresist pattern of the present invention, that is, using double, can form a more The fine line pattern and the finer contact hole will be referred to by the photoresist pattern forming method of the present invention (double patterning resist pattern (line width and line pattern and contact hole pattern) is called j) The method for forming the photoresist pattern of the present invention, as shown in FIGS. 4-6, the line width portion 22a of the first photoresist pattern 22 and the second photoresist pattern portion 42a are perpendicular, and at the first photoresist It is preferable to form the pattern 42 on the pattern 22. The pattern of the photoresist pattern when the contact hole pattern is formed as described above, and the width of the line portion is simultaneously 40 to 100 nm (lLlS) as the portion and the line portion. The width is 40 to 6 5 nm (1L1S) at the same time and the width of the wide portion and the line portion is 4 〇 to 5 〇 nm (1L1S) j II. The radiation sensitive linear resin composition: the sensitive radiation linear resin of the present invention When the composition is exposed to an acid generated by the acid generator, the base is dissociated in the polymer to form a carboxyl group, and as a result, the solubility in the exposed portion is increased, and the solution is dissolved by the alkali developing solution. In addition, if the pattern of the step width pattern 22 22 is linearized (hereinafter referred to as the "DP pattern", the line width of the second photoresist is 4 2 line width. The part is better, the line width is better, and the line # is better. The acid-irradiation alkali solution of the sensitive radiation forms the photoresist pattern of the positive type -19-201120567. That is, the sensitive radiation linear resin composition of the present invention is made of acid. The action is an alkali-soluble, alkali-insoluble or poorly soluble polymer, a radiation-sensitive linear acid generator, and The composition of the agent. Hereinafter, the first photosensitive radiation linear resin composition used in the formation of the first photoresist layer and the second photosensitive radiation linear resin composition used in the formation of the second photoresist layer will be described. In fact, the term "acid-unstable group" as used in this specification is also referred to as "acid-dissociable group", and refers to a group which is dissociated by acid. A polymer having an acid-labile base which is insoluble or poorly soluble, Since the acid unstable group in the polymer is dissociated by the action of an acid to form a carboxyl group, it becomes soluble in a base. Further, the term "alkali-insoluble or poorly soluble" in the present specification means that the polymer-containing polymer (A) is used. When the photoresist layer formed by the first sensitive radiation linear resin composition is developed under the condition of alkali development, when the photoresist layer is replaced and only the film formed by the polymer (A) is used for development, The film thickness of the film thickness of 50% or more of the initial film thickness remains after development. 1 . First Sensitive Radiation Linear Resin Composition The first radiation sensitive linear resin composition comprises an polymerization comprising a repeating unit represented by the following general formulas (1_1) to (1-4) and a repeating unit having an acid labile group. (A) (hereinafter, simply referred to as "polymer (A)"), a sensitive radiation linear acid generator (B) (hereinafter, simply referred to as "acid generator (B)") and a solvent (C) By. 1-1. Polymer (A): -20- 201120567 The polymer (A) is a repeating unit represented by the following general formula (ii) to (1-4) (hereinafter, also referred to as "repetition Unit (1)"), a polymer having a repeating unit of an acid labile group (hereinafter also referred to as "repeating unit (2)"). 1 -1 -1 • Repeating unit (1 ): Polymer (A) is considered to be repeated by containing at least one of repeating units (1) and irradiating with PDB and radiation in step (2) The hydroxyl group (for example, the general formula 〇-1) ~ (1 -4 ) wherein the hydroxyl group represented by R2 or R3) causes a condensation reaction with the carboxyl group or other hydroxyl group in the polymer (A). And then cross-linked. Thereby, since the polymer (A) becomes insoluble in the second-sensitive radiation linear resin composition or the alkali developing solution, and it becomes difficult to become alkali-soluble due to exposure or heating at the time of formation of the second photoresist pattern, The second photoresist pattern is formed while maintaining the first photoresist pattern. [化3]

(1-3) (1-4) 上述一般式(1-1) ~(1-4)中,R1各自獨立表示氫 -21 - 201120567 原子、三氟甲基、或碳數1〜3之烷基,R2各自獨立表示氫 原子或羥基。上述一般式(1-4)中’ R3表示碳數1〜5之直 鏈狀或分枝狀之羥基烷基。上述一般式(1-1)中,A表示 亞甲基、或碳數2〜5之伸烷基,其氫原子亦可被碳數1〜5之 烷基所取代。上述一般式(1-3 )中,B表示以下述式(B· 1) ~(B_6)之任一式所表示之基團,η表示1〜3之整數。 尙’ η以1爲佳。 【化4】 (B-l) (Β-2) (Β-3) (Β-4) (Β-5) (Β-6) 重複單位(1)係以前述一般式(1-1)所表示之重複 單位’因上述之交聯反應特別容易進行而爲佳。 作爲給予重複單位(1 )之聚合性單體,可舉出以下 述式(Ι-a)〜(l-t)所表示之化合物。但,本發明中,給 予重複單位(1)之聚合性單體並不受限於此等。 【化5】(1-3) (1-4) In the above general formula (1-1) to (1-4), R1 each independently represents hydrogen-21 - 201120567 atom, trifluoromethyl group, or carbon number 1 to 3 The group, R2 each independently represents a hydrogen atom or a hydroxyl group. In the above general formula (1-4), 'R3' represents a linear or branched hydroxyalkyl group having 1 to 5 carbon atoms. In the above general formula (1-1), A represents a methylene group or an alkylene group having 2 to 5 carbon atoms, and the hydrogen atom thereof may be substituted by an alkyl group having 1 to 5 carbon atoms. In the above general formula (1-3), B represents a group represented by any one of the following formulae (B·1) to (B_6), and η represents an integer of 1 to 3.尙’ η is better than 1. (4) (Bl) (Β-2) (Β-3) (Β-4) (Β-5) (Β-6) The repeating unit (1) is expressed by the above general formula (1-1) The repeating unit 'is particularly preferable because the above crosslinking reaction is particularly easy. The polymerizable monomer to which the repeating unit (1) is given may, for example, be a compound represented by the following formula (Ι-a) to (l-t). However, in the present invention, the polymerizable monomer to which the repeating unit (1) is given is not limited thereto. 【化5】

-22- 201120567 【化6】-22- 201120567 【化6】

HO HO HOHO HO HO

【化7】【化7】

(1 -k)(1 -k)

(1 —m)(1 - m)

-23- 201120567-23- 201120567

作爲給予重複單位(1)之聚合性單體,在上述以式 (l-a) ~ ( l-t)所表示之化合物之中,以式(Ι-a)、( 1-b)所表示之化合物爲佳。 聚合物(A)可單獨含有一種此等之重複單位(1)或 亦可含有二種以上。 1-1-2.重複單位(2) 重複單位(2)爲具有酸不安定基之重複單位,其可 以用下述一般式(2)表示。 -24- 201120567 【化9】 R4As the polymerizable monomer to which the repeating unit (1) is given, among the compounds represented by the above formulas (la) to (lt), the compounds represented by the formulae (Ι-a) and (1-b) are preferred. . The polymer (A) may contain one such repeating unit (1) alone or two or more kinds thereof. 1-1-2. Repeating unit (2) The repeating unit (2) is a repeating unit having an acid labile group, which can be represented by the following general formula (2). -24- 201120567 【化9】 R4

(2) 上述一般式(2)中,r4表示氫原子、甲基或三氟甲 基。R5各自獨立表示碳數1~4之直鏈狀或分枝狀之烷基, 或表示碳數4~20之1價之脂環式烴基’亦或表示任二個R5 相互結合所形成之碳數4~2〇之2價脂環式烴基或其衍生物 ,剩餘之R5則表示碳數之直鏈狀或分枝狀之烷基’或 碳數4~20之1價之脂環式烴基或其衍生物。 前述一般式(2)中,以R5所示之基之中,碳數1〜4之 直鏈狀或分枝狀之烷基之具體例可舉出甲基、乙基、n-丙 基、i-丙基、η-丁基、2-甲基丙基、1-甲基丙基、t-丁基等 〇 前述一般式(2 )中,以R5所示之基之中,碳數4〜2〇 之1價之脂環式烴基之具體例爲降莰烷、三環癸烷、四環 十二烷、金剛烷,或環丁烷、環戊烷、環已烷、環庚烷、 環辛烷等之源自烷鏈烷類等之脂環式烴所構成之基;此等 由脂環式烴所構成之基,可舉出例如以甲基、乙基、η-丙 基、i-丙基、η-丁基、2-甲基丙基、1-甲基丙基、卜丁基等 之碳數1〜4之直鏈狀、分枝狀或環狀之烷基所取代之基等 -25- 201120567 前述一般式(2 )中,以R5所示之基之中,任二個R5 相互結合所形成之碳數4〜20之2價脂環式烴基或其衍生物 之具體例爲降莰烷、三環癸烷、四環十二烷、金剛烷、環 戊烷、環已烷等之源自脂環式烴所構成之基;此等由脂環 式烴所構成之基可舉出以前述烷基所取代之基等。 前述一般式(2)中,以-C(R5) 3所表示之基之適宜 例爲t· 丁基、l-n-(l-乙基-1-甲基)丙基、l-n-(l,l-二甲 基)丙基、1-n- ( 1,1-二甲基)丁基、1-n- ( 1,1-二甲基) 戊基、1-(1,1-二乙基)丙基、l-n-(l,l-二乙基)丁基、 1-η- (1,1-二乙基)戊基等之不具有脂環式烴之基;1-(1-甲基)環戊基、1-(1-乙基)環戊基、1-(1-η-丙基)環 戊基、丙基)環戊基、1-(1-甲基)環己基、1-( 1-乙基)環己基、丙基)環己基、丙基) 環己基、1-(1-甲基-1-(2-降莰基))乙基、1-(1-甲基-1- ( 2_四環癸基))乙基、1- ( 1-甲基-1- ( 1-金剛烷基) )乙基、2-(2-甲基)降莰基、2-(2-乙基)降莰基、2-(2-n-丙基)降莰基、2-(2-i-丙基)降莰基、2-(2-甲基 )四環十二基、2-(2-乙基)四還十二基、2-(2-n-丙基 )四環十二基基、2-(2-i-丙基)四環十二基、2-(2-甲基 )金剛烷基、2-(2-乙基)金剛烷基、2-(2-n-丙基)金 剛烷基、2- ( 2-i_丙基)金剛烷基等之具有脂環式烴之基 ;此等具有脂環式烴之基可舉出例如以甲基、乙基、η-丙 基、i-丙基、η-丁基、2-甲基丙基、1-甲基丙基、t-丁基等 之碳數1〜10之直鏈狀或分枝狀之烷基、環戊基、環己基、 26- 201120567 環辛基基等之碳數4〜20之環狀之烷基所取代之基等。 給予重複單位(2)之單體之適宜例,可舉出(甲基 )丙烯酸2-甲基金剛烷-2_基酯 '(甲基)丙烯酸2-甲基-3-羥基金剛烷-2-基酯、(甲基)丙烯酸2_乙基金剛烷_2· 基酯、(甲基)丙烯酸2-乙基-3-羥基金剛烷-2-基酯、( 甲基)丙烯酸2-Π·丙基金剛烷-2-基酯、(甲基)丙烯酸2-異丙基金剛烷-2-基酯、(甲基)丙烯酸-2 -甲基聯環〔 2.2.1〕庚-2-基酯、(甲基)丙烯酸-2-乙基聯環〔2.2.1〕 庚-2-基酯、(甲基)丙烯酸-8-甲基三環〔5.2.1.02’6〕癸 烷_8_基酯、(甲基)丙烯酸-8-乙基三環〔5.2.1.02’6〕癸 烷-8-基酯、(甲基)丙烯酸-4-甲基四環〔6.2.1.13’6_02’7 〕十二烷_4-基酯、(甲基)丙烯酸_4·乙基四環〔 6·2·1.13’6.02’7〕十二烷-4-基酯、(甲基)丙烯酸1-(聯環 〔2.2.1〕庚-2-基)-1-甲基乙基酯、(甲基)丙烯酸1-( 三環〔5.2.1.02’6〕癸烷-8-基)-1-甲基乙基酯、(甲基) 丙烯酸1-(四環〔6.2.1.13’6.02’7〕十二烷-4-基)-1-甲基 乙基酯、(甲基)丙烯酸1-(金剛烷-1-基)-1-甲基乙基 酯、(甲基)丙烯酸1-(3 -羥基金剛烷-1-基)-1-甲基乙 基酯、(甲基)丙烯酸1,1-二環己基乙基酯、(甲基)丙 烯酸1,1-二(聯環〔2.2.1〕庚-2-基)乙基酯、(甲基)丙 烯酸1,1-二(三環〔5.2.1· 02’6〕癸烷-8-基)乙基酯、(甲 基)丙烯酸 1,1-二(四環〔6.2.1_13’6.02’7〕十二烷-4-基) 乙基酯' (甲基)丙烯酸1,1-二(金剛烷-1-基)乙基酯、 (甲基)丙烯酸1-甲基-1_環戊基酯、(甲基)丙烯酸1-乙 -27- 201120567 基-1-環戊基酯' (甲基)丙烯酸1-甲基-1-環E 甲基)丙烯酸1-乙基-1-環己基酯等。猶,本說日J 甲基)丙烯酸J係指丙烯酸及甲基丙烯酸兩者。 此等之中,以(甲基)丙烯酸2-甲基金剛院 (甲基)丙烯酸2-乙基金剛烷-2-基酯、(甲基 2 -甲基聯環〔2.2.1〕庚-2-基酯、(甲基)丙烯 聯環〔2.2.1〕庚-2 -基酯、(甲基)丙烯酸1-2.2.1〕庚-2-基)-1-甲基乙基酯、(甲基)丙充 剛烷-1-基)-1-甲基乙基酯、(甲基)丙烯酸b 戊基酯、(甲基)丙烯酸卜乙基-1·環戊基酯、1 烯酸1-甲基-1-環己基酯、(甲基)丙烯酸1-乙 基酯等爲特佳。 聚合物(A)可單獨含有此等重複單位(2) 有二種以上。 1-1-3.重複單位(3): 聚合物(A)除上述重複單位(1)、重複 以外,以具有選自由下述一般式(3-1 ) ~ ( 3-i 之內酯構造所成群之至少一種之內醋構造的重孩 重複單位(3 )爲佳》 基酯、( i書中「( -2-基酯、 )丙烯酸-酸-2 -乙基 (聯環〔 t酸1-(金 甲基-1-環 甲基)丙 基-1-環己 或亦可含 單位(2 ) 6 )所表示 ί單位作爲 -28- 201120567 【化1 〇】(2) In the above general formula (2), r4 represents a hydrogen atom, a methyl group or a trifluoromethyl group. R5 each independently represents a linear or branched alkyl group having 1 to 4 carbon atoms, or an alicyclic hydrocarbon group having a carbon number of 4 to 20, or a carbon formed by combining two R5 groups. a 4 to 2 fluorene bivalent alicyclic hydrocarbon group or a derivative thereof, and the remaining R5 represents a linear or branched alkyl group having a carbon number or an alicyclic hydrocarbon group having a carbon number of 4 to 20 Or a derivative thereof. In the above general formula (2), specific examples of the linear or branched alkyl group having 1 to 4 carbon atoms in the group represented by R5 include a methyl group, an ethyl group, and an n-propyl group. I-propyl, η-butyl, 2-methylpropyl, 1-methylpropyl, t-butyl, etc. In the above general formula (2), among the groups represented by R5, the carbon number is 4 Specific examples of the monovalent alicyclic hydrocarbon group of ~2〇 are norbornane, tricyclodecane, tetracyclododecane, adamantane, or cyclobutane, cyclopentane, cyclohexane, cycloheptane, a group consisting of an alicyclic hydrocarbon derived from an alkyl alkane or the like, such as cyclooctane; and the group consisting of an alicyclic hydrocarbon, for example, a methyl group, an ethyl group, an η-propyl group, or the like a group substituted with a linear, branched or cyclic alkyl group having 1 to 4 carbon atoms such as i-propyl, η-butyl, 2-methylpropyl, 1-methylpropyl or butylbutyl In the above general formula (2), a specific example of a divalent alicyclic hydrocarbon group having a carbon number of 4 to 20 or a derivative thereof in which any two R5 are bonded to each other in the group represented by R5 a source of norbornane, tricyclodecane, tetracyclododecane, adamantane, cyclopentane, cyclohexane, etc. Alicyclic hydrocarbon group consisting of; a group of such alicyclic hydrocarbon formed include the aforementioned alkyl groups may be substituted with the group. In the above general formula (2), a suitable example of the group represented by -C(R5) 3 is t.butyl, ln-(l-ethyl-1-methyl)propyl, ln-(l,l -dimethyl)propyl, 1-n-(1,1-dimethyl)butyl, 1-n-(1,1-dimethyl)pentyl, 1-(1,1-diethyl a propyl, ln-(l,l-diethyl)butyl, 1-η-(1,1-diethyl)pentyl group or the like having no alicyclic hydrocarbon; 1-(1-A Cyclopentyl, 1-(1-ethyl)cyclopentyl, 1-(1-η-propyl)cyclopentyl, propyl)cyclopentyl, 1-(1-methyl)cyclohexyl, 1-(1-ethyl)cyclohexyl, propyl)cyclohexyl, propyl)cyclohexyl, 1-(1-methyl-1-(2-northyl))ethyl, 1-(1-methyl -1-(2-tetracyclic fluorenyl)ethyl, 1-(1-methyl-1-(1-adamantyl))ethyl, 2-(2-methyl)norbornyl, 2 -(2-ethyl)norbornyl, 2-(2-n-propyl)norbornyl, 2-(2-i-propyl)norbornyl, 2-(2-methyl)tetracyclic Diyl, 2-(2-ethyl)tetradecyl, 2-(2-n-propyl)tetracyclododecyl, 2-(2-i-propyl)tetracyclododecyl, 2-(2-methyl)adamantyl, 2-(2-ethyl)adamantyl, 2-(2-n-propyl)-gold a group having an alicyclic hydrocarbon such as a 2-(2-i-propyl)adamantyl group; and the group having such an alicyclic hydrocarbon may, for example, be a methyl group, an ethyl group, an η-propyl group, or the like. a linear or branched alkyl group having 1 to 10 carbon atoms, such as i-propyl, η-butyl, 2-methylpropyl, 1-methylpropyl or t-butyl, or a cyclopentyl group , cyclohexyl, 26-201120567 cyclooctyl group and the like substituted by a cyclic alkyl group having 4 to 20 carbon atoms. A suitable example of the monomer to which the repeating unit (2) is given is exemplified by 2-methyladamantane-2-yl (meth)acrylate 2-methyl-3-hydroxyadamantane-2 (meth)acrylate-2 -yl ester, 2-ethyladamantane-2-yl (meth)acrylate, 2-ethyl-3-hydroxyadamantan-2-yl (meth)acrylate, 2-oxime (meth)acrylate · propyl adamantyl-2-yl ester, 2-isopropyl adamantyl-2-yl (meth)acrylate, 2-methylcyclo(2.2.1)hept-2-(meth)acrylate Base ester, 2-ethylbicyclo(meth)acrylate [2.2.1]heptan-2-yl, (methyl)acrylic acid-8-methyltricyclo[5.2.1.0''6]nonane_8 _ base ester, (meth)acrylic acid-8-ethyltricyclo[5.2.1.0''6]nonane-8-yl ester, (meth)acrylic acid-4-methyltetracyclo[6.2.1.13'6_02' 7] Dodecane-4-yl ester, (meth)acrylic acid _4·ethyltetracyclo [6·2·1.13'6.02'7] dodecyl-4-yl ester, (meth)acrylic acid 1- (bicyclo[2.2.1]hept-2-yl)-1-methylethyl ester, 1-(tricyclo[5.2.1.02'6]nonane-8-yl)-1-(meth)acrylate Methyl ethyl ester, (methyl) propyl Acid 1-(tetracycline [6.2.1.13'6.02'7] dodec-4-yl)-1-methylethyl ester, 1-(adamantan-1-yl)-1-(meth)acrylate Methyl ethyl ester, 1-(3-hydroxyadamantan-1-yl)-1-methylethyl (meth)acrylate, 1,1-dicyclohexylethyl (meth)acrylate, ( 1,1-di(bicyclo[2.2.1]hept-2-yl)ethyl methacrylate, 1,1-di(tricyclo[5.2.1·02'6] fluorene (meth) acrylate Alken-8-yl)ethyl ester, 1,1-di(tetracyclo[6.2.1_13'6.02'7]dodecan-4-yl)ethyl ester (meth)acrylic acid 1 (meth)acrylic acid 1 ,1-di(adamantan-1-yl)ethyl ester, 1-methyl-1_cyclopentyl (meth)acrylate, 1-ethyl-7-(meth)acrylate-201120567 Amyl-ester 1-ethyl-1-cyclohexyl ester of 1-methyl-1-cyclo Emethyl (meth)acrylate. In fact, this Japanese J-methacrylic acid J refers to both acrylic acid and methacrylic acid. Among these, 2-methyladamantan-2-(methyl)acrylate 2-ethyladamantan-2-yl ester, (methyl-2-methylbicyclo[2.2.1]g- 2-based ester, (meth) propylene ring [2.2.1] hept-2-yl ester, (meth)acrylic acid 1-2.2.1] hept-2-yl)-1-methylethyl ester, (Methyl)propan-1-yl)-1-methylethyl ester, (meth)acrylic acid b pentyl ester, (meth) acrylate ethyl ethyl-1. cyclopentyl ester, 1-enoic acid 1- Methyl-1-cyclohexyl ester, 1-ethyl (meth)acrylate, and the like are particularly preferred. The polymer (A) may contain two or more of these repeating units (2) alone. 1-1-3. Repeating unit (3): The polymer (A) has a structure selected from the following general formula (3-1) ~ (3-i), in addition to the above repeating unit (1), and repeating The repeating unit (3) of the vinegar structure of at least one of the groups is a good base ester, (in the book, "(-2-yl ester), acrylic acid-acid-2-ethyl (bicyclo[t] Acid 1-(gold methyl-1-cyclomethyl)propyl-1-cyclohexene or may also contain units (2) 6 ) expressed as units of -28- 201120567 [Chemical 1 〇]

(3-1). (3-2) (3-3) (3-4) (3 — 5) (3-6) 上述一般式(3-1)中,R6表示氫原子或碳數1~4之取 代或非取代之烷基’ 1表示1〜3之整數。一般式(3-4)及( 3-5)中,R7表示氫原子或甲氧基基。一般式(3-2)及( 3-3)中,D表不單鍵結或亞甲基,m表示0或1。一般式( 3-3)及(3-5)中’ E表不氧原子或亞甲基。 前述一般式(3-1)中,以R6所示之基之中,碳數1〜4 之取代或非取代之烷基之具體例,可舉出甲基、乙基、n-丙基、i-丙基、η-丁基、2-甲基丙基、1-甲基丙基、t-丁基 等。 作爲給予重複單位(3)之單體之適宜例,可舉出( 甲基)丙烯酸-5-側氧基-4-氧雜-三環〔4.2.1.03’7〕壬-2-基 酯、(甲基)丙烯酸-9-甲氧基羰基-5-側氧基-4-氧雜-三環 〔4.2.1.03’7〕壬-2-基酯、(甲基)丙烯酸-5-側氧基-4-氧 雜-三環〔5.2.1.03’8〕癸-2-基酯、(甲基)丙烯酸-10-甲 氧基羰基-5-側氧基-4-氧雜·三環〔5.2.1.03’8〕癸-2-基酯、 (甲基)丙烯酸-6-側氧基-7-氧雜-聯環〔3.2.1〕辛-2-基 -29- 201120567 酯、(甲基)丙烯酸·4-甲氧基羰基_6_側氧基-7_氧雜·聯環 〔3_2_1〕辛-2-基酯、(甲基)丙烯酸-7_側氧基-8_氧雜― 聯環〔3.3.1〕壬-2-基酯、(甲基)丙烯酸_4_甲氧基羰基_ 7-側氧基-8-氧雜-聯環〔331〕壬_2_基酯、(甲基)丙烯 酸-2-氧四氯耻喃·4-基酯、(甲基)丙烯酸_4甲基_2氧四 氮耻喃_4-基醋、(甲基)丙烯酸-4-乙基-2-氧四氫吡喃-4-基酯、(甲基)丙烯酸_4_丙基_2氧四氫吡喃_4基酯、( 甲基)丙烯酸-5·氧四氫呋喃_3_基酯、(甲基)丙烯酸_ 2,2-一甲基-5-氧四氫呋喃-3_基酯、(甲基)丙烯酸-4,4_ —甲基-5-氧四氫呋喃_3_基酯、(甲基)丙烯酸_2_氧四氫 呋喃-3-基酯、(甲基)丙烯酸_4,4_二甲基_2_氧四氫呋喃_ 3-基酯、(甲基)丙烯酸_5,5_二甲基_2_氧四氫呋喃_3_基 酯、(甲基)丙烯酸_2_氧四氫呋喃_3_基酯、(甲基)丙 烯酸-5-氧四氫呋喃_2_基甲酯、(甲基)丙烯酸_3,3二甲 基-5-氧四氫呋喃-2-基甲酯、(甲基)丙烯酸_4,4_二甲基_ 5_氧四氫呋喃-2-基甲醋等。 聚合物(Α)可單獨含有此等重複單位(3)或含有二 種以上。 聚合物(Α)亦可爲含有上述重複單位(1)〜(3)以 外之重複單位(以下,亦稱爲「其他重複單位」)一種以 上者。 其他重複單位,例如可舉出下述一般式(4)所表示 之重複單位(以下,亦稱爲「重複單位(4)」)、下述 一般式(5)所表示之重複單位(以下’亦稱爲「重複單 -30- 201120567 位(5)」)、下述一般式(6)所表示之重複單位(以下 ,亦稱爲「重複單位(6)」)等。 1-1-4.重複單位(4 ): 重複單位(4)係爲下述一般式(4)所表示之重複單 【化1 1】 R8(3-1). (3-2) (3-3) (3-4) (3 - 5) (3-6) In the above general formula (3-1), R6 represents a hydrogen atom or a carbon number of 1~ The substituted or unsubstituted alkyl group '1' represents an integer of from 1 to 3. In the general formulae (3-4) and (3-5), R7 represents a hydrogen atom or a methoxy group. In the general formulae (3-2) and (3-3), D represents not a single bond or a methylene group, and m represents 0 or 1. In the general formulae (3-3) and (3-5), 'E' is an oxygen atom or a methylene group. In the above general formula (3-1), specific examples of the substituted or unsubstituted alkyl group having 1 to 4 carbon atoms among the groups represented by R6 include a methyl group, an ethyl group, and an n-propyl group. I-propyl, η-butyl, 2-methylpropyl, 1-methylpropyl, t-butyl and the like. A suitable example of the monomer to which the repeating unit (3) is given is (meth)acrylic acid-5-oxo-4-oxa-tricyclo[4.2.1.03'7]non-2-yl ester, (Meth)acrylic acid-9-methoxycarbonyl-5-oxo-4-oxa-tricyclo[4.2.1.03'7]non-2-yl ester, (meth)acrylic acid-5-side oxygen 4--4-oxa-tricyclo[5.2.1.0''8]non-2-yl ester, (meth)acrylic acid-10-methoxycarbonyl-5-sideoxy-4-oxa-tricyclo[ 5.2.1.03'8] ind-2-yl ester, (meth)acrylic acid-6-sideoxy-7-oxa-bicyclo[3.2.1]oct-2-yl-29- 201120567 ester, (A Acrylic acid 4-methoxycarbonyl _6_sideoxy-7_oxa-bicyclo[3_2_1]oct-2-yl ester, (meth)acrylic acid-7-sideoxy-8-oxa ― 环环 [3.3.1] 壬-2-yl ester, (meth)acrylic acid _4_methoxycarbonyl -7-sided oxo-8-oxa-bicyclo[331] 壬_2-yl ester , (meth)acrylic acid-2-oxotetrachloropyran-4-yl ester, (meth)acrylic acid _4 methyl 2 oxotetraazyl sulphate 4-yl vinegar, (meth)acrylic acid -4- Ethyl-2-oxotetrahydropyran-4-yl ester, (meth)acrylic acid _4-propyl-2-oxo 4 Pyran-4-yl ester, (meth)acrylic acid-5.oxytetrahydrofuran-3-yl ester, (meth)acrylic acid 2,2-methyl-5-oxotetrahydrofuran-3-yl ester, (methyl) )Acetyl-4,4_-methyl-5-oxotetrahydrofuran_3_yl ester, (meth)acrylic acid _2_oxytetrahydrofuran-3-yl ester, (meth)acrylic acid _4,4-dimethyl 2_oxytetrahydrofuran-3-yl ester, (meth)acrylic acid_5,5-dimethyl-2-oxotetrahydrofuran_3_yl ester, (meth)acrylic acid 2_oxytetrahydrofuran_3_yl ester, (meth)acrylic acid-5-oxotetrahydrofuran-2-ylmethyl ester, (meth)acrylic acid _3,3 dimethyl-5-oxotetrahydrofuran-2-ylmethyl ester, (meth)acrylic acid _4,4 _Dimethyl_5_oxytetrahydrofuran-2-ylacetic acid and the like. The polymer (Α) may contain these repeating units (3) alone or in combination of two or more. The polymer (Α) may be one or more of repeating units (hereinafter, also referred to as "other repeating units") containing the above repeating units (1) to (3). The other repeating unit is, for example, a repeating unit represented by the following general formula (4) (hereinafter also referred to as "repetitive unit (4)"), and a repeating unit represented by the following general formula (5) (below) Also known as "repeated single-30-201120567 (5)"), the repeating unit (hereinafter also referred to as "repeating unit (6)") represented by the following general formula (6). 1-1-4. Repeating unit (4): The repeating unit (4) is a repeating single represented by the following general formula (4) [Chemical 1 1] R8

R9 (4) 上述一般式(4)中’ r8表示氫原子、甲基或三氟甲 基,R9表示碳數7〜20之取代或非取代之多環型脂環式烴基 。但,在多環型脂環式烴基具有取代基時,取代基爲碳數 1〜10之直鏈狀或分枝狀之烷基、碳數4〜20之環狀之烷基、 羥基、氰基、碳數1〜10之羥基烷基、羧基或側氧基(但, 除上述式(I-2 )所表示之基)。 1 -1 - 5 .重複單位(5 ): 重複單位(5)係爲下述一般式(5)所表示之重複單 -31 - 201120567 lit 12]R9 (4) In the above general formula (4), 'r8 represents a hydrogen atom, a methyl group or a trifluoromethyl group, and R9 represents a substituted or unsubstituted polycyclic alicyclic hydrocarbon group having 7 to 20 carbon atoms. However, when the polycyclic alicyclic hydrocarbon group has a substituent, the substituent is a linear or branched alkyl group having a carbon number of 1 to 10, a cyclic alkyl group having a carbon number of 4 to 20, a hydroxyl group, and a cyanogen group. A hydroxyalkyl group having 1 to 10 carbon atoms, a carboxyl group or a pendant oxy group (except for the group represented by the above formula (I-2)). 1 -1 - 5 . Repeating unit (5 ): The repeating unit (5) is a repeating single represented by the following general formula (5) -31 - 201120567 lit 12]

上述一般式(5)中,Ri〇表示氫原子或甲基,χι表示 單鍵結或碳數之2價之有機基。X2各自獨立表示單鍵結 或碳數1~3之2價之有機基,Rii各自獨立表示氫原子、羥 基、氰基、或以COOR12所表示之基。但,Ri2表示氫原子 、碳數1~4之直鏈狀或分枝狀之烷基,或碳數3〜20之脂環 式烷基。尙,三個R11之中之至少—個非爲氫原子,且X1 爲單鍵結時,三個X2之中至少—個爲碳數1〜3之2價之有機 基。 1-1-6.重複單位(6): 重複單位(6)係爲下述一般式(6)所表示之重複單 位。 -32- 201120567 【化1 3】 R13In the above general formula (5), Ri 〇 represents a hydrogen atom or a methyl group, and χ ι denotes a single bond or a divalent organic group having a carbon number. X2 each independently represents a single bond or a divalent organic group having 1 to 3 carbon atoms, and Rii each independently represents a hydrogen atom, a hydroxyl group, a cyano group, or a group represented by COOR12. However, Ri2 represents a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, or an alicyclic alkyl group having 3 to 20 carbon atoms.尙, at least one of the three R11 is not a hydrogen atom, and when X1 is a single bond, at least one of the three X2 is a two-valent organic group having a carbon number of 1 to 3. 1-1-6. Repeating unit (6): The repeating unit (6) is a repeating unit represented by the following general formula (6). -32- 201120567 【化1 3】 R13

上述一般式(6)中’ R13表不氫原子、碳數1〜4之院 基、三氟甲基或羥基甲基’ R14表示2價之有機基。 前述一般式(6)中,以r13所不之基之中,碳數1〜4 之烷基之具體例可舉出甲基、乙基' η-丙基、卜丙基、n_ 丁基、2-甲基丙基、1-甲基丙基、t-丁基等。 則述一般式(6)中’以R14所不之2價之有機基,以2 價之烴基爲佳,鏈狀或環狀之2價之烴基爲更佳。又,以 R 14所示之2價之有機基亦可爲伸烷二醇基、伸烷酯基等。 前述一般式(6)中,以R1 4所示之基之適宜例可舉出 亞甲基、伸乙基、1,3-伸丙基、1,2-伸丙基等之伸丙基、 四亞甲基、五亞甲基、六亞甲基、七亞甲基、八亞甲基、 九亞甲基、十亞甲基、十一亞甲基、十二亞甲基、十三亞 甲基、十四亞甲基、十五亞甲基、十六亞甲基、十七亞甲 基、十八亞甲基、十九亞甲基、伸二十基、1-甲基-1,3-伸 丙基、2-甲基-1,3-伸丙基、2-甲基-1,2-伸丙基、1-甲基-1,4-伸丁基、2-甲基-1,4-伸丁基、亞乙基、亞丙基、2-亞 丙基等之飽和鎖狀烴基; -33- 201120567 1,3 -環伸丁基等之環伸丁基、1,3 -環伸戊基等之環伸 戊基、1,4-環伸已基等之環伸已基、1,5-環伸辛基等之環 伸辛基等之碳數3~10之環伸烷基之單環式烴環基;1,4-伸 降莰基或2,5 _伸降莰基等之伸降莰基、1,5 -伸金剛烷基、 2,6-伸金剛烷基等之伸金剛烷基等之2~4環式之碳數4~30之 烴環基之交聯環式烴環基等。此等之中’以含有2,5_伸降 莰基之烴基、伸乙基、1,2-伸丙基爲佳。 又,以R14所示之基爲含有2價之脂環式烴基時,在雙 (三氟甲基)羥基甲基與2價之脂肪族環狀烴基之間’以 插入碳數1〜4之伸烷基作爲間隔物爲佳。 給予重複單位(6)之單體之適宜例可舉出((甲基 )丙烯酸(3,3,3-三氟-2-三氟甲基-2-羥基丙基)酯、(甲 基)丙烯酸(4,4,4-三氟-3-三氟甲基-3-羥基丁基)酯、( 甲基)丙烯酸(1-(5,5,5-三氟-4-三氟甲基-4-羥基)戊基 )酯、(甲基)丙烯酸(2-(5,5,5-三氟-4-三氟甲基-4-羥 基)戊基)酯、(甲基)丙烯酸(2-(5-(3’,3,,3’-三氟-2三氟甲基-2’-羥基)丙基)聯環〔2.2.1〕戊基)酯、( 甲基)丙烯酸(3-(8-(3’,3’,3,-三氟-2’-三氟甲基-2’-羥 基)丙基)四環〔6.2.1.13,6.02’7〕十二基)酯等。 聚合物(A)可單獨含有此等之重複單位(6)或或亦 可含有二種以上。 1-1-7.各重複單位之配合比例: 聚合物(A )所含之重複單位(1 )之比例,係相對於 -34- 201120567 聚合物(A)所含之重複單位之合計l〇〇mol%爲5~80mol% ,以10〜70mol%爲佳,以10〜60mol%爲更佳。重複單位(1 )比例若未滿5mol%,在步驟(3)中形成第二光阻圖型用 之曝光時,則有第一光阻圖型則受到感光,而無法保持第 —光阻圖型之可能性。另一方面,若超過8 Omol%,則有在 步驟(1 )中第一光阻圖型之解像度變得不充分之可能性 〇 聚合物(A )所含之重複單位(2 )之比例,係相對於 聚合物(A )所含之重複單位之合計lOOmol%,以 5 ~ 7 0 m ο 1 %爲佳,以1 0〜6 5 m ο 1 %爲較佳,以1 0〜6 0 m ο 1 %爲更 佳。重複單位(2 )之比例若超過70mol%,則有鹼顯像部 之顯像性降低下之虞。 聚合物(A )所含之重複單位(3 )之比例,係相對於 聚合物(A)所含之重複單位之合計1 OOmol%,以50mol% 以下爲佳,45mol%以下爲較佳。藉由使重複單位(3)之 比例在50mol%以下,可抑制對鹼顯像液之溶解性之降低或 顯像缺陷之發生。 聚合物(A )所含之重複單位(4 )之比例,係相對於 聚合物(A)所含之重複單位之合計1 OOmol%,以30mol% 以下爲佳,25mol%以下爲較佳。藉由使重複單位(4 )之 比例在30mol%以下,可抑制鹼顯像部因鹼顯像液而變得容 易膨潤或對鹼顯像液之溶解性降低。 聚合物(A )所含之重複單位(5 )之比例,係相對於 聚合物(A )所含之重複單位之合計lOOmol% ’以30mol% -35- 201120567 以下爲佳,25mol%以下爲較佳。藉由使重複單4 比例在30mol%以下,可防止鹼顯像部因鹼顯像液 易膨潤或對鹼顯像液之溶解性降低。 聚合物(A )所含之重複單位(6 )之比例’ 聚合物(A)所含之重複單位之合計lOOmol%, 以下爲佳,25mol%以下爲較佳。藉由使重複單ί 比例在30mol%以下,可防止鹼顯像部因鹼顯像液 易膨潤或對鹼顯像液之溶解性降低。 聚合物(A )所含之重複單位(7 )之比例, 聚合物(A )所含之重複單位之合計lOOmol%, 以下爲佳,25mol%以下爲較佳。藉由使重複單ί 比例在30mol%以下,可防止鹼顯像部因鹼顯像液 易膨潤或對鹼顯像液之溶解性降低。 第一敏輻射線性樹脂組成物可單獨含有一種 合物(A)或亦可將二種以上予以混合而含有。 1-1-8·聚合物(A)之調製: 聚合物(A )係例如可藉由,使用氫過氧化 烷基過氧化物類、二醯基過氧化物類、偶氮化合 由基聚合開始劑,依據需要在鏈轉移劑之存在下 之給予各重複單位之聚合性不飽和單體在適當之 行聚合而調製。 聚合所使用之溶劑之具體例可舉出η-戊烷、 η-庚烷、η-辛烷、η-壬烷、η-癸烷等之烷類;環 立(5 )之 :而變得容 係相對於 以 3 0 m ο 1 % 立(6 )之 :而變得容 係相對於 以 3 0 m ο 1 % 立(6 )之 而變得容 上述之聚 物類、二 物等之自 ,使前述 溶劑中進 η-己烷、 已烷、環 -36- 201120567 庚烷、環辛烷、十氫萘、降莰烷等之環烷類;苯、甲苯、 茬、乙基苯、異丙苯等之芳香族烴類;氯丁烷、溴己烷、 二氯乙烷、二溴化環己烷、氯苯等之鹵化烴類;乙酸乙酯 、乙酸η-丁酯、乙酸i-丁酯、丙酸甲酯等之飽和羧酸酯類 ;丙酮、2-丁酮、4-甲基-2-戊酮、2-丁酮等之酮類;四氫 呋喃、二甲氧基乙烷、二乙氧基乙烷等之醚類等。且,此 等溶劑可一種單獨使用或可將二種以上混合使用。 作爲聚合條件,反應溫度通常爲40〜15CTC,以50〜120 t爲佳。又,反應時間通常爲1〜48小時,以卜24小時爲佳 〇 聚合物(A)之由凝膠滲透層析法(GPC )所得之以 聚苯乙烯換算之質量平均分子量(以下,亦稱爲「Mwj )雖無特別限定,以1,〇〇〇〜1〇〇,〇〇〇爲佳,以1,000〜30,000 爲較佳,以1,000〜20,000爲更佳。Mw若未滿1,000,則有 第一光阻層之耐熱性降低之虞。另一方面,若超過 1 00,000,則有鹼顯像部之顯像性降低之虞。 又,各聚合物之Mw與各聚合物之由凝膠滲透層析法 (GPC )所得之以聚苯乙烯換算之數平均分子量(以下, 亦稱爲「Μη」)之比(Mw/Mn)通常爲1〜5’以1~3爲佳 〇 又,聚合物(A)中亦有包含源自各聚合物(A)之 調製所用之單體的低分子量成分之情形。此低分子量成分 之含有比例,係相對於各聚合物(A ) 1 00質量% (固形分 換算),以0.1質量%以下爲佳’ 〇.〇7質量%以下爲較佳’ -37- 201120567 0.05質量%以下爲更佳。低分子量成分之含有比例若在0.1 質量%以下,可減少在液浸曝光時對接觸之水等之液浸曝 光用液體之析出物之量。又’在保管時光阻內產生異物及 在光阻塗佈時中塗佈不均之發生爲少,並可充分抑制光阻 圖型形成時中之缺陷之發生。 猶,本說明書中「低分子量成分」係指Mw爲500以下 之成分,具體可舉出單體、二聚體、三聚體、寡聚物。低 分子量成分可藉由各種精製法而去除’其殘留量可藉由高 速液體滲透層析法(HPLC )而計測。 聚合物(A)之精製法之具體例可舉出水洗、液態液 態萃取等之化學性精製法,或此等之化學性精製法與超過 濾、遠心分離等之物理性精製法之組合等。 聚合物(A)以鹵素、金屬等之雜質爲少者爲佳。藉 由以上述之精製法去除雜質,可更改善形成之第一光阻層 之感度、解像度、製程安定性、圖型形狀等。 1-2.酸產生劑(B ): 酸產生劑(B )係爲藉由輻射線照射而產生酸之化合 物。第一敏輻射線性樹脂組成物以含有酸產生劑(B ), 藉由因輻射線照射所產生之酸之作用,使聚合物中所存在 之酸不安定基,具體而言爲重複單位(2)所具有之酸不 安定基解離(使保護基脫離),其結果,曝光部分成爲易 溶於鹼顯像液,而可形成正型之光阻圖型。 -38- 201120567 卜2·1.酸產生劑(1 ): 作爲酸產生劑(B),以含有下述一般式(7)所表示 之化合物(以下,亦稱爲「酸產生劑(1)」)者爲佳。 【化1 4】In the above general formula (6), R13 represents a hydrogen atom, a group having a carbon number of 1 to 4, a trifluoromethyl group or a hydroxymethyl group, and R14 represents a divalent organic group. In the above general formula (6), specific examples of the alkyl group having 1 to 4 carbon atoms among the groups of r13 include methyl group, ethyl 'η-propyl group, propyl group, n-butyl group, and 2- Methyl propyl, 1-methylpropyl, t-butyl and the like. In the general formula (6), the organic group having a valence of not more than R14 is preferably a hydrocarbon group having a valence of 2, and a chain or ring-shaped hydrocarbon group having a valence of 2 is more preferable. Further, the divalent organic group represented by R 14 may be an alkylene glycol group or an alkylene ester group. In the above general formula (6), a suitable example of the group represented by R1 4 is a propyl group such as a methylene group, an exoethyl group, a 1,3-propanyl group or a 1,2-extended propyl group. Tetramethylene, pentamethylene, hexamethylene, heptamethylene, octamethylene, hexamethylene, decamethylene, undecylmethyl, dodecyl, thirteen Base, tetradecylmethyl, fifteen methylene, hexamethylene, heptamethylene, octamethylidene, nineteen methylene, extended twenty base, 1-methyl-1, 3-propyl, 2-methyl-1,3-propanyl, 2-methyl-1,2-propanyl, 1-methyl-1,4-butylene, 2-methyl- a saturated lock-like hydrocarbon group such as 1,4-butylene, ethylene, propylene, 2-propylene or the like; -33- 201120567 1,3 - cyclobutylene such as cyclobutylene, 1,3 a ring having a carbon number of 3 to 10 such as a cyclopentyl group such as a cyclopentyl group or a cyclopentyl group such as a 1,4-cyclohexylene group or a cyclopentene group such as a 1,5-cyclodextyl group or the like. Alkyl monocyclic hydrocarbon ring group; 1,4-extension sulfhydryl or 2,5 _ 伸 莰 等 等 伸 、, 1,5 - an adamantyl, 2,6-extension 2~4 ring type carbon number 4~30 of alkynyl group such as alkyl group Hydrocarbon ring group is crosslinked cyclic hydrocarbon ring group. Among these, it is preferred that the hydrocarbon group having a 2,5-extension thiol group, an ethyl group, and a 1,2-propion group be added. Further, when the group represented by R14 is a divalent alicyclic hydrocarbon group, a carbon number of 1 to 4 is inserted between the bis(trifluoromethyl)hydroxymethyl group and the divalent aliphatic cyclic hydrocarbon group. The alkyl group is preferred as the spacer. A suitable example of the monomer to which the repeating unit (6) is given is ((3,3,3-trifluoro-2-trifluoromethyl-2-hydroxypropyl) (meth)acrylate, (meth)) (4,4,4-trifluoro-3-trifluoromethyl-3-hydroxybutyl) acrylate, (meth)acrylic acid (1-(5,5,5-trifluoro-4-trifluoromethyl) -4-hydroxy)pentyl)ester, (2-(5,5,5-trifluoro-4-trifluoromethyl-4-hydroxy)pentyl)(meth)acrylate, (meth)acrylic acid ( 2-(5-(3',3,3'-Trifluoro-2,3-trifluoromethyl-2'-hydroxy)propyl)bicyclo[2.2.1]pentyl)ester, (meth)acrylic acid ( 3-(8-(3',3',3,-Trifluoro-2'-trifluoromethyl-2'-hydroxy)propyl)tetracyclo[6.2.1.13,6.02'7]dodecyl)ester The polymer (A) may contain these repeating units (6) alone or may contain two or more. 1-1-7. Mixing ratio of each repeating unit: repeating unit contained in the polymer (A) The ratio of (1) is from 5 to 80 mol%, preferably from 10 to 70 mol%, and from 10 to 60 mol%, based on the total of the repeating units contained in the polymer (A) of -34 to 201120567. Better. Repeat unit (1) ratio If it is less than 5 mol%, when the exposure for forming the second photoresist pattern is formed in the step (3), the first photoresist pattern is exposed to light, and the possibility of the first photoresist pattern cannot be maintained. On the other hand, if it exceeds 8 Omol%, there is a possibility that the resolution of the first photoresist pattern becomes insufficient in the step (1), and the ratio of the repeating unit (2) contained in the polymer (A) is The total amount of the repeating units contained in the polymer (A) is 100% by mol, preferably 5 to 70 m ο 1 %, more preferably 10 to 6 5 m ο 1 %, and 1 0 to 60 m. ο 1 % is more preferable. If the ratio of the repeating unit (2) exceeds 70 mol%, the development of the alkali developing portion is lowered. The ratio of the repeating unit (3) contained in the polymer (A), It is preferably 100 mol% or less, and preferably 45 mol% or less, based on the total of the repeating units contained in the polymer (A), and 45 mol% or less is preferable. By making the ratio of the repeating unit (3) 50 mol% or less, it is possible to suppress Reduction of solubility in alkali imaging solution or occurrence of imaging defects. The ratio of repeating unit (4) contained in polymer (A) is a repeat with respect to polymer (A) The total amount of the group is preferably 100 mol% or less, preferably 25 mol% or less, and preferably 25 mol% or less. By setting the ratio of the repeating unit (4) to 30 mol% or less, the alkali developing portion can be suppressed from being formed by the alkali developing solution. It is easy to swell or the solubility in the alkali imaging solution is lowered. The ratio of the repeating unit (5) contained in the polymer (A) is 100% by mole based on the total of the repeating units contained in the polymer (A). -35- 201120567 The following is preferred, and 25 mol% or less is preferred. By setting the ratio of the repeating single 4 to 30 mol% or less, it is possible to prevent the alkali developing portion from being easily swollen by the alkali developing solution or having a reduced solubility in the alkali developing solution. The ratio of the repeating unit (6) contained in the polymer (A)' is a total of 100% by mole of the repeating unit contained in the polymer (A), preferably 5% by weight or less. By setting the repetition ratio to 30 mol% or less, it is possible to prevent the alkali developing portion from being easily swollen by the alkali developing solution or having a reduced solubility in the alkali developing solution. The ratio of the repeating unit (7) contained in the polymer (A) to the total of 100% by mole of the repeating unit contained in the polymer (A) is preferably 5% by weight or less. By setting the repetition ratio to 30 mol% or less, it is possible to prevent the alkali developing portion from being easily swollen by the alkali developing solution or having a reduced solubility in the alkali developing solution. The first sensitive radiation linear resin composition may contain the compound (A) alone or may be contained by mixing two or more kinds. 1-1-8·Preparation of Polymer (A): The polymer (A) can be polymerized, for example, by using a hydroperoxyalkyl peroxide, a dimercapto peroxide, or an azo compound. The starter is prepared by polymerizing each of the repeating units of the polymerizable unsaturated monomer in the presence of a chain transfer agent in an appropriate manner. Specific examples of the solvent used for the polymerization include alkane such as η-pentane, η-heptane, η-octane, η-decane, and η-decane; and cyclization (5): The capacity is increased to (3) with respect to 3 0 m ο 1 %: and the content becomes the above-mentioned polymer, two, etc. with respect to 3 0 m ο 1 % (6) From the above solvent, a naphthenic group such as η-hexane, hexane, cyclo-36-201120567 heptane, cyclooctane, decahydronaphthalene or norbornane; benzene, toluene, hydrazine, ethylbenzene, Aromatic hydrocarbons such as cumene; halogenated hydrocarbons such as chlorobutane, bromohexane, dichloroethane, cyclohexane, chlorobenzene; ethyl acetate, η-butyl acetate, acetic acid a saturated carboxylic acid ester such as butyl ester or methyl propionate; a ketone such as acetone, 2-butanone, 4-methyl-2-pentanone or 2-butanone; tetrahydrofuran, dimethoxyethane An ether such as diethoxyethane. Further, these solvents may be used alone or in combination of two or more. As the polymerization conditions, the reaction temperature is usually 40 to 15 CTC, preferably 50 to 120 t. Further, the reaction time is usually from 1 to 48 hours, and the mass average molecular weight in terms of polystyrene obtained by gel permeation chromatography (GPC) is preferably 24 hours (hereinafter, also referred to as Although "Mwj" is not particularly limited, it is preferably 1, 〇〇〇~1〇〇, 〇〇〇, preferably 1,000 to 30,000, and preferably 1,000 to 20,000. If Mw is less than 1,000, there is When the heat resistance of the first photoresist layer is lowered, on the other hand, if it exceeds 100,000, the developability of the alkali developing portion is lowered. Further, the Mw of each polymer and the gel of each polymer are used. The ratio (Mw/Mn) of the number average molecular weight (hereinafter, also referred to as "Μη") obtained by the permeation chromatography (GPC) is usually 1 to 5', preferably 1 to 3, and The polymer (A) also contains a low molecular weight component derived from a monomer used for the preparation of each polymer (A). The content ratio of the low molecular weight component is preferably 10,000% by mass (calculated as solid content) of each polymer (A), preferably 0.1% by mass or less, preferably 7% by mass or less. -37-201120567 It is more preferably 0.05% by mass or less. When the content ratio of the low molecular weight component is 0.1% by mass or less, the amount of the precipitate of the liquid for liquid immersion exposure such as contact with water during immersion exposure can be reduced. Further, the occurrence of foreign matter in the photoresist during storage and the occurrence of unevenness in coating during the photoresist coating are small, and the occurrence of defects in the formation of the photoresist pattern can be sufficiently suppressed. In the present specification, the "low molecular weight component" means a component having an Mw of 500 or less, and specific examples thereof include a monomer, a dimer, a trimer, and an oligomer. The low molecular weight component can be removed by various purification methods. The residual amount can be measured by high speed liquid permeation chromatography (HPLC). Specific examples of the purification method of the polymer (A) include a chemical purification method such as water washing or liquid liquid extraction, or a combination of the chemical purification method and a physical purification method such as filtration or telecentric separation. The polymer (A) is preferably one having less impurities such as halogen or metal. By removing impurities by the above-described purification method, the sensitivity, resolution, process stability, pattern shape, and the like of the formed first photoresist layer can be further improved. 1-2. Acid generator (B): The acid generator (B) is a compound which generates an acid by irradiation with radiation. The first sensitive radiation linear resin composition contains an acid generator (B), and the acid which is present in the polymer is unstable by the action of an acid generated by radiation irradiation, specifically, a repeating unit (2) The acid unstable group dissociates (the protective group is detached), and as a result, the exposed portion becomes soluble in the alkali developing solution, and a positive resist pattern can be formed. -38- 201120567 卜2·1. Acid generator (1): The acid generator (B) contains a compound represented by the following general formula (7) (hereinafter, also referred to as "acid generator (1) ") is better. [化1 4]

R17 (7) 上述一般式(7 )中,R15表示氫原子、氟原子、羥基 、碳數1〜10之直鏈狀或分枝狀之烷基、碳數1~10之直鏈狀 或分枝狀之烷氧基、或碳數2~11之直鏈狀或分枝狀之烷氧 基羰基。又,R10表示碳數1〜10之直鏈狀或分枝狀之烷基 、碳數1〜1〇之直鏈狀或分枝狀之烷氧基、或碳數卜1〇之直 鏈狀、分枝狀或環狀之烷磺醯基。R17各自獨立表示碳數 1〜10之直鏈狀或分枝狀之烷基、苯基、或萘基,或兩個 R17相互結合所形成之含有硫陽離子之碳數2~1〇之2價之基 。唯,苯基、萘基、及碳數2〜10之2價之基亦可具有取代 基。q表示0〜2之整數。p表示〇〜8之整數’以〇~2之整數爲 佳。Y·表示以下述一般式(8-1)〜(8-4)所表示之陰離子 -39- 201120567R17 (7) In the above general formula (7), R15 represents a hydrogen atom, a fluorine atom, a hydroxyl group, a linear or branched alkyl group having 1 to 10 carbon atoms, or a linear or branched carbon number of 1 to 10. a branched alkoxy group or a linear or branched alkoxycarbonyl group having 2 to 11 carbon atoms. Further, R10 represents a linear or branched alkyl group having a carbon number of 1 to 10, a linear or branched alkoxy group having a carbon number of 1 to 1 Å, or a linear chain having a carbon number of 1 10. , branched or cyclic alkanesulfonyl. R17 each independently represents a linear or branched alkyl group having 1 to 10 carbon atoms, a phenyl group, or a naphthyl group, or a combination of two R17 groups, and a carbon number of 2 to 1 fluorene containing a sulfur cation. The basis. The phenyl group, the naphthyl group, and the valence group having a carbon number of 2 to 10 may have a substituent. q represents an integer of 0 to 2. p denotes an integer 〇~8, which is preferably an integer of 〇~2. Y· represents an anion represented by the following general formula (8-1) to (8-4) -39- 201120567

【化1 5】 R18—CrF2r—SH03' R18-S〇3 (8-1) (8-2) 上述一般式(8-1)及(8-2)中,R18表示氟原子或可 被取代之碳數1〜12之烴基。上述一般式(8_1)中,r表示 1〜1〇之整數。上述一般式(8-3)及(8-4)中,R19各自獨 立表示經氟原子所取代之碳數1~1〇之直鏈狀或分枝狀之烷 基,或兩二個R 19相互結合所形成之經氟原子所取代之碳 數2〜10之2價之有機基。惟,經氟原子所取代之碳數2~10 之2價之有機基亦可具有氟原子以外之取代基。 前述一般式(7)中,以R17所示之基之適宜例可舉出 甲基、乙基、苯基、4-甲氧基苯基、1-萘基、兩個Ri7相互 結合所形成之含有硫陽離子之四氫噻吩環構造之2價之基 等。 前述一般式(8-1)中,(:/21_基爲碳數r之全氟伸烷基 ’此基可爲直鏈狀亦可爲。尙,r以1、2、4或8爲佳。 前述一般式(7)中,以Y·所示之陰離子之適宜例, 可舉出三氟甲烷磺酸根陰離子、全氟-η-丁烷磺酸根陰離子 、全氟-η-辛烷磺酸根陰離子、2-聯環〔2.2.1 .〕庚-2-基-1,1,2,2 -四氟乙烷磺酸根陰離子、2-聯環〔2.2.1〕庚-2-基-1,1-—氟乙院擴酸根陰離子、下述式(ga)〜(gg)所表示 -40 ~ 201120567 之陰離子等。 【化1 6】[1] R18-CrF2r-SH03' R18-S〇3 (8-1) (8-2) In the above general formulas (8-1) and (8-2), R18 represents a fluorine atom or may be substituted. a hydrocarbon group having 1 to 12 carbon atoms. In the above general formula (8_1), r represents an integer of 1 to 1 。. In the above general formulas (8-3) and (8-4), R19 each independently represents a linear or branched alkyl group having 1 to 1 carbon atom substituted by a fluorine atom, or two or two R 19 A two-valent organic group having a carbon number of 2 to 10 which is substituted by a fluorine atom formed by bonding with each other. However, the divalent organic group having 2 to 10 carbon atoms which is substituted by a fluorine atom may have a substituent other than a fluorine atom. In the above general formula (7), a suitable example of the group represented by R17 is a methyl group, an ethyl group, a phenyl group, a 4-methoxyphenyl group, a 1-naphthyl group, and two Ri7 groups bonded to each other. A divalent group or the like of a tetrahydrothiophene ring structure containing a sulfur cation. In the above general formula (8-1), (: /21_ group is a perfluoroalkylene group having a carbon number r.) The group may be linear or may be. 尙, r is 1, 2, 4 or 8 In the above general formula (7), a suitable example of the anion represented by Y· includes a trifluoromethanesulfonate anion, a perfluoro-η-butanesulfonate anion, and a perfluoro-η-octanesulfonate. Acid anion, 2-bicyclo[2.2.1.]hept-2-yl-1,1,2,2-tetrafluoroethanesulfonate anion, 2-bicyclo[2.2.1]hept-2-yl- 1,1-—Fluorine alkaloid anion, anion of -40 to 201120567 represented by the following formula (ga)~(gg). [Chem. 1 6]

(8 a) (8b) (8 c) (8 d) Ο •Ο °y Ν'(8 a) (8b) (8 c) (8 d) Ο •Ο °y Ν'

C\F2 Ν\ Γ2 0^\\~CFz ο (8 η \卜2 (8 g) 、/CF2 酸產生劑(Β)可單獨使用上述之酸產生劑(i) _種 或亦可將二種以上混合使用。 酸產生劑(Β)亦可爲含有酸產生劑(1)以外之敏輻 射線性酸產生劑(以下,亦「酸產生劑(2 )」)者。 1-2-2.酸產生劑(2 ): 酸產生劑(2 )可舉出例如鑰鹽化合物、鹵素含有化 合物、疊氮酮化合物、颯化合物、磺酸化合物等。 酸產生劑(Β)可含有此等之酸產生劑(2)單獨一種 或亦可將二種以上混合使用。 第一敏輻射線性樹脂組成物中,酸產生劑(Β )之含 有比例由確保光阻之感度及顯像性之觀點,相對於聚合物 (Α) 100質量份而言,通常爲0.1-2 0質量份,以〇.5~1〇質 -41 - 201120567 量份爲佳。酸產生劑(B )之含有比例若未滿〇. 1質量份, 則有感度及顯像性降低之傾向。另一方面,若超過20質量 份,則有對於輻射線之透明性降低,而變得難以得到矩形 之光阻圖型之傾向。 又,使用酸產生劑(2 )時,其使用比例係相對於酸 產生劑(1 )及(2 )之合計100質量%,通常爲80質量%以 下,以60質量%以下爲佳。 1 - 3 ·溶劑(C ): 溶劑(C )只要係可溶解第一敏輻射線性樹脂組成物 之各構成成分者,則可無特別制限而使用。 溶劑(C)之具體例除了可舉出2-丁酮、2-戊酮、3-甲 基-2-丁嗣、2 -己嗣、4 -甲基-2 -戊嗣、3 -甲基-2-戊嗣、3,3-二甲基-2-丁酮、2-庚酮、2-辛酮等之直鏈狀或分枝狀之酮 類;環戊酮、3 -甲基環戊酮、環己酮、2 -甲基環己酮、 2,6-二甲基環己酮、異佛酮等之環狀之酮類;丙二醇單甲 基醚乙酸酯、丙二醇單乙基醚乙酸酯、丙二醇單-η-丙基醚 乙酸酯、丙二醇單-i-丙基醚乙酸酯、丙二醇單-η-丁基醚 乙酸酯、丙二醇單-i-丁基醚乙酸酯、丙二醇單-sec-丁基醚 乙酸酯、丙二醇單- t_T基醚乙酸酯等之丙二醇單烷基醚乙 酸酯類;2-羥基丙酸甲酯、2-羥基丙酸乙酯、2-羥基丙酸 η-丙酯、2-羥基丙酸i-丙酯、2-羥基丙酸η-丁酯、2-羥基丙 酸i-丁酯、2-羥基丙酸sec-丁酯、2-羥基丙酸t-丁酯等之2-羥基丙酸烷酯類:3 -甲氧基丙酸甲酯、3 -甲氧基丙酸乙酯 -42- 201120567 、3 -乙氧基丙酸甲酯、3_乙氧基丙酸乙酯等之3_院氧基丙 酸烷酯類, 尙可舉出乙二醇單甲基醚、乙二醇單乙基醚、乙二醇 單-η-丙基醚、乙二醇單-η-丁基醚、二乙二醇二甲基酸、 二乙二醇二乙基醚、二乙二醇二-η_丙基醚、二乙二醇二_ η· 丁基醚、乙二醇單甲基醚乙酸酯、乙二醇單乙基酸乙酸 酯、乙二醇單- η-丙基醚乙酸酯、丙二醇單甲基醚、丙二醇 單乙基醚、丙二醇單-η -丙基醚、甲苯、茬、2 -經基甲 基丙酸乙酯、乙氧基乙酸乙酯、羥基乙酸乙醋、2_經基_3_ 甲基丁酸甲酯、3 -甲氧基丁基乙酸酯、3 -甲基甲氧基丁 基乙酸酯、3 -甲基-3-甲氧基丁基丙酸酯、3·甲基_3·甲氧 基丁基丁酸酯、乙酸乙酯、乙酸η-丙酯、乙酸η_ 丁醋、乙 醯乙酸甲酯、乙醯乙酸乙酯、丙酮酸甲酯、丙酮酸乙醋、 Ν-甲基吡咯啶酮、Ν,Ν-二甲基甲醯胺、Ν,Ν-二甲基乙醯胺 、苄基乙基醚、二-η-己基醚 '二乙二醇單甲基醚、二乙二 醇單乙基醚、己酸、辛酸、乙酸苄酯、安息香酸乙酯、草 酸二乙酯、馬來酸二乙酯、r-丁內酯、碳酸伸乙酯、碳 酸伸丙酯等。 此等之中,以直鏈狀或分枝狀之酮類、環狀之酮類、 丙二醇單烷基醚乙酸酯類、2-羥基丙酸烷酯類、3-烷氧基 丙酸烷酯類、r-丁內酯等爲佳。 溶劑(C )可單獨使用一種此等之溶劑或亦可將二種 以上混合使用。 溶劑(C )之使用量,第一敏輻射線性樹脂組成物之 -43- 201120567 總固形分濃度通常爲1〜50質量%之量,以1〜25質量%之量 爲佳。 1-4.添加劑: 第一敏輻射線性樹脂組成物依據需要亦可含有酸擴散 控制劑、脂環族添加劑、界面活性劑、增感劑等之各種之 添加劑。 1-4-1 .酸擴散控制劑 酸擴散控制劑係爲具有抑制因曝光由酸產生劑(B ) 所產生之酸之第一光阻層中之擴散現象,抑制非曝光領域 中之不佳化學反應之作用的成分。藉由含有此般酸擴散控 制劑,可提升第一敏輻射線性樹脂組成物之圖型形狀。又 ,除了可更提升作爲光阻之解像度,同時可抑制從曝光至 曝光後之加熱處理(PEB )爲止之曝光後延滯時間(PED )之變動所造成之光阻圖型之線寬度變化,而可得到製程 安定性極優之組成物。 酸擴散控制劑,例如可舉出胺化合物、含醯胺基之化 合物、脲化合物、含氮雜環化合物等。 (胺化合物) 胺化合物之適宜例可舉出單烷基胺類、二烷基胺類、 三烷基胺類、苯胺或其衍生物; 伸乙二胺、N,N,N’,N’-四甲基伸乙二胺、四亞甲基二 -44- 201120567 胺、六亞甲基二胺、4,4’-二胺基二苯基甲烷、4,4’-二胺基 二苯基醚、4,4’-二胺基二苯甲酮、4,4’-二胺基二苯基胺、 2,2-雙(4-胺基苯基)丙烷、2- (3-胺基苯基)-2- (4-胺 基苯基)丙烷、2-(4-胺基苯基)-2-(3-羥基苯基)丙烷 、2- (4-胺基苯基)-2- (4-羥基苯基)丙烷、1,4-雙(1-(4-胺基苯基)-1-甲基乙基)苯、1,3 -雙(1_(4_胺基苯 基)-1-甲基乙基)苯、雙(2-二甲基胺基乙基)醚、雙( 2-二乙基胺基乙基)醚、1-(2-羥基乙基)-2-咪唑烷酮、 2_喹喔啉醇、N,N,N’,N’-肆(2-羥基丙基)伸乙二胺、 ^^『,化’/”-五甲基二伸乙三胺等。 (含醯胺基之化合物) 含醯胺基之化合物之適宜例除了可舉出含有N-t-丁氧 基羰基之胺基化合物之外,尙可舉出甲醯胺、N-甲基甲醯 胺、Ν,Ν-二甲基甲醯胺、乙醯胺、N-甲胺乙醯胺、N,N-二 甲基乙醯胺、丙醯胺、苄醯胺、吡咯啶酮、N-甲基吡咯啶 酮、N-乙醯胺-1-金剛烷基胺、異三聚氰酸參(2-羥基乙基 )等。 (脲化合物) 脲化合物之適宜例可舉出脲、甲基脲、1,1-二甲基脲 、1,3-二甲基脲' 1,1,3,3-四甲基脲、1,3-二苯基脲、三- n- 丁基硫脲等。 -45- 201120567 (含氮雜環化合物) 含氮雜環化合物之適宜例除可舉出咪唑類、吡啶類、 哌嗪類以上,尙可舉出吡嗪、吡唑、嗒嗪、喹喔啉、嘌呤 、吡咯啶、哌啶、哌啶乙醇、3-哌啶基·1,2-丙二醇、嗎啉 、4-甲基嗎啉、1- ( 4-嗎啉基)乙醇、4-乙醯胺嗎啉、3-(Ν-嗎啉基)-1,2-丙二醇、1,4-二甲基哌嗪、1,4-二氧雜 聯環〔2·2.2〕辛烷等。 酸擴散控制劑除上述之酸擴散控制劑以外,亦可使用 藉由曝光而感光,進而產生鹼之光崩壞性鹼。 (光崩壞性鹼) 光崩壞性鹼可舉出藉曝光進行分解而酸擴散控制性失 活之鑰鹽化合物等。鑰鹽化合物例如可舉出下述一般式( 9)所表示之锍鹽化合物或下述一般式(1〇)所表示之鎭 鹽化合物。 【化1 7 20 ζ· R20C\F2 Ν\ Γ2 0^\\~CFz ο (8 η \卜2 (8 g), /CF2 acid generator (Β) can be used alone as the above acid generator (i) _ or can also be two The acid generator (Β) may be a linear acid generator other than the acid generator (1) (hereinafter, also referred to as "acid generator (2)"). 1-2-2. Acid generator (2): The acid generator (2) may, for example, be a key salt compound, a halogen-containing compound, an azide compound, a hydrazine compound, a sulfonic acid compound, etc. The acid generator (Β) may contain such an acid. The generating agent (2) may be used singly or in combination of two or more. In the first sensitive radiation linear resin composition, the content ratio of the acid generating agent (Β) is determined by the viewpoint of ensuring the sensitivity and developing property of the light resistor. In the case of 100 parts by mass of the polymer (Α), it is usually 0.1 to 20 parts by mass, preferably 〇.5 to 1 〇 -41 - 201120567. The content of the acid generator (B) is not full. 1. 1 part by mass, the sensitivity and the developing property tend to decrease. On the other hand, if it exceeds 20 parts by mass, the transparency to the radiation is lowered, and it becomes difficult. In the case of using the acid generator (2), the use ratio is 100% by mass based on the total of the acid generators (1) and (2), and usually 80% by mass or less. It is preferably 60% by mass or less. 1 - 3 · Solvent (C): The solvent (C) can be used without any particular limitation as long as it can dissolve the constituent components of the first sensitive radiation linear resin composition. Specific examples of C) include 2-butanone, 2-pentanone, 3-methyl-2-butanthene, 2-hexanthene, 4-methyl-2-pentamethylene, and 3-methyl-2. - linear or branched ketones such as pentamidine, 3,3-dimethyl-2-butanone, 2-heptanone, 2-octanone, etc.; cyclopentanone, 3-methylcyclopentanone a cyclic ketone such as cyclohexanone, 2-methylcyclohexanone, 2,6-dimethylcyclohexanone or isophorone; propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether Acid ester, propylene glycol mono-η-propyl ether acetate, propylene glycol mono-i-propyl ether acetate, propylene glycol mono-η-butyl ether acetate, propylene glycol mono-i-butyl ether acetate Propylene glycol mono-sec-butyl ether acetate, propylene glycol mono-t_T ether acetate Propylene glycol monoalkyl ether acetate; methyl 2-hydroxypropionate, ethyl 2-hydroxypropionate, η-propyl 2-hydroxypropionate, i-propyl 2-hydroxypropionate, 2-hydroxypropane Acid η-butyl ester, 2-hydroxypropionic acid i-butyl ester, 2-hydroxypropionic acid sec-butyl ester, 2-hydroxypropionic acid t-butyl ester, etc. 2-hydroxypropionic acid alkyl esters: 3-methoxy 3-methyloxypropionate, such as methyl propyl propionate, ethyl 3-methoxypropionate-42-201120567, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate ,, 尙 can be exemplified by ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-η-propyl ether, ethylene glycol mono-η-butyl ether, diethylene glycol diethylene glycol Acid, diethylene glycol diethyl ether, diethylene glycol di-n-propyl ether, diethylene glycol di-n-butyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol Monoethyl acid acetate, ethylene glycol mono-η-propyl ether acetate, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono-η-propyl ether, toluene, hydrazine, 2 - Ethyl methacrylate, ethyl ethoxyacetate, glycolic acid ethyl acetate, 2-hydroxymethyl 3-methylbutyrate, 3-methoxybutylacetic acid , 3-methylmethoxybutyl acetate, 3-methyl-3-methoxybutyl propionate, 3·methyl_3·methoxybutyl butyrate, ethyl acetate, Η-propyl acetate, η_butyl vinegar, methyl acetate, ethyl acetate, methyl pyruvate, ethyl acetonate, hydrazine-methylpyrrolidone, hydrazine, hydrazine-dimethylformamidine Amine, hydrazine, hydrazine-dimethylacetamide, benzyl ethyl ether, di-n-hexyl ether 'diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, caproic acid, octanoic acid, acetic acid Benzyl ester, ethyl benzoate, diethyl oxalate, diethyl maleate, r-butyrolactone, ethyl carbonate, propyl carbonate, and the like. Among these, linear or branched ketones, cyclic ketones, propylene glycol monoalkyl ether acetates, 2-hydroxypropionic acid alkyl esters, 3-alkoxypropionic acid alkyl esters The class, r-butyrolactone and the like are preferred. The solvent (C) may be used alone or in combination of two or more. The amount of the solvent (C) used, the first sensitive radiation linear resin composition -43 - 201120567 The total solid content concentration is usually from 1 to 50% by mass, preferably from 1 to 25% by mass. 1-4. Additive: The first sensitive radiation linear resin composition may further contain various additives such as an acid diffusion controlling agent, an alicyclic additive, a surfactant, a sensitizer, and the like as needed. 1-4-1. Acid Diffusion Control Agent The acid diffusion control agent is a diffusion phenomenon in the first photoresist layer which suppresses the acid generated by the acid generator (B), and suppresses poorness in the non-exposure field. The component of the action of the chemical reaction. By containing such an acid diffusion controlling agent, the pattern shape of the first sensitive radiation linear resin composition can be improved. Moreover, in addition to improving the resolution as a photoresist, it is possible to suppress a change in the line width of the photoresist pattern caused by a change in the post-exposure lag time (PED) from the exposure to the post-exposure heat treatment (PEB). A composition with excellent process stability can be obtained. The acid diffusion controlling agent may, for example, be an amine compound, a guanamine-containing compound, a urea compound or a nitrogen-containing heterocyclic compound. (Amine compound) Suitable examples of the amine compound include monoalkylamines, dialkylamines, trialkylamines, anilines or derivatives thereof; ethylenediamine, N, N, N', N' -tetramethylethylenediamine, tetramethylenedi-44- 201120567 amine, hexamethylenediamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl Ether, 4,4'-diaminobenzophenone, 4,4'-diaminodiphenylamine, 2,2-bis(4-aminophenyl)propane, 2-(3-amine Phenyl)-2-(4-aminophenyl)propane, 2-(4-aminophenyl)-2-(3-hydroxyphenyl)propane, 2-(4-aminophenyl)- 2-(4-Hydroxyphenyl)propane, 1,4-bis(1-(4-aminophenyl)-1-methylethyl)benzene, 1,3-bis(1_(4-aminobenzene) ,-1-methylethyl)benzene, bis(2-dimethylaminoethyl)ether, bis(2-diethylaminoethyl)ether, 1-(2-hydroxyethyl)- 2-imidazolidinone, 2-quinoxalinol, N,N,N',N'-indole (2-hydroxypropyl)-extended ethylenediamine, ^^『,化'/"-pentamethyldiene Ethylenetriamine, etc. (Compound containing amidino group) Suitable examples of the compound containing amidino group include In addition to the Nt-butoxycarbonyl group-containing amine compound, hydrazine, N-methylformamide, hydrazine, hydrazine-dimethylformamide, acetamide, N-methylamine B Indoleamine, N,N-dimethylacetamide, acetamide, benzalkonium, pyrrolidone, N-methylpyrrolidone, N-acetamide-1-adamantylamine, heterotrimerization Cyanium citrate (2-hydroxyethyl), etc. (urea compound) Suitable examples of the urea compound include urea, methyl urea, 1,1-dimethylurea, and 1,3-dimethylurea'1. 1,3,3-tetramethylurea, 1,3-diphenylurea, tri-n-butylthiourea, etc. -45- 201120567 (nitrogen-containing heterocyclic compound) Suitable examples of nitrogen-containing heterocyclic compounds Examples thereof include imidazoles, pyridines, and piperazines. The pyrenes include pyrazines, pyrazoles, pyridazines, quinoxalines, anthracenes, pyrrolidines, piperidines, piperidines, and 3-piperidinyls. , 2-propanediol, morpholine, 4-methylmorpholine, 1-(4-morpholinyl)ethanol, 4-acetamidamine morpholine, 3-(indolyl-morpholinyl)-1,2-propanediol, 1,4-dimethylpiperazine, 1,4-dioxobicyclo[2.2.2]octane, etc. The acid diffusion controlling agent is in addition to the acid diffusion controlling agent described above, It is also possible to use a photo-disintegrating base which is sensitized by exposure to light, and a base is formed. (Photocracking base) The photodisintegrating base is a key salt compound which is decomposed by exposure and controlled to deactivate acid diffusion. The key salt compound may, for example, be an onium salt compound represented by the following general formula (9) or an onium salt compound represented by the following general formula (1): [Chem. 1 7 20 ζ· R20

(10) (9) 上述一般式(9)及(10)中,R2Q各獨立表示氫原子 -46- 201120567 院基、烷氧基、羥基或鹵素原子,Z-爲0Η·、ch3COO-或以下述式(11-1)〜(11-5)所表示陰離子爲佳。 【化1 8】(10) (9) In the above general formulas (9) and (10), R2Q independently represents a hydrogen atom -46-201120567, alkoxy, hydroxy or a halogen atom, Z- is 0Η·, ch3COO- or less The anions represented by the formulae (11-1) to (11-5) are preferred. [化1 8]

OH \\ Ί 光崩壞性鹼之具體例,爲OH·、CH3COO·,或以前 述式(11-2)〜(11-3)之任一式所表示之陰離子之三苯 基毓鹽爲佳。 上述之酸擴散控制劑可單獨使用一種或亦可將二種以 上混合使用。 第一敏輻射線性樹脂組成物中,酸擴散控制劑之含有 比例,係相對於聚合物(A ) 1 〇 〇質量份,以〇 · 〇 〇 1〜1 5質量 份爲佳’以〇.〇1〜10質量份爲較佳,以0.05〜5質量份爲更佳 。酸擴散控制劑之含有比例若超過1 5質量份,則有光阻之 感度降低之情況。另一方面,若未滿0.001質量份,根據 製程條件而有光阻之圖型形狀或尺寸忠實度降低之情況。 (11-4) (11-5) -47- 201120567 1-4-2.脂環族添加劑: 脂環族添加劑係爲具有更改善乾式蝕刻耐性、圖型形 狀、與基板之接著性等之作用的成分》 脂環族添加劑之具體例除了有經極性基取代之金剛烷 類;去氧膽酸酯類;石膽酸酯類:烷基羧酸酯類之外;尙 有3- ( 2-羥基-2,2-雙(三氟甲基)乙基)四環〔 6.2.1.13’6.02’7〕十二烷等。且,此等脂環族添加劑可單獨 使用一種或亦可將二種以上混合使用。 1-4-3.界面活性劑: 界面活性劑係爲具有改良塗佈性、條紋、顯像性等之 作用的成分》 界面活性劑之具體例除了可舉出聚氧乙烯月桂醚、聚 氧乙烯硬脂酸醚、聚氧乙烯油醇醚、聚氧乙烯η-辛基苯醚 、聚氧乙烯卜壬基苯醚、聚乙二醇二月桂酯、聚乙二醇二 硬脂酸酯等之非離子系界面活性劑以外:尙可舉出以下商 品名爲ΚΡ341 (信越化學工業公司製)、Polyflow No. 75、 同Νο·95 (以上,共榮社化學公司製)、Eftop EF301、同 EF 3 03 '同 EF3 52 (以上,Tohkem products 公司製)、 Megafac F171、同F173(以上,大日本油墨化學工業公司 製)、Florad FC43 0、同F C 4 3 1 (以上,住友3 Μ公司製) 、Asahiguide AG710、Surflon S-3 8 2、同 SC-101、同 SC-102、 同 SC-103、 同 SC-104、 同 SC-105、 同 SC-106( 以上 ,旭硝子公司製)等。且,此等界面活性劑可單獨使用一 -48- 201120567 種或亦可將二種以上混合使用。 1 - 4 - 4 .增感劑·- 增感劑係爲吸收輻射線之能量,將其能量傳達至酸產 生劑(B)之成分。藉此具有使酸之生成量增加之作用, 可使作爲光阻之外觀之感度提升。 增感劑例如可舉出咔唑類、苯乙酮類、二苯甲酮類、 萘類、酚類、雙乙醯、曙紅、孟加拉玫瑰紅、芘類、惠類 、吩噻嗪類等。且,此等增感劑可單獨使用一種或亦可將 二種以上混合使用。 1-4-5.其他之添加劑: 第一敏輻射線性樹脂組成物亦可含有前述添加劑以外 之添加劑(以下,亦稱爲「其他之添加劑」)。其他之添 加劑例如可舉出鹼可溶性樹脂、具有酸解離性之保護基之 低分子的鹼溶解性控制劑、防光暈劑、保存安定化劑、消 泡劑等。又,藉由使其含有染料或顔料,使曝光部之潛像 可視化,而可緩和曝光時之光暈之影響。更且,藉由使其 含有接著助劑,可改善光阻與基板之接著性。 2.第二敏輻射線性樹脂組成物: 第二敏輻射線性樹脂組成物以含有具有前述重複單位 (6 )及前述重複單位(2 )之聚合物(以下,亦單稱爲「 聚合物(a)」)、敏輻射線性酸產生劑(b)(以下,亦 -49- 201120567 單稱爲「酸產生劑(b )」)及溶劑(c )者爲佳。 2-1.聚合物(a): 2-1-1.重複單位(6): 作爲聚合物(a)所含有之重複單位(6),可使用與 第一敏輻射線性樹脂組成物中之聚合物(A )所含有之重 複單位(6)相同之重複單位。且,聚合物(a)所含有之 重複單位(6)可與聚合物(A)所含有之重複單位(6) 相同,或亦可爲相異。 聚合物(a)可單獨含有一種重複單位(6)或亦可含 有二種以上。 2-1-2.重複單位(2): 作爲聚合物(a)所含有之重複單位(2),可使用與 第一敏輻射線性樹脂組成物中之聚合物(A )所含有之重 複單位(2)相同之重複單位。且,聚合物(a)所含有之 重複單位(2)可與聚合物(A)所含有之重複單位(2) 相同,或亦可爲相異。 2-1-3.其他之重複單位: 聚合物(a)除了含有上述重複單位(6)及(2)以 外,亦可爲含有其他之重複單位者。其他之重複單位例如 可舉出第一敏輻射線性樹脂組成物中之重複單位(3)〜( 5)及(7)等。且,聚合物(a)所含有之重複單位(3) -50- 201120567 〜(5)及(7)與聚合物(A)所含有之重複單位(3)〜( 5)及(7),可各爲相同亦可爲相異。 2-1-4.各重複單位之配合比例: 聚合物(a )所含之重複單位(6 )之比例,係相對於 聚合物(a )所含之重複單位之合計l〇〇mol%,以 15~90mol%爲佳,30~90mol%爲尤佳,30~80mol%爲較佳 ,40~80mol%爲更佳。重複單位(6 )之比例若未滿 3 0m〇l%,則有聚合物(a )對醇系溶劑之溶解性降低之虞 。另一方面,若超過90mol%,則有鹼顯像部之解像性劣化 之虞。 聚合物(a )所含之重複單位(2 )之比例,係相對於 聚合物(a )所含之重複單位之合計100m〇1%,以 10~70mol 爲佳,10~60mol% 爲較佳,20〜60mol% 爲更佳。 重複單位(2 )之比例若未滿1 Omol%,則有鹼顯像部之解 像性劣化之虞。另一方面,若超過70mol%,則有鹼顯像部 之解像性劣化之虞。 聚合物(a )所含之重複單位(3 )之比例,係相對於 聚合物(a)所含之重複單位之合計l〇〇mol%,以5〇mol% 以下爲佳,45mol%以下爲較佳。重複單位(3 )之比例若 超過50mol%,對鹼顯像液之溶解性降低,則有發生顯像缺 陷之虞。 聚合物(a )所含之重複單位(4 )之比例,係相對於 聚合物(a )所含之重複單位之合計1 〇 〇 m ο 1 % ’以3 0 m ο 1 °/。 -51 - 201120567 以下爲佳,25mol%以下爲較佳。重複單位(4)之比例若 超過30mol%,則有鹼顯像部因鹼顯像液而變得容易膨潤, 或對鹼顯像液之溶解性降低之虞。 聚合物(a )所含之重複單位(5 )之比例,係相對於 聚合物(a)所含之重複單位之合計lOOmol%,以30mol% 以下爲佳,25mol%以下爲較佳。重複單位(5 )之比例若 超過30mol%,則有鹼顯像部因鹼顯像液而變得容易膨潤, 或對鹼顯像液之溶解性降低之虞。 聚合物(a )所含之重複單位(7 )之比例,係相對於 聚合物(a )所含之重複單位之合計1 OOmol%,以30mol% 以下爲佳,25mol%以下爲較佳》重複單位(7 )之比例若 超過3 0 m ο 1 %,則有鹼顯像部因鹼顯像液而變得容易膨潤, 或對鹼顯像液之溶解性降低之虞。 第二敏輻射線性樹脂組成物可單獨含有一種上述之聚 合物(a)或亦可將二種以上混合而含有。 2-1-5.聚合物(a)之調製: 聚合物(a)可以如前述之聚合物(A)同樣之方式進 行調製。 聚合物(a)之Mw雖無特別限制,以1,〇〇〇〜1〇〇,〇〇〇爲 佳,1,000~30,〇〇〇爲較佳,ιοοο — Ο,ΟΟΟ爲更佳。聚合物 (a)之Mw若未滿〗,〇〇(),形成第二光阻層時,有其耐熱性 降低之虞。另一方面,若超過100,000,則有鹼顯像部之 顯像性降低之虞。又,聚合物(a )之Mw與Μη之比(Mw -52- 201120567 /Μη)通常爲1〜5’較佳爲1~3。 又,在聚合物(a)中亦有含有源自調製時所用之單 體的低分子量成分。低分子量成分之含有比例’相對於聚 合物(a) 100質量% (固形分換算)’以0.1質量%以下爲 佳,0.0 7質量%以下爲較佳,〇 · 〇 5質量%以下爲更佳。低分 子量成分之含有比例若爲〇 . 1質量。/。以下時,可減少在液浸 曝光時對接觸之水等之液浸曝光用液體之析出物之量。更 且,於光阻保管時在光阻中無異物發生’且在光阻塗佈時 中亦不產生塗佈不均,而可充分抑制光阻圖型形成時缺陷 之發生。 又,聚合物(a)以鹵素、金屬等之雜質爲少者爲佳 。如此般藉由減少雜質,可更改善第二光阻層之感度、解 像度、製程安定性 '圖型形狀等。 聚合物(a)之精製法可舉出與前述之聚合物(A)相 同之方法。 2-2.酸產生劑(b ): 第二敏輻射線性樹脂組成物通常爲含有敏輻射線性酸 產生劑者。 酸產生劑(b)可舉出與前述之第一敏輻射線性樹脂 組成物中之酸產生劑(B )相同者。且,酸產生劑(B )與 酸產生劑(b )可爲相同,亦可爲相異。。 酸產生劑(b)之含有量’由確保作爲光阻之感度及 顯像性之觀點,相對於聚合物(a) 1〇〇質量份通常爲 -53- 201120567 0.1〜20質量份,較佳爲0.5~10質量份。含有量若未滿o.l質 量份,則有感度及顯像性降低之傾向。另一方面,若超過 20質量份,則有對於輻射線之透明性降低,而變得難以得 到矩形之第二光阻圖型之傾向。 酸產生劑(b)與酸產生劑(1)同時含有其他酸產生 劑時,其使用比例係相對於酸產生劑(b ) 1 00質量%通常 爲8 0質量%以下,較佳爲60質量%以下》 2-3.溶劑(c): 溶劑(c )雖無特限制,以可溶解聚合物(a )但不會 溶解第一光阻圖型者爲佳。例如,可舉出丙二醇單甲基醚 乙酸酯、環己酮、醇系溶劑、醚系溶劑等。 溶劑(c )之使用量係第二敏輻射線性樹脂組成物之 總固形分濃度爲通常1〜5 0質量%之量,較佳爲1〜2 5質量% 2-4.添加劑: 第二敏輻射線性樹脂組成物亦可含有添加劑。且,作 爲此添加劑,可舉出與在第一敏輻射線性樹脂組成物中經 前述之酸擴散控制劑等之各種之添加劑相同樣者。 第一敏輻射線性樹脂組成物含有酸擴散控制劑作爲添 加劑時’其含有量係相對於聚合物(a ) 1 〇 〇質量份,以 0.00 1〜15質量份爲佳’ 〇.〇1〜1〇質量份爲較佳,〇 〇5〜5質量 份爲更佳。含有量若超過15質量份,則有作爲光阻之感度 -54- 201120567 降低之情況。另一方面,若未滿0.001質 條件而有作爲光阻之圖型形狀或尺寸忠實 〔實施例〕 以下,基於實施例具體說明關於本發 非係受限於此等實施例者。各種物性値之 性之評價方法係如以下所示。 〔質量平均分子量(Mw)及數平均: 使用東曹公司製GPC管柱(以下 G2000HXL」2隻、「G3000HXL」1隻、「 )、流量:1 .OmL/ min、析出溶劑:四憂 管柱溫度:40 °C之分析條件下,以單分散 ,藉由凝膠滲透層析法(GPC )進行測定 〔圖型形狀〕: 使用掃瞄型電子顯微鏡(商品名「S-測器公司製)觀察該實施例及比較例之3 阻圖型有損失之情形或開口部底部具有不 爲「不良」,將無浮渣且形成有第一光阻 圖型兩者之圖型之情形評價爲「良好」。 18〜2 0之基板C,將無浮渣,第二光阻圖型 垂直形成,且形成有48nmx48nm之接觸孔 爲「良好」。 量份,根據製程 度降低之虞。 明,但本發明並 測定方法及諸特 于子量(Μη )〕 ,商品名爲「 G4000HXL」1 隻 呋喃(THF )、 聚苯乙烯爲標準 9 3 8 0」、日立計 板C,將第一光 溶物之情形評價 圖型與第二光阻 猶,關於實施例 與第一光阻圖型 圖型之情形評價 -55- 201120567 〔線寬度變動〕: 使用掃瞄型電子顯微鏡(商品名「S-93 80」、日立計 測器公司製)進行觀察基板C之光阻圖型之線寬度變動。 對基板C之光阻圖型之線寬部中任意之5條之線寬部,以分 別任意之2〇個點測定其線寬度,以前述任意之5條線寬部 之線寬度(計1 00點)之平均値作爲平均線寬度。以第一 光阻圖型形成後之平均線寬度與雙重圖型化(第二光阻圖 型形成)後之平均線寬度之差作爲線寬度變動之變動値。 將測定之線寬度變動之變動値爲未滿4nm者評價爲「優良 J 、4nm以上但未滿8nm者評價爲「良好」、8nm以上者評 價爲「不良」。將線寬度變動之變動値(nm)及評價(「 優良」、「良好」、或「不良」)表示於表2。尙,線寬 度變動之變動値若未滿3nm時,在表2中表示爲「< 3」。 〔頂部損失〕: 使用掃瞄型電子顯微鏡(商品名「S-48 00」、日立計 測器公司製)觀察基板C之光阻圖型之頂部損失(top-loss )。使用自步驟(1)中之第一光阻層之厚度(高度)減 去第一光阻圖型高度之値(減少値)作爲頂部損失之評價 値。將減少値未滿5nm之光阻圖型評價爲「優良」、5nm 以上但未滿15nm之光阻圖型評價爲「良好」、I5nm以上 之光阻圖型評價爲「不良」。將減少値(nm )及評價(「 優良」、「良好」、或「不良」)表示於表2。尙,減少 -56- 201120567 値若未滿5nm時,在表2中表示爲「<5」。 <第一敏輻射線性樹脂組成物之調製> (實施例1 ) 將作爲聚合物(A)之具有下述式(A-1)所表示之重 複單位之聚合物(A-1 ) 1〇〇質量份、作爲酸產生劑(b ) 之酸產生劑(B-1)(三苯基锍九氟- η-丁烷磺酸鹽)7.5質 量份、作爲溶劑(C)之溶劑(C-1)(丙二醇單甲基醚乙 酸酯)1287質量份及溶劑(C-2)(環己酮)551質量份、 以及作爲酸擴散控制劑之酸擴散控制劑(D -1 ) ( N-t- 丁 氧基鑛基耻略B定)0.9 4質量份予以混合作成均勻溶液。藉 由將所得之均勻溶液使用孔徑200nm之膜濾器進行過濾, 調製成由第一敏輻射線性樹脂組成物構成之塗敷液(1 ) 。且,聚合物(A-1 )之Mw爲1 0,000,第一敏輻射線性組 成物之總固形分濃度爲約7質量%。 【化1 9】Specific examples of the OH \\ Ί photo-disinfecting base are OH·, CH 3 COO·, or an anionic triphenyl sulfonium salt represented by any one of the above formulas (11-2) to (11-3). . The above acid diffusion controlling agents may be used singly or in combination of two or more. In the first sensitive radiation linear resin composition, the content of the acid diffusion controlling agent is preferably 1 part by mass to 1 part by mass based on 1 part by mass of the polymer (A). It is preferably 1 to 10 parts by mass, more preferably 0.05 to 5 parts by mass. When the content ratio of the acid diffusion controlling agent exceeds 15 parts by mass, the sensitivity of the photoresist may be lowered. On the other hand, if it is less than 0.001 part by mass, the shape of the resist or the degree of faithfulness of the size may be lowered depending on the process conditions. (11-4) (11-5) -47- 201120567 1-4-2. Alicyclic additive: The alicyclic additive is characterized by improved dry etching resistance, pattern shape, adhesion to the substrate, and the like. Ingredients: Specific examples of alicyclic additives include: adamantane substituted by polar group; deoxycholate; stone cholate: alkyl carboxylate; 尙 3- ( 2- Hydroxy-2,2-bis(trifluoromethyl)ethyl)tetracyclo[6.2.1.13'6.02'7]dodecane and the like. Further, these alicyclic additives may be used alone or in combination of two or more. 1-4-3. Surfactant: The surfactant is a component having an effect of improving coatability, streaking, developing property, etc. Specific examples of the surfactant include polyoxyethylene lauryl ether and polyoxygen Ethylene stearate, polyoxyethylene oleyl ether, polyoxyethylene η-octyl phenyl ether, polyoxyethylene decyl phenyl ether, polyethylene glycol dilauryl ester, polyethylene glycol distearate, etc. Other than the ionic surfactant: 以下 341 341 (manufactured by Shin-Etsu Chemical Co., Ltd.), Polyflow No. 75, Ν · 95 (above, Kyoeisha Chemical Co., Ltd.), Eftop EF301, and EF 3 03 'With EF3 52 (above, manufactured by Tohkem Products Co., Ltd.), Megafac F171, F173 (above, manufactured by Dainippon Ink Chemical Industry Co., Ltd.), Florad FC43 0, and FC 4 3 1 (above, Sumitomo 3 Co., Ltd.) Asahiguide AG710, Surflon S-3 8 2. Same as SC-101, SC-102, SC-103, SC-104, SC-105, SC-106 (above, Asahi Glass Co., Ltd.). Further, these surfactants may be used alone or in combination of two or more. 1 - 4 - 4 . Sensitizer ·- Sensitizer is the energy that absorbs radiation and transmits its energy to the component of acid generator (B). Thereby, the effect of increasing the amount of acid generated can be improved, and the sensitivity as the appearance of the photoresist can be improved. Examples of the sensitizer include oxazoles, acetophenones, benzophenones, naphthalenes, phenols, diacetamidines, eosin, rose bengal, anthraquinones, oximes, phenothiazines, and the like. . Further, these sensitizers may be used alone or in combination of two or more. 1-4-5. Other additives: The first sensitive radiation linear resin composition may also contain additives other than the above additives (hereinafter also referred to as "other additives"). Examples of the other additives include an alkali-soluble resin, a low-molecular alkali solubility control agent having an acid-dissociable protecting group, an antihalation agent, a storage stabilizer, and a defoaming agent. Further, by including a dye or a pigment, the latent image of the exposed portion can be visualized, and the influence of the halation at the time of exposure can be alleviated. Further, by including a bonding aid, the adhesion between the photoresist and the substrate can be improved. 2. Second Sensitive Radiation Linear Resin Composition: The second sensitive radiation linear resin composition contains a polymer having the aforementioned repeating unit (6) and the aforementioned repeating unit (2) (hereinafter, also simply referred to as "polymer (a) ))), a sensitive radiation linear acid generator (b) (hereinafter, -49-201120567 is simply referred to as "acid generator (b)") and solvent (c) is preferred. 2-1. Polymer (a): 2-1-1. Repeating unit (6): As the repeating unit (6) contained in the polymer (a), it can be used in the linear composition of the first sensitive radiation. The repeating unit (6) contained in the polymer (A) is the same repeating unit. Further, the repeating unit (6) contained in the polymer (a) may be the same as the repeating unit (6) contained in the polymer (A), or may be different. The polymer (a) may contain one repeating unit (6) alone or may contain two or more kinds. 2-1-2. Repeating unit (2): As the repeating unit (2) contained in the polymer (a), a repeating unit contained in the polymer (A) in the first sensitive radiation linear resin composition can be used. (2) The same repeating unit. Further, the repeating unit (2) contained in the polymer (a) may be the same as the repeating unit (2) contained in the polymer (A), or may be different. 2-1-3. Other repeating units: The polymer (a) may contain other repeating units in addition to the above repeating units (6) and (2). Other repeating units include, for example, repeating units (3) to (5) and (7) in the first sensitive radiation linear resin composition. Further, the repeating unit (3) -50-201120567~(5) and (7) contained in the polymer (a) and the repeating unit (3) to (5) and (7) contained in the polymer (A), They may be the same or different. 2-1-4. Mixing ratio of each repeating unit: The ratio of the repeating unit (6) contained in the polymer (a) is 10% by mole based on the total of the repeating units contained in the polymer (a). It is preferably 15 to 90 mol%, more preferably 30 to 90 mol%, more preferably 30 to 80 mol%, and more preferably 40 to 80 mol%. If the ratio of the repeating unit (6) is less than 30 m〇l%, the solubility of the polymer (a) to the alcohol solvent may be lowered. On the other hand, when it exceeds 90 mol%, the resolution of the alkali developing unit deteriorates. The ratio of the repeating unit (2) contained in the polymer (a) is 100 m〇1% based on the total of the repeating units contained in the polymer (a), preferably 10 to 70 mol, preferably 10 to 60 mol%. 20~60mol% is better. When the ratio of the repeating unit (2) is less than 1 mol%, the resolution of the alkali developing portion deteriorates. On the other hand, when it exceeds 70 mol%, the resolution of the alkali developing unit deteriorates. The ratio of the repeating unit (3) contained in the polymer (a) is preferably 〇〇mol% based on the total of the repeating units contained in the polymer (a), preferably 5 〇mol% or less, and 45 mol% or less. Preferably. If the ratio of the repeating unit (3) exceeds 50 mol%, the solubility in the alkali developing solution is lowered, and development defects may occur. The ratio of the repeating unit (4) contained in the polymer (a) is 1 〇 m ο 1 % ' with respect to the total of the repeating units contained in the polymer (a) at 3 0 m ο 1 °/. -51 - 201120567 The following is preferred, and 25 mol% or less is preferred. When the ratio of the repeating unit (4) exceeds 30 mol%, the alkali developing portion is likely to swell due to the alkali developing solution, or the solubility in the alkali developing solution is lowered. The ratio of the repeating unit (5) contained in the polymer (a) is preferably 100% by mole based on the total of the repeating units contained in the polymer (a), preferably 30% by mole or less, and preferably 25% by mole or less. When the ratio of the repeating unit (5) exceeds 30 mol%, the alkali developing portion is likely to swell due to the alkali developing solution, or the solubility in the alkali developing solution is lowered. The ratio of the repeating unit (7) contained in the polymer (a) is preferably 10,000 mol% based on the total of the repeating units contained in the polymer (a), preferably 30 mol% or less, and preferably 25 mol% or less. When the ratio of the unit (7) exceeds 30 m ο 1 %, the alkali developing portion is likely to swell due to the alkali developing solution, or the solubility in the alkali developing solution is lowered. The second-sensitive radiation linear resin composition may contain one kind of the above-mentioned polymer (a) alone or may be contained by mixing two or more kinds. 2-1-5. Modulation of Polymer (a): The polymer (a) can be prepared in the same manner as the above polymer (A). The Mw of the polymer (a) is not particularly limited, and is preferably 1, 〇〇〇 〜 1 〇〇, 〇〇〇, 1,000 to 30, 〇〇〇 is preferred, ιοοο Ο, ΟΟΟ is better. . If the Mw of the polymer (a) is less than 〗, 〇〇(), when the second photoresist layer is formed, the heat resistance is lowered. On the other hand, when it exceeds 100,000, the developability of the alkali developing unit is lowered. Further, the ratio of Mw to Μη (Mw - 52 - 201120567 / Μη) of the polymer (a) is usually 1 to 5', preferably 1 to 3. Further, the polymer (a) also contains a low molecular weight component derived from a monomer used in the preparation. The content ratio of the low molecular weight component is preferably 0.1% by mass or less based on 100% by mass of the polymer (a) (solid content conversion), preferably 0.07% by mass or less, and more preferably 5% by mass or less. . The content ratio of the low molecular weight component is 〇.1 mass. /. In the following, the amount of the precipitate of the liquid for immersion exposure such as contact with water during the immersion exposure can be reduced. Further, no foreign matter is generated in the photoresist during storage of the photoresist, and coating unevenness is not caused during the photoresist coating, and the occurrence of defects at the formation of the photoresist pattern can be sufficiently suppressed. Further, the polymer (a) is preferably one having less impurities such as a halogen or a metal. Thus, by reducing impurities, the sensitivity, resolution, and process stability of the second photoresist layer can be further improved. The method for purifying the polymer (a) is the same as the above-mentioned polymer (A). 2-2. Acid generator (b): The second-sensitive radiation linear resin composition is usually one containing a radiation-sensitive linear acid generator. The acid generator (b) may be the same as the acid generator (B) in the above first radiation sensitive linear resin composition. Further, the acid generator (B) and the acid generator (b) may be the same or different. . The content of the acid generator (b) is preferably -53 to 201120567 0.1 to 20 parts by mass, preferably from -53 to 201120567, from the viewpoint of ensuring sensitivity and developability as a photoresist. It is 0.5 to 10 parts by mass. If the content is less than 0.1 part by mass, the sensitivity and the developing property tend to decrease. On the other hand, when it exceeds 20 parts by mass, the transparency to the radiation is lowered, and it becomes difficult to obtain a rectangular second resist pattern. When the acid generator (b) and the acid generator (1) contain other acid generators at the same time, the use ratio is usually 80% by mass or less, preferably 60% by mass based on 100% by mass of the acid generator (b). % below 2-3. Solvent (c): The solvent (c) is not particularly limited, and it is preferred that the polymer (a) is soluble but the first photoresist pattern is not dissolved. For example, propylene glycol monomethyl ether acetate, cyclohexanone, an alcohol solvent, an ether solvent, and the like can be given. The solvent (c) is used in an amount such that the total solid content of the second sensitive radiation linear resin composition is usually from 1 to 50% by mass, preferably from 1 to 25% by mass. 2-4. Additive: Second sensitive The radiation linear resin composition may also contain an additive. Further, as the additive, the same ones as the various additives such as the acid diffusion controlling agent described above in the first sensitive radiation linear resin composition can be mentioned. When the first sensitive radiation linear resin composition contains an acid diffusion controlling agent as an additive, its content is preferably 1 to 15 parts by mass based on 1 part by mass of the polymer (a). 〇.〇1~1 The mass fraction is preferably 5%, and 5 to 5 parts by mass is more preferably. When the content exceeds 15 parts by mass, there is a case where the sensitivity of the photoresist is lowered from -54 to 201120567. On the other hand, if the condition is less than 0.001, the pattern shape or size of the photoresist is faithful. [Embodiment] Hereinafter, embodiments based on the present invention will be specifically described based on the examples. The evaluation methods of various physical properties are as follows. [mass average molecular weight (Mw) and number average: GPC column manufactured by Tosoh Corporation (2 G2000HXL below, 1 "G3000HXL", "), flow rate: 1.0 mL/min, precipitation solvent: four-column column Temperature: 40 ° C under the conditions of analysis, monodisperse, by gel permeation chromatography (GPC) for measurement [pattern shape]: Using a scanning electron microscope (trade name "S-Tester Co., Ltd.") It is observed that the resist pattern of the third embodiment and the comparative example has a loss or that the bottom portion of the opening portion is not "defective", and the pattern in which both the scum and the first photoresist pattern are formed is evaluated as " good". The substrate C of 18 to 20 has no scum, and the second photoresist pattern is formed vertically, and the contact hole formed at 48 nm x 48 nm is "good". Quantities, according to the degree of process reduction. However, the present invention and the measurement method and the specific amount (Μη)], the trade name is "G4000HXL" 1 furan (THF), polystyrene is the standard 9 3 8 0", Hitachi meter C, will be Evaluation of the pattern and the second photoresist in the case of a photo-soluble matter. Evaluation of the case of the embodiment and the first photoresist pattern pattern - 55 - 201120567 [Line width variation]: Using a scanning electron microscope (trade name) "S-93 80" and manufactured by Hitachi Metro Co., Ltd.) observed the line width variation of the photoresist pattern of the substrate C. For the line widths of any five of the line width portions of the photoresist pattern of the substrate C, the line width is measured at any two points, and the line width of any of the five line width portions is calculated. The average 値 of 00 points is taken as the average line width. The difference between the average line width after the formation of the first photoresist pattern and the average line width after the double patterning (formation of the second photoresist pattern) is used as the variation of the line width variation. When the variation of the measured line width variation was less than 4 nm, it was evaluated as "good J, 4 nm or more but less than 8 nm was evaluated as "good", and 8 nm or more was evaluated as "poor". The change in the line width variation 値 (nm) and the evaluation ("good", "good", or "bad") are shown in Table 2.尙, if the change in line width variation is less than 3 nm, it is expressed as "<3" in Table 2. [Top Loss]: The top-loss of the resist pattern of the substrate C was observed using a scanning electron microscope (trade name "S-48 00", manufactured by Hitachi Metro Co., Ltd.). The enthalpy (reduced enthalpy) of the height of the first photoresist pattern is subtracted from the thickness (height) of the first photoresist layer in the step (1) as the evaluation of the top loss. The photoresist pattern having a reduced 値 of less than 5 nm was evaluated as "excellent", and the resist pattern of 5 nm or more but less than 15 nm was evaluated as "good", and the resist pattern of I5 nm or more was evaluated as "poor". The reduction of 値(nm) and evaluation ("good", "good", or "bad") are shown in Table 2.尙, decrease -56- 201120567 値 If it is less than 5 nm, it is expressed as "<5" in Table 2. <Preparation of the first sensitive radiation linear resin composition> (Example 1) A polymer (A-1) having a repeating unit represented by the following formula (A-1) as the polymer (A) 1 〇〇 parts by mass, 7.5 parts by mass of the acid generator (B-1) (triphenylsulfonium nonafluoro-n-butanesulfonate) as the acid generator (b), and a solvent (C) as a solvent (C) -1) (propylene glycol monomethyl ether acetate) 1287 parts by mass and solvent (C-2) (cyclohexanone) 551 parts by mass, and an acid diffusion controlling agent (D -1 ) as an acid diffusion controlling agent (Nt - Butoxy base-based masculine B) 0.9 parts by mass were mixed to form a homogeneous solution. The obtained uniform solution was filtered using a membrane filter having a pore size of 200 nm to prepare a coating liquid (1) composed of a first sensitive radiation linear resin composition. Further, the Mw of the polymer (A-1) was 10,000, and the total solid concentration of the first sensitive radiation linear composition was about 7% by mass. [化1 9]

κ〜 Ο 15mol% 35mol% 15mol% 35mol% (A-1) (實施例2〜6、比較例1 ) -57 201120567 除以下述表1所記載之配合處方進行調製以外,與實 施例Ϊ同樣地調製出塗敷液(2)〜(6)及(13)。且,將 各聚合物(A )之Mw一倂表示於下述表1。 〈第二敏輻射線性樹脂組成物之調製&gt; (參考例1 ) 將作爲聚合物(a)之具有下述式(a_l)所表示之重 複單位之聚合物(a-Ι) 1〇〇質量份、作爲酸產生劑(b) 之酸產生劑(B-1)(三苯基鏑九氟_n_ 丁烷磺酸鹽)7.0質 量份、作爲溶劑(c )之溶劑(C-3 ) ( 4-甲基-2-戊醇) 1287質量份及溶劑(C-1)(丙二醇單甲基醚乙酸酯)551 質量份、以及作爲酸擴散控制劑之酸擴散控制劑(D _2 ) (三苯基鏑柳酸鹽)2.64質量份予以混合作成均勻溶液。 藉由將得之均勻溶液使用孔徑200nm之膜濾器進行過濾, 調製成由第二敏輻射線性樹脂組成物構成之塗敷液(7) 。且’聚合物(a-Ι )之Mw爲6,000,第二敏輻射線性組成 物之總固形分濃度爲約6.5質量%。 【化2 0】κ Ο Ο 15 mol% 35 mol% 15 mol% 35 mol% (A-1) (Examples 2 to 6 and Comparative Example 1) -57 201120567 The preparation was carried out in the same manner as in Example 除 except that the preparation was carried out in accordance with the formulation described in Table 1 below. The coating liquids (2) to (6) and (13) are prepared. Further, Mw of each polymer (A) is shown in Table 1 below. <Preparation of the second-sensitive radiation linear resin composition> (Reference Example 1) The polymer (a-Ι) having the repeating unit represented by the following formula (a-1) as the polymer (a) a portion, 7.0 parts by mass of the acid generator (B-1) (triphenylphosphonium non-n-butanesulfonate) as the acid generator (b), and a solvent (C-3) as the solvent (c) ( 4-methyl-2-pentanol) 1287 parts by mass and solvent (C-1) (propylene glycol monomethyl ether acetate) 551 parts by mass, and an acid diffusion controlling agent (D _2 ) as an acid diffusion controlling agent ( 2.64 parts by mass of triphenylsulfate) was mixed to prepare a homogeneous solution. The coating liquid (7) composed of the second sensitive radiation linear resin composition was prepared by filtering the obtained homogeneous solution using a membrane filter having a pore size of 200 nm. Further, the Mw of the polymer (a-Ι) was 6,000, and the total solid concentration of the second sensitive radiation linear composition was about 6.5% by mass. [化2 0]

HO CF3 40mol% 15mol% 45mol% (a — 1) -58- 201120567 (參考例2〜6 ) 除以下述表1所記載之配合處方進行調製以外,與參 考例1同樣地調製出塗敷液(8 )〜(1 2 )。且,將各聚合 物(a)之Mw —倂表不於下述表1。 【表1】 聚合物 酸產生劑 溶 劑 酸擴散控制劑 塗敷液 種類 種類 Mw 使用量 (質量份) 種類 使用量 (質量份) 種類 使用:a (質量份) 種類 使用量 (質量份) 種類 使用量 (質S份) 實施例1 A- X 10000 100 B- 1 7.5 C一 1 1287 C-2 551 D- 1 0.94 0) 實施例2 A- 2 10000 100 B- 1 7.5 C- 1 1287 C-2 551 D- 1 0.94 0 實施例3 A-3 10000 100 B- 1 7.5 C一 1 1287 C-2 551 D- 1 0.94 0) 實施例4 A-4 10000 100 B- 1 7.5 C一 1 1287 C- 2 551 D- 1 0.94 a) 實施例5 A-5 10000 100 B- 1 7.5 C-1 1287 C-2 551 D- 1 0.94 6) 實施例6 A-6 10000 100 B- 1 7.0 C— 1 2014 - - D- 1 0.94 6) 參考例1 a— 1 6000 100 B- 1 7.0 C- 3 1287 C- 1 551 D-2 2.64 &lt;ΰ 參考例2 a-2 6000 100 B- 1 7.0 C-3 1287 C- 1 551 D—2 2.64 e) 參考例3 a— 3 5500 100 B- 1 7.0 C一 1 1287 C-4 551 D- 2 2.64 θ) 參考例4 a— 4 5400 100 B- 1 7.0 C-1 1287 C-3 551 D-2 2.64 α〇) 參考例5 a— 5 6000 100 B- 1 7.0 C一 1 1287 C-3 551 D—2 2.64 αι) 參考例6 a— 6 5500 100 B- 1 7.0 C-3 1287 C-4 551 D-2 2.64 比較例1 A— 7 10000 100 B- 1 7.5 C一 1 1287 C-2 551 D- 1 0.94 43) 上述表1中,聚合物(A-2)〜(A-7)分別爲具有下述 式(A-2 ) ~ ( A-7 )所表示之重複單位的聚合物。 -59- 201120567 【化2 1】HO CF3 40 mol% 15 mol% 45 mol% (a-1) -58-201120567 (Reference Examples 2 to 6) A coating liquid was prepared in the same manner as in Reference Example 1 except that the preparation was carried out in accordance with the formulation described in Table 1 below. 8) ~(1 2 ). Further, the Mw - 倂 of each polymer (a) is not shown in Table 1 below. [Table 1] Polymer acid generator Solvent acid diffusion control agent Type of coating liquid Mw Usage (mass) Type of use (mass parts) Type: a (mass) Type of use (mass) Type of use Quantity (mass S) Example 1 A-X 10000 100 B- 1 7.5 C-1 1287 C-2 551 D- 1 0.94 0) Example 2 A- 2 10000 100 B- 1 7.5 C- 1 1287 C- 2 551 D- 1 0.94 0 Example 3 A-3 10000 100 B- 1 7.5 C-1 1287 C-2 551 D- 1 0.94 0) Example 4 A-4 10000 100 B- 1 7.5 C-1 1287 C - 2 551 D- 1 0.94 a) Example 5 A-5 10000 100 B- 1 7.5 C-1 1287 C-2 551 D- 1 0.94 6) Example 6 A-6 10000 100 B- 1 7.0 C-1 2014 - - D- 1 0.94 6) Reference Example 1 a— 1 6000 100 B- 1 7.0 C- 3 1287 C- 1 551 D-2 2.64 &lt;ΰ Reference Example 2 a-2 6000 100 B- 1 7.0 C- 3 1287 C- 1 551 D-2 2.64 e) Reference Example 3 a— 3 5500 100 B- 1 7.0 C-1 1287 C-4 551 D- 2 2.64 θ) Reference Example 4 a— 4 5400 100 B- 1 7.0 C-1 1287 C-3 551 D-2 2.64 α〇) Reference Example 5 a— 5 6000 100 B- 1 7.0 C-1 1287 C-3 551 D-2 2.64 αι) Reference Example 6 a— 6 5 500 100 B- 1 7.0 C-3 1287 C-4 551 D-2 2.64 Comparative Example 1 A-7 10000 100 B- 1 7.5 C-1 1287 C-2 551 D- 1 0.94 43) In Table 1 above, polymerization The materials (A-2) to (A-7) are each a polymer having a repeating unit represented by the following formula (A-2) to (A-7). -59- 201120567 【化2 1】

上述表1中,聚合物(a-1) ~( a-6)分別爲具有下 式(a-Ι )〜(a-6 )所表之重複單位的聚合物。 -60- 201120567 【化2 2】In the above Table 1, the polymers (a-1) to (a-6) are each a polymer having a repeating unit represented by the following formula (a-Ι) to (a-6). -60- 201120567 【化2 2】

30mol% 20mol% 40mol% 10mol% (a — 5) 20mol% 20mol% 20mol% 40mol% (a — 4 )30 mol% 20 mol% 40 mol% 10 mol% (a - 5) 20 mol% 20 mol% 20 mol% 40 mol% (a - 4 )

上述表1中,酸產生劑(B-l)、溶劑(C-l)~(C-4 )以及酸擴散控制劑(D- 1 )及(D-2 )分別爲以下所示之 化合物。 酸產生劑(B-1 ):三苯基鏑九氟-η·丁烷磺酸鹽 溶劑(C-1):丙二醇單甲基醚乙酸酯 溶劑(C-2 ):環己酮 溶劑(C-3 ) : 4-甲基-2-戊醇 溶劑(C-4 ) : 1-丁氧基-2丙醇 酸擴散控制劑(D-l) : N-t-丁氧基羰基吡咯啶 酸擴散控制劑(D-2 ):三苯基鏑柳酸鹽 -61 - 201120567 &lt;光阻圖型之形成&gt; (實施例7 ) 步驟(1 ): 將下層防反射膜(商品名「ARC66」、日產化學公司 製)使用半導體製造裝置(商品名「CLEAN TRACK LITHIUS Pro-i」、東京電子公司製)予以旋轉塗佈在12吋 矽晶圓上後,藉由進行PB ( 205 °C、60秒)而形成膜厚 105nm之塗膜。使用半導體製造裝置(商品名「CLEAN TRACK ACT12」、東京電子公司製),將實施例1所調製 之塗敷液(1 )(第一敏輻射線性樹脂組成物)予以旋轉 塗佈,且進行PB ( 120 °C、60秒)後,藉由進行冷卻(23 °C、3 0秒)而形成膜厚90nm之第一光阻層。將上層膜形成 組成物(商品名「TCX041」、JSR公司製)使用前述半導 體製造裝置(CLEAN TRACK Lithius Pro-i)予以旋轉塗 佈在所形成之第一光阻膜上後,藉由進行PB ( 90°C、60秒 )而形成膜厚90nm之上層膜。 其次,使用ArF液浸曝光裝置(商品名「NSR-S610C j 、NIKON公司製),在NA: 1.30、Dipole之光學條件下 ,使用3〇nm線寬/120nm節距之光阻圖型形成用之遮罩藉 由作爲液浸曝光用液體之水,使其能成爲寬度3 Onm之線寬 部(未曝光部)而將既定之部分曝光。在前述半導體製造 裝置(CLEAN TRACK Lithius Pro-i )之加熱板上施以PEB (1 1 5 °C、6 0秒),冷卻(2 3 °C、3 0秒)後,在顯像杯體 -62- 201120567 之GP噴嘴中,將2.3 8質量%氫氧化四甲基銨水溶液作爲顯 像液進行盛液顯像(1 〇秒間),並以超純水潤洗。藉由以 2,OOOrpm甩動15秒鐘進行離心式乾燥,而得到形成有第一 光阻圖型之基板A。 步驟(2 ): 將所得之基板A之第一光阻圖型,在前述半導體製造 裝置(CLEAN TRACK ACT12 )之加熱板上進行PDB(180 °C、60秒),而得到基板B。 步驟(3 ): 將參考例1中所調製之塗敷液(7 )(第二敏輻射線性 樹脂組成物)使用前述半導體製造裝置(CLEAN TRACK ACT12 )旋轉塗佈於基板B上,進行PB ( 100〇C、60秒)後 ,予以冷卻(23 t、30秒),而形成膜厚90nm之第二光阻 層。使用前述ArF液浸曝光裝置,在NA: 1.30、Dipole之 光學條件下,藉由30nm線寬/120nm節距之光阻圖型形成 用之遮罩,使於第一光阻圖型之線距部之中央能形成寬度 3 Onm之線寬部(未曝光部)而將既定之部分曝光。在前述 半導體製造裝置(CLEAN TRACK Lithius Pro-i)之加熱 板上進行PEB ( 90°C、60秒),予以冷卻(23°C、30秒) 後,在顯像杯體之GP噴嘴中,將2.38質量%氫氧化四甲基 銨水溶液作爲顯像液進行盛液顯像(3 0秒間),並以超純 水潤洗。藉由以2,000rpm甩動15秒間進行離心式乾燥,於 基板B上更得到形成有第二光阻圖型之評價用之基板C。基 板C之圖型形狀之評價爲「良好」,頂部損失之評價因其 -63- 201120567 減少値未滿5nm而爲(表2中以「&lt;5」表示)「優良」, 線寬度便動之變動値未滿3ηιη (表2中以「&lt;3」表示), 線寬度變動之評價爲「優良」。將此等評價結果表示於下 述表2。 (實施例8~20、比較例2〜4 ) 除下述表2所記載之條件以外,與實施例7同樣地進行 而得到評價用之各基板C。但,對於實施例1 8~20,除加入 下述表2所記載之條件,並使與藉由48nm線寬/ 96nm節距 (48nmlLlS )之光阻圖型形成用之遮罩而曝光之第一光 阻圖型成爲垂直般,藉由48nm線寬/ 96nm節距( 48nmlLlS)之光阻圖型形成用之遮罩進行曝光以外,其 他與實施例7同樣地進行而得到評價用之各基板c。且,將 所得之各基板C之評價結果一倂表示於下述表2。 •64- 201120567 評價 線寬度變動 評價 優良 優良 優良 優良 優良 優良 優良 優良 優良 優良 優良 i優良 優良 良好 不良 不良 不良 不良 不良 變動値 (nm) ro rn ΓΟ &lt;Q Γ^ί ro rn ry ΓΟ rn rn rn ΓΟ Ό oo Ο Ο iTi 頂部損失 評價 優良 優良 良好 良好 良好 優良 優良 良好 丨良好 良好 良好 良好 良好 不良 不良 不良 不良 不良 滅少値 (nm) ▽ •ri Ο ο Ο &gt;rj Ο —— Ο Ο »—Η ο —Η Ο Ο in &lt;N 圖型 形狀 良好 良好 良好 良好 _子 良好 良好 良好 良好 丨良好 L良好 良好 良好 良好 不良 L不良 不良 不良 步驟⑶ 逛 ,時間 (秒) § S § § § δ δ S § § § § S S S S § 0Q W pu, 溫度 ΓΟ § ON § ^Τ) Ον ^Ti σ\ § § s \Τ) 〇\ $ σ\ as ON in ON g § ON 時間1 (秒) § § g § § g § S S § § % s S s s § S P3 Ph 酿| CC)\ 〇 Ο Ο 100 ο 100 ο Ο ο 〇 ο ο ο ο 〇 ο r-H o Ο —Η 〇 塗敷液 種類 δ δ g gs Η s—/ Ν s—o- S—✓ S'&quot; f—1 g /-\ δ g /^s /&quot;S 輻射線照射條件 照射條件 時間 (秒) 1 t S 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 XeM 波長(nm) 1 1 CN 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 PDB條件 時間 (秒) § § I § § s s S § s s § S s S 1 g 1 1 溫度 CC) g g 1 180 g 180 g g ^•Η g g T-H g Η g § g § 1 1 180 1 1 步驟⑴ 時間 (秒) s § § s § δ S § s § § s s s s s § S m W Ph 溫度 (°C) r*&quot;H CM r-H 120 CN 125 ^Τί ι〇 CN i 120 125 125 CN (N u^&gt; (N «ο &lt;N m PB條件 時間 (秒) S § § § S s § § s s § s s § S 溫度 CC) 宕 r—H 130 ^-Η 125 130 r-^ m CN 130 130 130 130 120 f Η 塗敷液 種類 产_·Η δ δ S /—Ν δ /—S cn /Js δ δ s—✓ /—*&gt; S—✓ »—H Ν δ 實施例7 實施例8 .實施例9 ! 實施例10 實施例11 實施例12 實施例13 實施例14 實施例15 實施例16 實施例Π 實施例18 實施例19 實施例20 比較例2 比較例3 比較例4 比較例5 比較例6 -65- 201120567 由表2可明顯得知,藉由將本發明之敏輻射線性樹脂 組成物作爲雙重圖型化中之第一敏輻射線性樹脂組成物使 用,可形成圖型形狀良好且線寬度變動之變動値爲小之光 阻圖型。 比較例4之光阻圖型,由於係使用含有不具有重複單 位(1 )之聚合物(A - 7 )的敏輻射線性樹脂組成物作爲第 一敏輻射線性樹脂組成物,其爲圖型形狀拙劣,且說線寬 度變動亦爲大者。 比較例5之光阻圖型,由於在步驟(2)中未進行PDB ,其爲圖型形狀拙劣,且線寬度變動爲大者。又,比較例 6之光阻圖型,由於在步驟(2)中未進行輻射線照射,其 爲圖型形狀拙劣,且線寬度變動爲大者。 〔產業上可利用性〕 本發明之敏輻射線性樹脂組成物,由於藉由使用上述 之方式可良好且經濟地形成超越波長界限之光阻圖型,可 極適合用於今後被認爲微細化會更加進行之以積體電路元 件之製造爲代表之微細加工之領域中。 【圖式簡單說明】 〔圖1A〕表示於本發明之光阻圖型形成方法之步驟( 1 )中之於基板上形成第一光阻層後之狀態之一例的模式 圖。 〔圖1B〕表示於本發明之光阻圖型形成方法之步驟( -66- 201120567 1 )中之將第一光阻層予以曝光之狀態之一例的模式圖。 〔圖1C〕表示於本發明之光阻圖型形成方法之步驟( 1)中之將第一光阻層曝光後之狀態之—例的模式圖。 〔圖1D〕表示於本發明之光阻圖型形成方法之步驟( 1 )之在形成第一光阻圖型後之狀態之一例的模式圖。 〔圖2〕表示本發明之光阻圖型形成方法之步驟(2) 之一例的模式圖。 〔圖3A〕表示於本發明之光阻圖型形成方法之步驟( 3)中之在第一光阻圖型上形成第二光阻層後之狀態之一 例的模式圖。 〔圖3B〕表示於本發明之光阻圖型形成方法之步驟( 3 )中之將第二光阻層予以曝光之狀態之一例的模式圖。 〔圖3C〕表示於本發明之光阻圖型形成方法之步驟( 3 )中之將第二光阻層曝光後之狀態之一例的模式圖。 〔圖3 D〕表示於本發明之光阻圖型形成方法之步驟( 3 )中之形成第二光阻圖型後之狀態之一例的模式圖。 〔圖4〕模式性表示於本發明之光阻圖型形成方法中 之形成第二光阻圖型之線寬部後之狀態之一例的上視圖。 〔圖5〕模式性表示於本發明之光阻圖型形成方法中 之形成第二光阻圖型之線寬部後之狀態之一例的側視圖。 〔圖6〕模式性表示於本發明之光阻圖型形成方法中 之形成第二光阻圖型之線寬部後之狀態之其他之例的上視 圖。 -67- 201120567 【主要元件符號說明】 1 :基板 2 :第一光阻層 3 :液浸曝光用液體 4 :遮罩 5,35 :鹼顯像部 12,22 :第一光阻圖型 12a,22a :第一光阻圖型之線寬部 12b,22b:第一光阻圖型之線距部 1 5 :接觸孔圖型 3 2 :第二光阻層 42 :第二光阻圖型 42a :第二光阻圖型之線寬部 42b :第二光阻圖型之線距部 -68-In the above Table 1, the acid generator (B-1), the solvents (C-1) to (C-4), and the acid diffusion controlling agents (D-1) and (D-2) are each a compound shown below. Acid generator (B-1): triphenylsulfonium nonafluoro-η·butane sulfonate solvent (C-1): propylene glycol monomethyl ether acetate solvent (C-2): cyclohexanone solvent ( C-3) : 4-methyl-2-pentanol solvent (C-4) : 1-butoxy-2-propanol acid diffusion control agent (Dl) : Nt-butoxycarbonyl pyrrolidine acid diffusion control agent (D-2): Triphenyl sulphate-61 - 201120567 &lt;Formation of photoresist pattern&gt; (Example 7) Step (1): The lower anti-reflection film (trade name "ARC66", Nissan) Manufactured by a chemical manufacturing company (trade name "CLEAN TRACK LITHIUS Pro-i", manufactured by Tokyo Electronics Co., Ltd.), spin-coated on a 12-inch wafer, and then PB (205 ° C, 60 seconds) On the other hand, a coating film having a film thickness of 105 nm was formed. The coating liquid (1) (first sensitive radiation linear resin composition) prepared in Example 1 was spin-coated and subjected to PB using a semiconductor manufacturing apparatus (trade name "CLEAN TRACK ACT12", manufactured by Tokyo Electronics Co., Ltd.). After (120 ° C, 60 seconds), a first photoresist layer having a film thickness of 90 nm was formed by cooling (23 ° C, 30 seconds). The upper film formation composition (trade name "TCX041", manufactured by JSR Corporation) was spin-coated on the formed first photoresist film using the above-described semiconductor manufacturing apparatus (CLEAN TRACK Lithius Pro-i), and then PB was performed. (90 ° C, 60 seconds) to form a film having a film thickness of 90 nm. Next, using an ArF immersion exposure apparatus (trade name "NSR-S610C j, manufactured by NIKON Co., Ltd.", under the optical conditions of NA: 1.30 and Dipole, a photoresist pattern of 3 〇 nm line width/120 nm pitch was used. The mask is exposed to a line width portion (unexposed portion) having a width of 3 Onm by water as a liquid for immersion exposure, and is exposed to a predetermined portion. In the above semiconductor manufacturing apparatus (CLEAN TRACK Lithius Pro-i) After applying PEB (1 1 5 °C, 60 seconds) on the hot plate, cooling (2 3 °C, 30 seconds), in the GP nozzle of the developing cup body -62- 201120567, 2.38 mass The aqueous solution of tetramethylammonium hydroxide was used as a developing solution for liquid imaging (within 1 sec.), and was rinsed with ultrapure water. The mixture was centrifuged at 2,000 rpm for 15 seconds to form a solution. The substrate A having the first photoresist pattern. Step (2): The first photoresist pattern of the obtained substrate A is subjected to PDB (180 ° C, on the heating plate of the above-mentioned semiconductor manufacturing apparatus (CLEAN TRACK ACT12). 60 seconds), and the substrate B was obtained. Step (3): The coating liquid (7) prepared in Reference Example 1 (second-sensitive radiation) The resin composition was spin-coated on the substrate B using the above-described semiconductor manufacturing apparatus (CLEAN TRACK ACT12), and after PB (100 〇C, 60 seconds), it was cooled (23 t, 30 seconds) to form a film thickness of 90 nm. a second photoresist layer. Using the ArF immersion exposure apparatus, under the optical condition of NA: 1.30 and Dipole, a mask for forming a photoresist pattern of 30 nm line width/120 nm pitch is used to form the first light. The center of the line portion of the resist pattern can form a line width portion (unexposed portion) having a width of 3 Onm and expose a predetermined portion. PEB is performed on the heating plate of the aforementioned semiconductor manufacturing apparatus (CLEAN TRACK Lithius Pro-i). 90 ° C, 60 seconds), after cooling (23 ° C, 30 seconds), in a GP nozzle of the developing cup body, a 2.38 mass % aqueous solution of tetramethylammonium hydroxide was used as a developing solution for liquid imaging (30 seconds), and rinsing with ultrapure water. By performing centrifugal drying at 2,000 rpm for 15 seconds, a substrate C on which a second photoresist pattern was formed was obtained on the substrate B. The evaluation of the shape of C is "good", and the evaluation of the top loss is due to its -63-20112 0567 is reduced to less than 5nm (indicated by "&lt;5" in Table 2), "excellent", and the line width is changed by less than 3ηιη (indicated by "&lt;3" in Table 2), the line width is changed. The evaluation was "excellent". The results of these evaluations are shown in Table 2 below. (Examples 8 to 20 and Comparative Examples 2 to 4) Each of the substrates C for evaluation was obtained in the same manner as in Example 7 except for the conditions described in Table 2 below. However, in Examples 18 to 20, the conditions disclosed in Table 2 below were added, and the exposure was performed with a mask for forming a photoresist pattern of 48 nm line width/96 nm pitch (48 nmL LSS). The substrate for evaluation was obtained in the same manner as in Example 7 except that the photoresist pattern was formed to be exposed by a mask having a photoresist pattern of 48 nm line width/96 nm pitch (48 nmLLS). c. Further, the evaluation results of the obtained substrates C are shown in Table 2 below. • 64- 201120567 Evaluation line width variation evaluation Excellent, excellent, excellent, excellent, excellent, excellent, excellent, excellent, excellent, excellent, excellent, excellent, excellent, excellent, good, good, bad, bad, bad, bad, 値(nm), ro rn, ΓΟ &lt;Q Γ^ί ro rn ry ΓΟ rn rn rn ΓΟ oo oo Ο Ο iTi Top loss evaluation Excellent Excellent Good Good Good Excellent Excellent Good 丨 Good Good Good Good Good Good Bad Good Bad Bad 灭 (nm ο ο —Η Ο Ο in &lt;N The shape of the figure is good, good, good, good, good, good, good, good, good, good, good, good, good, good, bad, bad, bad, bad, bad, (3), time (seconds) § S § § § δ δ S § § § § SSSS § 0Q W pu, Temperature § § ON § ^Τ) Ον ^Ti σ\ § § s \Τ) 〇\ $ σ\ as ON in ON g § ON time 1 (seconds) § § g § § g § SS § § % s S ss § S P3 Ph Brew | CC)\ 〇Ο Ο 100 ο 100 ο Ο ο 〇ο ο ο ο 〇ο rH o Ο —Η 〇 Coating liquid type δ δ g gs Η s—/ Ν s—o- S—✓ S′&quot; f—1 g /-\ δ g /^s /&quot;S Radiation irradiation conditions Irradiation condition time (seconds) 1 t S 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 XeM Wavelength (nm) 1 1 CN 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 PDB condition time (seconds) § § I § § ss S § ss § S s S 1 g 1 1 Temperature CC) gg 1 180 g 180 gg ^•Η gg TH g Η g § g § 1 1 180 1 1 Step (1) Time (seconds) s § § s § δ S § s § § sssss § S m W Ph temperature (°C) r*&quot;H CM rH 120 CN 125 ^Τί ι〇CN i 120 125 125 CN (N u^&gt; (N «ο &lt;N m PB condition time (seconds) S § § § S s § § ss § ss § S Temperature CC) 宕r—H 130 ^-Η 125 130 r-^ m CN 130 130 130 130 120 f 涂敷 Type of coating liquid _·Η δ δ S / - Ν δ / -S cn / Js δ δ s - ✓ / - * &gt; S - ✓ » - H Ν δ Example 7 Example 8 Example 9 ! Example 10 Example 11 Example 12 Example 13 Example 14 Example 15 Example 16 Example 实施 Example 18 Example 19 Example 20 Comparative Example 2 Comparative Example 3 Example 4 Comparative Example 5 Comparative Example 6 -65- 201120567 It is apparent from Table 2 that the sensitive radiation linear resin composition of the present invention is used as the first sensitive radiation linear resin composition in the double patterning. A pattern having a good pattern shape and a variation in line width variation is formed into a small photoresist pattern. The photoresist pattern of Comparative Example 4 is a linear radiation-sensitive resin composition containing a polymer (A-7) having no repeating unit (1) as a first radiation-sensitive linear resin composition, which is a pattern shape. Poor, and said the line width changes are also larger. In the photoresist pattern of Comparative Example 5, since PDB was not performed in the step (2), the pattern shape was poor and the line width variation was large. Further, in the resist pattern of Comparative Example 6, since the radiation was not irradiated in the step (2), the shape of the pattern was inferior and the line width variation was large. [Industrial Applicability] The sensitive radiation linear resin composition of the present invention can be suitably used for future miniaturization because it can form a photoresist pattern beyond the wavelength limit well and economically by using the above method. Further progress will be made in the field of microfabrication represented by the manufacture of integrated circuit components. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1A is a schematic view showing an example of a state in which a first photoresist layer is formed on a substrate in the step (1) of the photoresist pattern forming method of the present invention. Fig. 1B is a schematic view showing an example of a state in which the first photoresist layer is exposed in the step (-66-201120567 1) of the method for forming a photoresist pattern of the present invention. Fig. 1C is a schematic view showing an example of a state in which the first photoresist layer is exposed in the step (1) of the photoresist pattern forming method of the present invention. Fig. 1D is a schematic view showing an example of a state in which the first photoresist pattern is formed in the step (1) of the photoresist pattern forming method of the present invention. Fig. 2 is a schematic view showing an example of the step (2) of the method for forming a photoresist pattern of the present invention. Fig. 3A is a schematic view showing an example of a state in which the second photoresist layer is formed on the first photoresist pattern in the step (3) of the photoresist pattern forming method of the present invention. Fig. 3B is a schematic view showing an example of a state in which the second photoresist layer is exposed in the step (3) of the photoresist pattern forming method of the present invention. Fig. 3C is a schematic view showing an example of a state in which the second photoresist layer is exposed in the step (3) of the photoresist pattern forming method of the present invention. Fig. 3D is a schematic view showing an example of a state in which the second photoresist pattern is formed in the step (3) of the photoresist pattern forming method of the present invention. Fig. 4 is a top view schematically showing an example of a state in which the line width portion of the second photoresist pattern is formed in the photoresist pattern forming method of the present invention. Fig. 5 is a side view schematically showing an example of a state in which a line width portion of a second photoresist pattern is formed in the photoresist pattern forming method of the present invention. Fig. 6 is a top view schematically showing another example of a state in which the line width portion of the second photoresist pattern is formed in the photoresist pattern forming method of the present invention. -67- 201120567 [Description of main component symbols] 1 : Substrate 2 : First photoresist layer 3 : Liquid for immersion exposure 4 : Mask 5, 35 : Alkali development unit 12, 22 : First photoresist pattern 12a , 22a : line width portion 12b of the first photoresist pattern, 22b: line distance portion of the first photoresist pattern type 1 5 : contact hole pattern 3 2 : second photoresist layer 42 : second photoresist pattern 42a: the line width portion 42b of the second photoresist pattern: the line distance portion of the second photoresist pattern-68-

Claims (1)

201120567 七、申請專利範圍: 1 . 一種敏輻射線性樹脂組成物,其特徵爲含有:選 自由下述一般式(1-1)〜(1-4)所表示之重複單位所成 群之至少一種之重複單位及具有酸不安定基之重複單位之 聚合物(A )、敏輻射線性酸產生劑(B )及溶劑(C ), 其中聚合物(A)係在光阻圖型形成方法中,作爲第 一敏輻射線性樹脂組成物而被使用,該光阻圖型形方法包 含: 使用該第一敏輻射線性樹脂組成物,於基板上形成第 —光阻圖型之步驟(1); 使前述第一光阻圖型相對於第二敏輻射線性樹脂組成 物成爲不溶化之步驟(2 ):以及 於形成有前述第一光阻圖型之前述基板上,使用前述 第二敏輻射線性樹脂組成物形成第二光阻圖型之步驟(3 【化1】201120567 VII. Patent application scope: 1. A sensitive radiation linear resin composition characterized by comprising: at least one selected from the group consisting of repeating units represented by the following general formulas (1-1) to (1-4) a repeating unit and a polymer (A) having a repeating unit of an acid labile group, a radiation sensitive linear acid generator (B), and a solvent (C), wherein the polymer (A) is in a photoresist pattern forming method, The first resistive radiation linear resin composition is used, the photoresist pattern forming method comprising: the step (1) of forming a first photoresist pattern on the substrate by using the first sensitive radiation linear resin composition; The first photoresist pattern is insolubilized with respect to the second radiation-sensitive linear resin composition (2): and on the substrate on which the first photoresist pattern is formed, using the second sensitive radiation linear resin Step of forming a second photoresist pattern (3 [Chemical 1] (上述一般式(1-1)〜(1-4)中,R1各自獨立表示 -69- 201120567 氫原子、三氟甲基或碳數1〜3之烷基,R2各自獨立表示氫 原子或羥基;上述一般式(1-4)中,R3表示碳數1~5之直 鏈狀或分枝狀之羥基烷基;上述一般式(1-1)中,A表示 亞甲基或碳數2~5之伸烷基,其氫原子可被碳數1~5之烷基 所取代;上述一般式(1-3)中,B表示下述式(B-1) ~( B-6)之任一式所示之基團,η表示1〜3之整數) 【化2】(In the above general formula (1-1) to (1-4), R1 each independently represents -69 to 201120567 a hydrogen atom, a trifluoromethyl group or an alkyl group having 1 to 3 carbon atoms, and R2 each independently represents a hydrogen atom or a hydroxyl group. In the above general formula (1-4), R3 represents a linear or branched hydroxyalkyl group having 1 to 5 carbon atoms; in the above general formula (1-1), A represents a methylene group or a carbon number of 2 The alkyl group of ~5 may be substituted by an alkyl group having 1 to 5 carbon atoms; in the above general formula (1-3), B represents the following formula (B-1) to (B-6); Any of the groups shown by the formula, η represents an integer of 1 to 3) [Chemical 2] (Β- 1) (Β-2) (Β- 3) (Β-4) (Β — 5) (Β —6) 2. —種光阻圖型形成方法,其特徵爲含有 使用如請求項1之第一敏輻射線性樹脂組成物,於基 板上形成第一光阻圖型之步驟(1)、 使前述第一光阻圖型相對於第二敏輻射線性樹脂組成 物成爲不溶化之步驟(2)、與 於形成有前述第一光阻圖型之前述基板上,使用前述 第二敏輻射線性樹脂組成物形成第二光阻圖型之步驟(3 )° 3. 如請求項2之光阻圖型形成方法,其係前述第一光 阻圖型及前述第二光阻圖型分別具有平行地複數排列之凸 狀之線寬部,與於鄰接之前述線寬部彼此之間所形成之複 數之線距部的光阻圖型, 於前述第一光阻圖型之線距部中,使前述第二光阻圖 型之線寬部與前述第一光阻圖型之線寬部平行地形成。 -70- 201120567 4.如請求項2之光阻圖型形成方法’其係前述第一光 阻圖型及前述第二光阻圖型分別具有平行地複數排列之凸 狀之線寬部,與於鄰接之前述線寬部彼此之間所形成之複 數之線距部的光阻圖型, 使前述第二光阻圖型之線寬部與前述第一光阻圖型之 線寬部交叉地形成。 5 ·如請求項1〜4中任一項之光阻圖型形成方法,其中 則述聚合物(A)含有前述一般式(id)所表示之重複單 位。 it -71 -(Β-1) (Β-2) (Β-3) (Β-4) (Β — 5) (Β—6) 2. A method for forming a resist pattern, which is characterized by the use of claim 1 a first sensitive radiation linear resin composition, the step of forming a first photoresist pattern on the substrate (1), and the step of inactivating the first photoresist pattern relative to the second radiation-sensitive linear resin composition (2) And a step (3) of forming a second photoresist pattern using the second photosensitive radiation linear resin composition on the substrate on which the first photoresist pattern is formed. 3. The photoresist of claim 2 The pattern forming method is characterized in that the first photoresist pattern and the second photoresist pattern respectively have a line width portion which is arranged in parallel in a plurality of parallel manners, and is formed between the adjacent line width portions a photoresist pattern of a plurality of line spacing portions, wherein the line width portion of the second photoresist pattern is parallel to the line width portion of the first photoresist pattern in the line spacing portion of the first photoresist pattern Ground formation. -70-201120567 4. The method for forming a photoresist pattern according to claim 2, wherein the first photoresist pattern and the second photoresist pattern respectively have a line width portion of a convex shape arranged in parallel, and a photoresist pattern of a plurality of line spacing portions formed between the adjacent line width portions, wherein the line width portion of the second photoresist pattern intersects the line width portion of the first photoresist pattern form. The method for forming a photoresist pattern according to any one of claims 1 to 4, wherein the polymer (A) contains a repeating unit represented by the above general formula (id). It -71 -
TW99131251A 2009-09-16 2010-09-15 Radiation-sensitive resin composition and resist pattern formation method TW201120567A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009215023 2009-09-16

Publications (1)

Publication Number Publication Date
TW201120567A true TW201120567A (en) 2011-06-16

Family

ID=43758612

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99131251A TW201120567A (en) 2009-09-16 2010-09-15 Radiation-sensitive resin composition and resist pattern formation method

Country Status (3)

Country Link
JP (1) JPWO2011034007A1 (en)
TW (1) TW201120567A (en)
WO (1) WO2011034007A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI477907B (en) * 2011-11-03 2015-03-21 羅門哈斯電子材料有限公司 Methods of forming photolithographic patterns by negative tone development
TWI486361B (en) * 2011-11-03 2015-06-01 羅門哈斯電子材料有限公司 Monomers, polymers and photoresist compositions
TWI648259B (en) * 2014-02-14 2019-01-21 日商三菱瓦斯化學股份有限公司 (Meth) acrylate compound and method for producing same
TWI757388B (en) * 2016-12-09 2022-03-11 南韓商韓國默曼堤效能材料股份有限公司 Composition for organic electronic device encapsulant and encapsulant and organic electronic device manufactured by using the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5645740B2 (en) * 2011-04-11 2014-12-24 東京応化工業株式会社 Resist composition and resist pattern forming method
JP2012230174A (en) * 2011-04-25 2012-11-22 Tokyo Ohka Kogyo Co Ltd Resist composition and method for forming resist pattern
JP2012230236A (en) * 2011-04-26 2012-11-22 Tokyo Ohka Kogyo Co Ltd Resist composition and method for forming resist pattern
JP6121122B2 (en) * 2011-10-13 2017-04-26 住友化学株式会社 Compound, resin, resist composition, and method for producing resist pattern
WO2015122470A1 (en) 2014-02-14 2015-08-20 三菱瓦斯化学株式会社 Method for producing novel alicyclic ester compound, novel alicyclic ester compound, (meth)acrylic copolymer produced by polymerizing said compound, and photosensitive resin composition using said copolymer
WO2017057192A1 (en) 2015-09-30 2017-04-06 富士フイルム株式会社 Resin film, colored photsensitive composition, resin film production method, color filter, light shielding film, solid-state imaging element, and image display device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4070521B2 (en) * 2001-06-12 2008-04-02 富士フイルム株式会社 Positive resist composition
JP2008203536A (en) * 2007-02-20 2008-09-04 Fujifilm Corp Surface treating agent for pattern formation and pattern forming method using the same
US20100323292A1 (en) * 2007-03-16 2010-12-23 Jsr Corporation Resist pattern formation method, and resin composition capable of insolubilizing resist pattern
JP5086907B2 (en) * 2007-12-28 2012-11-28 住友化学株式会社 Resist processing method
JP4771101B2 (en) * 2008-09-05 2011-09-14 信越化学工業株式会社 Positive resist material and pattern forming method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI477907B (en) * 2011-11-03 2015-03-21 羅門哈斯電子材料有限公司 Methods of forming photolithographic patterns by negative tone development
TWI486361B (en) * 2011-11-03 2015-06-01 羅門哈斯電子材料有限公司 Monomers, polymers and photoresist compositions
TWI648259B (en) * 2014-02-14 2019-01-21 日商三菱瓦斯化學股份有限公司 (Meth) acrylate compound and method for producing same
TWI757388B (en) * 2016-12-09 2022-03-11 南韓商韓國默曼堤效能材料股份有限公司 Composition for organic electronic device encapsulant and encapsulant and organic electronic device manufactured by using the same

Also Published As

Publication number Publication date
JPWO2011034007A1 (en) 2013-02-14
WO2011034007A1 (en) 2011-03-24

Similar Documents

Publication Publication Date Title
TW201120567A (en) Radiation-sensitive resin composition and resist pattern formation method
JP5652404B2 (en) Radiation sensitive composition and resist pattern forming method
JP6531397B2 (en) Pattern forming method and composition used therefor
CN104216224B (en) Photoresists comprising urethane components
JP4826840B2 (en) Pattern formation method
TW200903582A (en) Method for forming resist pattern and resin composition for insolubilizing formed resist patterns using therefor
JP5655563B2 (en) Radiation sensitive resin composition and pattern forming method
JP7200267B2 (en) Actinic ray-sensitive or radiation-sensitive resin composition, resist film, pattern forming method, electronic device manufacturing method
TW201009517A (en) Formed resist patterns-insolubilization resin composition and method for forming resist pattern using the same
WO2011122336A1 (en) Radiation-sensitive resin composition and pattern forming method
TW201237554A (en) Radiation-sensitive resin composition
JP2011227463A (en) Radiation-sensitive resin composition and pattern formation method
JP2013225094A (en) Photoresist composition and method for forming resist pattern
TW201027247A (en) Resist pattern coating agent and process for producing resist pattern using
JP5724791B2 (en) Radiation-sensitive resin composition and method for forming resist pattern
JP6287466B2 (en) Resist composition and resist pattern forming method
TW201238983A (en) Photoresist composition
JP6255906B2 (en) Radiation sensitive resin composition and negative resist pattern forming method
TW201837066A (en) Pattern forming method and method for producing electronic device
TWI497208B (en) Pattern forming process
TW201015223A (en) Formed resist patterns-coating material and method for forming resist pattern using the same
TW201107880A (en) Patterning process
TW201222147A (en) Resist pattern formation method and radiation-sensitive resin composition
TW201610574A (en) Actinic-ray-sensitive or radiation-sensitive resin composition, method for forming pattern and method for producing electronic device
CN113260604B (en) Actinic-ray-or radiation-sensitive resin composition, resist film, pattern forming method, and method for manufacturing electronic device