TW201120166A - Super concentrated polymer-binder composite - Google Patents

Super concentrated polymer-binder composite Download PDF

Info

Publication number
TW201120166A
TW201120166A TW99101917A TW99101917A TW201120166A TW 201120166 A TW201120166 A TW 201120166A TW 99101917 A TW99101917 A TW 99101917A TW 99101917 A TW99101917 A TW 99101917A TW 201120166 A TW201120166 A TW 201120166A
Authority
TW
Taiwan
Prior art keywords
polymer
binder
concentrate
pretreated
polymer concentrate
Prior art date
Application number
TW99101917A
Other languages
Chinese (zh)
Inventor
James J Barnat
Vincent Vopat
Original Assignee
Road Science Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/631,305 external-priority patent/US20100081738A1/en
Application filed by Road Science Llc filed Critical Road Science Llc
Publication of TW201120166A publication Critical patent/TW201120166A/en

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

A pre-processed polymer concentrate in binder comprising a binder and at least one polymer where the polymer comprises greater than 26% by weight of the pre-processed polymer concentrate in binder, where the pre-processed polymer concentrate in binder is capable of incorporating quickly into diluent binder under low shear conditions.

Description

201120166 六、發明說明: 關於聯邦獎助研究或發展之聲明 不適用 相關申請案之交互參照 本申請案係2008年7月15日申請名為’’Polymer-Binder201120166 VI. INSTRUCTIONS: Statement on Federal Awards for Research or Development Not applicable Cross-Reference to Related Applications This application was filed on July 15, 2008 under the name '’Polymer-Binder’

Composite and Methods of Making and Using Same”之申請 案第12/173,571號之部分接續案,而該案為2〇〇7年8月20 曰申明名為 ’ Method and Product of Making a Polymer-Binder Composite”之申請案第 11/84^4^ 號之部 分接續案。這兩母案係如完全複製於下般以引用方式併入 本文中。 發明背景 【發明所屬之技術領域】 本發月係關於種超濃縮聚合物-黏結劑複合物。更具 ,口之,本發明係關於—種具有高聚合物濃度及高鬆散體 密度之聚合物_黏結劑複合物以致該聚合物_黏結劑複合物 可快速且完全摻入瀝青中。 尤刖筏術 希望將聚合物加人,、麻主士 陆 力入遞月中以提高該混合物之流 貨。需用機械構件蔣:# # & & 饵仵將該荨聚合物加入及混入瀝青中以 具有較高流變性皙夕# ή β 文丨王貞之改良黏結劑。 201120166 瀝青工業所用之聚-合物具有高分子量及多種組態。該 分子量-般係在50,_至5〇〇,_之範圍内。聚合物可呈 線性或非線性形式或其組合。該等非線性形式物可為徑向 '弋物並可包含二或更多附屬物。聚合物 以產生緊密糾結物。該糾結係隨分子量及徑二:粒 糾結程度阻礙摻入遞青中;因此,其需要更多時間及 解開糾結。 可將聚合物捧入瀝青中且無法完全解開糾結。播入部 分糾結聚合物之經聚合物改質之瀝青提供比完全解開糾结 =合物更差之流變性質。較高剪切、較高溫度或較長混 乂寺間將有助於摻入遞青時完全解開聚合物糾結。然而, 此等額外月b I或加工時間係昂貴的且聚合物效率與製造成 本之間須達到妥協。 聚。物可經加熱及混合以幫助摻入瀝青黏結劑中。較 高溫度增加摻入黏結劑之速率,其因快速換入而降低批次 :之循環時間並可降低整體資金成本,故偏好使用。然而, 尚熱因熱降解而對聚合物有負面效應。 此外’將聚合物混入熱瀝青中時’混合之機械剪切幫 -入並有助於降低批次間之循環時間。若 =的,像低剪切紫式混和器、高剪切裝置,像聚:: 之^及類似物。低剪切裝置’像獲自隐M〇r,Llghtnin 二广及類似物因低安裝、保養及操作成本而適 和器使液態瀝青在槽中移動且聚合物之溫度增 加並開始摻入。聚合物緩慢地播入遞青或黏結劑令而需要 201120166 顯著量之時間。已知技術令之高剪切裝置係類似κ—及 Buckam Supratron均質機、IKA單或多段高剪切混和器、 Dahvcmh Machine Tool 聚合物輾磨機、R_ 多段、l〇w hfiu x設計、Mega Shear設計、Silvem〇n高剪切混和器 及類似物。此等高剪切裝置係經由通過高剪切區之連續循 環迴路以機械方式剪切液態瀝青中之固態聚合物。此可為 線内程序或可在槽内達到。該程序需要高能量輸入以操作 該南f切裝置。該聚合物係經加熱且該摻入係借助於剪切 裝置之機械作用。胃高剪切裝置比低剪切裝置更快地將聚 合物播入瀝青中而使批次間之循環時間低。^ @,高勢切 裝置的安裝、保養及操作係昂貴的。 實際上,可以視覺方式評估聚合物至瀝青之摻入。可 將聚合物加入熱瀝青中並混合之。此混合物之樣品係經大 約20網目篩過遽並評估為未經摻入之聚合物。當摻入達約 赐,無收集壯㈣液且該混合物看起來平滑且均一。之 後,可隨另外混合加入添加劑或交聯封褒。將所得混合物 粟抽至其他槽、處理或遠私六 入聚合物之剩餘^分經由此後續操作捧 用於瀝青工業之聚合物一般係以多孔粒或粉末型式製 得。該多孔粒係以儘可能製造較大比表面㈣方式製^ 同樣地’粉狀聚合物具有極高比表面積。粉狀聚合物需要 另-研磨該聚合物以降低其尺寸至粉末尺寸之 此係昂貴程序且僅用於加工時間變過長時。 厂 傳統看法係高比表面積可使遞青與聚合物間有較佳接 201120166 觸,提高摻入並可能降低批次 1之循J衣時間。聚合物製造 商例行提供多孔粒或粉末之物 表 <物理形式的聚合物產物給鋪砌 及其他工業。較高比表面穑 #面積亦產1鬆散體密度極低之珠粒 或粉末。因摻入瀝青之過長加 # 我加工時間而不使用高密度珠粒。 除了:所聲稱之優點外,呈低密度多孔粒或粉末形式 之聚合物實際上具有漂浮在熱瀝青中之傾向。轉移至聚合 物之熱軟化該等聚合物,传装狢虹☆社》# ° 使其發黏而使該等聚合物快速黏 接至混合裝置以及容器中。此等凝聚顆粒的尺寸亦增大且 可能將其不摻入瀝青中。 a 目前技術嘗試利用特殊槽混合設備避免聚合物凝聚。 特殊混和器組態、配置及高能量馬達皆有助於最小化凝 聚。此等混和器昂貴且操作時消耗大量能量。 目前技術係以容許槽式混合器將多孔聚合物粒或粉末 併入熱瀝青中之速率將該聚合物餵入熱瀝青中。緩慢添加 多孔聚合物粒或粉末係有助於最小化凝聚。然而,較慢之 聚合物添加速率增加批次間之循環時間。 可更快速地將具有類似分子量及組態但相對於低鬆散 體密度具有高鬆散體密度之類似聚合物加入熱瀝青中而不 需複雜混合。可以較低凝聚可能性將較高鬆散體密度聚人 物快速地加入熱瀝青中。然而,此等較高鬆散體密度聚合 物顆粒相應極緩慢地穆·入並大幅增加批次間之循環時間。 將聚合物加入及摻入熱瀝青中之資金成本很高。聚合 物可經處理成存於熱瀝青中之濃縮物並偏好將存於熱遞青 中之聚合物濃縮物由該昂貴加工設施運輸至將該經處理濃 6 201120166 縮物稀釋至所需濃度之成本較低的接收設施。1¾昂貴加工 設施顯示複雜操作及混合設備之資金成本,而多個接收設 施僅需以稀釋劑瀝青稀釋該預處理濃縮物。 存於?歷f中之聚合物濃縮物應經充分组合以致另外藉 由該接收叹知進行之加工在加人稀釋劑瀝青時僅需要輕微 /¾ CT此外,應充分摻入存於瀝青中之經處理聚合物濃縮 物以致聚合物與瀝青間僅有極小相分離。 存於瀝青中之聚合物濃縮物具有一般超過最終用途需 求之高聚合物含量且該經處理濃縮物稍後係經附加瀝青稀 釋以符合要I。運輸成纟高且經處理聚合物濃縮物之使用 使運輸至接收設備之需求較低並可以較低成本輸送該聚合 物。 存於瀝青中之聚合物濃縮物可以熱液體形式運輸。聚 合物至瀝青之添加大幅增加所得混合物之黏度。聚合物於 瀝青中之最高濃度係受可經處理及運輸之最高黏度所限 制存於’歷月中之聚合物濃縮物一般係限制在至9%之 聚合物濃度(以混合物之重量計),但某些新穎聚合物可以高 達26%製得及運輸。 聚合物於瀝青中之較高濃度相應地呈現較高黏度。此 等黏度可藉k尚液體溫度而降低。利用過高溫度保持足夠 流動性以操作該存於瀝青中之經處理聚合物濃度物可能降 解聚合物並將聚合物於瀝青中之濃度限制在6%至9%且對 於某些新穎聚合物而言高達26%。超過177。(:之溫度可能降 低聚合物品質且一般長期避免的。 201120166 存於’歷青中之聚合物濃縮物可在周圍溫度下藉以固體 形式裝入拋棄式容器的方式運輸。將該濃縮物倒入容器中 並冷卻固化之。將該容器裝入平台上並一起綁於其上以幫 助輸送。含有聚合物濃縮物之平台係在周圍溫度下輸送至 接收設施。該半固體聚合物濃縮物係以手由輸送平台移 出,與封裝材料分離並加入程序中以降低聚合物含量以符 u需长存於瀝青中之聚合物濃縮物一般係限制在6%至9% 之聚合物濃度(以混合物之重量計),但某些新穎聚合物可以 高達26%之濃縮物製得。接收設備封裝、運輸及利用聚合 物濃縮物之成本變得十分昂貴且相較於運輸較低濃度存於 遞青中之熱液體聚合物濃縮物係極少使用的。 存於瀝青令之聚合物濃縮物可藉由慣用構件,像拉條 製粒機、水下製粒機及類似裝置製成粒狀。因下列事實而 不曾使用此等操作:以6〇/〇、9%或甚至26%之聚合物濃度存 於瀝青中之粒狀聚合物在週遭儲存溫度下十分軟且易再聚 凝並回復成單體。 基於上文,希望製造濃度大於26% ’大於5〇%,大於 75%,大於85%或大於90%之存於瀝青中之經預處理聚合物 濃縮物。 亦希望製造存於遞青中之經預處理聚合物濃縮物,其 在周圍溫度下可以有效成本輸送及操作之。 亦希望製造存於遞青中之經預處理聚合物濃縮物,其 可製成粒狀並充分保持該珠粒之個別本質以幫助儲存、操 作及運輸。 8 201120166 亦希望利用存於瀝青中之經預處理聚合物,其具有高 得足以最小化漂浮於稀釋劑瀝青中之聚合物,因此最小化 稀釋劑遞青槽中混合系統之成本及複雜度並幫助適宜地添 加聚合物而無聚凝風險之鬆散體密度。 亦希望利用經預處理聚合物濃縮物,可在低剪切條件 下將其快速摻入稀釋劑瀝青中以最小化資金成本及批次間 之循環時間。 亦希望藉使聚合物完全解開糾結而無妥協將聚合物摻 入遞青中之成本地達到最大聚合物效率。 【發明内容】 一種存於黏結劑中之經預處理聚合物濃縮物,其包含 黏結劑及至少一種聚合物,其中該聚合物佔該存於黏結劑 中之經預處理聚合物濃縮物重量t 26%以上,其中該存於 黏結劑中之經預處理聚合物濃縮物可在低剪切條件下快速 地摻入稀釋劑黏結劑中。該聚合物可佔該存於黏結劑中之 經預處理聚合物濃縮物重量之5G%以上,75%以上或抓以 上0 °字存於黏、'。劑中之經預處理聚合物濃縮物製成可保 持個別粒狀之珠粒。該經預虚理取人此曲 4丄預處理聚合物濃縮物可具有大於 ρ '方央吸’大於3〇傍/立方英口尺或大於32磅/立方英 呎之鬆散體密度。該存於黏結 、 鉍卢T a % r之經預處理聚合物濃縮 在㊉溫度下穩定並可無加熱地儲存及運輸。 該點結劑可包含大於25%之瀝青。該黏結劑可包含舊 201120166 機油、經再精製之舊機油成分及/ 含^基油'粗或精製產物及/或副產物。_#1以 存於黏結劑中之經預處理聚合物濃縮物可藉由一種方 法製得’該方法包括將黏結劑加入巨大剪切裝置中並將至 少-種聚合物以足夠量加入該巨大剪切裝置中以製造具有 二2聚合物之存於黏結劑中之經預處理聚合物濃縮 物(以存於黏結劑中之經預處理聚合物濃縮物的重量計),其 中該存於黏結劑中之經預處理聚合物濃縮物可在低煎切條 件下快速地摻入稀釋劑黏結劑中。可令黏結劑及至少一種 聚合物進行混合,其中無向量剪切量係大於約250,大於約 1,〇〇〇或大於約M00。可令該黏結劑及至少—種聚合物進 订混合,其中所用能量在高剪切裝置中係大於約0.025仟瓦 /公斤之能量,在高剪切裝置中大於約〇 〇5仟瓦/公斤之能量 或在高剪切裝置中大於的〇 夏γ穴π0.10仟瓦/公斤之能量。該黏結劑 及至;一種聚合物可在大於100 psi下經過處理。 。亥方法可另外包括將存於黏結劑中之經預處理聚合物 濃縮物製成可保持個別粒狀之珠粒。該經預處理聚合物濃 縮物可具有大於28碎/立方英p尺,大於3(^/立方英吸或大 ;3 2磅/立方英呎之鬆散體密度。該存於黏結劑中之經預處 理聚合物濃縮物在正常溫度下敎並可無加熱地儲存及運 輸0 該黏結劑可包含大於25%之瀝青。該黏結劑可包括舊 機油、經再精製之舊機油成分及/或副產物或可包含生物基 油、粗或精製產物及/或副產物。該存於黏結劑中之經預處 10 201120166 理聚合物濃縮物可以少於3小時,少於2小時或少於i小 時分散於稀釋劑黏結劑中。 【實施方式】 本發明係關於一種存於瀝青中之經預處理聚合物濃縮 物。更具體言之’本發明係關於一種存於瀝青中之經預處 理聚合物濃縮物’其聚合物濃度係大於26%,大於5〇0/〇, 大於65%,大於75%,大於85%或甚至大於90°/。;其可在 周圍溫度下以有效成本輸送及操作;其可經製粒並充分保 持該珠粒之個別本質以幫助儲存、操作及運輸;其具有高 得足以最小化漂浮於稀釋劑瀝青中之聚合物,因此最小化 該稀釋劑瀝青槽中混合系統之成本及複雜度並幫助適宜地 添加聚合物而無聚凝風險之鬆散體密度;且其可在低剪切 條件下快速且完全摻入稀釋劑瀝青中以最小化資金成本及 批次間之循環時間。 本發明使用巨大剪切混合,像擠壓機。巨大剪切係由 可達到至少250,較佳係至少1000,更佳係至少15〇〇之無 向量剪切量之裝置定義。若使用擠壓機,其可為單螺旋類 型,但較佳係雙螺旋類型。若該擠壓機係雙螺旋類型,則 其可為反向旋轉類型,但較佳係同向旋轉類型。此等巨大 剪切裝置可操作在大於100 psi之壓力下且較佳係以少於i 小時’更佳係少於30分鐘,最佳係'少於3分鐘將聚合物及 瀝青或其他黏結劑及添加劑混合在一起以製造該存於瀝青 中之經預分散聚合物濃縮物。 201120166 本發明中所用之黏結劑可為任何類型之含遞青材料或 烴樹脂’包括(但不限於)石油基瀝青或煤基煤塔或填縫遞青 (P滅)。本發明中可用作黏結劑之典型含瀝青材料包 不限於)瀝青水泥(AC)、填縫遞青、煤塔、遞青 '真空焦油 底(VTB)、殘油、性能等級(pG)瀝青、焊劑或由其衍=石 油產物1結劑可為含瀝青或石油產物之任何組合。若黏 結劑為瀝青,其可為PG分級、黏度分級或渗透分級之材料。 黏結劑亦可為>25%瀝青,較佳係>5〇%瀝青,更佳係 瀝青,.最佳係>90%瀝青。黏結劑亦可包括舊機油及舊機由 萃取物和類似物。此外,黏結劑亦可包含生物基油、粗或 知製產物、副產物及類似物。 雖然較高剪切率可藉多種不同方式達到,但無向量剪 切量(剪料與在此剪切區内之滞留時間的乘積)、滞留時間 或每單位值量之能量可詩該存於遞青中之經預分散聚合 物濃縮物之製造。 無向量剪切量(S r *滯留時間)代表在不同剪切區内施加 於材料上之剪切量。此無向量剪切量係大於25〇,較佳係大 於麵’更佳係大於丨則以製造該存於瀝青中之經預分散 聚合物濃縮物。 比能量係定義為用於製造該存於黏結劑中之經預分散 聚合物濃縮物之能量。該比能量較佳係大於〇 〇25仟瓦/公 斤(每公斤之仟瓦數),較佳係大於〇 〇5仟瓦/公斤,最佳2 大於0_10仟瓦/’公斤。 ’、 可以此方法達到存於瀝青中之經預分散聚合物濃縮物 12 201120166 大於90重量%聚合物之濃度。該存於瀝青中之經預分散聚 合物濃縮物可經擠壓成長細繩。冷卻該存於瀝青中之經預 分散聚合物濃縮物時,然後可將其切割成珠粒。此等珠粒 在正常溫度下穩定並可無加熱地儲存及無加熱地運輸至二 級混合設備中。此等存於瀝青中之經預分散聚合物濃縮物 珠粒當於二級混合設備中所見之低剪切混合器中加入稀釋 劑黏結劑時具有在少於3小時内,.較佳係少於2小時内, 最佳係少於1小時内混合之另一優點。 —此方法可以低於99.9重量%之聚合物濃度,低於Μ重 ^之瀝青濃度及低於5G重量%之添加劑濃度製造存於遞 二中之經預分散聚合物濃縮物。將至少—種聚合物及至少 於::餵入該巨大剪切裝置,像擠壓機中以製造該存 種天月中之紅預分散聚合物濃縮物。視情況亦可將至少一 造=隨該聚合物及黏結劑傲入該巨大剪切裝置中以製 。'子於瀝青中之經預分散聚合物濃縮物。 最小::該、、β中之經分散聚合物濃縮物可具有高得足以 中之节^縮物與該稀_瀝#混合時漂浮在稀釋劑遞青 聚=之鬆散體密度。該鬆散體密度可大 八 大於30碎/立古w α丄, 對於實施例A :/ 镑/立方英吸。 缩物係根據下列加工參數 •滯留時間為約23.2-44.0秒, 無向置剪切量為約1,382-1,497, 13 201120166 •RPM 為 600-650。 實施例#1Composite and Methods of Making and Using Same, Part 12/173, 571, and the case is August 20, 2008. The name is 'Method and Product of Making a Polymer-Binder Composite'. Part of the continuation of the application No. 11/84^4^. Both parent files are incorporated herein by reference as if they were fully reproduced below. BACKGROUND OF THE INVENTION [Technical Field] The present invention relates to a super-concentrated polymer-adhesive composite. More specifically, the present invention relates to a polymer-adhesive composite having a high polymer concentration and a high bulk density such that the polymer-adhesive composite can be rapidly and completely incorporated into the asphalt. Youyi hopes to add the polymer, and the hemp will be sent to the middle of the month to increase the flow of the mixture. Mechanical components are required: ## && bait 加入 The 荨 polymer is added and mixed into the asphalt to have a higher rheology 皙 # 丨 丨 丨 丨 丨 改良 改良 改良 改良 改良 改良 改良. 201120166 The poly-compound used in the asphalt industry has a high molecular weight and a variety of configurations. The molecular weight is generally in the range of 50, _ to 5 〇〇, _. The polymer can be in a linear or non-linear form or a combination thereof. The non-linear forms may be radial 'sputums and may contain two or more appendages. The polymer is used to create a tight entanglement. This entanglement is hindered by the molecular weight and diameter 2: the degree of entanglement of the particles hinders the incorporation into the cyanosis; therefore, it requires more time and untangling. The polymer can be held into the asphalt and cannot be completely untangled. The polymer-modified bitumen that is partially entangled with the polymer provides a worse rheological property than the fully untangled tangled compound. Higher shear, higher temperatures, or longer mixing between the temples will help to completely untie the polymer entanglement when doping. However, such additional months or processing times are expensive and compromises must be made between polymer efficiency and manufacturing costs. Gather. The materials can be heated and mixed to aid in the incorporation into the asphalt binder. Higher temperatures increase the rate of incorporation of the binder, which reduces the batch time due to rapid switching in; and reduces the overall capital cost, so it is preferred. However, heat is also negative for polymers due to thermal degradation. In addition, the mechanical shearing of the mixture when mixing the polymer into the hot asphalt helps to reduce the cycle time between batches. If =, like low-cut purple mixer, high-shear device, like poly:: and similar. The low shear device is like the self-imposed M〇r, Llghtnin, and the like, because of the low installation, maintenance and operating costs, the liquid asphalt moves in the tank and the temperature of the polymer increases and begins to be incorporated. The polymer slowly injects a twilight or binder order and requires a significant amount of time for 201120166. Known techniques make high shear devices similar to κ- and Buckam Supratron homogenizers, IKA single or multi-segment high shear mixers, Dahvcmh Machine Tool polymer honing machines, R_ multi-segment, l〇w hfiu x design, Mega Shear Design, Silvem〇n high shear mixer and the like. These high shear devices mechanically shear the solid polymer in the liquid bitumen via a continuous circulation loop through the high shear zone. This can be an inline program or can be reached in the slot. This program requires a high energy input to operate the south f-cut device. The polymer is heated and the incorporation is mechanical by means of a shearing device. The gastric high shear device broadcasts the polymer into the bitumen faster than the low shear device, resulting in a low cycle time between batches. ^ @, High-cutting The installation, maintenance and operation of the device are expensive. In fact, the incorporation of polymer into the bitumen can be assessed visually. The polymer can be added to the hot bitumen and mixed. A sample of this mixture was sieved through about 20 mesh screens and evaluated as unincorporated polymer. When incorporated, the mixture was not collected and the mixture appeared smooth and uniform. Thereafter, additives or cross-linking seals may be added with additional mixing. The resulting mixture is milled to other tanks, treated or left to the remainder of the polymer. The polymer used in the asphalt industry is generally produced in a porous or powder form. The porous granules are manufactured as much as possible in a larger specific surface (fourth) manner. Similarly, the powdery polymer has an extremely high specific surface area. Powdered polymers require an expensive procedure to additionally mill the polymer to reduce its size to powder size and only when the processing time becomes too long. The traditional view of the plant is that the high specific surface area allows for a better connection between the dice and the polymer, which increases the incorporation and may reduce the batch time of the batch. Polymer manufacturers routinely provide porous particles or powders. <Physical forms of polymer products for paving and other industries. The higher specific surface area 穑 # area also produces 1 loose beads or powder with very low density. Due to the excessive addition of bitumen plus #我加工时间 without using high density beads. In addition to the claimed advantages, polymers in the form of low density porous granules or powders actually have a tendency to float in hot asphalt. The heat transferred to the polymer softens the polymers and is transferred to the 狢虹☆社# ° to make it sticky so that the polymers quickly adhere to the mixing device and the container. The size of these agglomerated particles also increases and may not be incorporated into the asphalt. a Current technology attempts to avoid polymer agglomeration using special tank mixing equipment. Special mixer configurations, configurations and high energy motors all contribute to minimizing condensation. These mixers are expensive and consume a lot of energy when operating. The current technology feeds the polymer into hot bitumen at a rate that allows the tank mixer to incorporate the porous polymer particles or powder into the hot bitumen. Slow addition of porous polymer particles or powder systems helps to minimize agglomeration. However, the slower polymer addition rate increases the cycle time between batches. Similar polymers having similar molecular weights and configurations but having a high bulk density relative to low bulk density can be added more quickly to hot bitumen without complicated mixing. Higher loose bulk density can be quickly added to the hot bitumen with lower agglomeration possibilities. However, these higher bulk density polymer particles correspondingly extremely slowly and greatly increase the cycle time between batches. The capital cost of adding and incorporating the polymer into the hot bitumen is high. The polymer can be processed into a concentrate stored in hot bitumen and prefers to transport the polymer concentrate stored in the hot cyanine from the expensive processing facility to dilute the treated Concentrate 6 201120166 to the desired concentration. Lower cost receiving facilities. 13⁄4 expensive processing facilities show the capital cost of complex operations and mixing equipment, while multiple receiving facilities only need to dilute the pretreatment concentrate with thinner bitumen. The polymer concentrates stored in the calendar f should be sufficiently combined so that the processing by the receiving sigh is only required to be slightly/3⁄4 CT when adding the diluent asphalt. In addition, it should be fully incorporated into the asphalt. The polymer concentrate is treated such that there is only minimal phase separation between the polymer and the asphalt. The polymer concentrate present in the bitumen has a high polymer content generally exceeding the end use requirements and the treated concentrate is later diluted with additional bitumen to meet the requirements. The use of transported sorghum and treated polymer concentrates results in lower requirements for transport to the receiving equipment and delivery of the polymer at lower cost. The polymer concentrate stored in the bitumen can be transported as a hot liquid. The addition of the polymer to the asphalt greatly increases the viscosity of the resulting mixture. The highest concentration of polymer in bitumen is limited by the highest viscosity that can be handled and transported. The polymer concentrates stored in the calendar month are generally limited to a polymer concentration of 9% (by weight of the mixture). However, some novel polymers can be made and shipped up to 26%. The higher concentration of polymer in the asphalt correspondingly presents a higher viscosity. These viscosities can be reduced by the temperature of the liquid. Maintaining sufficient fluidity to maintain the treated polymer concentration in the bitumen at excessive temperatures may degrade the polymer and limit the concentration of the polymer in the bitumen to between 6% and 9% and for certain novel polymers. Words are as high as 26%. More than 177. (The temperature may reduce the quality of the polymer and is generally avoided for a long time. 201120166 The polymer concentrate stored in the calendar can be transported by means of a solid form in a disposable container at ambient temperature. Pour the concentrate into it. The container is cooled and solidified. The container is loaded onto the platform and tied together to aid in transport. The platform containing the polymer concentrate is delivered to the receiving facility at ambient temperature. The semi-solid polymer concentrate is The hand is removed from the conveyor platform, separated from the packaging material and added to the process to reduce the polymer content. The polymer concentrate that needs to be stored in the asphalt is generally limited to a polymer concentration of 6% to 9% (in the mixture). Weight), but some novel polymers can be made up to 26% concentrate. The cost of packaging equipment, shipping and utilizing polymer concentrates becomes very expensive and is stored in the diopcumin compared to transporting lower concentrations. The hot liquid polymer concentrate is rarely used. The polymer concentrate stored in the asphalt can be used by conventional components such as a granulator, an underwater granulator and the like. Made into granules. This operation has not been used because of the fact that the granulated polymer stored in the asphalt at a polymer concentration of 6 〇 / 〇, 9% or even 26% is very soft and easy to reproduce at ambient storage temperatures. Coagulation and recovery into monomer. Based on the above, it is desirable to produce a pretreated polymer concentrate in the asphalt having a concentration greater than 26% 'greater than 5%, greater than 75%, greater than 85% or greater than 90%. It is desirable to produce a pretreated polymer concentrate that is stored in diopside, which can be transported and handled at an effective cost at ambient temperatures. It is also desirable to produce a pretreated polymer concentrate that is deposited in the pitching, which can be made Granular and adequately retaining the individual nature of the beads to aid in storage, handling and transportation. 8 201120166 It is also desirable to utilize pretreated polymers stored in bitumen that are high enough to minimize the floating in the asphalt of the diluent. , thus minimizing the cost and complexity of the mixing system in the diluent greening tank and helping to properly add the polymer without the risk of cohesive bulk density. It is also desirable to utilize a pretreated polymer concentrate that can be used in low shear It is quickly incorporated into the thinner bitumen under cutting conditions to minimize the cost of capital and the cycle time between batches. It is also hoped that the cost of the polymer can be incorporated into the dice Maximum polymer efficiency. SUMMARY OF THE INVENTION A pretreated polymer concentrate in a binder comprising a binder and at least one polymer, wherein the polymer comprises pretreated polymerization in the binder The weight of the concentrate is more than 26%, wherein the pretreated polymer concentrate stored in the binder can be quickly incorporated into the diluent binder under low shear conditions. The polymer can account for the bond. More than 5G% by weight of the pretreated polymer concentrate in the agent, more than 75% or more than 0 ° in the pre-treated polymer concentrate in the adhesive, can be kept in individual granular beads grain. The pretreated polymer concentrate may have a bulk density greater than ρ '方吸吸' greater than 3〇傍/cubic inch or greater than 32 pounds per cubic foot. The pretreated polymer deposited in the bonded, TT a % r is stable at ten temperatures and can be stored and transported without heating. The pointing agent can comprise more than 25% bitumen. The binder may comprise the old 201120166 engine oil, the re-refined old engine oil component and/or the base oil 'crude or refined product and/or by-product. _#1 The pretreated polymer concentrate present in the binder can be prepared by a method which comprises adding the binder to the giant shearing device and adding at least one polymer to the huge amount in a sufficient amount. The shearing device is used to produce a pretreated polymer concentrate (in terms of the weight of the pretreated polymer concentrate present in the binder) having a di- 2 polymer in the binder, wherein the deposit is in a bond The pretreated polymer concentrate in the agent can be quickly incorporated into the diluent binder under low frying conditions. The binder can be mixed with at least one polymer wherein the amount of vector shear is greater than about 250, greater than about 1, or greater than about M00. The binder and the at least one polymer may be mixed and mixed, wherein the energy used is greater than about 0.025 watts/kg in the high shear device and greater than about 仟5 watts/kg in the high shear device. The energy or energy of the 〇 γ γ hole π 0.10 仟 / kg in the high shear device. The binder and; a polymer can be processed at greater than 100 psi. . The method may additionally comprise forming the pretreated polymer concentrate in the binder into beads that retain individual granules. The pretreated polymer concentrate may have a bulk density greater than 28 cc/cu ft, greater than 3 (^/cubic absorbing or large; 32 lb/cubic ton of bulk density. The deposit in the binder The pretreated polymer concentrate is stored at normal temperature and can be stored and transported without heating. The binder may comprise more than 25% bitumen. The binder may include old engine oil, rerefined old engine oil component and/or vice The product may comprise bio-based oil, crude or refined product and/or by-products. The pre-treated 10 201120166 polymer concentrate in the binder may be less than 3 hours, less than 2 hours or less than i hours. Dispersion in a diluent binder. [Embodiment] The present invention relates to a pretreated polymer concentrate stored in asphalt. More specifically, the present invention relates to a pretreated polymer stored in asphalt. Concentrate's polymer concentration is greater than 26%, greater than 5 〇 0 / 〇, greater than 65%, greater than 75%, greater than 85% or even greater than 90 ° /;; it can be transported and operated at ambient cost at an effective cost It can be granulated and fully retains the beads Essential to aid in storage, handling, and transportation; it has a polymer high enough to minimize floating in the diluent bitumen, thereby minimizing the cost and complexity of the mixing system in the diluent bitumen tank and helping to properly add the polymer The bulk density without coagulation risk; and it can be quickly and completely incorporated into the diluent bitumen under low shear conditions to minimize capital cost and cycle time between batches. The present invention uses a large shear mixing, like squeezing Press. The giant shearing system is defined by a device that achieves a vectorless shear of at least 250, preferably at least 1000, and more preferably at least 15. If an extruder is used, it can be a single helix type, but Preferably, it is of the double helix type. If the extruder is of the double helix type, it can be of the reverse rotation type, but is preferably of the same direction of rotation. These huge shearing devices can operate at pressures greater than 100 psi. And preferably less than i hours 'better less than 30 minutes, the best system ' less than 3 minutes to mix the polymer and asphalt or other binders and additives together to make the pre-preserved in the asphalt dispersion Constituent Concentrate 201120166 The binder used in the present invention may be any type of adduct-containing material or hydrocarbon resin 'including but not limited to petroleum-based asphalt or coal-based coal tower or caulking (P-kill). The typical bituminous material package useful as a binder in the present invention is not limited to) asphalt cement (AC), caulking, coal kiln, diopside vacuum tar bottom (VTB), residual oil, performance grade (pG) asphalt. The flux or the derivative of the petroleum product 1 may be any combination of bitumen-containing or petroleum products. If the binder is bitumen, it can be a material for PG classification, viscosity classification or permeation classification. The binder may also be > 25% bitumen, preferably > 5 % by weight bitumen, more preferably bitumen, . . . > 90% bitumen. Adhesives can also include used oils and old machines from extracts and the like. In addition, the binder may also contain bio-based oils, crude or known products, by-products, and the like. Although the higher shear rate can be achieved in a number of different ways, the amount of vector shear (the product of the shear and the residence time in this shear zone), the residence time, or the energy per unit of value can be attributed to Manufacture of a predispersed polymer concentrate in the formulation. The vectorless shear amount (S r * retention time) represents the amount of shear applied to the material in different shear zones. The vectorless shear amount is greater than 25 Å, preferably greater than the surface 'better than 丨 to produce the predispersed polymer concentrate in the asphalt. The specific energy system is defined as the energy used to make the predispersed polymer concentrate present in the binder. Preferably, the specific energy is greater than 〇 25 仟 watt / kg (watts per kilogram), preferably greater than 〇 仟 5 仟 / kg, and optimal 2 is greater than 0 _ 10 仟 / kg. The pre-dispersed polymer concentrate in the bitumen can be reached in this way. 12 201120166 A concentration greater than 90% by weight of the polymer. The predispersed polymer concentrate in the bitumen can be extruded to form a string. When the predispersed polymer concentrate in the bitumen is cooled, it can then be cut into beads. These beads are stable at normal temperatures and can be transported without heating and without heating to a secondary mixing unit. The predispersed polymer concentrate beads present in the bitumen have less than 3 hours when less than 3 hours are added to the low shear mixer as seen in the secondary mixing apparatus. Another advantage of mixing within less than 1 hour is within 2 hours. - This method can produce a predispersed polymer concentrate in the second embodiment at a polymer concentration of less than 99.9% by weight, a bitumen concentration of less than 5% by weight, and an additive concentration of less than 5% by weight. At least one polymer and at least:: are fed into the giant shearing device, such as an extruder, to produce a red predispersed polymer concentrate in the plant. Optionally, at least one of the products can be made with the polymer and the binder into the giant shearing device. 'Pre-dispersed polymer concentrate in the asphalt. Minimal:: The dispersed polymer concentrate in β, β may have a high enough density to float in the thinning of the diluent when mixed with the thinner. The bulk density can be greater than 30%/Ligu w α丄, for Example A: / pound / cubic inch. The shrinkage is based on the following processing parameters: • The residence time is about 23.2-44.0 seconds, and the undirected shear is about 1,382-1,497, 13 201120166 • RPM is 600-650. Example #1

Simcor PG 58-28稀釋劑瀝青係於容器中加熱至177χ: 並利用#850型Arrow混合器之槳式混合器以3之速度(產生 大約300 RPM)混合。溫度在整個實驗過程中係保持在約 177°C。將足量聚合物加入熱瀝青中以產生6%之聚合物濃縮 物(以該混合物之重量計)。該聚合物係Krat〇n mu8 κτ, 其具有低分子量並包含約75%雙嵌段且為呈多孔粒之物理 形式之SB-SBS線性聚合物。於不同時間自混合容器中移出 樣品並將其置於顯微鏡用之蓋玻片上。於具有pikeThe Simcor PG 58-28 thinner asphalt was heated to 177 Torr in a vessel and mixed at a speed of 3 (approximately 300 RPM) using a paddle mixer of the Model #850 Arrow Mixer. The temperature was maintained at about 177 ° C throughout the experiment. A sufficient amount of polymer is added to the hot bitumen to produce a 6% polymer concentrate (by weight of the mixture). The polymer is Krat〇n mu8 κτ, which has a low molecular weight and contains about 75% diblock and is a SB-SBS linear polymer in the physical form of porous particles. The sample was removed from the mixing vessel at different times and placed on a cover slip for the microscope. With pike

Industries Miracle ATR 之 Bruker 0ptics Veriz〇n 7〇 FT IR 上測試此等樣品以利用6.〇版之〇pus軟體測定約966厘米 之丁二烯吸收度(方法B面積計算)。,,摻入%,,係以下列公 式為基礎: 摻入% =(樣品吸收面積)/(該存於瀝青中之經預分散聚 合物濃縮物之峰值吸收面積)xl 〇〇 根據母案,序號12/173,571(將其以引用方式併入本文 中)及上述數據製造包含5% Suncor PG 58-28及95%Kraton 1)1 Π 8 KT之存於瀝青中之經預分散聚合物濃縮物。於類似 上述條件下,將該存於瀝青中之經預分散聚合物濃縮物加 入SmicorPG 58-28稀釋劑瀝青中。加入足量之存於瀝青中 之經預分散聚合物濃縮物以達相同6%之聚合物含量(以瀝 青之重量計)。 14 201120166 比較結果係表示於表1中: 混合時間 約966厘米 1之波峰面積 摻入% (分鐘) Kraton D1118 PC1118 Kraton Dll 18 PC1118 KT KT 10 0.0255 0.0373 12.5% 18.3% 20 0.0410 0.0685 20.1% 33.6% 30 0.0670 0.0977 32.8% 47.9% 45 0.0953 0.1365 46.7% 66.9% 60 0.1127 0.1707 55.2% 83.7% 90 0.1527 0.1840 74.8% 90.2% 120 0.1790 0.1953 87.7% 95.8% 150 0.1943 0.1947 95.3% 95.4% 180 0.1903 0.2000 93.3% 98.0% 240 0.1940 0.2040 95.1% 100.0% 表#1 Kraton D1118 KT 及 PCI 118 之推入時間 實施例#2 以6% Kraton D1101 KT聚合物利用實施例#1之程序, 其中該聚合物係呈多孔粒之物理形式之高分子量線性SBS 聚合物。此外,製造包含10% Suncor PG 58-28及90% Kraton D 11 0 1 KT之存於瀝青中之經預分散聚合物濃縮物。加入足 量之存於瀝青中之經預分散聚合物濃縮物以達相同6%之聚 合物含量(以瀝青之重量計)。 15 201120166 比較結果係表示於表2中: 混合時間 約966厘米' 1之波峰面積 摻入% (分鐘) Kraton D1101 PC1101 Kraton D1101 PC1101 KT KT 10 0.0150 0.0185 6.1% 7.5% 20 0.0255 0.0543 10.4% 22.1% 30 0.0320 0.0727 13.0% 29.5% 45 0.0420 0.1148 17.1% 46.6% 60 0.0585 0.1630 23.8% 66.2% 90 0.0845 0.1937 34.3% 78.6% 120 0.1095 0.2103 44.5% 85.4% 150 0.1340 0.2087 54.4% 84.7% 180 0.1800 0.2295 73.1% 93.2% 240 0.1727 0.2160 70.1% 87.7% 300 0.2100 0.2463 85.3% 100.0% 表#2 Kraton D1101 KT及PC1101之摻入時間 實施例#3 以6% Dynasol Solprene 416聚合物利用實施例#1之程 序,其中該聚合物係呈多孔粒之物理形式之中分子量徑向 SBS聚合物。此外,製造包含10% Suncor PG 58-28及90% Dynasol Solprene 41 6之存於瀝青中之經預分散聚合物濃縮 物。加入足量之存於瀝青中之經預分散聚合物濃縮物以達 16 201120166 相同6 %之聚合物含量(以瀝青之重量計)。 於不同時間收集樣品,測試之並將數據詳列於表#3中: 混合時間 約966厘米· 1之波峰面積 摻入% (分鐘) Solprene 416 PC 416 Solprene 416 PC 416 10 0.0310 0.0227 10.9% 8.0% 20 0.0508 0.0453 17.9% 15.9% 30 0.0703 0.0657 24.7% 23.1% 45 0.0953 0.1043 33.5% 36.7% 60 0.1167 0.1543 41.0% 54.3% 90 0.1853 0.2370 65.2% 83.4% 120 0.2250 0.2497 79.1% 87.8% 180 0.2465 0.2443 86.7% 85.9% 240 0.2373 0.2633 83.5% 92.6% 300 0.2473 0.2747 87.0% 96.6% 360 0.2568 0.2843 90.3% 100.0% 表#3 Solprene 416及PC416之摻入時間 實施例#1、2及3之摻入時間係由原始數據内推算得。 結果與因摻入提高而增加之吸收度表示於表#4中。 17 201120166 約966厘米-1之峰值 推入時間 增加之吸收 吸收面積 聚合物 經預分散 度 Kraton 1118KT 0.2040 129 89 4.90% Kraton 1101KT 0.2463 298 248 14.80% Solprene 416 0.2843 354 217 9.70% 表#4摻入時間及增加之摻入 在所有情況下,存於瀝青中之經預分散聚合物濃縮物 之摻入時間係低於對應多孔粒。此外,所有存於瀝青中之 經預分散聚合物濃縮物的摻入量相對於對應多孔粒係較高 的。 實施例#4 一種包含 5% Trigent PG 67-22 瀝青及 95% Kraton 1)1118 KT線性SB-SBS聚合物之存於瀝青中之經預處理聚 合物濃縮物。 該存於瀝青中之經預分散聚合物濃縮物係根據下列加 工參數以同向旋轉雙螺旋擠壓機製得: •比能量為約1.19仟瓦/公斤, •滯留時間為約1 1.6秒, •無向量剪切量為約3,142, •RPM 為 600。 此外,該經預分散聚合物濃縮物係藉由Gala水下製粒 18 201120166 機製成粒狀,產生實質上直徑為約0.25”之球粒。該存於瀝 青中之所得經預分散聚合物濃縮物具有36.04磅/立方英呎 之鬆散體密度。 隨攪拌將該存於瀝青中之所得經預分散聚合物濃縮物 加入177°CTrigent稀釋劑瀝青中以產生6%經聚合物改質之 瀝青。此係在原尺寸加工設備處以標準操作及低剪切混合 設備完成。 同樣地,將6%鬆散體密度為26.25磅/立方英呎之 Kraton Dl 118 KT聚合物在與直接比較物相同之混合條 件、混合容器及加工相同批次尺寸下加入177°CTrigent瀝青 中。結果如下。 換入時間 批次循環時間(分鐘) (分鐘) 150 270 60 120 56% 添加時間 (分鐘)The Bruker 0ptics Veriz〇n 7〇 of the Industries Miracle ATR was tested on FT IR to determine the butadiene absorbance of about 966 cm (calculated as Method B area) using the 〇pus software of the 6. 〇 version. , incorporation of %, based on the following formula: Incorporation % = (sample absorption area) / (the peak absorption area of the predispersed polymer concentrate in the asphalt) x l 〇〇 according to the parent case, Pre-dispersed polymer concentrate in bitumen containing 5% Suncor PG 58-28 and 95% Kraton 1) 1 Π 8 KT in bitumen, Serial No. 12/173,571, which is incorporated herein by reference in its entirety herein. . The predispersed polymer concentrate in the bitumen was added to the SmicorPG 58-28 thinner pitch under conditions similar to those described above. A sufficient amount of the predispersed polymer concentrate in the bitumen is added to achieve the same 6% polymer content (by weight of the bitumen). 14 201120166 The comparison results are shown in Table 1: The mixing time is about 966 cm 1 and the peak area is incorporated in % (minutes) Kraton D1118 PC1118 Kraton Dll 18 PC1118 KT KT 10 0.0255 0.0373 12.5% 18.3% 20 0.0410 0.0685 20.1% 33.6% 30 0.0670 0.0977 32.8% 47.9% 45 0.0953 0.1365 46.7% 66.9% 60 0.1127 0.1707 55.2% 83.7% 90 0.1527 0.1840 74.8% 90.2% 120 0.1790 0.1953 87.7% 95.8% 150 0.1943 0.1947 95.3% 95.4% 180 0.1903 0.2000 93.3% 98.0% 240 0.1940 0.2040 95.1% 100.0% Table #1 Kraton D1118 Push-in time for KT and PCI 118 Example #2 The procedure of Example #1 was utilized with 6% Kraton D1101 KT polymer, wherein the polymer was in the physical form of porous particles. High molecular weight linear SBS polymer. In addition, a predispersed polymer concentrate in asphalt was prepared comprising 10% Suncor PG 58-28 and 90% Kraton D 11 0 1 KT. A sufficient amount of the predispersed polymer concentrate in the bitumen is added to achieve the same 6% polymer content (by weight of the bitumen). 15 201120166 The comparison results are shown in Table 2: Mixing time about 966 cm '1 peak area incorporation % (minutes) Kraton D1101 PC1101 Kraton D1101 PC1101 KT KT 10 0.0150 0.0185 6.1% 7.5% 20 0.0255 0.0543 10.4% 22.1% 30 0.0320 0.0727 13.0% 29.5% 45 0.0420 0.1148 17.1% 46.6% 60 0.0585 0.1630 23.8% 66.2% 90 0.0845 0.1937 34.3% 78.6% 120 0.1095 0.2103 44.5% 85.4% 150 0.1340 0.2087 54.4% 84.7% 180 0.1800 0.2295 73.1% 93.2% 240 0.1727 0.2160 70.1% 87.7% 300 0.2100 0.2463 85.3% 100.0% Table #2 Kraton D1101 KT and PC1101 Incorporation Time Example #3 The procedure of Example #1 was utilized with 6% Dynasol Solprene 416 polymer, wherein the polymer system was Among the physical forms of porous particles is a molecular weight radial SBS polymer. In addition, a predispersed polymer concentrate in the asphalt containing 10% Suncor PG 58-28 and 90% Dynasol Solprene 41 6 was produced. A sufficient amount of the predispersed polymer concentrate in the bitumen is added to achieve the same 6% polymer content (by weight of the asphalt) of 16 201120166. Samples were collected at different times, tested and the data are detailed in Table #3: Mixing time approx. 966 cm · 1 crest area in % (minutes) Solprene 416 PC 416 Solprene 416 PC 416 10 0.0310 0.0227 10.9% 8.0% 20 0.0508 0.0453 17.9% 15.9% 30 0.0703 0.0657 24.7% 23.1% 45 0.0953 0.1043 33.5% 36.7% 60 0.1167 0.1543 41.0% 54.3% 90 0.1853 0.2370 65.2% 83.4% 120 0.2250 0.2497 79.1% 87.8% 180 0.2465 0.2443 86.7% 85.9% 240 0.2373 0.2633 83.5% 92.6% 300 0.2473 0.2747 87.0% 96.6% 360 0.2568 0.2843 90.3% 100.0% Table #3 Incorporation time of Solprene 416 and PC416 The incorporation time of Examples #1, 2 and 3 was calculated from the original data. . The results and the increase in absorbance due to the increase in the incorporation are shown in Table #4. 17 201120166 Approximately 966 cm-1 peak push time increased absorption absorption area Polymer predispersion Kraton 1118KT 0.2040 129 89 4.90% Kraton 1101KT 0.2463 298 248 14.80% Solprene 416 0.2843 354 217 9.70% Table #4 Incorporation time And increased incorporation, in all cases, the incorporation of the predispersed polymer concentrate in the bitumen is less than the corresponding porous particles. In addition, all of the predispersed polymer concentrates present in the bitumen are incorporated in relatively high amounts relative to the corresponding porous granules. Example #4 A pretreated polymer concentrate in bitumen comprising 5% Trigent PG 67-22 bitumen and 95% Kraton 1) 1118 KT linear SB-SBS polymer. The predispersed polymer concentrate in the bitumen is obtained by a co-rotating twin screw extrusion mechanism according to the following processing parameters: • a specific energy of about 1.19 watts/kg, • a residence time of about 1 1.6 seconds, • The vector-free shear is approximately 3,142, and the RPM is 600. In addition, the predispersed polymer concentrate is granulated by Gala underwater granulation 18 201120166 to produce pellets having a diameter of substantially 0.25". The resulting predispersed polymer in the asphalt The concentrate had a bulk density of 36.04 lbs/cubic inch. The resulting predispersed polymer concentrate in the bitumen was added to the 177 °C Trigent diluent bitumen with stirring to produce 6% polymer modified bitumen. This was done at the original size processing equipment using standard operation and low shear mixing equipment. Similarly, a mixing condition of 6% Kraton Dl 118 KT polymer with a bulk density of 26.25 lbs/cubic inch was used in the same comparison as the direct comparison. Add the mixing vessel and the same batch size to the 177 °C Trigent asphalt. The results are as follows. Change time batch cycle time (minutes) (minutes) 150 270 60 120 56% Add time (minutes)

Kraton D1118 120 PC 1118 60 *受地面運輸系統之速度所限制 循環時間改善 表#5-添加及摻入時間之實地比較 儘可能快速地加入Kraton D111 8 KT並避免在流體表 面上聚凝。紀錄將聚合物完全裝入瀝青槽之時間並將其視 為”添加時間”。摻入時間始於完全加入聚合物之後。總時間 為添加時間與摻入時間之總和。Kraton D1118 120 PC 1118 60 * Limited by the speed of the ground transportation system Cycle time improvement Table #5 - Field comparison of addition and incorporation time Add Kraton D111 8 KT as quickly as possible and avoid condensation on the fluid surface. Record the time at which the polymer is completely loaded into the asphalt tank and treat it as the "addition time". The incorporation time begins after the polymer is completely added. The total time is the sum of the addition time and the incorporation time.

如地面運輸系統操作材料般快地加入存於瀝青PC 19 201120166 111 8 KT之經預分散聚合物濃縮物而無任何在稀釋劑瀝青 中聚凝的跡象。添加時間可獲降低,或許因略微重新設計 操作設備而顯著降低。該經預分散聚合物濃縮物降低批次 循環時間56%。 該存於瀝月中之經預分散聚合物濃縮物徹底改變該珠 粒之物理性質。表#6說明鬆散體密度之顯著變化。The predispersed polymer concentrate stored in bitumen PC 19 201120166 111 8 KT was added as quickly as the ground transportation system operating material without any signs of coagulation in the diluent bitumen. The addition time can be reduced, perhaps significantly reduced by a slight redesign of the operating device. The predispersed polymer concentrate reduced the batch cycle time by 56%. The predispersed polymer concentrate contained in the leachate completely changes the physical properties of the beads. Table #6 illustrates a significant change in bulk density.

Kraton D1118 KT PC 1118 増加之體密度 碎/立方英呎 磅/立方英呎 26.25 36.04 37% Solprene 416 PC 416 21.35 32.66 53% 表#6鬆散體密度之比較 在所有情況1F,存於瀝青中含有>26%聚合物含量之經 預分散聚合物I缩物說明遠較高之鬆散體密《。出乎意料 之外’存於瀝青複合物中之較高鬆散體密度之經預分散聚 合物的摻入時間明顯低於多孔或粉狀聚合物。再者,該存 於瀝月中之經預分散聚合物濃縮物可經操作容易地降低添 加時間以顯著降低將聚合物摻入瀝青之總時間。 應瞭解及理解本文所述任何存於遞青組合物中之經預 分散聚合物濃縮物之實施例可以製造上述存於遞青中之經 預分散聚合物濃縮物之方法實施。 由上述描述,明顯本發明可經修改以完成本文所述以 及彼等本發明利有之目的並達到其等優點。冑然已描述 20 201120166 本發明目前較佳實施例以達此揭示内容之目的,但應理解 可進行多項熟諳此技者容易聯想到且在所揭示及主張之本 發明精神内完成之改變。 【圖式簡單說明】 無 【主要元件符號說明】 益 21Kraton D1118 KT PC 1118 体 之 密度 / 立方 立方 立方 立方 呎 呎 26.25 36.04 37% Solprene 416 PC 416 21.35 32.66 53% Table #6 Comparison of loose bulk density in all cases 1F, stored in asphalt The pre-dispersed polymer I shrinkage of 26% polymer content indicates a much higher loose bulk density. Unexpectedly, the pre-dispersed polymer having a higher bulk density in the asphalt composite has a significantly shorter incorporation time than the porous or powdered polymer. Further, the predispersed polymer concentrate present in the leach month can be operated to easily reduce the addition time to significantly reduce the total time the polymer is incorporated into the asphalt. It will be understood and appreciated that the examples of any of the predispersed polymer concentrates described herein which are present in the bidet composition can be practiced by the method of making the predispersed polymer concentrate described above. From the above description, it is apparent that the invention can be modified to accomplish the objects and advantages of the invention as set forth herein. The present invention has been described with reference to the preferred embodiments of the present invention. It is to be understood that the present invention is susceptible to various modifications of the present invention. [Simple description of the diagram] None [Key component symbol description] Benefit 21

Claims (1)

201120166 七、申請專利範圍: 1. 一種存於黏結劑中之經$I 其包 頂慝理糸合物濃縮物 黏結劑;及 主 &gt;、一種聚合物 一% *rr /r;、 經預處理聚合物濃縮物重量之26重量%以上, 其中該存於黏結劑中之經預處理聚合物濃縮物 剪切條件下快速地摻入稀釋劑黏結劑中。 2.如申請專利範圍第!項之存於黏結劑中之經預處王 聚合物濃縮物’其中該聚合物佔該存於黏結劑中之經⑻ 理聚合物濃縮物重量之5 〇重量。以上。 3.如申請專利範圍第i項之存於黏結劑中之經預處理 聚合物濃縮物’其中該聚合物佔該存於黏結劑中之經預處 理聚合物濃縮物重量之75重量%以上。 4.如申請專利範圍帛Μ之存於黏結劑中之經預處理 聚合物濃縮物’其中該聚合物佔該存於黏結劑中之經預處 理聚合物濃縮物重量之85重量%以上。 5·如申請專利範圍f Μ之存於黏結劑中之經預處理 a 。物/農 '缩物’其巾將該經預處理聚_合物濃縮物製成可保 持個別粒狀之珠粒。 _ 6.如申請專利範圍帛i項之存於黏結劑中之經預處理 聚合物濃縮物,其中該經預處理聚合物濃縮物具有大於28 時/立方英呎之鬆散體密度。 7.如申請專利範圍第丨項之存於黏結劑中之經預處理 22 201120166 聚合物濃縮物,其中該經預處理聚合物濃縮物具有大於30 磅/立方英呎之鬆散體密度。 . 8. 如申請專利範圍第1項之存於黏結劑中之經預處理 聚合物濃縮物’其中該經預處理聚合物濃縮物具有大於32 磅/立方英呎之鬆散體密度。 9. 如申請專利範圍第1項之存於黏結劑中之經預處理 聚合物濃縮物’其中該存於黏結劑中之經預處理聚合 縮物在正常溫度下穩定並可無加熱地儲存及運輸。 二如申請專利範圍f】項之存於黏結劑中之經預處理 n缩物,其中該黏結劑包含大於25%之遞青。 11. 如申請專利範圍第丨項之存 聚合物濃縮物,其中該黏結劑包含舊=劑中之經預處理 機油成分及/或副產物。 货裂之售 12. 如申請專利範圍第i項之存 聚合物濃縮物,其中該黏結劑包含生:基:丨中之經預處理 物及/或副產物。 土 /粗或精製產 U,種製造存於黏結劑中之經預處理 方法’其包括: 物農縮物之 將黏結劑加入巨大剪切裝置中;並 將至少一種聚合物以足夠量加入該巨, 產生具有26%以上之聚合物之存於黏結剪切裝置中以 合物濃縮物(以存於黏結劑中之經預處理聚八、星預處理聚 量叶),其中該存於黏結劑中之經預處理聚入濃縮物的重 低剪切條件下快速地摻入稀釋劑黏結劑;。5物濃縮物可在 23 201120166 17.如申請專利範圍第13項之方法 該至少一種聚合物進行混合,其中所用 置中係大於約0.025仟瓦/公斤之能量。 14.如申請專利範圍第l3 該至少一種聚合物進行混合 250 » 15.如申請專利範圍第1 3 該至少一種聚合物進行混合 1,000。 16·如申請專利範圍第13 該至少一種聚合物進行混合 1,500。 18.如申請專利範圍第13 該至少一種聚合物進行混合 置中係大於約0.05仟瓦/公斤 項之方法,其中令該黏結劑及 其中無向量剪切量係大於約 項之方法,其中令該黏結劑及 其中無向量剪切量係大於約 項之方法,其中令該黏結劑及 其中無向量剪切量係大於約 其中令該黏結劑及 月色量在該南煎切裝 項之方法’其中令該黏結劑及 其中所用能量在該高剪切裝 之能量。 19. 如申請專利範圍第13項之方法,其中令該黏結劑 該至少-種聚合物進行混合,其中所用能量在該高剪切 置中係大於約〇.1〇仟瓦/公斤之能量。 20. 如申請專利範圍第13項之方法,其中該黏結劑及 至少一種聚合物係在大於1〇〇psi下經處理。 η.如申請專利範圍第13項之方法,其另外包括將存 黏、’口齊]中之、’’呈預處理聚合物濃縮物製成可保持個別粒狀 珠粒。 22·如中請專利範圍帛13項之方法,其t該經預處理聚 24 201120166 合物濃縮物具有大於28磅/立方英呎之鬆散體密度。 23. 如申明專利範圍第13項之方法其中該經預處理聚 合物濃縮物具有大於30磅/立方英呎之鬆散體密度。 24. 如申請專利範圍第13項之方法,其中該經預處理聚 合物濃縮物具有大於32磅/立方英呎之鬆散體密度。 25. 如申請專利範圍第13項之方法,其中該存於黏結劑 中之經預4 !里t合物濃縮物在丨常溫度下穩定並可無加熱 地儲存及運輸。 26. 如申請專利範圍第13項之方法,其中該黏結劑包 大於25%之瀝青。 27. 如申請專利範圍第13項之方法,其中該黏結劑包含 舊機油、經再精製之舊機油成分及/或副產物。 28. 如申請專利範圍第13項之方法,其中該黏結劑包含 生物基油、粗或精製產物及/或副產物。 Μ.如申請專利範圍第13項之方法,其中該存於黏結劑 中之經預處理聚合物濃縮物可以少於3小時分散 黏結劑中。 怦削 30.如申請專利範圍第13項之方法,其中該存於點結劑 之經預處理聚合物濃縮物可以少於2小時分散於稀釋劑 毒占結劑中。 31·如申請專利範圍帛13帛之方法’其中該存於黏結劑 :經預處理聚合物濃縮物可以少於丨小時分散於 黏結劑中。 〜 32.—種存於黏結劑中之經預處理聚合物濃縮物,其係 25 201120166 根據申請專利範圍第1 3項之方法製得。 八、圖式: 益 φ *»&gt; 26201120166 VII. The scope of application for patents: 1. A $I-containing top-coating conjugate concentrate binder in the binder; and the main &gt;, a polymer-% *rr /r; The treated polymer concentrate is 26% by weight or more by weight, wherein the pretreated polymer concentrate present in the binder is rapidly incorporated into the diluent binder under shear conditions. 2. If you apply for a patent scope! The pre-treated polymer concentrate in the binder wherein the polymer comprises 5 parts by weight of the weight of the (8) polymer concentrate present in the binder. the above. 3. The pretreated polymer concentrate in the binder as claimed in claim i wherein the polymer comprises more than 75% by weight of the weight of the pretreated polymer concentrate present in the binder. 4. The pretreated polymer concentrate in the binder as claimed in the scope of the patent, wherein the polymer comprises more than 85% by weight of the weight of the pretreated polymer concentrate present in the binder. 5. Pre-treatment a in the binder as claimed in the patent scope f Μ. The material/farmer 'retracted' of the pretreated poly-compound concentrate is made into beads which can hold individual granules. 6. The pretreated polymer concentrate in the binder as claimed in claim ii, wherein the pretreated polymer concentrate has a bulk density of greater than 28 hours per cubic foot. 7. The pretreated 22 201120166 polymer concentrate as claimed in claim 3, wherein the pretreated polymer concentrate has a bulk density of greater than 30 pounds per cubic foot. 8. The pretreated polymer concentrate in the binder as claimed in claim 1 wherein the pretreated polymer concentrate has a bulk density of greater than 32 lbs/cubic inch. 9. The pretreated polymer concentrate contained in the binder as claimed in claim 1 wherein the pretreated polymeric shrinkage present in the binder is stable at normal temperature and can be stored without heating and transport. 2. The pretreated n-nose contained in the binder as claimed in claim f, wherein the binder comprises greater than 25% of the fairing. 11. The polymer concentrate of claim 3, wherein the binder comprises a pretreated engine oil component and/or by-product in the old agent. The sale of a cargo cracker 12. The polymer concentrate as claimed in claim i, wherein the binder comprises a pretreatment and/or a by-product of the raw: base. Soil/crude or refined U, a pretreatment method for producing a binder, which comprises: adding a binder to a giant shearing device; and adding at least one polymer to the binder in a sufficient amount Giant, producing a concentrate having 26% or more of the polymer in the binder shearing device (pretreated poly-octagonal, star-pretreated polyfoliate in the binder), wherein the deposit is in the bond The diluent is quickly incorporated into the concentrate under the conditions of heavy pre-concentration and concentration into the concentrate; The 5 concentrate can be used at 23 201120166 17. The method of claim 13 wherein the at least one polymer is mixed, wherein the medium is greater than about 0.025 watts/kg of energy. 14. The at least one polymer is mixed as in the patent application section l3. 250. 15. As claimed in claim 1, the at least one polymer is mixed 1,000. 16. As claimed in claim 13, the at least one polymer is mixed 1,500. 18. The method of claim 13, wherein the at least one polymer is mixed with a medium greater than about 0.05 watts/kg, wherein the binder and the medium-free shear amount thereof are greater than about, wherein The binder and the medium-free shear amount thereof are greater than about the method, wherein the binder and the medium-free shear amount thereof are greater than about a method in which the binder and the moon color are in the south frying item 'Where the binder and the energy used therein are at the high shear energy. 19. The method of claim 13, wherein the at least one polymer is mixed, wherein the energy used is greater than about 0.1 watts/kg of energy in the high shear. 20. The method of claim 13, wherein the binder and the at least one polymer are treated at greater than 1 psi. η. The method of claim 13, which additionally comprises depositing, affixing, and pre-forming the polymer concentrate to maintain individual granular beads. 22. The method of claim 13, wherein the pretreated polymer has a bulk density of greater than 28 pounds per cubic inch. 23. The method of claim 13 wherein the pretreated polymer concentrate has a bulk density of greater than 30 pounds per cubic foot. 24. The method of claim 13, wherein the pretreated polymer concentrate has a bulk density of greater than 32 pounds per cubic foot. 25. The method of claim 13, wherein the pre-concentrated concentrate in the binder is stable at ambient temperature and can be stored and transported without heating. 26. The method of claim 13, wherein the binder comprises more than 25% bitumen. 27. The method of claim 13, wherein the binder comprises an old motor oil, a rerefined old engine oil component and/or a by-product. 28. The method of claim 13, wherein the binder comprises a bio-based oil, a crude or refined product, and/or a by-product. The method of claim 13, wherein the pretreated polymer concentrate present in the binder can be dispersed in the binder in less than 3 hours. The method of claim 13, wherein the pretreated polymer concentrate present in the spotting agent is dispersed in the diluent poisoning agent in less than 2 hours. 31. The method of claim </ RTI> </ RTI> </ RTI> wherein the presence of the binder: the pretreated polymer concentrate can be dispersed in the binder in less than one hour. ~ 32. - Pretreated polymer concentrate in a binder, which is obtained according to the method of claim 13 of the patent application. Eight, schema: benefit φ *»&gt; 26
TW99101917A 2009-12-04 2010-01-25 Super concentrated polymer-binder composite TW201120166A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/631,305 US20100081738A1 (en) 2007-08-20 2009-12-04 Super concentrated polymer-binder composite

Publications (1)

Publication Number Publication Date
TW201120166A true TW201120166A (en) 2011-06-16

Family

ID=45045045

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99101917A TW201120166A (en) 2009-12-04 2010-01-25 Super concentrated polymer-binder composite

Country Status (1)

Country Link
TW (1) TW201120166A (en)

Similar Documents

Publication Publication Date Title
Liu et al. Effects of polyethylene‐grafted maleic anhydride (PE‐g‐MA) on thermal properties, morphology, and tensile properties of low‐density polyethylene (LDPE) and corn starch blends
US9102834B2 (en) Method for producing agglomerates having rubber and wax, agglomerates produced according to the method, and use of the agglomerates in asphalt or bitumen masses
Blanco et al. Thermal characterization of a series of lignin-based polypropylene blends
CN101805524B (en) Preparation method of waste rubber powder-modified asphalt with high-temperature storage property
WO2014070830A1 (en) Blending lignin with thermoplastics and a coupling agent or compatibilizer
CN102050965A (en) Asphalt modifier granule composition and preparation method thereof
Baccouch et al. Experimental investigation of the effects of a compatibilizing agent on the properties of a recycled poly (ethylene terephthalate)/polypropylene blend
WO2019195915A1 (en) Hot-melt formulations utilizing depolymerized polymeric material
CN104710134A (en) Storage-stable and ageing-resistant composite SBS particle modified asphalt concrete and preparation method thereof
WO2021154446A1 (en) Earth plant compostable biodegradable substrate and method of producing the same
CN113474262A (en) Soil plant compostable biodegradable substrate and method for producing the same
CN1252826A (en) Polymer stabilized bitumen granulate
CN108384208B (en) PET-based wood-plastic composite material and preparation method thereof
CN105733275A (en) Rubber asphalt and preparation method thereof
Yan et al. Screw extrusion process used in the polymer modified asphalt field: A review
Wang et al. Influence of EVA-g-MAH compatibilizer on adhesion strength, mechanical properties and thermal behavior of EVA/SBS hot melt adhesive blends
Khalaf et al. Compatibility study in natural rubber and maize starch blends
TW201120166A (en) Super concentrated polymer-binder composite
Agrawal et al. Rheological and mechanical properties of poly (lactic acid)/bio-based polyethylene/clay biocomposites containing montmorillonite and vermiculite clays
Khemakhem et al. Composites based on (ethylene–propylene) copolymer and olive solid waste: Rheological, thermal, mechanical, and morphological behaviors
US20130261232A1 (en) Super concentrated polymer-binder composite
Mishra et al. Polymer nanoparticles: their effect on rheological, thermal, and mechanical properties of linear low‐density polyethylene (LLDPE)
Zaaba et al. The influence of different compounding sequence and peanut shell powder loading on properties of polylactic acid/thermoplastic corn starch biocomposites
AU758670B2 (en) Method for rubberizing and/or pelletizing trinidad lake asphalt
CN104151498A (en) Preparation method for multi-component composite grafting modification resins used for hot melt adhesive