TW201119451A - Method and apparatus for transmit power control for multiple antenna transmissions in the uplink - Google Patents

Method and apparatus for transmit power control for multiple antenna transmissions in the uplink Download PDF

Info

Publication number
TW201119451A
TW201119451A TW099133722A TW99133722A TW201119451A TW 201119451 A TW201119451 A TW 201119451A TW 099133722 A TW099133722 A TW 099133722A TW 99133722 A TW99133722 A TW 99133722A TW 201119451 A TW201119451 A TW 201119451A
Authority
TW
Taiwan
Prior art keywords
power
wtru
antenna
dpdch
channel
Prior art date
Application number
TW099133722A
Other languages
Chinese (zh)
Other versions
TWI519189B (en
Inventor
Benoit Pelletier
Luijing Cai
Hong Zhang
Original Assignee
Interdigital Patent Holdings
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Interdigital Patent Holdings filed Critical Interdigital Patent Holdings
Publication of TW201119451A publication Critical patent/TW201119451A/en
Application granted granted Critical
Publication of TWI519189B publication Critical patent/TWI519189B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0465Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking power constraints at power amplifier or emission constraints, e.g. constant modulus, into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
  • Transmitters (AREA)

Abstract

Techniques for transmit power control for multiple antenna transmissions in an uplink are disclosed. A wireless transmit/receive unit (WTRU) generates at least one input stream for transmission and applies a gain factor to each channel. The gain factor is determined based on a reference channel power estimate. The WTRU generates at least two data streams from the input stream for transmission via a plurality of antennas and applies weights to the data streams. The gain factor and/or the weights are controlled such that a transmit power on each antenna is within a maximum allowed value. The WTRU may perform power scaling on a condition that a transmit power on any antenna exceeds the maximum allowed value. The WTRU may scale down an enhanced dedicated channel (E-DCH) dedicated physical data channel (E-DPDCH) first before other channels. For multiple E-DCH streams, the WTRU may calculate an E-DPDCH power offset based on an additional power offset factor due to multiple stream transmission.

Description

201119451 六、發明說明: 【發明所屬之技術領域】 [0001] 相關申請案的交互參考 本申請案要求2009年1〇月2曰提交的美國臨時申請案 61/248, 034和2009年1〇月2日提交的美國臨時申請案 61/247,995的優先權,其内容於此併入本文以作為參考 [先前技術3 [0002]對於無線通信業務的需求已顯著地增長,既有對語音業 務也有對資料業務錢篱求。為了滿足增長的需求,開發 了新的無線技術。例如,在第三代合作夥伴計畫(3Gpp )寬頻碼分多址存取(WCDMA)中,在第5版和第6版中分 別引入了高速下行鏈路封包存取(HSDpA)和高速上行鏈 路封包存取(HSUPA),以達到頻譜效率和峰值資料率的 顯著增長。 空中傳播的無線信號料受到各種信號損_,包括傳輸 損耗、遮蔽、多徑_、乡普勒頻移等等。多徑衰落或 快速衰落是由具有變化相姊㈣的料錢的複製的 組合所造成的’所述變化相位和幅度是起因 徑中所遇到的物體上的反射。多 、傳播路 收信號功率的波動。 农洛導致不需要的接 已開發了發射分集方案來用於處理衰落的 射分集是在多個獨立的路經上發送相同信#作用。 射分集是通過在時間上的不同時 Q』的方案。 ………….時刻(時間分集)'名 綠 099133722 1、π间分隹λ 同頻率載波或子載波(頻率分集)、。 杲) 間分集)上發送相同信號而實二不同天 表單編號Α0101 第4頁/共Μ頁、下行鰱 201119451 、閉環和開環兩者,是WCDMA規範的一部分。 多天線技術,例如發射分集/波束成形或多輸入多輸出( ΜΙΜΟ),沒有被HSUPA採納。增強的上行鏈路性能對降 低WTRU發射功率需求是重要的,尤其對於高資料速率應 用。除了降低的WTRU電池消耗之外,改進的UL性能針對 高資料速率業務轉化為更好的覆蓋範圍。 功率控制是干擾受限多用戶通信系統中對干擾管理的重 要因素’尤其對於基於碼分多址(CDMA)的犯肝々系統 。在這樣的系統中,每個用戶的性能不僅依賴於自身的 發送’還依賴於其他甩戶的發送。用於 行鏈路的習用功率控制機制係基於單輸入單輸出(SIS〇 )系統的,其中僅有一個天線同時用於發射機端和接收 機端。 【發明内容】 [0003] 〇 099133722 用於對上行鏈路中的多天線傳輸進行發射节率控制的實 施方式被揭示。無線發射/接收單元產生用於傳 輸的至少一個輸入流’並對每個通道應用增益因數。所 述增益因數係基於參考通道功率估'計而被破定。WTRU從 輸入流中產生用於經由多個天線傳輸的至少兩資料流, 並對所述資料流應用權重。增益因數和/或權重被控制以 使得每個天線上的發射功率在最大允許值内。在任一天 線上的發射功率超過最大允許值的情況下,可執行 功率縮放。WTRU可首先在其他通道之前縮小增強型專用 通道(E-DCH)專用物理資料通道(E_DpDCH)。對於多 個E-DCH流’ WTRU可基於由多流傳輸引起的額外功率偏 移因數來計算E-DPDCH功率偏移。 1003016704-0 表單編號A0101 第5頁/共69頁 201119451 【實施方式】 [0004] 第1 A圖是可以執行一個或多個所揭示實施方式的示例性 通信系統100的示意圖。通信系統100可以是多存取系統 ,其向多個無線用戶提供例如語音、資料、視頻、消息 、廣播等等内容。通信系統100可以使多個無線用戶能夠 通過系統資源的分享來存取所述内容,所述系統資源包 括無線帶寬。例如,通信系統100可使用一個或多個通道 存取方法,例如碼分多址存取(CDMA)、時分多址存取 (TDMA)、頻分多址存取(FDMA)、正交FDMACOFDMA )、單載波FDMA (SC-FDMA)等等。 如第1A圖所示,通信系統100可包括無線發射/接收單元 (WTRU) 102a、102b、102c、102d,無線電存取網路 (RAN) 104 ,核心網路106,公共交換電話網路(PSTN )108,網際網路110和其他網路112,然而應該理解的 是所揭示的實施方式考慮到了任何數量的WTRU、基站、 網路和/或網路元件。WTRU 102a、102b、102c、102d 中的每一値可以是配置以在無線環境中進行操作和/或通 信的任何類型的設備。藉由示例,WTRU 102a、102b、 102c、102d可被配置以發送和/或接收無線信號,並且 可以包括用戶設備(UE)、移動台、固定或移動用戶單 元、尋呼機、蜂窩電話、個人數位助理(PDA)、智慧型 電話、膝上型電腦、小筆電(netbook)、個人電腦、無 線感測器、消費性電子產品等等。 通信系統100還可以包括基站114a和基站114b。基站 114a、114b中的每一個可以是被配置以與WTRU 102a、 102b、102c、102d中至少一個無線接入的任何類型設備 099133722 表單編號A0101 第6頁/共69頁 1003016704-0 ,以促進存取一個或 一 網際網路lln 一 個通信網路,例如核心網路106、 U4b可以β #/或網路112。藉由示例,基站U4a、 B、家庭::發信台(BTS)、節點B、演進型節點 (AP)豕庭廣進型節_、站點控制11、存取點 被描述為單—=器等等。雖然基站114a、114b每一者 包括任何數量Γ二應該理解的是基站114a、u4b可以 連的基站和/或網路元件。 :括复 是RAN1Q4的1分,所述謹刚還可 器基站和/或網路元件(未示出),例如基站控制 。 、無線電網路控制器(RNC)、中繼節點等等 土站114a和/或基站U4b可配置以在特定地理區域内 X,和/或接收無線仏號,所料定地理區域可被稱作服 務區。(cel卜未不出)。所述服着區可擎步劃分為服 務區區段。例如,與基站ll4a相關_服務區可劃分為 二個區段。因而’在-個實施方式中,基站114a可包括 三個收發信機,即服務區的每個:區段使用一個收發信機 。在另一個實施方式中,基站144a可使用多輸入多輸出 (ΜΙΜΟ)技術’並且因此可針對服務區的每個區段使用 多個收發信機。 基站114a、114b可通過空中介面116與WTRU l〇2a、 102b、102c、102d中的一個或多個進行通信,所述空中 介面116可以是任何適當的無線通信鍵路(例如,射頻( RF),微波,紅外線UR),紫外線(UV),可見光等 等)。空中介面116可使用任何適當的無線電存取技術( RAT)進行建立。 更具體地,如上所述’通信系統100可以是多存取系統, 表單編號A0101 第7 1/共69頁 10丨 201119451 並且可以使用一個或多個通道存取方案,例如CDMA、 TDMA、FDMA、OFDMA、SC-FDMA等等。例如,ran 1〇4 中的基站114a和WTRU 102a、102b、102c可i乂實現無線 電技術’例如通用移動電信系統(UMTS)地面無線電存 取(UTRA),其可以使用寬頻CDMA(WCDMA)建立空中 介面116。WCDMA可以包括通信協議,例如高迷封包存取 (HSPA)和/或演進型HSPA (HSPA+)。HSPA可以包括 高速下行鏈路封包存取(HSDPA)和/或高速上行鏈路封 包存取(HSUPA)。 在另一個實施方式中,基站H4a和WTRU 102a、i〇2b、 102c可實現無線電技術,例如演進型UMTS地面無線電存 取(E-UTRA) ’其可以使用長期演進j(lTE>和/或高級 LTE ( LTE-A )建立空中介面116。 在另一個實施方式中,基站U 4a和WTRU 102a、l〇2b、 102c可實現無線電技術,例如IEEE 802. 16 (即,全球 互通微波存取(WiMAX) ),CDMA2000,CDMA2000 IX ’ CDMA2000 EV-DO,臨時標準2000 ( IS-2000 ),臨時 標準95 (IS-95),臨時標準856 (IS-856 ),全球移 動通信系統(GSM) ,GSM演進的增強型資料速率(EDGE )’ GSM EDGE (GERAN)等等。 第1 A圖中的基站114b可以是例如無線路由器、家庭節點B 、豕庭演進型節點β或接入點,並且可以使用任何適當的 RAT來促進局部區域中的無線連接,例如商業處所、住宅 、車輛、校園等等。在一個實施方式中,基站U扑和 WTRU l〇2c、i〇2d可以實現無線電技術,例如IEEE 802.11,來建立無線區域網路(WLAN)。在另一個實施 099133722 表單編號A0101 第8頁/共69頁 1003016704-0 201119451 方式中,基站114b和WTRU 102c、102d可以實現無線電 技術’例如IEEE 802. 15,來建立無線個人區域網路( WPAN)。在再一個實施方式中’基站114b和WTRU l〇2c 、102d可以使用基於蜂窩的RAT (例如,WCDMA、 CDMA2000、GSM、LTE、LTE-A等)來建立微微小區或毫 微微小區。如第1A圖所示,基站114 b可以具有到網際網 路110的直接連接。因此’基站114b可以不必須經由核心 網路106來存取網際網路11〇。201119451 VI. Description of the invention: [Technical field to which the invention pertains] [0001] Cross-Reference to Related Applications This application claims US Provisional Application No. 61/248, 034 and January 1st, 2009 submitted in January 2, 2009 Priority is set forth in the U.S. Provisional Application Serial No. 61/247,995, filed on Jan. 2, the content of which is hereby incorporated by reference. Information business money fence. In order to meet the growing demand, new wireless technologies have been developed. For example, in the 3rd Generation Partnership Project (3Gpp) Broadband Code Division Multiple Access (WCDMA), High Speed Downlink Packet Access (HSDpA) and High Speed Uplink were introduced in Release 5 and Version 6, respectively. Link Packet Access (HSUPA) to achieve significant growth in spectral efficiency and peak data rates. The airborne wireless signal material is subject to various signal losses, including transmission loss, shadowing, multipath_, and township frequency shifting. Multipath fading or fast fading is caused by a combination of replicas of the variable phase (4). The phase and amplitude of the change are the reflections on the object encountered in the cause. More, the fluctuation of the transmitted signal power. Nonglo leads to unwanted connections. A transmit diversity scheme has been developed to handle fading. Shooting diversity is the same letter that is sent on multiple independent paths. Shooting diversity is a scheme that passes Q at different times in time. .............Time (time diversity) 'Name Green 099133722 1. π-minute 隹λ Same frequency carrier or sub-carrier (frequency diversity).杲) Inter-diversity) sends the same signal and the actual two different days Form No. Α0101 Page 4 / Total page, Down 鲢 201119451, both closed-loop and open-loop, are part of the WCDMA specification. Multi-antenna techniques, such as transmit diversity/beamforming or multiple-input multiple-output (ΜΙΜΟ), are not adopted by HSUPA. Enhanced uplink performance is important to reduce WTRU transmit power requirements, especially for high data rate applications. In addition to reduced WTRU battery consumption, improved UL performance translates into better coverage for high data rate services. Power control is an important factor in interference management in interference-limited multi-user communication systems, especially for code division multiple access (CDMA) based sputum systems. In such a system, the performance of each user depends not only on its own transmission, but also on the transmission of other accounts. The conventional power control mechanism for the line link is based on a single-input single-output (SIS〇) system in which only one antenna is used for both the transmitter and receiver terminals. SUMMARY OF THE INVENTION [0003] 〇 099133722 An embodiment for transmitting a throttling rate control for multi-antenna transmission in the uplink is disclosed. The wireless transmit/receive unit generates at least one input stream for transmission' and applies a gain factor to each channel. The gain factor is broken based on the reference channel power estimate. The WTRU generates at least two data streams for transmission via the plurality of antennas from the input stream and applies weights to the data streams. The gain factor and/or weight are controlled such that the transmit power on each antenna is within the maximum allowed value. Power scaling can be performed if the transmit power on any of the antennas exceeds the maximum allowed value. The WTRU may first narrow down the Enhanced Dedicated Channel (E-DCH) dedicated physical data channel (E_DpDCH) before other channels. For multiple E-DCH streams, the WTRU may calculate the E-DPDCH power offset based on the additional power offset factor caused by the multi-stream transmission. 1003016704-0 Form No. A0101 Page 5 of 69 201119451 [Embodiment] FIG. 1A is a schematic diagram of an exemplary communication system 100 in which one or more disclosed embodiments may be implemented. Communication system 100 can be a multiple access system that provides content, such as voice, material, video, messaging, broadcast, etc., to multiple wireless users. Communication system 100 can enable multiple wireless users to access the content through the sharing of system resources, including wireless bandwidth. For example, communication system 100 can use one or more channel access methods, such as Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal FDMAC OFDMA. ), single carrier FDMA (SC-FDMA), etc. As shown in FIG. 1A, communication system 100 can include wireless transmit/receive units (WTRUs) 102a, 102b, 102c, 102d, radio access network (RAN) 104, core network 106, public switched telephone network (PSTN). 108, the Internet 110 and other networks 112, however, it should be understood that the disclosed embodiments contemplate any number of WTRUs, base stations, networks, and/or network elements. Each of the WTRUs 102a, 102b, 102c, 102d may be any type of device configured to operate and/or communicate in a wireless environment. By way of example, the WTRUs 102a, 102b, 102c, 102d may be configured to transmit and/or receive wireless signals, and may include user equipment (UE), mobile stations, fixed or mobile subscriber units, pagers, cellular telephones, personal digital assistants (PDA), smart phones, laptops, netbooks, personal computers, wireless sensors, consumer electronics, and more. Communication system 100 can also include base station 114a and base station 114b. Each of the base stations 114a, 114b may be any type of device configured to communicate with at least one of the WTRUs 102a, 102b, 102c, 102d 099133722 Form No. A0101 Page 6 of 69 pages 1003016704-0 to facilitate storage Take one or one internet 11n a communication network, such as core network 106, U4b may be β # / or network 112. By way of example, the base station U4a, B, the family:: the originating station (BTS), the node B, the evolved node (AP), the station control 11, the access point are described as a single-= And so on. While each of the base stations 114a, 114b includes any number, it should be understood that the base stations and/or network elements to which the base stations 114a, u4b can be connected. The coverage is 1 point of RAN1Q4, which may be a base station and/or a network element (not shown), such as a base station control. The radio network controller (RNC), relay node, etc., and/or base station U4b may be configured to X within a particular geographic area, and/or receive wireless nicknames, which may be referred to as services Area. (cel is not out). The service area can be divided into service area sections. For example, associated with base station 11a, the service area can be divided into two sectors. Thus, in one embodiment, base station 114a may include three transceivers, i.e., each of the service areas: the sector uses one transceiver. In another embodiment, base station 144a may use multiple input multiple output (MIMO) technology' and thus multiple transceivers may be used for each segment of the service area. The base stations 114a, 114b can communicate with one or more of the WTRUs 2a, 102b, 102c, 102d via the null plane 116, which can be any suitable wireless communication key (e.g., radio frequency (RF) , microwave, infrared UR), ultraviolet (UV), visible light, etc.). The empty intermediaries 116 can be established using any suitable radio access technology (RAT). More specifically, as described above, 'communication system 100 may be a multiple access system, Form No. A0101, No. 7 1 / Total 69, 10 201119451 and may use one or more channel access schemes, such as CDMA, TDMA, FDMA, OFDMA, SC-FDMA, etc. For example, base station 114a and WTRUs 102a, 102b, 102c in ran 1〇4 may implement a radio technology such as Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access (UTRA), which may be established in the air using Wideband CDMA (WCDMA). Interface 116. WCDMA may include communication protocols such as Bearer Packet Access (HSPA) and/or Evolved HSPA (HSPA+). HSPA may include High Speed Downlink Packet Access (HSDPA) and/or High Speed Uplink Packet Access (HSUPA). In another embodiment, base station H4a and WTRUs 102a, i〇2b, 102c may implement a radio technology, such as Evolved UMTS Terrestrial Radio Access (E-UTRA), which may use Long Term Evolution j (lTE> and/or Advanced LTE (LTE-A) establishes an empty intermediation plane 116. In another embodiment, the base station U 4a and the WTRUs 102a, 102b, 102c may implement a radio technology, such as IEEE 802.16 (ie, Worldwide Interoperability Microwave Access (WiMAX) )), CDMA2000, CDMA2000 IX 'CDMA2000 EV-DO, Provisional Standard 2000 (IS-2000), Provisional Standard 95 (IS-95), Provisional Standard 856 (IS-856), Global System for Mobile Communications (GSM), GSM Evolution Enhanced Data Rate (EDGE) 'GSM EDGE (GERAN), etc. The base station 114b in Figure 1A may be, for example, a wireless router, a Home Node B, an Evolved Node β or an access point, and may use any A suitable RAT is used to facilitate wireless connections in local areas, such as commercial premises, homes, vehicles, campuses, etc. In one embodiment, the base station U and the WTRUs 2c, i〇2d may implement radio technologies, such as IEEE 802.11. , to build Wireless local area network (WLAN). In another implementation, 099133722 Form No. A0101, page 8 / page 69, 1003016704-0 201119451, base station 114b and WTRUs 102c, 102d may implement a radio technology such as IEEE 802. Establishing a wireless personal area network (WPAN). In still another embodiment, the base station 114b and the WTRUs 〇2c, 102d may be established using a cellular based RAT (eg, WCDMA, CDMA2000, GSM, LTE, LTE-A, etc.) The pico cell or the femto cell. As shown in Figure 1A, the base station 114b may have a direct connection to the Internet 110. Thus, the base station 114b may not have to access the Internet 11 via the core network 106.

G RAN 104可以與核心網路1〇6通信,所述核心網路1〇6可 以是被配置為向WTRU 102a、102b、l〇2c、102d中的一The G RAN 104 can communicate with a core network 1-6, which can be configured to one of the WTRUs 102a, 102b, 102c, 102d.

個或多個提供語音、資料、應用和/或網際網路協定語音 (VoIP)業務的任何類型網路。例如,核心網路1〇6可以 提供呼叫控制、計費業務、基於移動位置啲業務、預付 費呼叫、網際網路連接、視頻分配等,和/或執行高級別 的安全功能,例如用戶認證。雖然第1A圖中未示出,但 應該理解的是RAN 104和/或核心,網路i 0 &可以與使用和 RAN 104相同的RAT或不同RAT岭其他& AN進行直接或間 接的通信。例如,除了連接到RAN 104之外,所述RAN 104可能正在使用e—utra無線電技術,核心網路106還可 以與使用GSM無線電技術的另一個RAN (未示出)通信。 核心網路106還可以充當WTRU 102a、102b、l〇2c、 102d存取PSTN 108、網際網路110和/或其他網路U2的 閘道。PSTN 1〇8可以包括提供簡易老式電話業務(p〇TS )的電路交換電話網絡。網際網路110可以包括全球互聯 電腦網路系統和使用公共通信協定的設備,所述協定例 099133722 如有傳輪控制協定(TCP) 表單編號A0101 、用戶資料報協定(UDP )和 第9頁/共69頁 1003016704-0 201119451 TCP/IP網際網路協定族中的互聯網協定(IP)。網路 112可以包括被其他業務提供商擁有和/或操作的有線或 無線的通信網路。例如,網路11 2可以包括連接到一個或 多個RAN的另一個核心網路,所述RAN可以使用和RAN 1 04相同的RAT或不同的RAT。 通信系統100中的某些或所有WTRU 102a、102b、102c 、102d可以包括多模式的性能,即WTRU 102a、102b、 102c、102d可以包括在不同無線鏈路上與不同無線網路 進行通信的多個收發信機。例如,第1A圖中示出的WTRU 102c可配置為與基站114a通信,並且與基站114b通信, 所述基站114a可以使用基於蜂窩的無線電技術,所述基 站114b可以使用IEEE 802無線電技術。 第1B圖是示例性的WTRU 102的系統圖。如第1B圖所示, WTRU 102可以包括處理器118、收發信機120、發射/接 收元件122、揚聲器/麥克風124、鍵盤126、顯示器/觸 控板128、不可移動記憶體130、可移動記憶體132,電 源134、全球定位系統(GPS)晶片組136和其他週邊設 備138。應該理解的是WTRU 102可以在維持與實施方式 一致時,包括前述元件的任何子組合。 處理器118可以是通用處理器、專用處理器、常規處理器 、數位信號處理器(DSP)、多個微處理器、一個或多個 與DSP核心相關聯的微處理器、控制器、微控制器、特定 應用積體電路(ASIC)、現場可程式閘陣列(FPGA)電 路、任何其他類型的積體電路(1C)、狀態機等等。處 理器118可執行信號編碼、資料處理、功率控制、輸入/ 輸出處理和/或使WTRU 102能夠在無線環境中進行操作 099133722 表單編號A0101 第10頁/共69頁 1003016704-0 201119451 的任何其他功能。處理器118可以耦合到收發信機12〇, 所述收發彳5機120可耗合到發射/接收元件122。雖然第 1B圖示出的處理器118和收發信機12〇是單獨的部件,但 應該理解的是處理器118和收發信機120可以在電子封裝 或晶片中集成在一起。 發射/接收元件122可以配置為通過空中介面Π6將信號發 送到基站(例如’基站114a),或從基站(例如,基站 U4a)接收信號。例如,在一個實施方式中,發射/接收 》 疋件122可配置以發送和/或接收RF信號的天線。在另— 個實施方式中,發樂/接收元件122可配置以發送和/或接 收例如IR、UV或可見光信號的發射器/舞洌器。在再—個One or more types of networks that provide voice, data, application, and/or Voice over Internet Protocol (VoIP) services. For example, core network 1-6 can provide call control, billing services, mobile location based services, prepaid calls, internet connections, video distribution, etc., and/or perform high level security functions such as user authentication. Although not shown in FIG. 1A, it should be understood that the RAN 104 and/or the core, the network i 0 & may be in direct or indirect communication with the same RAT as the RAN 104 or other & . For example, in addition to being connected to the RAN 104, the RAN 104 may be using an e-utra radio technology, and the core network 106 may also be in communication with another RAN (not shown) using a GSM radio technology. Core network 106 may also serve as a gateway for WTRUs 102a, 102b, 102c, 102d to access PSTN 108, Internet 110, and/or other network U2. The PSTN 1〇8 may include a circuit switched telephone network that provides a plain old telephone service (p〇TS). Internet 110 may include a globally interconnected computer network system and devices that use public communication protocols, such as Transport Control Protocol (TCP) Form Number A0101, User Datagram Protocol (UDP), and Page 9/ A total of 69 pages 1003016704-0 201119451 Internet Protocol (IP) in the TCP/IP Internet Protocol family. Network 112 may include a wired or wireless communication network that is owned and/or operated by other service providers. For example, network 11 2 may include another core network connected to one or more RANs, which may use the same RAT as RAN 104 or a different RAT. Some or all of the WTRUs 102a, 102b, 102c, 102d in the communication system 100 may include multi-mode capabilities, i.e., the WTRUs 102a, 102b, 102c, 102d may include multiple communications with different wireless networks over different wireless links. Transceiver. For example, the WTRU 102c shown in FIG. 1A can be configured to communicate with and communicate with a base station 114a that can use a cellular-based radio technology, and the base station 114b can use an IEEE 802 radio technology. FIG. 1B is a system diagram of an exemplary WTRU 102. As shown in FIG. 1B, the WTRU 102 may include a processor 118, a transceiver 120, a transmit/receive element 122, a speaker/microphone 124, a keyboard 126, a display/touchpad 128, a non-removable memory 130, and a removable memory. Body 132, power source 134, global positioning system (GPS) chipset 136, and other peripheral devices 138. It should be understood that the WTRU 102 may include any sub-combination of the aforementioned elements while maintaining consistency with the embodiments. The processor 118 can be a general purpose processor, a special purpose processor, a conventional processor, a digital signal processor (DSP), a plurality of microprocessors, one or more microprocessors, controllers, and micro-controls associated with the DSP core. , application specific integrated circuit (ASIC), field programmable gate array (FPGA) circuit, any other type of integrated circuit (1C), state machine, and so on. The processor 118 may perform signal encoding, data processing, power control, input/output processing, and/or any other functionality that enables the WTRU 102 to operate in a wireless environment. 099133722 Form Number A0101 Page 10 of 69 Page 301016704-0 201119451 . The processor 118 can be coupled to the transceiver 12A, which can be consuming to the transmit/receive element 122. Although processor 118 and transceiver 12A shown in Figure 1B are separate components, it should be understood that processor 118 and transceiver 120 can be integrated together in an electronic package or wafer. Transmit/receive element 122 may be configured to transmit signals to or from a base station (e.g., base station 114a) via null intermediate plane 6 or to receive signals from a base station (e.g., base station U4a). For example, in one embodiment, the transmit/receive element 122 can be configured to transmit and/or receive an antenna of an RF signal. In another embodiment, the hair/receiving element 122 can be configured to transmit and/or receive an emitter/dancer such as an IR, UV or visible light signal. In another

實施方式中’發射/接收元件122可配靠以發趙和接收RF .::¾ 丨 ^ • "ίί '·%' 1 '·••…'Ίίΐρ'^ 和光信號兩者。應該理解的是發射/接收元件122可配置 以發射和/或接收無線信號的任何組合。 此外,雖然發射/接收元件122在第1Β圖中所示為單一的 元件,但是WTRU 102可以包括任意數量的發射/接收元 件122。更具體地說;iTRU 102可以使用ΜΙΜΟ技術。因 I _ * 此,在一個實施方說中,WTRU 102可以包括用於經由空 中介面116發送和接收無線信號的兩個或多個發射/接收 元件122 (例如,多個天線)。 收發信機120可配置以調節將要由發射/接收元件122發送 的信號,和解調由發射/接收元件122接收的信號。如上 所述,WTRU 102可以具有多模式性能。因此,收發信機 12〇可以包括使WTRU 102能夠經由多個RAT通信的多個收 發信機,所述多個RAT例如為UTRA和IEEE 802. 1 1。 wTrU 102的處理器118可以耦合到下述設備,並且可以 表單煸號A0101 第11頁/共69頁 1003016704-0 099133722 201119451 從下述設備令接收用戶輪入資料:揚聲器/麥克風i24、 鍵盤126和/或顯示/觸控板128 (例如,液晶顯示器( LCD)顯示單元或有機發光二極體(OLED)顯示單元)。 處理器118還可以輸出用戶f料到揚聲器/麥克風ι24、鍵 瓜126和/或顯不/觸控板128。此外,處理器⑴可以從 任何類型的適當的記憶體中存取資訊,並且可以存儲資 料到所述兄憶體中,例如不可移動記憶體ι〇6和/或可移 動記憶體132。不可移動記憶體1〇6可以包括隨機存取記 憶體(RAM)、唯讀記憶體(_)、硬碟或任何其他類 型的記憶體儲存設備。可移動記憶體132可以包括用戶辨 識模且(SIM)卡、記憶棒安全數位(掷)存館卡等等 。在其他的實施方式巾,處靴u奸賴沒有物理地設 置於WTRU 102上的記憶體中存取資訊’並且可以將資料 存儲在所述記憶體中,例如於伺服器或家用電腦上(未 示出)。 處理器118可以從電源134接收電力,並且可配置以分配 和/或控制到ffTRU 102中的其他部件的電力。電源134可 以是為WTRU 102供電的任何適當的設備。例如,電源 134可以包括一個或多個乾電池電池組(例如,鎳鎘( NiCd)、鎳鋅(NiZn)、鎳金屬氫化物(NiMH)、鋰離 子(Li-ion),等等),太陽能電池’燃料電池等等。 處理器118還可以耦合到GPS晶片組136,所述Gps晶片組 136可配置以提供關於WTRU 1〇2之當前位置的位置資訊 (例如,經度和緯度)。除了來自GPS晶片組丨36的資訊 之外或作為其替代,WTRU 102可以通過空中介面ία從 099133722 基站(例如’基站114a、114b )接收位置資訊, 表單編號A0101 第12頁/共69頁 和/或 1003016704-0 201119451 基於從兩個或多個鄰近基站接收的信號之定時來確定其 位置。應該理解的是WTRU 1〇2在維持與實施方式的—致 性時,可以通過任何適當的位置確定方法來獲得位置資 訊。 處理器118還可以耗合到其他週邊設備138,所述週邊設 備可以包括一個或多個提供附加特徵、功能和/或有線或 無線連接的軟體和/或硬體模組。例如,週邊設備138可 以包括加速計、電子羅盤、衛星收發信機、數位相機( 丨用於圖像或視頻)、通用串列匯流排(USB)埠、振動設 備、電視收發器、無繩耳機、藍牙⑧模組、調頻(FM)無 線電單元、數位音樂播放器、媒逋播放器、視頻遊戲播 放器模組、網際網路流覽器等等。 第1C圖是根據一實施方式的以^ ι〇4和森心網路1〇6的系 統圖。如上所述,RAN 104可通過空中介面116使用UTRA 無線電技術與WTRU 102 a、102b、102c通信。RAN 104還可以與核心網路106通信。如第—ica所示,ran 104可以包括節點b 140a、14Gb、140c,所述節點B可 以各包括一個或多個收發信機,用於通過空中介面116與 WTRU l〇2a、l〇2b、102c通信。節點B 140a、140b、 140c可以各自與RAN 1〇4内的特定服務區(未示出)相 關聯。RAN 104還可以包括RNC 142a、142b。應該理解 的是’ RAN 1〇4可以在維持與實施方式一致的同時,包括 任何數量的節點B和RNC » 如第1C圖所示,節點b 140a、140b可以與RNC 142a通 信。此外,節點B 140c可以與RNC 142b通信。節點B 140a、140b、140c可以經由Iub介面分別與RNC 142a、 099133722 表單編號 A0101 第 13 頁/共 69 頁 1003016704-0 201119451In an embodiment, the 'transmitting/receiving element 122 can be paired to transmit and receive RF .::3⁄4 丨 ^ • " ίί '·%' 1 '·••...'Ίίΐρ'^ and the optical signal. It should be understood that the transmit/receive element 122 can be configured to transmit and/or receive any combination of wireless signals. Moreover, although the transmit/receive element 122 is shown as a single element in FIG. 1, the WTRU 102 may include any number of transmit/receive elements 122. More specifically; iTRU 102 can use ΜΙΜΟ technology. As a result of I_*, in one embodiment, the WTRU 102 may include two or more transmit/receive elements 122 (e.g., multiple antennas) for transmitting and receiving wireless signals via the null intermediate plane 116. Transceiver 120 is configurable to condition the signal to be transmitted by transmit/receive element 122 and to demodulate the signal received by transmit/receive element 122. As noted above, the WTRU 102 may have multi-mode capabilities. Thus, the transceiver 12A can include a plurality of transceivers that enable the WTRU 102 to communicate via a plurality of RATs, such as UTRA and IEEE 802.1. The processor 118 of the wTrU 102 can be coupled to the device described below, and can receive user-involved data from the following device commands: Form No. A0101 Page 11 / Total 69 Page 1003016704-0 099133722 201119451: Speaker/Microphone i24, Keyboard 126 and / or display / trackpad 128 (for example, liquid crystal display (LCD) display unit or organic light emitting diode (OLED) display unit). The processor 118 can also output the user f to the speaker/microphone ι24, the key 126 and/or the display/touchpad 128. In addition, the processor (1) can access information from any type of appropriate memory and can store data into the buddy, such as the non-removable memory ι6 and/or the removable memory 132. The non-removable memory 1〇6 may include a random access memory (RAM), a read only memory (_), a hard disk, or any other type of memory storage device. The removable memory 132 can include a user identification module and a (SIM) card, a memory stick secure digital (throw) deposit card, and the like. In other embodiments, the device does not physically access the information stored in the memory on the WTRU 102 and may store the data in the memory, such as on a server or a home computer (not show). The processor 118 can receive power from the power source 134 and can be configured to allocate and/or control power to other components in the ffTRU 102. Power source 134 can be any suitable device that powers WTRU 102. For example, the power source 134 can include one or more dry battery cells (eg, nickel cadmium (NiCd), nickel zinc (NiZn), nickel metal hydride (NiMH), lithium ion (Li-ion), etc.), solar cells 'Fuel batteries and more. The processor 118 can also be coupled to a GPS die set 136 that can be configured to provide location information (e.g., longitude and latitude) with respect to the current location of the WTRU 1〇2. In addition to or in lieu of information from the GPS chipset 36, the WTRU 102 may receive location information from the 099133722 base station (e.g., 'base stations 114a, 114b) via the null plane ία, Form Number A0101 Page 12 of 69 and/or Or 1003016704-0 201119451 Determine its position based on the timing of signals received from two or more neighboring base stations. It should be understood that WTRU 1 〇 2 may obtain location information by any suitable location determination method while maintaining compliance with the implementation. The processor 118 may also be consuming to other peripheral devices 138, which may include one or more software and/or hardware modules that provide additional features, functionality, and/or wired or wireless connections. For example, peripheral device 138 may include an accelerometer, an electronic compass, a satellite transceiver, a digital camera (for image or video), a universal serial bus (USB) port, a vibrating device, a television transceiver, a cordless headset, Bluetooth 8 module, FM radio unit, digital music player, media player, video game player module, internet browser and so on. Fig. 1C is a system diagram of ^ 〇 4 and Mori network 1 〇 6 according to an embodiment. As described above, the RAN 104 can communicate with the WTRUs 102a, 102b, 102c over the null plane 116 using UTRA radio technology. The RAN 104 can also communicate with the core network 106. As indicated by ica-ica, ran 104 may include nodes b 140a, 14Gb, 140c, each of which may include one or more transceivers for communicating with the WTRUs 1a, 2b, 2b, through the null plane 116, 102c communication. Node Bs 140a, 140b, 140c may each be associated with a particular service area (not shown) within RAN 1〇4. The RAN 104 may also include RNCs 142a, 142b. It should be understood that 'RAN 1〇4' may include any number of Node Bs and RNCs while maintaining consistency with the implementation. As shown in FIG. 1C, Node b 140a, 140b may communicate with RNC 142a. Additionally, Node B 140c can communicate with RNC 142b. Node Bs 140a, 140b, 140c may be associated with RNC 142a, 099133722 via Iub interface respectively. Form number A0101 Page 13 of 69 1003016704-0 201119451

142b通信。RNC 142a、142b可以經由Iur介面彼此通信 。RNC 142a、142b中的每一個可配置以控制節點B 140a、140b、140c分別連接至何處。此外,RNC 142a 、142b中的每一個可配置以執行或支援其他功能’例如 外環功率控制、負載控制、許可控制、封包調度、交接 控制、宏分集、安全功能、資料加密等等。 第1C圖中示出的核心網路可包括媒體閘道(MGW) 144、移動交換中心(MSC) 146、服務GPRS支援節點( SGSN) 148,和/或閘道GPRS支持節點(GGSN) 15〇。雖 然上述每個元件都被锚述為核心網路106的一部分,應要 〇 理解的是這些元件中的任何7備鄭可由餘.7¾核心網路運 —焉? ” Ί 營商之外的實體擁有和/或爭 RAN 104中的RNC 142a可經由IuCS介面連接到核心網路 106 中的MSC 146上。MSC 146可連接到MGW 144°MSC 146和MGW 144可為WTRU l〇2a、102b、102c提供至電 路交換網路的接入’該電換網滅:例如為PSTN 108, 以促進WTRU 102a、102b、l〇2c與傳統陸線通信設備之 . Ο 間的通信。 RAN 104中的RNC 142a還可以經由Iups介面連接到核心 網路106中的SGSN 148«SGSN 148可以連接到GGSN 150°SGSN 148 和 GGSN 150 可以為 WTRU 102a、102b 、102c提供至封包交換網路的接入,該封包交換網路例 如為網際網路110,以促進WTRU 102a、102b、102c與 IP使能設備間的通信。 如上所述,核心網路106還可以連接到網路112,所述網 路112可以包括由其他業務提供商擁有和/或運營的其他 099133722 表單煸號A0101 第14頁/共69頁 1〇〇30167〇4-0 201119451 有線或無線網路。 應該注意的是下面將在用於雙天線傳輸的3GPP HSUPA操 作的環境中描述實施方式,但是所述實施方式可適用於 任何無線技術和具有多於兩個發射天線的系統。還應該 注意的是在下面所揭示的實施方式中,專用物理控制通 道(DPCCH)將被用作功率參考通道’但是任何其他通道 (例如,導頻通道)可被用作所述功率參考通道。術語 “E-DCH流”和“E-DCH碼字”將可被互換地使用。 第2圖根據一個實施方式示出了示例性的發射機20〇。發 射機200 (可位於WTRU内)具有波束成形能力,並且包括 加權塊202、PA 2〇4和天線2〇6輪Λ信,棼被分為兩個分 支。來自每個分支的信號由办權塊2 ® 2分別學^複合權重w 1 1 * 1 和w2加權,然後由ΡΑ 204放大。來自ΡΑ 204的輸出信號 ,輸出1和輸出2,隨後分別經由天線1和天線2在空中發 送。 不失去一般性’假設輸入信號功率被標準化為1 °於天線 1和天線2的連接器(connector)處測量的輸出功率可 ❹ 表示為: =ΚΓσι P〇ua =ΚΓσ2 等式(1) 等式(2) 其中G1和G2分別是放大器ΡΑι和PA2的功率增益。如果權 重w和w不受約束’則第2圖中的發射機可以在當功率輸 1 2 出總和高於兩個天線時,不產生固定的功率輸出。 如果對接收機的通道增益對兩個天線而言係相同的,那 麼足以使用相位偏移來從波束成形中獲取增益。然而, 099133722 .表單編號Α0101 第15頁/共69頁 1003016704-0 201119451 如果對接收機的通道增益對兩個天線而言係不同的,那 麼非單位幅度權重可用於每個天線。實際上,來自天線 波束成形器的全部發射功率可限制為一致,其允許重新 使用某些不經修改的習知機制,例如功率控制。 第3圖示出了具有具單位功率約束的波束成形器的示例性 發射機300。發射機30 0 (可位於WTRU内)包括加權塊 302、PA 304和天線306。輸入信號被分為兩個分支。來 自每個分支的信號被加權複合權重,從而在一個分支中 幅度增益係由增益控制塊302調整,在另一個分支中幅度 增益和相位係由增益控制塊303a和相位控制塊303b調整 。幅度增益和相位兩者都可在兩個分支中調整。兩個天 線上的全部增益保持相同。加權後的信號由PA 304放大 。來自PA 304的輸出信號,輸出1和輸出2,隨後各自經 由天線1和天線2在空中發送。 通過約束PA輸出以具有相同的增益,對於實際估值的加 權幅度增益和相位偏移ρ的任何值而言,兩個天線 上的總功率變成常數。假設輸入信號功率被標準化為1, 那麼第3圖中功率受限波束成形器的每個天線處的輸出功 率可表示如下: ρ-=α2σ> 等式(3) U = 奶 等式(4) 天線1和天線2的連接器處的輸出功率,Ρ +1和卩+9,可 out 1 out2 被限制為特定值(叫做P +),這是由於設備的物理 max,tx 限制或由於網路約束。在3GPP中,WTRU最大可允許的發 射功率P +定義如下: max,tx 099133722 表單編號A0101 第16頁/共69頁 1003016704-0142b communication. The RNCs 142a, 142b can communicate with each other via the Iur interface. Each of the RNCs 142a, 142b is configurable to control where the Node Bs 140a, 140b, 140c are respectively connected. In addition, each of the RNCs 142a, 142b can be configured to perform or support other functions such as outer loop power control, load control, admission control, packet scheduling, handover control, macro diversity, security functions, data encryption, and the like. The core network shown in Figure 1C may include a Media Gateway (MGW) 144, a Mobile Switching Center (MSC) 146, a Serving GPRS Support Node (SGSN) 148, and/or a Gateway GPRS Support Node (GGSN). . While each of the above elements is anchored as part of the core network 106, it should be understood that any of these elements can be shipped from the remainder of the core network. The RNC 142a in the owning and/or contending RAN 104 may be connected to the MSC 146 in the core network 106 via an IuCS interface. The MSC 146 may be connected to the MGW 144° MSC 146 and the MGW 144 may be the WTRUs 1a, 102b, 102c Providing access to the circuit switched network 'This switch is: for example, PSTN 108, to facilitate communication between the WTRUs 102a, 102b, 102c and the conventional landline communication device. RNC 142a in the RAN 104 The SGSN 148 «SGSN 148, which may also be connected to the core network 106 via the Iups interface, may be connected to the GGSN 150° SGSN 148 and the GGSN 150 may provide the WTRUs 102a, 102b, 102c with access to the packet switched network, the packet exchange The network is, for example, the Internet 110 to facilitate communication between the WTRUs 102a, 102b, 102c and IP-enabled devices. As noted above, the core network 106 can also be connected to the network 112, which can include Others owned and/or operated by other service providers 099133722 Form nickname A0101 Page 14 of 69 1〇〇30167〇4-0 201119451 Wired or wireless network. It should be noted that the following will describe the implementation in the context of 3GPP HSUPA operation for dual antenna transmission, However, the described embodiments are applicable to any wireless technology and systems having more than two transmit antennas. It should also be noted that in the embodiments disclosed below, a dedicated physical control channel (DPCCH) will be used as the power reference channel. 'But any other channel (eg, pilot channel) can be used as the power reference channel. The terms "E-DCH stream" and "E-DCH codeword" will be used interchangeably. Figure 2 is based on an implementation The mode shows an exemplary transmitter 20. The transmitter 200 (which may be located within the WTRU) has beamforming capability and includes a weighting block 202, a PA 2 〇 4, and an antenna 2 〇 6 Λ 棼, which are divided into two Branches. The signals from each branch are weighted by the weighting block 2 ® 2, the composite weights w 1 1 * 1 and w2, and then amplified by ΡΑ 204. The output signal from ΡΑ 204, output 1 and output 2, followed by Via the day 1 and antenna 2 are transmitted over the air. No loss of generality 'Assume that the input signal power is normalized to 1 °. The output power measured at the connector of antenna 1 and antenna 2 can be expressed as: =ΚΓσι P〇ua = ΚΓσ2 Equation (1) Equation (2) where G1 and G2 are the power gains of the amplifiers ΡΑι and PA2, respectively. If the weights w and w are unconstrained, then the transmitter in Fig. 2 may not produce a fixed power output when the sum of the power outputs is higher than the two antennas. If the channel gain to the receiver is the same for both antennas, then enough phase offset is used to derive the gain from beamforming. However, 099133722. Form number Α0101 Page 15 of 69 1003016704-0 201119451 If the channel gain to the receiver is different for both antennas, then non-unit amplitude weights can be used for each antenna. In fact, the total transmit power from the antenna beamformer can be limited to uniform, which allows reuse of some unmodified conventional mechanisms, such as power control. Figure 3 shows an exemplary transmitter 300 having a beamformer with unit power constraints. Transmitter 30 0 (which may be located within the WTRU) includes a weighting block 302, a PA 304, and an antenna 306. The input signal is divided into two branches. The signals from each branch are weighted composite weights such that the amplitude gain is adjusted by gain control block 302 in one branch and the amplitude gain and phase are adjusted by gain control block 303a and phase control block 303b in the other branch. Both amplitude gain and phase can be adjusted in two branches. The total gain on both antennas remains the same. The weighted signal is amplified by PA 304. The output signals from the PA 304, output 1 and output 2, are then transmitted over the air via antenna 1 and antenna 2, respectively. By constraining the PA output to have the same gain, the total power on the two antennas becomes constant for any value of the weighted amplitude gain and phase offset ρ of the actual estimate. Assuming that the input signal power is normalized to 1, then the output power at each antenna of the power-limited beamformer in Figure 3 can be expressed as follows: ρ-=α2σ> Equation (3) U = Milk Equation (4) The output power at the connectors of antenna 1 and antenna 2, Ρ +1 and 卩+9, can be out 1 out2 limited to a specific value (called P +) due to the physical max, tx limit of the device or due to the network constraint. In 3GPP, the maximum allowable transmit power P+ of a WTRU is defined as follows: max, tx 099133722 Form number A0101 Page 16 of 69 1003016704-0

Pmax,tx= min{Maximum_allowed_UL_TX_Power, Pmax}等式(5) 其中 Maximum_al lowed_UL_TX_Power 是由 UMTS地面無 線電存取網路(UTRAN)設定的,並且P 是根據WTRU功 max 率等級的WTRU標稱最大輸出功率β 第2圖和第3圖中示出的發射機200、300具有形成特定方 向性的波束的波束成形能力。波束的空間形狀可由第2圖 中的一般波束成形器的加權值wl和w2以及第3圖中的單位 功率受限的波束成形器的加權幅度增益α和相位偏移φ 進行控制。典型地,波束形狀和結果權重是基於最優化 準則進行設計的。例如,權重可被設計以’獲取在特定角 度方向中發射的最大功率。 在閉環系統中,接收機可確定一組期望的傳輸權重,並 用信號發送給發射機。這些權重可進行量化,以降低發 信負載。由於通常量化的權重不同於斯望的未量化權重 ,這導致了期望波束和發詹嫌使:用量杷權重產生的實際 波束之間的差異。權案量化通,被設計為使得系統性能 不會因為量化遭受大的撥害“在很大的程度上,實際 的閉環波束成形和發射分集系統對於波束形狀中的變化 是依據設計為穩健的,且波束成形加權精確度的某種程 度上的緩和能夠得到支持。 WTRU在ΡΑ輸出處測量參考通道功率(例如,DPCCH功率 )。WTRU例如使用DPCCH功率測量來確定一組支援的傳 輸格式組合(TFC)和增強型專用通道(E-DCH)傳輸格 式組合(E-TFC),從而用於報告功率餘量測量(即’ UE 功率餘量(UPH))等等。 表單編號A0101 第Π頁/共69頁 1〇031 201119451 對於TFC和Ε-TFC限制,WTRU在上行鏈路中可用於發送資 料的功率量的計算中計算很多參數。例如,在E-TFC限制 過程中’WTRU首先確定DPCCH的功率和最大允許發射功 率Pmax,tx ° WTRU還基於DPCCH、專用物理資料通道( DPDCH)、高速專用物理控制通道(HS_DpccH)和E-DCH專用物理控制通道(e-DPCCH)的功率來計算標準化 剩餘功率裕量(NRPM),以確定每個Ε-TFC的狀態(支 援的或禁止的(blocked))。 在具有單個PA和單個天線的WTRU中,DPCCH功率測量參 考點是PA輸出(即,在天線連接器處)^在具有兩個pa 和兩個天線的itRU中,有兩種DPCCH功率測量:PnDPPU , 和PDPeeH>2,針對第2圖和第3圖中的每個天線使用一種。 在具有兩個功率放大器的雙天線發射機中,分配給每個 天線的功率可以與DPCCH或其他功率參考通道(例如,導 頻通道)相關。一個DPCCH可經由在上存鏈路中的天線發 射,從而兩個DPCCH (DPCCH1和DPCCH2)可經由兩個天 線發射。 下面揭示了計算DPCCH碼功率(PnDM„)的實施方式。 根據一個實施方式,WTRU可通過為每個時隙t選擇天線連 接器1和2處DPCCH功率測量中最大的一個,來為每個時隙 t計算時隙方式(slotwise) DPCCH功率估計,如下所示 令 DPCCH⑹=max(^DPCCH 2(f)\ 等式(6) 其中是對於時隙t的時隙方式DPCCH功率估計, 而ΡπσπΛ 和J (ί)是對於時隙七分別在天線連 099133722 表單編號A0101 第18頁/共69頁 1003016704_0 201119451 接器1和2處的時隙方式DPCCH功率測量。然後WTRU通過 在傳輸時間間隔(TTI)上對選擇的時隙方式DPCCH功率 估計取平均值,來計算DPCCH碼功率 (PDPCCH),(例如2ms TTI上的三個時隙),如下所示Pmax,tx=min{Maximum_allowed_UL_TX_Power, Pmax} Equation (5) where Maximum_al lowed_UL_TX_Power is set by the UMTS Terrestrial Radio Access Network (UTRAN) and P is the WTRU nominal maximum output power based on the WTRU power max rate level. The transmitters 200, 300 shown in Figures 2 and 3 have beamforming capabilities that form beams of a particular directionality. The spatial shape of the beam can be controlled by the weighting values w1 and w2 of the general beamformer in Fig. 2 and the weighted amplitude gain α and phase offset φ of the unit power limited beamformer in Fig. 3. Typically, beam shape and result weights are designed based on optimization criteria. For example, the weights can be designed to 'get the maximum power transmitted in a particular angular direction. In a closed loop system, the receiver can determine a set of desired transmission weights and signal them to the transmitter. These weights can be quantified to reduce the signaling load. Since the weight of the usual quantization is different from the unquantized weight of the desired, this results in the difference between the desired beam and the actual beam produced by the weighting. Quantitative control, designed to make system performance not subject to large impairments due to quantization "to a large extent, the actual closed-loop beamforming and transmit diversity systems are designed to be robust to changes in beam shape, And some degree of mitigation of beamforming weighting accuracy can be supported. The WTRU measures reference channel power (eg, DPCCH power) at the ΡΑ output. The WTRU, for example, uses DPCCH power measurements to determine a set of supported transport format combinations (TFC) ) and Enhanced Dedicated Channel (E-DCH) Transport Format Combination (E-TFC) for reporting power headroom measurements (ie 'UE Power Headroom (UPH)), etc. Form No. A0101 Page/Total 69 pages 1〇031 201119451 For TFC and Ε-TFC restrictions, the WTRU calculates many parameters in the calculation of the amount of power available to transmit data in the uplink. For example, during the E-TFC restriction process, the WTRU first determines the power of the DPCCH. And maximum allowable transmit power Pmax, tx ° WTRU is also based on DPCCH, dedicated physical data channel (DPDCH), high-speed dedicated physical control channel (HS_DpccH) and E-DCH dedicated physical control The power of the channel (e-DPCCH) is used to calculate the normalized residual power margin (NRPM) to determine the state of each Ε-TFC (supported or blocked). In a WTRU with a single PA and a single antenna, The DPCCH power measurement reference point is the PA output (ie, at the antenna connector). ^ In the itRU with two pa and two antennas, there are two DPCCH power measurements: PnDPPU, and PDPeeH>2, for Figure 2 and One of each antenna is used in Figure 3. In a two-antenna transmitter with two power amplifiers, the power allocated to each antenna can be related to the DPCCH or other power reference channel (eg, pilot channel). One DPCCH The two DPCCHs (DPCCH1 and DPCCH2) can be transmitted via two antennas via the antennas in the uplink link. Embodiments for calculating the DPCCH code power (PnDM) are disclosed below. According to one embodiment, the WTRU may calculate a slotwise DPCCH power estimate for each time slot t by selecting the largest of the DPCCH power measurements at antenna connectors 1 and 2 for each time slot t, as follows Show DPCCH(6)=max(^DPCCH 2(f)\ Equation (6) where is the time slot mode DPCCH power estimate for time slot t, and ΡπσπΛ and J (ί) are for time slot seven in the antenna connection 099133722 form No. A0101 Page 18 of 69 1003016704_0 201119451 Time slot mode DPCCH power measurement at connectors 1 and 2. The WTRU then averages the selected slotted mode DPCCH power estimate over the transmission time interval (TTI). Calculate the DPCCH code power (PDPCCH), (for example, three time slots on a 2ms TTI) as shown below

Pdpc 等式(7) 其中Ν是TTI中時隙的數量。 ❹ 该實施方式可確保在任何功率放大器上不引起功率限制 。在波束成形方面,波束模式不會由於一個放大器上的 功率限制而發生失真。 ^1 根據另一個實施方式,tfTRU分通過為每個時隙對時隙方 ,^ _ ··, .· 式DPCCH功率測量取平均值,來計算每個時隙的時隙方式 DPCCH功率估計,如下所示: 2 等式(8) Ο 然後W T R U通過在τ TI上對時隙方式D P c ^ H功率估計 鸟w^crcw(0·取平均值,如等式(7)所示,來計算DPCCH 碼功率。 該實施方式產生了在兩個PA和3個時隙平均週期上平均的 DPCCH功率估計》藉由為NRpM計算而使用該值,”⑽可 選擇所需功率多於任何天線上可用功率的傳輸塊。濾波 可幫助減小可用功率和所需功率之間差值的變化。 根據另一個實施方式,WTRU可通過在ττΐ上為每個天線對 時隙方式DPCCH功率測量進行濾波,來為每個天線計算濾 099133722 表單編號A0101 第19頁/共69頁 1003016704-0 201119451 波後的DPCCH功率估計。Pdpc Equation (7) where Ν is the number of time slots in the TTI. ❹ This embodiment ensures that no power limitation is imposed on any power amplifier. In beamforming, the beam pattern is not distorted by the power limitations on an amplifier. ^1 According to another embodiment, the tfTRU score calculates the slotted mode DPCCH power estimate for each slot by averaging the time slot side, ^ _ ···· DPCCH power measurements for each slot. As follows: 2 Equation (8) Ο The WTRU then calculates the bird w^crcw by taking the time slot mode DP c ^ H power on τ TI (0· is averaged, as shown in equation (7) DPCCH code power. This embodiment produces a DPCCH power estimate averaged over two PA and 3 time slot averaging periods, which is used by NRpM calculations, "(10) selectable power is available on any antenna. Transmission block of power. Filtering can help reduce variations in the difference between available power and required power. According to another embodiment, the WTRU can filter slotted mode DPCCH power measurements for each antenna on ττΐ Calculate the filter for each antenna 099133722 Form No. A0101 Page 19 / Total 69 Page 1003016704-0 201119451 DPCCH power estimation after wave.

Pdpc ,filtered,\Pdpc, filtered,\

f,filtered, 2f,filtered, 2

等式(9) 等式(10) 其中 PDPCCH,filtered,1 和PDPCCH ,mtered ,2分別是天 線1和2的慮波後的D P C C Η功率估计。然後w τ r υ通過選擇 濾波後的的DPCCH功率估計中最大的一個,來計算砂匸⑶ 代碼功率,如下所示: R,Equation (9) Equation (10) where PDPCCH, filtered, 1 and PDPCCH, mtered, 2 are the D P C C Η power estimates for the antennas 1 and 2, respectively. Then w τ r υ calculates the sand 匸 (3) code power by selecting the largest of the filtered DPCCH power estimates as follows: R,

DP'CCHDP'CCH

max( ^DPCCH ,filtered ,l> ^DPCCH •filtered ,2 - 等式(11) 根據另一個實施方式,首先fTRU通過举τπ,上為每個天線 過濾時隙方式DPCCH功率測量,如等^ (9>和(1〇)所 示,來為每個天線計算過濾的DPCCH功率估計。然後 WTRU通過對濾波後的DPCCH功率估計取年均值來計算 DPCCH碼功率,如下所示:Max( ^DPCCH ,filtered ,l> ^DPCCH •filtered , 2 - Equation (11) According to another embodiment, first fTRU filters the time slot mode DPCCH power measurement for each antenna by τπ, such as ^( 9> and (1〇) are shown to calculate a filtered DPCCH power estimate for each antenna. The WTRU then calculates the DPCCH code power by estimating the averaged value of the filtered DPCCH power as follows:

DPCCH ^DPCCH, filtered,\ + ^DPCCH, filtered.2 2 等式(12) 根據另一個實施方式,當P +被定義為來自兩個發射 天線的WTRU最大的總發射功率時,WTRU首先通過為每個 時隙在天線連接器1和2處的時隙方式DPCCH功率測量求和 ,來為每個時隙計算時隙方式DPCCH功率估計,如下所示 等式(13) ^DPCCI^f) ~ ^DPCCm (0 + ^DPCCH, 2 (^) 然後WTRU通過在TTI上對時隙方式DPCCH功率估計進行濾 波,來計算DPCCH功率估計。 099133722 表單編號A0101 第20頁/共69頁 1003016704-0 201119451 根據另一個實施方式’當Pmax,tx被定義為來自兩個發射 天線的WTRU最大總發射功率時,WTRU首先通過在了^上 對時隙方式DPCCH功率估計進行濾波,來為每個天線計算 遽波後的D P C C Η功率估計。然後W T R U通過為天線的減波 後的DPCCH功率估計求和,來計算DPCH碼功率,如下所 示:DPCCH ^DPCCH, filtered, \ + ^DPCCH, filtered. 2 2 Equation (12) According to another embodiment, when P + is defined as the maximum total transmit power of the WTRU from the two transmit antennas, the WTRU first passes The time slot mode DPCCH power measurement at each of the time slots at antenna connectors 1 and 2 is summed to calculate the slotted mode DPCCH power estimate for each time slot, as shown in the following equation (13) ^DPCCI^f) ~ ^DPCCm (0 + ^DPCCH, 2 (^) The WTRU then calculates the DPCCH power estimate by filtering the slotted mode DPCCH power estimate on the TTI. 099133722 Form Number A0101 Page 20 of 69 1003016704-0 201119451 Another embodiment 'When Pmax, tx is defined as the maximum total transmit power of the WTRU from two transmit antennas, the WTRU first calculates the chopping for each antenna by filtering the slotted mode DPCCH power estimate on the ^. The subsequent DPCC Η power estimate. The WTRU then calculates the DPCH code power by summing the decremented DPCCH power estimates for the antenna as follows:

Pr .filtered , + Pdpc .filtered ,2 等式(14) 下面揭示用於計算標準化的剩餘功率裕量(NRPM)的實Pr .filtered , + Pdpc .filtered , 2 Equation (14) The following is a summary of the calculation of the normalized residual power margin (NRPM).

施方式。Way of application.

WTRU計算NRPM,並使腾該值來確定支援的E-TFC集合》 根據一個實施方式,首先WTRU為每個天線計算濾波後的 DPCCH功率。然後WTRU使用常規的步蹕分別為每個天線 計算NRPM。然後WTRU使用兩個NRPM中最小的一者來計算 支援的E-TFC集合。在一種可替代的選擇中,WTRU可對 兩個NRPM取平均值,並使用該結果來計算支援的E—TFC 1 3 a1 ^ v i k "The WTRU calculates the NRPM and increments the value to determine the supported E-TFC set. According to one embodiment, the WTRU first calculates the filtered DPCCH power for each antenna. The WTRU then calculates the NRPM for each antenna using conventional steps. The WTRU then uses the smallest of the two NRPMs to calculate the supported E-TFC set. In an alternative option, the WTRU may average the two NRPMs and use the result to calculate the supported E-TFC 1 3 a1 ^ v i k "

集合。在另一種可替代的選擇中,WTRU可使用兩個NRPM 中最大的一者來計秦1援的E-TFjC集合。 在另一種實施方式中,WTRU可為每個天線使用NRPM來為 滿意位元(happy bit)驗證第二準則。所述滿意位元指 示WTRU是否滿意上行鏈路發送中的當前許可。WTRU可單 獨為每個天線計算支援的E-TFC集合,並根據常規的步驟 確定其是否具有足夠的功率來在每個天線上發送更大的 被標識的E-TFC。在一個實施方式中,如果WTRU確定其 具有足夠的功率來在兩個天線上發送更大的被標識的E-TFC ’那麼WTRU可根據第二準則來繼續對滿意位元的評估 099133722 表單編號A0101 第21頁/共69頁 1003016704-0 201119451 。如果WTRU確定其不具有足夠的功率來在至少一個天線 上發送更大的被標識的E-TFC,那麼WTRU可報告其為“ 滿意”,並且可停止第二準則的評估。 在另一個實施方式中,如果WTRU確定其具有足夠的功率 在至少一個天線上發送更大的被標識的E-TFC,那麼 WTRU根據第二準則繼續對滿意位元的評估。如果WTRU確 定其不具有足夠的功率來在兩個天線上發送更大的被標 識的E-TFC,那麼WTRU可報告其為“滿意”,並且可停 止對第二準則的評估。 下面揭示用於計算uypH的實施方式。 WTRU計算UPH ’並將UPH報告給網路。是最大WTRU發 射功率和DPCCH碼功率的比率,並計,算如下: UP Ηset. In another alternative, the WTRU may use the largest of the two NRPMs to account for the E-TFjC set of Qin 1 aid. In another embodiment, the WTRU may use NRPM for each antenna to verify the second criterion for the happy bit. The satisfactory bit indicates whether the WTRU is satisfied with the current grant in the uplink transmission. The WTRU may calculate a supported set of E-TFCs for each antenna individually and determine if it has sufficient power to transmit a larger identified E-TFC on each antenna according to conventional procedures. In one embodiment, if the WTRU determines that it has sufficient power to transmit a larger identified E-TFC on both antennas, then the WTRU may continue to evaluate the satisfactory bits according to the second criterion. 099133722 Form Number A0101 Page 21 of 69 page 1003016704-0 201119451. If the WTRU determines that it does not have sufficient power to transmit a larger identified E-TFC on at least one of the antennas, the WTRU may report that it is "satisfactory" and may stop the evaluation of the second criterion. In another embodiment, if the WTRU determines that it has sufficient power to transmit a larger identified E-TFC on at least one antenna, then the WTRU continues to evaluate the satisfactory bit according to the second criterion. If the WTRU determines that it does not have sufficient power to transmit a larger identified E-TFC on both antennas, the WTRU may report that it is "satisfactory" and may stop evaluating the second criterion. Embodiments for calculating uypH are disclosed below. The WTRU calculates UPH' and reports the UPH to the network. It is the ratio of the maximum WTRU transmit power to the DPCCH code power, and is calculated as follows: UP Η

Ρ卿 IPDPCCH 等式(15) 其中PDPCCH是DPCCH上的發送的碼功率。Ρ卿 IPDPCCH Equation (15) where PDPCCH is the transmitted code power on the DPCCH.

為了上行鍵路h源調度的目.的’將U P Η發送到·個或多個 節點B°WTRU在預定的週期(例如,i〇〇ms)上對uph取 平均值,並通過映轉表將#映射為索引。在UL TX分集的 上下文中,UPH計算可使用下述實施方式之一或其任意組 合來執行。 根據一個實施方式,WTRU可以如用等式(15)中所示的 常規方式來為每個天線計算UPH,然後將更保守(即,更 小)的值報告給網路。更具體的說,如果UPH1是天線1連 接器處的UPH ’ UPH2是天線2連接器處的UPH,那麼WTRU 可如下報告兩個值中的最小值: 等式(16) UPH = Ώήη(ϋΡΗνυΡΗ2) 099133722 表單編號Α0101 第22頁/共69頁 1003016704-0 201119451 其中UPH是WTRU報告給網路的作為調度資訊(SI) 一部 分的值.。 根據另一個實施方式,WTRU可基於兩個天線上的最大時 隙方式DPCCH功率為每個時隙計算υΡίΙ,並為平均週期( 例如,100ms)平均所計算的時隙方式uph。UPH可計算 如下: ___ max(P购,1(〇υ) Ο 其中PDPCCH, l(t)和P]>pCCH, [(t)分別是天線1和2處DPCCH 功率的時隙方式估計,且N是所述估計中抽樣的數量。 根據另一個實施方式,首先ffRU可通過在平均週期上( 例如’ lOnis)分別對每個天:線處的DPCCH功率測量取平 均值,來計算每個天線的濾波後的Dptcilh功率,然後使 用兩個天線上濾波後的DPCCH碼功率的最大值來計算UPH ,如下所示: ΡϋΡΟΟί' i, L :;ily 1 N ^ i=l 等式(18) ^BPCCH^ =士 |u),和 等式(19) UPH = P x max,/x mBX(^DPCCMt\5 ^DPCCH.2 ) 等式(20)For the purpose of the uplink key h source scheduling, 'transmit UP 到 to one or more nodes B ° WTRU averages uph on a predetermined period (eg, i 〇〇 ms), and passes the mapping table Map # to an index. In the context of UL TX diversity, UPH calculations may be performed using one of the following embodiments, or any combination thereof. According to one embodiment, the WTRU may calculate the UPH for each antenna as in the conventional manner shown in equation (15) and then report the more conservative (i.e., smaller) values to the network. More specifically, if UPH1 is UPH 'UPH2 at the antenna 1 connector is the UPH at the antenna 2 connector, the WTRU may report the minimum of the two values as follows: Equation (16) UPH = Ώήη(ϋΡΗνυΡΗ2) 099133722 Form Number Α 0101 Page 22 of 69 1003016704-0 201119451 where UPH is the value that the WTRU reports to the network as part of the scheduling information (SI). According to another embodiment, the WTRU may calculate 每个ίΙ for each time slot based on the maximum slotted mode DPCCH power on the two antennas and average the calculated time slot mode uph for the averaging period (e.g., 100 ms). The UPH can be calculated as follows: ___ max (P purchase, 1 (〇υ) Ο where PDPCCH, l(t) and P] > pCCH, [(t) is the slot mode estimation of DPCCH power at antennas 1 and 2, respectively, And N is the number of samples in the estimate. According to another embodiment, first the ffRU can calculate each by averaging the DPCCH power measurements at each day: line on an average period (eg 'lOnis) The filtered Dptcilh power of the antenna is then calculated using the maximum value of the filtered DPCCH code power on the two antennas as follows: ΡϋΡΟΟί' i, L :; ily 1 N ^ i=l Equation (18) ^BPCCH^ =士|u), and equation (19) UPH = P x max, /x mBX(^DPCCMt\5 ^DPCCH.2 ) Equation (20)

等式(17) 可替代地,WTRU可將過大(more aggressive)的UPH 值報告給網路。例如,WTRU可以常規的方式為每個天線 計算UPH,然後將過大的(即,更大的)值報告給網路。 更具體的說’如果UP、是天線1連接器處的UPH,UPH2S 天線2連接器處的UPH,那麼WTRU可報告兩個值中的最大 099133722 表單編號A0101 第23頁/共69頁 1003016704-0 201119451 值,如下所示: UPH = max(UPHvUPH2) 寺式(21) 根據另一個實施方式’ WTRU可基於兩個天線上的最小時 隙方式DPCCH功率為每個時隙計算UPH,並為平均週期( 例如,100ms)對計算的時隙方式UPH取平均值。 計算如下:Equation (17) Alternatively, the WTRU may report a more aggressive UPH value to the network. For example, the WTRU may calculate the UPH for each antenna in a conventional manner and then report an excessive (i.e., larger) value to the network. More specifically, 'If UP is UPH at the antenna 1 connector and UPH at the UPH2S antenna 2 connector, the WTRU can report the largest of the two values 099133722 Form No. A0101 Page 23 / Total 69 Page 1003016704-0 The 201119451 value, as follows: UPH = max(UPHvUPH2) Temple (21) According to another embodiment, the WTRU may calculate the UPH for each time slot based on the minimum slot mode DPCCH power on the two antennas, and for the average period (For example, 100ms) Average the calculated time slot mode UPH. Calculated as follows:

I N P UPH = — Y—--—-, Ν ί=\ min(i£,pCCT! (ί) >^DPCC/i,^ 寻式(22) 其中PdPCCH,1 ( t )和PpPCCH, .2( 分別疋天線1和2的時隙方 式DPCCH功率測量,且N是平均週期中的時隙的數量。 根據另一個實施方式,首先fTRlT可通遜'在平均週期上( 例如,IObs)分別對每個天镰處的D^CCH功哞測量取平 均值,來計算每個天線的濾波後的DPCCH功率,然後使用 兩個天線上濾波後的DPCCH功率的最小值來計算UPH,如INP UPH = — Y—--—-, Ν ί=\ min(i£,pCCT! (ί) >^DPCC/i,^ 寻(22) where PdPCCH,1 ( t ) and PpPCCH, .2 (Slotted mode DPCCH power measurements for antennas 1 and 2, respectively, and N is the number of time slots in the averaging period. According to another embodiment, first fTRlT can be tuned to 'on average period (eg, IObs) respectively The D^CCH function measurement at each antenna is averaged to calculate the filtered DPCCH power of each antenna, and then the minimum value of the filtered DPCCH power on the two antennas is used to calculate the UPH, such as

下所示: Λ 1 w PDPCCHt\ — ~ ^PpPCCH \(tX JV t-\Shown below: Λ 1 w PDPCCHt\ — ~ ^PpPCCH \(tX JV t-\

UPH = , Λ A ^^^(Pdpcch,\,PdPCCH ,2 .UPH = , Λ A ^^^(Pdpcch,\, PdPCCH, 2 .

等式(23) 等式(24) 等式(25) 可替代地,ffTRU可將平均UPH值報告給網路。例如, WTRU可以按照常規的方式為每個天線計算UPH,然後將兩 個UPH值的平均值報告給網路。如果UPI^是天線1連接器 處的UPH,且UPH是天線2連接器處的UPH,那麼WTRU可Equation (23) Equation (24) Equation (25) Alternatively, the ffTRU may report the average UPH value to the network. For example, the WTRU may calculate the UPH for each antenna in a conventional manner and then report the average of the two UPH values to the network. If the UPI^ is the UPH at the antenna 1 connector and the UPH is the UPH at the antenna 2 connector, then the WTRU may

U 報告兩個值的平均值,如下所示: 099133722 表單編號A0101 第24頁/共69頁 1003016704-0 201119451 upH=^EilIElk 2 等式(26) 根據另一個實施方式,WTRU可基於兩個天線上的平均時 隙方式DPCCH功率為每個時隙計算UPH,並為平均週期( 例如,100ms)對計算的時隙方式UPH取平均值。upH可 計算如下:U reports the average of the two values as follows: 099133722 Form Number A0101 Page 24 / Total 69 Page 1003016704-0 201119451 upH=^EilIElk 2 Equation (26) According to another embodiment, the WTRU may be based on two days The average slot mode DPCCH power on the line calculates the UPH for each slot and averages the calculated slot mode UPH for the averaging period (eg, 100 ms). upH can be calculated as follows:

UPH 1奴J_y ^max,£UPH 1 slave J_y ^max, £

DPCCH.X ⑹七 P.DPCCH ~Μβ 等式(27) Ο 根據另一個實施方式,首先WTRU可在平均週期上計算兩 個天線處的DPCCH之功率之平均,然後使用DpccH功率的 平均值來計算UPH,如下所示: λ I AT — PDPCCH,W ^ ^ ^(PDPCCH,l (t) + PDPCCH 2(ty) M ·, 等式(28) UPH- 等式(29) 其中^^cc//,1+2是兩傭天線上DPCCH的平均功率。 Ο DPCCHtU2 根據另—個實施方式,首先WTM可計算兩個天線處以時 隙方式的全部估計的DPCCH碼功率,賊計算時隙方式 UPH,如下所示: PDPCCH (0 ~ ^DPCCH ,1 (t) + p DPCCH ,2(0 UPH(t) =DPCCH.X (6) Seven P.DPCCH ~ Μβ Equation (27) Ο According to another embodiment, the WTRU may first calculate the average of the power of the DPCCH at the two antennas on the averaging period, and then calculate using the average of the DpccH power. UPH, as follows: λ I AT — PDPCCH, W ^ ^ ^(PDPCCH, l (t) + PDPCCH 2(ty) M ·, Equation (28) UPH- Equation (29) where ^^cc// 1+2 is the average power of the DPCCH on the two servant antennas. Ο DPCCHtU2 According to another embodiment, first, the WTM can calculate the total estimated DPCCH code power in the slot mode at the two antennas, and the thief calculates the slot mode UPH as follows. Shown: PDPCCH (0 ~ ^DPCCH , 1 (t) + p DPCCH , 2 (0 UPH(t) =

等式(30) 等式(31) 其中Pmax,tx疋來自兩個發射天線的耵讥最大總發射功率 。然後WTRU對平均週期(例如,则⑷上的時隙方式 UPH 〇取平均值’來計算要報告給網路的υρίΙ,如下所 099133722 表單編號Α0101 第25頁/共69頁 1003016704-0 201119451 示: UPH = ^-yUPH{f) " 等式(32) 根據另一個實施方式,首先^抓可單獨計算兩個天線處 的時隙方式UPH ’然後通過用每個天線處波束成形係數α 的相應平方來對每個時隙方式UPH進行加權,以計算時隙 方式UPH,如下所示: 等式(33) 等式(34) 等式(35)Equation (30) Equation (31) where Pmax,tx疋 is the maximum total transmit power of the two transmit antennas. The WTRU then calculates the υρίΙ to be reported to the network for the averaging period (eg, the time slot mode UPH on (4), as follows: 099133722 Form Number Α 0101 Page 25 / Total 69 Page 1003016704-0 201119451 Show: UPH = ^-yUPH{f) " Equation (32) According to another embodiment, the time slot mode UPH ' at two antennas can be separately calculated and then the corresponding beamforming coefficient α at each antenna is used. Squared to weight each time slot mode UPH to calculate the time slot mode UPH as follows: Equation (33) Equation (34) Equation (35)

UPHx(t) UPH2(t) aidsst,tx,2 ^DPCCH^^f) UPH{t) = a2(〇x UPHA{t)^ (i _a2(t))xUPH2(t) 其中Pmax,tx, 1和Pmax,tx,2 ^自發射天線1和2的 WTRU最大發射功率。然後WTRU對平均避期(例如, 100ms)上的時隙方式取平均値,以獲取要報告 給網路的UPH,如下所示:UPHx(t) UPH2(t) aidsst,tx,2 ^DPCCH^^f) UPH{t) = a2(〇x UPHA{t)^ (i _a2(t))xUPH2(t) where Pmax,tx, 1 And Pmax, tx, 2 ^ WTRU maximum transmit power from transmit antennas 1 and 2. The WTRU then averages the time slots on the average evasion period (e.g., 100ms) to obtain the UPH to report to the network, as follows:

N υΡΗ = — ΥϋΡΗ(ί) 等式(36;N υΡΗ = — ΥϋΡΗ(ί) equation (36;

WTRU可使用當前的波束成形係數。可替代地,可使用先 前最經常在平均窗中使用的波束成形係數。可替代地, WTRU可在平均窗期間使用波束成形係數大小的平均值。 T替代地,WTRU可以按常規的方式為每個天線計算upjj, 並單獨報告它們。更特別的是,WTRU如下計算UPH和 _2 : 1 099133722 表單編號A0101 第26頁/共69頁 1003016704-0 201119451 UPH' - Pm^u,' ^DPCCH,\ 等式(37) P - 順,以,2 •^DPCCH.2 5 等式(38) 其中 PDPCCH,1 和 PDPCCH, 2分別是時隙方式的平均的且於 天線1和2連接器處測量的DPCCH功率’而P_>tx」和The WTRU may use the current beamforming coefficients. Alternatively, beamforming coefficients that were most often used in the averaging window in the past can be used. Alternatively, the WTRU may use an average of the beamforming coefficient sizes during the averaging window. Alternatively, the WTRU may calculate upjj for each antenna in a conventional manner and report them separately. More specifically, the WTRU calculates UPH and _2 as follows: 1 099133722 Form No. A0101 Page 26 / Total 69 Page 1003016704-0 201119451 UPH' - Pm^u, ' ^DPCCH, \ Equation (37) P - Shun, 2,^DPCCH.2 5 Equation (38) where PDPCCH,1 and PDPCCH, 2 are the average of the slotted mode and the DPCCH power measured at the antenna 1 and 2 connectors, respectively, and P_>tx" and

PmQV + >是兩個天線的最大發射功率。然後WTRU可 通過調度資訊將兩個UPH值各自報告給網路。PmQV + > is the maximum transmit power of the two antennas. The WTRU can then report the two UPH values to the network by scheduling information.

兩個不同的SI可以被時間多工(即,在不同的時間發送 )。為了識別兩個天線間的UPH,SI可鱗限制為在特定的 混合自動重傳請求(HARQ)過程中被報告。例如,與 UPH1關聯的SI可在偶數編號的HARQ過程上發送,而與 UPH2關聯的SI可在奇數編號的HARQ...過雍:上發送。可替代 地’與UPH1和UPH2關聯的SI可被包括.異有不同類型的 傳輸序列號(TSN)(例如,偶數或奇數編號之TSN)的 PDU 中。 —Two different SIs can be time multiplexed (ie, sent at different times). In order to identify the UPH between two antennas, the SI can be scaled to be reported during a specific Hybrid Automatic Repeat Request (HARQ) process. For example, the SI associated with UPH1 may be sent on an even-numbered HARQ process, while the SI associated with UPH2 may be sent on an odd-numbered HARQ... The SI associated with UPH1 and UPH2 may alternatively be included in a PDU that has a different type of Transmission Sequence Number (TSN) (e.g., an even or odd numbered TSN). -

可替代地,兩個UPH值可合併对,具有新的SI格式的一個SI 中並一起發送。用於發送电加切Pg廉的新SI格式可通過將 新的UPH棚位附加到常規SI格式或者通過將兩個upH合併 為新編碼的攔位等來定義。 用於UL TX分集的E-TFC限制和uph測量的wtRU最大允許 功率,Pmax, tx,可能有不同於單獨天線情形的值。WTRU 可以按照任何順序或組合來使用E_TFC限制和/或叩!!測 量的了述Pmax,tx值中的—者: (1) 由網路配置的最大允許功率; (2) 由WTRU類型描述的最大允許功率; 099133722 表單編號A0101 第27頁/共69頁 1003016704-0 201119451 (3) 在WTRU被配置用於UL TX分集操作時,由WTRU類变 定義的最大允許功率的一半;或 (4) 由網路配置或由WTRU類型描述的最大允許功率的一 部分P (由網路配置或在規範中預先定義)。 WTRU可接收由網路指示與最大發射功率相關的一個或多 個參數的配置消息。然後WTRU可基於該參數組計算 Pmax,tx的值。WTRU還可以基於其WTRU類型和/或UL TX 分集狀態(配置或未配置)來計算P 的值》 max, tx 例如,網路可為WTRU配置特定的最大允許功率和所述功 率的特定部分,供WTRU在被配置用於UL TX分集操作時 使用,(即,在未配置UL TX分集時,P 最大允 max, 許功率’而當配置了 UL TX分集時,P: = px最大 ^ / max, tx 允許功率^。 在應用了 DPCCH功率調整和增益因數之後_,當兩個天線上 的總發射功率或天線中的任一個之發射功率超過了最大 允許值時’(天線的總最大發射功率或每個天線的最大 發射功率),可應用功率縮放。 根據一個實施方式,功率縮放可在波束成形係數的應用 之前應用於通道。如果發射功率超過了任一個天線上的 最大允許值’則在任何其他通道縮小之前,一個或多個 E-DPDCH首先通過減小其縮放因數為点心,〜^ 小,直到/3 ed ,k , reduce 旦 β eA ,,』達到/5 .,並且如果發射功 ed ,k,reduced ed ,k,min 率仍然超過最小允許值,那麼進一步對所有的通道等同 的應用功率縮放。召 是功率減小之後E- ed ,k , reduced DPDCH的增益因數,而0 是E-DPDCH,的配置的 ed, k,m i n k 099133722 表單編號A0101 第28頁/共69頁 1003016704-0 201119451 取小值。根據該實施方式,波束成形模式被維持不變。 根據另一個實施方式,如果發射功率超過了任一個天線 上的最大允許值’貝UE-DPDCH首先縮小,直到 汐ed,k,reduced達到点η t min。如果在石j α ed,k,min ed ,k , reduced 、到石ed ,k,min時訂抓發射功率仍然超過最大允許功率 ,則在任何其他通道縮小之前,WTRU可進一步縮小天線 上的E-DPDCH功率,其中更大的波束成形權重幅度應用到 所述E-DPDCH ’直到有效降低的波束成形權重幅度達到最Alternatively, two UPH values can be combined in one SI with a new SI format and sent together. The new SI format for transmitting the electrical add-on Pg can be defined by appending a new UPH booth to the regular SI format or by combining two upHs into a newly coded block or the like. The maximum allowable power of the wtRU for E-TFC limits and uph measurements for UL TX diversity, Pmax, tx, may have values different from the case of individual antennas. The WTRU may use E_TFC restrictions and/or 叩!! measured Pmax, tx values in any order or combination: (1) maximum allowed power configured by the network; (2) described by WTRU type Maximum allowable power; 099133722 Form number A0101 Page 27 of 69 1003016704-0 201119451 (3) Half of the maximum allowed power defined by the WTRU class when the WTRU is configured for UL TX diversity operation; or (4) A portion of the maximum allowed power (configured by the network or pre-defined in the specification) configured by the network or by the WTRU type. The WTRU may receive a configuration message indicating by the network one or more parameters related to the maximum transmit power. The WTRU may then calculate the value of Pmax, tx based on the set of parameters. The WTRU may also calculate the value of P based on its WTRU type and/or UL TX diversity status (configured or unconfigured), max. tx For example, the network may configure the WTRU with a particular maximum allowed power and a particular portion of the power, Used by the WTRU when configured for UL TX diversity operation (ie, P max max, allow power when UL TX diversity is not configured) and P: = px max ^ / max when UL TX diversity is configured , tx allows power ^. After applying DPCCH power adjustment and gain factor _, when the total transmit power on either antenna or the transmit power of any of the antennas exceeds the maximum allowable value' (the total maximum transmit power of the antenna) Or the maximum transmit power of each antenna, power scaling can be applied. According to one embodiment, power scaling can be applied to the channel before the application of the beamforming coefficients. If the transmit power exceeds the maximum allowable value on either antenna, then Before any other channel is shrunk, one or more E-DPDCHs first reduce their scaling factor to snacks, ~^ small, until /3 ed , k , reduce dan β eA , , 』 reaches /5 . And if the transmit power ed , k, reduced ed , k, min rate still exceeds the minimum allowable value, then the power scaling is applied to all channels equally. The power factor is E- ed , k , reduced DPDCH after power reduction And 0 is the configuration of E-DPDCH, ed, k, mink 099133722 Form No. A0101 Page 28/Total 69 Page 1003016704-0 201119451 Take a small value. According to this embodiment, the beamforming mode is maintained. In one embodiment, if the transmit power exceeds the maximum allowable value on any of the antennas, the UE-DPDCH is first reduced until 汐ed, k, reduced to a point η t min. If in the stone j α ed, k, min ed , k , reduced , to stone ed , k , min when the subscription transmit power still exceeds the maximum allowed power , the WTRU may further reduce the E-DPDCH power on the antenna before any other channel is reduced, wherein the larger beamforming weight range Apply to the E-DPDCH 'until effectively reduced beamforming weights reach the most

小值。更具體地說,分別將具有最大和最小權重幅度的 天線索引表不為。=叫盟卜|和L = arg㈣% |。 - ># ·心 < 最大和最小波束成形權重幅由|冰丨和丨I I給 出。WTRU在具有索引imax的天線上用因數α縮放Ε- ed DPDCH,直到有效降低的波束成形權童幅度| | I ed9reduced\ 達到最小波束成形權重幅度丨,莫中 I mm | |冰以,〜咖你4=«以|>«^雄|。在保持原始相位'^(即,Small value. More specifically, the antenna index table having the maximum and minimum weight magnitudes is not respectively. = called 盟卜| and L = arg(four)% |. - ># ·Heart < The maximum and minimum beamforming weights are given by |Ice and 丨I I . The WTRU scales the Ε-ed DPDCH by the factor α on the antenna with the index imax until the effective beamforming power amplitude is reduced | | I ed9reduced\ reaches the minimum beamforming weight magnitude 丨, Mo Imm | | You 4=«以|>«^雄|. Keep the original phase '^ (ie,

Z wmax)時’ WTRU將權重幅度1% 應用到所述天線 上的E-DPDCH。WTRU還將wmax應用到所述天線上的其他 通道。如果在冰 丨時’ WTRU發射功率仍 ved3reduc&d | ^ηώι | 然超過最大允許功率,則可以進一步應用對所有通道的 等值縮放(也稱作額外縮放)。根據該實施方式,通道 資訊的最重要的部分(即,兩個權重之間的相位偏移) ,可以盡可能地被保持。因此’與兩個天線上的E-DPDCH 的等值縮放相比,可期望得到E-DPDCH不明顯的性能損失 099133722 表單編號A0101 第29頁/共69頁 1003016704-0 201119451Z wmax) The WTRU applies a weight magnitude of 1% to the E-DPDCH on the antenna. The WTRU also applies wmax to other channels on the antenna. If the WTRU transmit power is still ved3reduc&d | ^ηώι | while the ice is over, then the equivalent scaling (also called extra scaling) for all channels can be further applied. According to this embodiment, the most important part of the channel information (i.e., the phase offset between the two weights) can be maintained as much as possible. Therefore, compared with the equivalent scaling of the E-DPDCH on the two antennas, an insignificant performance loss of the E-DPDCH can be expected. 099133722 Form No. A0101 Page 29 of 69 1003016704-0 201119451

,而所有控制通道上的原始波束成形模式維持不變。 根據另一個實施方式,如果發射功率超過了最大允許值 ’貝1JE-DPDCH首先被縮小,直到点 ed ,k,reduced' /3 _」。如果在/5 = n . 1Π ed ,k,reduced 卢ed,k,min 時,WTRD ed,k,mi > η.» i cuu^eu βα, K, min 4 n 11 發射功率仍然超過最大允許功率,那麼在任何其他通道 縮小之前,WTRU可進1縮小具有索引Imax的天線上的 E-DPDCH ’直到有效降低的權重幅度沖 達到最小 卜」。在保持原始相位wj即,气ax)的同時, W T R U將權重幅度|〜,〜|使用於E - D P D C Η和天線上的所 w |晚’ WTRU發射The original beamforming mode on all control channels remains unchanged. According to another embodiment, if the transmit power exceeds the maximum allowable value, the 1JE-DPDCH is first scaled down until the point ed , k, reduced' /3 _". If /5 = n . 1Π ed , k, reduced ed, k, min, WTRD ed, k, mi > η.» i cuu^eu βα, K, min 4 n 11 The transmit power still exceeds the maximum allowable Power, then before any other channel is shrunk, the WTRU may zoom in on the E-DPDCH on the antenna with index Imax until the effective reduced weight magnitude is minimized. While maintaining the original phase wj, ie, ax), W T R U will use the weight magnitude |~,~| for the E-D P D C Η and the w |

。如果在 W Q 这,r&duc&d 功率仍然超過最大允許功率,則WTRU進一步在具有索弓丨 1 max的天線上用因數a c來縮小其他通道,直到有效降伯 的權重幅度 c .reduced ^crreduced 達到最小i卜」,其中 Akmaxl。在保持原始相位'aX(Z'ax>. If at WQ this, the r&duc&d power still exceeds the maximum allowed power, the WTRU further narrows the other channels with the factor ac on the antenna with the cable 丨1 max until the weight of the effective hop is c.reduced ^crreduced Achieve the minimum i", where Akmaxl. While maintaining the original phase 'aX(Z'ax>

,WTRU將權重幅度1%吻u使用於天線上的其他通道 即鲁酬通道)。如果在1'一hkl的 時,WTRU發射功率仍然超過最大允許功率,則可應用董; 所有通道的等值縮放。 根據另一個實施方式,功率縮放可在波束成形係數的應 用之後應用到每個天線上的信號。在天線上的發射功率 超過最大允許值時,可通過調整該天線上的波束成形係 數大小來獨立地縮小每個天線上的信號。如果兩個天線 099133722 表單編號A0101 第30頁/共69頁 1003016704-0 201119451 上的發射功率超過相應的最大允許值,則可在兩個天線 上平行地執行功率縮放。這可能導致波束成形模式失真 °然而’系統性能可能不會受到波束失真太多的影響, 並且這可能有利於處於服務區邊緣的WTRU。 根據另一個實施方式,功率縮放在波束成形係數的應用 之後可應用到每個天線的信號,從而對於每個天線,在 天線上的任何其他通道縮小之前,E-DPDCH首先被縮小, 直到点ed’k,reduced達到々ed,k,min。如果在The WTRU will use a weight of 1% kiss u for the other channels on the antenna, ie the lube channel. If the WTRU transmit power still exceeds the maximum allowed power at 1'-hkl, then the equal scaling of all channels can be applied. According to another embodiment, power scaling can be applied to the signals on each antenna after the application of the beamforming coefficients. When the transmit power on the antenna exceeds the maximum allowable value, the signal on each antenna can be independently scaled by adjusting the beamforming factor size on the antenna. If the transmit power on both antennas 099133722 Form No. A0101 Page 30/69 Page 1003016704-0 201119451 exceeds the corresponding maximum allowable value, power scaling can be performed in parallel on both antennas. This may result in beamforming mode distortion. However, system performance may not be affected by too much beam distortion, and this may be beneficial for WTRUs at the edge of the service area. According to another embodiment, the power scaling can be applied to the signal of each antenna after the application of the beamforming coefficients, so that for each antenna, the E-DPDCH is first scaled down until the point is ed before any other channels on the antenna are scaled down. 'k, reduced to 々ed, k, min. If at

沒ed,k,reduced達到沒ed,k,min時發射功率仍然超過最 大允許值,那麼可在談天線的所有通道上應用等值縮放 。該實施方式將導致控制和資料通道的不同波束模式。 舉例來說’這對於確保以資料通道為代價的更好的控制 通道之保護來說是需要的。該方法從實施觀點來看可以 是有利的,因為其可單獨在每個天線上重新使用常規功 率縮放方案。If ed, k, and reduced do not reach ed, k, min, the transmit power still exceeds the maximum allowable value, then the equivalent scaling can be applied to all channels of the antenna. This embodiment will result in different beam patterns for the control and data channels. For example, this is needed to ensure better control channel protection at the expense of data channels. This approach may be advantageous from an implementation point of view because it can reuse the conventional power scaling scheme on each antenna separately.

根據另一個實施方式,可實施2步騄輕序。在第一步中, 每個天線上的權重曹益(即,波束成形係數和PA增益的 組合)可獨立地調整,以避免'超過每個天線上的最大功 率。功率減小可限制為特定值。當一個天線上的權重增 益不能進一步減小而發射功率仍然超過最大允許功率時 ,在通過了門檻測試的情況下’在第二步中可應用常規 功率縮放方案。該實施方式可允許在應用過大的功率縮 放規則之前的某些級別的波束失真。 為了描述的目的’以及不失一般性,使用下述定義 天線1的權重增益, α :天線2的權重增益, 2 099133722 1〇〇3〇167〇4-〇 表單編號Α0101 第31頁/共69頁 201119451 $ i :天線1的相位; :天線1的相位;以及 τ+μ:門檻值。 I Π 在第一步中,如果任一天線上的發射功率超過了最大允 許功率,則WTRU減小該天線上的權重增益,(即,波束 成形增益和ΡΑ增益的組合)。每個天線被施加所配置的 最小權重增益。更具體地說,對於天線j,WTRU計算減小 的權重增益值(α_),以該天線上的最大允許功率不會超 出。然後,WTRU執行門檻值測試。如果對於一個或兩個 天線來說滿足了門檻測試,則應用第二步。如果對於任 何天線來說沒有滿足門檻測試,則不應用第二步。 作為門檻測試的示例,WTRU可計算幅度增益的相對變化 (relative change),並將其與門檻相比較。WTRU可 針對天線j計算所述相對變化,如下所示:According to another embodiment, a 2-step sequence can be implemented. In the first step, the weight on each antenna (i.e., the combination of beamforming factor and PA gain) can be independently adjusted to avoid 'beyond the maximum power on each antenna. The power reduction can be limited to a specific value. When the weight gain on one antenna cannot be further reduced and the transmit power still exceeds the maximum allowable power, the conventional power scaling scheme can be applied in the second step if the threshold test is passed. This embodiment may allow for certain levels of beam distortion prior to applying excessive power scaling rules. For the purpose of description 'and without loss of generality, use the following definition of the weight gain of antenna 1, α: weight gain of antenna 2, 2 099133722 1〇〇3〇167〇4-〇Form numberΑ0101 Page 31 of 69 Page 201119451 $ i : phase of antenna 1; : phase of antenna 1; and τ + μ: threshold value. I Π In the first step, if the transmit power on any of the antennas exceeds the maximum allowable power, the WTRU reduces the weight gain on that antenna (i.e., the combination of beamforming gain and chirp gain). The configured minimum weight gain is applied to each antenna. More specifically, for antenna j, the WTRU calculates a reduced weight gain value (α_) so that the maximum allowed power on the antenna does not exceed. The WTRU then performs a threshold test. If the threshold test is met for one or two antennas, the second step is applied. If the threshold test is not met for any antenna, the second step is not applied. As an example of a threshold test, the WTRU may calculate a relative change in amplitude gain and compare it to a threshold. The WTRU may calculate the relative change for antenna j as follows:

Relative change 三 Crelj =Relative change three Crelj =

等式(39) 如果所述變化高於門檻,(即,C , .>T+k),則應用第 rel, ) th 二步。 可替代地,WTRU可為天線j計算幅度增益的絕對變化( absolute change),並將其與門檻相比較。WTRU可如 下計算幅度增益變化:Equation (39) If the change is above the threshold (ie, C, .>T+k), then the second step of rel, ) th is applied. Alternatively, the WTRU may calculate an absolute change in amplitude gain for antenna j and compare it to the threshold. The WTRU can calculate the amplitude gain change as follows:

Absolute change ξAbsolute change ξ

等式(40) 如果變化高於門檻,(即,c^Ah),則應用第二步 可替代地,WTRU可計算所產生的權重向量,並碟保其比 099133722 表單編號A0101 第32頁/共69頁 1003016704-0 201119451 碼本中的任何其他權重向量更接近於原始 W,, 如下所示 W = a产 a2ej92 wf= • a\W a\ ej<h- 權重向量。原 分別定義為W和 以及 專式(41) ΟEquation (40) If the change is above the threshold (ie, c^Ah), then the second step is applied. Alternatively, the WTRU may calculate the generated weight vector and discrete it to 099133722 Form No. A0101 Page 32 / Total 69 pages 1003016704-0 201119451 Any other weight vector in the codebook is closer to the original W, as shown below W = a produces a2ej92 wf = • a\W a\ ej<h- weight vector. Originally defined as W and as special (41) Ο

等式(42) WTRU驗證所產生權重向量和原始權重向量之間的距離小 於碼本中任何其他權重向量。換句話說,應滿足下述條 件: =一W aaEquation (42) The WTRU verifies that the distance between the generated weight vector and the original weight vector is less than any other weight vector in the codebook. In other words, the following conditions should be met: = a Waa

Wci邮=W 等式(43) ^ , ^cbsest ~arg min |wt -w 兵 T Wjtecodebook1 如果滿足了門檻測試,則執行第二步。在第二步中,在 ^ r s 兩個天線中可等效地應用功率縮放,H確保在任何天線Wcimail=W Equation (43) ^ , ^cbsest ~arg min |wt -w Soldier T Wjtecodebook1 If the threshold test is met, perform the second step. In the second step, power scaling is equivalently applied in the two antennas of ^ r s, H is guaranteed in any antenna

上不超過最大功率。在兩個天痒冲等效地應用功率縮放 …u X ϋ; i : .S' - Λ. 時’ WTRU可首先減小資料通道(例1,E-DPDCH)的功 率’直到發射功率不再超過兩個天線上的最大允許功率 或直到達到了資料通道的最小功率,(即, β , v r . =yS , 如果在達到了資料通道 ed,k,reduced ρ ed,k,mi〆 的最小功率時,發射功率仍然超過一個或兩個天線上的 最大允許功率,則可應用額外的縮放。 WTRU可使用未縮放的天線權重(即,a j,j = l,2)來應用 額外縮放。可替代地,WTRU可使用縮放後的天線權重( 099133722 表單编號A0101 第33頁/共69頁 1003016704-0 201119451 即ιΓθ,2)來應用額外縮放。在使用未縮放的 ^重時’波束㈣料不變。當制縮放後的天線權重' 時,其引入了波束模式失真,其中失真的數量依賴於選 擇的門檻準則和門檻值。 ' & 第4圖是根據可替代實施方式的發射功率控制之示例 程400的流程圖’Ru確定任一個天線的發射功率 過了最大允許功率(4G2)。如果任何天線的發射功率沒° 有超過最大允許功率,則不執行功率縮玫。如果任一個又 天線的發射功率超過了最大允許功率’則WT_小資料 通道(例如’ E-DPDCH)的增益因數’直到超過了最大發 射功率的—個或多個天線上的最小配置值,從而使得發 射功率成為低於最大允許功率(4α4)、該功率縮放可在 兩個天線上等效的執行,在這種情況下波束模式維持不 變。可替代地,該功率縮放可在每個天線上獨立地執行 ’在這種情況下可能導致若干波束失真。 然後WTRU執行門檻測試來在任一天線上驗證E_DpDCH& 減小的權重增益值养否達到了最小配置值(4〇6)。如果 E-DPDCH的減小的權重增益值沒有達到任一天線上的最小 配置值,則不再執行功率縮放。如果E-DPDCH的減小的權 重增益值達到了一個或兩個天線上的最小配置值,(即 當一個或兩個天線上的0ed,k ,reduced=万以,k Μη時 ),這意味著發射功率仍然超過了所述天線中的任一個天 線的最大允許功率,則4在兩個天線上等效地或在每個 天線上獨立地將進一步的縮小應用到所有通道( 408 )。 099133722Do not exceed the maximum power. Equivalently apply power scaling in two days of itch...u X ϋ; i : .S' - Λ. When the WTRU can first reduce the power of the data channel (Example 1, E-DPDCH) until the transmit power is no longer The maximum allowable power on more than two antennas or until the minimum power of the data channel is reached (ie, β , vr . =yS , if the minimum power of the data channel ed, k, reduced ρ ed, k, mi〆 is reached Additional scaling may be applied when the transmit power still exceeds the maximum allowed power on one or both antennas. The WTRU may apply unscaled antenna weights (ie, aj, j = l, 2) to apply additional scaling. The WTRU may apply the extra scaling using the scaled antenna weights (099133722 Form No. A0101 Page 33/69 pages 1003016704-0 201119451 ie ιΓθ, 2). When using unscaled weights, the beam (four) is not When the scaled antenna weight is ', it introduces beam pattern distortion, where the amount of distortion depends on the selected threshold criterion and threshold. ' & Figure 4 is the transmission power control according to an alternative embodiment. Example 4 The flow chart of 00 'Ru determines that the transmission power of any one antenna exceeds the maximum allowable power (4G2). If the transmit power of any antenna does not exceed the maximum allowable power, the power reduction is not performed. If any of the antennas are transmitted again The power exceeds the maximum allowable power' then the WT_small data channel (eg 'E-DPDCH''s gain factor' is up to the minimum configured value on one or more antennas exceeding the maximum transmit power, such that the transmit power becomes lower than Maximum allowable power (4α4), which can be performed equivalently on both antennas, in which case the beam pattern remains unchanged. Alternatively, the power scaling can be performed independently on each antenna This situation may result in several beam distortions. The WTRU then performs a threshold test to verify E_DpDCH& on any antenna that the reduced weight gain value has reached the minimum configuration value (4〇6). If the E-DPDCH is reduced in weight If the gain value does not reach the minimum configuration value on either antenna, power scaling is no longer performed. If the reduced weight gain value of the E-DPDCH reaches one The minimum configuration value on both antennas (ie, when 0ed, k, reduced=10,000, k Μη on one or two antennas), which means that the transmit power still exceeds that of any of the antennas For maximum allowable power, then 4 further applies the further reduction to all channels (408) equally or on each antenna on both antennas.

由於步驟404中資料通道上的功率縮放可在門檻測試之前 為每個天線獨立地執行,所以在另一天線上的資料通道 表單煸號A0101 第34買/共69頁 1003016704-0 201119451 ’所述天線中的一個天線上的資料通道可達到最小 功率。在這種情況下,在門檻測試之後步驟408中的額外 可按現狀應用於兩個天線的合成信號(其被施加了 貪料通道的潛在的不等同縮放)。可替代地,WTRU可以 首先應用額外的縮放,以促進達到兩個天線的資料通道 Λ的最大減小,然後在步驟408對所得結果應用進一步的 功率縮放。 下面揭示用於多E-DCH碼字空間多工的發射功率控制的實Since the power scaling on the data path in step 404 can be performed independently for each antenna prior to the threshold test, the data channel form on the other antenna is nicknamed A0101, 34th buy/total 69 pages 1003016704-0 201119451 'the antenna The data channel on one of the antennas can achieve minimum power. In this case, the extra in step 408 after the threshold test can be applied to the composite signal of the two antennas as it is applied (which is subject to the potential unequal scaling of the greedy channel). Alternatively, the WTRU may first apply additional scaling to facilitate the maximum reduction of the data channel 达到 to both antennas, and then apply a further power scaling to the resulting result at step 408. The following discloses the implementation of the transmission power control for multi-E-DCH codeword space multiplexing.

施方式。對於雙E-DCH碼字空間多工,可針對每個E-DCH .... . . 碼予建立一個功率控制環。在這種倩況下,WTRU發送兩 個導頻通道(DPCCH1和DPCCH2),並為每個E-DCH碼字 接收單獨的發射功率控制(TPC)命令,且常:規功率控制 可獨立地應用於每個DPCCH。這為每個流提供了一個相對 的功率參考。 第5圖根據一個實施方式示出了用於雙E_DCH碼字空間多 工的不例性發射機5〇〇 ?在該彔例中,假設當在UL MIM〇Way of application. For dual E-DCH codeword space multiplexing, a power control loop can be established for each E-DCH ..... code. In this case, the WTRU transmits two pilot channels (DPCCH1 and DPCCH2) and receives separate transmit power control (TPC) commands for each E-DCH codeword, and the regular power control can be applied independently. For each DPCCH. This provides a relative power reference for each stream. Figure 5 shows an exemplary transmitter for dual E_DCH codeword space multiplexing according to one embodiment. In this example, assume that when in UL MIM〇

模式中配置了 WTRII時沒有發送],不同e-dpdcH流 中的兩個E-DPDCH共用相同的通道化碼,兩個E_Dpcc}^ 用相同的通道化碼,兩個DPCCH共用相同的通道化瑪,以 及兩個DPCCH中的導頻彼此正交。應該注意的是該假設僅 用於示意目的,並且可應縣何配置,(例如卿邮 同時被發送,以及不同_道化碼可用於所述通道中的 任何通道)。第5圖示出了 DPCCH沒有被預編碼,但是< 替換地,DPCCH或任何其他控制通道也可以被預編瑪。* (wlW4)表示預編碼的係數。下標是£_則瑪字或物 理天線的索引。 099133722 表單編號A0101 第35頁/共69頁 1003016704-0 201119451 發射機500 (即,WTRU )包括通道化塊502、增益控制塊 504、I/Q映射塊506、通道組合器508、預編碼塊、干擾 塊和天線。兩個E-DCH碼字’(即,兩個e-DCH傳輸塊) ,可同時被發送。每個E-DCH碼字可映射到一個E-DPDCH 或多於一個的E-DPDCH ’並且e-DPCCH隨每個E-DCH碼字 一起被發送。每個通道,(即,E-DPDCH, E-DPCCH, DPCCH,HS-DPCCH) ’由通道化塊502用相應的通道化 碼進行擴展,由增益控制塊5〇4用相應的增益因數進行多 工,並由I/Q映射塊506映射到I通道或Q通道。用於每個 E-DCH碼字的E-DPDCH和E-DPCCH分別由通道組合器508 進行合併’並由預編碼塊510用預編碼權重進行多工,從 而分發給每個天線。DPCCH、HS-DPCCH和預編碼E-DCH 通道由通道組合器512針對每個天線進行合併。通道合併 後的信號由干擾塊514用干擾碼進行多工,並且然後經由 天線516進行發送》 WTRU可為每個流獨立地計算e-DPDCH/DPCCH功率偏移, (即,對於功率參考通道的E-DPDCH功率偏移)。在計算 E-DPDCH/DPCCH功率偏移時,WTRU計算臨時變數 /5ed> i haj_Q。對於每個流,當配置了 E-DPDCH功率 外推公式時,谷 可如下計算: ed,1,harq Τ ΓΤ; (Man?) (hmimo) ·101^ 等式(44) 當配置了E-DPDCH功率内插公式時,ySed ; hai^可如下 計算: 099133722 表單編號A0101 第36頁/共69頁 1003016704-0 201119451When WTRII is configured in the mode, there is no transmission], two E-DPDCHs in different e-dpdcH streams share the same channelization code, two E_Dpcc}^ use the same channelization code, and two DPCCHs share the same channelization And the pilots in the two DPCCHs are orthogonal to each other. It should be noted that this assumption is for illustrative purposes only and can be configured for the county (e.g., simultaneous mailing is sent, and different _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Figure 5 shows that the DPCCH is not precoded, but < alternatively, the DPCCH or any other control channel can also be pre-coded. * (wlW4) indicates the coefficient of precoding. The subscript is the index of the _ word or physical antenna. 099133722 Form Number A0101 Page 35 of 69 1003016704-0 201119451 Transmitter 500 (ie, WTRU) includes channelization block 502, gain control block 504, I/Q mapping block 506, channel combiner 508, precoding block, Interference block and antenna. Two E-DCH code words ' (i.e., two e-DCH transport blocks) can be transmitted simultaneously. Each E-DCH codeword can be mapped to one E-DPDCH or more than one E-DPDCH' and the e-DPCCH is transmitted with each E-DCH codeword. Each channel, (ie, E-DPDCH, E-DPCCH, DPCCH, HS-DPCCH) is extended by channelization block 502 with the corresponding channelization code, and by gain control block 5〇4 with corresponding gain factor. And mapped by I/Q mapping block 506 to an I channel or a Q channel. The E-DPDCH and E-DPCCH for each E-DCH codeword are respectively combined by channel combiner 508' and multiplexed by precoding block 510 with precoding weights for distribution to each antenna. The DPCCH, HS-DPCCH, and precoded E-DCH channels are combined by channel combiner 512 for each antenna. The channel combined signal is multiplexed by the interference block 514 with the interference code and then transmitted via the antenna 516. The WTRU may calculate the e-DPDCH/DPCCH power offset independently for each stream (ie, for the power reference channel) E-DPDCH power offset). When calculating the E-DPDCH/DPCCH power offset, the WTRU calculates the temporary variable /5ed> i haj_Q. For each stream, when the E-DPDCH power extrapolation formula is configured, the valley can be calculated as follows: ed,1,harq Τ ΓΤ; (Man?) (hmimo) ·101^ Equation (44) When E- is configured When the DPDCH power interpolation formula is used, ySed ; hai^ can be calculated as follows: 099133722 Form No. A0101 Page 36 / Total 69 Page 1003016704-0 201119451

Ped,i,harq ' \h W,1 ?!--n 1 ’ — ^-9.ref,2 vv J ) (hharq\ •l〇L了入20 ^ 等式(45) 其中在Ped,i,harq ' \h W,1 ?!--n 1 ’ — ^-9.ref,2 vv J ) (hharq\ •l〇L is entered into 20 ^ equation (45) where

L e,ref,2L e,ref,2

L 'e,ref,\ ref ΛL 'e,ref,\ ref Λ

e,ref,2 ~~ K e,ref,l e,i fied,ref,1 ~ ^ Ο y 的情況下,設置命〇的情況除:外。 等式(44)和(45)還可以在其-TFC崞制過程中使用,以 μ·- .- r: ν': -·' 確定所支援的E-TFC組》In the case of e, ref, 2 ~~ K e, ref, l e, i fied, ref, 1 ~ ^ Ο y, the case of setting the fate is except: Equations (44) and (45) can also be used in their -TFC tanning process to determine the supported E-TFC group by μ·- .- r: ν': -·'

在等式(44)和(45)中,△…仙是到入的額外功率偏 移因數’以將由於ΜΙΜΟ或雙流傳輸引起的額外的所需接 收功率考慮在内。△1^1110補償了由節點Β接收機處額外的 ΜIΜ0流造成的額外的WTRU内千擾β不同的節點Β接收機 結構需要不同級別的鞋償,因此△Wmo可由較高層發送 信號給WTRU。△ mi mo可為每個流攜帶不同的值。 △ mimo的值可以依賴於ΜΙΜΟ操作模式:空間多工或發射 分集/波束成形。例如’ WTRU可配置有2個△!!!“〇值,一 個值可在發送兩個流時使用,另一個值可在發送單獨的 流時使用。WTRU可決定(例如’基於節點β發信、通道狀 態資訊、可用餘量等)在E_TFC限制之前能發送多少流, 並使用適當的Δπ^1110值來計算支援的E-TfC組和用於選 擇的傳輸塊(TB)大小的所需功率。 099133722 表單編號A0101 第37頁/共69頁 1003016704-0 201119451 參數Δπήιηο可在等式(44)和(45)中的變數之一中合 併。例如,額外的ΜΙΜΟ功率偏移可被引入Harq#率偏移 (△harq)。在這種情況下,WTRU可配置有兩組HARQ# 率偏移:一組用於雙流傳輸,另一組用於單流傳輸。可 替代地,額外的ΜΙΜΟ功率偏移可被弓丨入參考增益因數( 点ed,ref)。在這種情況下,WTRU可配置有兩組參考增益 因數:一組用於雙流傳輸,另一組用於單流傳輸。 △ mimo的值可依賴於靜態參數和/或動態參數。靜態參數 通常與發射機和接收機結構有關,包括於節點B處的接收 機類型’ DPCCH是否被預編碼’ E-DPCCH是否被預編碼, 等等。這些靜態參數在Amiaio值中被考.慮、,所述^“㈣ 值可由網路用信號通知。動態參數可包括MHJ0操作模式 ’(例如’空間多工針對發售分集/波東:’成形),以及每 個流的服務品質(QoS),其可能在TTI基礎上改變。對 於HSUPA的情況,HARQ簡檔可被看作是用於QoS的參數。 一個流的△mimo可依賴於讖流上的TB大小(或相 當於功率)或可替代地為另一E-DCH流的ΤΒ大小(或相當 於功率)。在雙功率控制環的情況中,可能發生的是較 小的傳輸塊需要更大的傳輸功率。在這種情況中,額外 的ΜΙΜΟ功率偏移可指定用於所有的傳輸塊大小。為了減 小該情況中的發信開銷,可使用減小的額外ΜΙΜΟ功率偏 移組。該減小的額外ΜΙΜΟ功率偏移組可被設計來為^大 小的範圍指定額外的ΜIΜ0功率偏移。例如,WTRU可接收 傳輸塊大小的列表,(或索引,即,E-TFCI),和來自 網路的相關聯的額外ΜΙΜΟ功率偏移,並構建具有所述範 圍和相關的額外ΜΙΜΟ功率偏移的表,如表1所示。 099133722 表單煸號Α0101 第38頁/共69頁 1003016704-0 201119451 表1 E-TFCI >— .. 相關聯的如㈣(以dB為單位) <25 0 25,...,50 0.25 51,...,75 0.5 76,...,100 0.75 100,...,128 1.0 △ mimo值可依賴於發送的TB大小對(每個流的一個·^ 大小)。流間干擾的比率某種程摩上依賴於每個流之間 的相對功率。因此,相對來說大傳輸塊對小傳輸塊的干 擾可能較其對大傳輸塊的干擾為多。 額外的ΜIM0功率偏移值可依賴於兩個e-DCH流之間的功 率偏移差值。不失一般性,七货爹一E-DCH流比第二Ε-In equations (44) and (45), Δ... is the additional power offset factor to the input to take into account the additional required received power due to ΜΙΜΟ or dual stream transmission. Δ1^1110 compensates for additional WTRU interference caused by additional ΜI Μ 0 at the node Β receiver. The receiver structure requires different levels of shoe compensation, so ΔWmo can be signaled to the WTRU by higher layers. Δ mi mo can carry different values for each stream. The value of Δ mimo can depend on the ΜΙΜΟ mode of operation: spatial multiplexing or transmit diversity/beamforming. For example, the 'WTRU may be configured with 2 △!!!" thresholds, one value may be used when transmitting two streams, and the other value may be used when transmitting a separate stream. The WTRU may decide (eg 'based on node β signaling , channel status information, available margin, etc.) How many streams can be sent before the E_TFC limit, and use the appropriate Δπ^1110 value to calculate the supported E-TfC group and the required power for the selected transport block (TB) size 099133722 Form No. A0101 Page 37 of 69 1003016704-0 201119451 The parameter Δπήιηο can be combined in one of the variables in equations (44) and (45). For example, an additional ΜΙΜΟ power offset can be introduced into Harq# Rate offset (Δharq). In this case, the WTRU may be configured with two sets of HARQ# rate offsets: one for dual stream transmission and the other for single stream transmission. Alternatively, additional chirp power The offset can be broken into the reference gain factor (point ed, ref). In this case, the WTRU can be configured with two sets of reference gain factors: one for dual stream transmission and the other for single stream transmission. The value of mimo can depend on static parameters and / or dynamic parameters The static parameters are usually related to the transmitter and receiver structure, including whether the receiver type 'DPCCH is precoded' at Node B, whether the E-DPCCH is precoded, etc. These static parameters are tested in the Amiaio value. The ^(4) value can be signaled by the network. The dynamic parameters may include the MHJ0 mode of operation' (e. g. 'spatial multiplex for release diversity/Poton:' shaping), as well as quality of service (QoS) for each stream, which may change on a TTI basis. For the case of HSUPA, the HARQ profile can be seen as a parameter for QoS. The Δmimo of one stream may depend on the TB size (or equivalent to power) on the turbulence or alternatively the ΤΒ size (or equivalent to power) of another E-DCH stream. In the case of a dual power control loop, it may happen that a smaller transport block requires more transmission power. In this case, an additional power offset can be specified for all transport block sizes. In order to reduce the overhead of transmission in this case, a reduced extra power offset group can be used. The reduced additional ΜΙΜΟ power offset set can be designed to specify an additional ΜI Μ 0 power offset for the range of the size. For example, the WTRU may receive a list of transport block sizes, (or index, ie, E-TFCI), and associated additional ΜΙΜΟ power offsets from the network, and construct an additional ΜΙΜΟ power offset with the range and associated Table, as shown in Table 1. 099133722 Form Α Α 0101 Page 38 / Total 69 Page 1003016704-0 201119451 Table 1 E-TFCI > — .. Associated as (4) (in dB) <25 0 25,...,50 0.25 51 ,...,75 0.5 76,...,100 0.75 100,...,128 1.0 △ The mimo value can depend on the TB size pair sent (one size of each stream). The ratio of inter-stream interference depends on the relative power between each stream. Therefore, relatively large transport blocks may interfere with small transport blocks more than they interfere with large transport blocks. The additional ΜIM0 power offset value may depend on the power offset difference between the two e-DCH streams. Without loss of generality, the seven-cargo-E-DCH flow is better than the second one-

DCH流在更高的功率上發送。假設\ u是第一e-DCH 功率和第二Ε-DCH功率之間的功率差值(以dB為單位)。 第一E-DCH的功率被定義為與第一kDCH流相關聯的所有The DCH stream is sent at a higher power. It is assumed that \u is the power difference (in dB) between the first e-DCH power and the second Ε-DCH power. The power of the first E-DCH is defined as all associated with the first kDCH stream

E-DPDCH的全部功率,且可以周時包括相關聯的e-DPCCH 的功率。第二Ε-DCH的功率被定義屬與第二Ε-DCH流相關 聯的所有E-DPDCH的全部功率,且可以同時包括相關聯的 E-DPCCH的功率。WTRU可基於計算的 δρ 值來The full power of the E-DPDCH, and may include the power of the associated e-DPCCH on a weekly basis. The power of the second Ε-DCH is defined to be the total power of all E-DPDCHs associated with the second Ε-DCH stream, and may include the power of the associated E-DPCCH at the same time. The WTRU may be based on the calculated δρ value

E-DCH 分別計算額外的ΜΙΜΟ功率偏移值△ mim〇l和△ mim〇2,以 應用於第一和第二E-DCH流。 △ miinOj j = l,2的值可以基於各種ΔΡε ι^η的範圍進行定 義,如表2所示。WTRU使用所述值來確定每個e-TFC對的 所需額外ΜΙΜΟ功率偏移。在E-TFC限制中,WTRU還可以 099133722 表單編號Α0101 第39頁/共69頁 1003016704-0 201119451 表2 △Pe-dch 範圍 Amimo! Amim〇2 (dB) —〇〇 1 N/A 0 0.5 1 1 ~3 0 2 3 — 6 0 3 更大 0 5 當在應用了 DPCCH功率調整之後總WTRU發射功率超過了 最大允許值時,功率縮放可平行地應用到兩個E-DCH流。 一個或多個E-DPDCH可在任何其驰通道縮放之前首先縮小 ,直到兩個流上的Θ a , , - Λ - 。且右 ed ,k .reduced ed fk ,min 舟爷 最高DPCCH功率的E-DPDCH流可首先縮小,直到該流上的 ,k .reduced^ed ,k,min。然後,如果需要,其他 流上的E-DPDCH可縮小,直到該流上的沒^ - ed -k , reduced β β ed , k min 當兩個流上的泠 ed ,k ,reduced ed ,k,min時,可應用兩個流上的所有通道的等效縮放 β J , 對每個流而言可以為可配置的。 ed ,k , min 可替代地,WTRU可首先減小預定流上的E-DPDCH功率。 在一個示例中,預定流可以是次級(secondary)流。 如果在預定流上的功率縮放之後WTRU仍然是功率受限的 ,那麼WTRU可進一步降低另一流上的E-DPDCH功率《如 果WTRU在其他流上的功率縮放之後仍然是功率受限的, 則可在兩個流上等效地應用額外縮放。初級流可定義為 在由網路發信通知的優選預編碼權重之上發送的資料流 ,而次級資料流程可定義為在與初級流使用的權重正交 099133722 表單編號A0101 第40頁/共69頁 1003016704-0 的預編瑪權重之上發送的其他資料流。 根據另-個實施方式’兩個流__DPDCH的增錢數可等 效地減小,直到發射功率不再超過最大允許值或直到— 個流上減小的E-DPDCH的增益因數達到其最小值(即, β = Ο ed,k,redUCe(TPed,k,min)。如果發射功率仍 然超過最大允許值’則另―流上的E_DpDCH的增益因數可 減小’直到發射功率不再超過最大值1直到用於該流 的E-DPDCH的增㈣數達到其最小值。如果發射功率仍然 超過最大允許值,則可在所有通道上應用等效縮放,直 到發射功率不再超過最大允許值。 下面揭示用於在單獨的DL DPCCp或部〆分涛;用物理通道(The E-DCH calculates additional ΜΙΜΟ power offset values Δ mim 〇 l and Δ mim 〇 2 for the first and second E-DCH streams, respectively. Δ miinOj j = l, the value of 2 can be defined based on the range of various ΔΡε ι^η, as shown in Table 2. The WTRU uses the value to determine the required additional power offset for each e-TFC pair. In the E-TFC restriction, the WTRU may also be 099133722 Form Number Α 0101 Page 39 / Total 69 Page 1003016704-0 201119451 Table 2 ΔPe-dch Range Amimo! Amim〇2 (dB) — 〇〇 1 N/A 0 0.5 1 1 ~ 3 0 2 3 - 6 0 3 Greater 0 5 When the total WTRU transmit power exceeds the maximum allowable value after applying the DPCCH power adjustment, the power scaling can be applied to the two E-DCH streams in parallel. One or more E-DPDCHs may be first scaled down before any of their channels are scaled until Θ a , , - Λ - on the two streams. And right ed , k .reduced ed fk ,min The maximum EPC DCH flow of the boat can be reduced first, until k , reduced ^ ed , k , min on the stream . Then, if necessary, the E-DPDCH on other streams can be reduced until there are no ^-ed-k, reduced β β ed , k min on the stream when 两个ed , k , reduced ed , k on the two streams In min, the equivalent scaling β J of all channels on both streams can be applied, which can be configurable for each stream. Ed , k , min Alternatively, the WTRU may first reduce the E-DPDCH power on the predetermined stream. In one example, the predetermined stream can be a secondary stream. If the WTRU is still power limited after power scaling on the predetermined stream, the WTRU may further reduce the E-DPDCH power on the other stream "If the WTRU is still power limited after power scaling on other streams, then Additional scaling is equivalently applied on both streams. The primary stream may be defined as a data stream sent over a preferred precoding weight notified by the network, and the secondary data flow may be defined as being orthogonal to the weight used by the primary stream. 099133722 Form No. A0101 Page 40/Total Other data streams sent on top of the pre-edited weights on page 69, 1003016704-0. According to another embodiment, the amount of money added by the two streams __DPDCH can be equivalently reduced until the transmit power no longer exceeds the maximum allowable value or until the gain factor of the reduced E-DPDCH reaches a minimum Value (ie, β = Ο ed, k, redUCe(TPed, k, min). If the transmit power still exceeds the maximum allowable value' then the gain factor of the E_DpDCH on the other stream can be reduced 'until the transmit power no longer exceeds the maximum A value of 1 until the number of increments (4) of the E-DPDCH for the stream reaches its minimum. If the transmit power still exceeds the maximum allowable value, an equivalent scaling can be applied on all channels until the transmit power no longer exceeds the maximum allowable value. The following is disclosed for separate DL DPCCp or partial enthalpy; using physical channels (

F-DPCH)上為兩個E-DCH流—功―制(TPC )命令的實施方式。網路為每個E-DCH流發送TPC命令, 從而WTRU在下行鏈路上為兩個E-DCH流接收兩個TPC命令 〇 根據一個實施方式’用於WTRU的兩個E-DCH流的TPC命令 可以在F-DPCH上時間多工。第6圖亲出了常規的F-DPCH 結構β在常規的F-DPCH中,每_TPC命令中的兩個TPC位 元可在F-DPCH的每個時隙中發送’從而單獨的f-DPCH支 持最多達10個WTRU。 第7圖根據該實施方式示出了 F-DPCH上的示例性TPC命令 發送。在第7圖中’ TPC11和TPC12是分別用於WTRU的流 1和流2的TPC命令位元◊兩個TPC位元可為每個TPC命令 進行發送(即’ NTpe= 2)。在該示例中,為雙流傳輸配 置多達五個的WTRU可由一個F-DPCH支持。一個TPC位元 攔位被發送到沒有為雙流傳輸配置的WTRU。用於兩個E- 表單編號A0101 第41頁/共69頁 10031 201119451 DCH流的TPC命令可以在或不在f-DPCH上在時間上相鄰。 根據另一個實施方式,新的TPC位元模式可以定義成為兩 個功率控制環合併發射功率控制命令,從而每個Tpc命令 上的Ntpc位元指示用於兩個資料流的TPC命令。用於TPC 命令的F-DPCH欄位的增益可被增加以支援所需要的額外 資訊。 表3不出了常規的F-DPCH時隙格式〇,以及用於支持每個 時隙上多於2個T P C位元的F - D P C Η的示例性時隙格式β例 如,時隙格式0Α和0C支援每個時隙上的4個tpC位元,時 隙格式0Β和0D支援每個時隙上的8個tpc位元。時隙格式 0是常規的F-DPCH時隙格式。同時可以衍生出不同的F 一 DPCH時隙格式。 , 表3 時隙 格式 #1 通道 位元率 (kbps) 通道 符號比 率 (ksps) SF 位元/ 時隙 Noffi 位元/時隙 Ntpc 位元/時隙 N〇FF2 位元/時隙 0* 3 1.5 256 20 2 2 16 — 0Α 3 1.5 256 20 0 4 16 UB 3 1.5 256 20 0 8 12 0C 3 1.5 256 20 2 4 12 0D 3 1.5 256 20 2 ···. -.... 8 10 表4中的流1和流2列分別對應用於第一和第二流(或等同 的第一和第二DPCCH)的TPC命令解釋。對於被配置用於 具有雙碼字傳輸的ΜΙΜΟ模式的WTRU,WTRU的TPC命令根 據表4進行解釋。 099133722 表單編號Α0101 第42頁/共69頁 10〇3〇16704- 201119451 [0005] 表4 TPC位元模式 TPC命令 N_TPC = 2 N_TPC = 4 N_TPC = 8 流1 流2 11 1111 11111111 1 1 00 0000 00000000 0 0 01 0101 01010101 0 1 10 1010 10101010 1 0 可以定義用於雙流的新TPC位元模式以維持後向相容性。 作為示例,表5示出了用於後向相容的N =4時隙格式 TPC ’、 Ο 0C和NTpc = 8時隙格式0D的TPC也元模式。可導出類似 的表以用於不同的時隙格式。用於第一流的Tpc資訊與用 於信號流情形中的相同。 - [0006] ❹ 表5 TPC位元模式 TPC命令 N_TPC = 2 N_TPC = 4 N_TPC = 8 流1 流2 11 1111 11111111 1 1 00 0000 00000000 0 0 N/A 0011 00001111 0 1 N/A lioo 11110000 1 0 根據另一個實施方式,具有較小擴展因數的新的F-DPCH 格式可被引入以發送更多的資訊位元。 當WTRU在單獨功率控制環和雙功率控制環之間切換時, 關於如何產生或合併TPC命令會產生一個問題。例如,雖 然網路向WTRU發信號通知當前的UL通道條件支援雙流發 送,但是WTRU可選擇用一個流/碼字進行發送。因而,一 個UL功率控制環足夠用於單獨的流傳輸,而在從兩個功 099133722 表單編號A0101 第43頁/共69頁 1003016704-0 201119451 率控制環到單個的功率控制環的轉換期間,WTRU可接收 兩個TPC命令,並合併所述兩個TPC命令,以得到單獨的 TPC命令,來應用到單獨的流傳輸。這可能是相關的,例 如,當發送流的數量是動態的但卻變化地相對緩慢。 WTRU可為兩個流合併兩個TPC命令,如下所示。如果兩個 TPC命令值上的硬(hard)決定是‘1’ ,則WTRU可產生 所導出的TPC命令(TPC cmd),否則,產生為‘―1, 之所導出的TPC命令(TPC cmd)。 可替代地’網路可在兩個配置的TPC欄位上為單獨的流發F-DPCH) is the implementation of two E-DCH Stream-Power System (TPC) commands. The network sends a TPC command for each E-DCH stream such that the WTRU receives two TPC commands for the two E-DCH streams on the downlink, according to one embodiment 'TPC commands for the two E-DCH streams of the WTRU It can be time multiplexed on the F-DPCH. Figure 6 shows the conventional F-DPCH structure. In the conventional F-DPCH, two TPC bits in each _TPC command can be sent in each time slot of the F-DPCH. Thus a separate f- The DPCH supports up to 10 WTRUs. Figure 7 illustrates an exemplary TPC command transmission on the F-DPCH in accordance with this embodiment. In Fig. 7, 'TPC11 and TPC12 are TPC command bits for stream 1 and stream 2 of the WTRU, respectively. Two TPC bits can be transmitted for each TPC command (i.e., 'NTpe = 2). In this example, up to five WTRUs configured for dual stream transmission may be supported by one F-DPCH. A TPC bit intercept is sent to the WTRU that is not configured for dual stream transmission. For two E-form numbers A0101 Page 41 of 69 10031 201119451 The TPC commands for DCH streams can be temporally adjacent on or off the f-DPCH. According to another embodiment, the new TPC bit pattern can be defined as two power control loop combined transmit power control commands such that the Ntpc bits on each Tpc command indicate TPC commands for the two data streams. The gain of the F-DPCH field for the TPC command can be increased to support the additional information needed. Table 3 shows the conventional F-DPCH slot format 〇, and an exemplary slot format β for supporting F-DPC 多于 of more than 2 TPC bits per slot, for example, slot format 0Α and 0C supports 4 tpC bits on each slot, and slot formats 0Β and 0D support 8 tpc bits on each slot. The slot format 0 is a conventional F-DPCH slot format. At the same time, different F-DPCH slot formats can be derived. , Table 3 Slot format #1 Channel bit rate (kbps) Channel symbol ratio (ksps) SF bit/slot Noffi Bit/slot Ntpc Bit/slot N〇FF2 Bit/slot 0* 3 1.5 256 20 2 2 16 — 0Α 3 1.5 256 20 0 4 16 UB 3 1.5 256 20 0 8 12 0C 3 1.5 256 20 2 4 12 0D 3 1.5 256 20 2 ···. -.... 8 10 Table 4 The stream 1 and stream 2 columns in the corresponding TPC command interpretation for the first and second streams (or equivalent first and second DPCCHs), respectively. For a WTRU configured for ΜΙΜΟ mode with dual codeword transmission, the WTRU's TPC commands are explained in accordance with Table 4. 099133722 Form No. Α0101 Page 42 of 69 10〇3〇16704- 201119451 [0005] Table 4 TPC Bit Mode TPC Command N_TPC = 2 N_TPC = 4 N_TPC = 8 Stream 1 Stream 2 11 1111 11111111 1 1 00 0000 00000000 0 0 01 0101 01010101 0 1 10 1010 10101010 1 0 A new TPC bit pattern for dual streams can be defined to maintain backward compatibility. As an example, Table 5 shows the TPC ternary mode for the backward compatible N = 4 slot format TPC ', Ο 0C, and NTpc = 8 slot format 0D. Similar tables can be exported for different slot formats. The Tpc information used for the first stream is the same as in the case of the signal stream. - [0006] ❹ Table 5 TPC Bit Mode TPC Command N_TPC = 2 N_TPC = 4 N_TPC = 8 Stream 1 Stream 2 11 1111 11111111 1 1 00 0000 00000000 0 0 N/A 0011 00001111 0 1 N/A lioo 11110000 1 0 According to another embodiment, a new F-DPCH format with a smaller spreading factor can be introduced to send more information bits. When the WTRU switches between a separate power control loop and a dual power control loop, a problem arises regarding how to generate or merge TPC commands. For example, although the network signals the WTRU that the current UL channel condition supports dual stream transmission, the WTRU may choose to transmit with one stream/codeword. Thus, one UL power control loop is sufficient for separate streaming, while during the transition from two work 099133722 Form Number A0101 Page 43 / Page 69 1003016704-0 201119451 Rate Control Loop to a Single Power Control Loop, the WTRU Two TPC commands can be received and the two TPC commands combined to obtain a separate TPC command for application to a separate streaming. This may be relevant, for example, when the number of sent streams is dynamic but changes relatively slowly. The WTRU may combine two TPC commands for two streams as shown below. The WTRU may generate the derived TPC command (TPC cmd) if the hard decision on the two TPC command values is '1', otherwise the derived TPC command (TPC cmd) is generated as '-1. . Alternatively, the network can be streamed separately in the two configured TPC fields.

送TPC命令。常規的F-DPCH格式不需要被重配置。WTRU 接收兩個TPC攔位,並且基於其從兩個欄位中接收到Send a TPC command. The conventional F-DPCH format does not need to be reconfigured. The WTRU receives two TPC intercepts and receives them from two fields based on it

的資訊來做出關於最後的TPC命令的決1定。所導出的TPC 命令可通過加權每個TPC攔位上的軟(soft)決定來產生 。例如,將第i個流的TPC上的軟決定表示為P,丨=1,2, i TPC命令可如下獲得: TPC_camd= ΐ-1,女陳:5+/¾ SO· 也可能有用於操作於雙碼字空間多工UL 模式的 WTRU的單個功率控制環。在該情況中,對於每個^別有 一個UL功率控制環,與ΜΙΜΟ操作模式上WTRU的配置無關 。用於兩個DPCCH的DPCCH增益因數可設置為相同的值( 即,/¾ =总2)。換句話說,第二DPCCH的功率採用與第 一DPCCH功率相同的值。 可替代地,DPCCH增益因數可設置為不同,如下所示: 其中α是可由網路用信號通知的固定值。 099133722 表單編號Α0101 第44頁/共69頁 1003016704-0 201119451 在該情形中’用於第二肝咖的仰⑽功率可基於第— DPCCH的功率和所配置的增益偏移^在每個時隙上進行調 整。 可替代地’用於第二導頻通道(例如,DPC⑻的功率偏 移可依賴於f-和第二導頻通道中包含的全部導頻符號 比率。例如’如果第一導頻通道攜帶8個導頻符號,且第 二導頻通道攜帶1G個導頻符號,那麼第二導頻通道相對 於第-導頻通道的功率偏移可設置為8/1()或近似為低於 ldB,(即,101〇gi()(8/1〇) = _〇.97 仙)。該值可由 WTRU基於導頻通道的配置進行計算,或者可基於可能的 比率進行預先計算。 …,-s βf 替代雙碼子空間多工,發射鮮可實現單.碼字.空間多工, - ^ ^ ,A > 其中經由兩個發送天線發送單獨的E_DCH碼字。第8圖示 出了根據一個實施方式用於單碼字空間多工的示例性發 射機800。在該示例中,假設在WTRU UL被配置為處於 ΜΙΜΟ模式時不發送dpdch,兩個!共用相同的通道化 瑪’以及兩個DPCCH中的導頻彼此正交。應該注意的是該 假設僅用於示意g的,並且-任〜何'配置都可以應用,(例 如’ DPDCH可同時發送,且不同的通道化碼可用於任何通 道)。第8圖示出了DPCCH沒有被預編碼,但是作為替代 方式’ DPCCH或任何其他控制通道也可以被預編碼。由於 有一個E-DCH流,因此發送一個E-DPCCH。 發射機800 (即,WTRU)包括通道化塊802、增益控制塊 804、I/Q映射塊8〇6、通道組合器808、通道組合器814 、解多工器810、預編碼塊812、干擾塊816和天線818。 一個E-DCH碼字’(即,一個e-dCH傳輸塊),被映射到 099133722 表單編號A0101 第45頁/共69頁 1003016704-0 201119451 一個或多於一個的Ε-DPDCH。每個通道,(即, DPDCH’ E-DPCCH’ DPCCH,HS-DPCCH),由通道化塊 8 0 2用相應的通道化碼進行擴展,由增益控制塊8 〇 4用相 應的增益因數進行多工’並由I/Q映射塊8〇6映射到I通道 或Q通道。E-DPDCH由通道組合器808進行合併,並由解 多工器810解多工為兩個流。所述兩個流由預編碼塊812 用預編碼權重進行多工’以分發給每個天線。DPCCH、 HS-DPCCH、E-DPCCH和預編碼後的E-DPDCH由通道組合 器814針對每個天線進行合併。通道合併後的信號由干擾 塊816用干擾碼進行多工,然後經由天線818進行發送。 作為替代方式,DPCCH和/或E-DPCCH還可秘被預編碼。 當為E-DPDCH設定增益因數.齊,臨時變數沒 計 _d: 鄉,i,harqe| 算可遵循與等式(44)和U5)相同,除了 Διηίιη〇的 值可以不依賴於在僅有一個傳輸塊被發._送時的兩個傳輸 塊之間的相對功率之外。 根據另一個實施方式”:不同的干擾.瑪可在每個天線上應 用,而沒有進行任何預編碼(稱作偽空間多工方案)。 第9圖示出了根據一個實施方式的用於實施偽空間多工方 案的示例性發射機900。 第9圖中的發送方案並非典型的ΜΙΜΟ方案,且於基站處不 需要多個接收天線,因為可使用干擾碼來分離所述流。 節點Β接收機可簡單地將每個WTRU發送天線作為虛擬用戶 或WTRU。應該注意的是,具有干擾消除接收機的基站中 的多接收天線可為這種情況提供改進的性能。對於該發 射機結構’可使用兩個獨立的功率控制環,每個功率控 制環用於一個虛擬用戶/ WTRU。 099133722 表單編號Α0101 第46頁/共69頁 1〇〇 201119451 在該示例中,假設在ΜI MO模式中配置了 WTRU %時,、ν» 有DPDCH被發送,不同E-DPDCH流中的兩個E、DPCCH共用 相同的通道化碼,兩個E-DPCCH共用相同的通道化碼,兩 個DPCCH共用相同的通道化碼,並且兩個DPCCH中的導頻 彼此正交。應該注意的是該假設僅用於示意目的,任何 配置都可以應用,(例如,DPDCH可同時發送,且不同的 通道化碼可用於任何通道)。 ❹Information to make a final decision on the final TPC order. The derived TPC commands can be generated by weighting soft decisions on each TPC intercept. For example, the soft decision on the TPC of the i-th stream is denoted as P, 丨=1,2, and the i TPC command can be obtained as follows: TPC_camd= ΐ-1, female Chen: 5+/3⁄4 SO· may also be used for operation A single power control loop for a WTRU in dual codeword space multiplexed UL mode. In this case, there is one UL power control loop for each, regardless of the configuration of the WTRU in the ΜΙΜΟ mode of operation. The DPCCH gain factor for the two DPCCHs can be set to the same value (ie, /3⁄4 = total 2). In other words, the power of the second DPCCH is the same as the power of the first DPCCH. Alternatively, the DPCCH gain factor can be set to be different as follows: where a is a fixed value that can be signaled by the network. 099133722 Form number Α 0101 Page 44 / Total 69 pages 1003016704-0 201119451 In this case 'Yang (10) power for the second liver can be based on the power of the DPCCH and the configured gain offset ^ in each time slot Make adjustments on it. Alternatively 'for the second pilot channel (eg, the power offset of the DPC (8) may depend on the ratio of all pilot symbols contained in the f- and second pilot channels. For example 'if the first pilot channel carries 8 a pilot symbol, and the second pilot channel carries 1G pilot symbols, and the power offset of the second pilot channel relative to the first pilot channel can be set to 8/1 () or approximately lower than ldB, ( That is, 101〇gi()(8/1〇) = _〇.97 )). This value can be calculated by the WTRU based on the configuration of the pilot channel, or can be pre-calculated based on the possible ratios. ..., -s βf instead Double code subspace multiplex, transmitting freshly realizes single codeword. Space multiplex, - ^ ^ , A > where separate E_DCH codewords are transmitted via two transmit antennas. Figure 8 shows an embodiment according to one embodiment An exemplary transmitter 800 for single codeword space multiplexing. In this example, assume that dpdch is not transmitted when the WTRU UL is configured to be in the ΜΙΜΟ mode, two! share the same channelization s and two DPCCHs The pilots are orthogonal to each other. It should be noted that this assumption is only used to indicate g, And - any ~ what configuration can be applied (for example 'DPDCH can be sent simultaneously, and different channelization codes can be used for any channel). Figure 8 shows that DPCCH is not precoded, but as an alternative to 'DPCCH or Any other control channel may also be precoded. Since there is one E-DCH stream, one E-DPCCH is transmitted. Transmitter 800 (i.e., WTRU) includes channelization block 802, gain control block 804, I/Q mapping block 8 〇6, channel combiner 808, channel combiner 814, demultiplexer 810, precoding block 812, interference block 816, and antenna 818. An E-DCH codeword ' (ie, an e-dCH transport block), Map to 099133722 Form No. A0101 Page 45 / Total 69 Page 1003016704-0 201119451 One or more Ε-DPDCH. Each channel, (ie, DPDCH' E-DPCCH' DPCCH, HS-DPCCH), channelized Block 802 is extended with the corresponding channelization code, multiplexed by the gain control block 8 〇4 with the corresponding gain factor' and mapped by I/Q mapping block 8〇6 to the I channel or Q channel. E-DPDCH Merged by channel combiner 808 and demultiplexed by demultiplexer 810 Two streams. The two streams are multiplexed by precoding block 812 with precoding weights to distribute to each antenna. DPCCH, HS-DPCCH, E-DPCCH, and precoded E-DPDCH by channel combiner The 814 is combined for each antenna. The channel combined signal is multiplexed by the interference block 816 with the interference code and then transmitted via the antenna 818. Alternatively, DPCCH and/or E-DPCCH may also be pre-coded. When setting the gain factor for E-DPDCH, the temporary variables are not counted _d: township, i, harqe| can be followed by the same equations (44) and U5), except that the value of Διηίιη〇 can be independent of only A transport block is sent outside the relative power between the two transport blocks when sent. According to another embodiment": different interferences. Marco is applied on each antenna without any precoding (referred to as a pseudo spatial multiplexing scheme). Figure 9 shows an implementation for implementation according to one embodiment An exemplary transmitter 900 of a pseudo-space multiplex scheme. The transmission scheme in Figure 9 is not a typical scheme and does not require multiple receive antennas at the base station because the interference code can be used to separate the streams. The machine may simply send each WTRU transmit antenna as a virtual subscriber or WTRU. It should be noted that multiple receive antennas in a base station with an interference cancellation receiver may provide improved performance for this case. Two independent power control loops are used, one for each virtual user/WTRU. 099133722 Form Number Α0101 Page 46/Total 69 Page 1〇〇201119451 In this example, it is assumed that the ΜI MO mode is configured. When the WTRU is %, ν» has a DPDCH transmitted, and two E and DPCCHs in different E-DPDCH streams share the same channelization code, and the two E-DPCCHs share the same channelization code. The two DPCCHs share the same channelization code, and the pilots in the two DPCCHs are orthogonal to each other. It should be noted that this assumption is for illustrative purposes only, and any configuration can be applied (for example, DPDCH can be transmitted simultaneously and differently The channelization code can be used for any channel).

發射機900 (即,WTRU)包括通道化塊902、增益控制塊 904、I/Q映射塊9〇6、通道組合器、91〇、干擾塊 912和天線914。兩個E-DCH碼字(即’兩個E_DCH傳輸 塊)可同時被發送。每個E-DCH碼字可被映射到一個或多 於一個的E-DPDCH,並且E-PPCCH可與每個尤-此11瑪字一 起被發送。每個通道,(即,E-DPDCH,E DPCCH,DP CCH,HS-DPCCH),由通道化塊902用相應的通道化瑪 進行擴展,由增益控制塊9G4用相應的增益因數進行多工 ,並由I/Q映射塊906映射到1通道或Q通道濞11器 、910可針對每個天線對通道輯合併。通邊合併後的^ 號由干擾塊912用不同干㈣進行多工,然後紅由天線 914進行發送》 由於不同的流可以看作獨立WTRU,因此#有夕簡化基 礎設施和調度的優勢。在實施方式中,可包拉額卜的 ,、l來增加資料通 ΜΙΜΟ功率偏移以根據等式(44)和 道的功率。根據上述揭示的释一實施方式的功率縮都 可以實施 線傳輸進行發 1003016704-0 實施例 1、一種用於在WTRU中對上行鏈路中的多天 099133722 表單編號Α0101 第47買/共69頁 201119451 射功率控制的方法。 2、 根據實施例1所述的方法,該方法包括產生用於傳輸 的至少一個輸入流。 3、 根據實施例2所述的方法,該方法包括對包括在輸入 流中的每個通道應用增益因數,所述增益因數基於參考 通道功率估計進行確定。 4、 根據實施例3所述的方法,該方法包括從所述輸入流 產生用於經由多個天線傳輸的至少兩個資料流。 5、 根據實施例4所述的方法,該方法包括對資料流應用 Λ 〇 權重,其中增益因數或權重中的至少一者被控制以使得 每個天線上的發射功率在最大允許值内。 6、 根據實施例2-5中任一實施例所述的方法,該方法還 包括在每個天線上執行功率參考通道上的功率測量。 7、 根據實施例6所述的方法,該方法包括在預定週期上 對功率測量進行濾波,以計算每個天線上的平均參考通 道功率估計。 8、 根據實施例7所述的方法,該方法包括選擇所有天線Transmitter 900 (i.e., WTRU) includes channelization block 902, gain control block 904, I/Q mapping block 916, channel combiner, 91 〇, interference block 912, and antenna 914. Two E-DCH code words (i.e., 'two E_DCH transport blocks') can be transmitted simultaneously. Each E-DCH codeword can be mapped to one or more E-DPDCHs, and the E-PPCCH can be transmitted with each of the 11 words. Each channel, (ie, E-DPDCH, E DPCCH, DP CCH, HS-DPCCH), is extended by channelization block 902 with a corresponding channelization, and multiplexed by gain control block 9G4 with a corresponding gain factor, And mapped by I/Q mapping block 906 to a 1-channel or Q-channel 、11, 910 can be combined for each antenna pair. The combined edge of the edge is multiplexed by the interference block 912 with different trunks (4), and then red is transmitted by the antenna 914. Since the different streams can be regarded as independent WTRUs, the advantages of infrastructure and scheduling are simplified. In an embodiment, the data offset may be increased to increase the data throughput power offset according to equation (44) and the power of the track. The power reduction according to the above-disclosed embodiment can be implemented by performing line transmission and transmitting 1003016704-0. Embodiment 1, a method for numbering multiple days in the uplink in the WTRU 099133722 Α0101 47th buy/total 69 pages 201119451 Method of shooting power control. 2. The method of embodiment 1 comprising generating at least one input stream for transmission. 3. The method of embodiment 2, comprising applying a gain factor to each of the channels included in the input stream, the gain factor being determined based on a reference channel power estimate. 4. The method of embodiment 3, the method comprising generating at least two data streams for transmission via the plurality of antennas from the input stream. 5. The method of embodiment 4, the method comprising applying a weight to the data stream, wherein at least one of the gain factor or the weight is controlled such that the transmit power on each antenna is within a maximum allowed value. 6. The method of any of embodiments 2-5, further comprising performing a power measurement on the power reference channel on each antenna. 7. The method of embodiment 6 comprising filtering the power measurements over a predetermined period to calculate an average reference channel power estimate on each antenna. 8. The method of embodiment 7, the method comprising selecting all antennas

iJ 上的平均參考通道功率估計中最大的一個平均參考通道 功率估計來作為參考通道功率估計。 9、 根據實施例2-8中任一實施例所述的方法,該方法還 包括為每個天線計算UPH。 10、 根據實施例9所述的方法,該方法包括在為所有天線 計算的UPH中選擇最小的一個UPH。 11、 根據實施例10所述的方法,該方法包括發送包括所 選擇的UPH的調度資訊。 12、 根據實施例2-11中任一實施例所述的方法,該方法 099133722 表單編號A0101 第48頁/共69頁 1003016704-0 201119451 還包括在任一天線上的發射功率超過了最大允許值的情 況下,執行功率縮放。 13、 根據實施例12所述的方法,該方法包括縮小超過了 最大允許值的天線上的E_DPDCH ’直到發射功率不超過最 大允許值或E-DPDCH的增益因數達到E-DPDCH的最小增益 值。 14、 根據實施例13所述的方法’該方法包括在縮小了 E-DPDCH後發射功率仍然超過最大允許值的情況下,縮小兩 個天線上的所有通道。 . ·. --. .' . ...… .... 15、 一種用於在WTRU申對上行鏈路中的多天線傳輪進行 發射功率控制的方法。 Ύ :、二' ·:;Λ | i. 16、 根據實施例15所述的方法,該方法包括▲生至少一 個E-DCH瑪字。 17、 根據實施例16所述的方法,該方法包括從所述E-DCH碼字產生用於經由多個天線傳輸的至少兩個資料流。 «': :« ΐί·. 18、 根據實施例17所述的方法/該方法包括為每個資料 流計算E-DPDCH功率偏移,E-DPDCH功率偏移基於臨時變 數而被計算,叙臨時變數是基於由於多流傳輸引起的額 外功率偏移因數而被計算的。 19、 根據實施例18所述的方法,該方法包括應用Ε-DPDCH功率偏移。 20、 根據實施例19所述的方法,該方法包括發送資料流 〇 21、 根據實施例18-20中任一實施例所述的方法,其中額 外功率偏移因數對於每個資料流而言是不同的值。 22、 根據實施例18-21中任一實施例所述的方法’其中額 099133722 表單編號Α0101 第49頁/共69頁 1003016704-0 201119451 外功率偏移因數依賴於ΜΙΜΟ操作模式、接收機類型、The largest average reference channel power estimate in the average reference channel power estimate on iJ is used as the reference channel power estimate. 9. The method of any of embodiments 2-8, further comprising calculating an UPH for each antenna. 10. The method of embodiment 9, the method comprising selecting a smallest one of the UPHs calculated for all of the antennas. 11. The method of embodiment 10, the method comprising transmitting scheduling information including the selected UPH. 12. The method according to any one of embodiments 2-11, the method 099133722, the form number A0101, the 48th, the 69th, the 1003016704-0, the 201119451, further including the case where the transmit power on any of the antennas exceeds the maximum allowable value. Next, perform power scaling. 13. The method of embodiment 12, comprising reducing the E_DPDCH' on the antenna that exceeds the maximum allowable value until the transmit power does not exceed the maximum allowable value or the gain factor of the E-DPDCH reaches the minimum gain value of the E-DPDCH. 14. The method of embodiment 13 wherein the method includes reducing all channels on both antennas if the transmit power still exceeds the maximum allowable value after the E-DPDCH is reduced. . . . . . . . . . . . . a method for transmitting power control in a WTRU applying a multi-antenna transmission in the uplink. Ύ:, 二' ·:;Λ | i. 16. The method of embodiment 15, the method comprising: generating at least one E-DCH Ma word. 17. The method of embodiment 16 comprising generating at least two data streams for transmission via the plurality of antennas from the E-DCH codeword. «': :« ΐί·. 18. The method according to embodiment 17 / the method comprising calculating an E-DPDCH power offset for each data stream, the E-DPDCH power offset being calculated based on the temporary variable, The variables are calculated based on the extra power offset factor due to multi-stream transmission. 19. The method of embodiment 18, the method comprising applying a Ε-DPDCH power offset. 20. The method of embodiment 19, comprising: transmitting a data stream, the method of any one of embodiments 18-20, wherein the additional power offset factor is for each data stream Different values. 22. The method according to any one of embodiments 18-21 wherein the amount 099133722 form number Α0101 page 49/69 page 1003016704-0 201119451 external power offset factor depends on ΜΙΜΟ mode of operation, receiver type,

DpCCH疋否被預編碼、E_DpcCH是否被預編碼、或每個資 料流的QoS中的至少一者。 貝 23、 根據實施例18~22中任一實施例所述的方法,其中額 外功率偏移因數依賴於每個資料流的τ B大小或資料流的 一對TB大小。 24、 根據實施例18-23中任一實施例所述的方法,其中額 外功率偏移因數依賴於資料流之間的功率偏移差值。 25、 根據實施例1 6-24中任一實施例所述的方法,其中經 由每個天線來發送單獨的DPCCH,並且由單一功率控制環 來控制DPCCH的發射功率。 ; 26、 一種用於對上行鏈路中的多天線'傳輸進行發射功率 控制的WTRU。 44 27、 根據實施例26所述的WTRU,該WTRU包括多個天線。 28、 根據實施例27所述的WTRU,該WTRU包括處理器’該 處理器被配置以產生用於傳輸的至少一個輸入流。 29、 根據實施例28所遠的WTRU,其中處理器被配置以對 包括在輸入流中的每個通道應用增益因數,該增益因數 基於參考通道功率估計而被確定。 置以從 30、 根據實施例29所述的酬,其中處理器被配置^ 所述輸入流產生用於經由多個天線傳輸的炱夕兩一 流。 μ努被私釁以對 31、 根據實施例30所述的1^1^,其中處"少〆杳被 資料流應用權重,其中增益因數或權重中1值内。 控制以使得每個天線上的發射功率在最u,其中 32、 根據實施例28-31中任一實施例所述的 100301 099133722 表覃編號A0101 第50 共69頁 201119451 處理器被配置以在每個天線上執行功率參考通道上的功 率測置,在預疋週期上對所述功率測量進行濾波,以計 算每個天線上的平均參考通道功率估計,並選擇所有天 線上的平均參考通道功率估計中最大的一個平均參考通 道功率估計來作為參考通道功率估計。 33、 根據實施例28-32中任一實施例所述的WTRU,其中 處理器被配置以為每個天線計算UPH。Whether DpCCH is precoded, whether E_DpcCH is precoded, or at least one of the QoS of each data stream. The method of any one of embodiments 18 to 22, wherein the additional power offset factor is dependent on a τ B size of each data stream or a pair of TB sizes of the data stream. The method of any one of embodiments 18-23 wherein the additional power offset factor is dependent on a power offset difference between the data streams. The method of any one of embodiments 1 to 6 wherein a separate DPCCH is transmitted via each antenna and the transmit power of the DPCCH is controlled by a single power control loop. 26. A WTRU for transmitting power control for multiple antenna 'transmissions in the uplink. 44. The WTRU of embodiment 26, the WTRU comprising a plurality of antennas. 28. The WTRU of embodiment 27, the WTRU comprising a processor' that is configured to generate at least one input stream for transmission. 29. The WTRU as far as embodiment 28, wherein the processor is configured to apply a gain factor to each of the channels included in the input stream, the gain factor being determined based on the reference channel power estimate. The method of embodiment 29, wherein the processor is configured to generate a stream for transmission via the plurality of antennas. The numerator is privately paired 31. According to the embodiment 1, the ^^1^, where the "less" is applied by the data stream, wherein the gain factor or the weight is within 1 value. Controlling such that the transmit power on each antenna is at the most u, wherein 32, according to any of embodiments 28-31, 100301 099133722, number A0101, page 50, page 69, 201119451 processor is configured to The power measurements on the power reference channel are performed on the antennas, and the power measurements are filtered on a pre-cycle to calculate an average reference channel power estimate on each antenna and select an average reference channel power estimate on all antennas. The largest of the average reference channel power estimates is used as the reference channel power estimate. The WTRU as in any one of embodiments 28-32 wherein the processor is configured to calculate an UPH for each antenna.

34、 根據實施例33所述的WTRU,其中處理器被配置以在 為所有天線計算的UPH中選擇最小的一個UPH,並發送包 括所選擇的UPH的調度資訊。 35、 根據實施例28-34中任一實施例所述的WTRU,其中 處理器被配置以在任一天線上的發射功率超過了最大允 許值的情況下’縮小E-DPDCH,直到發射功率不超過最大 允許值或E-DPDCH的增益因數達到E-DPDCH的最小增益值 ’並在縮小了 E-DPDCH後,發射功率仍然超過最大允許值 的情況下,縮小所有通道》 Ο 36、 一種用於對上行鏈路中的多天線裱輸進行發射功率 控制的WTRU。 、: 37、 根據實施例36所述的WTRU,該WTRU包括多個天線。 38、 根據實施例37所述的WTRU,該WTRU包括處理器,該 處理器被配置以產生至少一個E-DCH碼字。 39、 根據實施例38所述的WTRU,其中處理器被配置以從 所述E-DCH碼字產生用於經由多個天線傳輸的至少兩個資 料流。 4〇、根據實施例39所述的WTRU,其中處理器被配置以為 每個資料流計算E-DPDCH功率偏移,E-DPDCH功率偏移基 099133722 表單編號A0101 第51頁/共69頁 1003016704-0 201119451 於臨時變數而被計算,該臨時變數是基於由於多流傳輸 引起的額外功率偏移而被計算的。 41、根據實施例40所述的WTRU,其中處埋器被配置以應 用E-DPDCH功率偏移,並發送資料流。 42、 根據實施例40-41中任一實施例所述的WTRU,其中 額外功率偏移因數對於每個資料流而言是不同的值。 43、 根據實施例40-42中任一實施例所述的WTRU,其中 額外功率偏移因數依賴於ΜΙΜΟ操作模式、接收機類型、 DPCCH是否被預編碼、E-DPCCH是否被預編碼、或每個資 料流的QoS中的至少t奢。 44、 根據實施例40-43中任一實施例所述的WTRU,其中 額外功率偏移因數依賴於每俩資料流的TB大小或資料流 的一對TB大小。 : 45、 根據實施例40-44中任一實施例所述的WTRU,其中 額外功率偏移因數依賴於資料流之間的功率偏移差值。 46、 根據實施例37-45中任一實施例所述的WTRU,其中 經由每個天線來發送單獨的dPcch,並且由單一功率控制 環來控制DPCCH的發射功率β 雖然以上對特徵和元件以特定的結合方式進行描述,但 本領域技術人士將理解每個特徵或元件可以單獨使用, 或與其他特徵和元件任意結合使用。此外,於此提供的 方法可以在φ電腦或處理_執行*併人電腦可讀取媒體 中的電腦程式、軟體或㈣中實施。電腦可讀取媒體的 示例包括電子信號(在有線或無線連接上發送)和電腦 099133722 可讀取存儲媒艘。關於電腦可讀取存儲媒體的範例包括 但不限於唯讀記憶體、隨機存取記憶體(ram) 表單編號A0101 第52頁/共69頁 1003016704-0 201119451 、寄存器、緩衝記憶體、半導體存儲設備、内部硬碟和 可移動磁片之類的磁媒介、磁光媒介以及例如CD-ROM磁 片和數位多功能光碟(DVD)之類的光媒介。與軟體關聯 的處理器可用於實現無線電射頻收發信機,以在WTRU、 UE、終端、基站、RNC或任何主電腦中使用。 【圖式簡單說明】 [0007] Ο ❹ 099133722 更詳細的理解可以從下述結合附圖給出的示例的描述中 得到,其中: 第1A圖是可執行一個或多個所揭示實施方式的示例性通 信系統的系統圖, 第1B圖是可在第1A圖中示出的通信系統中被使用的示例 性WTRU的系統圖; 第1C圖是可在第1A圖中示出的通信系統中被使用的示例 性無線電存取網路和示例性核心網路的系統圖; 第2圖示出了根據一個實施方式的具有波束成形器的示例 性發射機; 第3圖示出了具有受單位功率約束的波束成形器的示例性 發射機; 第4圖是根據2步法的示例性發射功率控制過程的流程圖 第5圖示出了根據一個實施方式的用於雙E-DCH碼字空間 多工的示例性發射機; 第6圖示出了習用的F-DPCH結構; 第7圖示出了根據該實施方式的F-DPCH上的示例性TPC命 令傳輸; 第8圖示出了根據一個實施方式的用於單碼字空間多工的 表單編號A0101 第53頁/共69頁 1003016704-0 201119451 示例性發射機;以及 第9圖示出了根據一個實施方式的用於實現偽空間多工方 案的示例性發射機。 【主要元件符號說明】 [0008] 200、300、500、800、900 發射機 516 ' 206 ' 306 ' 308 ' 818 ' 914 天線 514、816、912 干擾塊 502 通道化塊 303a、504、804、904 增益控制塊 506 ' 806 > 906 I/Q映射塊 508、808、908、910 通道組合器 E-DPDCH 專用物理資料通道 100 通信系統 114a' 114b 基站 102、102a、102b、102c、102d、WTRU 無線發射/ 接收單元 ί: 116 空中介面 104、RAN 無線電存取網路 106 核心網路 110 網際網路 108、PSTN 公共交換電話網路 110 網際網路 112 其他網路 118 處理器 120 收發信機 122 發射/接收元件 099133722 表單編號A0101 第54頁/共69頁 1003016704-0 201119451 124 揚聲器/麥克風 126 鍵盤 128 顯示器/觸控板 130 不可移動記憶體 132 可移動記憶體 134 電源 136、GPS晶片組 GPS 全球定位系統 138 週邊設備34. The WTRU of embodiment 33 wherein the processor is configured to select a smallest one of the UPHs calculated for all antennas and to transmit scheduling information including the selected UPH. The WTRU as in any one of embodiments 28-34 wherein the processor is configured to 'reduce the E-DPDCH if the transmit power on any of the antennas exceeds a maximum allowable value until the transmit power does not exceed a maximum The allowable value or the gain factor of the E-DPDCH reaches the minimum gain value of the E-DPDCH', and after the E-DPDCH is reduced, the transmission power still exceeds the maximum allowable value, and all channels are reduced. Ο 36, one for uplink Multiple antennas in the link transmit WTRUs that transmit power control. 37. The WTRU of embodiment 36, the WTRU comprising a plurality of antennas. 38. The WTRU of embodiment 37, the WTRU comprising a processor configured to generate at least one E-DCH codeword. 39. The WTRU of embodiment 38 wherein the processor is configured to generate at least two data streams for transmission via the plurality of antennas from the E-DCH codeword. The WTRU of embodiment 39, wherein the processor is configured to calculate an E-DPDCH power offset for each data stream, E-DPDCH power offset base 099133722 Form Number A0101 Page 51 of 69 Page 303016704- 0 201119451 is calculated as a temporary variable that is calculated based on the extra power offset due to multi-stream transmission. 41. The WTRU of embodiment 40 wherein the router is configured to apply an E-DPDCH power offset and to transmit the data stream. The WTRU as in any one of embodiments 40-41 wherein the additional power offset factor is a different value for each data stream. The WTRU as in any one of embodiments 40-42 wherein the additional power offset factor is dependent on a mode of operation, a receiver type, whether the DPCCH is precoded, whether the E-DPCCH is precoded, or each At least t extravagance in the QoS of the data stream. 44. The WTRU as in any one of embodiments 40-43 wherein the additional power offset factor is dependent on a TB size of each of the data streams or a pair of TB sizes of the data stream. The WTRU of any one of embodiments 40-44 wherein the additional power offset factor is dependent on a power offset difference between the data streams. The WTRU as in any one of embodiments 37-45, wherein a separate dPcch is transmitted via each antenna, and the transmit power of the DPCCH is controlled by a single power control loop, although the features and components are specific to the above Combinations are described, but those skilled in the art will appreciate that each feature or element can be used alone or in any combination with other features and elements. In addition, the methods provided herein can be implemented in a computer program, software, or (d) in a computer or processing computer. Examples of computer readable media include electronic signals (sent on wired or wireless connections) and computers 099133722 readable storage media. Examples of computer readable storage media include, but are not limited to, read only memory, random access memory (ram), form number A0101, page 52, total 69, 1003016704-0, 201119451, registers, buffer memory, semiconductor memory devices Magnetic media such as internal hard disks and removable magnetic disks, magneto-optical media, and optical media such as CD-ROM magnetic disks and digital versatile compact discs (DVDs). A processor associated with the software can be used to implement a radio frequency transceiver for use in a WTRU, UE, terminal, base station, RNC, or any host computer. BRIEF DESCRIPTION OF THE DRAWINGS [0007] A more detailed understanding can be obtained from the following description of examples given in conjunction with the figures, wherein: FIG. 1A is an exemplary embodiment of one or more disclosed embodiments. A system diagram of a communication system, FIG. 1B is a system diagram of an exemplary WTRU that can be used in the communication system shown in FIG. 1A; FIG. 1C is a diagram that can be used in the communication system shown in FIG. 1A System diagram of an exemplary radio access network and an exemplary core network; Figure 2 shows an exemplary transmitter with a beamformer in accordance with one embodiment; Figure 3 shows a unit power constraint Exemplary transmitter of a beamformer; FIG. 4 is a flow chart of an exemplary transmit power control process according to a 2-step method. FIG. 5 is a diagram showing a dual E-DCH codeword space multiplexing according to an embodiment. Exemplary transmitter; FIG. 6 shows a conventional F-DPCH structure; FIG. 7 shows an exemplary TPC command transmission on the F-DPCH according to the embodiment; FIG. 8 shows an implementation according to an implementation Way for single codeword space Interworking multiplexed form number A0101 Page 53 of 69 1003016704-0 201119451 Exemplary Transmitter; and Figure 9 illustrates an exemplary transmitter for implementing a pseudo space multiplex scheme, in accordance with one embodiment. [Main component symbol description] [0008] 200, 300, 500, 800, 900 transmitter 516 '206 ' 306 ' 308 ' 818 ' 914 antenna 514, 816, 912 interference block 502 channelization block 303a, 504, 804, 904 Gain control block 506 '806 > 906 I/Q mapping block 508, 808, 908, 910 channel combiner E-DPDCH dedicated physical data channel 100 communication system 114a' 114b base station 102, 102a, 102b, 102c, 102d, WTRU wireless Transmit/receive unit ί: 116 Empty Intermediary 104, RAN Radio Access Network 106 Core Network 110 Internet 108, PSTN Public Switched Telephone Network 110 Internet 112 Other Network 118 Processor 120 Transceiver 122 Transmit /Receiving Components 099133722 Form No. A0101 Page 54 of 69 1003016704-0 201119451 124 Speaker/Microphone 126 Keyboard 128 Display/Touchpad 130 Non-Removable Memory 132 Removable Memory 134 Power 136, GPS Chipset GPS Global Positioning System 138 peripherals

140a、140b、140c 節點B 142a、142b、RNC 無線電網路控制器 144 > MGW 媒體閘道 146 > MSC 移動交換中心 148 ' SGSN 服務GPRS支援節點 150 ' GGSN 閘道GPRS支持節點 202、302 加權塊 204 ' PA 放大器140a, 140b, 140c Node B 142a, 142b, RNC Radio Network Controller 144 > MGW Media Gateway 146 > MSC Mobile Switching Center 148 'SGSN Serving GPRS Support Node 150' GGSN Gateway GPRS Support Node 202, 302 Weighting Block 204 ' PA Amplifier

303b 相位控制塊 TPC 發射功率控制 F-DPCH 部分專用物理通道 810 解多工器 812 預編碼塊 814 通道組合器 802、902 通道化塊 904 增益控制塊 099133722 表單編號A0101 第55頁/共69頁 1003016704-0303b Phase Control Block TPC Transmit Power Control F-DPCH Partial Dedicated Physical Channel 810 Demultiplexer 812 Precoding Block 814 Channel Combiner 802, 902 Channelization Block 904 Gain Control Block 099133722 Form Number A0101 Page 55 of 69 Page 303016704 -0

Claims (1)

201119451 七、申請專利範圍: 1 . 一種用於在無線發射/接收單元(WTRU)中對一上行鏈路 中的多天線傳輸進行發射功率控制的方法,該方法包括: 產生用於傳輸的至少一輸入流; 對包括在所述輸入流中的每一通道應用一增益因數,該增 益因數係基於一參考通道功率估計而被確定; 從所述輸入流產生用於經由複數天線傳輸的至少二資料流 :以及 對所述資料流應用權重,其中所述增益因數或所述權重中 的至少其中之一被控制,以使得每一天線上的一發射功率 在一最大允許值内。 2.如申請專利範圍第1項所述的方法,進一步包括: 在每一天線上執行一功率參考通道上的功率測量; 在一預定週期上對所述功率測量進行滤波,以計算每一天 線上的一平均參考通道功率估計;以及 選擇所有天線上的平均參考通道功率估計中的一最大者來 作為所述參考通道功率估計。 3 .如申請專利範圍第1項所述的方法,進一步包括: 為每一天線計算一UE功率餘量(UPH); 在為所有天線計算的UPH中選擇一最小者;以及 發送包括所選擇的UPH的調度資訊。 4 .如申請專利範圍第1項所述的方法,進一步包括: 在任一天線上的一發射功率超過一最大允許值的情況下, 執行功率縮放; 縮小超過該最大允許值的一天線上的一E-DCH專用物理資 099133722 表單編號A0101 第56頁/共69頁 1003016704-0 201119451 料通道(E-DPDCH),直到所述發射功洛 ,....^ 刀年不超過所述最大 允s午值或所述E-DPDCH的一增益因數洁 _ $到所述E-DPDCH的 一最小增益值;以及201119451 VII. Patent Application Range: 1. A method for transmitting power control of multi-antenna transmission in an uplink in a wireless transmit/receive unit (WTRU), the method comprising: generating at least one for transmission Input stream; applying a gain factor to each channel included in the input stream, the gain factor being determined based on a reference channel power estimate; generating at least two data for transmission via the complex antenna from the input stream And: applying a weight to the data stream, wherein at least one of the gain factor or the weight is controlled such that a transmit power on each antenna is within a maximum allowed value. 2. The method of claim 1, further comprising: performing power measurement on a power reference channel on each antenna; filtering the power measurement over a predetermined period to calculate on each antenna An average reference channel power estimate; and selecting one of the average reference channel power estimates across all antennas as the reference channel power estimate. 3. The method of claim 1, further comprising: calculating a UE power headroom (UPH) for each antenna; selecting a minimum among the UPHs calculated for all antennas; and transmitting including the selected ones UPH scheduling information. 4. The method of claim 1, further comprising: performing power scaling if a transmit power on any of the antennas exceeds a maximum allowable value; and reducing an E-line on the day of the line exceeding the maximum allowable value DCH special physical resources 099133722 Form No. A0101 Page 56 / Total 69 pages 1003016704-0 201119451 Material channel (E-DPDCH), until the launching power, .... ^ knife year does not exceed the maximum allowable s noon value Or a gain factor of the E-DPDCH to a minimum gain value of the E-DPDCH; 在縮小了所述E-DPDCH後所述發射功率仍然超過所述最大 允許值的情況下,縮小兩天線上的所有通道。 一種用於在一無線發射/接收單元(WTRU)中對一上行鏈 路中的多天線傳輸進行發射功率控制的方法,該方法包括 G ❹ 產生至少一增強型專用通道(E-DCH)碼字; 從所述E-DCH碼字生成用於經由複數天線傳輸的至少二資 料流; 」屬看,'、λ . . 二 為每一資料流計算一E-DCH專用物理資料通道‘(E-DPDCH )功率偏移,該E-DPDCH功率偏移基於一臨時變數而被計 算’該臨時變數基於由於多流傳輸引起的一額外功率偏移 因數而被計算的; 應用所述E-DPDCH功率偏移;议及 發送所述資料流。 1 : : 如申請專利範圍第所述的方法”其中所述額外功率偏 移因數對於每一資料流係為不同的值。 如申請專利範圍第5項所述的方法,其中所述額外功率偏 移因數係依據一多輸入多輸出(ΜΙΜΟ)操作模式、一接 收機類型、一專用物理控制通道(DPCCH)是否被預編揭 、一E-DCH專用物理控制通道(E-DPCCH)是否被預編瑪 、或每一資料流的一服務品質(QoS)中的至少一者 如申請專利範圍第5項所述的方法’其中所述額外功率偏 移因數係依據每一資料流的一傳輸塊(TB)大小或所述資 099133722 表單編號A0101 第57買/共69頁 1003016704-0 201119451 料流的一對Τ B大小。 9 .如申請專利範圍第5項所述的方法,其中所述額外功率偏 移因數係依據資料流之間的一功率偏移差值。 10 .如申請專利範圍第5項所述的方法,其中經由每一天線來 發送一單獨的專用物理控制通道(DPCCH),並且由一單 一功率控制環來控制DPCCH的一發射功率。 11 . 一種用於對一上行鏈路中的多天線傳輸進行發射功率控制 的無線發射/接收單元(WTRU),該WTRU包括: 複數天線;以及 一處理器,被配置以產生用於傳輸的至少一輸入流,對包 括在所述輸入流中的每一通道應用一增益因數,該增益因 數係基於一參考通道功率估計而被確定,從所述輸入流產 生用於經由複數天線傳輸的至少二資料流,並且對所述資 料流應用權重,其中所述增益因數或所述權重中的至少其 中之一被控制以使得每一天線上的一發射功率在一最大允 許值内。 12 .如申請專利範圍第11項所述的WTRU,其中所述處理器被 配置以在每一天線上執行一功率參考通道上的功率測量, 在一預定週期上對所述功率測量進行濾波以計算每一天線 上的一平均參考通道功率估計,並選擇所有天線上的平均 參考通道功率估計中的一最大者來作為所述參考通道功率 估計。 13 .如申請專利範圍第11項所述的WTRU,其中所述處理器被 配置以為每一天線計算一UE功率餘量(UPH),在為所有 天線計算的UPH中選擇一最小者,並發送包括所選擇的 UPH的調度資訊。 099133722 表單編號A0101 第58頁/共69頁 1003016704-0 201119451 14 .如申請專利範圍第u項所述的町別,其中所述處理器被 配置以在任一天線上的一發射功率超過一最大允許值的情 況下’縮小一E_I>CH專用物理資料通道(E-DPDCH),直 到所述發射功率不超過所述最大允許值或所述E-DPDCH的 一增益因數達到所述E-DPDCH的一最小增益值,並在縮小 了所述E-DPDCH後所述發射功率仍然超過所述最大允許值 的情況下,縮小所有通道。 15 . —種用於對一上行鏈路中的多天線傳輸進行發射功率控制 的無線發射/接收單元(WTRU),該WTRU包括: 複數天線;以及 一處理器,被配置以產生至资广#強型專甩通道(E_DCH )碼子’從所述E-DCH碼字產、生用於:释.由複數天線傳輸的 至少二資料流,為每一資料流計算一Έ-DCH專用物理資料 通道(E-DPDCH)功率偏移,所述E-DPDCH功率偏移基於 一臨時變數而被計算,該臨時變數基於由於多流傳輸引起 的一額外功率偏移因數而被計算,應用所述E_DPDCH功率 ❹ 偏移,並發送所迷資科流。1:: H 16 .如申請專利範圍第15項所述的FTRU,其中所述額外功率 偏移因數對於每一資料流係為不同的值。 17 .如申請專利範圍第15項所述的WTRU,其中所述額外功率 偏移因數係依據一多輸入多輸出(ΜΙΜΟ)操作模式、一 接收機類型、醫專用物理控制通道(DPCCII)是否被預編 碼、一E-DCH專用物理控制通道(e-DPCCH)是否被預編 碼、或每一資料流的一服務品質(q〇S)中的至少一者。 18 .如申請專利範圍第15項所述的WTRU,其中所述額外功率 偏移因數係依據每一資料流的一傳輸塊(TB)大小或所述 099133722 表單編號 A0101 第 59 頁/共 69 頁 1003016704-0 201119451 資料流的一對Τ B大小。 19 .如申請專利範圍第15項所述的WTRU,其中所述額外功率 偏移因數係依據資料流程之間的一功率偏移差值。 20 .如申請專利範圍第15項所述的WTRU,其中經由每一天線 來發送一單獨的專用物理控制通道(DPCCH),並且由一 單一功率控制環來控制DPCCH的一發射功率。 099133722 表單編號A0101 第60頁/共69頁 1003016704-0In the case where the transmission power still exceeds the maximum allowable value after the E-DPDCH is reduced, all channels on both antennas are reduced. A method for transmit power control of multi-antenna transmissions in an uplink in a wireless transmit/receive unit (WTRU), the method comprising G 产生 generating at least one enhanced dedicated channel (E-DCH) codeword Generating at least two data streams for transmission via the complex antenna from the E-DCH codeword; "To see, ', λ. . 2, calculating an E-DCH dedicated physical data channel for each data stream' (E- DPDCH) power offset, the E-DPDCH power offset is calculated based on a temporary variable 'calculated based on an additional power offset factor due to multi-stream transmission; applying the E-DPDCH power offset Move; discuss and send the data stream. The method of claim 5, wherein the additional power offset factor is a different value for each data stream system, such as the method of claim 5, wherein the additional power is biased. The shift factor is based on whether a multiple input multiple output (ΜΙΜΟ) operating mode, a receiver type, a dedicated physical control channel (DPCCH) is pre-compiled, and whether an E-DCH dedicated physical control channel (E-DPCCH) is pre-fetched. At least one of the quality of service (QoS) of each of the data streams, or the method of claim 5, wherein the additional power offset factor is based on a transport block of each data stream. (TB) Size or the said capital 099133722 Form No. A0101 57th buy / Total 69 pages 1003016704-0 201119451 A pair of streams of the size B. 9. The method of claim 5, wherein the additional The power offset factor is based on a power offset difference between the data streams. The method of claim 5, wherein a separate dedicated physical control channel (DPCCH) is transmitted via each antenna. And controlling a transmit power of the DPCCH by a single power control loop. 11. A wireless transmit/receive unit (WTRU) for transmitting power control for multi-antenna transmission in an uplink, the WTRU comprising: a plurality of antennas And a processor configured to generate at least one input stream for transmission, applying a gain factor to each of the channels included in the input stream, the gain factor being determined based on a reference channel power estimate, Generating at least two data streams for transmission via the complex antenna from the input stream, and applying a weight to the data stream, wherein at least one of the gain factor or the weight is controlled such that each antenna The WTRU of claim 11, wherein the processor is configured to perform power measurement on a power reference channel on each antenna for a predetermined period of time. Filtering the power measurements to calculate an average reference channel power estimate on each antenna and selecting all antennas The WTRU of the ninth aspect of the invention, wherein the processor is configured to calculate a UE power headroom for each antenna. (UPH), select a minimum among the UPHs calculated for all antennas, and send scheduling information including the selected UPH. 099133722 Form No. A0101 Page 58 of 69 1003016704-0 201119451 14 . The chores described in item u, wherein the processor is configured to 'reduce an E_I> CH-specific physical data channel (E-DPDCH) if a transmit power on any of the antennas exceeds a maximum allowable value until said Transmitting power does not exceed the maximum allowable value or a gain factor of the E-DPDCH reaches a minimum gain value of the E-DPDCH, and the transmit power still exceeds the maximum after the E-DPDCH is reduced In the case of allowed values, all channels are reduced. 15. A wireless transmit/receive unit (WTRU) for transmitting power control of multi-antenna transmissions in an uplink, the WTRU comprising: a plurality of antennas; and a processor configured to generate to The strong special channel (E_DCH) code 'from the E-DCH code word is produced and used: release. At least two data streams transmitted by the complex antenna, and one Έ-DCH dedicated physical data is calculated for each data stream. Channel (E-DPDCH) power offset, the E-DPDCH power offset is calculated based on a temporary variable that is calculated based on an additional power offset factor due to multi-stream transmission, applying the E_DPDCH Power ❹ offset and send the stream. 1: The FTRU of claim 15, wherein the additional power offset factor is a different value for each data stream. 17. The WTRU as claimed in claim 15 wherein the additional power offset factor is based on whether a multiple input multiple output (ΜΙΜΟ) mode of operation, a receiver type, a medical-specific physical control channel (DPCCII) is Precoding, whether an E-DCH dedicated physical control channel (e-DPCCH) is precoded, or at least one of a quality of service (q〇S) of each data stream. 18. The WTRU as claimed in claim 15 wherein said additional power offset factor is based on a transport block (TB) size of each data stream or said 099133722 form number A0101 page 59 of 69 1003016704-0 201119451 A pair of data streams Τ B size. 19. The WTRU of claim 15 wherein said additional power offset factor is based on a power offset difference between data flows. 20. The WTRU of claim 15 wherein a separate dedicated physical control channel (DPCCH) is transmitted via each antenna and a transmit power of the DPCCH is controlled by a single power control loop. 099133722 Form No. A0101 Page 60 of 69 1003016704-0
TW099133722A 2009-10-02 2010-10-04 Method and apparatus for transmit power control for multiple antenna transmissions in the uplink TWI519189B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US24799509P 2009-10-02 2009-10-02
US24803409P 2009-10-02 2009-10-02

Publications (2)

Publication Number Publication Date
TW201119451A true TW201119451A (en) 2011-06-01
TWI519189B TWI519189B (en) 2016-01-21

Family

ID=43533278

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099133722A TWI519189B (en) 2009-10-02 2010-10-04 Method and apparatus for transmit power control for multiple antenna transmissions in the uplink

Country Status (8)

Country Link
US (3) US9031600B2 (en)
EP (2) EP2484163A2 (en)
JP (5) JP5597715B2 (en)
KR (1) KR101700471B1 (en)
CN (2) CN104270808B (en)
AU (2) AU2010300408B2 (en)
TW (1) TWI519189B (en)
WO (1) WO2011041719A2 (en)

Families Citing this family (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4621205B2 (en) 2003-09-26 2011-01-26 インターデイジタル テクノロジー コーポレーション Apparatus and method for determining gain factors of wireless communication transmission power
US11309943B2 (en) 2004-04-02 2022-04-19 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US8654815B1 (en) 2004-04-02 2014-02-18 Rearden, Llc System and method for distributed antenna wireless communications
US11394436B2 (en) 2004-04-02 2022-07-19 Rearden, Llc System and method for distributed antenna wireless communications
US11451275B2 (en) 2004-04-02 2022-09-20 Rearden, Llc System and method for distributed antenna wireless communications
US10985811B2 (en) 2004-04-02 2021-04-20 Rearden, Llc System and method for distributed antenna wireless communications
US10749582B2 (en) 2004-04-02 2020-08-18 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US10425134B2 (en) 2004-04-02 2019-09-24 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US10277290B2 (en) 2004-04-02 2019-04-30 Rearden, Llc Systems and methods to exploit areas of coherence in wireless systems
US9312929B2 (en) 2004-04-02 2016-04-12 Rearden, Llc System and methods to compensate for Doppler effects in multi-user (MU) multiple antenna systems (MAS)
US10886979B2 (en) 2004-04-02 2021-01-05 Rearden, Llc System and method for link adaptation in DIDO multicarrier systems
US8542763B2 (en) 2004-04-02 2013-09-24 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US10200094B2 (en) 2004-04-02 2019-02-05 Rearden, Llc Interference management, handoff, power control and link adaptation in distributed-input distributed-output (DIDO) communication systems
US9685997B2 (en) 2007-08-20 2017-06-20 Rearden, Llc Systems and methods to enhance spatial diversity in distributed-input distributed-output wireless systems
EP2289273A4 (en) * 2008-06-19 2013-11-13 Ericsson Telefon Ab L M Bit-rate prediction
WO2011041719A2 (en) 2009-10-02 2011-04-07 Interdigital Patent Holdings, Inc. Method and apparatus for transmit power control for multiple antenna transmissions in the uplink
US9059760B2 (en) * 2010-02-05 2015-06-16 Qualcomm Incorporated Apparatus and method for enabling uplink beamforming transit diversity
US9144040B2 (en) 2010-04-01 2015-09-22 Futurewei Technologies, Inc. System and method for uplink multi-antenna power control in a communications system
US9197296B2 (en) * 2010-04-05 2015-11-24 Qualcomm Incorporated Method and apparatus for maximum ratio transmission mobile transmit diversity system
CN105827292A (en) * 2010-04-09 2016-08-03 交互数字专利控股公司 Method for configuring transmission parameters for uplink (UL) transmissions utilizing multiple antennas and WRTU
US8838161B2 (en) * 2010-06-16 2014-09-16 Samsung Electronics Co., Ltd Uplink power control method for mobile communication system
BR112013007790A2 (en) * 2010-10-01 2017-10-10 Interdigital Patent Holdings Inc Method and device for pilot transmission on multiple antennas
US9497773B2 (en) 2012-02-08 2016-11-15 QUALOCOMM Incorporated Method and apparatus for enhancing resource allocation for uplink MIMO communication
US9380490B2 (en) 2010-11-08 2016-06-28 Qualcomm Incorporated System and method for uplink multiple input multiple output transmission
US8953713B2 (en) 2010-11-08 2015-02-10 Qualcomm Incorporated System and method for uplink multiple input multiple output transmission
US20120281642A1 (en) * 2010-11-08 2012-11-08 Qualcomm Incorporated System and method for uplink multiple input multiple output transmission
US9007888B2 (en) 2010-11-08 2015-04-14 Qualcomm Incorporated System and method for uplink multiple input multiple output transmission
US9516609B2 (en) 2010-11-08 2016-12-06 Qualcomm Incorporated System and method for uplink multiple input multiple output transmission
US9084207B2 (en) * 2010-11-08 2015-07-14 Qualcomm Incorporated System and method for uplink multiple input multiple output transmission
KR101752950B1 (en) * 2011-01-07 2017-07-11 인터디지탈 패튼 홀딩스, 인크 Selection of transmission parameters for transmit diversity terminals
WO2012149502A1 (en) * 2011-04-29 2012-11-01 Interdigital Patent Holdings, Inc. Transmission of e-dch control channel in mimo operations
CN102843759B (en) * 2011-06-23 2016-03-02 华为技术有限公司 A kind of Poewr control method of up multi-input and multi-output channel and subscriber equipment
US9232482B2 (en) 2011-07-01 2016-01-05 QUALOCOMM Incorporated Systems, methods and apparatus for managing multiple radio access bearer communications
US9167472B2 (en) 2011-07-01 2015-10-20 Qualcomm Incorporated Methods and apparatus for enhanced UL RLC flow control for MRAB calls
US9357482B2 (en) * 2011-07-13 2016-05-31 Alcatel Lucent Method and system for dynamic power control for base stations
US9591593B2 (en) * 2011-07-22 2017-03-07 Qualcomm Incorporated Systems, methods and apparatus for radio uplink power control
US9930569B2 (en) 2011-08-04 2018-03-27 Qualcomm Incorporated Systems, methods and apparatus for wireless condition based multiple radio access bearer communications
US8644875B2 (en) * 2011-09-08 2014-02-04 Nokia Corporation Transmit power control in multi-radio apparatus
US9686046B2 (en) 2011-09-13 2017-06-20 Qualcomm Incorporated Systems, methods and apparatus for wireless condition based multiple radio access bearer communications
BR112014005163A2 (en) * 2011-09-14 2017-04-11 Rearden Llc multi-antenna (but) multi-user (mu) system and method of exploring areas of coherence in wireless channels in said system
CN104254991B (en) * 2012-01-31 2018-04-17 瑞典爱立信有限公司 For the method for uplink multiple-input and multiple-output, network node and user equipment
US9137698B2 (en) * 2012-02-24 2015-09-15 Samsung Electronics Co., Ltd. Beam management for wireless communication
CN102594521B (en) * 2012-03-16 2015-05-13 华为技术有限公司 Control information transmitting method and system, user equipment and base station
US9467951B2 (en) * 2012-06-29 2016-10-11 Telefonaktiebolaget Lm Ericsson (Publ) Uplink transmit power control
US9674801B2 (en) * 2012-07-26 2017-06-06 Huawei Technologies Co., Ltd. UE power allocation according to scheduler utility metric for DL MU-MIMO and DL CoMP
US9258791B2 (en) * 2012-11-02 2016-02-09 Telefonaktiebolaget L M Ericsson (Publ) Method and device of performing multi-radio access bearer power scaling
WO2014070068A1 (en) * 2012-11-02 2014-05-08 Telefonaktiebolaget L M Ericsson (Publ) Methods and apparatuses for boosting channel transmission in a network
US11189917B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for distributing radioheads
US11050468B2 (en) 2014-04-16 2021-06-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US11190947B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for concurrent spectrum usage within actively used spectrum
US10194346B2 (en) 2012-11-26 2019-01-29 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US9973246B2 (en) 2013-03-12 2018-05-15 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10488535B2 (en) 2013-03-12 2019-11-26 Rearden, Llc Apparatus and method for capturing still images and video using diffraction coded imaging techniques
US10164698B2 (en) 2013-03-12 2018-12-25 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10547358B2 (en) 2013-03-15 2020-01-28 Rearden, Llc Systems and methods for radio frequency calibration exploiting channel reciprocity in distributed input distributed output wireless communications
RU2615493C1 (en) * 2013-03-22 2017-04-05 Хуавэй Текнолоджиз Ко., Лтд. System, device and method of power control
WO2015012502A1 (en) * 2013-07-26 2015-01-29 Lg Electronics Inc. Method for adjusting a transmission power
US9521655B2 (en) * 2013-07-30 2016-12-13 Qualcomm Incorporated Method and apparatus for avoiding power scaling in uplink data transmission
KR102065696B1 (en) * 2013-08-01 2020-01-14 삼성전자주식회사 Apparatus and method for adaptive transmission power normalization in wireless communication system
US9456426B2 (en) * 2013-12-06 2016-09-27 Qualcomm Incorporated Determining a gain factor for transmit power control in enhanced uplink
EP3120623A4 (en) 2014-03-21 2018-02-14 Telefonaktiebolaget LM Ericsson (publ) Setting initial transmission power for a secondary carrier after a transmission gap
US11290162B2 (en) 2014-04-16 2022-03-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US20160028514A1 (en) * 2014-07-25 2016-01-28 Lsi Corporation Configurable Transmitter Hardware Block and Methods
US9780848B2 (en) 2014-08-13 2017-10-03 Nokia Solutions And Networks Oy Limited waterfilling: a method to adjust the transmit power for eigenvalue based beamforming
US9730228B2 (en) * 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
WO2016067437A1 (en) * 2014-10-31 2016-05-06 株式会社日立製作所 Communication system
WO2016112526A1 (en) * 2015-01-16 2016-07-21 华为技术有限公司 Method and device for controlling transmit power of user equipment
JP5901868B1 (en) * 2015-08-05 2016-04-13 三菱電機株式会社 Wireless transmission device
US10205491B2 (en) * 2015-09-28 2019-02-12 Futurewei Technologies, Inc. System and method for large scale multiple input multiple output communications
US11212141B2 (en) * 2016-01-07 2021-12-28 Qualcomm Incorporated Methods and apparatus for a data transmission scheme for Narrow-Band Internet of Things (NB-IoT)
CN113473585A (en) * 2016-02-24 2021-10-01 诺基亚通信公司 Method, apparatus and computer-readable storage medium for uplink transmit power control
WO2017182059A1 (en) * 2016-04-19 2017-10-26 Telefonaktiebolaget Lm Ericsson (Publ) Power control and beamforming with a plurality of power amplifiers
JP2019145866A (en) * 2016-07-05 2019-08-29 シャープ株式会社 Base station device, terminal device, and communication method
CN109891926A (en) * 2016-08-10 2019-06-14 瑞典爱立信有限公司 Technology for the data transmission in radio access network
ES2914231T3 (en) * 2016-10-21 2022-06-08 Asustek Comp Inc Procedure and apparatus for reporting power tolerance margin for beam operation in a wireless communication system
CN108260197B (en) 2016-12-29 2019-03-08 上海朗帛通信技术有限公司 A kind of UE for power adjustment, the method and apparatus in base station
US10368325B2 (en) * 2017-02-03 2019-07-30 Futurewei Technologies, Inc. System and method for beam adaptation in a beam-based communications system
CN107094038B (en) * 2017-03-06 2020-07-24 上海华为技术有限公司 Method, device and system for adjusting power of antenna system
US10425901B2 (en) * 2017-06-26 2019-09-24 Qualcomm Incorporated Uplink transmit power control during random access procedures
CN109309520B (en) 2017-07-26 2023-04-14 三星电子株式会社 Method and apparatus for wireless communication using antenna array
BR112020001423A2 (en) * 2017-08-04 2020-07-28 Ntt Docomo, Inc. user equipment for communicating with a base station device and related communication method
US11160030B2 (en) * 2017-11-03 2021-10-26 Qualcomm Incorporated Power control in directional beam environments
KR101894065B1 (en) * 2018-01-31 2018-09-04 (주)베스트인포텍 Method and apparatus for determining bandwidth based on a low-power wide wireless network for internet of things communication
US20190394733A1 (en) * 2018-06-20 2019-12-26 Mediatek Inc. Ul transmission utilizing full tx power at ue
US11076409B2 (en) * 2018-07-30 2021-07-27 Qualcomm Incorporated Power allocation for subband precoding
US11765668B2 (en) * 2018-09-28 2023-09-19 Apple Inc. LTE NR power control for EN-DC
US11166240B2 (en) 2019-01-24 2021-11-02 Parallel Wireless, Inc. Power budget calculation using power headroom
US11979113B2 (en) 2019-02-12 2024-05-07 Telefonaktiebolaget Lm Ericsson (Publ) Apparatus and a method in a wireless communications network
US11617139B2 (en) * 2019-08-27 2023-03-28 Qualcomm Incorporated Power control for repeated uplink transmissions
US11621748B1 (en) * 2021-11-18 2023-04-04 First Rf Corporation High-power transmit beamforming with impedance-mismatched antenna arrays

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100735402B1 (en) * 2000-11-07 2007-07-04 삼성전자주식회사 Apparatus and Method of Transmission Transmit Format Combination Indicator for Downlink Shared Channel in Asynchronous Mobile Communication System
US7366536B2 (en) * 2001-09-21 2008-04-29 Ntt Docomo, Inc. Transmission power control method and radio control apparatus in mobile packet communication system
WO2003044989A1 (en) * 2001-11-19 2003-05-30 Samsung Electronics Co., Ltd. Method and apparatus for uplink transmission power control in a cdma communication system
US7020110B2 (en) * 2002-01-08 2006-03-28 Qualcomm Incorporated Resource allocation for MIMO-OFDM communication systems
US7561893B2 (en) * 2002-04-10 2009-07-14 Koninklijke Philips Electronics N.V. Communication system using ARQ
JP4005400B2 (en) * 2002-04-10 2007-11-07 富士通株式会社 Transmission format combination information selection method and mobile terminal apparatus
JP3574446B2 (en) * 2002-09-19 2004-10-06 松下電器産業株式会社 Transmission power control method and base station apparatus
KR100900970B1 (en) 2002-10-19 2009-06-08 삼성전자주식회사 Mobile communication apparatus and method having base-station and mobile-station multiantenna
JP4095462B2 (en) 2003-02-10 2008-06-04 京セラ株式会社 Radio apparatus and radio base station
EP1509012A2 (en) * 2003-08-20 2005-02-23 Samsung Electronics Co., Ltd. Method and apparatus for scheduling uplink packet transmission in a mobile communication system
US7194286B2 (en) 2003-09-30 2007-03-20 Lucent Technologies Inc. Method for optimizing the transmit signal in multiple antenna wireless links
DE102004003549B4 (en) * 2004-01-23 2007-03-29 Siemens Ag Communication system and method for processing a request message supplied by a mobile radio terminal of a mobile radio communication network to a message filter computer
AU2005213087B2 (en) * 2004-02-14 2008-07-31 Samsung Electronics Co., Ltd. Apparatus and method for allocating OVSF codes and I/Q channels for reducing Peak-To-Average Power Ratio in transmitting data via enhanced up-link dedicated channels in WCDMA systems
KR100640516B1 (en) * 2004-02-27 2006-10-30 삼성전자주식회사 Method and apparatus for transmitting channel quality information in orthogonal frequency division multiple communication system
US7551589B2 (en) * 2004-04-02 2009-06-23 Lg Electronics Inc. Frame structure of uplink control information transmission channel in MIMO communication system
JP2005347922A (en) * 2004-06-01 2005-12-15 Nec Corp Transmission signal generating circuit, and radio base station communication apparatus
EP3515131B1 (en) * 2004-06-09 2023-12-27 Samsung Electronics Co., Ltd. Method and apparatus for data transmission in a mobile telecommunication system supporting enhanced uplink service
JP4711750B2 (en) * 2005-04-13 2011-06-29 株式会社エヌ・ティ・ティ・ドコモ Mobile communication system, mobile station, base station, and communication control method
JP4756897B2 (en) * 2005-04-18 2011-08-24 株式会社エヌ・ティ・ティ・ドコモ Mobile station and feedback information generation method
US7408895B2 (en) * 2005-04-20 2008-08-05 Interdigital Technology Corporation Method and apparatus for scheduling transmissions via an enhanced dedicated channel
US20060262874A1 (en) * 2005-05-17 2006-11-23 Interdigital Technology Corporation Method and apparatus for power control in a multiple antenna system
KR20080013966A (en) * 2005-06-01 2008-02-13 마츠시타 덴끼 산교 가부시키가이샤 Transmitting apparatus, receiving apparatus and transmission power control method
US7734262B2 (en) 2005-07-18 2010-06-08 Rashid Ahmed Akbar Attar Method and apparatus for reverse link throttling in a multi-carrier wireless communication system
EP1949565B1 (en) * 2005-11-04 2019-01-02 LG Electronics, Inc. Random access dimensioning methods and procedures for frequency division multiplexing access systems
US7729714B2 (en) * 2005-12-20 2010-06-01 Qualcomm Incorporated Method and apparatus for reverse link transmit beam-forming
US7729715B2 (en) * 2005-12-30 2010-06-01 Motorola, Inc. Method and apparatus for power reduction for E-TFC selection
CN102821451B (en) * 2006-07-06 2014-10-22 广东新岸线计算机系统芯片有限公司 Method and apparatus of selecting an enhanced uplink transport format combination
KR100946930B1 (en) * 2006-07-31 2010-03-09 삼성전자주식회사 Method and Apparatus for Controlling gain of Transmit Antenna In Communication System
WO2008024282A2 (en) * 2006-08-21 2008-02-28 Interdigital Technology Corporation Method and apparatus for controlling arq and harq transmissions and retranmissions in a wireless communication system
CN100471085C (en) * 2006-08-22 2009-03-18 华为技术有限公司 Power control method and device for up going physical channel
US20080107198A1 (en) * 2006-11-07 2008-05-08 Innovative Sonic Limited Method and apparatus for performing multi-input multi-output transmission in a wireless communications system
US9204403B2 (en) 2006-12-21 2015-12-01 Alcatel Lucent Power overload control method useful with high speed downlink packet access
US8233932B2 (en) * 2007-02-02 2012-07-31 Qualcomm Incorporated Method and apparatus for improving signaling reliability in wireless communications
US20100246520A1 (en) 2007-11-26 2010-09-30 Andreas Andersson Outer Loop Power Control for E-DCH
KR101572880B1 (en) 2007-12-12 2015-11-30 엘지전자 주식회사 A method for controlling uplink power control considering multiplexing rate/ratio
JP5165397B2 (en) * 2008-01-16 2013-03-21 株式会社エヌ・ティ・ティ・ドコモ Wireless base station
EP2248275B1 (en) * 2008-02-29 2015-06-17 Telefonaktiebolaget LM Ericsson (publ) Signalling gain factors in a communication network system
US8233559B2 (en) * 2008-03-12 2012-07-31 Lg Electronics Inc. Method and apparatus for transmitting a pilot in multi-antenna system
WO2009132204A2 (en) * 2008-04-24 2009-10-29 Interdigital Patent Holdings, Inc. Method and apparatus for harq autonomous retransmissions
FR2930856B1 (en) * 2008-04-30 2010-06-18 Commissariat Energie Atomique MULTI-ACCESS TELECOMMUNICATION SYSTEM WITH ADAPTED PACKET RETRANSMISSION STRATEGY
US20100074131A1 (en) * 2008-09-22 2010-03-25 Texas Instruments Incorporated Power offset for cqi reporting
CN102187726B (en) * 2008-10-20 2014-07-23 交互数字专利控股公司 Carrier aggregation
US8245092B2 (en) * 2008-11-03 2012-08-14 Apple Inc. Method for efficient control signaling of two codeword to one codeword transmission
US8149776B2 (en) * 2009-05-12 2012-04-03 Nokia Corporation Method, apparatus and computer program for user equipment access channel procedures
US8401585B2 (en) * 2009-09-03 2013-03-19 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for uplink power control in a wireless communication network
WO2011041719A2 (en) * 2009-10-02 2011-04-07 Interdigital Patent Holdings, Inc. Method and apparatus for transmit power control for multiple antenna transmissions in the uplink
JP5711377B2 (en) * 2010-10-01 2015-04-30 インターデイジタル パテント ホールディングス インコーポレイテッド System and method for uplink feedback of HSDPA
JP5980789B2 (en) * 2010-11-03 2016-08-31 サムスン エレクトロニクス カンパニー リミテッド Method and apparatus for acknowledgment information generation and power control in a time division duplex system
WO2012061770A2 (en) * 2010-11-05 2012-05-10 Interdigital Patent Holdings, Inc. Mobility for multipoint operations
EP2663136B1 (en) * 2011-01-07 2017-10-18 Panasonic Intellectual Property Corporation of America Wireless communication terminal and power control method
KR101612169B1 (en) * 2011-02-11 2016-04-26 인터디지탈 패튼 홀딩스, 인크 - multicarrier hsdpa control method and apparatus
US8730989B2 (en) * 2011-02-11 2014-05-20 Interdigital Patent Holdings, Inc. Method and apparatus for closed loop transmit diversity transmission initial access
EP2684402B1 (en) * 2011-03-08 2020-02-05 Panasonic Intellectual Property Corporation of America Propagation delay difference reporting for multiple component carriers
WO2012149502A1 (en) * 2011-04-29 2012-11-01 Interdigital Patent Holdings, Inc. Transmission of e-dch control channel in mimo operations
CN103733550B (en) * 2011-07-29 2016-08-17 Lg电子株式会社 Control terminal unit and the method for uplink transmission power
US9253753B2 (en) * 2012-04-24 2016-02-02 Zetta Research And Development Llc-Forc Series Vehicle-to-vehicle safety transceiver using time slots
WO2014058257A1 (en) * 2012-10-12 2014-04-17 Kt Corporation Controlling uplink power
JP2017085188A (en) * 2014-03-13 2017-05-18 シャープ株式会社 Terminal device, base station device, and communication method
US10171220B2 (en) * 2014-10-17 2019-01-01 Sharp Kabushiki Kaisha Terminal, base station, and communication method

Also Published As

Publication number Publication date
US20150245304A1 (en) 2015-08-27
AU2014204450B2 (en) 2016-05-12
CN102577542A (en) 2012-07-11
CN104270808A (en) 2015-01-07
KR101700471B1 (en) 2017-01-26
AU2010300408A1 (en) 2012-04-26
WO2011041719A3 (en) 2011-07-21
WO2011041719A2 (en) 2011-04-07
JP2016119690A (en) 2016-06-30
JP6832825B2 (en) 2021-02-24
US20180132195A1 (en) 2018-05-10
JP2015008501A (en) 2015-01-15
JP5597715B2 (en) 2014-10-01
JP2018042249A (en) 2018-03-15
US9867147B2 (en) 2018-01-09
US10602458B2 (en) 2020-03-24
JP2020025365A (en) 2020-02-13
AU2010300408B2 (en) 2014-04-17
AU2014204450A1 (en) 2014-07-31
EP3410789A1 (en) 2018-12-05
TWI519189B (en) 2016-01-21
JP6220907B2 (en) 2017-10-25
EP2484163A2 (en) 2012-08-08
US9031600B2 (en) 2015-05-12
KR20120107937A (en) 2012-10-04
JP2013507071A (en) 2013-02-28
JP5879404B2 (en) 2016-03-08
US20110105174A1 (en) 2011-05-05
CN104270808B (en) 2018-02-16

Similar Documents

Publication Publication Date Title
JP6832825B2 (en) Transmission power control for multiple antenna transmissions on the uplink
JP5905924B2 (en) Method and apparatus for closed loop transmit diversity and MIMO power control in uplink
TWI596917B (en) Power control for devices having multiple antennas
TWI415494B (en) Uplink power control for distributed wireless communication
US9369997B2 (en) Methods and arrangements for coordinating uplink transmit diversity mode adaptation