TW201119344A - Illumination structure - Google Patents

Illumination structure Download PDF

Info

Publication number
TW201119344A
TW201119344A TW98140531A TW98140531A TW201119344A TW 201119344 A TW201119344 A TW 201119344A TW 98140531 A TW98140531 A TW 98140531A TW 98140531 A TW98140531 A TW 98140531A TW 201119344 A TW201119344 A TW 201119344A
Authority
TW
Taiwan
Prior art keywords
light
lens
curvature
radius
emitting
Prior art date
Application number
TW98140531A
Other languages
Chinese (zh)
Inventor
Ping-Hung Kuo
Hung-Tse Lin
yao-hui Wang
Yi-Liang Chen
Original Assignee
Primax Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primax Electronics Ltd filed Critical Primax Electronics Ltd
Priority to TW98140531A priority Critical patent/TW201119344A/en
Publication of TW201119344A publication Critical patent/TW201119344A/en

Links

Landscapes

  • Facsimile Scanning Arrangements (AREA)
  • Lenses (AREA)

Abstract

The present invention discloses an illumination structure. The illumination structure includes a light source and a lens. The light source includes a plurality of light emitting diodes (LEDs). The lens includes a plurality of lens units. One light emitting diode corresponds to one lens unit. Moreover, the top of any lens unit includes a curved surface. Every curved surface includes a horizontal curvature radius and a vertical curvature radius to enhance the quality of the illumination area projected to a paper by the illumination structure.

Description

201119344 六、發明說明: 【發明所屬之技術領域】 本發明係一種發光結構,尤其係關於一種應用於掃描裝置之 發光結構。 【先前技術】 隨著科技發展的日新月異,電腦已是每個現代人生活上的必 需品,無論於工作或是娛樂方面,電腦都扮演著非常重要的角色, 使得與電腦息息相關的週邊商品也進而蓬勃發展,例如掃描裝置 即是一種常用的週邊設備。掃描裝置主要之功能是進行影像擷 取,用以將紙本文件的内容藉由掃描的方式轉換成電子檔,以便 使用者傳輸、整理或保存。隨著掃描裝置技術的成熟,掃描裝置 也越來越普及化。 一般來說,掃描裝置在進行圖像數位化的過程中,首先會將 光源發射的光線投射到欲掃描的紙本文件上,紙本文件在將投射 到其上的光線反射至電荷藕合元件(CCD)上。由於紙本文件上不同 之顏色與亮暗程度分別具有不同的光線反射能力,因此投射到紙 本文件上的光線會形成強弱不等之反射光線,電荷藕合元件再將 照射在其上之強弱不等的反射光線轉換為電腦所能判別的數位資 201119344 料,從而可擷取到紙本文件的影像。 知"指裝置上的光源是影響掃描結果的關鍵因素之一,像是光 源發射的光線若是不純或偏色都會使得最後擷取的影像品質低弱 或是具有暗紋。傳統的掃描裝置利用陰極射線管(CCFL)作為提供 光線的來源,然而陰極射線管要到達有效的光源強度需要—段不 算短的熱機時間(約〖〜3分鐘不等),所以不符合現代生活分秒必 爭的需求,因此習知技術提出利用發光二極體(LED)陣列來替代陰 極射線管作為提供光線的來源,因其具有發光效率高、能量轉換 快、且更為省電之優點,台灣專利第544046號公告即為一明例。 請參閱圖1與圖2,圖1為台灣專利第544046號公告所提出 之光源結構之立體分解示意圖,圖2為圖丨所示光源結構之截面 示意圖。光源結構1包括光源體1〇與透鏡體U,光源體1〇由複 數個發光二極體1〇1所構成,該些發光二極體1〇1以等距之方式 直線排列於基板12上,而透鏡體11呈一山洞形狀且設置於該些 發光二極體1〇1的上方,其中,透鏡體1丨之曲面鏡面H1係依各 種參數及光學公式設計。請參閱圖3,其為圖丨所示光源結構之單 一發光二極體所產生之光束之示意圖。發光二極體1〇1提供投射 光,投射光經過被設計之曲面鏡面111後向外呈近乎平行之方式 發出,而均勻地照射至欲掃描的文件上,其均勻度及均勻帶有效 範圍R皆比習知使用陰極射線管時提高。 請參閱圖4,圖4A為理想的光照強度分布示意圖,圖4B為 201119344 Γ發光二極體作為光源之光源結構的光照強度分布示意圖;其 中,縱軸為光·照度,橫轴為複數個發光二極體ΗΠ之分布距離。 Γ狀態I’在複數個發光二―1的分布距_皆應提供相 強度的光照度’其如圖4Α所示;但以實際情況而言’複數個發 光二極體101之分布距離的兩側會依照光學中餘弦四次方(…定 律使得光照度逐漸下降,如圖4Β所示區域幻與區域Α2,此現象 亦會發生於以陰極射線管作為發光源之掃描裝置;再者,單一發 光-極體101雖提供了具有均句度的光照範圍(如圖3所示之有效 範圍R)仁由於3亥些發光二極體ι〇ι之間具有間隔距離,且透鏡 體11之曲面鏡面⑴的曲率一致,使得整體照射至欲掃描文件上 的光照範圍不均勻(具有蚊),錢时光二極體101作為發光源 之掃描裝置會具有光照度波動震盈(RippIe)的現象,如圖4Β所示 區域A3。 【發明内容】 本發明之主要目的在提供_種應用於掃描裝置之發光結構, 尤其係關於—種具有複數曲面之透鏡之發光結構。 ;較佳實施例中,本發明提供—種發光結構,應用於掃指 裝置’知描裝置用以掃描文件而獲得文件之影像,發光結構包括: 發光源,包括複數個排列於同一直線之發光二極體,每一發 201119344 光極體產生才又射至文件上之光束,其中,複數個發光二極體產 生之複數光束於文件上共同形成—光照範圍;以及 透鏡體,包括複數個透鏡單元1以將複數光束傳導至文件 上’每-透鏡單元對應-發光二極體並設置於所對應之發光二極 體上方,其中’每—透鏡衫包括-柱狀部,且柱狀部包括: 底部,黏貼於發光二極體上;以及 頂p八有曲面,其中曲面具有橫向曲率半徑與縱向曲 率半徑。 ;·Μ圭實施例中’複數個發光二極體係以相等之間隔距離 排列H透鏡單元之曲面具有相同之橫向曲率半徑,以及每 一透鏡單元之曲面具有相同之縱向曲率半徑。 於一較佳實施例中,複數個發光二極體係以相異之間隔距離 排列’且每―透鏡單元之曲面之橫向曲率半徑不同,以及每一透 鏡單元之曲面之縱向曲率半徑不同。 於一較佳實施财,複數個發光二極體之部分發光二極體係 以相異之間隔距離排列,且對應該部份發光二極體之每—透鏡單 儿之曲面之橫向曲率半徑不同,以及對應該部份發光二極體之每 -透鏡單元之曲面之縱向曲率半徑不同。 於較佳實施例中,透鏡體係一體成型。 於較佳實施例中,透鏡體係由透明塑料所製成。 於一較佳實施例中,掃描裝置包括: 201119344 玻璃平台,用以放置文件;以及 掃描模組,包括; 複數個反射鏡,用以反射複數光束;以及 光學感測模組,用以接收複數光束。 於一較佳實施例中,光學感測模組包括: 透鏡,用以使複數光束聚焦;以及 光學感測元件,用以接收複數光束且將複數光束轉換為電子 # 訊號而獲得文件之影像。 於一較佳實施例中,光學感測元件係電荷耦合元件。 【實施方式】 請參閱圖5,其為本發明發光結構於一較佳實施例中應用於掃 描裝置之示意圖。掃描裝置2包括上蓋21、玻璃平台22以及掃描 ® 模組23,玻璃平台22用以放置待掃描的文件P,而掃描模組23 包括殼體24、發光結構25、複數個反射鏡26以及光學感測模組 27,掃描模組23可由文件P的一端移動至文件P的另一端,用以 掃描文件P的影像。當掃描裝置2開始運作時,發光結構25會提 供光源使光束B投射到文件P上,光束B再由文件P上反射出來, 最後藉由複數個反射鏡26將由文件P反射出的光束B反射至光學 感測模組27上;其中,光學感測模組27包括透鏡271與光學感 201119344 測元件272透鏡271用以將光束B聚焦,光學感測元件272再 接收聚焦的光束B且將光束8轉換為電子訊號而獲得文件p的影 像,此外,光學感測元件272係、為一電荷輛合元件(㈤哪 Device,CCD)。 接下來說明本案之發明精神,請參閱圖6,其為本發明發光結 構-較佳實施例之不同視角的結構示意圖;其中,圖Μ係與圖5 同一視角’圖63係以圖6八之V1方向為視角,以及圖6(:係以圖 之V2方向為視角。發光結構25包括發光源Μ!與透鏡體Μ〗, 發光源251具有複數個發光二極體25U,且該些發光二極體25ΐι 呈直線排列,每一個發光二極體2511皆產生一光束B投射至文件 P上’且投射至文件p上之每-光束B在文件p上共同形成一光 照範圍。 再者,每一光束B在投射至文件p前,必須先經過用以將所 有光束B傳導至文件p上的透鏡體252,其中,透鏡體包括 複數個透鏡單元2521,每一透鏡單元2521對應一發光二極體2511 且被設置於其對應之發光二極體2511的上方,且每一透鏡單元 2521具有忍光用途的柱狀部2522’其包括黏貼於發光二極體Μη 上的底。卩2523與具有曲面2525的頂部2524;此外,透鏡體252 係體成型,且材質為透明塑料,如壓克力塑夥(ρμμα)。 特別說明的是,每一曲面2525皆具有各自的橫向曲率半徑 RH與縱向曲率半徑RV,用以擴散每一發光二極體25u正上方的 201119344 光束B,並集中發光二極體2511與發光二極體25ιι之間的光束 B’使得投射至文件上的光照範圍具有適#料均勻度、光強度以 及有效光照範圍,因此,最佳化每一曲面2525的橫向曲率半徑 RH與縱向曲率半徑RV將提升光照範圍的性能。 其中,針對實際應用的需求,每一曲面2525之橫向曲率半徑 RH與縱向曲率半徑RV的數值可由數次的實驗或是數次的電腦數 值模擬比較或是光學最佳化計算而獲得,當然,若發光二極體25ιι ® 與發光二極體2511之間的間隔距離相等,則每一曲面2525可選 擇相同數值的橫向曲率半徑RH與縱向曲率半徑RV。請參閱圖7, 其為本發明發光結構一較佳實施例之電腦數值模擬之光照強度分 布比較圖;圖7A顯示每一曲面之橫向曲率半徑與縱向曲率半徑分 別為3.25 mm與2.00 mm時的光照強度分布圖,圖7B顯示每一曲 面之橫向曲率半徑與縱向曲率半徑分別為2 15爪爪與3 〇〇 mm時 的光照強度分布圖;其中,縱軸為光照度,橫軸為複數個發光二 修極體2511之光分布距離eh,亦是發光結構25的光分布縱向距離 D2 ’實線代表發光結構25的橫向光照強度分布,而虛線代表發光 結構25的縱向光照強度分布。此外,本實施例中,發光源251採 用丨5顆發光二極體2511,每一發光二極體2511之間相距5.00 mm。經比較圖7A所示之區域A4與圖7B所示之區域A5後可知, 圖7A所示之光照度波動震蘯(Rippie)現象較少,使之具有較佳之 光均勻度,且圖7A所示之光照強度亦較大,因此,圖7A所示之 201119344 光照範圍的性能明顯地優於圖7B。201119344 VI. Description of the Invention: [Technical Field] The present invention relates to a light-emitting structure, and more particularly to a light-emitting structure applied to a scanning device. [Prior Art] With the rapid development of science and technology, computers have become a necessity in every modern life. Whether in work or entertainment, computers play a very important role, making peripheral products closely related to computers flourish. Developments such as scanning devices are a common peripheral device. The main function of the scanning device is to perform image capturing, which converts the contents of the paper document into an electronic file by scanning, so that the user can transfer, organize or save the content. With the maturity of scanning device technology, scanning devices are becoming more and more popular. Generally, in the process of digitizing an image, the scanning device firstly projects the light emitted by the light source onto the paper document to be scanned, and the paper document reflects the light projected thereon to the charge matching component. (CCD). Since the different colors and brightness of the paper documents have different light reflection capabilities, the light projected onto the paper document will form reflected light of varying intensity, and the intensity of the charge matching component will be irradiated thereon. The unequal reflected light is converted into digital 1919344 material that can be discriminated by the computer, so that the image of the paper document can be captured. Knowing "refers to the light source on the device is one of the key factors affecting the scanning results. If the light emitted by the light source is impure or color cast, the image quality of the last captured image will be weak or have dark lines. The conventional scanning device uses a cathode ray tube (CCFL) as a source of light supply. However, the cathode ray tube needs to reach an effective light source intensity - the segment is not a short heat engine time (about 〜3 minutes), so it is not in line with modern The need to live every second counts, so the conventional technology proposes to use a light-emitting diode (LED) array instead of a cathode ray tube as a source of light, because of its high luminous efficiency, fast energy conversion, and more power saving advantages, Taiwan Patent No. 544046 is an example. Please refer to FIG. 1 and FIG. 2. FIG. 1 is a perspective exploded view of the light source structure proposed in Taiwan Patent No. 544046, and FIG. 2 is a schematic cross-sectional view of the light source structure shown in FIG. The light source structure 1 includes a light source body 1〇 and a lens body U. The light source body 1〇 is composed of a plurality of light emitting diodes 1〇1, and the light emitting diodes 1〇1 are linearly arranged on the substrate 12 in an equidistant manner. The lens body 11 has a cave shape and is disposed above the light-emitting diodes 1〇1. The curved mirror surface H1 of the lens body 1 is designed according to various parameters and optical formulas. Please refer to FIG. 3, which is a schematic diagram of a light beam generated by a single light-emitting diode of the light source structure shown in FIG. The light-emitting diode 1〇1 provides projection light, and the projected light is emitted in a nearly parallel manner after passing through the designed curved mirror surface 111, and uniformly irradiated onto the document to be scanned, and the uniformity and the uniform band effective range R Both are improved when conventional cathode ray tubes are used. Please refer to FIG. 4 , FIG. 4A is a schematic diagram of an ideal light intensity distribution, and FIG. 4B is a schematic diagram of a light intensity distribution of a light source structure of a 201119344 Γ light-emitting diode as a light source; wherein, the vertical axis is light illuminance, and the horizontal axis is a plurality of illuminating lights. The distribution distance of the diodes. The Γ state I' should provide the illuminance of the phase intensity in the distribution distance of the plurality of illuminators 1-2, which is shown in Fig. 4Α; but in reality, the sides of the distribution distance of the plurality of illuminating diodes 101 are According to the fourth cosine of the optical cosine (...the law makes the illuminance gradually decrease, as shown in Fig. 4Β, the region illusion and region Α2, this phenomenon also occurs in the scanning device with the cathode ray tube as the illuminating source; further, single illuminating - Although the polar body 101 provides an illumination range having a uniform degree (the effective range R as shown in FIG. 3), the surface of the lens body 11 is separated by a distance between the three light-emitting diodes ι〇ι (1) The curvature is uniform, so that the illumination range of the whole object to be scanned is not uniform (with mosquitoes), and the scanning device of the money-time diode 101 as the illumination source may have a phenomenon of illuminance fluctuation (RippIe), as shown in FIG. DETAILED DESCRIPTION OF THE INVENTION The main object of the present invention is to provide a light-emitting structure for use in a scanning device, and more particularly to a light-emitting structure having a lens having a plurality of curved surfaces. In a preferred embodiment, The invention provides a light-emitting structure, which is applied to a scanning finger device, which is used for scanning a document to obtain an image of a document. The light-emitting structure comprises: a light source, comprising a plurality of light-emitting diodes arranged in the same straight line, each of which is issued 201119344 The light body generates a light beam that is incident on the document, wherein a plurality of light beams generated by the plurality of light emitting diodes form a light range together on the document; and a lens body including a plurality of lens units 1 to conduct the plurality of light beams to On the document, the 'per lens unit corresponds to the light-emitting diode and is disposed above the corresponding light-emitting diode, wherein the 'each lenslet includes a columnar portion, and the column portion includes: a bottom portion, which is adhered to the light-emitting diode And the top p8 has a curved surface, wherein the curved surface has a lateral radius of curvature and a longitudinal radius of curvature. In the embodiment, the plurality of light emitting diode systems are arranged at equal intervals and the curved surface of the H lens unit has the same lateral direction. The radius of curvature, and the curved surface of each lens unit have the same longitudinal radius of curvature. In a preferred embodiment, a plurality of light emitting diodes Arranged at different spaced distances and different transverse radii of curvature of the curved surface of each lens unit, and different longitudinal radii of curvature of the curved surface of each lens unit. In a preferred implementation, a plurality of portions of the light emitting diode The illuminating dipole system is arranged at different distances, and the transverse radii of curvature of the curved surface corresponding to each lens of the partial illuminating diode is different, and corresponding to each lens unit of the partial illuminating diode The longitudinal curvature radius of the curved surface is different. In a preferred embodiment, the lens system is integrally formed. In a preferred embodiment, the lens system is made of a transparent plastic. In a preferred embodiment, the scanning device comprises: 201119344 glass platform And a scanning module, comprising: a plurality of mirrors for reflecting the plurality of beams; and an optical sensing module for receiving the plurality of beams. In a preferred embodiment, the optical sensing module includes: a lens for focusing the plurality of beams; and an optical sensing component for receiving the plurality of beams and converting the plurality of beams into an electronic # signal to obtain an image of the file. In a preferred embodiment, the optical sensing element is a charge coupled element. [Embodiment] Please refer to FIG. 5, which is a schematic diagram of a light emitting structure applied to a scanning device in a preferred embodiment of the present invention. The scanning device 2 includes an upper cover 21, a glass platform 22, and a scanning module 23 for placing a document P to be scanned, and the scanning module 23 includes a housing 24, a light emitting structure 25, a plurality of mirrors 26, and an optical The sensing module 27, the scanning module 23 can be moved from one end of the file P to the other end of the file P for scanning the image of the file P. When the scanning device 2 starts to operate, the light-emitting structure 25 provides a light source for projecting the light beam B onto the document P, the light beam B is again reflected by the document P, and finally the light beam B reflected by the document P is reflected by a plurality of mirrors 26. Up to the optical sensing module 27; wherein the optical sensing module 27 includes a lens 271 and an optical sensing 201119344 measuring component 272 lens 271 for focusing the beam B, the optical sensing component 272 receiving the focused beam B and the beam 8 is converted into an electronic signal to obtain an image of the file p, and the optical sensing element 272 is a charge-carrying component ((5) which Device, CCD). Next, the inventive spirit of the present invention will be described. Please refer to FIG. 6 , which is a schematic structural view of a light-emitting structure according to a preferred embodiment of the present invention. FIG. 6 is a view of FIG. The V1 direction is the viewing angle, and FIG. 6 (the view is taken from the V2 direction of the figure. The light emitting structure 25 includes the light source Μ! and the lens body ,, the light source 251 has a plurality of light emitting diodes 25U, and the light emitting two The polar bodies 25ΐι are arranged in a straight line, and each of the light-emitting diodes 2511 generates a light beam B projected onto the document P' and each light beam B projected onto the file p forms a light range on the file p. Before the light beam B is projected onto the document p, it must first pass through the lens body 252 for conducting all the light beams B onto the document p. The lens body includes a plurality of lens units 2521, and each lens unit 2521 corresponds to a light-emitting diode. The body 2511 is disposed above the corresponding light-emitting diode 2511, and each lens unit 2521 has a columnar portion 2522' for light-proof use, which includes a bottom adhered to the light-emitting diode Μη. Top 2524 of surface 2525 In addition, the lens body 252 is formed by a body and is made of a transparent plastic such as an acrylic plastic (ρμμα). Specifically, each curved surface 2525 has a respective transverse radius of curvature RH and a longitudinal radius of curvature RV. To diffuse the 201119344 beam B directly above each of the light-emitting diodes 25u, and to concentrate the light beam B' between the light-emitting diodes 2511 and the light-emitting diodes 251, so that the illumination range projected onto the document has a uniformity, The light intensity and the effective illumination range, therefore, optimizing the lateral curvature radius RH and the longitudinal curvature radius RV of each curved surface 2525 will improve the performance of the illumination range. Among them, the lateral curvature radius RH of each curved surface 2525 is required for practical applications. The value of the longitudinal radius of curvature RV can be obtained by several experiments or several computer numerical simulations or optical optimization calculations. Of course, if the interval between the light-emitting diode 25 ιι ® and the light-emitting diode 2511 is If the distance is equal, each curved surface 2525 can select the same value of the transverse radius of curvature RH and the longitudinal radius of curvature RV. Please refer to FIG. 7 , which is a better embodiment of the light-emitting structure of the present invention. The comparison of the illumination intensity distribution of the computer numerical simulation of the example; FIG. 7A shows the illumination intensity distribution of the lateral curvature radius and the longitudinal curvature radius of each surface of 3.25 mm and 2.00 mm, respectively, and FIG. 7B shows the transverse curvature of each surface. The radii and longitudinal curvature radii are respectively the distribution of light intensity at 2 claws and 3 〇〇mm; wherein, the vertical axis is the illuminance, and the horizontal axis is the light distribution distance eh of the plurality of illuminating two-repair bodies 2511, which is also illuminating The light distribution longitudinal distance D2' of the structure 25 represents the lateral light intensity distribution of the light-emitting structure 25, and the broken line represents the longitudinal light intensity distribution of the light-emitting structure 25. In addition, in the embodiment, the illuminating source 251 employs five illuminating diodes 2511, and each of the illuminating diodes 2511 is separated by 5.00 mm. After comparing the area A4 shown in FIG. 7A with the area A5 shown in FIG. 7B, it can be seen that the illuminance fluctuation (Rippie) phenomenon shown in FIG. 7A is less, so that it has better light uniformity, and FIG. 7A shows The illumination intensity is also large, so the performance of the 201119344 illumination range shown in Figure 7A is significantly better than Figure 7B.

另外’本發明發光結構25之發光二極體2511與發光二極體 2511之間衫祕㈣相等_隔距離㈣,亦可以相異之間隔 距離排列使部分之發光二極體2511集中於複數個發光二極體加 之分布距離D1的兩側,用以補償因光學餘弦四次方⑽4)定律所 造成光照度不足的區域(如圖7A所示之區域A6與區域A?)。此 時’為了提升文件P上之光照範圍的性能,每一曲面節的橫向 曲率半徑RH因應發光二極體2511與發光二極體加間之不同間 隔距離而不同,且每-曲面2525的縱向曲率半徑尺 二極體則與發光二極體加間之不同間隔距離而不同。· 兩、詳言之’在發光二極體25n的排觸程中,依照實際狀況的 而长可症會有-部分的發光二極體25u相互之間以等距排列,而 另一部分的發光二極體2511相互之_不等距制;此時,橫向 曲率半徑RH與縱向曲率半徑…的數值選擇將是影響光照範圍性 能的關鍵因素’―較佳之作法為當該部分發光二極體2511相互之 _等距排列時,可令對應於該部分發光二極體25u的每一透鏡 單元2521之曲面2525具有相同之橫向曲率半徑RH,以及對庳於 該部分發光二極體2511的每一透鏡單元2521之曲面節且有相 同之縱向曲率半徑RV,而當該另一部分的發光二極體25ΐι相互 之間:不等距排列時,對應於該另—部分發光二極體洲的每一 透鏡早το 2521之曲面2525的橫向曲率半徑rh與縱向曲率半徑In addition, the light-emitting diode 2511 of the light-emitting structure 25 of the present invention and the light-emitting diode 2511 are equal to each other (four) and separated by a distance (four), and may be arranged at different intervals so that part of the light-emitting diodes 2511 are concentrated in a plurality of The light-emitting diodes are added to both sides of the distribution distance D1 to compensate for the area of the illuminance insufficient due to the optical cosine fourth power (10) 4) (area A6 and area A? as shown in FIG. 7A). At this time, in order to improve the performance of the illumination range on the document P, the lateral curvature radius RH of each curved section is different according to the different separation distance between the light-emitting diode 2511 and the light-emitting diode, and the longitudinal direction of each curved surface 2525 The radius of curvature ruler diode is different from the distance between the light-emitting diodes. · In detail, in the row of the light-emitting diode 25n, according to the actual situation, there may be a long-term possibility - part of the light-emitting diodes 25u are arranged equidistantly with each other, and the other part of the light The diodes 2511 are unequal to each other; at this time, the selection of the values of the transverse radius of curvature RH and the longitudinal radius of curvature... will be a key factor affecting the performance of the illumination range' - a preferred method is when the partial light-emitting diode 2511 When mutually arranged equidistantly, the curved surface 2525 of each lens unit 2521 corresponding to the partial light-emitting diode 25u may have the same lateral radius of curvature RH, and for each of the partial light-emitting diodes 2511 The curved surface of the lens unit 2521 has the same longitudinal radius of curvature RV, and when the other portion of the light emitting diodes 25ΐ are mutually arranged: not equidistantly arranged, corresponding to each of the other partial light emitting diodes The transverse radius of curvature rh and the longitudinal radius of curvature of the curved surface 2525 of the lens το 2521

201119344 RV皆會特別被設計,設計方式可如前所述利用數次的實驗或是數 次的電腦數值模擬比較而獲得;因此,每一曲面助之橫向曲率 半徑RH可能相異,以及每一曲面2525之縱向曲率半徑rv亦可 能不同,當然,無論發光二極體2511的排列方式為何,每—曲面 2525之橫向曲率半徑RH與縱向曲率半徑rv的數值選擇方式不 揭限於上述較佳之作法。此外,橫向曲率半徑紐的數值可以為無 限大’而縱向轉半徑RV的數值亦可以為無限大,或是橫向曲率、 半徑RH的數值與縱向曲率半徑RV的數值可同時為無限大,其 中’在橫向曲率半徑RH的數值與縱向曲率半徑RV的數值同時為 無限大的狀態下’發光結構25之光照範圍的性能由透境單元加 之柱狀部2522的形狀所主導。 以上所述僅為本發明之較佳實施例,並非用以限定本發明之 申請專利範圍’因此凡其它未脫離本發明所揭示之精神下所完成 之等效改變或㈣’均應包含於本案之巾請專利範圍内。 12 Γ S;1 201119344 【圖式簡單說明】 圖1 .係為台灣專利第544046號公告所提出之光源結構之立體分 解不意圖。 圖2 :係為圖1所示光源結構之截面示意圖。 圖3:係為圖1所示光源結構之單一發光二極體所產生之光束之示 意圖。 圖4A :係為理想的光照強度分布示意圖。 • 係為使用發光二極體作為發光源之光源結構的光照強度分 布不意圖。 圖5 :係為本發日月發光結構於—較佳實施财應祕掃描裝置之示 意圖。 圖6A:係為本發明發光結構一較佳實施例之結構示意圖。 圖心係為圖6A所示發光結構以%方向為視角之結構示意圖。 圖6C·係為圖6A所示發光結構以力方向為視角之結構示意圖。 圖7A.係為每一曲面之橫向曲率半徑與縱向曲率半徑分別為⑶ 儀| mm與2.00 mm時的光照強度分布圖。 圖7B:係為每—曲面之橫向曲率半徑與縱向曲率半徑分川 mm與3.0〇111111時的光照強度分布圖。 ‘”、·201119344 RV will be specially designed, the design method can be obtained by using several experiments or several computer numerical simulations as mentioned above; therefore, the lateral curvature radius RH of each surface may be different, and each The longitudinal curvature radius rv of the curved surface 2525 may also be different. Of course, regardless of the arrangement of the light-emitting diodes 2511, the numerical selection of the lateral curvature radius RH and the longitudinal curvature radius rv of each curved surface 2525 is not limited to the above preferred method. In addition, the value of the transverse radius of curvature can be infinitely large, and the value of the longitudinal radius RV can also be infinite, or the value of the transverse curvature, the radius RH and the longitudinal radius of curvature RV can be infinite at the same time, where In the state where the value of the lateral radius of curvature RH and the value of the longitudinal radius of curvature RV are simultaneously infinite, the performance of the illumination range of the light-emitting structure 25 is dominated by the shape of the permeable unit plus the shape of the columnar portion 2522. The above is only the preferred embodiment of the present invention, and is not intended to limit the scope of the invention as defined in the appended claims. The towel is within the scope of the patent. 12 Γ S;1 201119344 [Simple description of the diagram] Figure 1. It is a stereoscopic decomposition of the light source structure proposed in Taiwan Patent No. 544046. Fig. 2 is a schematic cross-sectional view showing the structure of the light source shown in Fig. 1. Fig. 3 is a view showing a light beam generated by a single light-emitting diode of the light source structure shown in Fig. 1. Figure 4A is a schematic diagram of the ideal illumination intensity distribution. • It is not intended to distribute the light intensity of a light source structure using a light-emitting diode as a light source. Fig. 5 is a schematic view of the present invention, which is a light-emitting structure of the present invention. FIG. 6A is a schematic structural view of a preferred embodiment of the light emitting structure of the present invention. The figure is a structural diagram of the light-emitting structure shown in FIG. 6A with a view from the % direction. 6C is a schematic structural view of the light-emitting structure shown in FIG. 6A with a force direction as a viewing angle. Fig. 7A is a diagram showing the distribution of the illumination intensity when the transverse radius of curvature and the longitudinal radius of curvature of each curved surface are (3) | mm and 2.00 mm, respectively. Fig. 7B is a diagram showing the distribution of light intensity when the transverse radius of curvature and the longitudinal radius of curvature of each curved surface are divided into mm and 3.0 〇 111111. ‘”,·

13 201119344 【主要元件符號說明】13 201119344 [Description of main component symbols]

Al、A2、A3、A4、A5、A6、A7 B光束 D1複數個發光二極體之光分布距離 D2發光結構的光分布縱向距離 P文件 RH橫向曲率半徑 VI視角方向 1光源結構 10光源體 12基板 22玻璃平台 24殼體 26反射鏡 101發光二極體 251發光源 271透鏡 2511發光二極體 2522柱狀部 2524頂部 2掃描裝置 11透鏡體 21上蓋 23掃描模組 25發光結構 27光學感測模組 111曲面鏡面 252透鏡體 272光學感測元件 2521透鏡單元 2523底部 2525曲面 圖示區域 R有效範圍 RV縱向曲率半徑 V2視角方向 14Al, A2, A3, A4, A5, A6, A7 B beam D1 Light distribution distance of a plurality of light-emitting diodes D2 Light distribution of light-emitting structure Longitudinal distance P file RH Transverse curvature radius VI Viewing angle direction 1 Light source structure 10 Light source body 12 Substrate 22 Glass platform 24 Housing 26 Mirror 101 Light-emitting diode 251 Light-emitting source 271 Lens 2511 Light-emitting diode 2522 Column-like portion 2524 Top 2 Scanning device 11 Lens body 21 Upper cover 23 Scanning module 25 Light-emitting structure 27 Optical sensing Module 111 curved mirror 252 lens body 272 optical sensing element 2521 lens unit 2523 bottom 2525 curved surface area R effective range RV longitudinal curvature radius V2 viewing angle 14

Claims (1)

201119344 七、申請專利範圍: 1、一種發光結構,應用於一掃描裝置,該掃描裝置用以掃描一文件 而獲得一文件之影像,該發光結構包括: 一發光源,包括複數個排列於同一直線之發光二極體,每一 該發光二極體產生投射至該文件上之—光束,其中,該複數發光 一極體產生之複數光束於該文件上共同形成一光照範圍;以及 一透鏡體,包括複數個透鏡單元,用以將該複數光束傳導至 該文件上,每-該透鏡單元對應一該發光二極體並設置於所對應 之該發光二極體上方,其中,每一該透鏡單元包括一柱狀部,且 該柱狀部包括: 一底部’黏貼於該發光二極體上;以及 一頂部,具有一曲面,其中該曲面具有一橫向曲率半徑 與一縱向曲率半徑。 2、 如申請專利範圍第i項所述之發光結構,其中該複數發光二極 體係以相等之間隔距離排列’且每—該透鏡單元之曲面具有相同 h向曲率半;^,以及每—該透鏡單;^之曲面具有相同之縱向曲 率半徑_。 3、 如申請專職圍第1項所述之發光結構,其中該複數發光二極 體係以㈣之間隔距離排列,1每—該透鏡單元之曲面之橫向曲 率半徑不同,以及每一該透鏡單元之曲面之縱向曲率半徑不同。 4、 如申請專利範圍第i項所述之發光結構,其中該複數發光二極 Γ 5: 1 15 201119344 體 之部分發光二極體係以相異 光一梅辦益 '異之間隔距離排列,且對應該部份發 尤一極體之每一該透鏡單 應該部份發光二極趙之每__=面率半徑不同’以及對 <蜆早兀之曲面之縱向曲率半徑不 其中該透鏡體係一體 5、 如申請專娜圍第1項所述之發光結構, 成型。 其中該透鏡體係由一 6、 如申請專利範圍^項所述之發光結構, 透明塑料所製成。 7、 如申請專利範圍第i項所述之發光結構,其中該掃描裝置包括: —玻璃平台,用以放置該文件;以及 —掃描模組,包括; 複數個反射鏡’用以反射該複數光束;以及 一光學感測模組,用以接收該複數光束。 8、 如申請專利範圍第7項所述之發光結構,其中該光學感測模組 包括: 一透鏡’用以使該複數光束聚焦;以及 一光學感測元件,用以接收該複數光束且將該複數光束轉換 為電子訊號而獲得該文件之影像。 9、 如申請專利範圍第8項所述之發光結構,其中該光學感測元件 係一電荷耦合元件。201119344 VII. Patent application scope: 1. A light-emitting structure is applied to a scanning device for scanning a document to obtain an image of a file, the light-emitting structure comprising: a light source comprising a plurality of light lines arranged in a same line Light-emitting diodes, each of the light-emitting diodes generating a light beam projected onto the document, wherein the plurality of light beams generated by the plurality of light-emitting diodes together form an illumination range on the document; and a lens body, a plurality of lens units for conducting the plurality of light beams to the document, each lens unit corresponding to a light emitting diode and disposed above the corresponding light emitting diode, wherein each of the lens units The utility model comprises a columnar portion, and the columnar portion comprises: a bottom portion adhered to the light emitting diode; and a top portion having a curved surface, wherein the curved surface has a transverse radius of curvature and a longitudinal radius of curvature. 2. The light-emitting structure of claim i, wherein the plurality of light-emitting diode systems are arranged at equal intervals and each curved surface of the lens unit has the same half-curvature half; ^, and each The lens is single; the surface of the ^ has the same longitudinal radius of curvature _. 3. The light-emitting structure according to item 1 of the full-time application, wherein the plurality of light-emitting diode systems are arranged at a distance of (4), wherein each of the lens elements has a different lateral radius of curvature, and each of the lens units The surface has a different radius of curvature. 4. The light-emitting structure according to item i of the patent application scope, wherein the plurality of light-emitting diodes 5: 1 15 201119344 part of the light-emitting diode system is arranged at a distance of different light and a different distance, and Each of the lens lenses should be partially illuminating, and each lens should have a partial illuminating dipole. Each __=face radius is different, and the longitudinal radius of curvature of the surface of the 蚬 蚬 不 不 不 不 不 不 不 该5. If you apply for the light-emitting structure described in item 1 of the special area, shape it. Wherein the lens system is made of a light-emitting structure as described in the scope of the patent application, transparent plastic. 7. The illuminating structure of claim i, wherein the scanning device comprises: a glass platform for placing the document; and a scanning module comprising: a plurality of mirrors for reflecting the plurality of beams And an optical sensing module for receiving the plurality of beams. 8. The light emitting structure of claim 7, wherein the optical sensing module comprises: a lens 'for focusing the plurality of beams; and an optical sensing element for receiving the plurality of beams and The complex beam is converted to an electronic signal to obtain an image of the file. 9. The light-emitting structure of claim 8, wherein the optical sensing element is a charge coupled element. 1616
TW98140531A 2009-11-27 2009-11-27 Illumination structure TW201119344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98140531A TW201119344A (en) 2009-11-27 2009-11-27 Illumination structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98140531A TW201119344A (en) 2009-11-27 2009-11-27 Illumination structure

Publications (1)

Publication Number Publication Date
TW201119344A true TW201119344A (en) 2011-06-01

Family

ID=44936064

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98140531A TW201119344A (en) 2009-11-27 2009-11-27 Illumination structure

Country Status (1)

Country Link
TW (1) TW201119344A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112074772A (en) * 2017-10-10 2020-12-11 亮锐控股有限公司 Lens for use with flash device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112074772A (en) * 2017-10-10 2020-12-11 亮锐控股有限公司 Lens for use with flash device
US11553124B2 (en) 2017-10-10 2023-01-10 Lumileds Llc Illumination system having a Fresnel lens and an array of lenses
CN112074772B (en) * 2017-10-10 2024-01-30 亮锐控股有限公司 Lens for use with flash device

Similar Documents

Publication Publication Date Title
US7076148B2 (en) Light guide, line-illuminating device, and image-scanning device
JP4049267B2 (en) Compact lighting system and display device
US20090052205A1 (en) Light source module of scanning device
TW200827855A (en) Light cube and flat light unit and liquid crystal display device including light cube
TWI418855B (en) Illuminant module with an optical film of multiple curvatures
CN87107536A (en) Liquid crystal display light-emitting system
US9354501B2 (en) Projector and screen
US8056807B2 (en) Light projecting apparatus of scanner module
TW201109588A (en) Light guide with taped saw tooth for linear light source
CN201561291U (en) Linear light source having light guide body with prismatic rib-like reflection surface
JP2004157213A (en) Image input apparatus
TW201119344A (en) Illumination structure
TW200939174A (en) Light emitting diode display
TW574822B (en) Light source module for scanning
TW201229583A (en) Light guide module of scanning device
CN102540317B (en) Light guide element and high-uniformity high-brightness light source module
JP2009116331A (en) Mixed light apparatus
CN101158785A (en) Side light type back light source module
CN100377002C (en) Lighting system based on reflective compound eye
JP2014010428A (en) Line illumination apparatus
US20180041661A1 (en) Light guide body, light source device and image reading device
CN102104705B (en) Scanning device and luminous structure thereof
WO2020098585A1 (en) Topological structure light source driving method, storage medium and electronic device applied to off screen imaging
TW496073B (en) Linear image scanning device
TW200819869A (en) Back-light source, display device and light emitting device