TW201119265A - MIMO and MU-MIMO OFDM preambles - Google Patents

MIMO and MU-MIMO OFDM preambles Download PDF

Info

Publication number
TW201119265A
TW201119265A TW099128312A TW99128312A TW201119265A TW 201119265 A TW201119265 A TW 201119265A TW 099128312 A TW099128312 A TW 099128312A TW 99128312 A TW99128312 A TW 99128312A TW 201119265 A TW201119265 A TW 201119265A
Authority
TW
Taiwan
Prior art keywords
vht
sig
block
signal
group
Prior art date
Application number
TW099128312A
Other languages
Chinese (zh)
Other versions
TWI523448B (en
Inventor
Vincent Knowles Jones Iv
Nee Didier Johannes Richard Van
Hemanth Sampath
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of TW201119265A publication Critical patent/TW201119265A/en
Application granted granted Critical
Publication of TWI523448B publication Critical patent/TWI523448B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/345Modifications of the signal space to allow the transmission of additional information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3488Multiresolution systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Certain aspects of the present disclosure present frame structures to support a plurality of standards, such as the IEEE 802.11ac in addition to the IEEE 802.11a/b/n/g. Preamble of the frame structure can be used by a receiver to detect transmission mode of the packet.

Description

201119265 々、發明說明: 優先權主張 本專利申請案主張提交於2009年8月25日的標題名稱 為「ΜΙΜΟ and MU-MIMO OFDM Preambles ( ΜΙΜΟ 及 MU-MIMO OFDM前序信號)」的美國臨時專利申請案第 61/236,8 15號以及提交於2009年9月2日的標題名稱為 「ΜΙΜΟ and MU-MIMO OFDM Preambles ( ΜΙΜΟ 及 MU-MIMO OFDM前序信號)」的美國臨時專利申請案第 6 1/239,152號的權益,以上兩件臨時申請案皆被轉讓給本 案的受讓人且以引用之方式明確併入本文中。 【發明所屬之技術領域】 本案的某些態樣大體而言係關於無線通訊,且更特定言 之係關於用於多輸入多輸出(ΜΙΜΟ )及多使用者(MU ) -ΜΙΜΟ正交分頻多工(OFDM )系統的前序信號的設計。 【先前技術】 為了解決無線通訊系統所需的日漸增長的頻寬要求的 問題,正在開發不同的方案以允許多個使用者終端藉由共 享通道資源來與單個存取點通訊同時完成高資料傳輸 量。多輸入多輸出(ΜΙΜΟ )技術代表最近作為下一代通 訊系統的流行技術湧現的一種此類方法。ΜΙΜΟ技術已在 諸如電機電子工程師學會(IEEE) 802.1 1標準之類的若干 新興無線通訊標準中被採用。IEEE 802.11表示由IEEE 802.1 1委員會為短程通訊(例如,幾十米到幾百米)開發 201119265 的無線區域網路(WLAN )空中介面標準集合。 MIM〇系統採用多個(個)I射天線和多個(馬個) 接收天線來進行資料傳輸。由該W個發射天線及~個接 收天線構成的MlM〇通道可被分解成^個亦被稱為空間 通道的獨立通道,其中A^rnin{^A^D此馬個獨立通道中 的每一個對應於一維度。若由該多個發射和接收天線建立 的額外維度得到利用,則ΜΙΜΟ系統就能提供改良的效能 (例如’更高的傳輸量及/或更大的可靠性)。 在具有單個存取點(Αρ)和多個站(STAs)的無線網路 中,在與不同站的多個通道上在上行鏈路和下行鏈路兩個 方向上可發生併發傳輸。在此類系統中存在許多挑戰。例 如’存取點可使用諸如IEEE 802.lln/a/b/g或1£邱 8〇2.1lac標準之類的不同標準來發射信號。接收機應能夠 基於包括在封包的前序信號中的資訊來偵測信號的傳輪 模式。 ' 【發明内容】 本案的某些態樣提供一種用於無線通訊的方法。該方法 通常包括產生包含能被第一群組無線節點解碼的第—部 分和能被具有同時多使用者通訊能力的第二群組無線節 點解碼的第二部分的訊框結構,以及向複數個設備傳送該 訊框結構。 本案的某些態樣提供一種用於無線通訊的方法。該方法 通常包括接收包括訊框結構的信號,該訊框結構包含能被 201119265 ==_解碼的第一部分和能被具有同時多使 弟 * 月匕t ;及基 θ =群組無線節點解碼的第— 於該收到信號中的資訊來债測信號的傳輪模:。 本案的某些態樣提供了一 置通常包括配置成產……、線通訊的裝置。該裳 的第一邱八ρ、, 群組無,線節點解碼 丄:…b破具有同時多使用者通訊能力的第二群 、!無線郎點解碼的第二部分的訊 士 傅0^軍路’以及配置 °複數個設備傳送該訊框結構的發射機。 本=的某些態樣提供了 —種詩無線通訊的裝置。該裳 置通*包括.ge«置成接收包括訊框結構的信號的接收機, 該訊框,结才冓包含能被第一群組無線節點解碼的第一部分201119265 々, Invention Description: Priority Claim This patent application claims to be filed on August 25, 2009, titled "ΜΙΜΟ and MU-MIMO OFDM Preambles (US and MU-MIMO OFDM Preamble Signals)" US Provisional Patent Application No. 61/236, 8 15 and the US Provisional Patent Application No. entitled "ΜΙΜΟ and MU-MIMO OFDM Preambles" filed on September 2, 2009 6 1/239, 152, the above two provisional applications are assigned to the assignee of the present application and are expressly incorporated herein by reference. TECHNICAL FIELD OF THE INVENTION Some aspects of the present invention relate generally to wireless communications, and more particularly to multiple input multiple output (MIMO) and multiple user (MU)-ΜΙΜΟ orthogonal frequency divisions. Design of preamble signals for multiplexed (OFDM) systems. [Prior Art] In order to solve the problem of increasing bandwidth requirements required for wireless communication systems, different schemes are being developed to allow multiple user terminals to communicate with a single access point while completing high data transmission by sharing channel resources. the amount. Multiple Input Multiple Output (ΜΙΜΟ) technology represents one such approach that has recently emerged as a popular technology for next generation communication systems. ΜΙΜΟ Technology has been adopted in several emerging wireless communication standards such as the Institute of Electrical and Electronics Engineers (IEEE) 802.1 1 standard. IEEE 802.11 indicates that the IEEE 802.1 1 committee developed the 201119265 wireless local area network (WLAN) null mediation standard set for short-range communications (eg, tens of meters to hundreds of meters). The MIM〇 system uses multiple (I) I-shot antennas and multiple (horse) receive antennas for data transmission. The M1M〇 channel formed by the W transmitting antennas and the ~ receiving antennas can be decomposed into independent channels, also called spatial channels, where A^rnin{^A^D each of the independent channels of the horse Corresponds to a dimension. If additional dimensions established by the plurality of transmit and receive antennas are utilized, the system can provide improved performance (e.g., 'higher throughput and/or greater reliability). In a wireless network with a single access point (Αρ) and multiple stations (STAs), concurrent transmissions can occur in both the uplink and downlink directions on multiple channels with different stations. There are many challenges in such systems. For example, an access point may transmit signals using different standards such as the IEEE 802.11n/a/b/g or 1 £ 〇2.1 lac standard. The receiver should be able to detect the transmission mode of the signal based on the information included in the preamble signal of the packet. SUMMARY OF THE INVENTION Some aspects of the present disclosure provide a method for wireless communication. The method generally includes generating a frame structure including a first portion that can be decoded by the first group of wireless nodes and a second portion that can be decoded by a second group of wireless nodes having simultaneous multi-user communication capabilities, and a plurality of frames The device transmits the frame structure. Some aspects of the present invention provide a method for wireless communication. The method generally includes receiving a signal including a frame structure including a first portion that can be decoded by 201119265 ==_ and can be decoded by a multi-disciplinary group; First—the transmission mode of the signal to the signal in the received signal: Some aspects of the present invention provide a means that typically includes configuration to produce ..., line communication. The first Qiu Ba ρ of the skirt, the group is not, the line node decoding 丄:...b breaks the second group with simultaneous multi-user communication capabilities! The second part of the wireless Lange decoding is the transmitter and the transmitter that transmits the frame structure. Some aspects of this = provide a device for wireless communication of poetry. The mobile device includes a .ge « receiver configured to receive a signal including a frame structure, the frame comprising a first portion that can be decoded by the first group of wireless nodes

和能被具有同時多使用者通訊能力的第二群組無線節I 解碼的第二部分;及配置成基於收到信號中的資訊來伯測 信號的傳輸模式的電路。 本案的某些態樣提供了一種用於無線通訊的裝置。該裝 置通吊包括周於產生包含能被第一群組無線節點解碼的 第部分和能被具有同時多使用者通訊能力的第二群組 無線節點解碼的第二部分的訊框結構的構件,以及用於向 複數個設備傳送該訊框結構的構件。 本案的某些態樣提供了一種用於無線通訊的裝置。該裝 置通常包括:用於接收包括訊框結構的信號的構件,該訊 桓結構包含能被第一群組無線節點解碼的第一部分和能 被具有同時多使用者通訊能力的第二群組無線節點解碼 的第二部分;及用於基於收到信號中的資訊來偵測信號的 201119265 傳輸模式的構件。 本案的某些態樣提供用於無線通訊的電腦程式產品。該 電腦程式產品包括電腦可讀取媒體,該電腦可讀取媒體包 括可執行指令以:產生包含能被第一群組無線節點解碼的 第一部分和能被具有同時多使用者通訊能力的第二群組 無線節點解碼的第二部分的訊框結構,以及向複數個設備 傳送該訊框結構。 本案的某些態樣提供用於無線通訊的電腦程式產品。該 電腦程式產品包括電腦可讀取媒體,該電腦可讀取媒體包 括可執行指令以:接收包括訊框結構的信號’該訊框結構 包含能被第一群組無線節點解碼的第一部分和能被具有 同時夕使用者通訊能力的第二群組無線節點解碼的第二 邛分,及基於收到信號中的資訊來偵測信號的傳輸模式。 本案的某些態樣提供存取點。該存取點通常包括:複數 個天線;配置成產生包含能被第一群組無線節點解碼的第 一部分和能被具有同時多使用者通訊能力的第二群組無 線節點解碼的第二部分的訊框結構的電路;及配置成經由 該複數個天線向複數個設備傳送該訊框結構的發射機。 本案的某些態樣提供一種無線節點。該無線節點通常包 括至:>、個天線,接收機’配置成經由該至少一個天線 接收包括訊框結構的信號,該訊框結構包含能被第一群組 無線節點解碼的第一部分和能被具有同時多使用者通訊 能力的第二群組無線節點解碼的第二部分;及配置成基於 收到信號中的資訊來偵測信號的傳輸模式的電路。 201119265 【實施方式】 以下描述了本案的某些態樣的各個態樣。應當顯見的 是’本文中的教示可以以各種形式來實施,並且本文中所 ..揭示的任何特定結構、功能或兩者僅是代表性的。基於本 文的教示,本領域技藝人士應暸解本文所揭示的態樣可獨 立於.任何其他態樣來實施並且該等態樣中的兩個或兩個 以上可以以各種方式被組合。例如’可以使用本文中所闇 述的任何數目的態樣來實施裝置或實踐方法。另外,可用 除本文所闡述的態樣的一或多個之外或與之不同的其他 結構、功能或結構和功能來實施此種裝置或實踐此種方 法°不僅如此,一個態樣可包括請求項的至少一個元素。 用語「示例性」在本文中用於意謂著「用作示例、實例 或說明」。本文中描述為「示例性」的任何態樣不必被解 釋為較佳於或勝過其他態樣。如本文所使用的,術語「舊 有站」通常代表支援電機電子工程師學會(ΙΕΕΕ) 802.11η 或IEEE 802_ 11標準的更早版本的無線網路節點。 “ 本文述及之多天線發射技術可與諸如分碼多工存取 (CDMA )、正交分頻多工(〇FDM )、分時多工存取And a second portion of the second group radio section I that can be decoded by the simultaneous multi-user communication capability; and circuitry configured to detect the transmission mode of the signal based on the information in the received signal. Some aspects of the present invention provide a means for wireless communication. The apparatus includes means for generating a frame structure including a first portion that can be decoded by the first group of wireless nodes and a second portion that can be decoded by the second group of wireless nodes having simultaneous multi-user communication capabilities, And means for transmitting the frame structure to a plurality of devices. Some aspects of the present invention provide a means for wireless communication. The apparatus generally includes means for receiving a signal including a frame structure, the message structure including a first portion that can be decoded by the first group of wireless nodes and a second group of wireless capable of simultaneous multi-user communication capabilities a second portion of the node decoding; and means for detecting the 201119265 transmission mode based on the information in the received signal. Some aspects of the case provide computer program products for wireless communication. The computer program product includes a computer readable medium, the computer readable medium including executable instructions to: generate a first portion that can be decoded by the first group of wireless nodes and a second portion that can be capable of simultaneous multi-user communication The frame structure of the second part of the group wireless node decoding, and transmitting the frame structure to a plurality of devices. Some aspects of the case provide computer program products for wireless communication. The computer program product includes a computer readable medium, the computer readable medium including executable instructions to: receive a signal including a frame structure. The frame structure includes a first portion that can be decoded by the first group of wireless nodes and can The second component decoded by the second group wireless node having the communication capability of the user, and the transmission mode of the signal is detected based on the information in the received signal. Some aspects of the case provide access points. The access point typically includes: a plurality of antennas; configured to generate a first portion that can be decoded by the first group of wireless nodes and a second portion that can be decoded by a second group of wireless nodes having simultaneous multi-user communication capabilities a frame structure circuit; and a transmitter configured to transmit the frame structure to the plurality of devices via the plurality of antennas. Some aspects of the present invention provide a wireless node. The wireless node typically includes: > an antenna, the receiver 'configured to receive a signal comprising a frame structure via the at least one antenna, the frame structure comprising a first portion and capable of being decoded by the first group of wireless nodes a second portion decoded by a second group of wireless nodes having simultaneous multi-user communication capabilities; and circuitry configured to detect a transmission mode of the signal based on information in the received signal. 201119265 [Embodiment] Various aspects of some aspects of the present case are described below. It should be apparent that the teachings herein may be embodied in various forms and that any particular structure, function, or both disclosed herein are merely representative. Based on the teachings herein, those skilled in the art will appreciate that the aspects disclosed herein can be implemented in any other aspect and that two or more of the aspects can be combined in various ways. For example, the device or method of practice may be implemented using any number of aspects as may be described herein. In addition, such a device may be implemented or practiced with other structures, functions, or structures and functions other than or in addition to one or more of the aspects set forth herein. In addition, one aspect may include a request At least one element of the item. The term "exemplary" is used herein to mean "serving as an example, instance, or illustration." Any aspect described herein as "exemplary" is not necessarily to be construed as preferred or preferred. As used herein, the term "old station" generally refers to a wireless network node that supports earlier versions of the Institute of Electrical and Electronics Engineers (ΙΕΕΕ) 802.11n or IEEE 802_11 standards. “Multiple antenna transmission techniques described in this paper can be used with such as code division multiplexing access (CDMA), orthogonal frequency division multiplexing (〇FDM), time-division multiplex access.

V (TDMA)、分空間多工存取(SDMA)等各種無線技術組 合使用。多個使用者終端可(丨)對於cDMA經由不同的 正交碼通道、(2)對於TDMA經由不同的時槽或(3)對 於OFDM經由不同的次頻帶來併發傳送/接收資料。CDMA 系統可實施 IS-2000、iS_95、is_856、寬頻 cdma( W CDMA) 201119265 或者其他某些標準。0聰系統可以實施lEEE 8G2.U或 者其他某些標準。TDMA系統可實施gsm或其他某些標 準。該等各不相同的標準在本領域中是熟知的。 示例性ΜΙΜΟ系統 圖1圖不了具有存取點和使用者終端的多工存取ΜΙΜΟ …$簡單起見,圖u僅圖示—個存取點存 取點(AP)通吊疋與諸使用者終端通訊的固定站,並且亦 可以稱為基地台或某個其他術語。使用者終端可以是固定 的或者行動的’並且亦可以稱為行動站、站(STA)、客戶 端、無線設備或某個其他術語。使用者終端可以是無線設 備’諸如蜂巢式電話、個人數位助理(PDA)、手持設備、 無線數據機、膝上型電腦、個人電腦等。 存取點U0可在任何給定時刻在τ行鏈路和上行鍵路上 與一或多個使用者終端120通訊。下行鏈路(亦即,前向 鏈路)是從存取點至使特終端的通訊鏈路,而上行鍵路 (亦即’反向鏈路)是從使用者終端至存取點的通訊鍵 路。使用者終端亦可與另—使用者終端進行同級間通訊。 系統控制器i勒合至存取點並對其提供協調和控制。 系統10G採用多個發射天線和多個接收天線以進行下" 鏈路和上行鏈路上的資料傳輸。存取點UG配備有 天線並且表示下行鏈路傳輸的多輸入(Μι)以及上行鏈路 傳輸的多輸出(MO)U被選使用者終端⑶的集合共 同表示下行鏈路傳輸的多輸出和上行鏈路傳輸的多°輪 入。在某些情形巾’若針個使用者終端的f料符號串』 201119265 流沒有藉由某種構件在碼、頻率或時間上被多工,則使得 -1會是所要的。若資料符號串流能夠在CDMA下使 用不同的碼通道、在〇FDM下使用不相交次頻帶集合等進 行多工處理,則乂可以大於乂〆每個被選中的使用者終 端向及/或從存取點發射及/或接收因使用者而異的資料。 通常,每一個所選使用者終端可配備有一或多個天線(亦 即API )。此乂個被選使用者終端可具有相同或不同數 目的天線。 ΜΙΜΟ系統! 00可以是分時雙工(tdd )系統或分頻雙 工(FDD)系統.對於TDD系統’下行鏈路和上行鏈路共 享相同頻帶。對於FDD系統,下行鏈路和上行鏈路使用不 同頻帶。ΜΙΜΟ系統⑽亦可利用單載波或多載波進行傳 輸。每個使用者終端可配備有單個天,線(例如,為了抑制 成本)或多個天線(例如,在能夠支援額外成本的場合)。 圖2圖不ΜΙΜΟ系統1 〇〇中存取點i丨〇以及兩個使用者 終端UOm和使用者終端12〇乂的方塊圖。存取點ιι〇配備 有ATflp個天線224a到天線224ai^使用者終端12〇瓜配備 有個天線252ma到天線252mu,而使用者終端丨2^ 配備有個天線252xa到天線252χ^存取點ιι〇對於 下行鏈路而言是傳送實體,而對於上行鏈路而言是接收實 體。每個使用者終端120對於上行鏈路而言是傳送實體, 而對於下行鏈路而言是接收實體。如本文所使用的,「傳 送實體」是能夠經由頻率通道傳送資料的獨立操作的裝置 或設備,@「接收實體」是能夠經由頻率通道接收資料的 201119265 獨立操作的裝置或設備。在以 下行鍵路,下標「心表示上行=中7:、」表示 被選中用於上行鏈路上的同時傳 〜&用者終端 ㈣傳輸,〜可以等於或可以不 寺於’且和V矸 Β拉At 間隔n疋靜態值或者可針對每個排程 =改:。可在存取點和使用者終端處使用波束轉向或 他某種空間處理技術。 上行鏈路上,在被選中用於 政端丨 ;仃鏈路傳送的每個使用者 絲資+1資料處理器288接收來自資料源286的 2:=Γ控制器280的控制資料資料處理器 二=者終端所選擇的速率相關聯的編碼和調 案處理(例如,編碼、交錯和調制)該使用者終端的 訊務資料^並提供資料符號串流{、心空間處理 器㈣對資料符號串流D執行空間處理並為υ天 線提供U發射符號串流。每個發射機單元(TMTR) 254接收並處理(例如,轉換至類比、放大、渡波以及升 頻轉換)各自的發射符號串流以產生上行鏈路信號。# 個:射機單元254提供U上行鏈路信號以從:二: 天線252傳送至存取點11〇。 〜個使用者終端可被排程在上行鏈路上進行同時傳 二:.等使用者終端中的每一個對自身的資料符號細 號串流集。 傳送自身的發射符 在存取‘點m處,~個天、線⑽到天線a—從在上 201119265 ::鏈:士傳送的所有〜個使用者終端接收上行鍵路信 〜二天'線224向各自的接收機單元(RCVR) 222提供 收到信號。每個接收搡留_。 接收機早70 222執行與發射機單元254所 執行的相反的處理,光担# ^ , 。 供收到符號串流。RX空間處理 器240對來自^個接收機 流執行接收機空間處理並提到符號串 ’提供個恢復出的上行鏈路 …串流。接收機空間處理是…道相關 (咖心⑹)矩陣求逆(CC叫最小均方誤差(咖£ )、 連續干擾消除(SIC)或某種其他技術來執行的。每一個 所恢復出的上行鍵路資料符號串流是各自使用者政 端所傳送的資料符號串流{5一的估計。以資料處理器 242根據對每一個所恢復出的上行鏈路資料 所使用的速率來處理(例如,解調、解交錯和解碼)(;;} 流以獲得經解碼資料。每個使用者終端的經解碼資料可被 提供給資料槽244進行儲存及/或提供給控制器23〇用於進 一步處理。 下行鏈路上,在存取,點110處,Txf料處理_ 2ι〇接收 來自資料源208的給被排程進行下行鏈路傳輸的%”個使 用者終端的訊務資料、纟自控制器23〇的控制資料以及亦 可能有來自排程器234的其他資#。可在不同的傳輸通道 上發送各種類型的資料。τχ資料處理器21〇基於為每個 使用者終端選擇的速率來處理(例如,編碼、交錯和調制) 給該使用者終端的訊務資料。TX資料處理器21〇提供給 心《個使用者終端的個下行鏈路資料符號_流。τχ空 201119265 間處理器22〇對ι個下/ a 理廿、 6個下仃鏈路資料符號串流執行空門广 理並為、個天線提供乂 1處 單元(TMTR) 222接收^ '射付旒串抓。每個發射機 下處理各自的發射符號串流以產生 下仃鏈路k號。個發射機單元η] -ί= M V, nt λ, 提供個下行鏈路 。旒乂從JVap個天線224傳送至使用者终端。 二個使用者終端12。處,W線252接收來自存 取點m的U下行鏈路信號。每個接收機單元(虹叫 54處理來自相關聯天線252的收到信號並提供收到符號 A RX空間處理器26〇對來自U接收機單元 的I個收到符號串流執行接收機空間處理,並提供給該 使用者終端的恢復出的下行鏈路資料符號_流{^、} 了^ 收機空間處理是根據CCMI、MMSE或某種其他技術來執 行的。灯資料處理器270處理(例如,解調、解交錯和 解碼)所恢復出-的下行鏈路資料符號串流以獲得給該使用 者終端的經解碼資料。 在每個.使用者終端120處,個天線252接收來自存 取點110的I*個下行鏈路信號。每個接收機單元(RCVR) 254處理來自相關聯天線252的收到信號並提供收到符號 串流。RX空間處理器260對來自%, w個接收機單元 的«個收到符號串流執行接收機空間處理,並提供給該 使用者終端的恢復出的下行鏈路資料符號串流卩〜3。接 收機空間處理是根據CCMI、MMSE或某種其他技術來執 行的。RX資料處理器270處理(例如,解調、解交錯和 解碼)所恢復出的下行鏈路資料符號串流以獲得給該使用 12 201119265 者終端的經解碼資料。 圖3圖不了可在可用在系統1〇〇内的無線設備3〇2中使 用的各個部件。無線設備302是可被配置成實施本文所描 述的各種方法的設備的實例。無線設備302可以是存取點 11〇或使用者終端12〇。 無線設備302可包括控制無線設備3〇2的操作的處理器 3 04。處理器3 〇4亦可被稱為中央處理單元(π。)。可包 括唯讀記憶體(R0M)和隨機存取記憶體(RAM)兩者的 記憶體306向處理器304提供指令和資料。記憶體3〇6的 部分亦可包括非揮發性隨機存取記憶體(nvram卜處 理器304通常基於健存在記憶體3〇6内的程式指令執行邏 輯和算術運算。記憶體3〇6中的指令是可執行指令,以用 於實施本文所描述的方法。 無線設備302亦可包括外殼,該外殼可包括發射機 310和接收機312以允許在無線設備3〇2與遠端位置之間 進行資料的發射和接收'。發射機31〇和接收機3 12可被組 合成收發機314。複數個發射天線316可被附接至外殼3〇8 =電耦合至收發機31415無線設備3〇2亦可包括(未圖示) 多個發射機、多個接收機和多個收發機。 無線設備302亦可包括可用來力圖偵測和量化收發機 314所收到的信號位準的信號偵測器318。信號偵測器 可债測諸如總能量、每:欠載波每符號能量、功率譜密度等 W以及其他信號。無線設備3()2亦可包括供處理信號使 用的數位化號處理器(DSP) 320。 13 201119265 無線設備302的各個部件可由匯流排系統322耦合在一 起,除資料匯流排之外匯流排系統322亦可包括電源匯流 排、控制信號匯流排和狀態信號匯流排。 本領域技藝人士將認識到本文所描述的技術可通常應 用於利用諸如SDMA、OFDMA、CDMA、SDMA及其組合 等任何類型的多工存取方案的系統中。 ΜΙΜΟ及MU-MIMO OFDM前序信號 本案的某些態樣提供了支援超出IEEE 8〇2 Ua/b/g/n標 準中的現有無線區域網路(WLAN)工力能性之外的額外功 能性的新前序信號結構。該等額外功能性可包括對諸如8〇 驗的更寬頻寬的信號、諸如256QAM (正交調幅)的更 高階數的調制以及諸如下行鏈路分空間多工存取 (DL-SDMA)和上行鏈路(UL) _犯财的多使用者空間 處理的支援。 在SDMA中,資料訊框可並行地傳送至多個接收機。接 收機可包括1援同時多使用者通訊的新設備和僅可支援 咖8〇2.lln/a/g標準的舊有設備。舊有設備不能支援諸 如SDMA及/或多使用者多輸入多輸出(mu_瞻⑴之類 的同時多使用者通訊。本文所解決的—項挑戰是如何在資 料訊框的開頭產生和發送前序信號以支援實體層中的新 特徵同時保持與舊有設備的反向相容。 新實體層(PHY)前序信號可向接收機提供資訊以與基 1 (例如’在時間、接收⑽)増益以及頻率方面)同 '、決定通道回應、決定傳輸長度以及決定調制和頻寬特 14 201119265 性。 為了支援新設備和舊有設備兩者,前序信號結構可包括 以下特性的組合:i)對於諸如單使用者MIM〇、發射波束 成形、DL-SDMA和ul_sdma等所有重要的ρΗγ模式具 有統一的單個前序信號格式;π)具有穩健的載波感測和 通道估計效能;m)提供允許舊有設備將其傳輸延緩至指 定時間量4資訊;iv)支援大於4〇MHz的頻寬;v)支援 大於4個的空間時間串流;vi )支援盡可能接近遵照ieee 802·11η的接收機的接收機設計;vU)支援8〇2、 IEEE 802.11η (混合模式(MM)和緣地(GF)模式兩者) 和新則序信號之間的自動偵測;viii)支援子通道中的偵測 和延緩;ix )具有小的整體長度。 圖4圖示了 IEEE 802.1 In標準中的混合模式前序信號結 構。如所圖示的,該前序信號具有舊有信號部分,該舊有 信號部分包括短訓練攔位(L-STF ) 402、長訓練欄位 (L-LTF) 404和信號(L-SIG)攔位406 ^該信號部分允 許遵照IEEE 802.1 la/g標準的舊有設備進行同步、決定通 道回應以及解碼L-SIG攔位中的資料。 L-SIG棚位406中的貢料是使用二元移相鍵控(Βρ§κ) 調制來訊令的,並且包含關於對封包的資料部分使用的資 料速率以及有效載荷位元組數目的資訊。接收機可基於包 括在L-SIG攔位中的資訊來計算要延緩任何傳輸進入媒體 的封包的長度。IEEE 802.1 la/g接收機可預期直接在L_SIG 攔位406之後見到資料符號,L-SIG攔位406可包含 15 201119265 BPSK、正父移相鍵控(qpsk)、16QAM或64QAM調制中 的一者。 另外'’混合模式IEEE 8 02·11η前序信號在高傳輸量(ht) -SIG1 408符號和HT-SIG2 410符號中包含能被支援ιεεε 802·11η標準的設備所使用的資訊。HT-SIG1符號和 HT-SIG2符號包含關於封包所使用的IEeeE 8〇2 llri標準 中的一或多個特徵的資訊。該等特徵可包括調制和編碼方 案(MCS )、短GI (保護區間)或長GI、20 MHz或40 MHz 頻寬等。另外,HT-SIG1欄位408和HT-SIG2攔位410包 含如圖5中所圖示的用π/2_Βρ8κ訊令的—些資料。 圖5圖示了用BPSK或π/2一BpsK調制來傳送的訊框的 L SIG攔位和HT-SIG攔位中的示例性資料。用π/2_Βρ§κ 調制來傳送的資料被接收機用於自動偵測封包是相容於 ΙΕΕΕ 802.1 1 a/g 還是 IEEE 802.1 In 標準。 為了彳貞測收到仏號的傳輸模式(亦即,遵照IEee 8〇2.11a/g/n標準中的哪種標準),接收機可檢查存在 HT-SIG1攔位408和HT-SIG2欄位410的時槽中的信號群 集。右在Q軸502上存在相比於I軸504更多的能量,則Various wireless technologies such as V (TDMA) and sub-space multiplex access (SDMA) are used in combination. Multiple user terminals may concurrently transmit/receive data via cDMA via different orthogonal code channels, (2) via TDMA via different time slots, or (3) to OFDM via different sub-bands. CDMA systems can implement IS-2000, iS_95, is_856, broadband cdma (W CDMA) 201119265 or some other standard. The 0 Cong system can implement lEEE 8G2.U or some other standard. The TDMA system can implement gsm or some other standard. These various standards are well known in the art. Example ΜΙΜΟ System Figure 1 illustrates multiplex access with access points and user terminals. _ For simplicity, Figure u shows only one access point access point (AP). A fixed station for terminal communication, and may also be called a base station or some other terminology. The user terminal can be fixed or mobile' and can also be referred to as a mobile station, station (STA), client, wireless device, or some other terminology. The user terminal can be a wireless device such as a cellular telephone, a personal digital assistant (PDA), a handheld device, a wireless data modem, a laptop, a personal computer, and the like. Access point U0 can communicate with one or more user terminals 120 on the τ line and uplink keys at any given time. The downlink (ie, the forward link) is the communication link from the access point to the special terminal, and the uplink key (ie, the 'reverse link) is the communication from the user terminal to the access point. Keyway. The user terminal can also communicate with the other user terminal at the same level. The system controller i is coupled to the access point and provides coordination and control. System 10G employs multiple transmit antennas and multiple receive antennas for data transmission on the lower "links and uplinks. The access point UG is equipped with an antenna and indicates multiple inputs of the downlink transmission (Μι) and multiple outputs of the uplink transmission (MO) U. The set of selected user terminals (3) collectively represent the multiple outputs and uplinks of the downlink transmission. Multi-degree rounding of link transmission. In some cases, if the stream of the user's terminal is not multiplexed by code, frequency or time by some component, then -1 would be desirable. If the data symbol stream can be multiplexed using different code channels under CDMA, using a disjoint subband set under 〇FDM, etc., then 乂 may be greater than each selected user terminal and/or Transmit and/or receive data that varies from user to access point. Typically, each selected user terminal can be equipped with one or more antennas (i.e., APIs). The selected user terminals may have the same or different number of antennas. ΜΙΜΟ system! 00 may be a time division duplex (tdd) system or a frequency division duplex (FDD) system. For the TDD system, the downlink and uplink share the same frequency band. For FDD systems, the downlink and uplink use different frequency bands. The system (10) can also be transmitted using single or multiple carriers. Each user terminal can be equipped with a single day, line (e.g., to suppress cost) or multiple antennas (e.g., where additional cost can be supported). Figure 2 is a block diagram of the access point i of the system 1 and the two user terminals UOm and the user terminal 12A. The access point ιι〇 is equipped with an ATflp antenna 224a to the antenna 224ai^ the user terminal 12 is equipped with an antenna 252ma to the antenna 252mu, and the user terminal 丨2^ is equipped with an antenna 252xa to the antenna 252χ^ access point ιι是 is the transmitting entity for the downlink and the receiving entity for the uplink. Each user terminal 120 is a transmitting entity for the uplink and a receiving entity for the downlink. As used herein, a "transport entity" is an independently operated device or device capable of transmitting data via a frequency channel, @"receiving entity" is a 201119265 independently operated device or device capable of receiving data via a frequency channel. In the following line key, the subscript "heart indicates uplink = medium 7:," indicates that it is selected for simultaneous transmission on the uplink ~ & user terminal (four) transmission, ~ can be equal to or can not be in the 'and V矸ΒAt interval n疋 static value or can be changed for each schedule=. Beam steering or some other spatial processing technique can be used at the access point and user terminal. On the uplink, each user's wire +1 data processor 288, selected for the government side, receives the control data profile processor from the data source 286 2:=Γ controller 280 Two = the rate selected by the terminal associated with the encoding and adjustment processing (eg, encoding, interleaving, and modulation) of the user terminal's traffic data ^ and provides data symbol stream {, heart space processor (four) pairs of data symbols Stream D performs spatial processing and provides a U-transmitted symbol stream for the chirp antenna. Each transmitter unit (TMTR) 254 receives and processes (e.g., converts to analog, amplify, ripple, and upconvert) respective transmit symbol streams to produce an uplink signal. #个: The shooter unit 254 provides a U uplink signal to transmit from the second: antenna 252 to the access point 11A. ~ User terminals can be scheduled to be transmitted on the uplink simultaneously. Two: Each of the user terminals is a stream of data symbols for each of its own. Transmit its own transmit character at access point 'm, ~ day, line (10) to antenna a - receive uplink key letter ~ two days 'line 224 from all ~ user terminals transmitted on the 201119265 :: chain: The received signal is provided to a respective receiver unit (RCVR) 222. Each receiving _. The receiver performs the inverse of the processing performed by the transmitter unit 254 as early as 70 222, the light load #^, . For receiving symbol streams. The RX spatial processor 240 performs receiver spatial processing on the receiver streams and refers to the symbol string 'providing a recovered uplink ... stream. The receiver spatial processing is performed by the (channel) correlation (Card (6)) matrix inversion (CC is called minimum mean square error (C), continuous interference cancellation (SIC) or some other technique to perform. Each recovered uplink The keyway data symbol stream is an estimate of the data symbol stream {5's transmitted by the respective user's government. The data processor 242 processes the rate based on the recovered uplink data (eg, , demodulating, deinterleaving, and decoding) (;;} streams to obtain decoded data. The decoded data for each user terminal can be provided to data slot 244 for storage and/or to controller 23 for further use. On the downlink, at access, at point 110, the Txf processing _ 2 〇 receives the traffic data from the data source 208 for the %" user terminals scheduled for downlink transmission, and the self-control The control data of the device 23 and possibly other resources from the scheduler 234. Various types of data can be transmitted on different transmission channels. The data processor 21 is based on the rate selected for each user terminal. To process (eg, encode, interleave, and modulate) the traffic data to the user terminal. The TX data processor 21 provides the downlink data symbol_stream of the user terminal. τ χ 201119265 processing The device 22 performs an empty gate grooming on the ι under/a 廿, 6 仃 仃 link data symbol streams, and provides 乂1 unit (TMTR) 222 for the antennas to receive ^ 'pay 旒 string grabs. The transmitters process the respective transmitted symbol streams to generate the downlink link k. The transmitter units η] - ί = MV, nt λ provide a downlink. 传送 Transfer from JVap antenna 224 to use At the two user terminals 12. The W line 252 receives the U downlink signal from the access point m. Each receiver unit (the rainbow call 54 processes the received signal from the associated antenna 252 and provides the received signal The symbol A RX spatial processor 26 performs a receiver spatial processing on the I received symbol streams from the U receiver unit and provides the recovered downlink data symbol_stream to the user terminal. } ^ The receiving space processing is based on CCMI, MMSE or some kind of He performs the technique. The lamp data processor 270 processes (e.g., demodulates, deinterleaves, and decodes) the recovered downlink data symbol stream to obtain decoded data for the user terminal. At user terminal 120, antennas 252 receive I* downlink signals from access point 110. Each receiver unit (RCVR) 254 processes the received signal from associated antenna 252 and provides a received symbol string. The RX spatial processor 260 performs receiver spatial processing on the «received symbol streams from the %, w receiver units and provides the recovered downlink data symbol stream to the user terminal. 3. Receiver space processing is performed in accordance with CCMI, MMSE, or some other technology. The RX data processor 270 processes (e. g., demodulates, deinterleaves, and decodes) the recovered downlink data symbol stream to obtain decoded data for the terminal. Figure 3 illustrates the various components that can be used in the wireless device 3〇2 that can be used in the system. Wireless device 302 is an example of a device that can be configured to implement the various methods described herein. The wireless device 302 can be an access point 11 or a user terminal 12A. The wireless device 302 can include a processor 310 that controls the operation of the wireless device 3.1. Processor 3 〇4 may also be referred to as a central processing unit (π.). Memory 306, which may include both read-only memory (ROM) and random access memory (RAM), provides instructions and data to processor 304. Portions of memory 〇6 may also include non-volatile random access memory (nvram processor 304 typically performs logical and arithmetic operations based on program instructions stored in memory 〇6. Memory 3〇6 The instructions are executable instructions for implementing the methods described herein. The wireless device 302 can also include a housing that can include a transmitter 310 and a receiver 312 to allow between the wireless device 3〇2 and a remote location. Transmitting and receiving of data '. Transmitter 31〇 and receiver 3 12 may be combined into a transceiver 314. A plurality of transmitting antennas 316 may be attached to the housing 3〇8 = electrically coupled to the transceiver 31415 wireless device 3〇2 Multiple transmitters, multiple receivers, and multiple transceivers may also be included (not shown). The wireless device 302 may also include signal detection that may be used to attempt to detect and quantize the level of signals received by the transceiver 314. The signal detector may measure such as total energy, per-under carrier per symbol energy, power spectral density, etc., and other signals. Wireless device 3() 2 may also include a digitizer processor for processing signals. (DSP) 320. 13 2 01119265 The various components of the wireless device 302 can be coupled together by a busbar system 322, and the foreign exchange busbar system 322 in addition to the data busbar can also include a power busbar, a control signal busbar, and a status signal busbar. Those skilled in the art will recognize The techniques described herein may be generally applied to systems utilizing any type of multiplex access scheme such as SDMA, OFDMA, CDMA, SDMA, and combinations thereof. ΜΙΜΟ and MU-MIMO OFDM preamble signals Some aspects of the present disclosure are provided A new preamble signal structure that supports additional functionality beyond the existing wireless local area network (WLAN) workability in the IEEE 8〇2 Ua/b/g/n standard. These additional functionality may include Broader bandwidth signals such as 8 、, higher order modulation such as 256QAM (Quadrature Amplitude Modulation) and such as downlink subspace multiplex access (DL-SDMA) and uplink (UL) Support for multi-user space processing. In SDMA, data frames can be transmitted to multiple receivers in parallel. The receiver can include 1 new device for simultaneous multi-user communication and only support coffee 8〇2.lln/ a/g standard Older equipment. Older equipment cannot support simultaneous multi-user communication such as SDMA and/or multi-user multiple input and multiple output (mu_sight (1). The problem solved in this paper is how to be in the data frame. The beginning of the generation and transmission of preamble signals to support new features in the physical layer while maintaining backward compatibility with legacy devices. The new physical layer (PHY) preamble can provide information to the receiver to base 1 (eg ' In terms of time, reception (10), benefit, and frequency), the channel response is determined, the transmission length is determined, and the modulation and bandwidth are determined. To support both new and legacy devices, the preamble signal structure can include a combination of the following features: i) Uniform for all important ρΗ gamma modes such as single-user MIM〇, transmit beamforming, DL-SDMA, and ul_sdma a single preamble signal format; π) robust carrier sensing and channel estimation performance; m) providing legacy devices to delay their transmission to a specified amount of time 4; iv) supporting bandwidths greater than 4 〇 MHz; v) Supports more than 4 spatial time streams; vi) supports receiver design as close as possible to ieee 802·11η receivers; vU) supports 8〇2, IEEE 802.11η (mixed mode (MM) and marginal (GF) ) automatic detection between the two modes and the new sequence signal; viii) support for detection and delay in the subchannel; ix) with a small overall length. Figure 4 illustrates the mixed mode preamble signal structure in the IEEE 802.1 In standard. As illustrated, the preamble signal has an old signal portion including a short training block (L-STF) 402, a long training field (L-LTF) 404, and a signal (L-SIG). Block 406 ^ This signal section allows legacy devices that comply with the IEEE 802.1 la/g standard to synchronize, determine channel responses, and decode data in the L-SIG block. The tribute in the L-SIG booth 406 is commanded using binary phase shift keying (Βρ§κ) modulation and contains information about the data rate used for the data portion of the packet and the number of payload bytes. . The receiver can calculate the length of the packet to delay any transmission into the media based on the information included in the L-SIG block. The IEEE 802.1 la/g receiver can expect to see the data symbol directly after the L_SIG block 406, which can include one of 15 201119265 BPSK, positive parent phase shift keying (qpsk), 16QAM or 64QAM modulation. By. In addition, the ''mixed mode IEEE 8 02·11n preamble signal contains information for devices that can be supported by the ιεεε 802·11η standard in the high-transmission (ht)-SIG1 408 symbol and the HT-SIG2 410 symbol. The HT-SIG1 symbol and the HT-SIG2 symbol contain information about one or more of the IEeeE 8 〇 2 llri standards used by the packet. These features may include modulation and coding schemes (MCS), short GI (protection intervals) or long GI, 20 MHz or 40 MHz bandwidth, and the like. In addition, the HT-SIG1 field 408 and the HT-SIG2 block 410 contain information such as the π/2_Βρ8κ command as illustrated in FIG. Figure 5 illustrates exemplary data in the LSIG intercept and HT-SIG intercept of a frame transmitted with BPSK or π/2-BpsK modulation. The data transmitted with π/2_Βρ§κ modulation is used by the receiver to automatically detect whether the packet is compatible with ΙΕΕΕ 802.1 1 a/g or IEEE 802.1 In. In order to detect the transmission mode of the received nickname (ie, which of the IEee 8〇2.11a/g/n standards), the receiver can check for the presence of the HT-SIG1 Block 408 and HT-SIG2 fields. A cluster of signals in the time slot of 410. Right there is more energy on the Q axis 502 than on the I axis 504, then

比於I軸更少的能量,則該訊框可能相容於IEEE 802.11 a/g 標準。 位410中的資料可包括該 以及用以顯著降低錯誤延 HT-SIG 欄位 408、HT-SIG 攔位 訊框的以位元組為單位的長度以 緩時間的概率的8位元循環冗餘檢查(CRC)碼 16 201119265 如圖4中所圖示的,在HT_SIG攔位之後,接收機接收 被IEEE 802.11η接收機用來進一步改良接收增益的 HT-STF (高傳輸量短訓練欄位)412。增大收到信號的功 率的發射波束成形被用來傳輸HT-STF攔位直至訊框的末 尾。IEEE 8 02 ·11η前序信號具有一組完整的提供用於通道 估計的資訊的高傳輸量-長訓練攔位(HT-LTF )414。在IEEE 802.11η中’可使用多達4個HT-LTF 414欄位。 圖6圖示了根據本案的某些態樣的支援超高傳輸量 (VHT ) IEEE 802.1 1 ac 加 IEEE 802.1 ln/a/b/g 標準的提議 前序信號結構。如所圖示的,.該提議前序信號結構包含舊 有部分’該舊有部分包括L-STF 4〇2攔位、l_ltf 404攔 位、L-SIG 406 攔位、HT-SIG1 408 攔位和 HT-SIG2 410 攔位。 該舊有部分可向IEEE 802.lla/g設備提供適當的資訊以 基於L-SIG欄位406中的資料來延緩媒體中的傳輸。舊有 部分亦向支援IEEE 802.1 1η的設備提供適當的資訊以基於 包括CRC檢查的HT-SIG1欄位和HT-SIG2欄位來延緩媒 體中的傳輸。 另外’圖6中的前序信號結構包含預編碼部分,該預編The frame may be compatible with the IEEE 802.11 a/g standard, with less energy than the I axis. The data in bit 410 may include the 8-bit cyclic redundancy that is used to significantly reduce the length of the HT-SIG field 408 and the HT-SIG block frame in a bit-wise manner to mitigate the time. Check (CRC) Code 16 201119265 As illustrated in Figure 4, after HT_SIG is intercepted, the receiver receives HT-STF (High Transfer Short Training Field) used by the IEEE 802.11n receiver to further improve the receive gain. 412. Transmit beamforming that increases the power of the received signal is used to transmit the HT-STF block until the end of the frame. The IEEE 8 02 ·11η preamble signal has a complete set of high-transmission-long training block (HT-LTF) 414 that provides information for channel estimation. Up to four HT-LTF 414 fields can be used in IEEE 802.11n. Figure 6 illustrates a proposed preamble signal structure supporting the Ultra High Throughput (VHT) IEEE 802.1 1 ac plus IEEE 802.1 ln/a/b/g standard in accordance with certain aspects of the present disclosure. As illustrated, the proposed preamble signal structure contains the old part 'The old part includes the L-STF 4〇2 block, the l_ltf 404 block, the L-SIG 406 block, and the HT-SIG1 408 block. And HT-SIG2 410 block. The legacy portion may provide appropriate information to the IEEE 802.11a/g device to delay transmissions in the media based on data in the L-SIG field 406. The legacy also provides appropriate information to IEEE 802.1 1 η-enabled devices to delay transmissions in the media based on the HT-SIG1 field and the HT-SIG2 field, including CRC checks. In addition, the preamble signal structure in Fig. 6 includes a precoding portion, which is pre-programmed.

瑪部分包括 VHT-STF 602、VHT-LTF1 攔位 604、VHT-SIG 欄位606以及一或多個Vht-LTF攔位。該預編碼部分是意 欲送給支援IEEE 802.11 ac標準的設備的。 對於某些態樣,VHT設備(亦即,遵照IEEE 802.1 lac 標準的設備)藉由檢查在VHT-SIG攔位606的時期期存在 17 201119265 π/2-BPSK 來债測 IEEE 802.11 ac 封包,否則在 802.1 In 封 包的情況下在 VHT-SIG欄位606的時期期間將存在 BPSK、QPSK、16QAM 或 64QAM。VHT-SIG 攔位中的資 料可使用SDMA來預編碼和傳送,以使得每個客戶機接收 唯一的 VHT-SIG 攔位。VHT-SIG 攔位 606 可在 VHT-LTF1 欄位604之後傳送。接收機使用包括在VHT-LTF1欄位中 的資訊決定通道(通道加預編碼)以正確地解調和解碼 VHT-SIG攔位中的資料。圖6中圖示的前序信號結構可支 援至多16個VHT-LTF欄位。 圖6中的前序信號結構支援DL-SDMA ;然而,該前序 信號結構不支援UL-SDMA。在UL-SDMA中,一或多個客 戶機所發送的VHT-SIG欄位606中的資料可能需要在基地 台處使用來自每個客戶機的通道估計被解調和解碼。因 此,VHT-SIG欄位606可能需要出現在前序信號的末尾而 不是直接出現在第一個VHT-LTF攔位604之後。 圖7圖示了根據本案的某些態樣的支援超高傳輸量 (VHT) IEEE 802.1 lac 加 IEEE 802.1 ln/a/b/g 標準的第二 提議前序信號結構。如所圖示的,該提議前序信號結構包 含舊有部分,該舊有部分包括L-STF 402攔位、L-LTF 404 欄位、L-SIG 406 欄位、V/HT-SIG1 702 攔位和 V/HT-SIG2 704欄位。另外,該前序信號結構包含預編碼部分,該預 編碼部分包括VHT-STF 602以及一或多個VHT-LTF欄位 604 和 VHT-SIG3 攔位 706。 圖7中圖示的前序信號可保存了圖6中提供的前序信號 18 201119265 的所有特性,同時添加了兩個重要特徵。首先,VHT-SIG 欄位(亦即,VHT-SIG3 706 )可出現在前序信號的末尾, 由此支援UL-SDMA。其次,一些VHT-SIG資訊可連同 V/HT-SIG1 702 欄位中的 HT-SIG1 和 V/HT-SIG2 704 欄位 中的HT-SIG2來分別攜帶。此資訊可以是以全向方式傳送 的,:f列如VHT-SIG可使用多播被傳送給所有客戶機。 對於某些態樣,V/HT-SIG1 702攔位和V/HT-SIG2 704 攔位中的VHT資料是與HT-SIG欄位的π/2-BPSK調制相 組合地調制的,以使得保存IEEE 802· 1 In接收機偵測IEEE 802· lla/g封包與IEEE 802.1 1η封包之間的差異的能力。 此意味著在不改變π/2-BPSK接收機所解調的實際資料的 情況下往HT-SIG欄位添加資訊。VHT資料應該以此方式 來添加:IEEE 802·11η接收機能辨識出π/2-BPSK調制和 正確地解碼HT-SIG資料,並能夠通過對經解碼資料的CRC 檢查。 對於本案的某些態樣,VHT-SIG欄位中傳送的資料可利 用諸如一般BPSK、經比例縮放BPSK、經比例縮放 π/2-BPSK或π/2-PAM(脈波調幅)等不同調制方案來傳送。 對於某些態樣,VHT-SIG欄位中傳送的資料可在頻率上 編碼。例如,VHT-SIG資料可僅出現在OFDM頻率的子集 上。VHT-SIG資料亦可使用重複編碼在複數個OFDM頻率 上傳送。另外,VHT-SIG資料可使用諸如華許碼、格雷碼、 互補碼鍵控(CCK )等序列而在一或多個頻率上擴展。 圖8A、圖8B和圖8C圖示了根據本案的某些態樣的使 19 201119265 用不同調制方案同時在ΗΤ-SIG攔位和VHT-SIG欄位中 (例如,在V/HT-SIG欄位7〇2中)傳送資料的實例。 如圖8A中所圖示的,BPSK可被用於VHT-SIG資料, 且可被直接添加至用兀/2-BPSK調制的ΗΤ-SIG資料。只要 OFDM頻率中僅一些頻率具有VHT-SIG、資料,V/HT-SIG 欄位中的主能量就仍將與π/2-BPSK對準。因此,HT-SIG 攔位中的資訊仍可被支援IEEE 802.11 a/b/n/g標準的接收 機所偵測到。 如圖8B中所圖示的,經比例縮放BPSK可被用於調制 VHT-SIG資料,後者可被添加至用 π/2-BPSK調制的 ΗΤ-SIG資料。只要對BPSK資料的縮放因數小於1,則 V/HT-SIG攔位中的主能量就仍可與π/2-BPSK對準。因 此,ΗΤ-SIG欄位中的資訊仍可被支援IEEE 802.11a/b/n/g 標準的接收機所偵測到。 圖8C圖示了利用經比例縮放π/2-BPSK來調制VHT-SIG 資料並將其添加至用π/2-BPSK調制的HT-SIG攔位。只要 對VHT資料的縮放因數小於0.5,則經組合的π/2-BPSK (或π/2-PAM )在沿Q = 0邊界被切片時仍將產生原始 HT-SIG資料。顯然,所有能量皆與π/2-BPSK對準;因此, 保存了對IEEE 802· 11 η封包的偵測。The Ma portion includes a VHT-STF 602, a VHT-LTF1 block 604, a VHT-SIG field 606, and one or more Vht-LTF blocks. This precoding portion is intended for devices that support the IEEE 802.11 ac standard. For some aspects, the VHT device (ie, a device that complies with the IEEE 802.1 lac standard) will test the IEEE 802.11 ac packet by checking that there is 17 201119265 π/2-BPSK during the period of the VHT-SIG block 606, otherwise There will be BPSK, QPSK, 16QAM or 64QAM during the period of the VHT-SIG field 606 in the case of an 802.1 In packet. The data in the VHT-SIG block can be precoded and transmitted using SDMA so that each client receives a unique VHT-SIG block. The VHT-SIG Block 606 can be transmitted after the VHT-LTF1 field 604. The receiver uses the information included in the VHT-LTF1 field to determine the channel (channel plus precoding) to properly demodulate and decode the data in the VHT-SIG block. The preamble signal structure illustrated in Figure 6 can support up to 16 VHT-LTF fields. The preamble signal structure in Figure 6 supports DL-SDMA; however, the preamble signal structure does not support UL-SDMA. In UL-SDMA, data in the VHT-SIG field 606 sent by one or more clients may need to be demodulated and decoded at the base station using channel estimates from each client. Therefore, the VHT-SIG field 606 may need to appear at the end of the preamble signal rather than directly after the first VHT-LTF block 604. Figure 7 illustrates a second proposed preamble signal structure supporting the Ultra High Throughput (VHT) IEEE 802.1 lac plus IEEE 802.1 ln/a/b/g standard in accordance with certain aspects of the present disclosure. As illustrated, the proposed preamble signal structure contains the old part, including the L-STF 402 block, the L-LTF 404 field, the L-SIG 406 field, and the V/HT-SIG1 702 block. Bit and V/HT-SIG2 704 field. Additionally, the preamble signal structure includes a precoding portion including a VHT-STF 602 and one or more VHT-LTF fields 604 and VHT-SIG3 blocks 706. The preamble signal illustrated in Figure 7 preserves all of the characteristics of the preamble signal 18 201119265 provided in Figure 6, while adding two important features. First, the VHT-SIG field (ie, VHT-SIG3 706) can appear at the end of the preamble signal, thereby supporting UL-SDMA. Second, some VHT-SIG information can be carried separately with the HT-SIG1 in the V/HT-SIG1 702 field and the HT-SIG2 in the V/HT-SIG2 704 field. This information can be transmitted in an omnidirectional manner: f columns such as VHT-SIG can be transmitted to all clients using multicast. For some aspects, the VHT data in the V/HT-SIG1 702 and V/HT-SIG2 704 blocks are modulated in combination with the π/2-BPSK modulation of the HT-SIG field to save The IEEE 802·1 In receiver detects the ability to distinguish between IEEE 802·11a/g packets and IEEE 802.1 1 η packets. This means adding information to the HT-SIG field without changing the actual data demodulated by the π/2-BPSK receiver. The VHT data should be added in this way: the IEEE 802.11n receiver recognizes the π/2-BPSK modulation and correctly decodes the HT-SIG data and can pass the CRC check of the decoded data. For some aspects of the case, the data transmitted in the VHT-SIG field can utilize different modulations such as general BPSK, scaled BPSK, scaled π/2-BPSK or π/2-PAM (pulse amplitude modulation). The program is delivered. For some aspects, the data transmitted in the VHT-SIG field can be encoded in frequency. For example, the VHT-SIG data may only appear on a subset of the OFDM frequencies. The VHT-SIG data can also be transmitted over a plurality of OFDM frequencies using repetition coding. In addition, the VHT-SIG data may be spread over one or more frequencies using sequences such as Huaxun code, Gray code, Complementary Code Keying (CCK). 8A, 8B, and 8C illustrate the use of different modulation schemes in the ΗΤ-SIG and VHT-SIG fields in accordance with certain aspects of the present invention (eg, in the V/HT-SIG column). Bit 7〇2) An instance of the transmitted data. As illustrated in Figure 8A, BPSK can be used for VHT-SIG data and can be added directly to the ΗΤ-SIG data modulated with 兀/2-BPSK. As long as only some of the OFDM frequencies have VHT-SIG, data, the primary energy in the V/HT-SIG field will still be aligned with π/2-BPSK. Therefore, the information in the HT-SIG block can still be detected by the receiver supporting the IEEE 802.11 a/b/n/g standard. As illustrated in Figure 8B, the scaled BPSK can be used to modulate the VHT-SIG data, which can be added to the ΗΤ-SIG data modulated with π/2-BPSK. As long as the scaling factor for the BPSK data is less than 1, the main energy in the V/HT-SIG block can still be aligned with π/2-BPSK. Therefore, the information in the SIG-SIG field can still be detected by receivers that support the IEEE 802.11a/b/n/g standard. Figure 8C illustrates the use of scaled π/2-BPSK to modulate the VHT-SIG data and add it to the HT-SIG block with π/2-BPSK modulation. As long as the scaling factor for the VHT data is less than 0.5, the combined π/2-BPSK (or π/2-PAM) will still produce the original HT-SIG data when sliced along the Q = 0 boundary. Obviously, all energy is aligned with π/2-BPSK; therefore, the detection of IEEE 802·11 η packets is preserved.

圖9圖示了根據本案的某些態樣的支援超高傳輸量 (VHT) IEEE 802.11ac 加 IEEE 802.11n/a/b/g 標準的第三 提議前序信號結構。如所圖示的,該提議前序信號結構包 含舊有部分,包括L-STF 402欄位、L-LTF 404欄位、L-SIG 20 201119265 406 欄位、V/HT-SIGl 702 欄位和 V/HT-SIG2 704 攔位。 另外,該前序信號結構包含預編碼部分,包括VHT-STF 602 攔位以及一或多個VHT-LTF攔位604。在此前序信號結構 中,滿足了圖6和圖7中前序信號的所有特性,除了 VHT-SIG 資料僅在 V/HT-SIG1 702 欄位和 V/HT-SIG2 704Figure 9 illustrates a third proposed preamble signal structure supporting the Very High Throughput (VHT) IEEE 802.11ac plus IEEE 802.11n/a/b/g standard in accordance with certain aspects of the present disclosure. As illustrated, the proposed preamble signal structure contains legacy portions including L-STF 402 field, L-LTF 404 field, L-SIG 20 201119265 406 field, V/HT-SIGl 702 field, and V/HT-SIG2 704 block. Additionally, the preamble signal structure includes a precoding portion including a VHT-STF 602 block and one or more VHT-LTF blocks 604. In the previous sequence signal structure, all the characteristics of the preamble signals in Figure 6 and Figure 7 are satisfied, except that the VHT-SIG data is only in the V/HT-SIG1 702 field and the V/HT-SIG2 704.

欄位中以全向方式被發送給所有客戶機D 圖10圖示了根據本案的某些態樣的支援超高傳輸量 (VHT> IEEE 802.1 lac 標準加 IEEE 802. lln/a/b/g 標準的 第四提議前序信號結構。如所圖示的,該提議前序信號結 構包含舊有部分’包括L-STF 4〇2欄位、L-LTF 404欄位、 L-SIG 406 欄位、V/HT-SIG1 702 欄位和 V/HT-SIG2 704 攔位。另外,該刖序信號結構含有包括一或多個 攔位604的另一部分。此前序信號結構不支援預編碼、 SDMA或波束成形,因為在此結構中沒有短訓練攔位(亦 即,VHT,STF )可用。然而,此前序信號與先前的前序信 號相比相當短且相當高效。注意.,V/HT_SIG欄位7〇2、 V/HT-SIG攔位704攜帶接收機用以理解在此訊框中支援/ 利用哪些VHT特徵所需要的資訊。 圖11圖示了根據本案的某些態樣的用於產生支援複數 個標準的前序信號結構的示例性操作11〇〇。在11〇2,產生 包含能被第一群組無線節點解螞的第一部分和能被具有 同時多使用者通訊能力的第二群組無線節點解碼的第二 部分的訊框結構。在1104,向複數個設備傳送該訊框結構。 圖12圖示了根據本案的某些態樣的用於基於在前序信 21 201119265 號結構中接收到的資訊來偵測信號的傳輸模式的示例性 操作1200。在1202,接收包括訊框結構的信號,該訊框 結構包含能被第一群組無線節點解碼的第一部分和能被 具有同時多使用者通訊能力的第二群組無線節點解碼的 第二部分。在12〇4,基於該收到信號中的資訊來谓測信號 的傳輸模式。 _ 以上所描述的方法的各種操作可由能夠執行相應功能 的任何合適的構件來執行。該等構件可包括各種硬體及/ 或軟體部件及/或模組,包括但不限於電路、特殊應用積體 電路(ASIC)或處理.器。通常,在附圖中圖示操作的場合, 該等操作可具有帶類似編號的相應配對手段功能部件。例 如圖11中的方塊11〇2_方塊11〇4對應於圖UA中圖示 的電路塊11〇2Α-1104Α。另外,圖12中的方塊12〇2方塊 1204對應於圖12A中圖示的電路塊1202A-電路塊1204A。 如本文中所使用的,術語「決定」涵蓋各種各 例如,「決定」可包括、、寅宜^ ± 栝肩异、叶算.、處理、導出、調查 檢視(例如,在表、資 ^ π ^ 資枓庫或其他資料結構中檢視)、確 疋及類似動作。而且,「 . 收資訊)、存取(例如ί 接收(例如,接 作。而且,「決定,存取記憶體中的資料)及類似動 類似動作。、」亦可包括解析、選擇、選取、建立及 上文描述的方 ^ ^ ^ ^ 的各種操作可以由能夠執行該等摔作 的任何合適的構件來寻梯作 電路及/或模b通常^諸如各種硬體及/或軟體部件, ,在附圖中所圖示的任何操作可由能 22 201119265 夠執行該等操作的相對應的功能性構件來執行。 結合本案描述的各種說明性邏輯區塊、模組以及電路可 用通用處理器、數位信號處理器(DSP )、特殊應用積體電 路(ASIC )、現場可程式閘陣列信號(FPGa )或其他可程 式邏輯設備(PLD )、個別閘門或電晶體邏輯、個別的硬體 部件或其設計成執行本文中描述的功能的任何組合來實 施或執行。通用處理器可以是微處理器,但在替代方案 中,處理器可以是任何市售的處理器、控制器、微控制器 或狀態機。處理器亦可以被實施為計算設備的組合,例如 DSP與微處理器的組合、複數個微處理器、與Dsp核心協 作的一或多個微處理器或任何其他此類配置。 結合本案描述的方法或演算法的步驟可直接在硬體 中、在由處理器執行的軟體模組中或在此兩者的組合中實 施。軟體模組可常駐在本領域所知的任何形式的儲存媒體 中。可使用的儲存媒體的一些實例包括隨機存取記憶體 (Ram)、唯讀記憶體(R0M)、快閃記憶體、EpR〇M記 憶體、EEPR0M g憶體、暫存器、硬碟、可移除磁碟、 CD-R0M ?。軟體模組可包括單一指令或許多指令,且可 分佈在若干不同的代碼區段上’㈣在不同的程式間以及 跨多個儲存媒體分佈。儲存媒體可被耦合到處理器以使得 該處理器能從/向該儲存媒體讀寫資訊。在替代方案中,儲 存媒體可以被整合到處理器。 夕本文所揭示的方法包括用於完成所描述的方法的一或 多個步驟或動作。該等方法步驟及/或動作可彼此互換而不 23 201119265 曰脫離明求項的範疇。換言之,除非指定了步驟或動作的 特定人序否則特定步驟及/或動作的次序及/或使用可以 修改而不會脫離請求項的範疇。 所:述的功能可在硬體、軟體、韌體或其任何組合中實 施。若在軟體中實施’則各功能可以作為一或多個指令儲 電腦可D賣取媒體上。儲存媒體可以是能被電腦存取的 任何可用媒體。舉例而言(但並非限制),此類電腦可讀 取媒體二包括RAM、醜、eepr〇m、⑶腦或其他光 存&、料儲存器或其他錄儲存設備或能被用來攜 :I L存指令或資料結構形式的所要程式碼且能被電腦 I碑(d壬何、其他媒體。如本文中所使用的磁碟(disk)和 无碼(disc)包括壓编朵虚 先碟(CD)、鐳射光碟、光碟、數 位夕功能光碟(Dvd 常常磁性地再現資料,而光磾^·切,其中磁碟㈤) 現資料。 用鐳射來光學地再 因而,某些態樣可包括用於執行 〇 腦程式產品。例如,此類電腦程式產 括 電 /或編碼)有指令的電腦可讀取媒體, =諸存(及 個處理器執;^ w # D等扣7月b由一或多 器執仃以執行本文中所描述 樣,電腦程式居〜 义㈣作。對於某些態 狂式產σ口可包括包裝材料。 軟體或指令亦可以在傳輸媒體上 使用同軸電纜、# 、例如,右軟體是 或諸如紅外、^ φ 數位用戶線路(DSL) 耶哭+ 及微波之類的無線技術從_ 7 服器或其他遠端 &钗偷從網站、伺 原傳送而來的,則該㈣由電镜、光纖電 24 201119265 境、雙絞線、DSL或諸如紅外、無線電、以及微波之類的 無線技術就被包括在傳輪媒體的定義中。 此外應田瞭解,用於執行本文中所描述的方法和技術 的模、,且及/或其他合適構件能由使用者終端及/或基地台在 適用的%合下載及/或以其他方式獲得。例如,此類設備能 被耗合至餘器以促進用於執行本文中所描述的方法的 構件的轉移。或者,本文述及之各種方法能經由儲存構件 (例如,RAM、R〇m、諸如壓縮光碟(cd )或軟碟等 體儲存媒體等)來提供,以使得在將該儲存構件耗合至或 提供給制者終端及/或基地台之後,該設備就能獲得各種 方法。此外,能利用適於向設備提供本文中所描述的方法 和技術的任何其他合適的技術。 應該理解的是請求項並不被限定於以上所圖示的精確 配置和部件。可在以上所描述的方法和裝置的佈局、操作 和細節上作出各種修改、變更和變化而不會脫離請求項的 範膏。 本文.中所提供的技術可在各種應用中被採用。對於某些 〜、樣本文所呈現的技術可被併入存取點站、存取終端、 行動手持機或具有處理邏輯和元件的其他類型的無線設 備中以執行本文所提供的技術。 儘管上述内容針對本發明的實施例,然而可作出本發明 ,其他和進一步實施例而不會背離其基本範嘴,且其範疇 是由所附請求項所決定的。 25 201119265 【圖式簡單說明】 為了能詳細地理解本案下文陳述的特徵所用的方式,可 以參照各態樣來對以下簡要概述的内容進行更特定的描 述,其中一些態樣在附圖中圖示。然而應該注意,附圖僅 圖示了本案的某些典型態樣,故不應被認為限定其範疇, 因為本描述可以允許有其他同等有效的態樣。 圖1圖示了根據本案.的某些態樣的無線通訊網路的圖 不 ° 圖2圖示了根據本案的某些態樣的示例性存取點和使用 者終端的方塊圖。 圖3圖示了根據本案的某些態樣的示例性無線設備的方 塊圖。 圖4圖示了遵照電機電子工程師學會(ieee) 802.11η 標準的混合模式前序信號結構。 圖5圖示了用二元移相鍵控(bpsK)和π/2-BPSK調制 所發射的前序信號的舊有信號(L-SIG)和高傳輸量信號 (HT-SIG)欄位中的示例性資料。 圖6圖示了根據本案的某些態樣的支援超高傳輸量 (VHT) IEEE 802.11ac 加 ieEE 802.11n/a/b/g 標準的提議 前序信號結構。 圖7圖示了根據本案的某些態樣的支援超高傳輸量 (VHT ) IEEE 802.1 1 ac 加 IEEE 802· 1 ln/a/b/g 標準的第二 提議前序信號結構。 26 201119265 圖8A、圖8B和圖8C圖示了根據本案的某些態樣的使 用不同調制方案同時發射HT-SIG和VHT-SIG符號的實 例。 圖9圖示了根據本案的某些態樣的支援超高傳輸量 (VHT) IEEE 802.1 1ac 加 IEEE 802.1 1n/a/b/g 標準的第三 提議前序信號結構。 圖1〇圖示了根據本案的某些態樣的支援超高傳輸量 (VHT) IEEE 802.11ac 加 IEEE 802.1 1n/a/b/g 標準的第四 提議前序信號結構。 圖11圖示了根據本案的某些態樣的用於產生支援複數 個標準的前序信號結構的示例性操作。 圖UA圖示了能夠執行圖u中所示操作的示例性部件。 圖12圖了根據本案的某些態樣的用於基於前序信號 結構中的資訊來偵測作缺沾括&此上仏一 °戒的傳輸模式的示例性操作。 圖12Α圖示了能热益 執订圖12中所示操作的示例性部件。 【主要元件符號說明】 100 110 120a 120b 120c 120d 120e 多工存取ΜΙΜΟ系統 存取點 使用者終端 使用者終端 使用者終端 使用者終端 使用者終端 27 201119265 120f 使用者終端 120g 使用者終端 120h 使用者終端 120i 使用者終端 1 20m 使用者終端 120x 使用者終端 130 系統控制器 208 資料源 210 TX資料處理器 220 TX空間處理器 222 接收機單元(RCVR) 224a 天線 224ap 天線 230 控制器 234 排程器 240 RX空間處理器 242 RX資料處理器 244 資料槽 2 5 2ma 天線 252mu 天線 25 2xa 天線 252xu 天線 254 發射機單元(TMTR) 260 RX空間處理器 28 201119265 270 28 0 286 288 290 302 304 306 308 310 3 12 314 316 318 320 322 402 404 406 408 410 412 414 502 RX資料處理器 控制器 資料源 TX資料處理器 TX空間處理器 無線設備 處理器 記憶體 外殼 發射機 接收機 收發機 發射天線 信號偵測器 數位信號處理器(DSP) 匯流排系統 短訓練欄位(L-STF) 長訓練欄位(L-LTF) 信號(L-SIG)欄位 HT-SIG1 欄位 HT-SIG2 欄位 HT-STF (高傳輸量短訓練欄位) 高傳輸量-長訓練欄位(HT-LTF ) Q轴 29 201119265 504 I轴 602 VHT-STF 604 VHT-LTTF1 欄位 606 VHT-SIG 欄位 702 V/HT-SIG1 704 V/HT-SIG2 1100 操作 1100A 操作 1102 方塊 1102A 方塊 1104 方塊 1104A 方塊 1200 操作 1200A 操作 1202 方塊 1202A 方塊 1204 方塊 1204A 方堍 30The field is sent to all clients in an omnidirectional manner. Figure 10 illustrates the support for ultra-high throughput (VHT) IEEE 802.1 lac standard plus IEEE 802.11n/a/b/g according to some aspects of the present case. Standard fourth proposed preamble signal structure. As illustrated, the proposed preamble signal structure contains the old part 'including the L-STF 4〇2 field, the L-LTF 404 field, and the L-SIG 406 field. , V/HT-SIG1 702 field and V/HT-SIG2 704. In addition, the sequence signal structure contains another portion including one or more intercept bits 604. The preamble signal structure does not support precoding, SDMA or Beamforming because there are no short training blocks (ie, VHT, STF) available in this configuration. However, the preamble signal is relatively short and fairly efficient compared to the previous preamble. Note. V/HT_SIG field 7. The V/HT-SIG block 704 carries the receiver to understand the information needed to support/utilize which VHT features in the frame. Figure 11 illustrates certain aspects of the present invention for generating An exemplary operation that supports a plurality of standard preamble signal structures 11〇〇. At 11〇2, the generated inclusion can be a first portion of the first node wireless node and a second portion of the frame structure that can be decoded by the second group of wireless nodes having simultaneous multi-user communication capabilities. At 1104, the frame structure is transmitted to the plurality of devices Figure 12 illustrates an exemplary operation 1200 for detecting a transmission mode of a signal based on information received in the structure of the preamble 21 201119265, in accordance with certain aspects of the present disclosure. At 1202, receiving a frame a signal of the structure, the frame structure comprising a first portion that can be decoded by the first group of wireless nodes and a second portion that can be decoded by the second group of wireless nodes having simultaneous multi-user communication capabilities. At 12〇4, based on The information in the received signal is referred to as the transmission mode of the signal. _ The various operations of the methods described above may be performed by any suitable means capable of performing the respective functions. The components may include various hardware and/or software components. And/or modules, including but not limited to circuits, special application integrated circuits (ASICs) or processors. Typically, where operations are illustrated in the figures, such operations may have similar The corresponding pairing means function of the number. For example, the block 11〇2_block 11〇4 in Fig. 11 corresponds to the circuit block 11〇2Α-1104Α illustrated in Fig. UA. In addition, the block 12〇2 block 1204 in Fig. 12 Corresponding to circuit block 1202A - circuit block 1204A illustrated in Figure 12A. As used herein, the term "decision" encompasses various items such as, "decision" may include, 寅 ^ ± 栝 shoulder, leaf calculation. , processing, exporting, and investigating (for example, viewing in a table, resource, or other data structure), confirmation, and similar actions. Moreover, ". receiving information", access (for example, ί receiving (for example, taking over. Also, "determining, accessing data in memory" and similar moving actions." may also include parsing, selecting, selecting, The various operations established and described above may be performed by any suitable means capable of performing such falls, such as various hardware and/or software components. Any of the operations illustrated in the figures can be performed by corresponding functional components capable of performing such operations. The various illustrative logic blocks, modules, and circuits described in connection with the present disclosure can be used with general purpose processors, digital Signal Processor (DSP), Special Application Integrated Circuit (ASIC), Field Programmable Gate Array Signal (FPGa) or other programmable logic device (PLD), individual gate or transistor logic, individual hardware components or their design Any combination of the functions described herein may be implemented or executed. A general purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processing , a controller, a microcontroller, or a state machine. The processor can also be implemented as a combination of computing devices, such as a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in cooperation with a Dsp core Or any other such configuration. The steps of the method or algorithm described in connection with the present invention can be implemented directly in hardware, in a software module executed by a processor, or in a combination of the two. The software module can reside in In any form of storage medium known in the art, some examples of storage media that may be used include random access memory (Ram), read only memory (ROM), flash memory, EpR〇M memory, EEPR0M. g memory, scratchpad, hard drive, removable disk, CD-ROM; software module can include a single instruction or many instructions, and can be distributed over several different code sections '(d) in different programs And distributed across multiple storage media. The storage medium can be coupled to the processor to enable the processor to read and write information from/to the storage medium. In the alternative, the storage medium can be integrated into the processor. The disclosed method includes one or more steps or actions for performing the described methods. The method steps and/or actions can be interchanged with each other without the scope of the claim. In other words, unless steps are specified. Or the specific order of the actions or the order and/or use of the specific steps and/or actions may be modified without departing from the scope of the claims. The functions described may be implemented in hardware, software, firmware or any combination thereof. If implemented in software, then each function can be stored as one or more instructions on the computer. The storage medium can be any available media that can be accessed by the computer. For example (but not limited), this Computer-readable media 2 includes RAM, ugly, eepr〇m, (3) brain or other optical storage & storage, or other storage device or program that can be used to carry: IL storage instructions or data structures. The code can be used by the computer I monument (d壬何, other media. As used herein, a disk and a disc include a compact disc (CD), a laser disc, a disc, and a digital video disc (Dvd often reproduces data magnetically, and the disco ^· Cut, where the disk (5)) is the current data. Lasers are used optically to achieve further, and certain aspects may include products for performing a brain program. For example, such computer programs include electric/or coded) computer-readable media with instructions, = stored (and a processor; ^ w # D, etc. deduction July b is executed by one or more devices to execute As described in this article, the computer program is used in the case of (4). For some states, the squirt can include packaging materials. The software or instructions can also use coaxial cable, #, for example, right software or such as on the transmission medium. Infrared, ^ φ digital subscriber line (DSL) yeah + and microwave technology such as microwaves from the _ 7 server or other remote & 钗 steal from the website, the original transmission, then (4) by electron microscopy, Fiber optic power 24 201119265, twisted pair, DSL or wireless technologies such as infrared, radio, and microwave are included in the definition of the transmission media. In addition, Ying Tian understands that to perform the methods described in this paper and The modules of the technology, and/or other suitable components can be downloaded and/or otherwise obtained by the user terminal and/or the base station at a suitable %. For example, such devices can be consuming to the remainder to facilitate Used to perform the methods described in this article Transfer of components. Alternatively, the various methods described herein can be provided via storage means (eg, RAM, R〇m, volume storage media such as compact discs (cd) or floppy disks, etc.) such that the storage is After the component is consuming or provided to the manufacturer terminal and/or the base station, the device can obtain various methods. Further, any other suitable technique suitable for providing the device with the methods and techniques described herein can be utilized. It is to be understood that the claims are not limited to the precise arrangements and components shown in the above. Various modifications, changes and changes can be made in the arrangement, operation and details of the methods and apparatus described above without departing from the claims. The techniques provided in this document can be used in a variety of applications. For some ~, the techniques presented in the sample text can be incorporated into an access point station, an access terminal, a mobile handset, or with processing logic. Other types of wireless devices of the elements to perform the techniques provided herein. Although the foregoing is directed to embodiments of the invention, the invention may be made, other and further The embodiment is not deviated from its basic scope, and its scope is determined by the appended claims. 25 201119265 [Simple description of the schema] In order to understand in detail the manner in which the features stated in the following are used, reference may be made to The following is a more general description of the following brief summary, some of which are illustrated in the drawings. However, it should be noted that the drawings illustrate only some typical aspects of the present invention and should not be considered as limiting. The scope, as this description may permit other equally effective aspects. Figure 1 illustrates a diagram of a wireless communication network in accordance with certain aspects of the present invention. Figure 2 illustrates certain aspects in accordance with the present disclosure. A block diagram of an exemplary access point and user terminal.Figure 3 illustrates a block diagram of an exemplary wireless device in accordance with certain aspects of the present disclosure. Figure 4 illustrates a mixed mode preamble signal structure in accordance with the Institute of Electrical and Electronics Engineers (ieee) 802.11n standard. Figure 5 illustrates the legacy signal (L-SIG) and high-transmission signal (HT-SIG) fields in the preamble signal transmitted by binary phase shift keying (bpsK) and π/2-BPSK modulation. Exemplary information. Figure 6 illustrates a proposed preamble signal structure supporting the Ultra High Throughput (VHT) IEEE 802.11ac plus the IEEE 802.11n/a/b/g standard in accordance with certain aspects of the present disclosure. Figure 7 illustrates a second proposed preamble signal structure supporting the Ultra High Throughput (VHT) IEEE 802.1 1 ac plus IEEE 802·1 ln/a/b/g standard in accordance with certain aspects of the present disclosure. 26 201119265 Figures 8A, 8B, and 8C illustrate an example of simultaneous transmission of HT-SIG and VHT-SIG symbols using different modulation schemes in accordance with certain aspects of the present disclosure. Figure 9 illustrates a third proposed preamble signal structure supporting the Ultra High Throughput (VHT) IEEE 802.1 1ac plus the IEEE 802.1 1n/a/b/g standard in accordance with certain aspects of the present disclosure. Figure 1A illustrates a fourth proposed preamble signal structure supporting the Ultra High Throughput (VHT) IEEE 802.11ac plus IEEE 802.1 1n/a/b/g standard in accordance with certain aspects of the present disclosure. Figure 11 illustrates an exemplary operation for generating a preamble signal structure that supports a plurality of criteria in accordance with certain aspects of the present disclosure. Figure UA illustrates an exemplary component capable of performing the operations illustrated in Figure u. Figure 12 illustrates an exemplary operation for detecting a transmission mode based on information in a preamble signal structure based on information in a preamble signal structure, in accordance with certain aspects of the present disclosure. Figure 12A illustrates an exemplary component that can thermally assist in the operation illustrated in Figure 12. [Main component symbol description] 100 110 120a 120b 120c 120d 120e multiplex access system access point user terminal user terminal user terminal user terminal user terminal 27 201119265 120f user terminal 120g user terminal 120h user Terminal 120i User Terminal 1 20m User Terminal 120x User Terminal 130 System Controller 208 Data Source 210 TX Data Processor 220 TX Space Processor 222 Receiver Unit (RCVR) 224a Antenna 224ap Antenna 230 Controller 234 Scheduler 240 RX Space Processor 242 RX Data Processor 244 Data Slot 2 5 2ma Antenna 252mu Antenna 25 2xa Antenna 252xu Antenna 254 Transmitter Unit (TMTR) 260 RX Space Processor 28 201119265 270 28 0 286 288 290 302 304 306 308 310 3 12 314 316 318 320 322 402 404 406 408 410 412 414 502 RX data processor controller data source TX data processor TX space processor wireless device processor memory shell transmitter receiver transceiver transmit antenna signal detector digital signal Processor (DSP) bus system is short L-STF Long Training Field (L-LTF) Signal (L-SIG) Field HT-SIG1 Field HT-SIG2 Field HT-STF (High Transmission Short Training Field) High Transfer - Long training field (HT-LTF) Q axis 29 201119265 504 I axis 602 VHT-STF 604 VHT-LTTF1 Field 606 VHT-SIG Field 702 V/HT-SIG1 704 V/HT-SIG2 1100 Operation 1100A Operation 1102 Block 1102A Block 1104 Block 1104A Block 1200 Operation 1200A Operation 1202 Block 1202A Block 1204 Block 1204A Square 30

Claims (1)

201119265 七、申請專利範圍: 1· 一種用於無線通訊的方法,其包括以下步驟: 產生包含能被_第一群組無線節點解碼的… 能被具有同時多使用者通訊能力的一第二^部分和 解碼的一第二部分的一訊框結構;及 且無線節點 向複數個設備傳送該訊框結構。 ----- 六' τ成乐一邵分包括一雈士 練欄位(l-STF)、一長訓練攔位 舊有短钏 欄位(l-SIg)。 )和—舊有信號 步包括一或 或多個高傳 3·如請求項2之方法,其中該第一部分進— 夕個超尚傳輸量信號(VHT-SIG)欄位或者— 輸量信號(HT-SIG)攔位。 7 *〜々π,丹γ琢訊椎結才I 括超阿傳輸量短訓練攔位(VHT-STF ) 具 til丨嬙 4BH / 長訓練攔位(VHT-SIG) VHT-LTF )以及 至少一個VHT 3T信號攔位 5 ·如請求項 預編竭的。 之方法,其中該訊框結構的該第 一部分是 S 31 201119265 6如β求項1之方法,其中該第一群組節點遵照電機電 子牙币予會(IEEE ) 802.11 a/g、IEEE 802.1 In 或 IEEE 802.11ac榡準中的一者。 7. 如請灰ts /喝1之方法’其中該第二群組節點遵照電機電 子工程師學會(IEEE) 802.llac標準。 8_ 如請求1 v . 1之方法,其中該第二群組節點是該第一群 組節點的—子集。 9·如請求項 項4之方法’其中該vhT-SIG攔位是使用一 π/2_ BPSK (一疋移相鍵控)調制來傳送的。 10_ 如請求項 3$·*·、土 . 之方法’其中該一或多個VHT-SIG欄位或 S其夕個HT-SIG欄位是使用一 π/2-BPSK (二元移相 鍵控)調制來傳送的。 如請求項4&gt;士、4· ^ α ^心方法,其中VHT-SIG欄位中的一資料是 預編碼的。 12 ·如§月求項4夕士、+ &lt;万法,其中該VHT-SIG攔位是使用分空 間多工存取(SDMA)來傳送的。 13·如清求項4之女、^_ 心万去,其中該VHT_SIG欄位是在該等 32 201119265 之一以後傳送的。 VHT長訓練搁位(vht_ltF ) 1 4.如請求項2 位(VHT-SIG) 地傳送的。 之方法,其中至少一個超高傳輸量 曰 里15唬欄 疋與該等HT-SIG欄位中的至少—加 個同時 15·如請求項14之方 元移相鍵控(BPSK)、π/2-PAM (脈波調幅)或經比 法’其中該VHT-SIG欄位是利用 縮放BPSK調制巾的一者來傳送 的 例 16.如凊求項14之方法’其中- VHT-SIG攔位是 夕個VHT-LTF (長訓練攔位)之後傳送的。 或 或 序 格 夕7·如5月求項14之方法,其中該VHT-SIG欄位是 多個次載波上傳送的。 疋在- 項Η之方法,其中該醫傭搁位. 。…人m擴展,其中該序列包括—華許竭、_ 1或—互補碼鍵控(CCK)。 接4勹種用於無線通訊的方法,其包括以下步驟: -2括—訊框結構的—信號,該訊框結構包含能被- I組無線節點解碼的—第—部分和能被具有同時g π音通訊能;/7沾 、 第一群組無線節點解碼的一第二 33 201119265 分;及 基於該收到信號中的資訊來偵測該信號的傳輸模式。 20. 如請求項19之方法,其中該第一部分包括—舊有短訓 , 練爛位(L'STF)、一長訓練攔位(L_LTF)、一舊有信號攔 位(L-SIG)和兩個高傳輸量信號(HT-SIG)攔位。 21. 如請求項19之方法,其中該訊框結構的該第二部分包 括一超向傳輪量短訓練襴位(VHT-STF)、至少一個VHT 長訓練攔位(VHT-LTF)、一 VHT信號攔位(VHT_SIG)。 22·如請求項19之方法,其中該訊框結構的該第二部分是 預編碼的。 23_如請求項19之方法,其中該第一群組節點遵照電機電 子工程師學會(ZEEE) 802.11 a/g、IEEE 802.11η 或 IEEE 802_llac標準中的一者。 24. 如請求項19之方法,其中該第二群組節點遵照電機電 子工程師學會(IEEE) 802.llac標準。 25. 如請求項21之方法,其中該vhT-SIG攔位是使用一 π/2_ BPSK:(二元移相鍵控)調制來傳送的。 34 201119265 26.如請求項土 , 1之方法’其中Vht_SIg欄位中的一資料 是預編碼的。 27.如請求項21夕·ίτ、+ 、丄之方法,其中該VHT-SIG欄位是使用分 空間多工存取(SDMA)來傳送的。 2 8.如請求項21 VHT長訓練欄位 之方法’其中該VHT-SIG欄位是在該等 (VHT-LTF )之一以後接收到的。 29·如咕求項2〇之方法,其中至少一個超高傳輸量信號攔 位(vht_sig )是與該等ht_sig欄位中的至少—個同時 地接收到的。 3〇.如靖求項29之方法,其中該VHT-SIG攔位是利用一 一元移相鍵控(BPSK )、π/2·ΡΑΜ (脈波調巾| )或經比例 縮放BPSK調制巾的_者來傳送的1 31.如°月求項30之方法,其中一 VHT-SIG攔位是在一或 ^個VHT_LTF (長訓練欄位)之後接收到的。 32·如叫求;項30之方法,其中該VHT-SIG攔位是在一或 多個次載波上接收到的。 33·如明求項32之方法,其中該VHT-SIG欄位使用一序 35 201119265 列在該等次載波上擴展,其中該序列包括一華許碼、一格 ’ 田碼或—互補碼鍵控(CCK )。 • 34. —種用於無線通訊的裝置,其包括: . 電路,其配置成產生包含能被一第一群組無線節點解碼 的一第一部分和能被具有同時多使用者通訊能力的一第 二群組無線節點解碼的一第二部分的一訊框結構;及 一發射機,其配置成向複數個設備傳送該訊框結構。 ' 35.如請求項34之裝置,其中該第-部分包括-舊有短訓 練攔位(L-STF)、一長訓練攔位(L_LTF)和一舊有信號 攔位(L-SIG)。 ) 36.如請求項35之裝置,其中該第一部分進一步包括一或 多,超高傳輸量信號(VHT_SIG)攔位或者―或多個高傳 輸量信號(HT-SIG)欄位。 37.如請^求項34之裝置,其中該訊框結構的該第二部分包 括一超尚傳輪量短訓練攔位(VHT-STF)、至少—個VHT 長訓練襴位(VHT-LTF (VHT-SIG)。 以及一 VHT信號欄位 38_如請求項34之裝置, 預編碼的。 其中該訊框結構的該第 二部分是 36 201119265 3 9 ·如請求項3 4之裝置,其中該第一群組節點遵照電機電 子工程師學會(IEEE) 802.lla/g、IEEE 802·11η 或 IEEE 802.11 ac標準中的一者。 40·如請求項34之裝置,其中該第二群組節點遵照電機電 子工程師學會(IEEE) 802.1 1ac標準。 41. 如請求項34之裝置,其中該第二群組節點是該第一群 組節點的一子集。 42. 如請求項37之裝置,其中該VHT-SIG欄位是使用一 π/2_ BPSK (二元移相鍵控)調制來傳送的。 43_如清求項36之裝置,其中該一或多個VHT-SIG欄位 或者該—或多個HT-SIG攔位是使用一 π/2-BPSK (二元移 相鍵控)調制來傳送的。 44·如睛求項37之裝置,其中VHT-SIG攔位中的一資料 是預編瑪的。 =·如μ求項37之裝置’其中該VHT-SIG攔位是使用分 空間多工存取(SDMA)來傳送的。 37 201119265 46. 如凊求項37之裝置,其中該VHT-SIG欄位是在該 VHT長訓練欄位(VHT-LTF )之一以後傳送的。 47. 如π求項35之裝置,其中至少一個超高傳輸量信號 位(VHT-SIG)是與該等HT-SIG欄'蚯中的至少—個同 地傳送的。 48. 如請求項47之裝置,其中該VHT-SIG攔位是利用 二兀移相鍵控(BPSK)、π/2_ΡΑΜ (脈波調幅)或經比 縮放BPSK調制中的—者來傳送的。 49. 如請求項47之裝置,其中一 VHT-SIG欄位是在一 夕個VHT-LTF (長訓練櫚位)之後傳送的。 5〇.如請求項47之裝置,其中該VHT-SIG攔位是在一 多個次載波上傳送的。 51.如請求項50之裝置,其中該VHT-SIG欄位使用一 列在該等次載波上擴展,其中該序列包括一華許碼、一 雷碼或一互補碼鍵控(CCK)。 ’ 種用於無線通訊的裝置,其包括: 一接收機,其配置成接收包括一訊框結構的一信號,該 框結構包含能被一第一群組無線節點解碼的一第一部 等 欄 時 例 或 或 序 格 訊 分 3.8 201119265 和忐被具有同時多使用者通訊能力的一第二群組無線節 點解碼的一第二部分;及 電路,其配置成基於該收到信號中的資訊來偵測該信號 的傳輸模式。 53. 如請求項52之裝置,其中該第一部分包括一舊有短訓 練攔位(L-STF)…長訓練欄位(L-LTF)、—舊有信號欄 位(L-SIG)和兩個高傳輸量信號(ht_sig)欄位。 54. 如請求項52之裝置,其中該訊框結構的該第二部分包 括一超兩傳輪量短訓練攔位(VHT-STF )、至少一個VHT 長訓練攔仅(VHT_LTF)、一 VHT信號欄位(vHT_SIG)。 55. 如請求項52之裝置,其中該訊框結構的該第二部分是 預編碼的》 56. 如請求項52之裝置,其中該第一群組節點遵照電機電 子工程師學會(IEEE) 802.lla/g、IEEE 802_lln 或 IEEE 8〇2·1 lac標準中的一者。 57. 如請求項52之裝置,其中該第二群組節點遵照電機電 子工程師學會(IEEE) 8〇2.llac標準。 58_如請求項54之裝置,其中該VHT-SIG攔位是使用一 39 201119265 π/2- BPSK (二元移相鍵控)調制來傳送的。 的一資料 5 9.如請求項54之裝置’其中VHT-SIG欄位中 是預編碼的。 60. 如請求項54之裝置,其中該VHTSIG攔位是使用分 空間多工存取(SDMA )來傳送的。 61. 如請求項54之裝置,其中該VHTSIG欄位是在該等 VHT長訓練欄位(VHT-LTF)之一以後接收到的。人 62. 如請求項53之裝置,其中至少一個超高傳輸量信號欄 位(VHT-SIG)是與該等HT_SIG欄位中的至少—個同時 地接收到的。 63_如凊求項62之裝置,其中該VHT-SIG攔位是利用— 二元移相鍵控(ΒΡδκ)、π/2_ρΑΜ (脈波調幅)或 縮放BPSK調制中的—者來傳送的。 64.如請求項μ 項63之裝置,其中一 VHT-SIG攔位是在— 多個VHT-LTl?广e 〈長訓練欄位)之後接收到的。 65.如請求項 巧0·3之裝置,其中該VHT-SIG攔位是在—式 多個次載波上接收到的。 — 40 201119265 Γ在如/// 65之裝置,其巾該VHT_SIG麻使用一序 = 波上擴展,其中該序列包括-華許碼、-格 &quot;3 互補碼鍵控(CCK )。 用於無線通訊的裝置,其包括: :於f生包含能被—第一群組無線節點解碼的-第-部 :和能被具有同時多使用者通訊能力的一第二群組無線 即點解碼的—第二部分的一訊框結構的構件;及 用於向複數個設備傳送該訊框結構的構件。 s求項67之裝置,其中該第一部分包括一舊有短訓 練攔位(L'STF)、—長訓練爛位U-LTF)和—舊有信號 攔位(L-SIG )。 69. 如請求項68之裝置,其中該第一部分進—步包括一或 多個超高傳輸量信號(VHT_SIG)欄位或者—或多個高傳 輪量信號(HT-SIG )攔位。 70. 如請求項67之裝置’其中該訊框結構的該第二部分包 括一超高傳輸量短訓練攔位(VHT-STF )、至少—個VHT 長訓練攔位(VHT-LTF )以及一 VHT信號攔位 (VHT-SIG)。 41 201119265 7 1 ·如請求項67之裝置,其中該訊框結構的該第二部分是 預編碼的。 7 2.如叫求項6 7之裝置’其中該第一群組節點遵照電機電 子工程師學會(IEEE ) 802.11 a/g、IEEE 802.lln 或 IEEE 802.11ac標準中的一者。 7 3.如μ求項6 7之裝置,其中該第二群組節點遵照電機電 子工程師學會(IEEE) 802.llac標準。 74. 如請求項67之裝置,其中該第二群組節點是該第一群 組節點的一子集。 75. 如請求項70之裝置,其中該VHT-SIG攔位是使用一 π/2- BPSK (二元移相鍵控)調制來傳送的。 76_如請求項69之裝置,其中該一或多個VHT-SIG欄位 或者該一或多個HT-SIG攔位是使用一 π/2-BPSK (二元移 相鍵控)調制來傳送的。 77. 如請求項70之裝置,其中VHT-SIG欄位中的一資料 是預編碼的。 78. 如請求項70之裝置,其中該VHT-SIG欄位是使用分 42 201119265 空間多工存取(SDMA)來傳送的。 等 79·如請求項70之裝置,其中該VHT-SIG攔位是在該 VHT長訓練襴位(VHT-LTF)之一以後傳送的。 8〇·如請求項68之裝置’其中至少―個超高傳輸量信號攔 位(VHT-SIG)是與該等HT_SIG攔位中的至少一個同 地傳送的。 81.如請求項80之裝置,其中該VHT-SIG欄位是利用一 二兀移4目鍵控(BPSK)、π/2_ρΑΜ (脈波調幅)或經比例 縮放BPSK調制中的一者來傳送的。 82_如請求項80之裝置,其中一 VHT-SIG攔位是在一或 夕個VHT-LTF (長訓練欄位)之後傳送的。 83·如晴求項80之裝置,其中該VHT-SIG攔位是在一戍 多個次載波上傳送的。 84.如請求項83之裝置,其中該VHT-SIG欄位使用一序 歹J在該等次載波上擴展,其中該序列包括一華許碼、一格 雷碼或一互補碼鍵控(CCK)。 85 ’種用於無線通訊的裝置,其包括: 43 201119265 用於接收包括一訊框結構的—作缺沾娃从 乜唬的構件,該訊框結 含能被一第一群組無線節點解喝的一第一 ° 』罘#分和能被星 有同時多使用者通訊能力的—第- ” 第一群組無線節點 -第二部分;及 馬的 用於基於該收到信號中的資訊來偵測該信號的傳轸 的構件。 3冥式 86.如請求項85之裝置,其中該第一部分包括一舊有短剑 練欄位(L-STF)、一長訓練欄位(L_LTF)、—舊有信號襴 位(L-SIG)和兩個高傳輸量信號(HT-SIG)欄位。 87·如請求項85之裝置,其中該訊框結構的該第二部分包 括一超高傳輸量短訓練攔位(VHT-STF)、至少一個VHT 長訓練攔位(VHT_LTF)、一 VHT信號攔位(VHT-SIG)。 88·如請求項85之裝置,其中該訊框結構的.該第二部分是 預編碼的。 89·如請求項85之裝置,其中該第一群組節點遵照電機電 子工程師學會(IEEE) 802.lla/g、IEEE 802.11η 或 IEEE 802.11ac標準中的一者。 9〇.如請求項85之裝置,其中該第二群組節點遵照電機電 子工稈師學會(IEEE) 8〇2.llac標準。 44 201119265 91.如請求項87之裝置’其中該VHT-SIG欄位是使用一 π/2- BPSK (二元移相鍵控)調制來傳送的。 9 2.如請求項87之裝置,其中VHT-SIG攔位中的一資料 是預編碼的。 93. 如請求項87之裝置,其中該VHT-SIG欄位是使用分 空間多工存取(SDMA )來傳送的。 94. 如請求項87之裝置’其中該vhT-SIG攔位是在該等 VHT長訓練攔位(VHT_LTF )之一以後接收到的。 95. 如請求項86之裝置,其中至少一個超高傳輸量信號欄 位(VHT-SIG)是與該等HT-SIG攔位中的至少一個同時 地接收到的。 96.如請求項95之裝置,其中該VHT-SIG攔位是利用一 二兀移相鍵控(BPSK )、π/2_ρΑΜ (脈波調幅)或經比例 縮放BPSK調制中的一者來傳送的。 97·如請求項96之裝置,其中一 VHT-SIG攔位是在一或 多個VHT-LTF (長訓練攔位)之後接收到的。 45 201119265 98·如請求項96之裝置,其中該VHT-SIG欄位是在一或 多個次载波上接收到的。 99.如睛求項98之裝置,其中該VHT-SIG欄位使用一序 歹J在該等次载波上擴展,其中該序列包括一華許碼、一格 雷碼或—互補碼鍵控(CCK)。 1〇°' 一種用於無線通訊的包括一電腦可讀取媒體的電 腦程式產品,㈣腦可讀取媒體包括可執行指令以用於: 產生包含能被一第一群組無線節點解碼的一第—部分和 能被具有同時多使用者通訊能力的—第二群組無線 解碼的一第二部分的一訊框結構;及 向複數個設備傳送該訊框結構。 種用於無線通 { ,— 一 …叫〜碩取媒體的 腦程式產品’'該電膽可讀取媒體包括可執行指令以 接收包括一訊框結構的一信號,該訊樞結構包含处、於 群級無線郎點解瑪的一第一部分和能被且女 Γ乂开有同時夕 用者通訊能力的一第二群組無線節點解碼的〜夕 分;及 ”、、〜第二 基於該收到信號中的資訊來偵測該信號的傳輪楔弋 102. —種存取點,其包括: 複數個天線; 46 201119265 電路,其配置成產生包含能被一第一群組無線節點解碼的 一第一部分和能被具有同時多使用者通訊能力的一第二 群組無線節點解碼的一第二部分的一訊框結構;及 一發射機’其配置成經由該複數個天線向複數個設備傳送 該訊框結構。 103. —種無線節點,其包括: 至少一個天線; 一接收機,其配置成經由該至少一個天線接收包括一訊框 結構的一信號,該訊框結構包含能被一第一群組無線節點 解碼的一第一部分和能被具有同時多使用者通訊能力的 一第二群組無線節點解碼的一第二部分;及 電路,其配置成基於該收到信號中的資訊來偵測該信號的 傳輸模式。 47201119265 VII. Patent application scope: 1. A method for wireless communication, comprising the following steps: generating a second data that can be decoded by the first group wireless node... capable of being simultaneously multi-user communication capable And a frame structure of the second portion of the decoding; and the wireless node transmits the frame structure to the plurality of devices. ----- Six' τ Chengle Yi Shao points include a gentleman practicing field (l-STF), a long training block, old short 钏 field (l-SIg). And - the old signal step includes one or more high pass 3, such as the method of claim 2, wherein the first part enters the evening pass signal (VHT-SIG) field or - the output signal ( HT-SIG) blocking. 7 *~々π, Dan γ 琢 椎 椎 才 I I Included in the short-training training position (VHT-STF) with til丨嫱4BH / long training block (VHT-SIG) VHT-LTF) and at least one VHT 3T Signal Block 5 · Pre-compiled as requested. The method, wherein the first portion of the frame structure is a method of S 31 201119265 6 such as β, wherein the first group node complies with the motor electronic cigarette currency (IEEE) 802.11 a/g, IEEE 802.1 In Or one of the IEEE 802.11ac standards. 7. If you want to ash ts / drink 1 method', the second group node follows the Institute of Electrical and Electronics Engineers (IEEE) 802.llac standard. 8_ The method of claim 1 v. 1, wherein the second group of nodes is a subset of the first group of nodes. 9. The method of claim 4, wherein the vhT-SIG block is transmitted using a π/2_ BPSK (Phase Shift Keying) modulation. 10_ If the request item 3$·*·, the method of 'the one', the one or more VHT-SIG fields or the HT-SIG field of the S is using a π/2-BPSK (binary phase shift key) Control) modulation to transmit. For example, the request item 4&gt;s, 4·^ α ^ heart method, wherein one of the VHT-SIG fields is precoded. 12 • For example, §月四季士, + &lt; 万法, where the VHT-SIG is transmitted using Split Space Multiple Access (SDMA). 13. If the woman of the claim 4, ^_ heart goes, the VHT_SIG field is transmitted after one of the 32 201119265. VHT Long Training Shelf (vht_ltF) 1 4. Transmitted as Request 2 (VHT-SIG). The method, wherein at least one of the ultra-high transmission volume is at least one of the HT-SIG fields and the same time is 15. If the request element 14 is phase-shifted keying (BPSK), π/ 2-PAM (pulse amplitude modulation) or the ratio 'where the VHT-SIG field is transmitted using one of the scaled BPSK modulation wipers. 16. The method of requesting item 14' - where - VHT-SIG is blocked It is transmitted after the VHT-LTF (long training block). Or or the sequence of the method of claim 14, wherein the VHT-SIG field is transmitted on a plurality of subcarriers.疋 - - Η Η method, where the medical servant is on hold. ...the person m expands, wherein the sequence includes - sufficiency, _ 1 or - complementary code keying (CCK). A method for wireless communication, comprising the steps of: - 2 - frame structure - signal, the frame structure comprising - part - can be decoded by - I group of wireless nodes and can be simultaneously g π tone communication energy; /7 dip, a second group of the first group wireless node decoding 33 201119265 points; and based on the information in the received signal to detect the transmission mode of the signal. 20. The method of claim 19, wherein the first portion comprises - an old short training, a L'STF, a long training block (L_LTF), an old signal block (L-SIG), and Two high throughput signals (HT-SIG) are blocked. 21. The method of claim 19, wherein the second portion of the frame structure comprises a super-directional short training training position (VHT-STF), at least one VHT long training position (VHT-LTF), one VHT signal block (VHT_SIG). 22. The method of claim 19, wherein the second portion of the frame structure is precoded. The method of claim 19, wherein the first group of nodes complies with one of the Institute of Electrical and Electronics Engineers (ZEEE) 802.11 a/g, IEEE 802.11n or IEEE 802_llac standards. 24. The method of claim 19, wherein the second group of nodes complies with the Institute of Electrical and Electronics Engineers (IEEE) 802.11ac standard. 25. The method of claim 21, wherein the vhT-SIG block is transmitted using a π/2_BPSK: (binary phase shift keying) modulation. 34 201119265 26. As requested, the method of 1 wherein one of the Vht_SIg fields is precoded. 27. The method of claim 21, wherein the VHT-SIG field is transmitted using a partitioned multiplex access (SDMA). 2 8. The method of claim 21, wherein the VHT-SIG field is received after one of the (VHT-LTF). 29. The method of claim 2, wherein at least one ultra-high transmission signal block (vht_sig) is received simultaneously with at least one of the ht_sig fields. 3〇. The method of Qiuqiu 29, wherein the VHT-SIG is blocked by one-to-one phase shift keying (BPSK), π/2·ΡΑΜ (pulse wave towel | ) or scaled BPSK modulation towel. The method of claim 30, wherein a VHT-SIG block is received after one or two VHT_LTFs (long training fields). 32. The method of claim 30, wherein the VHT-SIG block is received on one or more secondary carriers. 33. The method of claim 32, wherein the VHT-SIG field is extended on the subcarriers using a sequence of 35 201119265, wherein the sequence comprises a hua code, a cell 'field code or a complementary code key Control (CCK). • 34. An apparatus for wireless communication, comprising: circuitry configured to generate a first portion that is capable of being decoded by a first group of wireless nodes and a first capable of being capable of simultaneous multi-user communication a frame structure of a second portion decoded by the second group of wireless nodes; and a transmitter configured to transmit the frame structure to the plurality of devices. 35. The apparatus of claim 34, wherein the first portion comprises - an old short training block (L-STF), a long training block (L_LTF), and an old signal block (L-SIG). 36. The apparatus of claim 35, wherein the first portion further comprises one or more, a very high throughput signal (VHT_SIG) block or or a plurality of high pass signal (HT-SIG) fields. 37. The device of claim 34, wherein the second portion of the frame structure comprises a super short training stop (VHT-STF) and at least one VHT long training position (VHT-LTF) (VHT-SIG) and a VHT signal field 38_, as in the device of claim 34, precoded. The second portion of the frame structure is 36 201119265 3 9 · The device of claim 3 4, wherein The first group of nodes is in accordance with one of the Institute of Electrical and Electronics Engineers (IEEE) 802.11a/g, IEEE 802.11n or IEEE 802.11 ac standards. 40. The apparatus of claim 34, wherein the second group of nodes The device of claim 34, wherein the second group of nodes is a subset of the first group of nodes. The VHT-SIG field is transmitted using a π/2_BPSK (Binary Phase Shift Keying) modulation. 43_ The device of claim 36, wherein the one or more VHT-SIG fields or the - Or multiple HT-SIG blocks are transmitted using a π/2-BPSK (binary phase shift keying) modulation. The device of claim 37, wherein a data in the VHT-SIG block is pre-programmed. = · A device such as μ seeking 37 'where the VHT-SIG block is using a space division multiplex access (SDMA) 37 201119265 46. The apparatus of claim 37, wherein the VHT-SIG field is transmitted after one of the VHT long training fields (VHT-LTF). 47. The apparatus, wherein at least one ultra high transmission amount signal bit (VHT-SIG) is transmitted in parallel with at least one of the HT-SIG columns '. 48. The apparatus of claim 47, wherein the VHT- The SIG block is transmitted using Binary Phase Shift Keying (BPSK), π/2_ΡΑΜ (Pulse Amplitude Modulation) or by Ratio Scaling BPSK Modulation. 49. As claimed in item 47, one of the VHT- The SIG field is transmitted after a VHT-LTF (long training session). The device of claim 47, wherein the VHT-SIG block is transmitted on a plurality of subcarriers. The device of claim 50, wherein the VHT-SIG field is extended on the secondary carriers using a column, wherein the sequence comprises a huax code, a ray code or a complementary code Keying (CCK). A device for wireless communication, comprising: a receiver configured to receive a signal comprising a frame structure, the frame structure comprising a signal that can be decoded by a first group of wireless nodes a first equal-order time or sequel 3.8 201119265 and a second portion decoded by a second group of wireless nodes having simultaneous multi-user communication capabilities; and circuitry configured to be based on the receipt The information in the signal is used to detect the transmission mode of the signal. 53. The device of claim 52, wherein the first portion comprises an old short training block (L-STF)...long training field (L-LTF), an old signal field (L-SIG), and two A high throughput signal (ht_sig) field. 54. The device of claim 52, wherein the second portion of the frame structure comprises a super-two-wheel short training block (VHT-STF), at least one VHT long training block (VHT_LTF), and a VHT signal. Field (vHT_SIG). 55. The device of claim 52, wherein the second portion of the frame structure is precoded. 56. The device of claim 52, wherein the first group of nodes is compliant with Institute of Electrical and Electronics Engineers (IEEE) 802. One of the lla/g, IEEE 802_lln or IEEE 8〇2·1 lac standards. 57. The device of claim 52, wherein the second group of nodes is compliant with the Institute of Electrical and Electronics Engineers (IEEE) 8〇2.llac standard. 58. The apparatus of claim 54, wherein the VHT-SIG block is transmitted using a 39 201119265 π/2-BPSK (binary phase shift keying) modulation. A piece of information 5 9. The device of claim 54 wherein the VHT-SIG field is precoded. 60. The apparatus of claim 54, wherein the VHTSIG block is transmitted using a space division multiplex access (SDMA). 61. The device of claim 54, wherein the VHTSIG field is received after one of the VHT long training fields (VHT-LTF). Person 62. The apparatus of claim 53, wherein the at least one ultra high transmission signal field (VHT-SIG) is received simultaneously with at least one of the HT_SIG fields. 63. The apparatus of claim 62, wherein the VHT-SIG block is transmitted using - binary phase shift keying (ΒΡδκ), π/2_ρΑΜ (pulse amplitude modulation), or scaling BPSK modulation. 64. A device as claimed in item 63, wherein a VHT-SIG block is received after - a plurality of VHT-LTl? wide e <long training fields. 65. The apparatus of claim 0, wherein the VHT-SIG block is received on a plurality of subcarriers. — 40 201119265 Γ In the device such as /// 65, the VHT_SIG is used in a sequence = wave extension, where the sequence includes -Hua code, -ge &quot;3 complementary code keying (CCK). An apparatus for wireless communication, comprising: a first part that can be decoded by a first group of wireless nodes, and a second group of wireless points that can be simultaneously multi-user capable of communicating Decoded - a component of a frame structure of the second portion; and means for transmitting the frame structure to a plurality of devices. The apparatus of claim 67, wherein the first portion comprises an old short training training position (L'STF), a long training rotten position U-LTF, and an old signal interception (L-SIG). 69. The device of claim 68, wherein the first portion further comprises one or more of a very high throughput signal (VHT_SIG) field or - or a plurality of high pass signal (HT-SIG) blocks. 70. The device of claim 67, wherein the second portion of the frame structure comprises a super high throughput short training block (VHT-STF), at least one VHT long training block (VHT-LTF), and one VHT signal block (VHT-SIG). 41. The device of claim 67, wherein the second portion of the frame structure is precoded. 7. 2. The device of claim 6 wherein the first group of nodes complies with one of the Institute of Electrical and Electronics Engineers (IEEE) 802.11 a/g, IEEE 802.11n or IEEE 802.11ac standards. 7. A device according to item VII, wherein the second group node complies with the Institute of Electrical and Electronics Engineers (IEEE) 802.11ac standard. 74. The device of claim 67, wherein the second group of nodes is a subset of the first group of nodes. 75. The apparatus of claim 70, wherein the VHT-SIG block is transmitted using a π/2-BPSK (binary phase shift keying) modulation. 76. The apparatus of claim 69, wherein the one or more VHT-SIG fields or the one or more HT-SIG blocks are transmitted using a π/2-BPSK (binary phase shift keying) modulation. of. 77. The device of claim 70, wherein one of the VHT-SIG fields is precoded. 78. The device of claim 70, wherein the VHT-SIG field is transmitted using a sub-42 201119265 spatial multiplex access (SDMA). 79. The apparatus of claim 70, wherein the VHT-SIG block is transmitted after one of the VHT long training units (VHT-LTF). 8. The device of claim 68 wherein at least one of the ultra-high transmission signal blocks (VHT-SIG) is transmitted in parallel with at least one of the HT_SIG blocks. 81. The apparatus of claim 80, wherein the VHT-SIG field is transmitted using one of a binary shift 4 keying (BPSK), a π/2_ρΑΜ (pulse amplitude modulation), or a scaled BPSK modulation. of. 82_ The device of claim 80, wherein a VHT-SIG block is transmitted after a VHT-LTF (long training field). 83. The apparatus of claim 80, wherein the VHT-SIG block is transmitted on a plurality of subcarriers. 84. The apparatus of claim 83, wherein the VHT-SIG field is extended on the secondary carriers using a sequence 包括 J, wherein the sequence comprises a HUAWEI code, a Gray code or a complementary code keying (CCK) . 85 'A device for wireless communication, comprising: 43 201119265 for receiving a component comprising a frame structure, the component of the frame can be solved by a first group of wireless nodes Drinking a first ° 』 分 分 和 和 和 和 和 和 和 能 能 能 能 能 能 能 能 能 能 能 能 能 能 ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” The means for detecting the transmission of the signal. 3 meditation 86. The apparatus of claim 85, wherein the first part comprises an old stiletto training field (L-STF) and a long training field (L_LTF) - the old signal clamp (L-SIG) and two high transfer signal (HT-SIG) fields. 87. The device of claim 85, wherein the second portion of the frame structure comprises a superelevation Short transmission training block (VHT-STF), at least one VHT long training block (VHT_LTF), and a VHT signal block (VHT-SIG). 88. The device of claim 85, wherein the frame structure. The second part is pre-coded. 89. The apparatus of claim 85, wherein the first group of nodes complies with the motor power One of the sub-instance institute (IEEE) 802.11a/g, IEEE 802.11n or IEEE 802.11ac standards. 9. The apparatus of claim 85, wherein the second group of nodes complies with the Institute of Electrical and Electronic Engineers ( IEEE) 8〇2.llac standard. 44 201119265 91. The device of claim 87, wherein the VHT-SIG field is transmitted using a π/2-BPSK (binary phase shift keying) modulation. The device of claim 87, wherein the data in the VHT-SIG block is precoded. 93. The device of claim 87, wherein the VHT-SIG field is using a space division multiplex access (SDMA) 94. The device of claim 87, wherein the vhT-SIG block is received after one of the VHT long training blocks (VHT_LTF). 95. The device of claim 86, wherein at least An ultra-high transmission signal field (VHT-SIG) is received simultaneously with at least one of the HT-SIG intercepts. 96. The apparatus of claim 95, wherein the VHT-SIG intercept is utilized One or two phase shift keying (BPSK), π/2_ρΑΜ (pulse amplitude modulation) or one of the scaled BPSK modulations 97. The device of claim 96, wherein the VHT-SIG block is received after one or more VHT-LTFs (long training blocks). 45 201119265 98. The device of claim 96, wherein the VHT The -SIG field is received on one or more secondary carriers. 99. The apparatus of claim 98, wherein the VHT-SIG field is extended on the secondary carriers using a sequence 歹 J, wherein the sequence comprises a hua code, a Gray code or a complementary code key (CCK) ). A computer program product comprising a computer readable medium for wireless communication, (4) a brain readable medium comprising executable instructions for: generating a one comprising a decoding by a first group of wireless nodes a first portion and a frame structure of a second portion capable of being wirelessly decoded by the second group having simultaneous multi-user communication capabilities; and transmitting the frame structure to the plurality of devices. a brain program product for wireless communication { , - a ... called ~ master media " ' The battery readable medium includes executable instructions to receive a signal including a frame structure, the pivot structure includes a first part of the group-level wireless Langfang solution and a second group of wireless nodes that can be decoded by the female group and have the ability to communicate with the second party; and, Receiving information in the signal to detect the routing wedge of the signal 102. An access point comprising: a plurality of antennas; 46 201119265 circuitry configured to generate a decoding capable of being decoded by a first group of wireless nodes a first portion and a frame structure of a second portion that can be decoded by a second group of wireless nodes having simultaneous multi-user communication capabilities; and a transmitter configured to pass through the plurality of antennas The device transmits the frame structure. 103. A wireless node, comprising: at least one antenna; a receiver configured to receive a signal including a frame structure via the at least one antenna, the frame Constructing a first portion that can be decoded by a first group of wireless nodes and a second portion that can be decoded by a second group of wireless nodes having simultaneous multi-user communication capabilities; and circuitry configured to receive the The information in the signal is used to detect the transmission mode of the signal.
TW099128312A 2009-08-25 2010-08-24 Mimo and mu-mimo ofdm preambles TWI523448B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US23681509P 2009-08-25 2009-08-25
US23915209P 2009-09-02 2009-09-02
US12/861,428 US9935805B2 (en) 2009-08-25 2010-08-23 MIMO and MU-MIMO OFDM preambles

Publications (2)

Publication Number Publication Date
TW201119265A true TW201119265A (en) 2011-06-01
TWI523448B TWI523448B (en) 2016-02-21

Family

ID=43624807

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099128312A TWI523448B (en) 2009-08-25 2010-08-24 Mimo and mu-mimo ofdm preambles

Country Status (9)

Country Link
US (1) US9935805B2 (en)
EP (2) EP2797276B1 (en)
JP (3) JP2013503566A (en)
KR (1) KR101339112B1 (en)
CN (1) CN102714643B (en)
ES (1) ES2583227T3 (en)
HU (1) HUE027808T2 (en)
TW (1) TWI523448B (en)
WO (1) WO2011031454A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI643512B (en) * 2015-11-06 2018-12-01 美商高通公司 Preamble for non-linearity estimation

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5054193B2 (en) 2007-07-18 2012-10-24 マーベル ワールド トレード リミテッド Wireless network for simultaneous uplink transmission of independent data from multiple client stations
EP2171879B1 (en) 2007-07-18 2019-06-19 Marvell World Trade Ltd. Access point with simultaneous downlink transmission of independent data for multiple client stations
US8982889B2 (en) 2008-07-18 2015-03-17 Marvell World Trade Ltd. Preamble designs for sub-1GHz frequency bands
US8228806B2 (en) * 2009-06-15 2012-07-24 Mediatek Inc. Method and system to detect packets of different formats in a receiver
US20100315953A1 (en) * 2009-06-15 2010-12-16 Ralink Technology (Singapore) Corporation Pte. Ltd. Method and system to detect packets of different formats in a receiver
US9088466B2 (en) 2009-07-23 2015-07-21 Marvell World Trade Ltd. Coexistence of a normal-rate physical layer and a low-rate physical layer in a wireless network
US8976674B2 (en) * 2009-09-21 2015-03-10 Mediatek Inc. Method and system to detect packets of different formats
WO2011050320A1 (en) * 2009-10-23 2011-04-28 Marvell World Trade Ltd. Number of streams indication for wlan
US11902068B2 (en) * 2009-11-09 2024-02-13 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for transmitting PLCP frame in wireless local area network system
US8681757B2 (en) 2009-11-09 2014-03-25 Lg Electronics Inc. Method and apparatus for transmitting PLCP frame in wireless local area network system
EP3079269B1 (en) 2010-03-11 2020-10-28 Electronics and Telecommunications Research Institute Method and apparatus for transceiving data in a mimo system
US8983003B2 (en) * 2010-03-31 2015-03-17 Hytera Communications Corp., Ltd. Method and system for adaptively identifying signal bandwidth
US9882624B2 (en) 2010-09-29 2018-01-30 Qualcomm, Incorporated Systems and methods for communication of channel state information
US10090982B2 (en) 2010-09-29 2018-10-02 Qualcomm Incorporated Systems and methods for communication of channel state information
US9077498B2 (en) 2010-09-29 2015-07-07 Qualcomm Incorporated Systems and methods for communication of channel state information
US9602298B2 (en) 2010-09-29 2017-03-21 Qualcomm Incorporated Methods and apparatuses for determining a type of control field
US9374193B2 (en) 2010-09-29 2016-06-21 Qualcomm Incorporated Systems and methods for communication of channel state information
US9813135B2 (en) 2010-09-29 2017-11-07 Qualcomm, Incorporated Systems and methods for communication of channel state information
US9806848B2 (en) 2010-09-29 2017-10-31 Qualcomm Incorporated Systems, methods and apparatus for determining control field and modulation coding scheme information
US9831983B2 (en) 2010-09-29 2017-11-28 Qualcomm Incorporated Systems, methods and apparatus for determining control field and modulation coding scheme information
KR101791987B1 (en) * 2010-12-07 2017-11-20 한국전자통신연구원 Method and apparatus for transmitting preamble in wireless communication system
US9184969B2 (en) * 2011-04-24 2015-11-10 Broadcom Corporation Preamble for use within single user, multiple user, multiple access, and/or MIMO wireless communications
US9385911B2 (en) 2011-05-13 2016-07-05 Sameer Vermani Systems and methods for wireless communication of packets having a plurality of formats
US8934413B2 (en) * 2011-05-13 2015-01-13 Qualcomm Incorporated Systems and methods for wireless communication of packets having a plurality of formats
US8483337B2 (en) 2011-05-18 2013-07-09 Qualcomm Incorporated Cancelling interference by determining modulation and coding information embedded in a received spatial stream
US9203586B2 (en) * 2011-06-15 2015-12-01 Lg Electronics Inc. Method for transmitting and receiving data unit based on uplink multiple user multiple input multiple output transmission and apparatus for the same
EP2752066B1 (en) 2011-08-29 2016-09-14 Marvell World Trade Ltd. Coexistence of a normal-rate physical layer and a low-rate physical layer in a wireless network
US8855184B2 (en) * 2012-01-27 2014-10-07 Futurewei Technologies, Inc. System and method for non-interleaved signal field
JP6090802B2 (en) * 2012-01-30 2017-03-08 マーベル ワールド トレード リミテッド System and method for generating preamble symbols in a communication system
US8750281B2 (en) * 2012-06-21 2014-06-10 Qualcomm Incorporated Variable-length training fields in coaxial communications
US9451590B2 (en) * 2013-01-28 2016-09-20 Qualcomm Incorporated Extending range and delay spread in WiFi bands
US9780919B2 (en) * 2013-07-05 2017-10-03 Quallcomm, Incorporated High efficiency WLAN preamble structure
US9439161B2 (en) * 2013-07-17 2016-09-06 Qualcomm Incorporated Physical layer design for uplink (UL) multiuser multiple-input, multiple-output (MU-MIMO) in wireless local area network (WLAN) systems
US9603092B2 (en) * 2013-09-12 2017-03-21 Apple Inc. Power savings with preamble in WLAN systems
US20150124750A1 (en) * 2013-11-07 2015-05-07 Qualcomm Incorporated Single carrier modulation for uplink transmissions
US9936502B2 (en) 2013-12-18 2018-04-03 Huawei Technologies Co., Ltd. System and method for OFDMA resource management in WLAN
US9755795B2 (en) * 2013-12-18 2017-09-05 Huawei Technologies Co., Ltd. System and method for WLAN OFDMA design of subcarrier groups and frame format
CN105900509B (en) * 2014-01-06 2019-06-11 华为技术有限公司 System and method for low power transmissions
KR102376949B1 (en) * 2014-01-07 2022-03-21 마벨 아시아 피티이 엘티디. Physical layer frame format for wlan
WO2015120613A1 (en) 2014-02-14 2015-08-20 华为技术有限公司 Method and apparatus for data transmission
WO2015127616A1 (en) * 2014-02-27 2015-09-03 华为技术有限公司 Wireless local area network data transmission method and device
US9485334B2 (en) * 2014-03-12 2016-11-01 Qualcomm Incorporated Response time relaxation for high efficiency WLAN
US10278172B2 (en) 2014-08-07 2019-04-30 Lg Electronics Inc. Method for transmitting frame in wireless communication system and device therefor
CN106664283B (en) * 2014-08-25 2020-06-19 韦勒斯标准与技术协会公司 Wireless communication method and wireless communication terminal using the same
US10044421B2 (en) * 2014-08-26 2018-08-07 Intel IP Corporation Wireless communication via combined channel training and physical layer header signaling
US10080227B2 (en) 2014-09-11 2018-09-18 Samsung Electronics Co., Ltd Apparatus and method for transmitting data signals in wireless communication system
WO2016049935A1 (en) 2014-09-30 2016-04-07 华为技术有限公司 Frame transmission method and device for wireless local area network
US20160112157A1 (en) * 2014-10-15 2016-04-21 Qinghua Li Auto-Detection in Wireless Communications
US10044635B2 (en) * 2014-12-09 2018-08-07 Qualcomm Incorporated Frame formats for channel bonding and MIMO transmissions
US10135593B2 (en) * 2014-12-23 2018-11-20 Qualcomm Incorporated Allocation signaling for wireless communication networks
CN105813206B (en) * 2014-12-31 2019-02-01 中兴通讯股份有限公司 The sending, receiving method and device of scheduling instruction information
US9939521B2 (en) * 2015-01-09 2018-04-10 Qualcomm Incorporated Techniques for use in wideband time-of-arrival estimation
EP3257162B1 (en) 2015-02-12 2023-08-09 Huawei Technologies Co., Ltd. System and method for auto-detection of wlan packets using header
CN107529354B (en) * 2015-03-31 2020-02-14 华为技术有限公司 Data transmission method and transmission device
US10021695B2 (en) 2015-04-14 2018-07-10 Qualcomm Incorporated Apparatus and method for generating and transmitting data frames
WO2016206652A2 (en) * 2015-06-23 2016-12-29 中兴通讯股份有限公司 Wireless signal transmission method and system
CN106304357B (en) 2015-06-23 2021-11-09 中兴通讯股份有限公司 Wireless signal transmission method and system
US10027450B2 (en) * 2015-07-14 2018-07-17 Futurewei Technologies, Inc. System and method for coverage enhancement
CN108449728B (en) * 2016-01-07 2019-07-09 华为技术有限公司 WLAN information transferring method and device
US10333669B2 (en) * 2016-03-02 2019-06-25 Qualcomm Incorporated Apparatus and method for transmitting single channel, bonded channel, and MIMO OFDM frames with fields to facilitate AGC, timing, and channel estimation
US10250370B2 (en) * 2016-03-04 2019-04-02 Huawei Technologies Co., Ltd. Frame structure for a physical control channel
US11160039B2 (en) 2016-03-04 2021-10-26 Huawei Technologies Co., Ltd.. Frame structure to support long distance transmission
WO2017160774A1 (en) * 2016-03-15 2017-09-21 Qualcomm Incorporated Long-range low-power frame structure
US10292101B2 (en) * 2016-05-11 2019-05-14 Qualcomm Incorporated Peak-to-average power management in wireless local area network signaling
US10298335B1 (en) * 2017-10-31 2019-05-21 Huawei Technologies Co., Ltd. Co-channel interference reduction in mmWave networks
US11102036B2 (en) * 2019-03-08 2021-08-24 Qualcomm Incorporated Preamble design for wake-up signals
CN111901276A (en) * 2020-06-22 2020-11-06 中兴通讯股份有限公司 Data modulation method, device, equipment and storage medium

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8670390B2 (en) * 2000-11-22 2014-03-11 Genghiscomm Holdings, LLC Cooperative beam-forming in wireless networks
US7474608B2 (en) * 2004-01-12 2009-01-06 Intel Corporation Method for signaling information by modifying modulation constellations
JP4663369B2 (en) 2004-05-20 2011-04-06 パナソニック株式会社 Wireless communication system, wireless communication method, base station apparatus, and terminal apparatus
AU2005249052A1 (en) 2004-06-01 2005-12-15 Koninklijke Philips Electronics N.V. Method, apparatuses and signal for transmitting/receiving information comprising primary and secondary messages in a same transmission
EP1847050B1 (en) * 2005-02-08 2016-04-13 QUALCOMM Incorporated Wireless messaging preambles allowing for beamforming and legacy device coexistence
JP5313506B2 (en) * 2005-02-09 2013-10-09 アギア システムズ インコーポレーテッド Method and apparatus for preamble training with shortened long training field in multi-antenna communication system
US7715442B2 (en) * 2006-02-24 2010-05-11 Intel Corporation Method, apparatus, and system of wireless transmission with frame alignment
US8126090B1 (en) * 2006-08-30 2012-02-28 Marvell International Ltd. Channel estimation for a WLAN through increased use of preamble
JP4888396B2 (en) * 2007-03-05 2012-02-29 ソニー株式会社 Wireless communication system, wireless communication apparatus, wireless communication method, and computer program
US7974225B2 (en) * 2007-05-30 2011-07-05 Intel Corporation Providing extended range modes as part of the 802.11n standard
US8005131B2 (en) * 2007-09-21 2011-08-23 Intel Corporation Delay compensation for transmit/receive chain calibration and multiuser MIMO
US8072959B2 (en) * 2008-03-06 2011-12-06 Issc Technologies Corp. Generating method for short training field in IEEE 802.11n communication systems
WO2010095802A1 (en) 2009-02-18 2010-08-26 Lg Electronics Inc. Coexistent channel access method
JP2010206730A (en) * 2009-03-05 2010-09-16 Sony Corp Wireless communication apparatus and wireless communication method
EP2420023B1 (en) 2009-04-13 2014-08-27 Marvell World Trade Ltd. Physical layer frame format for WLAN
US8228806B2 (en) * 2009-06-15 2012-07-24 Mediatek Inc. Method and system to detect packets of different formats in a receiver
US8462863B1 (en) * 2009-07-23 2013-06-11 Marvell International Ltd. Midamble for WLAN PHY frames
WO2011019571A1 (en) 2009-08-12 2011-02-17 Marvell World Trade Ltd. Sdma multi-device wireless communications
US8238316B2 (en) * 2009-12-22 2012-08-07 Intel Corporation 802.11 very high throughput preamble signaling field with legacy compatibility

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI643512B (en) * 2015-11-06 2018-12-01 美商高通公司 Preamble for non-linearity estimation

Also Published As

Publication number Publication date
KR20120064088A (en) 2012-06-18
CN102714643B (en) 2016-08-10
JP6165822B2 (en) 2017-07-19
JP2013503566A (en) 2013-01-31
JP2014161050A (en) 2014-09-04
US20110051705A1 (en) 2011-03-03
CN102714643A (en) 2012-10-03
ES2583227T3 (en) 2016-09-19
EP2471229A1 (en) 2012-07-04
JP5837122B2 (en) 2015-12-24
EP2797276A1 (en) 2014-10-29
TWI523448B (en) 2016-02-21
US9935805B2 (en) 2018-04-03
HUE027808T2 (en) 2016-11-28
KR101339112B1 (en) 2013-12-09
WO2011031454A1 (en) 2011-03-17
EP2797276B1 (en) 2016-05-25
JP2016054507A (en) 2016-04-14
EP2471229B1 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
TW201119265A (en) MIMO and MU-MIMO OFDM preambles
US10178665B2 (en) Systems and methods for transmitting packets in sub-1GHz frequency bands
US9503932B2 (en) Enhancements to the MU-MIMO VHT preamble to enable mode detection
TWI660639B (en) High efficiency wlan preamble structure
US10244414B2 (en) Signal field (SIG) design within OFDM/OFDMA wireless communications
TWI499258B (en) Preamble and header bit allocation for power savings within multiple user, multiple access, and/or mimo wireless communications
TWI423604B (en) Physical layer signaling of control parameters
US11043989B2 (en) Doppler midamble signaling for wireless communications
US10944518B2 (en) Resource unit (RU) allocation for downlink (DL) multi-block acknowledgement (M-BA) for uplink (UL) multiple user (MU) wireless communications