TW201116853A - Optical lens for obtaining a rectangle light field - Google Patents

Optical lens for obtaining a rectangle light field Download PDF

Info

Publication number
TW201116853A
TW201116853A TW98137337A TW98137337A TW201116853A TW 201116853 A TW201116853 A TW 201116853A TW 98137337 A TW98137337 A TW 98137337A TW 98137337 A TW98137337 A TW 98137337A TW 201116853 A TW201116853 A TW 201116853A
Authority
TW
Taiwan
Prior art keywords
optical lens
conical groove
light
conical
groove
Prior art date
Application number
TW98137337A
Other languages
Chinese (zh)
Inventor
Tien-Pao Chen
Original Assignee
Foxsemicon Integrated Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foxsemicon Integrated Tech Inc filed Critical Foxsemicon Integrated Tech Inc
Priority to TW98137337A priority Critical patent/TW201116853A/en
Publication of TW201116853A publication Critical patent/TW201116853A/en

Links

Landscapes

  • Lenses (AREA)

Abstract

An optical lens for adjusting light from a light source to obtain a rectangle light field, includes a body with two opposite ends. The body has a first surface at one of side ends and a second surface at the other of side ends. The first surface has a conical groove defined thereon. A peripheral side surface of the conical groove serves as light incident surface of the optical lens, result in light from the light source emit into the body of the optical lens therethrough. The second surface is an asymmetric saddle shaped aspheric surface which being as light emitting surface of the optical lens, which cooperatively adjust light from the light source with the side surface of the conical groove.

Description

201116853 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及光學系統,尤其涉及一種用於對光源的光場 形狀進行調整的光學透鏡。 【先前技術·】 [0002] 隨著半導體照明技術的發展,發光二極體(Light emitting diode, LED) 的光效不斷提高 ,現正逐步取代傳 統光源。針對LED光源,如何有效地分配LED發出的光能 是該LED光源中光學系統設計要解決的關鍵問題。目前的 LED光源所形成的照明區域大多為圓形,有時為了更節能 且實現更大區域的照明,例如路燈,需要將照明區域調 整為方形。故,有必要提供一種用於形成方形光場的光 學透鏡。 【發明内容】 [0003] 下面將以實施例說明一種用於形成方形光場的光學透鏡 〇 [0004] 一種用於對光源發出的光線進行調整以形成方形光場的 光學透鏡,其包括一個具有兩個相對端部的方形主體, 該主體具有一個位於兩個端部其中一者上的第一表面以 及一個位於另一個端部上的第二表面。該第一表面上設 置有一圓錐形凹槽,該圓錐形凹槽的側面作為該光學透 鏡的入光面以使光源射出的光線經由該圓錐形凹槽的侧 面射入該主體。該第二表面為一非對稱的馬鞍形非球面 ,該第二表面作為該光學透鏡的出光面。該圓錐形凹槽 的侧面及該第二表面用以對光源發出的光線進行調整。 098137337 表單編號A0101 第4頁/共18頁 0982063979-0 201116853 剛相較于先前技術,該光學魏㈣的側面與該 [0006] 0 馬鞍形第二表面對設置於該圓錐形凹槽t的光源射出的 光線具有;kit作用,即該絲射出的光線進人該光學透 鏡的主體後’由於該圓錐形凹槽的側面的面形特徵可使 進入的光線射向該第二表面上的預定位置,並且由於該 第二表面的面形特徵可使射至其上的光線按敎光路射 出,從而形成方形光場,以適應實際需要。 【實施方式】 下面將結合附圖,以對本發明實施例作進一步的詳細說 明。 . [0007] ) 請參閱圖1,本發明第一實施例提供的一種光學透鏡10, 其具有一個具有方形輪廓的主體100 ,該主體包括第 一端部11及與第一端部11相對的第二端部12。該主體 100具有分別在第一端部11及第二端部12上的第一表面 110及第二表面120。光學透鏡10用於對一個光源1 〇 1發 出的光線進行調整以形成方形光場.<»光源依據本發明 實施例為發光二極體之固態電子元件光源,然而對於本 領域的技術人員來說,該光源101可為任意光源。 [0008] 請參閱圖2至圖3,第一表面110上設置有一圓錐形凹槽 111。光源101通常設置於圓錐形凹槽111中,光源1 〇 1發 出的光線經由圓錐形凹槽111的侧面11 12射入主體100。 故,該圓錐形凹槽111的側面1112即作為光學透鏡的入光 面。 [0009] 圓錐形凹槽111的侧面1112符合下列運算式(1): 098137337 表單編號A0101 第5頁/共18頁 0982063979 201116853 [0010] [0011] [0012] [0013] [0014] [0015] [0016] [0017] [0018] 2201116853 VI. Description of the Invention: [Technical Field] The present invention relates to an optical system, and more particularly to an optical lens for adjusting the shape of a light field of a light source. [Prior Art·] [0002] With the development of semiconductor lighting technology, the light-emitting diode (LED) has been continuously improved, and it is gradually replacing traditional light sources. For the LED light source, how to effectively distribute the light energy emitted by the LED is a key problem to be solved in the design of the optical system in the LED light source. Most of the illumination areas formed by current LED light sources are circular, and sometimes it is necessary to adjust the illumination area to a square shape in order to save energy and achieve a larger area of illumination, such as street lamps. Therefore, it is necessary to provide an optical lens for forming a square light field. SUMMARY OF THE INVENTION [0003] An optical lens for forming a square light field will be described below by way of an embodiment. [0004] An optical lens for adjusting light emitted by a light source to form a square light field, comprising one having Two opposite end square bodies having a first surface on one of the two ends and a second surface on the other end. The first surface is provided with a conical groove, and the side of the conical groove serves as a light incident surface of the optical lens such that light emitted from the light source enters the main body via the side surface of the conical groove. The second surface is an asymmetrical saddle-shaped aspheric surface, and the second surface serves as a light-emitting surface of the optical lens. The side of the conical recess and the second surface are used to adjust the light emitted by the light source. 098137337 Form No. A0101 Page 4 of 18 Page 20982063979-0 201116853 Just prior to the prior art, the side of the optical Wei (four) and the [0006] 0 saddle-shaped second surface pair are disposed in the light source of the conical recess t The emitted light has a kit action, that is, the light emitted by the filament enters the body of the optical lens. 'Because of the planar feature of the side surface of the conical groove, the incoming light can be directed to a predetermined position on the second surface. And because the surface feature of the second surface allows the light incident thereon to be emitted as a light path, thereby forming a square light field to suit the actual needs. [Embodiment] Hereinafter, embodiments of the present invention will be further described in detail with reference to the accompanying drawings. Referring to FIG. 1, an optical lens 10 according to a first embodiment of the present invention has a main body 100 having a square outline, the main body including a first end portion 11 and opposite to the first end portion 11. Second end portion 12. The body 100 has a first surface 110 and a second surface 120 on the first end portion 11 and the second end portion 12, respectively. The optical lens 10 is used to adjust the light emitted by a light source 1 〇1 to form a square light field. The light source is a solid-state electronic component light source of the light-emitting diode according to an embodiment of the present invention, however, it will be apparent to those skilled in the art. The light source 101 can be any light source. Referring to FIGS. 2 to 3, a first conical groove 111 is disposed on the first surface 110. The light source 101 is usually disposed in the conical recess 111, and the light emitted from the light source 1 〇 1 is incident on the main body 100 via the side surface 11 12 of the conical recess 111. Therefore, the side surface 1112 of the conical groove 111 serves as a light incident surface of the optical lens. [0009] The side surface 1112 of the conical groove 111 conforms to the following formula (1): 098137337 Form No. A0101 Page 5 of 18 Page 20982063979 201116853 [0010] [0012] [0015] [0015] [0018] [0018] 2

(1) cr 1+4 —(1 + Λ^ν2 r是指相對於圓錐形凹槽111的側面1112的光軸的半徑 座標; z是指圓錐形凹槽111的侧面1112以r為引數的S A G值 (Sagitta Value),即沿圓錐形凹槽111的側面1112光 轴0丨的面座標; c與k分別為圓錐形四槽in的侧面1112的曲率係數及圓 錐係數’在此,圓錐形凹槽111的側面Π12的原點A位於 圓錐形凹槽111的侧面1U2的中心頂點,即圓錐形凹槽 111的底部中心。 圓錐形凹槽111的側面1112作為圓錐形曲面,其焦距F符 合下列運算式(2): 1 ⑵ F=—:— N是指光學透鏡l〇的主體loo的折射率; c為圓錐形凹槽111的侧面m2的曲率係數。 由運算式(2)可知,圓錐形凹槽in的侧面1112的焦距F 與其曲率係數C及光學透鏡1〇本身的折射率有關,通常, -50<F<-0.5。在本實施例中,光學透鏡1〇的材質為折射 率等於1.49的聚甲基丙烯酸甲酯(pMMA)。當然,光學透 098137337 表單編號A0101 第6頁/共18頁 0982063979-0 201116853 鏡ίο還可應用其他材料,例如聚碳酸脂(pc)或矽膠 (Si 1i cone)等。 [0019] 第一表面120為一非對稱的馬鞍形非球面,進入光學透鏡 10的主體100中的光線經由第二表面12〇射出,即第二表 面120為光學透鏡1〇的出光面。 [0020] 第二表面120符合下列運算式(3): Ζ = ΥγΧ +γ2Χ + y3x6 + + + + y^y6 +(1) cr 1+4 — (1 + Λ ^ ν 2 r refers to the radius coordinate of the optical axis with respect to the side surface 1112 of the conical groove 111; z means that the side surface 1112 of the conical groove 111 has r as an argument Sagitta Value, that is, the surface coordinate along the optical axis 0丨 of the side surface 1112 of the conical groove 111; c and k are respectively the curvature coefficient and the conic coefficient of the side surface 1112 of the conical four-slot in here, the cone The origin A of the side turn 12 of the shaped groove 111 is located at the center apex of the side 1U2 of the conical groove 111, that is, the center of the bottom of the conical groove 111. The side 1112 of the conical groove 111 serves as a conical surface with a focal length F The following expression (2) is satisfied: 1 (2) F=—:—N is the refractive index of the main body loo of the optical lens 10; c is the curvature coefficient of the side surface m2 of the conical groove 111. It is known from the equation (2) The focal length F of the side surface 1112 of the conical groove in is related to the curvature coefficient C and the refractive index of the optical lens 1 itself, and is usually -50 < F < - 0.5. In this embodiment, the material of the optical lens 1 为 is Polymethyl methacrylate (pMMA) with a refractive index equal to 1.49. Of course, optical transmission 098137337 Form No. A0101 Page 6 of 18 0982063979-0 201116853 Mirrors can also be applied to other materials, such as polycarbonate (PC) or silicone (Si 1i cone), etc. [0019] The first surface 120 is an asymmetric saddle-shaped non- The spherical surface, the light entering the main body 100 of the optical lens 10 is emitted through the second surface 12, that is, the second surface 120 is the light-emitting surface of the optical lens 1〇. [0020] The second surface 120 conforms to the following expression (3): = ΥγΧ +γ2Χ + y3x6 + + + + y^y6 +

(3) [0022] 5丨丨^疋知::第一表面12 0的非球面係數。在此 Ϊ1 V.. ν與ν為第一表面120的關鍵係數,即 、 ^ fs r6 5 6h與%為決定第二表面120面形的大體輪廓,而(3) [0022] 5丨丨^疋:: The aspherical coefficient of the first surface 120. Here, Ϊ1 V.. ν and ν are the key coefficients of the first surface 120, that is, ^ fs r6 5 6h and % are the general outlines determining the surface shape of the second surface 120, and

其他非球面係數為第二表面120面形的校正係數。在此, 第一表面12 0的原點(.:曲面中心點)B位.於該圓錐形凹槽 111的侧面1112光軸〇 1上&參見..圖2所示,在經過原點b 的XZ平面上,光轴(^兩侧的第二表面120對稱分佈。 與 可以取相同的範圍, Ϊ2 與 y可以取相同的範圍 。在本實施例中,-〇. 1< <0. 1,-〇. !< <n 1 , _ ϊι Υ5 〇 〇1<?^<〇 01,〇 〇1<?^6<〇 01。參見圖 3所示,在 經過原點Β的ΥΖ平面上,光軸(^兩側的第二表面12〇非對 098137337 表單編號Α0101 第7頁/共18 ΐ 0982063979-0 201116853 稱分佈’即第二表面120的經過原點B的切平面S1與經過 原點B且垂直於光軸〇】的平面S2之間具有一夾角θ。優選 地,夾角0度<0$1〇度。 [0023] 圓錐形凹槽111的侧面111 2的原點A與第二表面1 20的原 點β在Z軸方向上的垂直距離d定義為光學透鏡1〇的厚度, d可根據工業實際需要進行設定。在本實施例中,d=4mm 〇 [0024] 光學透鏡10中圓錐形凹槽111的側面11 12與第二表面12〇 分別符合運算式(1)、(3),其對設置於圓錐形凹槽111 中的光源101射出的光線具有校正作用,即光源101射出 的光線進入光學透鏡10的主體100後,由於圓錐形凹槽 111的側面1112的面形特徵可使進入的光線射向第二表面 120上的預定位置,並且由於第二表面120的面形特徵可 使射至其上的光線按預定光路射出,從而形成方形光場 以適應實際需要。在本實綠例中,圓錐形凹槽111的側 面Π12與第二表面12〇的參數可參見表1。 [0025] 表 1 單位/mm 參數 設定值(〇Perati〇nai Value ) 1 /c -1.472524 k -3.886628 r 1 1.8422E-03 (i.8422xl0'3) r 2 3.4516E-04 (3 4516xl〇-4) r 3 4.2832E-07 (4 2832x10-7) 表單編號A0101 第8頁/共18頁 0982063979-0 098137337 201116853 r 4 1.3530E-09 (l.353〇x1〇-9、 r 5 -6.7515E-02 (-6.7515^ 10-2) r 6 5.7794E-04 (5. 7794χΓ〇Γ^Τ r 7 -1.3900E-05 (-1.39〇〇^ 10-5) r8 -4.9534E-08 (-4. 9534^~ 10-8) 光學透鏡ίο採用表1中所示參數,形成的光強分佈圖(坎 德拉圖)及照度圖請爾别參見圖4與圖5 ’圖4中内圈曲線 表示XY平面上Y方向(垂直角度,Vertical angle)的光 強分佈情況,外圈曲線表示XY平面上X方向(平行角度, Horizontal angle)的光強分佈情況。由圖4與圖5可知 ,光學透鏡10可對光源101發出的光線進行校正,以形成^ 方形光場。 [0027] 另,透過光學透鏡10在XY平面上X方向可形成大於±6〇度 的輻射角度以在XY夺勢上形成有效地光強分佈,對此可 參見圖4。同時,透過光學透鏡10在XY平面上形成的光強 分佈較為均勻,即光強從光場中心向四周均勻遞減,對 此可參見圖5。 [0028] 綜上所述’本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施方 式,自不能以此限制本案之申請專利範圍。舉凡熟悉本 案技藝之人士援依本發明之精神所作之等效修飾或變化 ,皆應涵蓋於以下申請專利範圍内。 098137337 表單編號A0101 第9頁/共18頁 0982063979-0 201116853 【圖式簡單說明】 [0029] 圖1是本發明第一實施例提供的光學透鏡的結構示意圖。 [0030] 圖2是圖1所示光學透鏡沿II-II的剖面圖。 [0031] 圖3是圖1所示光學透鏡的III-III的剖面圖。 [0032] 圖4是經由圖1所示光學透鏡所形成的光場的光強分佈圖 〇 [0033] 圖5是經由圖1所示光學透鏡所形成的光場的照度模擬圖 [0034] 【主要元件符號說明】 光學透鏡:10 [0035] 主體:100 [0036] 第一端部: 11 [0037] 第二端部: 12 [0038] 第一表面: 110 [0039] 第二表面: 120 [0040] 光源:101 [0041] 圓錐形凹槽 :111 [0042] 側面:1112 098137337 表單編號A0101 第10頁/共18頁 0982063979-0The other aspherical coefficients are correction coefficients for the shape of the second surface 120. Here, the origin (.: curved center point) of the first surface 120 is B. On the side of the elliptical groove 111, the optical axis 〇1 is & see Fig. 2, after passing through the origin. On the XZ plane of b, the optical axis (the second surface 120 on both sides of the ^ is symmetrically distributed. The same range can be taken, and Ϊ2 and y can take the same range. In this embodiment, -〇. 1<<0 1.-〇. !<<n 1 , _ ϊι Υ5 〇〇1<?^<〇01,〇〇1<?^6<〇01. See Figure 3, after passing through the origin Β On the ΥΖ plane, the optical axis (the second surface 12 on both sides of the ^ 〇 对 098137337 Form No. 101 0101 Page 7 / Total 18 ΐ 0982063979-0 201116853 Weigh the distribution 'that is the tangent plane of the second surface 120 through the origin B S1 has an angle θ with a plane S2 passing through the origin B and perpendicular to the optical axis. Preferably, the angle is 0 degrees < 0$1. [0023] The original side of the conical groove 111 is 111 2 The vertical distance d of the origin A of the point A and the second surface 1 20 in the Z-axis direction is defined as the thickness of the optical lens 1 ,, and d can be set according to industrial needs. In the present embodiment, d = 4 mm 〇 [ 0024] The side surface 11 12 and the second surface 12 圆锥 of the conical groove 111 in the optical lens 10 respectively conform to the arithmetic expressions (1) and (3), which have a correcting effect on the light emitted from the light source 101 disposed in the conical groove 111. That is, after the light emitted by the light source 101 enters the main body 100 of the optical lens 10, the surface-shaped feature of the side surface 1112 of the conical groove 111 can cause the incoming light to be directed to a predetermined position on the second surface 120, and due to the second surface. The surface feature of 120 can cause the light incident thereon to be emitted according to a predetermined optical path, thereby forming a square light field to meet the actual needs. In the present green example, the side surface 12 of the conical groove 111 and the second surface 12 are The parameters can be found in Table 1. [0025] Table 1 Unit/mm Parameter setting (〇Perati〇nai Value) 1 /c -1.472524 k -3.886628 r 1 1.8422E-03 (i.8422xl0'3) r 2 3.4516E- 04 (3 4516xl〇-4) r 3 4.2832E-07 (4 2832x10-7) Form No. A0101 Page 8 of 18 0982063979-0 098137337 201116853 r 4 1.3530E-09 (l.353〇x1〇-9 , r 5 -6.7515E-02 (-6.7515^ 10-2) r 6 5.7794E-04 (5. 7794χΓ〇Γ^Τ r 7 -1.3900E-05 (-1.39 〇〇^ 10-5) r8 -4.9534E-08 (-4. 9534^~ 10-8) Optical Lens ίο Using the parameters shown in Table 1, the light intensity distribution map (candela) and illuminance map Referring to Fig. 4 and Fig. 5, the inner circle curve in Fig. 4 represents the light intensity distribution in the Y direction (vertical angle) on the XY plane, and the outer circle curve represents the X direction (Horizontal angle) on the XY plane. Light intensity distribution. As can be seen from Figures 4 and 5, the optical lens 10 can correct the light emitted by the light source 101 to form a square light field. [0027] In addition, a radiation angle greater than ±6 可 can be formed in the X direction through the optical lens 10 in the XY plane to form an effective light intensity distribution on the XY potential, which can be seen in FIG. At the same time, the light intensity distribution formed on the XY plane through the optical lens 10 is relatively uniform, that is, the light intensity is uniformly decreased from the center of the light field to the periphery, which can be seen in Fig. 5. [0028] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims. 098137337 Form No. A0101 Page 9 of 18 0982063979-0 201116853 [Simple Description of the Drawings] [0029] FIG. 1 is a schematic structural view of an optical lens according to a first embodiment of the present invention. 2 is a cross-sectional view of the optical lens of FIG. 1 taken along II-II. [0030] FIG. 3 is a cross-sectional view of III-III of the optical lens shown in FIG. 1. 4 is a light intensity distribution diagram of a light field formed by the optical lens shown in FIG. 1. [0033] FIG. 5 is an illumination simulation diagram of a light field formed by the optical lens shown in FIG. 1 [0034] Explanation of main component symbols: Optical lens: 10 [0035] Main body: 100 [0036] First end: 11 [0037] Second end: 12 [0038] First surface: 110 [0039] Second surface: 120 [ 0040] Light source: 101 [0041] Conical groove: 111 [0042] Side: 1112 098137337 Form No. A0101 Page 10 of 18 Page 20982063979-0

Claims (1)

201116853 七、申請專利範圍: ;對光源發出的光線進行調整以形成方形光場的光 學透鏡,其⑽: 八有兩個相對端部的方形主體’該主體具有一個位於 兩個端部其中一者上的第-表面以及-個位於另一個端部 的第一表面,該第一表面上設置有一圓錐形凹槽,該圓 “形凹槽的側面作為該光學透鏡的入光面以使光源射出的 光線經由該圓錐形凹槽的側面射入該主體,該第二表面為 〇 一非對稱的馬鞍形非球面,該第二表面作為該光學透鏡的 出光面,該圓錐形凹槽的側面及該第二表面用以對光源發 出的光線進行調整。 2 .如申請專利範圍第1項所述之光學透鏡’該第一表面符合 下列運算式: z =--—— _ l+^(l + A)cV2 〇 r是指相對於該圓錐形凹槽的側面的光軸的半徑座標,z是 指該圓錐形凹槽的侧面以r為引數的SAG值,c與k分別為 該圓錐形凹槽的侧面的曲率係數及圓錐係數。 如申請專利範圍第2項所述之光學透鏡,其中,該圓錐形 凹槽的側面的原點位於該圓錐形凹槽的側面光軸上的中心 頂點,該圓錐形凹槽的側面的焦距F符合下列運算式: F=—-— (Ν-ΐ)€ 098137337 Ν是指該光學透鏡的主體的折射率,c為該圓錐形凹槽的側 表單編號A0101 第11頁/共18頁 0982063979-0 201116853 面的曲率係數,且_5〇 < _〇 5。 4. 如申請專利範圍第2項所述之光學透鏡,其中,1化等於 -1.472524 ’ 3.886628 ° 5. 如申請專利範圍第丨項所述之光學透鏡,其中,該第二表 面由下列等式進行定義: ^ = γλχ2 + γ2χΑ +γζχ6 +γΛχβ+γ5γ2 + γ6γΑ +γ7γ6 + y\ η 是指第二表面的非球面係數 如申請專利範圍第5項所述之光學透鏡,其中, 與 Ti 7s 的範圍相同, 與 的範圍相同。 f2 /6 •如申請專利範圍第6項所述之光學透鏡,其中, ;;. ·:; -0.1 < < 0.Γ -0 01 < < 0.01 ° -ί ' .如申請專利範園第5項所述之光學透鏡,其中,該圓錐形 凹槽的側面的原點位於該圓錐形凹槽的側面光軸上的中心 頂點,該第二表面的原點位於該圓錐形凹槽的侧面光轴上 ,該第二表面的經過第二表面原點的切平面與經過第二表 面原點且垂直於該圓錐形凹槽的側面光軸的平面之間具有 —失角0。 098137337 10 . 如申請專利範圍第8項所述之光學透鏡,其中 且小於等於1〇度。 如申請專利範圍第5項所述之光學透鏡,其中 表單編號Α0101 第12頁/共18頁 Θ大於〇度 η 等於 0982063979-0 201116853 1.8422E-035 3.4516E-04 J 於4.2332E -07,於 1.3530E-09,% #&-6.7515E -02 ’ ;^#&5.7794E-04 ’ 乃等於-1.3900E-05,心等於 -4.9534E-08° O 098137337 表單編號A0101 第13頁/共18頁 0982063979-0201116853 VII. Patent application scope: An optical lens that adjusts the light emitted by the light source to form a square light field, (10): eight square body having two opposite ends. The body has one of the two ends. a first surface and a first surface at the other end, the first surface being provided with a conical groove, the side of the circular groove serving as a light incident surface of the optical lens to emit the light source Light passing through the side of the conical groove into the body, the second surface being an asymmetrical saddle-shaped aspheric surface, the second surface serving as a light-emitting surface of the optical lens, the side surface of the conical groove and The second surface is used to adjust the light emitted by the light source. 2. The optical lens of claim 1 is the first surface conforming to the following expression: z =--- _ l+^(l + A) cV2 〇r refers to the radius coordinate of the optical axis with respect to the side of the conical groove, and z refers to the SAG value of r on the side of the conical groove, and c and k are respectively the conical shape Curvature coefficient of the side of the groove The optical lens of claim 2, wherein an origin of a side surface of the conical groove is located at a central apex of a side optical axis of the conical groove, the conical groove The focal length F of the side conforms to the following formula: F=—-—(Ν-ΐ)€ 098137337 Ν is the refractive index of the body of the optical lens, c is the side form number of the conical groove A0101 Page 11 / Total 18 pages 0982063979-0 201116853 The curvature coefficient of the face, and _5 〇 < _ 〇 5. 4. The optical lens of claim 2, wherein 1 is equal to -1.472424 ' 3.886628 ° 5. If applied The optical lens of claim 2, wherein the second surface is defined by the following equation: ^ = γλχ2 + γ2χΑ +γζχ6 +γΛχβ+γ5γ2 + γ6γΑ +γ7γ6 + y\ η means the second surface The optical lens according to claim 5, wherein the optical lens is the same as the range of Ti 7s, and is the same as the range. f2 /6 • The optical lens according to claim 6, wherein; . -0.1 << 0. Γ -0 01 << 0.01 ° - ί '. The optical lens of claim 5, wherein the origin of the side of the conical groove is located a central apex on a side optical axis of the conical groove, the origin of the second surface being located on a side optical axis of the conical groove, the second surface having a tangent plane passing through the origin of the second surface and passing through the second The surface origin and the plane perpendicular to the side optical axis of the conical groove have a -off angle 0. 098137337. The optical lens of claim 8, wherein the optical lens is less than or equal to 1 degree. The optical lens of claim 5, wherein the form number Α0101 page 12/18 pages Θ greater than the η degree η equals 0982063979-0 201116853 1.8422E-035 3.4516E-04 J at 4.2332E -07, 1.3530E-09,% #&-6.7515E -02 ' ;^#&5.7794E-04 ' is equal to -1.3900E-05, heart is equal to -4.9534E-08° O 098137337 Form No. A0101 Page 13 / Total 18 pages 0982063979-0
TW98137337A 2009-11-04 2009-11-04 Optical lens for obtaining a rectangle light field TW201116853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98137337A TW201116853A (en) 2009-11-04 2009-11-04 Optical lens for obtaining a rectangle light field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98137337A TW201116853A (en) 2009-11-04 2009-11-04 Optical lens for obtaining a rectangle light field

Publications (1)

Publication Number Publication Date
TW201116853A true TW201116853A (en) 2011-05-16

Family

ID=44934993

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98137337A TW201116853A (en) 2009-11-04 2009-11-04 Optical lens for obtaining a rectangle light field

Country Status (1)

Country Link
TW (1) TW201116853A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102818215A (en) * 2011-06-07 2012-12-12 富准精密工业(深圳)有限公司 Lens and lighting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102818215A (en) * 2011-06-07 2012-12-12 富准精密工业(深圳)有限公司 Lens and lighting device

Similar Documents

Publication Publication Date Title
CN102230600B (en) Optical lens for forming square light field
JP5483237B2 (en) Light guide module with adjustable illumination of contour surface
US20110317413A1 (en) Optical illumination system producing an asymmetric beam pattern
JP2011095751A (en) Optical lens
WO2011048735A1 (en) Lighting lens, light-emitting device, surface light source, and liquid crystal display device
TWI615638B (en) Light emitting diode freeform illumination system
TW201033537A (en) Lens for LED illumination
TWM445664U (en) Light emitting device and light beam controlling device thereof
KR101146458B1 (en) Optical lens
TWI479107B (en) Led light distributing lens and light source apparatus using the same
KR20120119578A (en) Led light diffusing lens for improving illumination efficiency of led street lamp
CN105020674A (en) Light source device
TW201116853A (en) Optical lens for obtaining a rectangle light field
KR101253266B1 (en) Led streetlight
CN103090310A (en) Optical lens
TWM419876U (en) Optical lens of LED light
ES2875798T3 (en) Led module with exit lens
TW201903438A (en) lens
TW201118428A (en) Optical lens
TW201514411A (en) Light source module
TW201329399A (en) Improved structure of light reflecting cup that enhances light condensation effect
TWI381135B (en) Lens and illumination apparatus having same
TW201310078A (en) An optical lens, a light-emitting diode optical component and a light-emitting diode illumination lamp
TWI428637B (en) An optical lens, a light-emitting diode optical component and a light-emitting diode road lamp.
KR101580742B1 (en) Method for designing a lens of lighting device