TW201113583A - Capacitive touch panel - Google Patents

Capacitive touch panel Download PDF

Info

Publication number
TW201113583A
TW201113583A TW98134306A TW98134306A TW201113583A TW 201113583 A TW201113583 A TW 201113583A TW 98134306 A TW98134306 A TW 98134306A TW 98134306 A TW98134306 A TW 98134306A TW 201113583 A TW201113583 A TW 201113583A
Authority
TW
Taiwan
Prior art keywords
touch panel
capacitive touch
film
conductive film
conductive
Prior art date
Application number
TW98134306A
Other languages
Chinese (zh)
Other versions
TWI412819B (en
Inventor
Po-Yang Chen
Po-Sheng Shih
Hsuan-Lin Pan
Tai-Shun Liao
Original Assignee
Innolux Display Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innolux Display Corp filed Critical Innolux Display Corp
Priority to TW98134306A priority Critical patent/TWI412819B/en
Publication of TW201113583A publication Critical patent/TW201113583A/en
Application granted granted Critical
Publication of TWI412819B publication Critical patent/TWI412819B/en

Links

Landscapes

  • Position Input By Displaying (AREA)

Abstract

The present invention is directed to a capacitive touch panel. The touch panel includes a first conductive film with anisotropic impedance, a second conductive film with conductive structures, and an insulating layer disposed between the first conductive film and the second conductive film. The conducting direction of the conductive structures is perpendicular to the direction of least impedance of the first conductive film.

Description

201113583 六、發明說明: 【發明所屬之技術領域】 一種具高產能、高觸控靈 本發明係有關觸控面板,特別是關於 敏度之電容式觸控面板結構。 、 【先前技術】 觸控面板(touchpanel)逐漸普遍應用於電子裝置甲,特別是 可擴式或手射電计L個人触咖(p_ai Di御201113583 VI. Description of the Invention: [Technical Field of the Invention] A high-capacity, high-touch body The present invention relates to a touch panel, and more particularly to a capacitive touch panel structure with sensitivity. [Prior Art] Touchpanel is becoming more and more popular in electronic devices, especially for expandable or hand-held radiometers.

As她nt’PDA)或行動電話。觸控面板的觸控原理主要有電阻式、 p式及光學式。傳統電阻式觸控面板的結構主要包含崎氧化 鋼锡_咖Th 〇Xide ’ IT〇)薄膜,並以_子(spacer)隔離這 =層ITO薄膜。#手指按壓造成IT〇薄膜的形變時,使得兩層ιτο 薄膜於觸碰點互相接觸。藉㈣測觸碰點的電壓值改變,因而得 t位出觸碰點。由於電阻式觸控面板需藉蝴控面板的形變以 達成定位’因此會造成_賴及咖度降低等缺點。 H電容搞控面板主要包含二層IT0 _及—絕緣層所形 成的電谷結構。當手指觸碰到觸控面板時 =的電場,因时魏容結構之電。藉由轉電路及讀;Ιΐ =以偵測電容值的改變,因而得以定位As she nt’PDA) or mobile phone. The touch principle of the touch panel mainly includes resistive, p-type and optical. The structure of the conventional resistive touch panel mainly comprises a thin film of oxidized steel tin, and the ITO film is separated by a spacer. # Finger pressing causes the deformation of the IT film, so that the two layers of the film are in contact with each other at the touch point. By (4) the voltage value of the touch point is changed, so that the touch point is obtained. Since the resistive touch panel needs to be deformed by the deformation of the butterfly control panel, it may cause disadvantages such as a decrease in the degree of gambling. The H capacitor control panel mainly consists of two layers of IT0 _ and the electric valley structure formed by the insulating layer. When the finger touches the touch panel, the electric field is the electricity of the Weirong structure. By turning the circuit and reading; Ιΐ = to detect the change in capacitance value, thus being able to locate

傳統電容式觸控面板的圖案化(patterned) ΙΤ。薄膜,二了 J t溥膜胤錢形酵與下層ΙΤ0薄膜1GB的菱顧案係互^目 的S於圖1A的觸控面板結構,必須對上、下層ιτ〇薄膜 時分別進行驅動才能得到觸碰點。然而,當有二觸碰點同 所有觸碰點。圖1_另—種_容式 觸控面板的圖案化ΙΤ0薄膜,其中,上層ΙΤ0薄膜12Α的長 201113583 案與下層ITO薄膜1ZB的長形圖案互相重疊處可定義出多個_ 區。藉由驅動其中-層ITO薄膜,可偵測得到—或多個觸碰點。 無論是圖1A或圖1B所示的傳統電容式觸控面板,其IT〇薄 * 膜的圖案化(Patterning)主要係使用半導體製造技術,例如微影、 •曝光、侧術。由於製程中必須繁複進行多次的步驟,因此, 造成觸控面板良率的無法提升,也無法降低製造成本及製造時 間。再者’受到製程解析度的限制,傳統觸控面板的觸控精確度 也無法突破瓶頸。 • ㉟於此’近來因而有使用奈米碳管薄膜或稱為碳奈米管 (carbon nan〇tube,CNT)薄膜以取代IT〇薄膜的作法。CNT薄膜 具電阻抗異向性(anisotropicimpedance),亦即,其在某一方向具 最小的電阻抗,而在垂直的另一方向具最大的電阻抗。圖ic顯示 使用CNT薄膜之電容式觸控面板,其主要包含上層⑽薄膜 14A、下層CNT薄膜14B及其之間的絕緣層。其中,上層cnt 薄膜14A的最小電阻抗方向係垂直於下層CNT薄膜i4B的最小 電阻抗方向。圖1C所示的CNT電容式觸控面板的產能 •(―弨咖)遠較圖1A、圖1B所示的IT〇電容式觸控面板來得 大’然而,當手指觸碰到觸控面板時,二層CNT薄膜ΜΑ、MB 之間的電場卻不易受到干擾,造成電容值的變化不夠大因而無 法提升觸碰靈敏度(sensitivity )。 =於此’因而亟需提出-種新顆的電容式觸控面板,其不但能 維持高產能’且具高觸控靈敏度。 【發明内容】 鑑於上社紐術帽義控面板⑽乡缺點,本發明實施 201113583 例的目的之一在於提出一種電容式觸控面板的結構其使用電阻 抗異向性之導電膜,例如奈来碳管(CNT)薄膜,用以提升觸控 面板良率及觸控精確度,並降低製造成本及製造時間。再者,同 時使用圖案化之導電膜,用以提高觸控靈敏度。 一根據本發明實施例,電容式觸控面板包含具電阻抗異向性的 第導電膜、具複數導電結構的第二導電膜及位於第一導電膜和 第一導電膜之間的絕緣層。其中,第二導電膜之導電結構的導電 方向係垂直於第一導電膜之最小電阻抗方向。於一較佳實施例 中,第一導電膜為奈米碳管(CNT)薄膜,而第二導電膜則具圖 案化(patterned)之複數長形導電結構,其互為平行且互相分隔一 預設距離。 【實施方式】 圖2A顯示本發明第一實施例之電容式觸控面板的上視圖,其 主要包含第-導電膜20及第二導電膜a,分解圖如圖2B所示^ 其中’第一導電膜20具電阻抗異向性(anis〇tr〇pic,咖^)。 於圖2A中,第一導電膜20於縱軸方向具最小的電阻抗,而在橫 軸方向具最大的雜抗。在本實補中,第—導賴2G為奈米碳 管(CNT)薄膜,然而也可以使用其他具電阻抗異向性之材質。 CNT薄膜的製造方法係首先長出奈米碳#,接著,啼伸技術將 一根根的奈米碳管逐一拉出。這些奈米碳管藉由凡得瓦力(vander Waals f0rce)而得以前後端相連,形成定向、平行排列的導電結構。 所形成的奈米碳管薄膜會在拉伸的方向具最小的電阻抗,而在垂 直於拉伸方向具最大的電阻抗,因而形成電阻抗異向性。 第二導電膜22包含圖案化(patterned)之複數個導電結構, 201113583 例如長形導電結構,其大致上互為平行且互相分隔一預設距離。 一般來說,第二導電膜22之導電結構的導電方向係垂直於第一導 電膜2〇之最小電阻抗方向。在本實施例巾,第二導電膜22為圖 - 案化之氧化銦錫(IT0)薄膜,然而,也可以使用其他傳統導電材質 .或者使用圖案化之電阻抗異向性薄膜,例如CNT薄膜。在本實施 例中’第二導電膜22的每一長形導電結構之寬度與相鄰長形導電 結構之節距(pitch)比例大約為5%_5〇%,但不限定於此。例如, 如果長形導電結構之節距為5mm,職料電結構之寬度大約 • 〇.25-2.5mm。 圖2C顯示電容式觸控面板沿圖2A之剖面線2c/2c,的剖面 圖。根據圖2C’第-導電膜2G及第二導電膜22之間包含一絕緣 層21 ’藉此,三者構成一電容結構,其電容值標示為。通常, 位於第-導電膜20的外侧還包含有第一保護層23,而位於第二導 電膜22的外侧還包含有第二保護層24。上述絕緣層21、第一保 護層23或第二保護層24可以選用傳統透明絕緣材質,例如聚乙 烯(Polyethylene ’ PE)、聚碳酸醋⑽❹她,pc)、聚對苯 (Polyethylene Terephthalate ^ PET) ^ fWP〇lyMethylMethACrylate,PMMA)_k_。^, 絕緣層還可選用氧化物或紫外線硬化膠⑽膠);第一保護層 23、第二保護層.24還可選用氧化物。上述絕緣層21、第一保護層 23或第二保護層24可關絲膠作貼合,例如〇cA(〇ptoi c⑽ Adhesive)光學膠。 上述圖2C所示之觸控面板結構,其製造方法可使用雙邊製程 技術,也可使靜邊製程技術,或者其他可行之適錢程技術。 以雙邊製程技術為例’係以絕緣層21作為製程的基板,於基板21 201113583 的兩側分別形成第一導電膜2〇及第二導電膜22;最後,再分別於 第-導龍20及第二導麵η的外齡獅絲—保護層η及 第二保護層24。以單邊製財術為例,係以第—保護層23作為製 私的基板’於基板23上依序形成第—導電膜2()、絕緣層2卜 二導電膜22及第二保護層24。圖3顯示另一種觸控面板的單邊製 =首先’以第—保護層24作為基板,於基板Μ上形成第二導 ,膜22接著’依序覆蓋絕緣層21及第-導電膜2〇。最後,於 第導電膜20上形成第一保護層23。Patterned 传统 of traditional capacitive touch panels. The film, the second J 溥 胤 胤 形 形 与 与 与 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于Touch it. However, when there are two touch points with all touch points. FIG. 1 is a patterned ΙΤ0 film of a touch panel, wherein a plurality of _ regions can be defined by the length of the upper ΙΤ0 film 12 2011 and the elongated pattern of the lower ITO film 1ZB. By driving the mid-layer ITO film, it is possible to detect - or multiple touch points. Regardless of the conventional capacitive touch panel shown in FIG. 1A or FIG. 1B, the IT thinner *filming of the film mainly uses semiconductor manufacturing techniques such as lithography, exposure, and side surgery. Since the process must be complicated in many steps, the touch panel yield cannot be improved, and the manufacturing cost and manufacturing time cannot be reduced. Furthermore, by the limitation of the process resolution, the touch accuracy of the conventional touch panel cannot break through the bottleneck. • 35 There has been a recent practice of using a carbon nanotube film or a carbon nanotube (CNT) film to replace the IT film. The CNT film has an anisotropic impedance, that is, it has the smallest electrical impedance in one direction and the largest electrical impedance in the other perpendicular direction. Figure ic shows a capacitive touch panel using a CNT film, which mainly comprises an upper layer (10) film 14A, a lower layer CNT film 14B and an insulating layer therebetween. The minimum electrical impedance direction of the upper cnt film 14A is perpendicular to the minimum electrical impedance direction of the lower CNT film i4B. The capacity of the CNT capacitive touch panel shown in FIG. 1C is much larger than that of the IT capacitive touch panel shown in FIG. 1A and FIG. 1B. However, when the finger touches the touch panel, The electric field between the two layers of CNT film ΜΑ and MB is not easily disturbed, and the change in capacitance value is not large enough to improve the sensitivity of the touch. = There is no need to propose a new capacitive touch panel that not only maintains high productivity but also has high touch sensitivity. SUMMARY OF THE INVENTION In view of the shortcomings of the Shanghai Xinyi Cap Control Panel (10), one of the purposes of the present invention is to provide a structure of a capacitive touch panel using an anti-anisotropy conductive film, such as Nailai. Carbon tube (CNT) film to improve touch panel yield and touch accuracy, and reduce manufacturing costs and manufacturing time. Furthermore, a patterned conductive film is used at the same time to improve touch sensitivity. According to an embodiment of the invention, a capacitive touch panel includes a first conductive film having electrical anisotropy, a second conductive film having a plurality of conductive structures, and an insulating layer between the first conductive film and the first conductive film. Wherein, the conductive direction of the conductive structure of the second conductive film is perpendicular to the minimum electrical impedance direction of the first conductive film. In a preferred embodiment, the first conductive film is a carbon nanotube (CNT) film, and the second conductive film has a patterned plurality of long conductive structures that are parallel to each other and separated from each other. Set the distance. 2A is a top view of a capacitive touch panel according to a first embodiment of the present invention, which mainly includes a first conductive film 20 and a second conductive film a, and an exploded view is shown in FIG. 2B. The conductive film 20 has electrical anisotropy (anis〇tr〇pic, coffee). In Fig. 2A, the first conductive film 20 has the smallest electrical impedance in the longitudinal direction and the largest in the lateral direction. In this implementation, the second guide 2G is a carbon nanotube (CNT) film, but other materials having electrical anisotropy may also be used. The CNT film is produced by first growing nanocarbon #, and then stretching the individual carbon nanotubes one by one. These carbon nanotubes are connected to the front and rear ends by a vander Waals, which form an oriented, parallel-arranged conductive structure. The formed carbon nanotube film has a minimum electrical resistance in the direction of stretching and a maximum electrical resistance in the direction perpendicular to the stretching direction, thereby forming an electrical impedance anisotropy. The second conductive film 22 includes a plurality of patterned conductive structures, such as elongated conductive structures, which are substantially parallel to each other and separated from each other by a predetermined distance. Generally, the conductive direction of the conductive structure of the second conductive film 22 is perpendicular to the minimum electrical impedance direction of the first conductive film 2A. In the embodiment, the second conductive film 22 is a patterned indium tin oxide (ITO) film. However, other conventional conductive materials may be used. Or a patterned electrical anti-anisotropy film such as a CNT film may be used. . In the present embodiment, the ratio of the width of each of the elongated conductive structures of the second conductive film 22 to the pitch of the adjacent elongated conductive structures is about 5% - 5 %, but is not limited thereto. For example, if the pitch of the elongated conductive structure is 5 mm, the width of the electrical structure of the job is approximately 〇.25-2.5 mm. Figure 2C shows a cross-sectional view of the capacitive touch panel along section line 2c/2c of Figure 2A. According to Fig. 2C', an insulating layer 21' is included between the first conductive film 2G and the second conductive film 22, whereby the three constitute a capacitor structure, and the capacitance value thereof is indicated. Generally, the first protective layer 23 is further disposed on the outer side of the first conductive film 20, and the second protective layer 24 is further disposed on the outer side of the second conductive film 22. The insulating layer 21, the first protective layer 23 or the second protective layer 24 may be made of a conventional transparent insulating material, such as polyethylene (PE), polycarbonate (10), pc), and polyethylene terephthalate (PET). ^ fWP〇lyMethylMethACrylate, PMMA)_k_. ^, the insulating layer may also be selected from an oxide or ultraviolet curing glue (10); the first protective layer 23, the second protective layer .24 may also be an oxide. The insulating layer 21, the first protective layer 23 or the second protective layer 24 may be used as a bonding material such as 〇cA (〇ptoi c(10) Adhesive) optical adhesive. The touch panel structure shown in FIG. 2C above may be manufactured by using a bilateral process technology, a static edge process technology, or other feasible mode technology. Taking the two-way process technology as an example, the insulating layer 21 is used as the substrate of the process, and the first conductive film 2 and the second conductive film 22 are respectively formed on both sides of the substrate 21 201113583; finally, the first guide spring 20 and The outer lion's silk of the second guide surface η - the protective layer η and the second protective layer 24. Taking the unilateral financial operation as an example, the first conductive film 2 (), the insulating layer 2, the second conductive film 22, and the second protective layer are sequentially formed on the substrate 23 by using the first protective layer 23 as a substrate for manufacturing. twenty four. FIG. 3 shows the unilateral system of another touch panel. First, the second conductive layer is formed on the substrate by using the first protective layer 24 as a substrate. The film 22 then sequentially covers the insulating layer 21 and the first conductive film 2 . . Finally, a first protective layer 23 is formed on the first conductive film 20.

·,根據圖2C所示之電容結構,當手指觸碰到觸控面板, 碰觸於第二導賴22的上方時,會干擾第—導電膜2q和第二導 電膜22 _電場’因而改變電容結構之電容值cm。由於第 複數r長形導電結構之間具有間隔雜,使得電場干擾 %度〜大,與圖1C所示的傳統CNT觸控面板相較之下,得以 碰靈敏度(職獅y)。—般來說,長料電結構之間隔大 率、產能等因素。 找為依據,並兼考慮到製程的良 賴2G和第二導麵22分_接魏動電路1 :^路32,如圖2D所示,藉由_電容值的改變 =點。圖2”的第一電容α係代表第二導電膜_ ^谷值,而第二電容C2則代表第一導電膜20至地的電容值 實施例中的第-導電膜2〇输至驅動電路%,第二導電月 22耦接至讀取電路32 ;然而,在i他眚 __取電路32,而第二導也可將第, 圖,示觸碰點定位的動電路30 筮措+ 裡具體實施作法。在本實施例中 弟—導電膜2㈣,_數個第-金騎極⑽,输翊 201113583 第二導電膜22的—側也财複數個第 二金屬電極,姻至讀取電路32 _作為讀取端。於圖式中, 掃描端包含有掃描,線i至掃描線m,而讀取端包含有讀取線ι至 讀取線n。圖4B顯示本實施例之掃描時序圖。首先,於期間T1, =動電路顧崎贿1輸人方波信號,而讀取電路32則藉由 二取線1至靖轉n分·胃取對應至_或Y軸位置的η個電壓 數值。依相同房理,於_ Τ2,驅動電路3〇經由掃描線2輸入 方波信號’而讀取電路32則藉由讀取線!至讀取線η分別讀取對 應至縱軸或Υ轴位置的η個電壓數值。重複_步驟直到掃描線 m ’即完成-瓣描週期。經過—個掃描週期後,將可得到的 數值一圖5A例示觸控面板未經觸碰的一般讀取信號波形,而圖 5B則例示觸控面板經觸碰的讀取信號波形,亦即,其電壓幅度會 異於或小於—般讀取信號的電壓幅度。若將得到的m*n個數^作 ^值的統計比較,可得到如圖5C所示的曲線,其中,具最小電壓 幅度之位置即絲觸碰關位置。值得注意的是,本實施例之觸 控面板結構及掃描定位方法可用以_制同時發生的多個觸碰 點(multi-touch ) 〇 八圖6A顯示本發明第二實施例之電容式觸控面板的上視圖其 分解圖如圖6B所示。和第—實施例不同的是,本實施例之第一導 電膜20,例如CNT薄膜,其沿著最小電阻抗方向,如圖式中的縱 白、”i切割而形成互相隔離的區塊。本實施例之剖面結構' 材質選用製权方法及掃描方法都和第一實施例相同,因此不子 贅述。 雖然本發明以前述之較佳實施例揭露如上,然其並非用以限 疋本發明’任何熟習相像技藝者,在不脫離本發明之精神和範圍 201113583 冰臟範圍須視 【圖式簡單說明】 广種傳統電谷式觸控面板的圖案化ΙΤΟ薄膜。 翻不另一種傳統電容式觸控面板的圖案化ΙΤ0薄膜。 圖C顯不使用CNT薄膜之電容式觸控面板。According to the capacitor structure shown in FIG. 2C, when the finger touches the touch panel and touches the upper side of the second guide 22, the first conductive film 2q and the second conductive film 22_the electric field are changed. The capacitance value of the capacitor structure is cm. Due to the spacing between the plurality of r-shaped conductive structures, the electric field interference is reduced to a large degree, which is comparable to the conventional CNT touch panel shown in Fig. 1C, and the sensitivity is (the lion y). In general, factors such as the interval between the long-term electrical structure and the production capacity. Look for the basis, and take into account the process of the 2G and the second guide 22 points _ connected to the Wei circuit 1: ^ 32, as shown in Figure 2D, by the _ capacitance value change = point. The first capacitance α of FIG. 2′′ represents the second conductive film _ ^ valley value, and the second capacitance C2 represents the first conductive film 2 to the ground capacitance value of the first conductive film 20 to the driving circuit %, the second conductive month 22 is coupled to the read circuit 32; however, the circuit 32 is taken from the other side, and the second circuit can also be used to display the moving circuit 30 of the touch point. In the present embodiment, the conductive film 2 (four), _ several first - gold riding poles (10), the input of the second conductive film 22 on the side of the second conductive film 22 is also a plurality of second metal electrodes, to read The circuit 32_ serves as a read end. In the figure, the scan end includes a scan, line i to scan line m, and the read end includes a read line ι to a read line n. Figure 4B shows the scan of this embodiment Timing diagram. First, during the period T1, the dynamic circuit Gu Qiqi 1 loses the square wave signal, and the reading circuit 32 takes the corresponding line to the _ or Y-axis position by taking the line 1 to the jingle n point. η voltage values. According to the same rationale, at _ Τ 2, the drive circuit 3 输入 inputs the square wave signal ' via the scan line 2 ' while the read circuit 32 reads the line ~ to the read line η The n voltage values corresponding to the vertical axis or the x-axis position are respectively read. Repeating the step _ until the scanning line m ' is completed - the flapping period. After one scanning period, the available value is illustrated in FIG. 5A. The panel generally reads the signal waveform without touching, and FIG. 5B illustrates the touch signal waveform of the touch panel through touch, that is, the voltage amplitude thereof is different or smaller than the voltage amplitude of the read signal. The statistical comparison of the obtained m*n numbers is used to obtain a curve as shown in FIG. 5C, wherein the position with the smallest voltage amplitude is the touch position of the wire. It is worth noting that this embodiment The touch panel structure and the scanning and positioning method can be used to make multiple simultaneous touch points (multi-touch). FIG. 6A shows a top view of the capacitive touch panel of the second embodiment of the present invention. 6B. Unlike the first embodiment, the first conductive film 20 of the present embodiment, such as a CNT film, is isolated from each other along the direction of minimum electrical impedance, as shown by the longitudinal white and "i-cut" in the figure. Block. The cross-sectional structure of the present embodiment, the material selection method and the scanning method are the same as those of the first embodiment, and therefore will not be described again. Although the present invention has been disclosed above in the above preferred embodiments, it is not intended to limit the invention to any skilled artisan, and the scope of the invention is not limited by the spirit and scope of the present invention. A wide range of patterned enamel films for traditional electric valley touch panels. Turning on the patterned ΙΤ0 film of another conventional capacitive touch panel. Figure C shows a capacitive touch panel without a CNT film.

顯示本發明第—實施例之電容式觸控面板的上視圖。 =顯不本發明第—實施例之電容式面板的分解圖。 顯不電容式觸控面板沿圖2A之剖面線2c/2c,的剖面 ^ 2D顯示將第—導賴和第二導魏分聰接至驅動電〗 及5買取電路,用以定位出觸碰點。 圖3顯示另一種觸控面板的單邊製程。 圖4A顯示觸碰點定位的一種具體實施作法。 圖4B顯示本實施例之掃描時序圖。 圖5A例示觸控面板未經觸碰的一般讀取信號波形。 圖5B例示觸控面板經觸碰的讀取信號波形。 圖5C例示經過一掃描週期後所得到的數值曲線。 ® 6A顯示本發㈣二實施例之電容式觸控面板的上視圖。 圖6B顯示本發明第二實施例之電容式觸控面板的分解圖。A top view of a capacitive touch panel according to a first embodiment of the present invention is shown. An exploded view of the capacitive panel of the first embodiment of the present invention is shown. The cross-sectional view of the non-capacitive touch panel along the section line 2c/2c of FIG. 2A shows that the first guide and the second guide are connected to the drive circuit and the 5 buy circuit for positioning the touch. point. Figure 3 shows the unilateral process of another touch panel. Figure 4A shows a specific implementation of the touch point location. Fig. 4B shows a scanning timing chart of this embodiment. FIG. 5A illustrates a general read signal waveform of a touch panel that is not touched. FIG. 5B illustrates a read signal waveform of the touch panel being touched. Fig. 5C illustrates a numerical curve obtained after one scanning period. ® 6A shows a top view of the capacitive touch panel of the second embodiment of the present invention. FIG. 6B is an exploded view showing the capacitive touch panel of the second embodiment of the present invention.

10A 10B 【主要元件符號說明】 ITO薄膜 ιτο薄膜 201113583 12A 12B 14A 14B 20 * 21 22 23 24 30 32 200 • 220 Cm Cl C2 ITO薄膜 ITO薄膜 CNT薄膜 CNT薄膜 第一導電膜 絕緣層 第二導電膜 第一保護層 第二保護層 驅動電路 讀取電路 第一金屬電極 第二金屬電極 電容結構之電容值 第一電容值 第二電容值10A 10B [Description of main component symbols] ITO film ιτο film 201113583 12A 12B 14A 14B 20 * 21 22 23 24 30 32 200 • 220 Cm Cl C2 ITO film ITO film CNT film CNT film first conductive film insulating layer second conductive film a protective layer second protective layer driving circuit reading circuit first metal electrode second metal electrode capacitor structure capacitance value first capacitance value second capacitance value

1111

Claims (1)

201113583 七、申請專利範圍: 1. 一種電容式觸控面板,包含: 一第一導電膜,具電阻抗異向性; 一第二導電膜,具複數導電結構;及 一絕緣層,位於該第一導電膜和該第二導電膜之間; 其中,該第二導電膜之導電結構的導電方向係垂直於該第一導 電膜之最小電阻抗方向。 2·如申請專利範圍第1 2項所述之電容式觸控面板,其中,上述之 第一導電膜為奈米碳管(CNT)薄膜。 3.如申請專利範圍第】項所述之電容式觸控面板,其中,上述第 二導電膜之複數導電結構為長形導電結構,其互為平行且互相 分隔一預設距離。 範圍第i項所述之電容式觸控面板,其中,上述之 第一導電膜為氧化銦錫(ITO)薄膜。 5. 第1項所述之電容式觸控面板,其中,上述之 弟一導電膜為電阻抗異向性薄膜。 Κ 6. 如申請專利範圍第5項所述之電容式觸控 第二導電臈為奈米碳管(CNT)薄膜。 /、,上述之 如申請專利範圍第3 4項所述之電容式觸控 -該長形導電結構之寬度與相鄰之該 :偷上述每 例為5%-50%。 構的節距比 /2 9. 1 圍第1項所述之電容式觸控面板,其中,更一 2 第-保護層,位於該第-導電膜背離 更包a 3 如申物彳範_項所述之電容式觸控面板:射:人 4 ^ cdi 3 201113583 一第二保護層,位於該第二導電膜背離該絕緣層之一側。 10.如申請專利範圍第1項所述之電容式觸控面板,其令,上述之 絕緣層包含下列材質之一或其組合:聚乙烯(PE)、聚碳酸酯 • (PC)、聚對苯二甲酸二乙酯(PET)、聚曱基丙烯酸甲酯 • (PMMA)、薄化之玻璃、氧化物、光學膠及紫外線硬化膠(UV 膠)。 11·如申請專利範圍第8或9項所述之電容式觸控面板,其中,上 述之第一保護層或第二保護層包含下列材質之一或其組合:聚 Φ 乙烯(PE)、聚碳酸酯(PC)、聚對苯二甲酸二乙酯(pet)、 聚甲基丙烯酸甲酯(PMMA)、薄化之玻璃、光學膠及氧化物。 12. 如申請專利範圍第1項所述之電容式觸控面板,其中,更包含 一驅動電路及一讀取電路,二者其中一個耦接至該第一導電 膜,而二者中的另一個耦接至該第二導電膜。 13. 如申請專利範圍第12項所述之電容式觸控面板,其中,上述 之第一導電膜包含複數第一金屬電極,藉以連接至該耦接之驅 動電路或讀取電路。 鲁14.如申請專利範圍第13項所述之電容式觸控面板,其中,上述 之第二導電膜包含複數第二金屬電極,藉以連接至該耦接之驅 動電路或讀取電路。 15. 如申請專利範圍第1項所述之電容式觸控面板其中,上述第 一導電膜於最小電阻抗方向經切割而形成互相隔離的區塊。 16. —種電容式觸控面板,包含: 一奈米碳管(CNT)薄膜; 導電膜,具圖案化(patterned)之複數長形導電結構,其互 為平行且互相分隔一預設距離;及 13 201113583 一絕緣層,位於該奈米碳管薄膜和該導電膜之間; ,中,該導電獻長形導電結構的導電方向健直於該奈米碳 管薄膜之最小電阻抗方向。 17. 如申請專利範圍帛16項所述之電容式觸控面板,其中,上述 . 之導電膜為氧化銦錫(IT0)薄膜或電阻抗異向性薄膜。 18. =申請專利範圍S 16項所述之電容式觸控面板,其中,上述 每該長形導電結構之寬度與相鄰之該長形導電結構的節距 比例為5%-50%。 φ 19·如申請專利範圍帛16項所述之電容式觸控面板,其中,更包 含: 一第-保護層,位於該奈米碳管薄膜背離該絕緣層之一側;及 -第二保護層,位於該導電膜背離該絕緣層之一側。 20.如申請專利範圍第16項所述之電容式觸控面板其中,上述 之、、絲層包含下列材質之—或其組合:聚乙烯(ρΕ)、聚碳酸 酉曰(pc)、聚對苯二甲g|^二乙g旨(ΡΕΤ)、聚甲基丙烯酸甲醋 (ΡΜΜΑ)、’耻之玻璃、氧化物、光學膠及紫外線硬化膠(UV • 膠)。 21. 如申請專利範圍第19項所述之電容式觸控面板,其中,上; 之第-保護層或第二保護層包含下珊質之—或其組合:聚丨 稀(ΡΕ)、聚碳酸酯(PC)、聚對苯二甲酸二乙g旨(ΡΕΤ)、 甲基丙烯Μι旨(ΡΜΜΑ)、薄化之朗、光轉及氧化物 22. 如申請專利範圍第16項所述之電容式觸控面板,其中 含-驅動電路及-讀取電路,二者其中一個 j 薄膜’而二者中的另一個輕接至該導電膜。 23. 如申請專利範圍第22項所述之電容式觸控面板,其中,更έ 201113583 含: 複數第一金屬電極,設於該奈米碳管薄膜,藉以將該奈米碳管 薄膜連接至該耦接之驅動電路或讀取電路;及 . 複數第二金屬電極,設於該導電膜,藉以將該導電膜連接至該 耦接之驅動電路或讀取電路。 24.如申請專利範圍第16項所述之電容式觸控面板,其中,上述 奈米碳管薄膜於最小電阻抗方向經切割而形成互相隔離的區 塊。201113583 VII. Patent application scope: 1. A capacitive touch panel comprising: a first conductive film having electrical impedance anisotropy; a second conductive film having a plurality of conductive structures; and an insulating layer located at the first Between a conductive film and the second conductive film; wherein a conductive direction of the conductive structure of the second conductive film is perpendicular to a minimum electrical impedance direction of the first conductive film. 2. The capacitive touch panel of claim 1, wherein the first conductive film is a carbon nanotube (CNT) film. 3. The capacitive touch panel of claim 2, wherein the plurality of conductive structures of the second conductive film are elongated conductive structures that are parallel to each other and separated from each other by a predetermined distance. The capacitive touch panel of the above aspect, wherein the first conductive film is an indium tin oxide (ITO) film. 5. The capacitive touch panel of item 1, wherein the first conductive film is an electrical impedance anisotropic film. Κ 6. The capacitive touch second conductive crucible as described in claim 5 is a carbon nanotube (CNT) film. /, the above-mentioned capacitive touch as described in claim 34 of the patent application - the width of the elongated conductive structure and the adjacent one: stealing 5%-50% of each of the above examples. The pitch ratio of the structure is /2 9. 1 The capacitive touch panel described in the first item, wherein a further 2 first-protective layer is located at the first conductive film away from the package a 3 as a sample _ The capacitive touch panel of the present invention: shot: person 4 ^ cdi 3 201113583 a second protective layer located on the side of the second conductive film facing away from the insulating layer. 10. The capacitive touch panel of claim 1, wherein the insulating layer comprises one or a combination of the following materials: polyethylene (PE), polycarbonate (PC), poly pair Diethyl phthalate (PET), polymethyl methacrylate (PMMA), thinned glass, oxide, optical glue and UV curing glue (UV glue). The capacitive touch panel of claim 8 or 9, wherein the first protective layer or the second protective layer comprises one or a combination of the following materials: polyΦ ethylene (PE), poly Carbonate (PC), polyethylene terephthalate (PET), polymethyl methacrylate (PMMA), thinned glass, optical glue and oxide. 12. The capacitive touch panel of claim 1, further comprising a driving circuit and a reading circuit, one of the two being coupled to the first conductive film, and the other of the two One is coupled to the second conductive film. 13. The capacitive touch panel of claim 12, wherein the first conductive film comprises a plurality of first metal electrodes for connection to the coupled driving circuit or the reading circuit. The capacitive touch panel of claim 13, wherein the second conductive film comprises a plurality of second metal electrodes for connecting to the coupled driving circuit or the reading circuit. 15. The capacitive touch panel of claim 1, wherein the first conductive film is cut in a direction of minimum electrical impedance to form mutually isolated blocks. 16. A capacitive touch panel comprising: a carbon nanotube (CNT) film; a conductive film having a patterned plurality of elongated conductive structures that are parallel to each other and separated from each other by a predetermined distance; And 13 201113583 an insulating layer between the carbon nanotube film and the conductive film; wherein, the electrically conductive elongated conductive structure has a direction of electrical conductivity that is perpendicular to a minimum electrical impedance direction of the carbon nanotube film. 17. The capacitive touch panel of claim 16, wherein the conductive film is an indium tin oxide (IT0) film or an electrical anisotropy film. 18. The capacitive touch panel of claim 16, wherein the ratio of the width of each of the elongated conductive structures to the pitch of the adjacent elongated conductive structures is 5% to 50%. The capacitive touch panel of claim 16, wherein the method further comprises: a first protective layer located on a side of the carbon nanotube film facing away from the insulating layer; and - a second protection a layer located on a side of the conductive film facing away from the insulating layer. 20. The capacitive touch panel of claim 16, wherein the silk layer comprises the following materials - or a combination thereof: polyethylene (ρΕ), polycarbonate (PC), poly pair Benzene g|^ Diethylene g (ΡΕΤ), polymethyl methacrylate (ΡΜΜΑ), 'shame glass, oxide, optical glue and UV curing glue (UV • glue). 21. The capacitive touch panel of claim 19, wherein the first protective layer or the second protective layer comprises a lower layer or a combination thereof: polythene (ΡΕ), poly Carbonate (PC), poly(ethylene terephthalate), (meth), methacrylofluorene, oxime, thinning, light conversion, and oxide 22. As described in claim 16 A capacitive touch panel in which a drive circuit and a read circuit are included, one of which is a film, and the other of the two is lightly connected to the conductive film. 23. The capacitive touch panel of claim 22, wherein, further, 201113583 comprises: a plurality of first metal electrodes disposed on the carbon nanotube film to connect the carbon nanotube film to The coupled driving circuit or the reading circuit; and the plurality of second metal electrodes are disposed on the conductive film, thereby connecting the conductive film to the coupled driving circuit or the reading circuit. The capacitive touch panel of claim 16, wherein the carbon nanotube film is cut in a direction of minimum electrical resistance to form mutually isolated blocks.
TW98134306A 2009-10-09 2009-10-09 Capacitive touch panel TWI412819B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98134306A TWI412819B (en) 2009-10-09 2009-10-09 Capacitive touch panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98134306A TWI412819B (en) 2009-10-09 2009-10-09 Capacitive touch panel

Publications (2)

Publication Number Publication Date
TW201113583A true TW201113583A (en) 2011-04-16
TWI412819B TWI412819B (en) 2013-10-21

Family

ID=44909680

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98134306A TWI412819B (en) 2009-10-09 2009-10-09 Capacitive touch panel

Country Status (1)

Country Link
TW (1) TWI412819B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8623163B2 (en) 2011-06-09 2014-01-07 Shih Hua Technology Ltd. Method for making touch panel
US8623224B2 (en) 2011-06-09 2014-01-07 Shih Hua Technology Ltd. Method for making patterned conductive element
TWI425562B (en) * 2011-06-09 2014-02-01 Shih Hua Technology Ltd Method for making touch panel
US8803829B2 (en) 2011-06-09 2014-08-12 Shih Hua Technology Ltd. Touch panel
US8822829B2 (en) 2011-06-09 2014-09-02 Shih Hua Technology Ltd. Patterned conductive element
US9057904B2 (en) 2012-07-23 2015-06-16 Tianjin Funayuanchuang Technology Co., Ltd. Liquid crystal display module
US9256095B2 (en) 2012-07-23 2016-02-09 Tianjin Funayuanchuang Technology Co., Ltd. Liquid crystal display module
TWI629618B (en) * 2012-05-18 2018-07-11 南韓商Lg伊諾特股份有限公司 Touch panel and formation of electrode

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103576371A (en) 2012-07-23 2014-02-12 天津富纳源创科技有限公司 Liquid crystal panel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050209392A1 (en) * 2003-12-17 2005-09-22 Jiazhong Luo Polymer binders for flexible and transparent conductive coatings containing carbon nanotubes
JP2007011997A (en) * 2005-07-04 2007-01-18 Fujitsu Component Ltd Touch panel
TW200802057A (en) * 2006-06-20 2008-01-01 Egalax Inc Compensation control method and device of a capacitive touch panel
TWI374302B (en) * 2007-11-09 2012-10-11 Hon Hai Prec Ind Co Ltd Touch panel
CN101464765B (en) * 2007-12-21 2011-01-05 鸿富锦精密工业(深圳)有限公司 Touch screen and display equipment
US8119937B2 (en) * 2008-03-10 2012-02-21 Young Fast Optoelectronics Co., Ltd. Capacitive touch panel

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8623163B2 (en) 2011-06-09 2014-01-07 Shih Hua Technology Ltd. Method for making touch panel
US8623224B2 (en) 2011-06-09 2014-01-07 Shih Hua Technology Ltd. Method for making patterned conductive element
TWI425562B (en) * 2011-06-09 2014-02-01 Shih Hua Technology Ltd Method for making touch panel
US8803829B2 (en) 2011-06-09 2014-08-12 Shih Hua Technology Ltd. Touch panel
US8822829B2 (en) 2011-06-09 2014-09-02 Shih Hua Technology Ltd. Patterned conductive element
TWI629618B (en) * 2012-05-18 2018-07-11 南韓商Lg伊諾特股份有限公司 Touch panel and formation of electrode
US9057904B2 (en) 2012-07-23 2015-06-16 Tianjin Funayuanchuang Technology Co., Ltd. Liquid crystal display module
US9256095B2 (en) 2012-07-23 2016-02-09 Tianjin Funayuanchuang Technology Co., Ltd. Liquid crystal display module

Also Published As

Publication number Publication date
TWI412819B (en) 2013-10-21

Similar Documents

Publication Publication Date Title
TW201113583A (en) Capacitive touch panel
JP5711916B2 (en) Capacitive touch panel
CN102707831B (en) Touch pad and the touch-screen with this touch pad
TWI480782B (en) Touch panel
JP5697923B2 (en) Touch panel and localization method of touch point
CN101625466B (en) Touch liquid crystal display screen
TW201250558A (en) Touch screen
TWI441048B (en) Touch panel and a method of locating a touch point of the same
KR20120098459A (en) Capacitive touch panel and a method for manufacturing the capacitive touch panel
US8921727B2 (en) Double-layer electrode device
US20120062507A1 (en) Capacitive touch screen and manufacturing method thereof
TW200929645A (en) Touch panel and driving method thereof
US20140340590A1 (en) Touch panel
US8686309B2 (en) Touch panel having conductive zone for avoiding false operation
TW201405200A (en) Liquid crystal panel
TWM483490U (en) Touch panel transparent sensing layer structure improvement
JP2011076578A (en) Input device of touch screen and method of manufacturing the same
TW201250801A (en) Method for making touch panel
CN103870076A (en) Touch panel and manufacturing method thereof
TW201405210A (en) Liquid crystal panel
TWI465796B (en) Touch panel panel
TWI451317B (en) Touch panel
US20140353020A1 (en) Touch panel
TW201712505A (en) Three-dimensional touch screen assembly
JP2012146430A (en) Transparent conductive structure utilizing mixed nanoparticle and method for producing the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees